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Abstract

Computational models are developed to investigate peristaltic motion in the human

gastro-intestinal tract. The peristaltic motion is simulated by means of traveling

waves which deform the boundary of the tubes. An axisymmetric tube of uniform

diameter is used to model the small intestines, and an axisymmetric conical geometry

is developed to model the lower part of the human stomach. The conical geometry

represents a simplification of the more complicated three-dimensional models of the

human stomach that have been used in other studies. Also, they seeks to reduce com-

putational costs and circumvent difficulties of mesh generation. The computations

are performed within the open source CFD environment OpenFOAM. Whenever pos-

sible, comparisons are made to the predictions of other geometrical models from the

literature to validate our results.

First, the transport of fluids via peristaltic motion in a cylindrical or a conical tube

is investigated. The effect of flow, fluid, and geometrical parameters on the flow be-

havior is determined. Of particular interest is the transport efficiency, flow patterns,

and strain rates.

Second, the mixing characteristics of peristalsis is investigated for the human stomach

when the pylorus is closed. Using the axisymmetric conical geometry, the effect of

parameters such as wave speed, wave shape, relative occlusion, and fluid viscosity of

Newtonian and non-Newtonian fluids on the flow behavior are determined.

xxxiii



The focus of these investigations is on the quantification of the retropulsive jet induced

at the pylorus, as well as on the induced vorticities between peristaltic waves, both

of which contribute to the mixing efficiency. Moreover, particle tracking techniques

are used to determine strain rates along particle paths which allows the investigation

of stresses experienced by food particles.
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Chapter 1

Introduction

Peristalsis is the muscular contraction and relaxation of vessel walls which induces a

flow of the material inside through wave-like motion. Peristaltic motion appears in

many biological systems, including the human body. On one hand, it is an essential

mechanism (1) by which food is transported through the digestive tracts including

the small intestine, the esophagus and the stomach; (2) in the flow of blood through

the veins, the capillaries and the arteries; (3) in the transport of lymph in lymphatic

vessels; (4) and in urine transport from kidney to bladder through the ureter. On the

second hand, peristalsis play a significant rule in gastric digestion and mixing within

a human body, by reproducing the mechanical forces and fluid motions that promote

not only the breakdown and mixing of gastric content, but also its chemical digestion

and absorption.
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In addition, this phenomenon has been exploited in many industrial applications

involving biomechanical and biomedical systems in the so-called roller pump. It is

used to move sanitary fluid without contamination, transport noxious fluid in the

nuclear industry and pump the blood in the heart-lung machine.

The research in this thesis is motivated by the aforementioned transport of material

in the stomach and intestines of humans, and the mixing of material in the human

stomach. Specifically, computational models are developed and employed to study the

transport and mixing characteristics of peristaltic motion for different Newtonian and

non-Newtonian fluids under different conditions. The peristaltic motion is simulated

by means of traveling waves which deform the walls of tubes of uniform or varying

diameter.

1.1 Background and Literature Review

1.1.1 General Peristaltic Flow

Several theoretical and experimental attempts have been carried out by researchers

to study the mechanism of peristalsis. Latham [4] was probably the first to study the

mechanism of peristaltic pumping in 1966. Specifically, he investigated analytically

and experimentally the behavior of a 2-D channel peristaltic pump. Early theoretical
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work on ureteral function involving peristalsis includes that of Shapiro [5] who

considered retrograde diffusion in a 2-D peristaltic pump; Fung and Yih [6], who

studied inertia-free, Newtonian flow driven by sinusoidal transverse waves of small

amplitude, and Shapiro et al. [7] who studied Newtonian flow with a periodic train

of sinusoidal peristaltic waves of long wavelength and arbitrary amplitude in a

2-D channel. Shapiro et al. [7] also derived conditions for the presence of closed

streamlines and offered an explanation of the reflux phenomena. In addition, Burns

and Parkes [8] contributed to the theory of peristaltic pumping without reference

to physiological applications, while Barton and Raynor [9] investigated analytically

the Newtonian fluid flow driven by the peristaltic motion in a flexible tube. Later,

Lykoudis [10] and Weinberg et al. [11] proposed models that represent ureteral waves

more realistically. The theoretical study of the characteristics of peristalsis in terms

of the fluid dynamics encountered in mixing and propulsion of food in small intestine

have been studied extensively for Newtonian fluids by Lew et al. [12]. A review of

much of the early literature is presented and summarized by Jaffrin and Shapiro [13]

in 1971. Some later examples of peristalsis were given by Liron [14] in 1978 and

considerable experimental investigations of peristaltic pumping have also been

undertaken between 1966 and 1976 for example, in [4, 11, 15, 16, 17, 18, 19, 20, 21].
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A review of much of the theoretical investigations up to year 1983, arranged according

to geometry, fluid, Reynolds number, wavelength parameter, wave amplitude parame-

ter and wave shape, as well as an account of the experimental attempts on the subject

was presented in an excellent article by Srivastava and Srivastava [22]. The significant

contributions to the subject after the year 1984 were well referenced by Medhavi [23]

in 2008, who investigated the flow induced by sinusoidal peristaltic motion of the

tube wall of a non-Newtonian fluid obeying the Herschel-Bulkley equation under long

wavelength and low Reynolds number approximation.

The complex rheology of biological and physiological flows has also motivated a num-

ber of studies involving non-Newtonian and viscoelastic fluids. The initial investi-

gation to understand the peristaltic motion of non-Newtonian fluids has been made

numerically by Raju and Devanathan [24] in 1972. They used the power-law model to

investigate shear-thinning and shear-thickening effects in a rigid tube with a sinusoidal

deformation at the boundary in the case of small wave amplitude, and they discussed

the influence of the applied pressure gradient along with non-Newtonian parameters

on the streamlines and velocity profiles. Later, theoretical studies on the same model

has been carried out by Picologlou et al. [25] and Shukla and S.P. Gupta [26] to inves-

tigate similar effects. Specifically, Shukla and S.P. Gupta [26] investigated the effects

of the consistency variation on the peristaltic transport of a non-Newtonian power-

law fluid through a tube by taking into account the existence of a peripheral layer.

They found that the flow rate flux, for zero pressure drop, increases as the amplitude
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of the peristaltic wave increases but it decreases due to the pseudoplastic nature of

the fluid. Also they observed that, for zero pressure drop, the flux does not depend

on the consistency of peripheral layer while the friction decreases as this consistency

decreases. On the other hand, for nonzero pressure drop, the flux increases and the

friction force decreases as the consistency of peripheral layer fluid decreases.

Becker [27] presented a theoretical analysis for fluids with shear-dependent viscos-

ity and computed pumping characteristics for a Prandtl–Eyring fluid. Raju and

Devanathan [28] and Böhme and Friedrich [29] probed analytically the effects of

viscoelasticity. In particular, Böhme and Friedrich [29] studied the mechanism of

peristaltic transport of an incompressible viscoelastic fluid by means of an infinite

train of sinusoidal waves traveling along the wall of the duct in the case of a plane

flow. They studied fluid motion analytically with a second-order approximation with

respect to the wave amplitude ratio for sufficiently small values of the ratio of the

wave amplitude and the mean height of the channel. They found that the results are

influenced by specific values of the complex viscosity of the fluid and that relatively

small wave speeds are the best. Since the fluid changes its state slowly so that the

memory, and with it the elasticity, of the fluid do not influence the flow field at all.

