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Abstract

We begin with a discussion of the symmetricity of maj over des in pattern avoidance

classes, and its relationship to maj-Wilf equivalence. From this, we explore the

distribution of permutation statistics across pattern avoidance for patterns of length

3 and 4.

We then begin discussion of Han’s bijection, a bijection on permutations which sends

the major index to Denert’s statistic and the descent number to the (strong) excedance

number. We show the existence of several infinite families of fixed points for Han’s

bijection.

Finally, we discuss the image of pattern avoidance classes under Han’s bijection, for

the purpose of finding a condition which has the same distribution of den over exc

as pattern avoidance does of maj over des.
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Chapter 1

Introduction

A permutation σ of n is an arrangement of the numbers 1 to n in some order; it

can alternatively be viewed as a bijection σ : [n] → [n], where [n] = {1, 2, 3, . . . , n}.

In this sense, permutations form a group under composition: this is known as the

symmetric group of order n, and denoted Sn. We can also consider a permutation σ

to be a list σ1σ2 . . . σn, containing exactly the numbers 1 to n.

A permutation can be written simply as a list, known as the one-line notation, e.g.

τ = 7246135; the two-line notation, an array with one row showing the input and the

other the output, e.g.

 1 2 3 4 5 6 7

7 2 4 6 1 3 5

;
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or the cycle notation, a product of cycles representing its orbits, e.g.

(2)(634)(751).

While there are many ways in which to write a permutation in cycle notation, the

standard form[Sta11] of a permutation lists the cycles such that each cycle’s largest

element is first, and the cycles are placed in increasing order of the largest element.

Note that, as in our example, cycle notation includes any 1-cycles (fixed points) of

the permutation.

A descent in a permutation σ is an index i such that σi > σi+1: in other words, it is

an index in the permutation where the value decreases. Every position which is not

a descent is an ascent. In our sample permutation τ , we have descents at 1 (7 > 2)

and 4 (6 > 1).

An excedance (also called a strong excedance) in a permutation σ is any index i such

that σi > i. The case where σi ≥ i is known as the weak excedances ; every excedance

is a weak excedance, but not every weak excedance is an excedance. (For instance,

the permutation 1234 has four weak excedances, but no excedances!) In our sample

permutation, we have strong excedances at 1, 3, and 4, and a weak excedance at 2.

An inversion in a permutation σ is a pair of indices (i, j) such that i < j and σi > σj.
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Our sample permutation τ has twelve inversions: (7, 2), (7, 4), (7, 6), (7, 1), (7, 3),

(7, 5), (2, 1), (4, 1), (4, 3), (6, 1), (6, 3), and (6, 5).

A permutation statistic is some function f : Sn → N, which typically relates to some

property of the permutation. Statistics which are relevant to this thesis include:

† Inversion number (denoted inv): The number of inversions. As above, inv τ =

12.

† Descent number (denoted des): The number of descents. As above, des τ = 2.

† Major index (denoted maj): The sums of the indices of the descents. The

descent set of τ is {1, 4}, so maj τ = 1 + 4 = 5.

† Excedance number (denoted exc): The number of (strong) excedances. As

above, exc τ = 3.

† Excedance bottom number (denoted Ebot): The sum of the indices of the

(strong) excedances. The indices of the excedances of τ are {1, 3, 4}, so

Ebot τ = 1 + 3 + 4 = 8.

† Inversion bottom number (denoted Ibot): The number of inversions where the

lesser value is an excedance. For τ , the values of our excedances are 7, 4, and

6; of the inversions, (7, 4) and (7, 6) are the only ones with any of these values

as the lesser, thus Ibot τ = 2.
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† Inversion top number (denoted Itop): The number of inversions where the

greater value is a nonexcedance. τ ’s nonexcedance values are 2, 1, 3, and 5;

of the inversions, (2, 1) is the only one with 2, 1, 3, or 5 at the earlier index.

Thus Itop τ = 1.

† Denert’s statistic (denoted den): The sum of the excedance bottom number,

inversion botton number, and inversion top number. For τ , we have den τ =

Ebot τ + Ibot τ + Itop τ = 8 + 2 + 1 = 11.

We define the distribution of a permutation statistic st as the coefficients of the

polynomial

F st
n (q) =

∑
σ∈Sn

qst(σ).

We say that a permutation statistic st is Mahonian if

Fmaj
n (q) = F st

n (q),

i.e., if it has the same distribution as the major index, for all n. This family of statistics

was named for MacMahon’s proof that the major index and inversion number were

equidistributed; the generating functions Fmaj
n are the Mahonian polynomials

F inv
n (q) = Fmaj

n (q) =
n−1∏
i=0

(1 + q + · · ·+ qi)

Using the notation [m]q = 1 + q + q2 + . . . qm−1 for the q-analogue of m, we can also
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write this as

F inv
n = Fmaj

n =
n−1∏
i=0

[m]q,

i.e., the direct q-analogue of m!.[BB13]

Likewise, we say that st is Eulerian if

F des
n (q) = F st

n (q),

i.e., if it has the same distribution as the descent number, for all n. The generating

functions of the descents are closely related to the Eulerian polynomials [BB13] An(q),

An(q) =
∑
σ∈Sn

q1+desσ

which are given by the identity

∑
k≥0

(k + 1)ntk+1 =
An(t)

(1− t)n+1 .

The major index, inversion number, and Denert’s statistic are all known to be Ma-

honian, while the descent and excedence numbers are Eulerian.

A bistatistic is an ordered pair of statistics (sta, stb).

Definition 1. For a given bistatistic (sta, stb), we say that sta is symmetrically

5



distributed over stb across class C if, given any k, then

∑
τ∈C:stb τ=k

qstaτ = qjf(q),

where f(q) is a symmetric polynomial: i.e., if f is of degree n, then f(q) = qnf(1
q
).

For instance, maj is symmetric over des over the class of 1234-avoiding permutations:

For example, with k = 3, we have j = 6 and f(q) = 10 + 35q + 66q2 + 80q3 + 66q4 +

35q5 + 10q6. We will prove this property holds for several avoidance classes of length

3 and 4.

