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Abstract

Gamma-ray astronomy is the study of very energetic photons, from E =

mec
2 ≈0.5× 106 eV to > 1020eV. Due to the large span of the energy range, the

field focuses on non-thermal processes that include the acceleration and propagation

of relativistic particles, which can be found in extreme environments such as pulsars,

supernova remnants, molecular clouds, black holes, etc.

The High Altitude Water Cherenkov (HAWC) observatory is an instrument designed

for the study of gamma rays in the energy range of ∼100 GeV to 100 TeV. Using

data from the HAWC observatory, a study for the search of very high energy gamma

rays in the northern Fermi Bubble region was made. The Fermi Bubbles are large

extended regions in the gamma-ray sky located above and below the galactic plane

that present a hard emission between 1 GeV and 100 GeV. No significant excess is

found an upper bounds at 95% C.L. are obtained. The implications of this result

are that certain processes explaining the Fermi Bubble formation from the center of

our galaxy are excluded. I will discuss and compare the scenarios that still present a

possible hypothesis of the Fermi Bubble origin.
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Chapter 1

Gamma-Ray Astrophysics: The

High-Energy Universe

1.1 Introduction

The study of astrophysics relies to a large degree on the observation of the electromag-

netic spectrum. This spectrum covers a sizable range of energies, going from >1 peV

to >TeV. Depending on the place in the electromagnetic spectrum, the radiation

receives a different name as seen in Figure 1.1.

Traditional astronomy observes the radiation from ultraviolet, visible, infrared and

x-rays. These forms of radiation are produced, mainly, by hot objects (e.g. stars)
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Figure 1.1: Electromagnetic spectrum. Gamma rays are the highest energy
photons, while radio waves are the lowest. Visible light corresponds to a
small part of the range in the electromagnetic spectrum. (Credit: NASA’s
Imagine the Universe)

and are described by the blackbody radiation:

F =
2hc2

λ5
1

ehc/λkT − 1
(1.1)

where λ is the wavelength of the photon, T is the temperature of the blackbody, k

is the Boltzmann constant, h is the Planck constant, c is the speed of light and F

is the photon flux. This is defined as thermal emission, since the radiation depends

on the temperature of the object. In extreme environments, thermal emission can

produce photons in the keV range. However, the production of high energy photons

of >GeV requires non-thermal processes. These processes produce radiation through

collision of particles, decay of particles or acceleration of particles. The detection of

these highly energetic photons gave rise to a new field in astronomy in the 1960s.

Gamma ray astrophysics is one of the most recent research areas in astronomy. It

studies photons that span over 14 decades of energy, from E = mec
2 ≈0.5× 106 eV
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to > 1020 eV. The consequence of this broad energy range is reflected in a the great

variety of topics, related to non-thermal processes including the acceleration and

propagation of relativistic particles. Gamma-ray astronomy provides a new window to

test fundamental physics that cannot be studied with the current particle accelerators

on Earth. This is because gamma rays are produced in extreme physical conditions,

such as shock waves, environments with huge gravitational and electromagnetic fields,

turbulent plasmas, etc.

The study of gamma rays is divided depending on the energy of the photon. By

definition, a low energy (LE) gamma-ray photon is of the order of MeV, a high

energy (HE) photon has an energy of GeV, while a very high energy (VHE) photon

has an energy of TeV [12]. The focus of this thesis is on the HE and VHE gamma-ray

photons.

1.2 Gamma-Ray Production Mechanism

1.2.1 Cosmic-Ray Acceleration

One of the most important features of gamma-ray astronomy is that it is a link to

another field of astrophysics: cosmic rays. Cosmic rays are relativistic particles, that

can be accelerated to high energies in really extreme environments in the universe.
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The acceleration of charged particles is described by the Lorentz Force equation:

d

dt
(γmv) = q(E + v×B), (1.2)

where q is the charge of the particle moving with velocity v inside an electric field E

and magnetic fieldB; m is the mass of the particle and γ is the Lorentz factor.

In most astrophysical environments and plasmas, Coulomb interactions are negligible

and work done on the particles is mainly done by time-varying magnetic and electric

fields. In plasmas, the former is dominant.

One of the main mechanisms for particle acceleration is called diffusive shock accel-

eration [13]. This process, also known as first-order Fermi acceleration, involves the

propagation of strong shock waves through interstellar medium. The shocks are non-

linear disturbances that transfer energy and momentum to particles through plasma

processes.

Due to instabilities in the medium and in the magnetic fields in both sides of the shock,

cosmic rays can cross the shock several times. In each crossing time or collision, the

particles average energy after the collision is 〈E〉 = β〈E0〉, with 〈E0〉 being the initial

energy of the particles. After k collisions, the average energy is 〈E〉 = 〈E0〉βk and the

number of particles in the system is described by N = N0P
k, where N0 is the initial
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number of particles an P is the probability that the particle remains in the system.

Combining both equations, the total number of cosmic ray particles above the energy

E is

ln(N/N0)

ln(〈E〉/〈E0〉)
=

lnP

ln β
. (1.3)

Inverting this function results in an integrated value of the number of particles.

N(≥ E)

N0

=

(
E

E0

)lnP/ lnβ

. (1.4)

Differentiated with respect to the energy gives

N(E) dE ∝ E−1+lnP/ lnβ dE. (1.5)

This power-law distribution is the main feature of a non-thermal process. To get an

idea of the values of P and β we assume that the shock is a strong shock, which

means that the speed of the shock front is supersonic, U >> cs, where cs is the speed

of sound in the interstellar medium. We also assume that the gas is ideal and that

the shock front is thin (Figure 1.2). The downstream is the region where the gas has

been shocked; the upstream is the region where the shock has not interact with the

gas.

From the reference frame of the shock front, the upstream region approaches the
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downstreamupstream

ρ2, v2ρ1, v1

U

Figure 1.2: Schematic of a shock front where particle acceleration occurs.
The shock front is represented as the white line and moves with speed U .

shock with speed |U |. Since the mass is conserved, the continuity equation in the

shock front is applied:

ρ1v1 = ρ2v2, (1.6)

where ρ1, ρ2 are the densities for the upstream and downstream, respectively; and v1,

v2 are the velocities of the interstellar medium in the upstream and downstream.

Due to the previous assumptions, ρ2/ρ1 = (γ + 1)/(γ − 1), and for a monatomic gas

γ = 5/3. This means that ρ2/ρ1 = 4 or v2 = v1/4 = U/4.

From the point of view of the upstream, the downstream approaches the shock with

speed |v1−v2| = 3U/4. The same speed is observed from the point of the downstream

of the approaching speed of the upstream. This is the most important part of the

process: particles are always having face-on collisions and therefore gaining energy.

6



The average gain in energy of a particle crossing the shock front in a round trip is:

〈
∆E

E

〉
=

4V

3c
, (1.7)

where V = 3U/4 is the approaching speed of the particle (The change in energy is

proportional to the speed, hence the name first-order acceleration). Then the value

β =
〈E〉
〈E0〉

= 1 +
U

c
. (1.8)

The probability to remain in the system is calculated as follows. The total number

of particles crossing the shock front with relativistic velocities is nc/4, where n is

the number density of particles. In the downstream region, particles are advected

away from the shock with speed U/4, so the number of particles lost in this region

is nU/4. The ratio of this two quantities is the probability to escape the system and

the probability to remain in the system becomes

P = 1− U

C
(1.9)

Finally, for non-relativisitic shocks, the logarithm term in equation 1.5 becomes

lnP

ln β
=

ln(1− U/C)

ln(1 + U/C)
≈ −1 (1.10)
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and equation 1.5 becomes

N(E) dE ∝ E−2 dE. (1.11)

This value of the spectral index is typical for regions close to cosmic-ray accelerators

(See [13]).

1.2.2 Gamma Rays

Gamma rays are produced by the interaction of high-energy cosmic rays with different

media in the universe. Understanding and interpreting the production mechanisms

that give rise to gamma radiation is an important key of astrophysical observations.

This is because the production mechanisms provide information about the origin,

diffusion and propagation of cosmic rays. Charged cosmic rays, after being produced

and accelerated, will be deflected by the interstellar magnetic fields as they diffuse and

propagate through the galaxy. This prevents us from knowing the sources of cosmic

rays since the latter do not point back to their origin. However, if the cosmic rays

interact with their environment immediately after being produced, they can generate

gamma rays which are not affected by magnetic fields. Hence the acceleration regions

of cosmic rays can be investigated by studying gamma-ray observations.

Cosmic rays are hadronic —protons and nuclei— or leptonic —positrons and

electrons—, so the gamma-ray production mechanisms are divided in leptonic or
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hadronic processes. The processes are also divided by the type of media where the

interaction occurs. The interactions can be with matter, radiation fields or magnetic

fields. Since the primary cosmic rays follow a power-law spectrum distribution, the

gamma-rays will, in general, follow the same distribution.

The main radiation mechanisms in the HE and VHE gamma rays are inverse Compton

scattering, bremsstrahlung and decay of neutral pions. These processes are described

below. Synchrotron radiation is another radiation mechanism that occurs at LE,

when a high-energy electron interacts with magnetic fields. Since the thesis focus on

HE and VHE, that process will not be described in detail.

1.2.2.1 Bremsstrahlung

Bremsstrahlung, or braking radiation, occurs when an electron decelerates when it

passes near a charged particle or nucleus present in the interstellar gas and matter,

giving energy off in the form of a gamma-ray photon.

The average energy loss rate of electrons due to bremsstrahlung is written as:

−
(
dEe
dt

)
=

(
cmpn

X0

)
Ee, (1.12)

where c is the speed of light, mp is the mass of the proton, n is the number density
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N

e

γ

e

Figure 1.3: Feynman diagram of Bremsstrahlung. The electron interacts
with the electric field of a nucleus. It looses energy in the form of a high-
energy photon

of the ambient gas, X0 is the radiation length —Defined as the average distance over

which the ultrarelativsitc electron loses all but 1/e of its energy— and Ee is the

energy of the electron. The radiation length is inversely proportional to the cross

section σo of the interaction X0 = 7/9(nσo)
−1. Bremsstrahlung causes electrons to

have a lifetime of

τ =
Ee

−dEe/dt
≈ 4× 107(n/cm−3)−1 yr (1.13)

which is independent of the energy of the electron. With this information, we see

that the spectrum of electrons after losing energy through Bremsstrahlung, keeps the

shape of the initial power-law spectrum N0(Ee).

Ne ∝
∣∣∣∣dEedt

∣∣∣∣−1 ∫ N0(Ee)dEe (1.14)

In the case of relativistic electrons with energy E, they can interact with interstellar

gas to produce photons with frequencies up to ν = E/h with an average energy of

10



(1/3)E.

1.2.2.2 Inverse Compton Scattering

This leptonic process occurs when a relativistic cosmic-ray electron interacts with a

low-energy photon, for example from the cosmic background radiation, increasing the

energy of the photon and becoming a gamma ray, while the electron loses energy.

Figure 1.4 show one of the Feynman diagrams of this process.

γ

e e

γ

Figure 1.4: Inverse Compton Scattering

The process is governed by the cross section given by the Klein-Nishina formula:

d2σ

dΩdε
=

3σT
16π

(
ε

ε0

)2(
ε0
ε

+
ε

ε0
− sin2θ

)
× δ

[
ε− ε0

1 + ε0(1− cosθ)

]
(1.15)

where σT is the Thomson scattering cross section, ε is the energy is of the scattered

photon in units of mec
2, ε0 is the energy of the initial photon in units of mec

2 and

θ is the angle of the scattered photon. The total cross section can be obtained by
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integrating over all angles and energies of the scattered photon:

σ =

∮
dΩ

∫
dε

d2σ

dΩdε
=

3σT
8ε0

[(
1− 2

ε0
− 2

ε20

)
ln(1 + 2ε0) +

1

2
+

4

ε0
− 1

2(1 + 2ε0)2

]
(1.16)

At ε0 << 1 the total cross section σ ≈ σT and this is referred to as the Thomson

limit. When ε0 >> 1 the total cross section reduces to σ ≈ 3σT
8ε0

ln(2e1/2ε0).

Finally, if a isotropic distribution of photons is assumed, the spectrum of scattered

photons can be calculated. A detailed description of this calculation is given in [14].