Also, as the dimensionless memory parameter tends to zero, the analytical results re-

duce to the well-known case of a Newtonian fluid. Siddiqui et al. [30] used the second

order fluid model to study the effects of normal stresses in slow non-Newtonian flows.
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Peristaltic pumping of blood in small vessels has been studied by Srivastava and

coworkers [22, 31, 32]. Specifically, Srivastava and Srivastava [31] studied theoret-

ically the problem of peristaltic transport of a non-Newtonian (power-law) fluid in

a uniform and non-uniform tube under zero Reynolds number and long wavelength

approximation. They found that the magnitude of pressure rise in the case of a non-

Newtonian fluid, when the power-law index is less than 1, at zero (volumetric) flow

rate, is larger than the one of a Newtonian fluid model. Further, the pressure rise

decreases as the index decreases from 1, at zero flow rate, is independent of the index

at a certain value of flow rate, and increases if flow rate exceeds further. Also, at a

given flow rate, an increase in the wavelength leads to a decrease in pressure rise and

increase in the influence of non-Newtonian behavior. Pressure rise, in the case of a

non-uniform geometry, is found to be much smaller than the corresponding value in

the case of uniform geometry. Srivastava and Saxena [32] investigated numerically

and analytically the problem of blood flow induced by peristaltic waves in a uniform

small diameter tube. Blood was represented by a two-fluid model consisting of a core

region of suspension of all the erythrocytes, assumed to be a Casson fluid, and a

peripheral layer of plasma modeled as a Newtonian fluid. Alden et al [33] presented

a theoretical study of viscous effects in peristaltic pumping. They used a lubrication-

type flow through an infinitely long axisymmetric tube subjected to a periodic train of

transverse waves. Elsehawey et al. [34] considered the problem of peristaltic transport

of a non-Newtonian Carreau fluid in a nonuniform 2-D channel under zero Reynolds
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number with long wavelength approximation. The problem was formulated using a

perturbation expansion in terms of a variant of the Weissenberg number. They ob-

tained analytic forms for the axial velocity component and the pressure gradient, and

they computed numerically the pressure rise and friction force.

Other theoretical studies of non-Newtonian peristaltic flow include those of Mernone

et al. [35] who studied peristaltic transport of a Casson fluid in a planar channel; Hayat

and Ali [36], who analyzed axisymmetric peristaltic motion of Johnson–Segalman fluid

through a circular deformable tube; Nadeem and Akbar [37], who simulated the peri-

staltic flow of a Herschel–Bulkley yield–value fluid in a nonuniform inclined tube; and

Nadeem et al. [38], who simulated the peristaltic flow of a Jeffrey–six constant fluid

in a uniform inclined tube. The peristaltic flow behavior of non-Newtonian fluids in

elastic tubes had been investigated experimentally by Nahar et al. [1, 39]. In par-

ticular, Nahar et al. [1] found that increasing the wave speed of peristalsis resulted

in higher magnitude of back flow both in the wave crest and trough regions, the ap-

proximated wall shear rates at the wave trough were found to be higher than those

in the wave crest. In addition, the pressure difference between crest and trough of a

peristaltic wave increased as the wave speed increased, and the crest region showed

a higher pressure compared to the trough region.

In coordination with the experiments of Nahar et al. [1, 39], a numerical study was

performed by Al-Habahbeh [40] to determine the effect of the shear-thinning behavior,

the wave speed and the gap width on the transport efficiency of peristaltic motion.
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He used the Bird-Carreau model to simulate the non-Newtonian fluid in a deforming

2-D channel. The present work extends that of Al-Habahbeh in two ways. First, we

develop a 2-D axisymmetric numerical model to get a realistic tubular peristaltic flow

as encountered in the small intestine, and second, we examine the influence of the

fluid viscosity variation on the transport efficiency.

1.1.2 Investigations Related to the Human Stomach

The human stomach is a J-shaped, muscular, hollow and dilated part of the gas-

trointestinal tract that functions as an important organ in the digestive system. It

is located between the esophagus and the first part of small intestine (duodenum) in

the region of the left side of the upper abdominal cavity. Anatomically, the stomach

is subdivided into the fundus, the corpus, and the antrum [41, 42].

Cannon [43], Kelly [44], Urbain et al. [45], Pal et al. [46] and Kong and Singh [47]

described the principle functions of human stomach as follows: The upper part of

the stomach (the fundus and the proximal corpus) acts a reservoir of chewed up

food (bolus) that enters the stomach through the esophagus via the lower esophageal

sphincter, while the lower part of the stomach (the antrum and the distal corpus) is

responsible for mechanical forces and fluid motions that promote not only the break-

down and mixing of gastric content, but also its chemical digestion, absorption and

transport. The mechanical forces and fluid motion are caused by peristalsis induced
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by antral waves, or wave-like muscular contractions of the stomach walls. After that,

the pyloric sphincter controls the passage of partially digested food (chyme) from the

stomach into the duodenum where peristalsis transport the material through the rest

of the small intestines. Imai et al. [48] reported that the curved, twisted shape of

the stomach not only supports gastric mixing, but also separates the stomach into

reservoir and mixing regions.

A number of experimental studies have been carried out to study the emptying of

gastric contents in the duodenum via the pylorus and to clarify the functions of the

stomach. Specifically, Kelly [44] proved the hypothesis that the proximal stomach

has a major role in gastric emptying of liquids and the distal stomach a major role

in gastric emptying of solids. Keinke et al. [49] investigated mechanisms controlling

gastric emptying of viscous meals in four conscious dogs. They concluded that gas-

tric emptying is controlled by the depth of the antral waves, the pyloric opening,

the receptive relaxation of the duodenum and the type of the duodenal contractions.

By contrast the sequence of the terminal antral contraction, the pyloric closure and

the coordination between pyloric and duodenal contractions played no important role

in regulating gastric emptying. King et al. [50] examined the relationships between

peristaltic contractions and the movement of gastric contents through the pylorus,

by giving ten healthy volunteers a test meal of dilute orange juice and bran, and

events at the gastric outlet monitored by real-time ultrasound. Hausken et al. [51]

used duplex sonography method to visualize antroduodenal motility and movements
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of luminal contents after ingestion of 500 mL of meat soup. They found that the peri-

staltic closure of the pylorus is normally preceded by a short gush of duodenogastric

reflux. Pallotta et al. [52] evaluated, by means of real-time ultrasonographic (US),

the relation between the antral-wall contractions and the pylorus opening and closure

in relation to transpyloric flow and the mixing of contents during the postprandial

phase of gastric digestion and emptying of a nutrient meal.

The effect of body position and stomach volume of ingested contents on gastric emp-

tying have been studied experimentally in an extensive way by many researchers. In

particular, Boulby et al. [53] assessed intragastric flow in the gastric antrum of eight

healthy volunteers by using a velocity-sensitive version of the high speed magnetic

resonance imaging technique, echo planar imaging (EPI). They found that fat delays

gastric emptying but increases forward and backward antral flow. The rate of gastric

emptying of saline solution has been studied by Burn et al. [54], under the effects of

changes in posture of five stomachs who were either sitting, lying on the left side, or

lying on the right side. They found that saline solutions emptied from the stomach

more rapidly when the stomachs lay on their right sides than when they lay on their

left sides. The effects of volume and posture on gastric emptying and intragastric

distribution of a solid meal and appetite were evaluated by Doran et al. [55]. They

concluded that meal volume has a major effect on gastric emptying; in contrast pos-

ture has only a minor impact on intragastric meal distribution, which is observed only

after a large meal, and no effect on gastric emptying. Faas et al. [56] investigated the
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effects of test meals of different food consistencies and the amount of liquid ingested

with the meal on the intragastric distribution of a contrast marker. Also, they used

MRI to clarify the distribution processes in the stomach. They found that the in-

tragastric distribution of a marker will be related to the amount of accessible liquid

contained in the meal, and that the consistency of the meal will affect the spatial

distribution of the contrast marker in the stomach, resulting in large differences in

the timing of its delivery to the small intestine. Steingoetter et al. [57] used also MRI

analyses to study the effects of body position on gastric emptying and motor function.

Twelve volunteers were investigated in seated position (SP) and upside-down position

(UDP) after ingestion of 300 mL water. They concluded that the stomach maintains

the rate of gastric emptying despite radical changes in body position and intragastric

distribution of gastric contents. In SP, hydrostatic pressure (modulated by gastric

tone) dictated the gastric emptying. In UDP, gastric emptying also appeared to be

mediated by continuous adaptation of gastric tone.