We say that a given bistatistic (sta, stb) is Euler-Mahonian if

∑
σ∈Sn

qmajσtdesσ =
∑
σ∈Sn

qstaσtstbσ

These generating functions are known as the Euler-Mahonian polynomials [BB13],

and are given by the following q-analogue of the formula for the Eulerian polynomial

identity: ∑
k≥0

[k + 1]nq t
k =

∑
π∈Sn t

desπqmajπ∏n
j=0(1− tqj)

It is clear that it is a necessary condition that sta be Mahonian and stb be Eulerian,

but these conditions are not sufficient; (maj, des) has a different bivariate generating

function than (maj, exc); the latter is not Euler-Mahonian. It is thus conventional
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to, given a particular Eulerian (resp. Mahonian) statistic sta (resp. stb), attempt

to find a Mahonian (resp. Eulerian) statistic stb (resp. sta) such that the bistatistic

(sta, stb) is Euler-Mahonian. Denert’s statistic was originally conjectured in [Den90]

to be such a partner for the excedance number; this was then shown to be true by

Foata and Zeilberger in [FZ90].

Consider two sequences of distinct values a1a2 . . . an and b1b2 . . . bn. We say that a

and b are order isomorphic if bi < bj if and only if ai < aj. We say that a permutation

σ contains a permutation π if there is a subsequence of σ which is order isomorphic

to π; if σ contains no such subsequence, we say that it avoids π. In this context we

refer to π as a pattern.

The set of permutations of order n which avoid a pattern π is denoted Sn(π). The

study of pattern avoidance developed out of Knuth’s work on stack-sorting[Knu68],

and has became a major topic in combinatorics.

Two permutations π and π? are said to be Wilf equivalent if |Sn(π)| = |Sn(π?)|.

It is well-known that for all π ∈ S3, |Sn(π)| = Cn, where Cn is the nth Catalan

number; thus, all permutations of length 3 are Wilf equivalent. However, we have

|S6(1234)| = 513 but |S6(1342)| = 512; thus, not all permutations of the same length

are Wilf equivalent.

In [DDJ+12], Dokos et al.consider a q-analogue of Wilf equivalence, which they refer
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to as st-Wilf equivalence, and which they define as follows:

Suppose st : Sn → N is a permutation statistic; let F st
n (π, q) be the generating function

of st over the permutations avoiding π; i.e.,

F st
n (π, q) =

∑
θ∈Sn(π)

qst θ

We say that π and π? are st-Wilf equivalent if

F st
n (π, q) = F st

n (π?, q)

for all n.

Note that if we set q = 1, we get

F st
n (π, 1) = |Sn(π)|,

and thus st-Wilf equivalence implies Wilf equivalence.

Many of the conjectures posited and questions posed by [DDJ+12] have already been

proven, disproven, or otherwise addressed, more extensively than we shall address

here.

† In [CEKS13a], Cheng et al.show a generalisation of the conjecture that the
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distribution of inv over Sn(321) is given by

fn(q)fn−1(q) +
n−2∑
k=0

qk+1fk(q)fn−1−k(q)

They also answer the questions posed by [DDJ+12] regarding recursions for

bistatistic polynomials. In a later addendum [CEKS13b], they prove the sym-

metry of maj over des for Sn(321). In [MS14], Mansour and Shattuck offer an

algebraic proof for this result in addition to the earlier combinatorial one.

† In [Blo14], Bloom proves combinatorially the conjecture that 1423, 2413, and

3214 are maj-Wilf equivalent.

† In [Kil12], Killpatrick relates maj-Wilf equivalence to charge-Wilf equivalence,

and uses this to prove the conjecture on the parity of the coefficients of

Fmaj
2k−1(321, q).

† In [Tro15], Trongsiriwat demonstrates a means to construct non-trivial examples

of inv-Wilf equivalence for pairs of sets of two avoided permutations, disproving

the conjecture that none exist.

† In [Cha15], Chan strengthens the result of [Tro15] by constructing a family of

inv-Wilf equivalent pairs of single permutations.

† In [YGZ15], Yan et al.prove part of a conjecture that 12 . . . k(k+m+1) . . . (k+

2)(k + 1) and (m + 1)(m + 2) . . . (k + m + 1)m. . . 21 are maj-Wilf equivalent;
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specifically, they show it is true for the subcase k ≥ 1 and m = 1.

While many of these conjectures were proven in more detail than we address, this no-

tion of st-Wilf equivalence, specifically maj-Wilf equivalence, provided the inspiration

for our work here.

Given a permutation σ ∈ Sn, we define its complement C(σ) as the permutation given

by

C(σ)i = n+ 1− σi

for 1 ≤ i ≤ n. We also define its reverse R(σ) as the permutation given by

R(σ)i = σn+1−i

and its reverse complement σ′ = R(C(σ)).

It can be simply shown that R(C(σ)) = C(R(σ)), and it should be clear that R(σ),

C(σ), and σ′ are all involutions.

In Chapter 2, we will show that if a permutation σ avoids a pattern π, then σ′ avoids

π′. It can be shown that desσ′ = desσ, while majσ′ = n desσ − majσ. From

this, we can observe that if (maj, des) is symmetrically distributed in Sn(π), then π

is maj-Wilf equivalent to π′: since the reverse complement preserves descents and

sends the major index to n desσ − majσ, if the polynomial is symmetric, the same

10



numbers simply exchange, giving the same distribution.

This provides one way of proving maj-Wilf equivalence for some permutations, which

inspired the beginning of the investigation. We then show that if π is equal to π′,

then maj is necessarily symmetrically distributed over des on Sn(π).

In Chapter 3, we move from the results of Chapter 2 to consider finding a subset of Sn

on which the bistatistic (den, exc) has the same distribution as (maj, des) does over

Sn(π). To this end we employ a bijection of Han[Han90], prove the existence of several

families of fixed points, and set out some avenues for further work in identifying a

condition not reliant on pattern avoidance and Han’s bijection.