The result of the gamma-ray spectrum is given by

dN

dtdε
=

3σTmec
3

4γ

n(ε0)

ε0

[
2q lnq + (1 + 2q)(1− q) +

1

2

(Γε0q)
2

1 + qΓε0
(1− q)

]
(1.17)

where Γε0 = 4ε0γ/mc
2 is a dimensionless parameter that defines the domain of the

scattering; q = E/Γε0(1− E) and E is the energy of the scattered photon.

The result of the spectrum in the Thomson Limit (Γε0 << 1) is

dN

dtdε
=

3σT c

16γ4
n(ε0)

ε20

(
2ε ln

ε

4γ2ε0
+ ε+ 4γ2ε0 −

ε2

2γ2ε0

)
(1.18)
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1.2.2.3 Neutral Pion Decay

This process occurs when hadronic cosmic rays collide with interstellar media, produc-

ing among others neutral and charged pions. Neutral pions decay into two gamma-ray

photons. The diagram shown if figure 1.5 shows this process.

N(p)

N γ

γ

π0

π+,−

Nuclei

Figure 1.5: Collision of a cosmic ray with another particle. Neutral pions
decay into gamma rays.

The minimum kinetic energy of protons to produce neutral pions should be bigger

than Eth = 2mπc
2(1 + mπ/4mp) ≈ 280MeV . The mean lifetime of the pion is

τ = 8.4 × 10−17 s. The gamma-ray emissivity depends on the convolution of the

differential cross-section of the interaction of inelastic collisions of protons with a

distribution of protons that are part of the ISM. This emissivity can be written as

follows:

qγ(Eγ) = 2

∫ ∞
Emin

qπ(Eπ)√
E2
π −m2

πc
4
dEπ (1.19)

where Emin = Eγ +m2
πc

4/4Eγ, is the threshold pion energy. The emissivity of neutral
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pions is given by

qπ(Eπ) = c nH

∫
δ(Eπ − κπEkin)σpp(Ep)np(Ep)dEp (1.20)

where nH is the column density of hydrogen, κπ is the fraction of the kinetic energy

transferred to the pion per collision, σpp is the total cross section of inelastic pp and

np(Ep) is the proton spectrum with energy Ep.

1.3 Gamma-Ray Sources

There is a great variety of gamma-ray sources. Depending on their origin, they can be

either galactic or extra-galactic. Galactic sources include supernova remnants, pul-

sars, pulsars wind nebulae, binary objects and large-scale structures like the galactic

diffuse emission and the Fermi Bubbles. Extra-galactic sources include active galactic

nuclei (AGN), gamma-ray bursts (GRBs) or starburst galaxies. These will be briefly

discussed in the following.

1.3.1 Supernova Remnants

When a massive star (M∗ & 8M�) goes through the end of its stellar evolution, it

undergoes a powerful explosion, called a supernova. The explosion releases an energy
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of the order ∼ 1044 J. This explosion last for an interval time of the order of seconds,

but the expansion of the material from the dead star will continue up to ∼ 30, 000 of

years, before the material merges with the interstellar media.

One of the main hypothesis in gamma-ray astronomy is that particle acceleration

in supernova remnants is the main contribution to the cosmic rays present in the

Galaxy. Ten percent of the energy of the supernova explosion is expected to be

used to accelerate cosmic rays to high energies, as previously mentioned in section

1.2.1. These accelerated particles will interact with the surrounding media producing

gamma rays.

The Crab Nebula is one of the most important supernova remnants in gamma-ray

astronomy. This remnant exploded around the year 1054 and was registered by

Chinese astronomers. It is still one of the brightest objects in gamma rays today and

it is used as the standard candle for the field of gamma-ray astronomy.

1.3.2 Pulsars and Pulsar Wind Nebulae

In 1967, Jocelyn Bell was working on her PhD to study the scintillation in the solar

wind produced by the interaction of radio waves from extragalactic sources (called

quasars) with the wind. In her data she found a series of regularly spaced pulses

1.337 seconds apart. It was the first detection of a new phenomena and received the
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Figure 1.6: Crab Nebula seen by the Hubble Telescope. It is composed by
a supernova remnant, pulsar wind nebula and the pulsar. Credit: NASA

name of pulsar [15]. After a massive star goes supernova, the left-over of the star can

become a pulsar: a rapidly rotating neutron star with a strong dipole magnetic field.

The rotating magnetic field induces an electric field, which can accelerate particles to

high energies. The magnetic field can produce emission through synchroton radiation

when high energy electrons travel through it. The pulsar wind nebula is formed when

the accelerated particles produced by the pulsar interact with their sorroundings.

These particles, in the form of a wind, can produce shocks when interacting with

the interstellar medium and are able to accelerate particles up to PeV energies. The

electrons lose energy through synchrotron radiation or inverse Compton scattering.

Figure 1.6 shows a picture of the Crab Nebula.
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1.3.3 Binary Systems

Most of the star-system found in the galaxy are composed of more than one star. A

few of this systems are able to emit in high-energy gamma rays. In these few cases,

the system consists of a compact object —such as a neutron star or black hole— and

a massive star. In general, the gravity from the compact object pulls matter from

the companion star. Particle acceleration occurs either by a relativistic jet, or by a

pulsar wind colliding with stellar wind, which then causes non-thermal emission. Five

binary systems have been detected in the VHE gamma-ray regime [16]. The binaries

are PSR B1250-63 [17], LS 5039 [18], LS I +61o303 [19], HESS J0632+057 [20] and

1FGL J1018.6-5856 [21].

1.3.4 Large Extended Sources

1.3.4.1 Diffuse Emission

The galactic diffuse gamma-ray emission is the gamma-ray radiation produced by the

interaction of leptonic and hadronic cosmic rays with the interstellar gas and photon

fields [22, 23]. The production of gamma rays from pion decay and bremsstrahlung

depend on the distribution of gas in the galaxy. Gamma rays from inverse Compton
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scattering are formed by the interaction of electrons with photon fields such as the

cosmic microwave background radation (CMBR) or the interstellar light. Studying

the diffuse emission allows to probe the distribution and propagation of cosmic rays

in our galaxy. At energies between 200 MeV and 100 GeV, the diffuse emission con-

stitutes the principal component of the gamma-ray sky. At higher energies, in the

TeV-range, resolved and unresolved sources dominate the gamma-ray flux. The main

processes at these VHEs are pion decay and inverse Compton scattering.

1.3.4.2 Giant Molecular Clouds

Giant Molecular Clouds can be considered a subset of Diffuse Emission. They provide

the material which leptonic and hadronic cosmic rays can interact with and produce

gamma rays. One of the current hypothesis is that the cosmic-ray spectrum measured

at Earth is a representative measurement of the cosmic-ray flux in the whole Galaxy.

Studying the spectral energy distribution of gamma rays emitted by Molecular Clouds

(MCs) is a way to probe this hypothesis and to measure the distribution of cosmic rays

in distant parts of the Galaxy[24, 25]. A preliminary analysis of potential emission

from MCs will be discussed in chapter 6.
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1.3.4.3 Fermi Bubbles

In 2010, two large bubble-like structures above and below the galactic center in the

data from the Fermi LAT Telescope were discovered [26, 27] (See chapter 2 for brief

description of the Fermi Telescope). Since then, many studies and simulations have

tried to understand their origin and the gamma-ray production mechanisms. More

information and an analysis to search for VHE gamma rays from the Northern Fermi

Bubble Region is presented in chapter 5.

1.3.5 Extra-galactic Sources

Gamma-ray production not only occurs in our Galaxy. Active galactic nuclei (AGN)

are galaxies with a central nucleus that is brighter than the rest of the galaxy. Radio

observations of this objects have shown evidence of collimated jets from the center of

the galaxy. They are formed by relativistic charged particles. These particles produce

emission in non-thermal processes. AGNs with jets that are coincidentally pointed at

the Earth are extremely bright at all wavelengths, from radio to gamma rays, due to

Doppler beaming. These types of AGN are known as blazars. Other types of AGNs

are radio galaxies —the jets are perpendicular with respect of the line of view from

Earth— and starburst galaxies —which are galaxies wtih high star-rate formation.
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Other type of extra-galactic sources are gamma-ray bursts (GRBs). These are extreme

energetic explosions produced in distant galaxies. The bursts can last ten milliseconds

to several hours. Detection of GRBs has been done over the whole electromagnetic

spectrum [28].

This thesis is focused on the study of VHE gamma rays from extended regions in our

galaxy such as the Fermi Bubbles and Giant Molecular Clouds. Chapter 2 describes

the detection techniques used in gamma-ray astronomy. Chapter 3 discusses the

HAWC observatory and its hardware. Chapter 4 explains the HAWC data and the

methods used to reconstruct gamma-ray events. Chapters 5 and 6 show the analysis

and preliminary results from the search for VHE gamma rays in large extended regions

in the Galaxy. The conclusions are presented in chapter 7.
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Chapter 2

Detection of Gamma Rays

As mentioned in chapter 1, gamma-ray astronomy spans a large energy domain in the

electromagnetic spectrum, covering 14 orders of magnitude in the energy range from

1× 106 eV to ≥ 1× 1020 eV. Because of this large energy range, different detection

techniques had to be developed to study gamma rays. This chapter describes some of

the techniques used for the observation of gamma rays. The techniques are separated

into two main groups, space-based telescopes and ground-based observatories.

21



2.1 Space-Based Telescopes

Observation of gamma rays started in the 1960s, when the technology was developed

to send a gamma-ray telescope into orbit. The Explorer 11 satellite was launched in

1961 and it observed the first gamma-ray photons coming from all directions [29].

It was not until the launch of the Small Astronomy Satellite 2 (SAS-2) in 1972 [30]

and the COS-B satellite [31] in 1982 that the field of gamma-ray astronomy was

born. The SAS-2 satellite detected around ∼8000 gamma rays from the sky, making

the first identifications of gamma rays coming from sources like the Crab and Vela

pulsars, Geminga and the Cygnus region [12]. The COS-B satelite was able to detect

∼200000 gamma-ray photons. It discovered 25 sources, most of them in the Galactic

Plane. By the late 1960s and 1970s, the Vela satellites, designed to look for nuclear

bomb blasts, discovered the existence of Gamma-Ray Bursts.

In 1991, NASA launched the Compton Gamma Ray Observatory (CGRO), which

carried four major instruments. One of these instruments was the Energetic Gamma

Ray Experiment Telescope (EGRET). It was designed to be sensitive to gamma rays

in the energy range of 20 MeV to 30 GeV. It consisted of a gas-filled spark chamber,

which main function was to track the gamma-ray photon after it converted to an
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Figure 2.1: EGRET Catalogue. Labels: S-Solar Flare; P-Pulsar; G-
Galaxy; A,a- Active Galactic Nuclei; UNID-Unidentified. [1]

electron-positron pair. An anti-coincidence chamber was used to veto charged par-

ticles. CGRO was de-orbited in 2000 due to a failure in its stabilizing mechanism.

EGRET was able to observe 271 sources above an energy of E>100 MeV [1]. Figure

2.1 shows the sources discovered by EGRET.

The Fermi Gamma-Ray Telescope was launched on August 26th, 2008. It is the

most sensitive instrument in space to detect gamma rays. It consists of two differ-

ent detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor

(GBM).
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The LAT has a ∼1 m2 aperture and it is sensitive to gamma rays between 20 MeV

and &500 GeV. The telescope uses pair conversion to observe and reconstruct the

direction of gamma rays. It has a calorimeter to measure the energy of the photon

that consists of 1536 CsI(Tl) crystals, arranged in eight alternating orthogonal layers,

of 96 crystals. And it is also provided with an anti-coincidence detector of 89 plastic

scintillator tiles, which detects charged cosmic rays by observing the flash of light

they generate when traversing the detector. It can scan the full sky in 3 hours with

a field of view of 2sr. The energy resolution is < 10%. The angular resolution goes

from 3.5° at 300 MeV to < 0.15° at >10 GeV. Figure 2.2 show the third Fermi-LAT

catalogue with a total of 3033 sources [2].

The difference between Figures 2.1 and 2.2 is notable, reflecting the sensitivity im-

provement of the detection methods in less than 20 years.