Experimental studies carried out by Doran et al. [55], Edelbroek et al. [58], Goetze

et al. [59], and Schwizer et al. [60] concluded that the mechanism of gastric emptying

is incompletely understood, because gastric emptying proceeds over hours. Pullan

et al. [61] developed an anatomical model of the stomach based on the data of the

visible human project that was done by Spitzer et al. [62]. More recently, Imai et

al. [48] numerically investigated flow in the stomach during gastric mixing at a time

when the pylorus is closed. They used the above anatomical model for the stomach
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geometry and free surface flow modeling to analyze the effects of stomach posture

on gastric mixing. They found that antral recirculation transports gastric content

from distal stomach to the antrum near the pylorus, and it is then mixed by retropul-

sive flow. They concluded that gastric content inside the antral recirculation is well

mixed independently of the initial location, whereas the content outside recirculation

is poorly mixed.

During gastric digestion within the stomach, food structure is broken down and mixed

by a complex interaction of chemical and mechanical effects. However, despite the

fact that the chemical process is usually done by using an in vitro analysis, the pos-

sibility of developing an in vitro system capable of reproducing the fluid mechanical

forces that promote digestion is still extremely difficult to achieve, if not impossible.

Since the beginning of the 1990’s, a series of in vitro systems has been developed to

analyze human digestion including those of Aoki et al. [63, 64], Molly et al. [65], Kong

and Singh [47] and Wickham et al. [66]. Singh [67] offered a promising technique to

characterize the mechanisms promoting digestion. Some initial attempts were taken

by Pal et al. [46, 68] to simulate the gastric flow and mixing during digestion and

emptying using a 2-D numerical model. Ferrua and Singh [3] developed a 3-D numer-

ical model of the geometry and motility of the human stomach during digestion, and

used it to characterize and compare the fluid dynamics of gastric contents of differ-

ent viscosities. Hausken et al. [69] and Schulze [42] showed that the gastric contents
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empty into the duodenum whenever a positive gastroduodenal pressure gradient is es-

tablished in the presence of an open pylorus. Although different mathematical models

have been proposed, for example [70, 71, 72], to partially understand and characterize

the kinetics of gastric emptying, none of them actually considered the effect of the

physiochemical properties of the meal and the pattern of gastric emptying.

The research in this thesis extends the work of Pal et al. [68] and Ferrua and Singh [3]

in three ways. First, we develop a simple 2-D axisymmetric numerical model, that re-

duces the high level of complexity in the full 3-D model used by Ferrua and Singh [3].

With this model, we illustrate the principles of mechanical digestion and mixing

within the lower part of human stomach. Second, a parameter study is performed to

investigate the effect of various geometrical and rheological parameters on the gastric

digestion and mixing, to get a better understanding of the flow field that develops

within the lower part of human stomach. Third, antral contractions have been al-

lowed to live in the vicinity of the pylorus, which is where the largest gradients for

velocity and pressure occur.
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1.2 Goals

The goals of this thesis are three-fold.

1. The development and validation of simple geometrical models which capture

the essential flow dynamics of peristaltic motion in tubes of uniform or linearly

varying diameter. The peristaltic motion is simulated by means of traveling

waves which deform the boundary of the tubes. An axisymmetric tube of uni-

form diameter is used to model the small intestines, and an axisymmetric conical

geometry is developed to model the lower part of the human stomach. The lat-

ter geometry represents a simplification of more complicated three-dimensional

models of the human stomach that have been used, and seeks to reduce com-

putational costs and difficulty of mesh generation. Whenever possible, compar-

isons are made to the predictions of other geometrical models to validate our

results.

2. The investigation of the transport of fluids via peristaltic motion in tubes of

uniform or linearly varying diameter. The effect of flow, fluid, and geometrical

parameters on the flow behavior is determined. Of particular interest is the

transport efficiency, flow patterns, and strain rates.
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3. The investigation of the mixing characteristics of peristalsis in the human stom-

ach when the pylorus is closed. Using our axisymmetric conical geometry, we de-

termine the effect of parameters such as wave speed, wave shape, relative occlu-

sion, and fluid viscosity on the flow behavior of Newtonian and non-Newtonian

fluids. We focus on the predicted retropulsive jet and vorticity which contribute

to the mixing efficiency. Moreover, particle tracking techniques are used to de-

termine strain rates along particle paths which allows investigation of stresses

experienced by food particles.

1.3 Contributions of Thesis

OpenFOAM is used to simulate peristaltic motion in this study. OpenFOAM is an

open source library of C++ programs which serves as a modeling and computational

fluid dynamics (CFD) platform. It contains standard solvers for many CFD prob-

lems, and allows new solvers or modifications to existing solvers or libraries to be

constructed.

To the best of our knowledge, no attempt has been made in OpenFOAM to develop

realistic numerical models of the small intestine and the lower part of human stom-

ach (antrum) during the emptying, digestion, and mixing processes. Therefore, this

dissertation contributes to CFD field in complementary and several ways:
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1. Two-dimensional axisymmetric numerical models have been developed to:

(a) reduce the high level of complexity in the full 3-D models and hence de-

crease the computational time and cost.

(b) get a plenty of insight into the flow field that develop within the sys-

tem, because the possibility of developing an in vitro system capable of

reproducing the mechanical forces that promote fluid transport, digestion,

absorption, and mixing is still extremely difficult to achieve till now.

The first model corresponds to a realistic tubular peristaltic flows as encountered

in the small intestine, while the second one simulates the peristaltic flow in the

lower part of an idealized human stomach.

2. Two dynamic mesh motion solvers have been written to deform the boundary

and hence the mesh by a periodic sequence of circular and parabolic contraction

waves. Within the bounds of these solvers, the user can input geometrical and

rheological parameters to simulate gastric motility and physiology of the small

intestines and the lower part of a human stomach.

3. The characteristic data of our peristaltic simulations have been chosen to match

the experimental and numerical ones that were previously reported in the litera-

tures. In general, there is very good agreement between the flow fields reported

in the literature and the ones captured in our simulations, and hence confirming

that the numerical models and methods are valid for the computation of single
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phase peristaltic flow.

4. A parameter study has been performed to examine the influence of several rhe-

ological and geometrical parameters on the emptying process in terms of the

(average) transport efficiency, on the digestion phase in terms of the forward

(eddies) and backward (retropulsive jet) antral flows, and on the antral mixing

level in terms of the root mean square radius of the relative spread of parti-

cles. In particular, we examine the effect of the Newtonian fluid viscosity, the

shear-thinning non-Newtonian fluid behavior, the traveling wave speed, and the

amount of deformation in terms of relative occlusion and wave shape.

5. A particle tracking technique has been used to trace the strain rates and viscous

stress forces that the fluid elements experienced along their particle paths due

to the contraction waves in antrum.

6. Finally, antral contraction waves have been allowed to live in the vicinity of the

pylorus which is were the largest gradients of velocity and pressure exist in our

conical geometry, at a time when the pylorus is open or closed.
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Chapter 2

Mathematical Models and

Numerical Methods

2.1 An Introduction to Fluid Dynamics

Fluid dynamics is a science discipline that deals with the flow behavior of liquids

and gases and their interactions with solid bodies. It is fundamental in the study

of an extreme range of problems, such as determining the mass flow rate in blood

flow in the capillaries whose diameter is around 10−6 meters to flow in petroleum

pipelines, which take into account kilometers in length and meters in diameter, as

well as calculation of forces and moments acting on bodies (aircrafts, ships, cars,
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etc.) inside a fluid domain. Fluid dynamics also provides methods for studying the

evolution of stars, ocean currents and even weather patterns [73].

It is common in most of interested cases to consider a fluid as a substance that

flows continuously under applied stress such that its molecular structure offers no

resistance to external forces. These driving forces can be classified as surface forces

(e.g. pressure, viscous forces in a moving fluid, etc.) which act on the boundary

surface and body forces (e.g. gravity, electromagnetic forces, etc.) which act on the

bulk of material.

The continuum approach can be used to derive the set of governing equations, which

are invoked by the physical principles and laws of conservation of mass, momentum

and energy. In this approach, a fluid is regarded as continuum or a continuous

substance, hence its individual molecular effects are ignored and it is required that

the mean free path to be very small compared to the smallest geometric length scale.