11



Chapter 2

Symmetricity of the (maj, des)

Bistatistic Across Pattern

Avoidance Classes

We consider now the problem of the distribution of permutation bistatistics across

avoidance classes. Stanley[Sta] produced a proof that (maj, des) is symmetrically

distributed over Sn(123 · · · p), which we here recreate and extend to cover all permu-

tations π which are preserved by reverse complement.

Lemma 1. Let σ be a permutation of length n and π be a pattern of length m ≤ n,

and let R(σ) and R(π) denote their respective reverses. Then σ avoids π if and only

if R(σ) avoids R(π).
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Proof. If σ contains π, then by definition we can pick a1, . . . , am such that ai < aj if

i < j and the sequence of σai matches exactly the pattern π.

We then let bi = n − ai, so R(σ)bi = σai . Since σai matches the pattern π, and

R(σ)bi is simply that sequence reversed, R(σ)bi matches the pattern R(π). Thus, if σ

contains π, R(σ) contains R(π); by the contrapositive, if R(σ) avoids R(π), σ avoids

π.

This same logic can be used, save for starting with R(σ) containing R(π), to show

that if σ avoids π, R(σ) avoids R(π).

Lemma 2. Let σ be a permutation of length n and π be a pattern of length m ≤ n,

and let C(σ) and C(π) denote their respective complements. Then σ avoids π if and

only if C(σ) avoids C(π).

Proof. If σ contains π, then by then by definition we can pick a1, . . . , am such that

ai < aj if i < j and the sequence of σai matches exactly the pattern π.

By the definition of the complement, C(σ)ai = n + 1 − σai . Thus, the larger an

element σai , the smaller an element C(σ)ai and vice versa. This sends the pattern π

to the pattern C(π).

This same logic can be used, save for starting with C(σ) containing C(π), to show

that if σ avoids π, C(σ) avoids C(π).
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Corollary 1. Let σ be a permutation of length n and π be a pattern of length m ≤ n,

and let σ′ and π′ be their respective reverse complements. Then σ avoids π if and

only if σ′ avoids π′.

Using 1, we can extend Stanley’s result.

Theorem 1. Let π be a permutation in Sp, and let π′ denote the reverse complement

of π. Then if π = π′, maj is symmetrically distributed over des across Sn(π).

Proof. Let σ ∈ Sn(π). By Corollary 1, σ′ ∈ Sn(π′). Since π = π′, σ′ ∈ Sn(π).

Given k descents, the smallest value that the major index can take on is

1 + 2 + . . .+ k =

(
k + 1

2

)

(having every descent in the earliest possible position), while the largest possible value

is

n− 1 + n− 2 + . . . n− k = kn−
(
k + 1

2

)

(having every descent in the last possible position).

Since majσ′ = n desσ−majσ and desσ′ = desσ, this is sufficient to show that maj

is symmetrically distributed over des in Sn(π).

14



2.1 Special Case for k = 4

In almost every case for n = 4, the only time where (maj, des) is symmetrically

distributed across an avoidance class Sn(π) is when π is preserved by reverse com-

plement. There are, however, four outliers: 1423, 2314, 3241, and 4132; these are

the only patterns we have found which are symmetric without being preserved by

reverse-complement.

In [Blo14], Bloom shows that the major index is equidistributed among 1423-

avoiding, 2413-avoiding, and 2314-avoiding permutations by way of a pair of bijec-

tions Θ : Sn(1423) → Sn(2413) and Ω : Sn(2314) → Sn(2413). Bloom’s bijections

preserve not only major index, but descent set, and thus this proves that (maj, des)

is equidistributed across these avoidance classes.

We will now show that Bloom’s method also applies to Sn(3241), Sn(3142), and

Sn(4132). Since 2413 and 3142 are preserved by reverse-complement, these results

thus imply the symmetricity of maj over des for these permutation avoidance classes.

Lemma 3. Let σ be a permutation of length n, and let R(σ) denote its reverse. Then

desR(σ) = n− 1− desσ.

Proof. Let i be the position of an ascent in σ; i.e., σi < σi+1. Since R(σ)n+1−i = σi,

15



this becomes R(σ)n+1−i < R(σ)n−i: i.e., n− i is a descent in R(σ). Similarly, we can

show that if i is a descent in σ, n− i is an ascent in R(σ). As there are n− 1 places

which must be either ascents or descents, there are n− 1− desσ ascents in σ, so we

have desR(σ) = n− 1− desσ.

Lemma 4. Let σ be a permutation of length n, and let R(σ) denote its reverse. Then

majR(σ) =
(
n
2

)
− n desσ + majσ.

Proof. Let S be the descent set of σ. Then R(A) = {n− i | i ∈ S} is the ascent set

of R(σ); it follows that R(S) = [n − 1] \ R(A) is the descent set of R(σ). Then by

the definition of major index,

majR(σ) =
∑
i∈R(S)

i

=
∑

i∈[n−1]

i−
∑
i∈R(A)

i

=

(
n

2

)
−
∑
i∈S

(n− i)

=

(
n

2

)
−
∑
i∈S

n+
∑
i∈S

i

=

(
n

2

)
− n desσ + majσ.

Combined, these show that the major index and descent number of a permutation

are determined exactly by the major index and descent number of its reverse. (It is
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an exercise in simple arithmetic to show that when these rules are applied twice, they

result in the original values.)

Theorem 2. The bistatistic (maj, des) is equidistributed among 3241-avoiding, 3142-

avoiding, and 4132-avoiding permutations.

Proof. Let σ be a permutation of length n ≥ 4 that avoids 3241, and let R(σ) denote

its reverse. Then by Lemma 1, R(σ) avoids 1423; by Lemmas 3 and 4, it has descent

number des(R(σ)) = n−1−desσ and major index maj(R(σ)) =
(
n
2

)
−n desσ+majσ.

Then τ = Θ(R(σ)) is a 2413-avoiding permutation with descent number equal to

des(R(σ)) and major index equal to maj(R(σ)). Then R(τ), by Lemmas 1, 3, and 4

is a 3142-avoiding permutation with descent number des(σ) and major index maj(σ).