Despite the fact that the technology for space-based telescopes has improved signifi-

cantly -providing large field of view, great angular and energy resolution- the effective

area is still restricted to .1 m2. This has limited the observation of gamma rays up to

TeV energies. Instruments with larger effective area are required to observe gamma

rays with higher energies.
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Figure 2.2: Fermi 3FGL Catalogue. Labels: BIN-Binary; HMB-High
Mass Binary; PWN-Pulsar Wind Nebula; PSR-Pulsar; SPP-Supernova Rem-
nant/PWN; FSRQ,BLL,CSS,SSRQ,BCU-Types of Blazars; SBG-Starburst
Galaxy; SNR-Supernova Remnant; NOV-Nova; AGN-Active Galactic Nu-
clei; SEY-Seyfert Galaxy; RDG-Radio Galaxy; NLSY1-Narrow-line Seyfert
1;GLC-Globular Cluster; SFR-Star-forming Region; GAL-Galaxy; UNID-
Unidentified. [2]

2.2 Ground-Based Observatories

Gamma rays do not penetrate the atmosphere of Earth. However, an indirect detec-

tion is possible by using the atmosphere as part of the detector. When high energy

particles penetrate the atmosphere of Earth, they interacting with the gas molecules

and produce a so-called extensive air shower. The detection of these extensive air
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showers is the objective of the ground-based observatories.

2.2.1 Extensive Air Showers

The way a high energy particle deposits its energy in Earth’s atmosphere is by produc-

ing secondary particles. Secondary particles are produce by the several mechanisms,

mainly bremsstrahlung and pair production. The continuous production of secondary

particles through the atmosphere is called an extensive air shower (EAS).

Pair production consists of the energy conversion of a photon into an electron-positron

pair in the presence of a nucleus. The photon energy has to be larger than the sum of

the rest-mass energies of electron and positron E = 2(0.511 MeV) =1.022 MeV. The

radiation length of bremsstrahlung in the atmosphere is X0 =37.15 g cm−2, which is

7/9 of the free mean path of pair production. This is the distance that an electron

will travel before losing all but 1/e-th of its energy [32]. The total vertical thickness

of the atmosphere above sea level is of 1030 g cm−2. This means there are 28 radiation

lengths in the atmosphere [33].

EAS can be initiated by hadronic cosmic rays or by gamma rays and electrons.

Bremsstrahlung and pair production are the main processes for gamma-ray/electron

showers. In the case of hadronic EAS, the high energy cosmic ray will also interact

through collisions with particles in the atmosphere producing pions, muons, kaons,
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neutrinos and other types of particles. These particles will spread the air shower more

before becoming a purely electromagnetic shower.

There are main differences between a gamma-ray initiated shower and a cosmic-ray

initiated shower. In general, a gamma-ray shower is more compact than a cosmic-

ray shower. This is because the transverse momenta of the secondary particles in the

collisions of cosmic rays with particles in the atmosphere is higher than the transverse

momenta of the secondary particles in the electromagnetic processes. Gamma-ray

showers also have a low content of muons, —only about a percent of that found in

hadron induced showers— a feature that is used to identify the type of showers[34].

Simulated particle tracks in a cosmic-ray shower and a gamma-ray shower are shown

in Figure 2.3.

The number of secondary particles increases as the shower progresses through the

atmosphere. When the average energy of the secondary electrons drops below

Ec ∼80 MeV, the cross section for ionization losses starts to be greater than that

for Bremsstrahlung. This occurs at a maximum depth of Xmax = X0 ln ( E
Ec

)/ ln 2.

This is when the maximum number of secondary particles are produced. For a TeV

gamma ray shower, this occurs at 5-10km.

There are two techniques that are used for the detection of extensive air showers

produced by gamma rays. The techniques are Imaging Air Cherenkov Telescopes and
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Figure 2.3: Examples of 10TeV proton and photon showers. Red
tracks represent the electromagnetic components (photons, electrons and
positrons). Green is the muon component. Blue is the hadronic component.
CORSIKA software was used to make these plots [3]

EAS Arrays.
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2.2.2 Imaging Air Cherenkov Telescopes

Cherenkov Radiation is an electromagnetic phenomenon that occurs when charged

particles travel faster than the speed of light in a dielectric medium. This means that

c

n
< vparticle < c (2.1)

where n is the index of refraction of the dielectric medium. Figure 2.4 shows a

schematic of Cherenkov Radiation. The lights is represented by the blue cone.

For example, in water, light travels at a speed of 0.75c; while in air light travels at

a speed close to its value in vacuum. Particles traveling faster than this speed will

produce Cherenkov light. The particle produces an electromagnetic shock wave while

traversing the medium as shown in figure 2.4. The emission cone has an opening

angle given by

cos θ =
c

n vparticle
. (2.2)

Taking advantage of the Cherenkov radiation, Imaging Air Cherenkov Telescopes

(IACTs) have been designed to detect this radiation in the atmosphere. These obser-

vatories are composed of an array of optical telescopes. The telescopes are typically

≥ 10 m in diameter and consist of smaller mirror segments that reflect and focus
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θ

Figure 2.4: Sketch of a Cherenkov radiation cone with the characteristic
opening angle θ.

the Cherenkov light produced by the EAS into high-speed photomultipliers located

in the focal plane of the telescope [23]. The current active telescopes are the VER-

ITAS array in Arizona [35], H.E.S.S. obsevatory in Namibia [36] and the MAGIC

telescope in the Canary Islands [37]. A new observatory, the Cherenkov Telescope

Array (CTA) is under development by a consortium of researchers from 27 countries

from all continents[38].

IACTs have a good angular resolution, of the order of 0.1°. Since IACTs detect the

characteristic light of the EAS as it develops in the atmosphere, they have a relatively

low energy threshold and energy resolution of < 20%. However, their field of view is

limited (≤ 5°) and they can only operate in clear, moonless nights, leaving to a duty

cycle of around 10%.
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2.2.3 EAS Arrays

Another technique to detect gamma rays is by sampling the secondary particles of the

EAS that reach the Earth’s surface. This is done by using an array of detectors that

covers a large area. These detectors are built at high altitude in order to be closer to

the shower maximum of the extensive air showers and are able to detect showers of

∼100 GeV up to ∼100 TeV. Advantages of these arrays are:

• High duty cycle: In principle, they can operate all day, compared to only clear

night observations of IACTs.

• Field of view: These detectors monitor large portions of the sky compared to

IACTs

Two different techniques have been used for the detectors. One consists of the use

of scintillation counters capable of measuring the time when particles interact with

them. They also allow to measure the density of the charged particles. An example

of this kind of detector is ARGO-YBJ located in Tibet, China [39]. The second

technique uses water-filled vessels on ponds to produce Cherenkov light and sample

the particles that get to the ground. Photomultipliers (PMTs) immersed in the water

detect the Cherenkov light. A custom-made electronic read-out sysstem allows to

measure the time of each detection and the amount of light or energy density. The
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Figure 2.5: The Milagro Detector. The positions of the outrigger tanks
are marked in red.

Milagro detector belongs to the first generation of this kind of technique. It was

located in Los Alamos, New Mexico at an altitude of 2630 m a.s.l. [40]. Figure 2.5 is

a photo of the Milagro Observatory. It consisted of a central pond filled with water

containing two layers of PMTs. The top layer was used for reconstruction of EAS

events, while the bottom part was used for gamma-hadron separation and energy

estimation. The detector was upgraded with an array of smaller tanks surrounding

the main pond in order to improve the reconstruction. These were called outriggers

—in reference of a secondary float that helps a canoe. In both techniques the time

and charge density information are used to determine the direction of the original

gamma-ray. The HAWC observatory, which will be described in the next chapter,

represents a new generation of water Cherenkov detectors. The reconstruction of

gamma-ray EAS with the HAWC observatory is presented in chapter 4.
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Chapter 3

The HAWC Observatory

The High Altitude Water Cherenkov (HAWC) observatory is a second generation

water Cherenkov detector designed to study cosmic and gamma rays. It is sensitive to

high-energy particles in the energy range of 100 GeV to 100 TeV [41]. The observatory

is located in the state of Puebla in Mexico, between the volcano Pico de Orizaba and

Sierra Negra, at an altitude of 4100 m a.s.l. The geographic coordinates are 18°59′41”

N, 97°18′30” W.

With an instantaneous field of view of 2 sr and a duty cycle of > 95%, HAWC has a

daily sky coverage of 8.4 sr of the sky. It covers the declination band between −26o to

64o of the celestial sky. Half of the galactic plane is seen by HAWC, with the galactic

center been close to the horizon of HAWC.
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Figure 3.1: Shower size versus atmospheric depth for a typical gamma-ray
shower. Model obtained from [4]. The dashed lines indicate the altitudes of
HAWC and Milagro.

As mentioned in chapter 2, the HAWC array uses the water-Cherenkov technique for

the observation of cosmic rays and gamma rays. The altitude of HAWC corresponds

to an atmospheric depth of 638 g/cm2 or 17.2 times the radiation length for pair

production and bremsstrahlung interactions in air [42]. This still puts HAWC below

the shower maximum but closer to it than the Milagro observatory. (See figure 3.1).
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HAWC was inaugurated in March of 2015, although it started recording data and

science operations with a third of the detector in August 2013. A picture of the full

detector is shown in figure 3.2.

Figure 3.2: The HAWC Observatory. Picture taken by the author.

3.1 Water Cherenkov Detectors

HAWC consists of 300 water Cherenkov detectors (WCDs), covering an effective area

of 20,000 m2 with 12,000 m2 of active surface. Each of these WCDs consists of corru-

gated steel tanks of 7.3 m in diameter and 5 m in height. Inside the tank, a plastic-

bladder holds up to ∼ 200000 liters of processed water, which corresponds to a height

of ∼ 4 m. At the bottom of the tank there are four photomultiplier tubes (PMTs).

Three of them are 8-inch Hamamatsu R5912, located at 1.8 m from the center and

spaced 120o apart. A 10-inch Hamamatsu R7081-MOD is located at the center. The

PMTs are sensitive to light in the wavelength range of 300 nm to 500 nm. A schematic
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is shown in figure 3.3.

5m

7.3m

Figure 3.3: Schematic of a water Cherenkov detector.

The PMTs detect the Cherenkov light produced by the secondary particles that enter

the WCD. Using the photoelectric effect, photoelectrons (PEs) are produced in the

photocathode of the PMTs. By applying a high voltage to the PMTs, the PE signal

can be amplified through the 10-stage dynode chain of the PMT, producing up to

107 electrons. The voltages on the PMTs are chosen to match the PMT gains across

the array and it has values close to ∼ 1700V . Using ∼550ft RG59 coaxial cables, the

signal of the PMTs is sent to the main building at the HAWC (the counting house),

located at the center of the array.
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3.2 Data Acquisition System

The counting house is the place where the data acquisition system (DAQ) is located.

The DAQ is composed of all the electronics that process and analyze the signal from

the PMTs. The signal is processed by custom-made front end boards, which shape

and organize the signal depending on two voltage thresholds at 30 mV and 50 mV.

When a pulse crosses these thresholds, the time is recorded by CAEN VX1109A time-

to-digital converters (TDCs) with a resolution of 100 ps. These time-stamps are then

used to estimate the number of PEs, using a time-over-threshold method.

The DAQ reads out PMTs signals during a 2 µs window after a simple trigger condi-

tion is met. HAWC utilizes a multiplicity trigger that counts the number of PMTs

signals in a 150ns trigger window. For the full detector, with at least 90% active

PMTs, the trigger is set to 28 PMTs. The trigger rate for HAWC is ∼23.5 kHz.

The time and charge information are used to reconstruct the main properties of the

primary gamma rays and cosmic rays. This process is explained in chapter 4.
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3.3 Scientific Objectives

The main scientific goals of the HAWC observatory are the understanding of particle

acceleration in sources of galactic and extra-galactic origin, as well as the propagation

of high-energy cosmic rays through the universe. HAWC will almost continuously sur-

vey the VHE gamma-ray sky. This complements other IACT instruments that observe

lower-energy gamma rays (See [41] for more details). For instance, the observation of

VHE energy gamma rays (with energies of ∼100 TeV) from point sources can confirm

that hadronic cosmic-ray acceleration sites exist in SNRs.

Thanks to the high duty cycle of the HAWC observatory, detection and monitoring

of transients such as AGNs, gamma-ray bursts, flares from PWN and binary systems

will be possible. The first catalog of point-like sources from the galactic plane is

presented in [43].