Every point in space has finite values for physical properties such as velocity, pressure,

stress, temperature, etc. From a point to the next point, the properties may change

value, and there may even be surfaces where some properties jump discontinuously

(e.g. the interface between a solid and a fluid is a surface where the density jumps

from one value to another) [74]. The continuum assumption does not allow properties

to become infinite or to jump discontinuously at a single isolated point. The statistical

approach is also used to derive the governing equations in a molecular point of view.

In this approach, the fluid is treated as a set of molecules whose motion is governed
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by the laws of dynamics. It is common and familiar for microfluidics and light gases,

but not for liquids and polyatomic gas molecules [73].

Flows where changes in fluid density are important are called compressible flows and

its commonly used in gas dynamic area, while flows of either gas or liquid where

changes in the fluid density are not important part of physics are call incompressible

flows.

A Stokes (or creeping) flow occurs when the inertia of the fluid can be ignored because

of a low speed. This kind of flow has a very small Reynolds number Re. The

flow is called Laminar if the inertia becomes important but the trajectories that

fluid particles follow are smooth. This kind of flow is stable, contains no velocity

fluctuations, and its Reynolds number falls below some critical value that depends

on the considered geometry. Turbulent flows are flows which contain self-sustaining

velocity fluctuations in addition to the main flow. This kind of flow has a very high

Reynolds number.

Of particular interest is the study of fluid motions and patterns induced by peristalsis

inside a tube of a fixed diameter, the flow is Stokes if Re << 1, the flow is laminar if

Re < 2100, and turbulent if Re > 4000 and the range 2100 < Re < 4000 represents

the transition range. In this thesis only incompressible, creeping and Laminar fluids

are considered.
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2.2 Derivation of Governing Equations

The fluid motion can be described by means of the governing equations that are

derived from the conservation for mass, momentum, and energy principles and from

equations of state ([74, 75]). The law of conservation of mass states that mass can

neither be created nor destroyed.

The continuity equation describes the time rate change of the fluid density at a fixed

point in space which yields the convective mass transport (net rate of mass addition

per unit volume by convection). The differential form of the continuity equation (or

mass conservation equation) written by using the tensor notation yields

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the density, u is the velocity, and t is time.

The equation of motion (the momentum equation) is derived from the momentum

balance over a control volume fixed in space. The equation of motion is the application

of Newton’s second law to an element of the fluid. It can be stated that the net

momentum change of fluid mass is equal to the net external force applied on the fluid

mass. The differential form of general momentum equation in tensor notation can be

written as

∂ (ρu)

∂t
+∇ · (ρuu) = ∇ · σ + ρg, (2.2)
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where σ is the Cauchy stress tensor and g is the acceleration due to the gravity. The

Cauchy stress tensor is defined in Eq. (2.3), in which the first term on the right hand

side is defined as the (thermodynamics) pressure term P , and the second term on the

right hand side is defined as the deviatoric stress (or viscous stress, or extra-stress)

tensor term τ .

σ = −Pδ + τ, (2.3)

where δ is the unit tensor (or Kronecker delta), which is equal to one if its ith and jth

components are the same in σij otherwise considered as zero.

Substituting Eq. (2.3) into the momentum conservation Eq. (2.2) yields

∂ (ρu)

∂t
+∇ · (ρuu) = −∇P +∇ · τ + ρg. (2.4)

The first term on the left hand side describes the rate of increase of momentum per

unit volume (accumulation term). The second term on the left hand side defines the

rate of momentum added by convection (convection term). The first term on the

right hand side is the pressure term and the second term describes the viscous term.

Together they define the momentum added to the system by molecular transport per

unit volume. The last term on the right hand side describes the external forces acting

on the fluid (gravitational term). Assuming that the fluid is incompressible leads to

the time rate of change of density to equal zero, resulting in a simplification of the

23



conservation equations into the form of

∇ · u = 0. (2.5)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · τ + ρg. (2.6)

Equation 2.5 is called continuity constraint.

2.3 Rheology

Rheology is the science that describes the relationship between stress and deforma-

tion (strains) of materials. The mathematical form of this relationship is called the

constitutive equation. Constitutive equations are used in order to solve the conser-

vation equations since there are more unknowns than actual equations. In order to

solve the viscous term a rheological equation of state which describes the stress in the

fluid as a function of the rate of deformation can be used as a constitutive equation.

A Newtonian fluid is a fluid in which the stress is linear in the rate-of-strain tensor,

and has the following aspects:

1. The only stress generated in the simple shear flow is the shear stress and a

fluid exhibits a zero normal stress differences.
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2. The viscosity (which is the quantity that describes a fluid’s resistance to flow)

does not vary with strain rate.

3. The viscosity is also constant in respect to the time of shearing and after the

shearing ceases the stress stops immediately.

A fluid showing a deviation from these characteristics can be classified as a non-

Newtonian fluid. For general isotropic (no directional preference) Newtonian fluids,

the viscous term is expressed by the viscous stress tensor τ , which is defined as

τ = µ
(
∇u + (∇u)T

)
− 2

3
µ (∇ · u) δ, (2.7)

where µ is the constant dynamic viscosity. When the fluid is assumed as incompress-

ible then the divergence of the velocity vector is equal to zero, therefore the viscous

stress tensor for incompressible Newtonian fluids becomes

τ = µ
(
∇u + (∇u)T

)
. (2.8)

The rate-of-strain (also called rate of deformation) tensor D is a symmetric tensor

that describes the rate of change of the deformation of a material at a certain time,

and it can be expressed as

D = ∇u + (∇u)T . (2.9)
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The strain rate scalar γ̇ which is the magnitude of the strain-of-rate tensor, is defined

in Eq. (2.10), and its usually used to describe the flow behavior in liquids rather than

strain.

γ̇ =

∥∥∥∥1

2
D

∥∥∥∥ =

√
1

2
(D : D) =

√
1

2

∑
i,j

DijDji (2.10)

Substituting the consecutive Eq. (2.8) into the momentum Eq. (2.6) for incompressible

flow yields Navier Stokes Equation (NSE)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u + ρg. (2.11)

Non-Newtonian fluids can be classified in three general categories;

1. Time-independent (or inelastic, or purely-viscous) non-Newtonian fluids; when

the viscosity of the fluid depends on the strain rate and does not depend on

time. The fluids with a strain-rate dependent viscosity (or shear viscosity, or

apparent viscosity) η(γ̇) can be sub-divided into three classes:

(a) Shear thinning (or pseudoplastic) fluids, when shear viscosity decreases as

the strain rate increases. It is often seen in polymer solutions and melts,

and complex fluids and suspensions like ketchup, whipped cream, syrups,

and nail polish.

(b) Shear thickening (or dilatant) fluids, when shear viscosity increases with

increasing strain rate. A simple example is cornstarch and water mixtures.
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(c) Yield stress (or yield value, or viscoplastic) fluids, when a specific yield

stress has to be exceeded for the fluid to flow. Common yield stress fluids

include toothpaste, chocolate, mayonnaise, mustard, blood, slurries, clays,

margarine, and paint.

The difference between the various time-independent fluids where the shear vis-

cosity is a function of strain rate is shown in Fig. 2.1. As stated previously, for

Newtonian fluids the viscosity does not change with strain rate, thus it has a

constant value even with increasing strain rate.

In this thesis only shear-thinning non-Newtonian fluid is considered. The re-

lationship between the stress and the strain rate for different types of fluid is

shown in Fig. 2.2.

2. Time-dependent non-Newtonian fluids; when the viscosity of the fluid as well as

the shear stress can either increase or decrease with the time of applied shearing.

These fluids can be sub-divided into two classes:

(a) Thixotropic fluids, when the shear viscosity gradually decreases with time

while under constant shearing and afterwards recovers gradually when

the stress is removed. Some of these fluids return to a gel (more viscous)

state almost instantly such as ketchup, others such as yogurt and gum

take much longer and can become nearly solid.
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(b) Anti-thixotropic fluids (or Rheopecty), when the shear viscosity gradually

increases with time while under constant shearing and afterwards recov-

ers gradually when the stress is removed. Familiar Rheopecty examples

include printer ink and gypsum paste.
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Figure 2.1: Viscosity vs strain rate for different fluids.
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Figure 2.2: Shear stress vs strain rate curves for different types of fluids.
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3. Fluids exhibiting viscoelastic behavior; have a simultaneous existence of viscous

and elastic properties and, as such, exhibit time-dependent strain. Viscoelastic

materials can be used with great success for shock absorbing, protection from

vibration issues, relieving stress and pain on the human body as well as for

reducing noise transmission.