Thus, we have a bijection between 3241-avoiding and 3142-avoiding permutations

given by f(σ) = R(Θ(R(σ))) which preserves both the major index and descent

number, and thus (maj, des).

Similarly, we can construct g(σ) = R(Ω(R(σ))) as a bijection between 4132-avoiding

permutations and 3142-avoiding permutations which also preserves (maj, des).
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Chapter 3

Finding an Equivalent Condition

to Pattern Avoidance for (den, exc)

3.1 Other Bistatistics

In our investigation, we examined all bistatistics involving two of the major index,

descent number, excedance number, weak excedance number, inversion number, and

Denert’s statistic. In all cases except for (maj, des), the bistatistics did not show a

symmetric distribution across pattern avoidance classes for general n. This motivated

us to ask our next question:

If (maj, des) can produce a symmetric distribution over pattern avoidance, can we

18



construct some other condition, equivalent to pattern avoidance, which permits sym-

metric distribution of other bistatistics?

In order to find a pattern avoidance counterpart for (den, exc), we looked to a bijec-

tion which sends maj to den and des to exc, and thus Sn(π) to its equivalent under

such a condition. In order to construct this bijection, we must consider the coding of

permutations.

We will say that a sequence a0a1a2 . . . an−1 is a code sequence if, for every 0 ≤ i < n,

0 ≤ ai ≤ i, and denote the set of code sequences of length n as CSn. It should

be obvious that |CSn| = n! = |Sn| for all n. A permutation code is some bijection

f : Sn → CSn. Such bijections are not difficult to construct in general; some with

particularly desirable properties exist, such as the two we now consider.

3.2 The Major Index Code

Definition 2. The major-index code or maj code is a bijection MC : Sn → CSn.

Given some permutation σ we construct the major-index code MC(σ) as follows: Let

σi denote σ with elements 1 to i deleted, and the remaining elements all reduced by

i. Then an−i = majσi−1 − majσi; i.e., an−i is the change in major index when 1 is

deleted from σi−1 to yield σi.
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Example 3.2.1. To return to our example permutation τ , we find MC(τ) as follows:

i τi maj τi ai

7 7 2 4 6 1 3 5 5 −

6 6 1 3 5 2 4 5 0

5 5 2 4 1 3 4 1

4 4 1 3 2 4 0

3 3 2 1 3 1

2 2 1 1 2

1 1 0 1

0 0 0

Thus we have MC(τ) = 0121010.

To decode a major-index code from a given code sequence c, we define a decoding

function Φ(σi, ai) : Si × Zi → Si+1. First, Φ increases the value of every element of

σi by 1.

† If ai = des σi, insert 1 at the beginning of σi; this moves every descent by 1,

and thus increases the major index by desσi = ai.

† If ai < desσi, insert 1 at the bottom of the (ai + 1)st descent from the right;

this moves the ai descents to the right of that index to the right by 1, and thus

20



increases the major index by ai.

† If ai > desσi, we cannot increase majσi by ai by simply moving descents.

Thus, we must add a descent. Suppose we have 0 ≤ j ≤ i, and let D(j) be

the number of descents in the substring starting at index j. Then j + D(j)

is a weakly increasing function, since each step always increases j by 1, and

D(j) decreases by either 1 or 0. The smallest value is des σi + 1 and the largest

is i; thus, there is some run of numbers such that j + D(j) = ai. Of these

numbers, the very last (the one after which the value increases) is necessarily

a non-descent (since moving past a descent does not change j + D(j)). Insert

1 after this j, which adds a new descent at index j, and moves the remaining

D(j) descents to the right, increasing the major index by j +D(j) = ai.

We can then construct MC−1(σ) by repeatedly applying Φ(σi, ai) until every ai has

been used.

As an example, we can decode the code string c = 00213116 as follows:

0. Φ(∅, 0) = 1. Since 0 = des ∅, we insert 1 at the beginning.

1. Φ(1, 0) = 12. Since 0 = des 1, we insert 1 at the beginning.

2. Φ(12, 2) = 231. Since 2 > des 12, we need to find an ascent j such that j +

D(j) = 2; since there are no descents, we just pick j = 2 and insert 1 after
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index 2.

3. Φ(231, 1) = 1342; since 1 = des 231, we insert 1 at the beginning.

4. Φ(1342, 3) = 24153; since 3 > des 1342, we need to find an ascent j such that

j+D(j) = 3. There is one descent, at index 3, so 2 +D(2) = 3. We thus insert

1 after index 2.

5. Φ(24153, 1) = 351264; since 1 < des 24153, we insert 1 in the middle of the

second descent from the right, which is at position 2.

6. Φ(351264, 6) = 4623751; since 6 > des 351264, we need to find an ascent j such

that j +D(j) = 6. Constructing a table of j +D(j), we get

σi 3 5 1 2 6 4

j 1 2 3 4 5 6

D(j) 2 2 1 1 1 0

j +D(j) 3 4 4 5 6 6

so we place 1 after position 6.

Thus, MC−1(00213116) = 4623751.

There are two key properties of the major-index code. The first, that

n−1∑
i=1

ai = majσ,
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follows directly from the definition; from our explanation of Φ, we see that desσi−1 ≤

ai iff desσi = desσ+1; i.e., whenever ai is greater than the descent number of σi−1, an

additional descent is added when reconstructing σi. Together, these make it possible

to show that a bistatistic (sta, stb) is Euler-Mahonian by showing the existence of a

bijection Ψ : Sn−1 × [n]→ Sn such that the properties

staΨ(σ, a) = sta σ + a;

stb Ψ(σ, a) =


stbσ if a ≤ stbσ;

stbσ + 1 if a > stbσ

hold true. This is equivalent to showing the existence of an sta code which corre-

sponds to the major-index code.

3.3 Han’s Denert Code

In [Han90], Han constructs a bijection f : Sn → Sn such that majσ = den f(σ)

and desσ = exc f(σ) as a combinatorial proof that the bistatistic (den, exc) is Euler-

Mahonian. He does so by constructing a den decoder which behaves similarly to the

maj decoder: that is, he constructs a function

Ψ : Sn−1 × [0, n− 1]→ Sn

23



such that

denΨ(σ, a) = denσ + a;

exc Ψ(σ, a) =


excσ if a ≤ exc;σ

excσ + 1 if a > excσ.