Study of diffuse gamma-ray radiation from the Galaxy also probes the origin and

propagation of cosmic rays. The gamma-ray flux is proportional to the cosmic-ray

flux with the energies of the gamma rays being ten times smaller than the energies

of their parent cosmic rays. The hypothesis that the flux of the sea of cosmic rays is

constant throughout the Galaxy can be tested.

HAWC not only detects gamma rays, but also cosmic rays. A recent publication
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shows the study of large and small-scale cosmic ray anisotropy in the northern sky

[44]. The large-scale anisotropy is not well understood. It has long been suggested

that a weak dipole feature should be a consequence of the diffusion of cosmic rays

from nearby sources in the Galaxy[45]. The small-scale structure, on the other hand,

could be the product of turbulence in the Galactic magnetic field[46].

Furthermore, HAWC will help solve some fundamental physics problems, such as Dark

Matter or Lorentz violation. For example, the possible measurement of gamma ray

emission from low luminosity, high mass galaxies can provide clues for dark matter

particles with masses of ∼1 TeV [47, 48].
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Chapter 4

Data and Reconstruction

4.1 HAWC Data

A brief description on how the data is collected was presented in chapter 3. The

total data collection rate is 400MB/s and drops to 15-20MB/s after the application

of trigger conditions. This means that in a day ∼2 TB of data are collected.

This chapter describes the data process in order to obtain the information of the

primary particle: the type, its direction, and energy. The first step is to identify the

event showers after the signal is digitized by the DAQ. A proper calibration of the

system is needed in order to have a precise and accurate measurement of both the

direction and energy. Then the position of the core of the EAS front is found by using
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the measured charge. This is followed by finding the direction of the EAS. Finally, a

series of cuts are implemented to distinguish between hadrons and gamma rays.

There are two types of reconstruction processes. The first is an online reconstruction

performed at the HAWC site. This is done to provide preliminary and instant results,

in the case of any transient observations. This reconstruction is also useful to give

alerts to other telescopes in real time. The second is an offline reconstruction, which

uses similar, but improved algorithms compared to the online reconstruction since

most of the computer power at the site is used for the processing of the data. The

official reconstruction of the data is done on the computer clusters at the University

of Maryland and Universidad Nacional Autonoma de Mexico.

4.2 Edge Finding

The main component of an air shower event in the HAWC array is called a hit. A hit

is the detection of Cherenkov light in a PMT. The information of the hit consists of

the position of the PMT, the time when the hit occurred, and the charge of the hit.

The positions of the PMTs are defined through the layout of the detector (Figure

4.1).

The DAQ saves the time stamps when the signal crosses two voltage thresholds to
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Figure 4.1: Configuration of the HAWC observatory. The position of the
WCDs and the PMTs are shown

identify signal pulses from the PMTs. These times are called ”edges” and are labeled

t0, t1, and so on. The voltage thresholds are set to the equivalent of 1/4 and 4 PEs.

The time between threshold crossings is called time-over-threshold or ToT. A two-

edge hit is a small pulse that only crosses the low threshold. The two-edge hits have

a low ToT of t1 − t0. A large pulse that crosses both thresholds is called a four-edge

hit. Four-edge hits have a low ToT of t3− t0 and a high ToT t2− t1 (Figure 4.2). An

edge-finding algorithm was designed to identify the pulses in each of the PMTs from

the data stream.
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Figure 4.2: Schematic of a small and a large pulse with their corresponding
time stamps.

4.2.1 Calibration of the HAWC Observatory

The time of the edges and ToTs are the main variables to obtain the initial time of

the signal and the charge in each PMT.
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The HAWC Observatory has a laser system that performs timing and charge calibra-

tion. The timing calibration measures two main effects: a slewing effect in each PMT

and a relative time offset between each PMT. The charge is obtained by a conversion

between ToT and charge.

The laser system emits pulsed light with a wavelength of 532nm. A square-wave pulse

generator is used to trigger the laser. The light is split by an optical splitting cube.

The split beam is sent —through a 1:19 optical splitter— to a radiometer in order to

monitor the initial power of the light, Iref . The other beam is sent through a series

of three filter-wheels, each holding six neutral density filters that can be selected by

software. The filter-wheels vary the intensity of the laser light over six orders of

magnitude. The intensity of the light after the filter-wheels is given by:

I

Iref
= 10−α (4.1)

where α is the total optical depth provided by the three filter-wheels.

α =
N=3∑
i=1

ODi (4.2)

The optical depths are shown in table 4.1

A combination of 180 non-opaque (not using position 1 in FW3) filter-wheel settings

is possible. However, some of this settings are repeated. At the time of writing, the
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Table 4.1
Filter-wheels (FW) optical depth values

FW OD1 OD2 OD3
position

1 5.0 0.0 99.0
2 0.0 0.2 0.0
3 1.0 0.4 0.3
4 2.0 0.6 1.0
5 3.0 0.8 1.3
6 4.0 1.0 2.0

calibration system uses 68 combinations that provide transmittance factors of 1 to

10−6.5.

After the filter-wheels, the light beam is split once more with another optical splitting

cube. One light beam goes to another radiometer to monitor the light after the filter-

wheels (referred to as I in equation 4.1). The other beam passes through a 1:37

optical splitter. Eight outputs from this splitter are connected to eight 1:16 optical

switches. The switches send light to 1:2 or 1:4 splitters which then are connected to

long 550 feet optical fibers plus 25 feet optical fibers that go from a junction box at

the bottom of each WCD to the top of the WCD. These fibers connect to the 300

WCDs. At the end of the short optical fiber there is a diffuser that spreads the laser

light inside the WCD in order to trigger the 4 PMTs.

The calibration system sends a notification to the DAQ everytime the laser is fired.

This way the laser light is not misidentified as part of an air shower signal. Also, the
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time when the laser fires is saved, which marks the beginning of a 2 µs time window

used to analyze the charge and time calibration data.

4.2.1.1 Timing Calibration: Slewing Time

The time when the PMT pulse crosses the first threshold, is assigned as the time of

the signal in that PMT. This time depends on the pulse size, since a bigger pulse

yields an earlier crossing time of the low threshold. This response time is referred as

slewing time, which is a function of low/high ToT.

Figure 4.3: Sketch of the slewing effect. A bigger pulse crosses the thresh-
old earlier than a smaller pulse.

The calibration system is used to obtain the slewing time as a function of ToT.

The time interval between firing the laser and the PMT pulse crossing the voltage

thresholds is called the raw slewing time. It includes the response time of the PMT,

electronics and the time for the laser light to go through the optical path (splitters,

47



Figure 4.4: Sketch of the calibration system. The calibration system mea-
sures the total time between the time that the laser is fired and the detection
in the DAQ.

Figure 4.5: Measured time of the optical path for the 300 WCDs. The
measurements were done at the HAWC site.

long fibers and water; see figure 4.4).

The optical path time was measured at the site, and shown in Figure 4.5. Subtracting

this timing information from the raw slewing time, the response time of the PMTs

and electronics is obtained.
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Figure 4.6: Slewing curve for one of the WCDs. PMTs are labeled A
through D. PMT C is the 10” PMT. The group of lines in the upper part of
the graph correspond to the curves for the high threshold while the group
of curves in the bottom are for low threshold.[5]

An example of a slewing calibration run for one of the tanks is shown in figure 4.6.

4.2.1.2 Timing Calibration: Relative Time Offset

The relative time between PMTs is one of the crucial measurements required to

obtain the direction of the primary particle. The timing measurements of the optical

system can have variations of the order of ∼ 1 ns. The resolution of the measured

time for the HAWC observatory can be improved to ∼0.1ns. To reach this objective,

we apply a time residual method. The time residual is a systematic offset defined as

the difference between the PMT readout time and the fitted arrival time of the air

shower in the PMT. Figure 4.7 shows an schematic of the time residual procedure.
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Figure 4.7: The black line represents the true shower front of an extensive
air shower. The green line represents the plane shower front after the cur-
vature correction. This is used for the expected arrival time, which is then
compared to the readout times of the PMTs. [5]

As will be explained in section 4.3.2, a curvature correction is applied to the shape

of the shower front in order to have a plane whose normal points to the direction of

the initial particle. The time residual is implemented as follows. 200,000 air shower

events from within 30° from the zenith angle and with at least 200 PMTs triggered by

the air shower are used. The events are reconstructed with the slewing calibration.

The time residuals are calculated for each PMT and a histogram is obtained. A

gaussian fit is used to find the mean time residual in each PMT (Figure 4.8). This

mean time residual is added to the relative time and used in another iteration of this

procedure. This method is repeated three times until the time offset in each PMT is

closer to zero (Figure 4.9).
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Figure 4.8: Time residual histograms for one of the PMT channels before
and after the time residual method. The histogram after the correction
shows a smaller width and the mean is closer to zero. [5]
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Figure 4.9: The mean time residuals in each PMT before and after correc-
tion for the relative time offset. [5]
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4.2.1.3 Charge Calibration

The amount of charge detected by a PMT is obtained indirectly by comparing an

expected distribution of photon-electrons (PEs) with the ToT distribution. A di-

rect measurement of the charge would be possible, however, the transmittance in

each optical path to the WCDs is different from each other, making the procedure

complicated.

Using the different light intensities due to the different filter-wheel configurations, the

calibration system measures the probability of detecting at least one PE with each

intensity. With this probability, the expected number of PEs 〈NPE〉 can be calculated

for each intensity. The number of PEs is assumed to follow a poisson distribution for

each PMT with mean 〈NPE〉. To represent the charge resolution of the PMTs, the

PE distribution for each intensity is smeared by a factor of σ = 0.35〈NPE〉 following a

Gaussian distribution. The PE distributions and the ToT distributions are matched

for each intensity set from the filter-wheels to produce a curve of PEs as a function

of ToT.

The calibration measurements are used in the reconstruction process that is described

in the following section.
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4.3 Reconstruction

4.3.1 Core Reconstruction

The measured charge at each of the PMTs is used to detect the core position of an air

shower. The core is found by using two algorithms. The first algorithm consists of a

simple center-of-mass (COM) procedure. This algorithm estimates the core position

inside the detector and the result is used as a first guess for a more accurate algorithm.

The first guess of the core position is obtained by the following equations.

xCOM =

∑
xiqi∑
qi

(4.3)

yCOM =

∑
yiqi∑
qi

(4.4)

where xi, yi are the position of the PMTs and qi is the measured charge in each PMT

that participate in the measurement of an air shower event.

The COM core position is then used as the seed for a more time-expensive algorithm in

order to improve the location of the core position. The algorithm is a χ2 minimization

procedure used to find the optimal parameters that describe the core position. The

χ2 compares the measured charge qi to an expected charge Qi modeled by a charge

distribution (or lateral distribution in the jargon of EAS).
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χ2 =

NPMTs∑ (qi −Qi)
2

δq2i
(4.5)

where δqi is the error of the measured charge.

The first lateral distribution function applied in HAWC was a gaussian function,

Q(xi, yi;N, xo, yo, σ) =
N

2πσ2
exp

(
−1

2
((
xi − xo
σ

)2 + (
yi − yo
σ

)2)

)
, (4.6)

where N is the amplitude, σ is the width of the shower core, and xo, yo are the

coordinates of the core position.

Figure 4.10, shows the distributions of core positions during the time when HAWC

had around 111 WCDs (HAWC-111). As can be seen, a ring structure surrounds the

central part of the detector. In these cases, the minimization of the χ2 preferred to

have the tails of the gaussian inside the array.

The gaussian function is a simple approximation for the lateral distribution of an air

shower and requires minimal computational resources when used as a model in the

minimization process. A better approximation is obtained by applying the physics of

EAS. For the first survey of the Galactic Plane with HAWC[43], the expected charge

was obtained from the Nishimura-Kamata-Greisen (NKG) function [49, 50]. The

NKG function is used to describe the lateral distribution of electromagnetic showers.
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Figure 4.10: Core distribution using a gaussian lateral distribution func-
tion during HAWC-111. A ring structure is observed around the detector.