The dimensionless Deborah number De is used to characterize the fluidity of material

under specific flow conditions. In particular, its used to understand the behavior of

viscoelastic materials and to distinguish solids from liquids [76]. Formally, it is defined

as the ratio of the relaxation time characterizing the time it takes for a material to

adjust to applied stresses or deformations, and the characteristic time scale of an

experiment (or a computer simulation) probing the response of the material:

De =
stress relaxation time

time scale of observation
(2.12)

At higher Deborah numbers, the effects of elasticity is increasingly dominated, there-

fore the material behavior enters the non-Newtonian regime and demonstrating solid-

like behavior, also a consecutive equation has to be accounted to describe material

elasticity effects. At lower Deborah number, i.e. De � Decritical, the effects of elas-

ticity can be ignored, therefore the material behavior enters the viscous Newtonian

regime and behaves in a more fluid like manner. Typically Decritical ≈ 1, however it

depends on the flow and the geometry of the problem.
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In this thesis only inelastic fluids are studied. Generalized Newtonian (inelastic) fluid

assumes a simple constitutive equation like the one for the Newtonian fluid but here

the viscosity is a function of the strain rate. The general form of the constitutive

equation for the generalized Newtonian fluid models is

τ = η (γ̇) D. (2.13)

Substituting Eq. 2.13 into Eq.2.6 yields the momentum equation for a generalized

Newtonian fluid as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · (η(γ̇)D) + ρg. (2.14)

Shear thinning (pseudoplastic) fluids are the most common types of time independent

non-Newtonian properties exhibiting fluids. At very low and very high strain rates

the fluid exhibits a Newtonian behavior, which yields two limiting values of shear

viscosity. A zero shear viscosity η0 at zero strain rate and infinite shear viscosity η∞

at infinite strain rate, this effect is illustrated in detail in Fig. 2.3. Different empirical

models have been proposed to represent the shear thinning behavior, however only

two of the more widely used models are examined in this work.

31



Strain rate,  γ
.
  [ s -1 ]

S
h
e
a
r 

v
is

c
o
s
it
y
, 
 η

 (
 γ.  )

 [
 P

a
.s

 ]
 

η
 0

η
 ∞

N
e

w
to

n
ia

n
 r

e
g

io
n

T
ra

n
s
it
io

n
 r

e
g

io
n

Power law region Upper strain rate region

Figure 2.3: The relationship between shear viscosity and strain rate for a
shear-thinning fluid.

2.3.1 Power Law Model

A relationship between shear stress and strain rate is described for a power-law fluid

in the form of

η (γ̇) = Kγ̇ n−1, (2.15)

where K is the consistency index of the fluid with units [Pa · sn] which reflects the

vertical shift in the viscosity curve of power law region, and n is the dimensionless

power-law index such that (n− 1) represents the slope of the viscosity curve η(γ̇) in

the power law region and reflects how close the fluid is to Newtonian.

If n < 1, the fluid exhibits shear-thinning properties, and if n > 1, the fluid shows

shear-thickening behavior. The fluid behaves like a Newtonian fluid if the power-law

and the consistency indexes are equal to one and fluid viscosity, respectively.
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Although the power-law model is one of the most widely used models among many

engineers because of its simple representation for shear thinning fluids and its capa-

bility to get analytical solutions for many problems, this model does not take into

account the limiting shear viscosities at zero and infinite strain rates, i.e, this model

cannot describe fluid behavior outside the power law region [77].

2.3.2 Carreau-Yasuda Model

In order to improve the power-law model, the behaviour outside of the power-law

region needs to be defined. A better fitting is achieved with the four parameter

Carreau model that is intended for shear-thinning fluids (n < 1) [78] and defined as

η − η∞ = (η0 − η∞) [1 + (k γ̇)a]
n−1
a , (2.16)

in which k is a time constant with units of time describing the transition region

in the viscosity curve whose reciprocal gives the critical strain rate at which the

fluid changes from the constant viscosity behavior to the power-law behavior, a is a

dimensionless constant which affects the shape of the transition region (e.g., increasing

a sharpens the transition), and the dimensionless power-law index n describes the

slope of viscosity curves (η − η∞) / (η0 − η∞) in the power-law region. As seen in

Fig. 2.3 this model takes the limiting values of the viscosity at extreme strain rates
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into account.

The Bird-Carreau model is given by taking a to be 2 in Eq. (2.16), to get

η − η∞ = (η0 − η∞)
[
1 + (k γ̇)2]n−1

2 . (2.17)

2.4 Numerical Methods

2.4.1 Finite Volume Method on Static Grids

The finite volume method (FVM) is one of the most versatile discretization techniques

used in CFD. The most compelling feature of the FVM is that the resulting solution

satisfies the conservation of quantities such as mass, momentum, energy, and species.

Its also an ideal method for computing discontinuous solutions arising in compressible

flows, and its preferred while solving partial differential equations containing discon-

tinuous coefficients.

The first step in FVM is to partition the computational domain into finite small

regions, called cells or control volumes CV, where the variable of interest is located

at the centroid of the control volume. These CVs do not overlap and completely

cover the computational domain. The second step is to integrate the differential form

of the governing equations over each CV. The next step is to discretize the integral
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equations by performing numerical integration, applying interpolation schemes, and

substituting in the finite difference approximations. The resulting equations are called

the discrete (system of algebraic) equations, that express the conservation principles

for the variable inside the CV. The description of the basic FVM below follows in

part that given in the thesis of Jasak [79].

Figure 2.4 shows a typical CV of hexahedron shape bounded by a set of flat faces,

such that face is shared with only one neighboring CV.

VP stands for the volume of the CV with centroid P , f is a computational point at

the center of a face whose has area is Sf , nf is the face unit normal vector, N is the

computational point of a neighboring CV, df is the vector between the computational

points P and N , and rP is the vector between the origin and P .

Figure 2.4: Discretization of the computational domain using finite arbi-
trary hexahedron control volumes.
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The locations of the computational points P and f at the centroid of the CV and the

face are given by xP and xf , such that

∫
VP

(x− xP )dV = 0, (2.18)

∫
f

(x− xf )dS = 0. (2.19)

The general unsteady convection-diffusion equation for a tensorial quantity φ over a

given CV has the following differential form:

∂ (ρφ)

∂t︸ ︷︷ ︸
temporal derivative

+ ∇ · (ρuφ)︸ ︷︷ ︸
convective term

= ∇ · (ρΓφ∇φ)︸ ︷︷ ︸
diffusion term

+ qφ (φ)︸ ︷︷ ︸
source term

, (2.20)

where Γφ is the diffusion coefficient and qφ(φ) is the volume source/sink of φ. The

integration of Eq. (2.20) over a CV yields

∫
VP

∂ (ρφ)

∂t
dV +

∫
VP

∇ · (ρuφ) dV =

∫
VP

∇ · (ρΓφ∇φ) dV +

∫
VP

qφ (φ) dV. (2.21)

Using the Gauss divergence theorem, Eq. (2.21) can be written as follows:

∫
VP

∂ (ρφ)

∂t
dV +

∮
∂VP

(ρuφ · n) dS =

∮
∂VP

(ρΓφ∇φ · n) dS +

∫
VP

qφ (φ) dV, (2.22)

where n is the outward-pointing unit normal vector and ∂VP is the surface bounding

the volume VP .
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By integrating Eq. (2.22) in time over a small interval, we get the most general form:

∫ t+δt

t

(∫
VP

∂ (ρφ)

∂t
dV +

∮
∂VP

(ρuφ · n) dS −
∮
∂VP

(ρΓφ∇φ · n) dS

)
dt

=

∫ t+δt

t

(∫
VP

qφ (φ) dV

)
dt. (2.23)

A linear variation in FVM is used to approximate φ in space and time around the

computational point P . This approximation is a second-order accurate and it is

represented by:

φ (x) = φP + (x− xP ) · (∇φ)P , (2.24)

φ (t+ δt) = φt + δt

(
∂φ

∂t

)t
, (2.25)

where φP = φ (xP ) and φt = φ (t). Discretization in space and time has been per-

formed in the following sections below.