Han’s Ψ works as follows. Let a permutation σ ∈ Sn and some a such that 0 ≤ a ≤ n

be given.

We define an enumeration of σ as a permutation τ ∈ Sn given by

τi =


#{j such that σj > j and σj ≥ σi} if σi > i;

excσ + #{j such that σj ≤ j and σj ≤ σi} if σi ≤ i.

In other words, if i is the index of an excedance of σ, then τi is the number of

excedances with value greater than or equal to σi; if i is not an index of an excedance

of σ, then τi is the number of all excedances of σ plus the number of nonexcedances

with value less than or equal to σi. It should be clear that this formula will always

produce a permutation of [n]: the first excσ values will correspond to the excedances,

in decreasing order of their value, while the remaining values will correspond to the

nonexcedances in increasing order.
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Given τ , we define the function ν : [n]→ [n] such that ν(σi) = τi. It should be clear

that ν is a bijection, since both are permuations of [n]; thus we can also define ν−1.

We then construct an ordered list Repl(σ, s) as follows: Repl[0] = n + 1, and then{
Repl

i=ν−1(i)

}
for 1 ≤ i ≤ excσ and ν−1(s) < ν−1(i). (For this purpose, we define

ν−1(0) = n + 1.) We then replace the values in the permutation such that Repl(n)

replaces Repl(n + 1) in the permutation; finally, the last element of Repl is inserted

into the permutation at index ν−1(s).

With Ψ so constructed, we can define HC−1(c), where c is some code sequence, by

repeatedly applying Ψ as we did for MC−1(c). In order to construct the encoding

function HC(σ), we must first define an index j as strongly-fixed1 if it is either a fixed

point, or satisfies the property

{σi : σi > i, σj > σi ≥ j} = ∅.

In other words, it is either a nonexcedance, or there is no excedance value which fits

between σj and j.

Let G(σ) be the set of values of strongly-fixed indices in σ. Then remove maxG(σ)

from the permutation, and replace the first excedance to have a greater value than

the removed value with it. Repeat this until n has been removed, giving the next

1Han uses place grande-fixe in the original French; “strongly-fixed” is an attempt at a literal English
translation, though it is a weaker condition than being a fixed point.
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permutation in the stage; the difference in the Denert code gives the value of the Han

code at n− 1.

We will henceforth refer to this code as the Han Denert code or simply Han code,

given by HC(σ) and HC−1(c).

With the major index code and Han code, we can construct the bijection as

σ′ = HC−1(MC(σ)),

which sends maj to den and des to exc. This bijection can be reversed as

σ = MC−1(HC(σ′)).

3.4 Fixed Points of Han’s Bijection

In the case of pattern avoidance, no permutation avoids itself: that is, σ /∈ Sn(σ) for

all σ ∈ Sn. However, for the vast majority of permutations, σ ∈ HC−1(MC(Sn(σ)));

the only cases where this is not the case is when σ = HC−1(MC(σ)), i.e., when σ is

fixed by Han’s bijection.

It is trivial to see that majσ = denσ and desσ = exc σ is a necessary

26



condition for this, but it is far from sufficient: for instance, we determined

computationally that there are 116,929,919 permutations of length 13 such that

majσ = denσ and des σ = excσ, of which seven were fixed by Han’s bijec-

tion: 123456789ABCD, 86D2134579ABC, 95D2134678ABC, A4D21356789BC,

B3D21456789AC, 915B86C2D437A, and A471C95D3268B (using hexadecimal no-

tation for the values 10-13).

Corollary 2. The identity permutation 123 . . . n is fixed by Han’s bijection for all n.

Proof. This follows directly from the above observation; the identity is the only one

permutation with zero descents, and it is also the only permutation with zero ex-

cedances. Thus, the identity must be sent to itself by Han’s bijection.

Proposition 1. The following permutations are fixed by Han’s bijection for all values

of n:

σ = n+ 1, 1, 2, 3, 4, . . . n− 1, n, n+ 2, n+ 3 . . . , 2n (i)

τ = n+ 1, 1, n+ 2, 2, . . . n+ i, i, . . . 2n, n (ii)

Proof. For (i), when we apply the major-index code, we note that there is only one

descent, at 1, with value n + 1; deleting 1 does not change the major index for

the first n − 1 times the operation is applied. After n − 1 operations, we have the

permutation 2, 1, 3, 4, . . . , n + 1; removing 1 will decrease the major index by 1, and
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give the permuation 123 . . . n, which has major index 0. Thus, the major-index code

of σ is n zeroes, a 1, and then n− 1 zeros.

Applying the Han decoder HC−1(c) to this string will produce 123 . . . n after the first

n steps, since there are no excedances added. The (n + 1)st operation will add a

single excedance, and increase Denert’s statistic by 1; the only way to do this is to

add n + 1 at the beginning. The remaining values are all 0, and thus will append

i+1 to the end at each step; this gives exactly the permutation n+1, 1, 2, 3, 4, . . . n−

1, n, n+ 2, n+ 3 . . . , 2n.

Since the decodings are the same, σ is thus a fixed point of Han’s bijection.

For (ii), when we apply MC(τ), when 1 ≤ i ≤ n (the first n deletions), we remove

1 from the permutation. There are i consecutive values before 1, corresponding to

n+ 1− i, n+ 2− i, all the way up to n+ 1. When we delete 1, n+ 1 will be followed

immediately by n + 2, so we remove a descent at position i. There are still n − i

descents after that position, each of which moves back one index; thus the major

index changes by 1. Once the first n deletions have been performed we are left with

the permutation 123 . . . n, and thus the remaining deletions all leave 0 change. Thus,

MC(τ) = 0 . . . 0n . . . n, with n zeroes followed by n ns.