The function is defined as:

Q(xi, yi;N, xo, yo, s) =
N

2πR2
Mol

Γ(4.5− s)
Γ(s)Γ(4.5− 2s)

(
r

RMol

)s−2(
1 +

r

RMol

)s−4.5
, (4.7)

where N is the total number of electrons in the shower event; the value s is referred to

as the shower age, which parametrizes the stage of the shower development. If s = 1,

the number of particles in the shower plane reaches its maximum. The distance of

the shower core to the PMT position is the value r =
√

(x− xo)2 + (y − yo)2. RMol

is called the Molière radius. This value is defined as

RMol = X0
Es
Ecρ

= (37.15 g cm−2)
21 MeV

(84.4 MeV) (7.4× 10−4 g cm−3)
= 124.21 m (4.8)
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Figure 4.11: Core distribution using an NKG lateral distribution function
during HAWC-111. The ring structure disappears with this lateral distribu-
tion.

where X0 is the radiation length in air, Es is the scattering energy, Ec is the critical

energy at which an electron loses equal amounts of energy per unit radiation length

by ionization and bremsstrahlung —At energies bigger than Ec, bremsstrahlung dom-

inates the energy losses—, ρ is the air density at the height of observation. This gives

a value of 124.21 m at the HAWC site.

The χ2 minimization with an NKG distribution became too computationally expen-

sive once most of the detector was online. In order to speed up the analysis, a new

function was constructed, based on the combination of a gaussian function and the

tail of the NKG distribution.
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The function is defined as:

Q(xi, yi;N, xo, yo) = A

(
1

2πσ2
e

−r2
2σ2 +

N

(0.5 + r
RMol

)3

)
(4.9)

where r and RMol are defined as before; σ is chosen to be 10 m in order to fit cores

near the array ; and N is the normalization of the integral of the second term in the

equation relative to the Gaussian and the value is 5·10−5. The three fitted parameters

are the two coordinates of the core position and the amplitude A.

The core distributions of a sample of extensive air showers, for the complete detector

with the NKG and gauss-NKG functions are shown in Figure 4.12.

Figure 4.13, shows an example of one extensive air shower event. This example is

one where the core of the shower landed on the array. Figure 4.14 shows the charge

distribution as a function of the distance from the core. The blue line is the best

gaussian-NKG function after the χ2 minimization. The green line is the NKG using

the core position from the gaussian-NKG function.

4.3.2 Angular Reconstruction

After finding the position of the core of the air shower, the direction of the primary

particle is measured.
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Figure 4.12: Core distributions for the complete detector using real data.
The NKG function (upper plot) and the gauss-NKG (lower plot) function
are used.
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Figure 4.13: An extensive air shower event from real data coming from
the region of the Crab. The core of the shower landed on the array.

Figure 4.14: Charge distribution as a function of the distance from the core.
The blue line is the best fit gaussian-NKG function after the χ2 minimization.
The green line is the NKG using the core position from the gaussian-NKG
function.
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Figure 4.15: Times when each PMT is triggered by an extensive air shower
event. The event is the same as in figure 4.13.

The shower front can be thought of as a thin pancake that crosses the detector array.

During the crossing, the PMTs are activated at different times. The relative time

between PMTs is used to obtain the shape of the shower front. Figure 4.15 shows

the times when each PMT was triggered. The shower front is not completely flat, the

hit times of the PMTs are shifted as described previously in order to produce a flat

plane.

The measurement of the core position is important to produce this flat plane. Particles

that are farther from the core are delayed with respect to a perfect plane tangent to

to the core position. Using simulations, the curvature of the showers is found and a

correction is applied.
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Also, the particle density of the shower front decreases as a function of distance from

the core, following the NKG distribution presented in section 4.3.1. Since there are

less secondary particles farther from the core, the detection of the first PE in the

PMTs away from the core can be delayed. This effect is referred as sampling and it

is also corrected by using simulations.

After applying the corrections from the shower curvature and sampling, a weighted

χ2 is performed and the direction of the primary particle in the local coordinate sky

is obtained. A distribution of the reconstructed zenith and azimuth angles is shown

in figure 4.16.

4.4 Analysis Cuts: Describing the Air Shower

Events

The shower size or footprint of an air shower event correlates with several parameters

that describe the primary particle, such as the energy and the type of the particle.

HAWC data is divided into shower size bins f . These bins are defined by the ratio of

the PMTs that participated in the reconstruction to the total number of PMTs that

were available during the reconstruction.
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Figure 4.16: Distributions of the reconstructed zenith and azimuth angles
from real data.
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Table 4.2
Fractional f bins

f Low High
1 0.067 0.105
2 0.105 0.162
3 0.162 0.247
4 0.247 0.356
5 0.356 0.485
6 0.485 0.618
7 0.618 0.740
8 0.740 0.840
9 0.840 1.00

4.4.1 Simple Energy Estimator

The variable f works as a simple energy estimator. Figure 5.8 in chapter 5, shows

the energy histograms as a function of f . However, this parameter is dependent on

the spectral assumption for the observed source and on the direction of the primary

particle in the local sky. At the time of writing this thesis, different energy estimators

are being developed.

4.4.2 Gamma-Hadron Separator

As mentioned in chapter 2, hadronic cosmic rays and gamma rays produce extensive

air showers with different characteristics. For instance, gamma rays produce purely
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electromagnetic showers, with extremely low numbers of muons or pions. Hadronic

cosmic rays, on the other hand, produce a combination of electromagnetic showers,

with muons, pions and other hadrons.

Hadronic cosmic rays are more abundant than gamma rays and account for the main

background for the observation of VHE photons. Two variables are used to identify

the type of primary particle that produces an extensive air shower.

The first variable is referred to as compactness, which measures how compact the

footprint of a shower is in the detector array. The compactness C is defined as:

C =
Nhit

CxPE40

(4.10)

where Nhit is the number of PMTs that participated in the reconstruction of the

shower event, and CxPE40 is the largest measured charge in a PMT outside a circle

of 40m centered at the core of the shower. In general a gamma-ray shower event

will have a higher value of C. Figure 4.17 shows distribution of the parameter C

for the different f bins. The difference between gammas (blue) and hadrons (red)

is noticeable. Data is also plotted for comparison (black); since data is composed

mostly from hadrons, the distributions of hadron simulation and data are similar.

The second variable measures how ”unsmooth” the lateral distribution function of
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Figure 4.17: Compactness distributions for each f bin. Black: data; Red:
hadrons; Blue: gammas. Upper-left plot starts with f1 followed by bin f2
and f3 in the same row. Lower-right plot corresponds to bin f9.

the air shower event is. This variable P is calculated as:

P =
1

N

N∑
i=0

(log(qi)− 〈log(qi)〉)2

σ2
log(qi)

(4.11)

where log(qi) is the logarithm of the measured charge in PMT i; 〈log(qi)〉 is the

average of the logarithm of the charge in all the PMTs that are inside an annulus

containing the hit i, with a width of 5 meters, centered at the core of the shower;

σlog(qi) is the uncertainty in the charge derived from gamma ray events from the Crab.

In general events with small values of P will be considered gamma rays. Figure 4.18

shows distribution of the parameter P for different f bins. The difference between

66



Figure 4.18: Smoothness distributions for each f bin. Black: data; Red:
hadrons; Blue: gammas. Upper-left plot starts with f1 followed by bin f2
and f3 in the same row. Lower-right plot corresponds to bin f9.

gammas (blue) and hadrons (red) is noticeable. Data is also plotted for comparison

(black); since data is composed mostly from hadrons, the distributions of hadron

simulation and data are similar.

4.4.3 Angular Resolution

The angular resolution results in an uncertainty on the direction of the primary

particle and it is called the point spread function (PSF). It depends on the size of

the shower footprint in the array, on the zenith position of the primary particle and
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improves with larger values of fHit. It is important in the study of point sources.

For the HAWC array, the PSF is approximated as a double-width Gaussian

PSFδ = αG1(δ) + (1− α)G2(δ) (4.12)

where δ is the angle difference between the true direction and reconstructed direction

of the primary particle; Gi is a normalized gaussian function and α represents the

contribution from each Gaussian. Figure 4.19 shows two examples for the PSF in

different f bins between the declinations 17.5o and 22.5o.
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Figure 4.19: PSF for bins f2 and f9 in the declination band of 17.5o -
22.5o. The PSF improves with larger f bin. Usually, the 68% containment
value is reported.
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Chapter 5

The Fermi Bubbles

The search for a counterpart of the microwave haze [26] in gamma-ray data, using

the Fermi telescope, revealed the existence of two large structures extending up to

55° above and below the Galactic Plane [26, 27]. Due to their bubble-like shape they

recieved the name of Fermi Bubbles.

Figure 5.1: Fermi Bubbles observed between 1 GeV to 10 GeV. Credit:
NASA/DOE/Fermi LAT/D. Finkbeiner et al.
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The gamma-ray emission from the Fermi Bubbles presents a slowly falling spectrum

—dN/dE ∼ E−2— in the energy range of ∼1 GeV to ∼100 GeV; the surface bright-

ness is roughly uniform in both bubbles —with an exception of a structure inside the

south bubble called the cocoon; the total luminosity of the bubbles for |b| > 10° and

between 100 MeV and 500 GeV was found to be 4.4+2.4
−0.9 × 1037 erg s−1 [6] .

5.1 The Origin of the Fermi Bubbles and Gamma-

Ray Emission Mechanisms

The origin of the Fermi Bubbles is still uncertain. Different models have been pro-

posed to explain their formation. Most of the models revolve around the idea of

outflows from the galactic center which then interact with the interstellar medium

(ISM). There exists several models in the literature. This thesis describes some of

them.

The first model is the Active Galactic Nuclei (AGN) model. In [27], it is mentioned

that the Fermi Bubbles were probably created by a large energy injection from the

galactic center in the form of jets. Simulations showed that the AGN model can

reproduce the morphology of the Fermi Bubbles [51, 52]. It is assumed that the

activity of the jets started 1-3 Myr ago and were active for ∼0.1-0.5 Myr.
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Another model suggests that a cosmic ray population was carried out to the bubble

region by winds produced from a long time-scale star formation in the galactic center.

It is argued that the observed gamma-ray spectrum can be explained if the cosmic

rays are trapped in the bubble region for a time scale of 1010 years[53].

A periodic star capture process by the supermassive blackhole in the Galactic Center

is proposed in [54]. The model shows that the supermassive black hole, Sagitarius

A*, with a star capture rate of 3× 10−5 yr−1, can release an energy of ∼ 3× 1052 ergs

per capture. This produces a hot plasma of energy ∼10 keV and a wind velocity of

∼ 108 cm s−1 that is injected into the bubble region. The periodic injection of the

hot plasma produces shocks that can accelerate cosmic ray electrons. Some of these

electrons produce gamma rays through inverse Compton scattering.

Another formation mechanism is also related to the activity of Sagitarius A*. In

this case, it is assumed that the accretion rate of the black-hole was 103 − 104 times

higher during the past ∼ 107 years. The hot accretion flow produces a strong wind

driven by magnetic forces. Cosmic rays are accelerated inside these winds by different

mechanisms. After interacting with the interstellar medium, cosmic rays will produce

gamma rays [55].

The production of gamma rays is also under dispute. Hadronic and leptonic mod-

els are the main mechanisms to explain the gamma-ray production. Photons from
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hadronic origin are due to the decay of neutral pions that are produced in the in-

teraction of protons with nuclei in the Interstellar Medium. These protons are in-

jected in the bubble regions by the outflow processes mentioned before or they can

be accelerated inside the bubble as proposed by [56, 57]. Some of these models

predict the possibility of high-energy gamma rays[53, 56]. In the leptonic model,

high-energy photons are produced by inverse Compton scattering from the interac-

tion of energetic electrons with photons from the interstellar radiation fields or cosmic

microwave background. The division between hadronic and leptonic models should

not be strict, but rather, a combination of both models may be possible[6, 54]. Obser-

vations at other wavelengths, specifically at lower energies, have helped to constrain

some models. For instance, the microwave haze, produced by synchrotron radiation,

can help to constrain the electron population, which can also radiate in gamma rays

[26, 27, 52, 53, 55].

The same principle can apply at high energies, where observations can constrain the

population of the highest-energy cosmic rays. The present chapter shows an analysis

for searching for high-energy gamma rays (above ∼1 TeV) from the Northern Fermi

Bubble region using data from the HAWC Observatory
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5.2 The Data Set

The HAWC observatory began science operations in August 2013, when it was still

under construction. The following analysis uses data from between 2014 November

27th to 2016 February 11th. Due to the fact that the analysis requires 24-hour

periods of time when the detector is stable, only full days of uninterrupted operation

are considered, resulting in a lifetime of the analysis of 290 days. This is because the

method of direct integration is used to estimate the background [58], which requires

stable periods of operation (See section 5.3.1).