37



2.4.1.1 Spatial Discretization of the Convection Term

Since each CV is bounded by a finite number of flat faces, then the surface integral

can be written as

∮
∂VP

(ρuφ · n) dS =
∑
f

(∫
f

(ρuφ · n) dS

)
. (2.26)

The term inside the integral on the right-hand side of the above equation, i.e. ρuφ,

can be approximated by the assumption of linear variation around the point f given

in Eq. 2.24 to get

ρuφ (x) = (ρuφ)f + (x− xf ) · (∇ (ρuφ))f . (2.27)

Hence, the integral inside the sum above is approximated as following:

∫
f

(ρuφ · nf ) dS = (ρuφ)f ·
∫
f

nfdS + (∇ (ρuφ))f :

∫
f

(x− xf ) nfdS, (2.28)

where (tensor)f stands for the value of tensor at the middle of the face f . By assuming

that the outward-pointing unit normal vector nf is constant on face f , Eq. (2.28)

becomes

∫
f

(ρuφ · nf ) dS = (ρuφ)f ·
(

nf

∫
f

dS

)
+(∇ (ρuφ))f :

(
nf

∫
f

(x− xf ) dS

)
. (2.29)
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By substituting Eq. (2.19) into Eq. (2.29), we get

∫
f

(ρuφ · nf ) dS = (ρuφ)f · S, (2.30)

where S = nfSf is the face outward area vector. Replace the integral in the right-hand

side of Eq. 2.26 by Eq. 2.30 to get

∮
∂VP

(ρuφ · n) dS =
∑
f

(ρuφ)f · S

=
∑
f

S · (ρu)f φf

=
∑
f

Fφf , (2.31)

where F = S · (ρu)f is the mass flux through the face f . It can be founded by

interpolating the values of ρ and u at faces from the values at the centroids. To

estimate the value of φf that appears in Eq. (2.31), A weighted average approach is

used as described below:

φf = λfφP + (1− λf )φN (2.32)

Depending on the choice of λf , three basic methods are reproduced, varying in the

stability and accuracy degree as follows:
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Figure 2.5: Schematic diagram for face interpolation and non-orthogonality
treatment in the over-relaxed approach.

1. Central Differencing (CD)

The interpolation factor λf in Eq. (2.32) is defined as the ratio of the distance

between the face f and the neighboring cell centroid N , and the distance be-

tween the centroids P and N as shown in Figs 2.4 and 2.5.

λf =
fN

PN
. (2.33)

If the mesh is uniform then λf = 1
2
. The method is second-order but unphysical

oscillations appear in the solution for convection-dominated problems, which

often makes the solution unbounded. More details are found in Chapter 14 of

Hoffman [80] and Chapter 4 of Wesselin [81].
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2. Upwind Differencing (UD)

In UD, λf in Eq. (2.32) is defined as:

λf =


1 if F ≥ 0,

0 if F < 0.

(2.34)

The UD method approximates φf based on the direction of the flow (or flux),

hence the unphysical oscillations are removed and the method becomes bounded

and stable. However, it is a first-order accurate because it uses the first-order

backward differencing [79], and so it violates the order of accuracy of the dis-

cretization. Recall that, F = S · (ρu)f is the flux.

3. Blended Differencing (BD)

The BD method is a combination between CD and UD methods, its developed

to preserve the accuracy and boundedness and defined as:

φf = (1− λf ) (φf )UD + λf (φf )CD , (2.35)

where λf ∈ (0, 1) is the blending factor that regulate the amount of introduced

diffusion [79], (φf )CD and (φf )UD are the face values of φ computed by the CD

and UD, respectively.
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2.4.1.2 Spatial Discretization of the Diffusion Term

By using a similar approach as before, the diffusion term is discretized as

∮
∂VP

(ρΓφ∇φ · n) dS =
∑
f

(ρΓφ∇φ)f · S

=
∑
f

(ρΓφ)f S · (∇φ)f . (2.36)

If the mesh is orthogonal, i.e, vectors d and S are parallel, then the term S · (∇φ)f

can be approximated by:

S · (∇φ)f =| S | φN − φP
| d |

. (2.37)

Otherwise, as shown in Fig. 2.5, the term S · (∇φ)f is broken up into two components

as follows:

S · (∇φ)f = ∆ · (∇φ)f︸ ︷︷ ︸
orthogonal contribution

+ K · (∇φ)f︸ ︷︷ ︸
non-orthogonal contribution

(2.38)

= |∆ | φN − φP
| d |

+ K · (∇φ)f , (2.39)
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where ∆ is parallel to the vector d and K = S − ∆. The face value of ∇φ that

appears in Eq.( 2.39) can be approximated by using the weighted average method as:

(∇φ)f = λf (∇φ)P + (1− λf ) (∇φ)N , (2.40)

as an example λf is the same as in Eq. (2.33) and (∇φ)P , as well (∇φ)N , can be

approximated as follows:

∫
VP

∇φdV =

∮
∂VP

(φ · n) dS (2.41)

(∇φ)P VP =
∑
f

(∫
f

(φ · nf ) dS
)

(2.42)

(∇φ)P =
1

VP

∑
f

Sφf . (2.43)

The right hand-side of Eq. (2.41) is done by using the Gauss divergence theorem.

The left hand-side of Eq. (2.42) is done by applying the Gauss one-point centroidal

rule, The value of φ inside the integral in Eq. (2.42) is approximated at the face f

by using the linear variation in Eq. (2.24). Equation (2.43) is done by assuming that

nf is constant and by using Eq. (2.19). To find ∆ vector and hence K vector that

appears in the non-orthogonal contribution part, two approaches are presented when

the mesh is non-orthogonal:
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1. Minimum Correction Method

In this method ∆ is defined to be the orthogonal projection of S onto d as:

∆ =
S · d
| d |2

d. (2.44)

This approach minimizes the non-orthogonal contribution by choosing K to be

orthogonal to ∆.

2. Over-Relaxed Method

In this method ∆ is defined as:

∆ =
| S |2

d · S
d. (2.45)

According to Jasak [79], this method is the most robust approach to handle the

non-orthogonality contribution from the aspect of boundedness, accuracy, and

computational time.

2.4.1.3 Spatial Discretization of the Source Term

Any terms of the transport equation that cannot be written as convection, diffusion

or temporal terms are treated as sources. Before the actual discretization, the source
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term needs to be linearized as

qφ (φ) = qu (φ) + qp (φ)φ, (2.46)

The importance of the linearization becomes clear in implicit calculations, and it is

advisable to treat the source term as implicitly as possible [79]. The volume integral

of the source term can be approximated by using Gauss one-point centroidal rule,

thus the volume integral form of Eq. (2.46) becomes:

∫
VP

qφ (φ) dV = (qφ (φ))P VP (2.47)

= (qu (φ) + qp (φ)φ)P VP (2.48)

= (qu (φ))P VP + (qp (φ))P VPφP . (2.49)

For simplicity, the above equation can be written as:

∫
VP

qφ (φ) dV = quVP + qpVPφP . (2.50)
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2.4.1.4 Temporal Discretization

Assuming that the CVs do not change in time, the temporal derivative after applying

the one-point centroid rule simplifies to:

∫
VP

∂ (ρφ)

∂t
dV =

(
∂ (ρφ)

∂t

)
P

VP . (2.51)

Using Eqs (2.31, 2.36, 2.50 and 2.51), Eq. (2.23) becomes:

∫ t+δt

t


(
∂ (ρφ)

∂t

)
P

VP +
∑
f

Fφf︸ ︷︷ ︸
convection term

−
∑
f

(ρΓφ)f S · (∇φ)f︸ ︷︷ ︸
diffusion term

 dt

=

∫ t+δt

t

(quVP + qpVPφP )︸ ︷︷ ︸
source term

dt. (2.52)

The above equation is usually called the “semi-discretized” form of the transport

equation. Taking in mind the prescribed variation of the function in time (2.25), the

46



temporal integrals and the time derivative can be calculated directly as:

(
∂ (ρφ)

∂t

)
P

=
ρnPφ

n
P − ρoPφoP
δt

(2.53)∫ t+δt

t

φ(t)dt = (bφo + [1− b]φn)δt, (2.54)

where φn = φ(t+ δt), φo = φ(t) and b is a constant.