When we apply HC(τ), the permutation has n+1 strongly-fixed points: the n nonex-

cedances the smallest excedance, which is also the first excedance to occur. Since the
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smallest value occurs at the smallest index, it is strongly-fixed, but could substi-

tute for any excedance after it, so none of them are. When we remove the smallest

excedence, it replaces the next-smallest excedance, which replaces the next- smallest

excedance, all the way up to the removal of the length. This repeats each time, since

the relative order of the excedances does not change; when the kth excedance from

the start is removed, it leaves n − k remaining excedances, still in increasing order,

with each value moved left one and decreased by 1; as the excedance at index 2k− 1

is removed, this decreases Denert’s statistic by n, until every excedance is removed;

this gives n ns, and leaves the permutation 12 . . . n, which gives n zeroes. Thus, the

major-index code is n zeroes followed by n ns.

Since the decodings are the same, τ is thus a fixed point of Han’s bijection.

There are also some more esoteric families of permutations which are preserved by

Han’s bijection.

Theorem 3. Let C be the set of code strings of length n ≥ 6 constructed as follows:

beginning with 01, followed by 0 ≤ k ≤ 1
2
(n − 6) zeroes, followed by 1, followed by

n− 6− 2k zeroes, followed by 2, followed by k + 1 zeroes, ending with 4.

Then if MC(σ) ∈ C, HC−1(MC(σ)) = σ.

Proof. Let n and k be given, and construct the corresponding code string c.
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Apply Φ to each part in turn. The initial 01 gives the permutation 21; the following k

zeroes give the permutation k+ 2, 1, 2, . . . , k+ 1; the next 1 pushes the single descent

to the right, giving 1, k+ 3, 2, 3, . . . , k+ 2. We then add the n− 6− 2k zeroes, which

gives the permutation

n− 5− 2k, n− 3− k, 1, 2, . . . , n− 6− 2k, n− 4− 2k, n− 3− 2k, . . . , n− 4− k

The next 2 adds a descent at index 1, pushing the other descent to the right:

n− 4− 2k, 1, n− 2− k, 2, 3, . . . , n− 5− 2k, n− 3− 2k, n− 2− 2k, . . . , n− 3− k

The following k + 1 zeroes are placed after the second descent, giving

n−3−k, k+2, n−1, 1, 2, . . . , k+1, k+3, k+4, . . . , n−4−k, n−2−k, n−1−k, . . . , n−2

Finally, we insert a descent at index 4, giving

n−2−k, k+3, n, 2, 1, 3, 4, . . . , k+2, k+4, k+5, . . . , n−3−k, n−1−k, n−k, . . . , n−1

Notably, there are four “out-of-place” elements: n − 2 − k, k + 3, n, and 2, at the

beginning, and all other elements are in order.

Apply Ψ to each part in turn. As before, the initital 01 gives the permutaiton 21,
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but the following zeroes instead yield 2134 . . . k+ 2. Next, s = 1, so we place k+ 3 in

place of 2 (our sole excedance), and then insert 2 at position 2 (since nu−1(1) yields

the sole excedance, which is 2). This gives

k + 3, 2, 1, 3, 4, . . . k + 2

The following n− 6− 2k zeroes make this

k + 3, 2, 1, 3, 4, . . . k + 2, k + 4, k + 5, . . . , n− 3− k

We now have s = 2; n − 2 − k is put in place of our sole excedance, k + 3, which is

inserted at index nu−1(2) = 1. This gives

k + 3, n− 2− k, 2, 1, 3, 4 . . . , k + 2, k + 4, k + 5, . . . , n− 3− k

We then go through the following k + 1 zeroes, which gives

k+3, n−2−k, 2, 1, 3, 4, . . . , k+2, k+4, k+5, . . . , n−3−k, n−1−k, n−k, . . . , n−1

Finally, we have the 4. n bumps n− 2− k, which bumps k + 3, which is inserted at

index nu−1(4) = 2; this gives

n−2−k, k+3, n, 2, 1, 3, 4, . . . , k+2, k+4, k+5, . . . , n−3−k, n−1−k, n−k, . . . , n−1
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As the decodings are the same, this permutation is preserved by Han’s bijection.

Remark: The smallest such code has n = 6 and k = 0, giving 011204.

Theorem 4. Let C be the set of code strings of length n ≥ 11 constructed as follows:

beginning with 00213, followed by k zeroes, followed by 3, followed by k zeroes, followed

by 53087. (These codes thus have length n = 11 + 2k.)

Then if MC(σ) ∈ C, HC−1(MC(σ)) = σ.

Proof. Apply Φ to each step in turn. The initial 00213 gives the permutation 24153;

adding k zeroes makes this

k + 2, k + 4, k + 1, k + 5, 1, 2, . . . , k, k + 3.

There are two descents, at 2 and 4, so the 3 inserts a descent at 1 and bumps the

other two right:

k + 3, 1, k + 5, k + 2, k + 6, 2, 3, . . . , k + 1, k + 4.

The next k zeroes make this

2k + 3, k + 1, 2k + 5, 2k + 2, 2k + 6, 1, 2, . . . , k, k + 2, k + 3, . . . , 2k + 1, 2k + 4.
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and the descents remain at 1, 3, and 5. The 5 thus adds a descent at 4 and bumps

the descent at 5 to the right:

2k + 4, k + 2, 2k + 6, 2k + 3, 1, 2k + 7, 2, 3, . . . , k + 1, k + 3, k + 4, . . . , 2k + 2, 2k + 5.

The descents are now at 1, 3, 4, and 6. The 3 simply bumps the last three descents

to the right, giving

2k+ 5, 1, k+ 3, 2k+ 7, 2k+ 4, 2, 2k+ 8, 3, 4, . . . , k+ 2, k+ 4, k+ 5, . . . , 2k+ 3, 2k+ 6.

The zero inserts 1 at the bottom of the rightmost descent, giving

2k+ 6, 2, k+ 4, 2k+ 8, 2k+ 5, 3, 2k+ 9, 1, 4, 5, . . . , k+ 3, k+ 5, k+ 6, . . . , 2k+ 4, 2k+ 7.