Standard selection cuts are applied to the data that pass the trigger condition. The

signals in each PMT should have > 1 photoelectron (PE) and should be between

150 ns before and 400 ns after the trigger. Then, the data are divided into seven bins

which represent the shower footprint brightness and are defined as the fraction of

functioning PMT channels triggered in an air shower event. The bins will be denoted

as f. The energy of the observed gamma rays is related to the shower footprint size

that is measured in the HAWC array. In addition, it is required that more than

90% of the PMT channels are functioning during the observation. The analysis cuts

applied are shown in Table 4.2. Only analysis bins 3-9 are used for this analysis due

to systematic effects in the lower two bins. Hence, for the purpose of the analysis,

the bins will be renamed, and the analysis presented in this chapter will use bins one
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through 7.

Finally, cuts are applied to distinguish between gamma rays and cosmic rays, the

latter being the main background of measurements with the HAWC observatory.

The first gamma-hadron cut is applied to the ratio of the number of triggered PMTs

to the number of PEs in the PMT with the highest signal outside of a radius of 40 m

from the estimated core. A higher value of this ratio corresponds to a higher gamma-

ray probability of an event. Equation 4.10 is used to obtain this value (See Figure

4.17). The second gamma-hadron cut is applied to an observable that measures the

deviation of the charge measured in the PMTs from an average expectation. A lower

value of this observable corresponds to a higher gamma-ray probability of an event

(See Figure 4.18). Equation 4.11 is used to calculate this second gamma-hadron value.

All the cuts are optimized by studying the Crab Nebula in the HAWC data [43]. The

value of the gamma-hadron cuts are

Gamma-Hadron Cuts

1 "(rec.nHitSP20/rec.CxPE40>=11.00) && (rec.PINC<2.30)"

2 "(rec.nHitSP20/rec.CxPE40>=15.00) && (rec.PINC<1.90)"

3 "(rec.nHitSP20/rec.CxPE40>=18.00) && (rec.PINC<1.90)"

4 "(rec.nHitSP20/rec.CxPE40>=17.00) && (rec.PINC<1.70)"

5 "(rec.nHitSP20/rec.CxPE40>=15.00) && (rec.PINC<1.80)"

6 "(rec.nHitSP20/rec.CxPE40>=15.00) && (rec.PINC<1.80)"

7 "(rec.nHitSP20/rec.CxPE40>= 3.00) && (rec.PINC<1.60)"

#rec.nHitSP20: number of hits

#rec.CxPE40: maximum charge outside 40m radius from the

# core of the shower

#rec.PINC: charge smoothness
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5.3 Analysis

5.3.1 Background Estimation

The position of the events are binned in equatorial coordinates using the HEALPix

scheme [59]. For the analysis we set the pixel size to be 0.11°.

The background is estimated using the “direct integration” technique described

in [58]. As implied in the previous section, the background is integrated over 24

hours and therefore only data were used when the detector performance was stable

for 24 hours.

The direct integration technique uses the actual event distribution of local arrival

direction and the integrated rate for the specific period of time. The local arrival

distribution is normalized, so it becomes a local detector efficiency E(ha, δ) for the

integration time period, where ha is the hour angle and δ is the declination. This

is convolved with the time-integrated rate R(t) to obtain the number of background

events, where t is the time of the observation. This is summarized in the following

equation:
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〈N〉 (α, δ) =

∫ ∫
E(ha, δ)R(t)ε(ha, t, α) dt dΩ, (5.1)

where α is the right ascension; the variable ε ensures that the events from the local

position in (ha, δ) corresponds to the equatorial poisiton (α, δ). The integration is

done over the time t and the angular size Ω.

As explained in [44], an analysis based on background integration period of ∆t

is sensitive to potential signal excesses of an RA size smaller than ∆t · 15° hour−1.

Using a 24 hour integration period, ensures that the analysis is sensitive to the Fermi

Bubbles which extend to ∼ 50o in RA.

Since the estimation of the background can be biased by strong known regions of

gamma- and cosmic-ray excesses in the data, a region of interest (ROI) masking

is used, as shown in Figure 5.2. The ROI masking covers the galactic plane [±6o],

circular regions of 1.3o,1o, and 1o respectively for the Crab Nebula, Mrk 421, and 501.

The small-scale cosmic-ray excesses, Region A and B, are also masked. Their shapes

are obtained from the results presented in [44]. Contiguous areas with significances in

the cosmic-ray sky map greater than 4σ are excluded from the background calculation.

The ROI for the northern Fermi Bubble was obtained from the Fermi Diffuse Model

pass 7 version 6 1. The shape at ∼TeV is unknown. We perform a gamma-ray flux

excess search within the boundaries of the Northern bubble as detected by Fermi

1See http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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below GeV energies.

Figure 5.2: Region of interest masking used for the analysis.

5.3.2 Excess Calculation

Large integration time for the background estimation allows to resolve larger struc-

tures. Also, since the gamma/hadron separation is not perfect, sky maps at lower f

values are affected by the large-scale anisotropy of cosmic rays where the statistics

are large enough to be sensitive to the part-per-mille[44]. Figure 5.5 shows an all-sky

excess map for all f bins after subtracting the estimated background. Artifacts of

the large-scale anisotropy are seen in bins f1 and f2. The northern Fermi bubble

sits on the deficit region. Completely removing the cosmic-ray feature requires maps

made without applying the gamma-hadron cuts. The following is a description of our
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procedure for this removal.

For both, gamma and hadron sky maps, the event excess is calculated by subtracting

the direct integration background from the data. The excess in the cosmic-ray maps

and the gamma-ray maps are composed of cosmic rays (C) and gamma rays (G), but

the composition is different in the gamma-ray maps due to the gamma-hadron cuts.

This can be written as

EC = NC − 〈NC〉 = C +G

EG = NG − 〈NG〉 = εCC + εGG, (5.2)

where NC,G are the number of events in cosmic and gamma ray maps, 〈NC,G〉 are the

estimated number of background events in cosmic and gamma ray maps, and εC and

εG are the hadron and gamma passing rates after applying the gamma-hadron cuts.

The hadron passing rate efficiency εC are obtained from the data assuming that most

of the events are cosmic rays εC = NG/NC .

The gamma passing rate efficiency εG is obtained using gamma-ray event simulations

assuming a Crab-like spectrum. The detector response is simulated in each of the

seven f analysis bins and for 5o declination bands between −37.5o and 77.5o. Each
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bin contains an energy histogram that is expected for the simulated signal. We

compute the total number of events in the energy histograms and the ratio for the

events with cuts hG(e) over the events with no cuts hC(e). Therefore, the efficiency

can be written as:

εG =

∫
hG(e)de∫
hC(e)de

, (5.3)

where e is the energy .

Equation 5.2 can be solved to calculate the number of gammas G.

G =
EG − εCEC
εG − εC

. (5.4)

The previous equation is used to calculate the number of gamma rays G in each pixel

inside the Northern Bubble region as defined in Figure 5.2 and then summed to get

a total excess. The shape of the Fermi Bubbles at high energies is unknown, though

some authors suggest that the size of the bubbles increases with energy [55, 56, 60].

In this case, calculating the flux in the smaller region of the MeV-GeV excess is the

more conservative approach.

The error calculation for G is obtained through
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(
δG

|G|

)2

=
〈NG〉+ (ECεC)2(2 〈NC〉)

N2
C

+ 〈NG〉
N2
G

)

(EG − ECεC)2

+
ε2C( 〈NC〉)

N2
C

+ 〈NG〉
N2
G

)

(εG − εC)2

. (5.5)

The efficiency εG is applied to the number of gamma-ray photons G to obtain the

number of excess events measured by the detector. The excess becomes

E = εG(G+ δG). (5.6)

Figure 5.5 shows skymaps for each analysis bin f before and after applying our pro-

cedure.

Figure 5.3 shows the results of the summed excess inside the bubble region after

applying the procedure on the right side of each compound figure.

Figure 5.3: Event excess inside the Northern Fermi Bubble region after
applying the procedure described in section 5.3.2.
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5.3.3 Testing the Analysis Method

The analysis method is tested on simulated sky maps containing a dipole distribution

as shown in Figure 5.4 assuming no sources are present. A rate map in the local

Figure 5.4: Dipole distribution used for the skymap simulation.

coordinates of HAWC containing a snapshot of 24 sec of data is generated. Since

HAWC observations cover a local sky of zenith angles 0° < θ < 45°, the rate map

is generated for this zenith angle range. Using the dipole distribution from Figure

5.4, the total sky event rate from HAWC data, and information from the detector

response, a rate in each pixel is obtained. After the 24 sec period the rate map is reset

and the procedure is started again. In this way a simulated data set is generated that

is of the same size as the real data set analyzed in this chapter. The simulated sky

maps shown in Figure 5.7. The left panel in each compound figure represents the

resulting map after simply subtracting the estimated background from the data, the
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-0.0330754 0.0460323 -0.0330061 0.0463603

(f) f6

-0.0423168 0.0989549 -0.0428077 0.0985507

(g) f7

Figure 5.5: Event excess in each analysis bin, smoothed with a 5° tophat.
In each figure: On the left the simple excess without removing the large-
scale structure. On the right the large-scale structure is removed using the
method described in section 5.3.2 (See previous page for the rest of the bins).

lower panel shows the excess map after applying the procedure described in Section

5.3.2. The simulation was repeated 22 times to suppress statistical fluctuations.

Figure 5.6 shows the resulting simulated excesses in each f bin (red points). For

comparison, the excesses derived with the simple background subtraction method

are also presented —blue points. The effect of the large-scale anisotropy results in

systematically lower excesses clearly visible in bins f1, f2 and f4 if the method from

Section 5.3.2 is not applied.
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Figure 5.6: Simulated event excess inside the northern bubble region. The
effect of the dipole is stronger at lower values of f. Blue: Simple Background
Subtraction; Red: Method described in Section 5.3.2.
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-0.0658613 0.0725624 -0.0678123 0.0735616

(f) f6

-0.0778136 0.0856994 -0.0798355 0.085252

(g) f7

Figure 5.7: Simulated event excess for each analysis bin f, smoothed with a
5°tophat. In each figure: On the left excess after subtracting the estimated
background from the fake data. On the right the large-scale structure is
removed with the method described in Section 5.3.2.

5.3.4 Describing the non-detection

Figure 5.3 shows that there is no significant excess inside the bubble region, therefore

upper limits and sensitivity on the differential flux are calculated.

The upper limit gives the maximum flux intensity that is plausible given the observed

counts in the HAWC data. The sensitivity quantifies the power of the detection proce-

dure and are based on finding an α-level threshold (related to background fluctuations

claimed as detections) and the probability β to detect a source.
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Figure 5.8: Energy histograms for the analysis bins assuming a power-law
spectrum with and index γ = 2.75.

5.3.4.1 Upper Limits

The differential flux is calculated from the measured excess by comparing the signal

observed in the data to an expected signal obtained for each of the f bin using

simulations. Since the energy response histograms for each analysis bin overlap (see

Figure 5.8), the excesses measured in the analysis bins are combined in a weighted

sum.

The procedure is as follows: a differential flux is assumed in an energy bin of width

∆ log(E/1 TeV). The width of differential energy bins is defined such that the results

are independent of spectral assumptions. Using the HAWC detector response, an
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expected signal for the Northern bubble region is obtained for each f bin. Taking

into account the previous values, the weight in the energy bin k for the f bin i is

calculated as:

wki =
MEk

i

< NG >i

, (5.7)

where wki is the weight in the energy bin k for the f bin i; MEk
i is the expected signal

in the energy bin k for the f bin i, and < NG >i is the background estimated in the

f bin i. This procedure results in a matrix that allows to ”project” the f analysis

bin space onto the energy space.

Using the weights, the ratio of the observed signal and the expected signal is calcu-

lated:

Rk =

7∑
i=1

wkiEi

7∑
i=1

wkiMEk
i

, (5.8)

and the uncertainty in the ratio as:

δRk =

√
7∑
i=1

(wki δEi)
2

7∑
i=1

wkiMEk
i

. (5.9)

The ratio is used to obtain an estimation of the flux in the energy bin k:

Fk = (R± δR)kF (Ek). (5.10)
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The upper limit (UL) calculation is then performed in the energy bins. The prescrip-

tion of [61] is used to calculate an upper limit on the differential flux derived from

equation 5.10. A 95% confidence level (CL) is chosen.