Assuming that the density and diffusivity do not change in time, Eqs (2.52, 2.53

and 2.54) give:

ρPφ
n
P − ρPφoP
δt

VP +
∑
f

[
(1− b)Fφnf + bFφof

]
−

∑
f

[
(1− b)(ρΓφ)fS · (∇φ)nf + b(ρΓφ)fS · (∇φ)of

]
= quVP + (1− b)qpVPφnP + bqpVPφ

o
P . (2.55)

This temporal discretization leads to the first-order explicit Euler method (FE) when

b = 1, the first-order bounded Euler method (BE) when b = 0, and the second-

order Crank-Nicholson method (CN) when b = 0.5. The CN method of temporal

discretization is unconditionally stable, but does not guarantee boundedness of the
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solution. As in the case of the convection term, boundedness can be obtained if the

equation is discretized to first order temporal accuracy.

Equation (2.55) requires the face values of φ and (∇φ) as well as the cell values for

both old and new time-level. The face values are calculated from the cell values on

each side of the face, using the appropriate differencing scheme in Eq. (2.32) for the

convection term, and Eqs (2.39) and (2.40) for diffusion term.

In explicit discretization (FE), the face values of φ and ∇φ are determined from the

old time-field:

φf = λfφ
o
P + (1− λf )φoN (2.56)

S · (∇φ)f = |∆ | φ
o
N − φoP
| d |

+ K · (∇φ)of . (2.57)

Although this approach is very fast in computations, it does not guarantee bounded-

ness especially when the Courant number Co is greater than one. Courant number is

defined as:

Co =
| u |f δt

d
(2.58)
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In implicit discretization, the face values are determined in terms of the new time-level

cell values:

φf = λfφ
n
P + (1− λf )φnN (2.59)

S · (∇φ)f = |∆ | φ
n
N − φnP
| d |

+ K · (∇φ)nf . (2.60)

Although this approach is still a first order accurate and takes more computational

time than the previous approach, it guarantees boundedness and stability of the

system regardless the Co limits. A second-order Backward Differencing method can

be used as well:

3ρPφ
n
P − 4ρPφ

o
P + ρPφ

oo
P

2δt
VP +

∑
f

Fφnf −
∑
f

(ρΓφ)f S · (∇φ)nf

= quVP + qpVPφ
n
P , (2.61)

where φoo = φ(t−δt). Once again, the boundedness of the solution using this method

cannot be guaranteed, for more details about this temporal scheme refer to Jasak [79].

Since φf and (∇φ)f also depend on values of φ in the neighboring cells, Eq. (2.55)
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and/or Eq. 2.61 produce an algebraic equation for each CV that must be solved for

φnP :

aPφ
n
P +

∑
nb

anbφ
n
nb = RP . (2.62)

The summation in Eq. (2.62) is over all the neighboring cells of the cell that has

centroid P . For all CVs, this kind of equations can be assembled in a system of

algebraic equations of the form:

C · y = rhs, (2.63)

where C is a sparse matrix with coefficients aP on the diagonal and anb off the

diagonal. The sparseness pattern of the matrix depends on the order in which the

CVs are labeled, with every off-diagonal coefficient above and below the diagonal

corresponding to one of the faces in the mesh. y is the vector with the unknown

values of φ on all CVs. rhs is the source vector which includes all terms that can be

evaluated without knowing φn, i.e. it contains the values of the constant part of the

source term (quVP ), and the parts of convection term, diffusion term and temporal

derivative at the old time level related to φo. Numerical approaches to solve the

resulting equations are discussed in details in book of Trefethen and Bau [82].
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2.4.2 Finite Volume Method on Non-Static Grids

The conservation equations are usually formulated for static boundary but the recent

need to describe turbulent flows in complex geometries, especially with moving bound-

aries, leads to rewrite equations taking into account the motion of the domain. If the

CV is not constant within the time due to a moving boundary, the only change in

conservation equation will be the appearance of relative velocity in convective terms.

The integral form of the governing equation for the a general tensorial property φ

over an arbitrary moving control volume V , bounded by a closed surface S with an

outward pointing unit normal vector n, is given by (Jasak and Tukovic [83]):

∂

∂t

∫
V

(ρφ) dV +

∮
S

ρφurelative · n dS −
∮
S

ρΓφ∇φ · n dS =

∫
V

qφ dV. (2.64)

This equation is similar to Eq. (2.22), but the velocity of the fluid u in the convection

term is replaced by the relative velocity urelative = u − ub, where ub is the velocity

of the boundary (face) surface S, ρ is the fluid density, Γφ is the diffusion coefficient

and qφ is the volume source/sink of φ. As the CV is no longer fixed in space, mass

source can be appear in the mass conservation equation. To avoid this, an additional

requirement must be satisfied:

∂

∂t

∫
V

dV −
∮
S

ub · n dS = 0. (2.65)
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This is known as the Geometric Conservation Law (GCL) [84], which describes the

relationship between the rate of change of the volume V and the velocity of the

boundary surface ub.

Following the discretization approaches used in Sections (2.4.1.1)–(2.4.1.4) and using

the definition of the face outward area vector S = nfSf where Sf is the surface area

of a cell face, a second-order FV discretization of Eqs (2.64) and (2.65) transforms the

surface integrals into sums of face integrals and approximates them to second order

using the mid-point rule. Further, discretization of the above equations depends on

the chosen temporal integration scheme and it allows for calculating the mesh motion

flux on the basis of the swept volume; in the simplest case of the first-order Euler

implicit integration that is used in this thesis, the full discretized forms of the above

equations for cell P that is bounded by an arbitrary number Nf of cell faces are:

ρnPφ
n
PV

n
P − ρoPφoPV o

P

δt
+

Nf∑
f

ρnfφ
n
f

(
F n
f − F n

bf

)
=

Nf∑
f

(ρΓφ)nf ∇φ
n
f · Sn + qnφV

n
P , (2.66)

V n
P − V o

P

δt
=

Nf∑
f

Fbf , (2.67)
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where Ff = S · uf is the face value of fluid flux, Fbf = S · ubf is the face value of

mesh motion flux (or volumetric face flux) which accounts for the grid convection,

the subscript P represents the cell values, f the face values, VP is the cell volume,

and superscripts n and o the “new” and “old” time level.

Cell volume V n
P and V o

P are calculated directly from geometric considerations and

satisfy the discrete form of the GCL. The fluid flux F is usually obtained as a part

of the solution algorithm and satisfies the conservation requirements, while the mesh

motion flux Fb is calculated as the volume swept by the face in motion during the

current time-step rather than from the grid velocity ub , making it consistent with

the cell volume calculation. For more details about the swept volume calculations in

OpenFOAM, refer to [85] and [86].

As a special case of the previous discussion, the integral form of the governing equa-

tions for incompressible Navier-Stokes system is given by:

∂

∂t

∫
V

dV +

∮
S

urelative · n dS = 0, (2.68)

∂

∂t

∫
V

u dV +

∮
S

uurelative · n dS −
∮
S

ν∇u · n dS = −
∮
S

P · n dS. (2.69)

Continuity Eq. (2.68) has been produced by setting φ to one and qφ to zero in

Eq. (2.64), taking in mind the GCL requirement. Momentum Eq. (2.69) has been

produced by setting φ to fluid velocity u, Γφ to fluid kinematic viscosity ν, and qφ to

kinematic pressure gradient −∇P in Eq. (2.64) (we assume in this case, there are no
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additional source terms).