The eight creates a new descent at place 8, giving

2k+7, 3, k+5, 2k+9, 2k+6, 4, 2k+10, 2, 1, 5, 6, . . . , k+4, k+6, k+7, . . . , 2k+5, 2k+8.

There are now descents at 1, 4, 5, 7, and 8. The seven thus inserts a 1 at place 3,

giving

2k+8, 4, k+6, 1, 2k+10, 2k+7, 5, 2k+11, 3, 2, 6, 7, . . . , k+5, k+7, k+8, . . . , 2k+6, 2k+9.
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Apply Ψ to each step in turn. The initial 00213 gives the permutation 14532; adding

k zeroes makes this

1, 4, 5, 3, 2, 6, 7, . . . , k + 5.

There are two excedances at 2 and 3. The 3 adds one more excedance, which bumps

both of these, and inserts 4 at ν−1(3) = 1:

4, 1, 5, k + 6, 3, 2, 6, 7, . . . , k + 5.

The next k zeroes make this

4, 1, 5, k + 6, 3, 2, 6, 7, . . . , k + 5, k + 7, k + 8, . . . 2k + 6.

The 5 adds another excedance. 2k+ 7 bumps k+ 6, which bumps 5, which bumps 4,

which is inserted at ν−1(5) = 2:

5, 4, 1, k + 6, 2k + 7, 3, 2, 6, 7, . . . , k + 5, k + 7, k + 8, . . . , 2k + 6.

The 3 does not add an excedance, but shuffles three of them. 2k + 8 bumps 2k + 7,

which bumps k + 6, which bumps 5, which is inserted at ν−1(3) = 5.

k + 6, 4, 1, 2k + 7, 5, 2k + 8, 3, 2, 6, 7, . . . , k + 5, k + 7, k + 8, . . . , 2k + 6.
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The 0 inserts 2k + 9 at the end.

k + 6, 4, 1, 2k + 7, 5, 2k + 8, 3, 2, 6, 7, . . . , k + 5, k + 7, k + 8, . . . , 2k + 6, 2k + 9.

There are four excedances, at 1, 2, 4, and 6, so the 8 adds a new excedance. We have

ν−1(8) as the fourth nonexcedance, 5. 2k + 10 bumps 2k + 8, which bumps 2k + 7,

which bumps k+6; since 4 is less than ν−1(8), it is left where it is, so k+6 is inserted

at 5:

2k+ 7, 4, 1, 2k+ 8, k+ 6, 5, 2k+ 10, 3, 2, 6, 7, . . . , k+ 5, k+ 7, k+ 8, . . . , 2k+ 6, 2k+ 9.

There are now excedances at 1, 2, 4, 5, and 7; the 7 at the end thus adds one more

excedance; ν−1(7) is the second nonexcedance, 2, which is less than every value. Thus,

2k+11 bumps 2k+10, which bumps 2k+8, which bumps 2k+7, which bumps k+6,

which bumps 4, which is inserted at 2. This gives

2k+8, 4, k+6, 1, 2k+10, 2k+7, 5, 2k+11, 3, 2, 6, 7, . . . , k+5, k+7, k+8, . . . , 2k+6, 2k+9.

Since both codes decode into the same permutation, it is a fixed point of Han’s

bijection.

Remark: The smallest such code has k = 0 and thus n = 11, giving 00213353087. A
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code with a similar beginning, 002133063, occurs at length 9 but does not seem to

split and recur for a larger n.

Theorem 5. Let C be the set of code strings of n ≥ 12 constructed as follows:

beginning with 000313, followed by k zeroes, followed by 440885.

Then if MC(σ) ∈ C, HC−1(MC(σ)) = σ.

Proof. This can be shown with a similar argument to the above.

We have shown through exhaustive search that there are no fixed points of length

13 other than those which match the patterns outlined above. Exhausitve search

is the only means we have found to identify these fixed points; whether there is a

better algorithm for identifying fixed points is an open question, as is the question of

enumerating the fixed points of length n.

We also state the following conjecture.

Conjecture 1. For every k ≥ 0, there exists an infinite family of permutations σ

such that the first nonzero entry of MC(σ) is k, and HC−1(MC(σ)) = σ.

The above families account for k = 0 (the identity permutations, Corollary 2), k = 1

(Theorem 3), k = 2 (Theorem 4), and k = 3 (Theorem 5).
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3.5 Pattern Avoidance under Han’s Bijection

To identify our equivalent condition, we must consider the image of pattern avoidance

under Han’s bijection: in other words, what happens when a given pattern is put

through Han’s bijection. We do not have any clear result to this effect, but have

several conditions that such a result must meet.

While every permutation avoids itself (σ 6 ∈Sn(σ) for n = |σ|), permutations almost

always are in the image HC−1(MC(Sn(σ))); the exception is if they are fixed under

Han’s bijection.

One possibility is that the condition depends not directly on π, but onHC−1(MC(π)),

as this is the permutation absent from the resulting set.

Theorem 6. Let σi+1 = Φ(σi, s), where Φ is a single step of MC−1(c). If σi contains

a pattern π, then σi+1 contains π.

If σi contains π, there is some subsequence of σi which is order-isomorphic to π. In the

first step of Φ, all elements of σi are increased by 1; the subsequence remains order-

isomorphic to π. Next, a 1 is inserted somewhere to yield σi+1; since this does not

change the relative order of any elements, the subsequence remains order-isomorphic

to π.
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This tells us that pattern avoidance, once present, cannot be removed by addi-

tion to the major-index code; thus, we should expect that the condition defining

HC−1(MC(Sn(σ))) cannot be removed by addition to the Han code.

Theorem 7. Let σi+1 = Ψ(σi, s), where Ψ is a single step of HC−1(c). Then the

nonexcedances of σi are nonexcedances of σi+1 and have the same ordering.

Proof. Each iteration of Han’s bijection does two things: it has some number of

excedances replace smaller excedance values, and then inserts the last value replaced

as either a new nonexcedance, at its own index, or as a new excedance.

If the value is inserted as a new excedance, it obviously does not change the relative

order of the other nonexcedances.