The procedure consists of finding the value of the upper limit that gives the result

1− CL =

∫∞
UB

e−
1
2
(x−F

σ
)2dx∫∞

0
e−

1
2
(x−F

σ
)2dx

, (5.11)

where F is the measured flux, σ is the error in the measurement and the integral is

done over the fluxes x.

5.3.4.2 HAWC Sensitivity

The sensitivity is calculated for an α-level of 0.05 with a probability of detection of

β = 0.5[62]. This is in order to compare the power detection of HAWC with the upper

limits measured by the data. The calculation is performed by using the measured

background and a simulated Fermi bubble of varying flux. For the simulation we

assume a power-law with an index of -2 in the differential energy bin. For each

analysis bin, the total background counts and the total expected number of events

from the fake Fermi bubble are calculated and summed inside the bubble region.

Following the same procedure as in section 5.3.4.1, the analysis bins are combined

to get the total number of events for each energy bin. In each energy bin, a null
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hypothesis histogram and an alternative hypothesis histogram are created for the

quantity

Sk = Ek/
√
〈NG〉k, (5.12)

where Ek is obtained by poisson-fluctuating 〈NG〉k and then subtracting this value to

〈NG〉k for the null hypothesis, or by poisson-fluctuating 〈NG〉k +MEk and then sub-

tracting this value to 〈NG〉k for the alternative hypothesis. The Poisson fluctuations

are performed 10000 times to fill the histograms. The null hypothesis histogram is

used to find the α-level detection threshold and the alternative hypothesis histogram

is used to find the flux normalization that is required to obtain a probability of de-

tection of 0.5.

5.4 Results and Discussion

The first energy bin is centered at 2.2 TeV, which is the median energy of f 1 assuming

a power-law spectrum of index γ = 2.75 (see Figure 5.8). The energy bin width

is set to ∆ log(E/1 TeV) = 0.5 which is comparable to the width of the energy

histograms. The energy range covers up to the highest energy at which HAWC is

sensitive (∼100 TeV). Figure 5.9 shows the upper limits and Table 5.1 shows the

values for each energy bin. The figure also shows the flux measurement of the Fermi

Bubbles made by the Fermi Collaboration [6].
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Table 5.1
Characteristics of the non-Detection

Energy Range Upper Limits HAWC Sensitivity
[TeV] [GeV cm−2 s−1 sr−1] [GeV cm−2 s−1 sr−1]

1.2 - 3.9 3.0×10−7 3.3×10−7

3.9 - 12.4 1.0×10−7 1.1×10−7

12.4 - 39.1 0.5×10−7 0.5×10−7

39.1 - 123.7 0.4×10−7 0.3×10−7

Table 5.1 shows the values of the upper limits and sensitivities for each energy bin.

The upper limits obtained from data are consistent with the detection power of

HAWC. Different leptonic and hadronic models are also present in Figure 5.9. Table

5.2 shows the description of the different models presented in Figure 5.9.

Table 5.2
Differential flux models for the Fermi Bubbles

Model Description
Hadronic Model 1 Np ∝ p−2.2

Hadronic Model 2 Np ∝ p−2.1 exp(−pc/14 TeV)
Leptonic Model 1 Ne ∝ p−2.17 exp(−pc/1.25 TeV) and IRF at 5kpc
Leptonic Model 2 Ne ∝ p−2.17 exp(−pc/1.25 TeV) and CMB

IceCube Hadronic Model Np ∝ p−2.25 exp(−pc/30 PeV)

The two leptonic models are obtained from [6]. In these models, the emission is

described by inverse Compton scattering. Two radiation fields are used: the Inter-

stellar Radiation Field (IRF) at 5 kpc above the Galactic Plane and photons from the

Cosmic Microwave Background (CMB). The electron spectrum interacting with the

radiation fields is modeled as a power-law with an exponential cutoff. The spectral
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index has a value of 2.17± 0.5+0.33
−0.89 and the cutoff energy is 1.25± 0.13+1.73

−0.68 TeV.

The two cyan hadronic models, also obtained from [6], assume a power-law and a

power-law with cutoff for the injection spectrum of the hadrons. These protons inter-

act with the ISM producing neutral pions that decay into gamma rays. The spectrum

was obtained using the library cparamlib2, which implements the cross sections from

[63], for the production of gamma rays through hadronic interactions. The spectral

index for the power-law is 2.2; the spectral index for the power-law with cutoff is

2.13± 0.01+0.15
−0.52 with a cutoff energy of 14± 7+6

−13 TeV. Using the fit results obtained

in [6], we extrapolate the results for the hadronic models above 100 TeV. The upper

limits derived from HAWC data exclude the hadronic injection without a cutoff, that

best fits the GeV gamma-ray data, above 3.9 TeV.

The hadronic model represented by the red line is obtained from [7]. This model is

the counterpart of a neutrino flux model that best fits the IceCube data. The IceCube

data corresponds to five events that are spatially correlated with the Fermi Bubbles.

The differential flux model was obtained by taking into account the flux from both

bubbles. Above 10 TeV, the HAWC upper limits exclude the parent proton spectrum

predicted from IceCube data.

Early reports such as [53, 56], hinted at the possibility of observing ∼TeV gamma

2https://github.com/niklask/cparamlib
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Figure 5.9: HAWC upper limits at 95% C.L. together with the Fermi Data
and gamma-ray production models from [6] and [7].

rays. The intensity was predicted to be ≤ 10−6 GeVcm−2s−1sr−1. The result pre-

sented here sets a stricter upper limit.

The result does not unambiguously determine the main contribution to the emission

of the Fermi Bubbles. Nevertheless our result may imply, for a hadronic model, that

there is a cutoff in the proton spectrum. A previous publication showed that the GeV

gamma-ray spectrum is cutting off around ∼100 GeV[6]. The cutoff for the parent

proton spectrum in this case could be around ∼1 TeV [64].

As mentioned in section 5.3.2, a few papers propose that the size of the bubbles

increases with energy [55, 56, 60]. While defining the search region to be the same

as the excess detected at GeV energies is a more conservative approach, it may be

interesting to increase the size of the latter in a follow-up analysis.
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Increasing the sensitivity at energies < 1 TeV is another objective for future analyses.

At energies <∼ 1 TeV, the large-scale anisotropy signal (or any significant, spatially-

extended feature) causes signal contamination in the estimation of the background

because the structure takes up a large portion of the field-of-view of HAWC, sig-

nificantly altering the all-sky rate. An iterative procedure for the direct integration

method will be followed as explained in [65] and has been shown to remove this

artifact.

5.5 Conclusions

A search of high-energy gamma rays in the Northern Fermi Bubble region has been

presented by using 290 days of data from the HAWC observatory. No significant

excess is found above 1.2 TeV in the search area and the 95% C.L. flux upper limits are

calculated and compared to the differential sensitivity with α = 0.05 and β = 0.5. The

upper limits are between 3×10−7 GeV cm−2 s−1 sr−1 and 4×10−8 GeV cm−2 s−1 sr−1 .

The upper limits, for gamma-ray energies between 3.9 TeV and 120 TeV, disfavor

the emission of hadronic models that try to explain the GeV gamma-ray emission

detected by the Fermi LAT. This makes a continuation of the proton injection above

100 TeV highly unlikely (solid cyan line in Figure 5.9). The HAWC upper limits also

disfavor a hadronic injection spectrum derived from IceCube measurements. The

present result does not allow unequivocal conclusions about the hadronic or leptonic
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origin of the Fermi bubbles though. A future analysis of HAWC data will include

a better sensitivity, especially at lower energies and possibly larger search regions

according to the predictions of some theoretical models.
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Chapter 6

Large Extended Sources: from

Giant Molecular Clouds to Diffuse

Emission

In section 1.3.4, it was mentioned that the study of large extended sources in gamma

rays is useful for tracing the origin, acceleration, propagation and distribution of cos-

mic rays throughout the galaxy [66]. The energy density of cosmic rays, ∼ 1eV/cm3,

is comparable to that of the galactic magnetic field, ∼ 0.2eV/cm3, and starlight,

∼ 0.5eV/cm3. Hence they are an important constituent in the energy budget of the

ISM and a key component to understand the history and evolution of the galaxy[67].
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This chapter presents preliminary results of simulations and analysis of HAWC data

for the study of these large extended gamma-ray sources.

The first section is a summary of radiative transfer. It is presented in order to

understand some of the measurements of the galactic surveys that are then used to

estimate the amount of gas in the galaxy. The coupling of the cosmic-ray flux with

the gas produces the gamma-ray flux.

6.1 Radiative Transfer1

If we imagine a set of rays crossing a differential surface dA, the amount of energy

crossing in dt time is:

dE = Iν dAdt dΩ dν (6.1)

where Iν is the specific intensity, ν is the frequency of the light, dΩ is the solid angle

subtended by the differential area dA. In empty space, the specific intensity remains

constant, however, in the presence of matter, energy can be added or subtracted by

emission, absorption or scattering. The change of the specific intensity on a distance

s in the presence of matter is given by:

dIν
ds

= jν − ανIν (6.2)

1For a detailed description see [68]
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where jν is the emission coefficient and αν is the absorption coefficient. The optical

depth τν is a measure of the level of transparency in a cloud. It is defined as dτν = ανds

and this can be used to redefine equation 6.2. The intensity radiation equation then

becomes:

dIν
dτν

+ Iν = Sν (6.3)

where Sν is the source radiation intensity.

For a constant source radiation intensity, the solution is written as

Iν = Iν(0)e−τν + Sν(τν)(1− e−τν ) (6.4)

Since most survey measurements are in the radio region of the electromagnetic spec-

trum, we can use the Rayleigh-Jeans approximation. This makes the source radiation

intensity become

Sν(τν) =
2KTSpinν

2

c2
(6.5)

where TSpin occurs when there is thermal equilibrium between the two spin states

of atomic hydrogen. The specific intensity can also be converted to a brightness

temperature:

Tν ≡
c2

2Kν2
Iν (6.6)
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With these two equations, equation 6.4 becomes

T (τν) = T (0)e−τν + TSpin(1− e−τν ) (6.7)

Generally, instruments measure ∆T = T (τν)− T (0), i.e.

∆T = (TSpin − T (0))(1− e−τν ), (6.8)

which is used to obtain the total optical depth.

τν = − ln

(
1− ∆T

TSpin − T (0)

)
. (6.9)

6.2 Giant Molecular Clouds

Giant Molecular Clouds (GMC) are dense regions in interstellar space composed

mainly of cold, dark dust and molecular gas —mostly hydrogen and helium. The

GMC have masses of 104 − 106 M� and sizes of 50-200 pc. These are important

regions for the evolution of the galaxy since it is where star formation occurs.

The observation of the GMCs is done either in the radio or infrared, since visible light

is not able to penetrate these dense regions. GMCs are made mostly of molecular
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Figure 6.1: GMC obtained from the CfA 1.2m millimeter-wave Telescope
survey. The survey is overlayed with the 1-year HAWC sensitivity.

hydrogen, however, since the molecule does not have a permanent electric dipole, it

does not emit light. Fortunately there are other type of molecules that are used as

tracers of molecular gas. One of these molecules is CO. CO presents a lower frequency

rotational transition that emits radiowaves at 115GHz. Using two 1.2 m telescopes,

one at the Center-for-Astrophysics (CfA) in Harvard and the other at Cerro Tololo

in Chile, a CO survey of the galaxy was made [9] and it is shown in figure 6.1.
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6.3 Galactic Diffuse Emission

The galactic diffuse emission is gamma-ray emission that is produced by the interac-

tion of cosmic rays with interstellar matter and interstellar radiation fields. GMCs are

part of the diffuse emission since they provide the target material for the production

of gamma rays through pion decay.

Also, beside the molecular hydrogen located in the GMCs, atomic hydrogen is dis-

tributed all over the galaxy. Atomic hydrogen is observed by looking for the 21cm

emission line. This emission is produced by the magnetic interaction of the proton and

electron in the hydrogen atom. A photon is emitted when the relative spins change

from parallel to antiparallel. One of the most frequently used surveys to model the

diffuse gamma-ray emission is the Leiden/Argentine/Bonn (LAB) survey [8]. The

survey uses data from radiotelescopes in the Netherlands and Argentina. The data

was then corrected for stray radiation (light that is not intended to be detected) by

scientists at the University of Bonn.

Equation 1.19 shows how to calculate the gamma-ray flux for hadronic interactions.

The column density nH is defined as:

nH = NHI + 2NH2 . (6.10)
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Atomic Hydrogen

The column density for atomic hydrogen, NHI , is obtained from

NHI = 1.82× 1022

∫ ∞
−∞

TSpinτ(v)dv [m−2], (6.11)

where v is the radial velocity of the cloud. Using equation 6.9, 6.11 becomes

NHI = −1.82× 1018

∫ ∞
−∞

TSpin ln

(
1− ∆T

TSpin − T (0)

)
dv [cm−2], (6.12)

∆T is obtained directly from the LAB survey [8]. However, if ∆T > TSpin− 5K then

∆T is truncated to TSpin − 5K.

Molecular Hydrogen

From the CfA survey [9] we have information of the brightness temperature and

velocity. Then integrated brightness temperature is of the CO emission is defined as:

WCO =

∫ ∞
−∞

T dv. (6.13)
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Empirical models suggest that the integrated brightness temperature is roughly pro-

portional to the mass of the cloud and hence the column density[68]. The propor-

tionality factor is defined as:

XCO =
NH2

WCO

, (6.14)

which is of the order of ∼ 1020 cm−2 K−1 (km s−1)−1 so the final equation to obtain

the column density for molecular hydrogen is

NH2 = XCO

∫ ∞
−∞

T dv [cm−2]. (6.15)

The total column density from atomic and molecular hydrogen is shown in figure 6.2

Figure 6.2: Column Density of Hydrogen after combining the atomic and
molecular contributions

Equation 1.20 can then be used to calculate the emissivity of pions. The cross section
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of the interaction has been calculated with different approximations. One of these

approximations is presented in [69]. The emissivity of gamma rays per solid angle is

shown in figure 6.3.

Figure 6.3: Emissivity of gamma rays versus energy.

Finally, the flux of gamma rays can be calculated by multiplying the gamma-ray

emissivity 1.19 by the column density of hydrogen (both atomic and molecular) 6.10.

The contribution from pion decay is obtained by combining the contributions from

the atomic and molecular hydrogen. This is a first principles estimation, since the

estimated flux of gamma rays from pion decay comes from other observations of the

galaxy in different wavelengths.
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The other contributions to the Galactic Diffuse Emission at VHEs are inverse Comp-

ton scattering and bremsstrahlung. In the case of bremsstrahlung, the emission of

gamma-rays also follows the gas distribution due to the interaction of electrons with

matter. For inverse Compton scattering, the distribution is smoother since electrons

interact with the radiation fields. Several simulation packages have been developed to

estimate the gamma-ray flux for different physical processes. One of these is know as

GALPROP[10]. GALPROP solves a diffusion equation for cosmic rays and simulates

the interaction of these with the interstellar matter and interstellar radiation. It then

provides a estimated flux for inverse Compton, bremsstrahlung, and pion decay.

Figure 6.4 show the estimated flux of gamma rays from the Galactic Diffuse Emission

for the combination of the pion decay model from the gas maps, and the inverse

Compton and Bremstrahlung from GALPROP, and the full GALPROPT model. A

comparison of the two pion decay models is shown in figure 6.5.

6.3.1 Preliminary Analysis: Studies of Diffuse Emission

In order to estimate how much Galactic Diffuse Emission HAWC can detect, a rough

estimate was calculated using early simulations of the HAWC detector.

The simulation first creates signal events that HAWC will detect using its response

functions. A background signal was also simulated and the signal-to-noise ratio or
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Figure 6.4: Diffuse Galactic Emission flux. The first figure uses the pion
decay contribution from the LAB[8] and CfA[9] surveys and inverse Compton
scattering and bremsstrahlung from GALPROP[10]. The second figure uses
the whole GALPROP model.
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Figure 6.5: Comparison of the gamma-ray flux from pion decay for the
LAB[8] and CfA[9] gas-map model, and GALPROP Model.

significance was calculated. The simulation was done for a period of 3 years.

The results of both models is shown in figures 6.6 and 6.7. The figures are in galactic

coordinates.

The simulation shows that a detection of the Galactic Diffuse Emission is possible

after 3 years of observations.
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Figure 6.6: Expected number of gamma-ray events by HAWC in three
years using the GALPROP model and the first principles model. The color
scale is the same for both maps. Higher prediction of events is expected from
GALPROP as shown in figure 6.4. The simulation also includes Regions A
and B from the small-scale Anisotropy.
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Figure 6.7: Significance maps of 3 years of simulation for both Galactic
Diffuse Emission Models. Top: GALPROP Model. Bottom: LAB and CfA
Model.
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6.3.2 Preliminary Analysis: Molecular Clouds

The gamma-ray visibility of GMCs, assuming that gamma rays are produced by the

interaction of cosmic rays with the gas, is determined by

Fγ(≤ Eγ) ' 10−7

(
M5

d2kpc

)
q−25(≤ Eγ) cm−2 s−1, (6.16)

where q−25(≤ Eγ) = qγ(≤ Eγ)/10−25H-atom−1 s−1 is the gamma-ray emissivity; M5 =

M/105M� is the mass of the GMC; and dkpc = d/1 kpc[23]. In a passive GMC —a

cloud submerged in the already diffused cosmic rays— the gamma-ray flux of GMC

above 1 TeV is approximated by

Fγ(≤ Eγ) ' 1.45× 10−13
(

E

1 TeV

)−1.6
cm−2 s−1, (6.17)

assuming that the cosmic ray flux is the same as the flux measured at Earth, given

by

FCR(E) = 2.2

(
E

1 GeV

)−2.75
cm−2 s−1 sr−1 GeV−1. (6.18)

In the case that there is any particle accelerator inside the cloud, an increase in the

flux measurement can be detected.

Using equation 6.17 and the CO maps from figure 6.1, we can look for clouds that
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are outside the galactic plane and which have a high probability of not having any

particle accelerators. The flux estimates from three different clouds are presented

in this chapter. These estimates are compared to upper limits calculations obtained

from the same procedure as described in section 5.3.4.2, but for circular regions of

radius 3o and 5o. The upper limits (or detector sensitivity) are plotted as function of

declination.

The skymaps presented in this chapter were made with a two-hour background inte-

gration period. The corresponding time for this analysis is 507 days of data.

6.3.2.1 Aquila Rift

Aquila Rift is located (in galactic coordinates) between 10o < l < 35o and 0o < b <

16o. It is located at a distance of 225 ± 55 pc[70] and a mass of 1.5 × 105M�[71].

Figure 6.8 shows the estimated flux using equation 6.17 and the upper limits for 2

and 5 years of observations. The partial skymap contains a contour of the molecular

map from Figure 6.1 with a value of log1 0(NH2 [cm−2]) = 21.15. The color scheme is

the significance, related to the signal-to-noise ratio.
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Figure 6.8: Aquila Lift. Flux estimate and flux upper limits for HAWC
observations for 2 and 5 years.

6.3.2.2 Hercules

Hercules is located (in galactic coordinates) between 40o < l < 48o and 5o < b < 13o,

well above the galactic plane. It is located at a distance of 200± 30 pc[70]. However,

no mass measurement was found in the literature so the mass of the cloud is assumed
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Figure 6.9: Hercules. Flux estimate and flux upper limits for HAWC
observations for 2 and 5 years.

to be 0.5× 105M�. Figure 6.9 shows the estimated flux using equation 6.17 and the

upper limits for 2 and 5 years of observations.
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6.3.2.3 Taurus

Taurus is located (in galactic coordinates) between 150o < l < 175o and −2.5o < b <

27.5o. It is located at a distance of 140 ± 30 pc[70] and a mass of 0.2 × 105M�[71].

Figure 6.10 shows the estimated flux using equation 6.17 and the upper limits for 2

and 5 years of observations.

As it can be seen from the skymaps, no significant excess has been observed in these

regions. A non-detection by HAWC, by at least 5 years in the most optimistic cases,

would mean that the cosmic-ray flux at far distances is lower than the measured

cosmic-ray flux at Earth.
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Figure 6.10: Taurus. Flux estimate and flux upper limits for HAWC
observations for 2 and 5 years.
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Chapter 7

Conclusions

7.1 Search for VHE Gamma-Ray Signal in the

Northern Fermi Bubble Region – Summary

Chapter 5 presented a search for a VHE gamma-ray signal in the Northern Fermi

Bubble region above ∼1 TeV. With a large field of view and a high duty cycle,

HAWC data constrains the possible hadronic models that can explain the flux of the

Fermi Bubbles. The dataset was obtained during the time interval from November

27th 2014 to February 11th 2016. Only 290 days were used in order to ensure 24-

hour periods of stable data taking for the estimation of the background. The search

did not find a significant excess, so the upper limits with 95% C.L. were calculated.
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At ∼40 TeV, the constraint on the flux is ∼ 4 × 10−8 GeV cm−2 s−1 sr−1. Several

hadronic models, such as the one presented in [6] or [7], were ruled out by the HAWC

upper limits. However, the sensitivity is still too low to be able to say anything

about leptonic models. Currently, an improvement of the analysis at energies below

1 TeV is under study. Improving the background estimation and the gamma-hadron

separation can reduce the systematic effect from the large-scale anisotropy of cosmic

rays.

7.2 Large Extended Sources Summary

The search for VHE gamma rays from large extended sources is one of the most

useful tools gamma-ray astronomy can offer to the science of cosmic rays. Due to

the interaction of cosmic rays with the interstellar matter and interstellar radiation

fields, the study of their origin, acceleration and propagation can be done by using

gamma-ray data.

Chapter 6 showed preliminary results of sensitivity studies of the Galactic Diffuse

Emission. Two different diffuse models were presented with the significance sky map

distribution for 3 years of observation with the HAWC observatory. A possible de-

tection of the diffuse emission in some parts of the galactic plane is plausible.
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Also, sensitivities for the detection of extended sources, specifically GMCs, were pre-

sented. A non-detection by HAWC would mean cosmic-ray flux is lower than mea-

sured at Earth.

7.3 The outlook for HAWC

HAWC has been operating since 2014 with a partial set of the array and was able

to surpass the detection sensitivity of its predecessor, MILAGRO. Even more, new

smaller detectors are being built around the main HAWC array (so-called outriggers)

in order to study higher energy gamma rays. More highly-energetic gamma ray

showers tend to cover the whole array and their cores often land outside the main

array. The new detectors will help to locate the cores of these highly energetic showers

and improve the angular resolution at energies > 10TeV.

121





References

[1] R. C. Hartman and et al, The Third EGRET Catalog of High-Energy

Gamma-Ray Sources, APJS 123 (1999) 79–202.

[2] M. Ackermann et al., Fermi large area telescope third source catalog, APJS 218

(Jan, 2015) [arXiv:1501.0200].

[3] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: A

Monte Carlo Code to Simulate Extensive Air Showers, 1998.

[4] M. Rao and S. B. V., Extensive Air Showers. World Scientific, 1998.

[5] H. A. A. Solares, H. Zhou, et al., Timing Calibration of the HAWC

Observatory, in Proceedings 33rd ICRC, 2013.

[6] M. Ackermann, A. Albert, et al., The Spectrum and Morphology of the Fermi

Bubbles, ApJ 793 (2014), no. 1 64.

[7] C. Lunardini, S. Razzaque, and L. Yang, Multimessenger study of the Fermi

123

http://arxiv.org/abs/1501.0200


bubbles: Very high energy gamma rays and neutrinos, Phys. Rev. D 92 (Jul,

2015) 021301.

[8] P. M. W. Kalberla, W. B. Burton, D. Hartmann, E. M. Arnal, E. Bajaja,
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Appendix A

Figure Copyright Permissions

A.1 Figure 1.1

Image credit: NASA. Public domain.Retrieved from : http://imagine.gsfc.nasa.

gov/science/toolbox/emspectrum1.html

A.2 Figure 1.6

Image credit: NASA. Public domain. Retrieved from: http://apod.nasa.gov/

apod/ap091025.html
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A.3 Figure 2.5

Image credit: Milagro Collaboration.

A.4 Figure 4.6

Image credit: Co-authored with Hao Zhou. From [5]

A.5 Figure 4.8

Image credit: Co-authored with Hao Zhou. From [5]

A.6 Figure 5.1

Image credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al. Public do-

main. Retrieved from https://www.nasa.gov/mission_pages/GLAST/news/

new-structure.html
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