If the value is inserted as a new nonexcedance, it is placed somewhere inside the string

of nonexcedances, but does not reorder any of the nonexcedances already present.

Thus, the relative ordering of the nonexcedances is preserved.

This is obviously an insufficient equivalent to pattern presence on its own, as the

number of arrangements of nonexcedances is smaller than the number of strings which

contain a given pattern.

In order to gain some insight into this condition, we considered the following special
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case of 123- avoiding permutations.

Theorem 8. If c ∈ CSn contains three consecutive instances of some value k, then

MC−1(c) is not 123-avoiding.

Proof. Let σ be the permutation given by decoding all of c up to the first of the three

consecutive k. Recall that from how the major-index code operates, lower values are

inserted after higher ones.

† If k ≤ desσ, we will insert 1 at the bottom of the (k + 1)st descent from the

right (or at 1, if k = des σ) for each k; this does not move that descent, so

this yields an explicit 123 after the function has been applied to all three k; by

Theorem 6, MC−1(c) thus contains a 123-pattern.

† If k = desσ + 1, the first k will create a new descent somewhere (no further

in the permutation than position k, depending on placement of the remaining

descents). The remaining two k will both place a 1 at the beginning of the

permutation; this gives 12 at the beginning and a third, greater value anywhere

else, and thus we have a 123 after the k have been processed. As above, Theorem

6 states that MC−1(c) thus contains a 123-pattern.

† If k = des σ + 2, the first two k will each add a descent. The first descent is at

some position i, with k − i descents after at it; the second descent cannot be

placed after i: as mentioned in the discussion of MC−1, i+D(i) (the change in
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major index) is an increasing function, so it would increase the total by more

than k if placed after i. It cannot be placed at i as that would increase the total

by i+ 1. Thus, it must be placed before i.

† If k ≥ desσ+3, each k will add a new descent. The first and second obey similar

rules to the previous case, and the third likewise is placed before the second.

Since lower values are inserted later, this gives a 123-pattern, and Theorem 6

again states that MC−1(c) contains a 123-pattern.

We now consider what this translates to when HC−1 is applied. This should define

a subset of the equivalent condition to containing the permutation 123.

Theorem 9. Consider a permutation σ ∈ Sn such that HC(σ) contains three con-

secutive instances of some number k. Then define τ as the permutation given by

numbering the excedances of σ, in increasing order of value, from 1 to excσ, and the

nonexcedences of σ, in increasing order of value, from excσ+1 to n. Then τ contains

a 123-pattern.

Proof. We start with c, k, and σ exactly as they were in Theorem 8

† If k ≤ excσ, no new excedances will be added. The values will be substituted

down until the kth excedance, which will be inserted at its own value to produce
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a nonexcedance. These values will be increasing, so this ensures the presence

of some 123-pattern of nonexcedances.

† If k = excσ+1, the first instance will add a new excedance: after excedance re-

placements are complete, the smallest excedance value will be moved to position

1, since ν−1(excσ+1) is always 1. The next instance will make the next-smallest

excedance value will replace it, and it will become a nonexcedance at a position

equal to itself. The last instance will push the third-smallest excedance value

to position 1, and the second-smallest excedance will be inserted at a position

equal to itself; necessarily later than the earlier insertion. Thus, we have a

312-pattern made up of the smallest excedance, at place 1, followed by two

nonexcedances elsewhere in the permutation.

† If k = exc σ + 2, the first two instances each add an excedance. The first one

will place the smallest excedance value greater than the second-smallest nonex-

cedance at the index given by the second-smallest nonexcedence. The second

instance will place the smallest excedance value at 1, after pushing every ex-

cedance down. Finally, the smallest excedance value will be placed at its own

index and become a nonexcedance. Since the smallest excedance could possibly

be less than the second-smallest nonexcedance, this either gives us a 231 or 213

pattern of two excedances and a nonexcedance (where the 1 is always a nonex-

cedance). However, since the second case occurs when the smallest excedance

is less than the second-smallest nonexcedance, and we know that the largest

41



excedance is placed at a position given by the second-smallest nonexcedance,

we can construct a 231 from the same two excedances and that second-smallest

nonexcedance instead.

† If k ≥ excσ+3, each instance adds an excedance: one at the initial (k−excσ)th

nonexcedance, one at the initial (k− excσ− 1)st nonexcedance, and one at the

initial (k−excσ−2)nd nonexcedance. Since the Han code orders nonexcedances

in increasing order, the first is greater than the second, which is greater than the

third, so the excedances are added in decreasing order; further, since anything

greater than the first is greater than the second, and anything greater than

the second is greater than the third, the addition of the later excedances will

definitely replace the earlier excedances. Thus, the first one added will be

bumped down by the second, and both will be bumped down by the third,

giving a 123 of excedances.

These conditions are sufficient to saying that there is a 123-pattern in τ . However, this

is a weak condition; many permutations which are not the image of a 123-avoiding

permutation also possess this quality. Strengthening this result is a question for

further work.
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3.6 Further Work

The foremost further question to pose is this: What is, exactly, a condition C on

permutations such that the distribution of (den, exc) over the set of permutations

that meet condition C is exactly the distribution of (maj, des) over the set Sn(π)?

From our observations above, we can draw some conclusions to guide this problem:

† It may be useful to define the condition in terms of HC−1(MC(π)) rather than

π itself, as no permutation is self-avoiding but almost every pattern π is in the

image of the π-avoiding permutations.

† Once the equivalent of a pattern is present, it should remain present as the Han

code is extended. The relative order of the nonexcedances is known to meet

this condition, as are the values of strongly-fixed points.

† We define a permutation τ , consisting of the excedances labelled in increasing

order followed by the nonexcedances labelled in increasing order, which seems to

be connected to our special case of 123-avoiding permutations. Strengthening

this result could yield additional insights.

We also discuss the question of a family of families of fixed points of Han’s bijection,

which we formally ask as: Given some k ≥ 0 and sufficiently large n, is it possible
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to construct a code string c of length n with first non-trivial entry k, such that

HC−1(c) = MC−1(c) (i.e., c corresponds to a fixed point of Han’s bijection)?
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