The grid can be considered stationary in the treatment because, within a time step,

the pressure-correction step operates in an absolute velocity field. In order to provide

an informative description of the transientSimpleDyMFoam flow solver (discussed

later), the discrete forms of the above equations for a fixed CV with a centroid P are:

Nf∑
f

uf · S = 0, or simply:

Nf∑
f

Ff = 0, (2.70)

δuP
δt

VP +

Nf∑
f

ufFf −
Nf∑
f

νf∇uf · S = −
Nf∑
f

PfS. (2.71)

The discrete momentum Eq. (2.71) can be transformed into a linear system of equa-

tions that, for each computational cell center P surrounded by Nnb neighboring cells,

obtains a form:

aPuP +

Nnb∑
nb

anbunb = RP . (2.72)

The right-hand-side (RP ) of the equation contains the source contributions arising

from the discretizations of the transient, convection and diffusion terms and the pres-

sure gradient. For convenience, the contributions are split into velocity- and pressure-

dependent parts as:

RP = rP (u)−∇P, (2.73)
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recognizing that ∇P = 1
VP

∑Nf

f PfS. Using short-hand notation

H (u) = −
Nnb∑
nb

anbunb︸ ︷︷ ︸
transport part

+ rP (u)︸ ︷︷ ︸
source part

, (2.74)

we can write Eq. (2.72) as

aPuP = H (u)−∇P. (2.75)

From this formulation, a new face velocity can be defined that is interpolated onto

the cell faces using cell center values:

uP =
H(u)

aP
− ∇P

aP
, (2.76)

uf =

(
H(u)

aP

)
f

−
(
∇P
aP

)
f

. (2.77)

The discrete pressure equation is obtained by substituting Eq. (2.77) into the conti-

nuity requirement of Eq. (2.70), yielding

Nf∑
f

[(
1

aP

)
f

(∇P )f

]
· S =

Nf∑
f

(
H(u)

aP

)
f

· S. (2.78)

In OpenFOAM the discrete pressure equation reaches its final form by defining an

intermediate velocity field and evaluating the corresponding flux field, which does not
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satisfy the continuity requirement, that is:

u∗ =

(
H(u)

aP

)
, (2.79)

F ∗f =
(
u∗f · S

)
, (2.80)

Nf∑
f

[(
1

aP

)
f

(∇P )f

]
· S =

Nf∑
f

F ∗f . (2.81)

Considering the discretized form of the Navier-Stokes system (2.75 and 2.78), the

form of the equations shows linear dependence of velocity on pressure and vice-versa.

Two approaches to deal with this coupling are presented; The first one operate by

solving the complete system of equations simultaneously over the whole domain. Such

a procedure might be considered when the number of computational points is small

and the number of simultaneous equations is not too large. The cost of a simultaneous

solution is so expensive, both in the number of operations and memory requirements.

The second approach operate by solving the equations in sequential manner and it is

called the segregated approach. A special treatment is required in order to establish

the necessary inter-equation coupling.
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2.4.3 Description of TransientSimpleDyMFoam Solver

Two flow solvers have been developed by OpenFOAM community for simulat-

ing the flow systems described previously, a transientSimpleDyMFoam [87] and

pimpleDyMFoam [88]. These solvers employing an extensive libraries in OpenFOAM,

utilizing segregated velocity-pressure coupling algorithms, and featuring both auto-

matic mesh motion and deformation functionality. The transientSimpleDyMFoam

solver uses the SIMPLE algorithm [89] while pimpleDyMFoam uses the PIMPLE algo-

rithm, which is a combination of the SIMPLE and PISO [90] algorithms.

The main difference between these two solvers lies in the pressure correction algo-

rithm. For these solvers, the pressure field is obtained by deriving a pressure cor-

rection equation and enforcing mass continuity [91]. The way this is achieved is

as follow [92]. To initiate SIMPLE algorithm, the pressure field is predicted. The

velocity field is computed by solving the discretized momentum equations with the

predicted pressure. This first solution is substituted into the equation of continuity in

order to calculate correction factors. In the SIMPLE algorithm, the velocity correc-

tions contributed by cells adjacent to the pole cell are neglected. This approximation

does not affect the final solution if convergence is reached. It is acceptable for steady

state simulations or if small time steps are used in an unsteady calculation. This step

enables to correct the pressure and the velocity. In the last step, all other transport

equations are solved. To avoid divergence, some under-relaxation is used to get the
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new pressure value. The relaxation needs to be large enough to move the process

forward but small enough to avoid divergence.

The PISO algorithm may be seen as an extension of the SIMPLE algorithm with a

further corrector step. The first steps of the SIMPLE algorithm are realized. The

next step of the PISO algorithm consists in solving a second pressure correction equa-

tion without neglecting any term. In the PISO algorithm, no under-relaxation factor

is used. It has been shown that despite the increase of computational effort to solve

the second pressure equation, the PISO algorithm is efficient and fast.

The PIMPLE algorithm is a combination of these two algorithms. With default pa-

rameters, the PISO part of the algorithm is used. To benefit from the SIMPLE part

of the algorithm, relaxation factors have to be introduced. The PIMPLE algorithm

acts like the PISO one, with under-relaxation correction at the end.

The choice between these two flow solvers depends on user needs as stated by Romain

et al. [93]. If robust simulations are needed, the SIMPLE algorithm is simpler to use

through the transientSimpleDyMFoam solver. However if the need is for an opti-

mized calculation, the PIMPLE algorithm (with pimpleDyMFoam) can be set up to

benefit from the convergence of the SIMPLE algorithm and the precision and speed

of the PISO one. According to Auvinen et al. [87], PIMPLE solver produces an ac-

curate transient solution but suffers from inefficient temporal time marching due to

a restricting limitation on the maximum time step length. By contrast, the solver

featuring SIMPLE does allow more aggressive time marching-naturally at the expense
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of temporal accuracy, which is critical in performing efficient time-accurate analysis

of flow systems whose transient behavior evolves over a comparatively long time. In

this thesis , the choice of a robust solution is preferred over an optimized calculation

and therefore the simulations are carried out with transientSimpleDyMFoam solver,

whose principal algorithmic description is provided below.

The transientSimpleDyMFoam solver is a transient solver for a single-phase, incom-

pressible, laminar flows with a dynamic moving mesh capability from the OpenFOAM

package. Further, this solver can be used also for turbulent flows by activating the

turbulence models in the <case>/constant/turbulenceProperties file.

This solver is located in the folder OpenFOAM/OpenFOAM-2.1.x/applications/

solvers/transientSimpleDyMFoam. It uses an adaptive time step depending on the

Courant number Co defined in Eq. (2.58). To choose the new time step, a maximum

Courant number Cm
o is calculated from the flow conditions, using u and δt from the

previous time step. The new time step δtn is then calculated using the following

expression [94]

δtn = min

{
Cmax
o

Cm
o

δtn−1;

(
1 + 0.1

Cmax
o

Cm
o

)
δto; 1.2δtn−1; δtmax

}
(2.82)

where δtn−1 is the previous time step, Cmax
o is the pre-set maximum Courant number,

and δtmax is the pre-set maximum time step. These pre-set values are specified by

the user and they are located in the <case>/system/controlDict file.

In the solver we are analyzing, the equation system to be solved begins as C · u = c
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where C is a matrix, u is the solution vector, and c is the right hand side vector.

This linear system can be written as A · u = H where the matrix C = A + B and

the vector H = c −B · u. The matrix A has only the diagonal elements of C while

the matrix B has only the off-diagonal elements of C. Later we will see in the code,

rUA = 1.0/UEqn.A() and U = rUA*UEqn.H(). The .A() operator gives A formed in

the momentum equation UEqn, the list of diagonal elements as explained above. This

is a scalar field because each element is a scalar and corresponds to one grid cell. The

.H() operator is a list of the elements of the vector H described above and formed in

UEqn. If the variable u is a vector, then each element of H will be a vector.

Referring to the developments in Section 2.4.2 the solution procedure implemented

in transientSimpleDyMFoam can be illustrated by the following procedure:

TIME Loop: while
(
tn < tend

)
tend is the pre-set value of the final (termination) time that is located in the

<case>/system/controlDict file.

1. Calculate the Courant number by calling the CourantNo.H library and adjust

the time step by calling the setDeltaT.H library to find the new time step δtn,

then increment time as: tn = tn−1 + δtn.

2. Convert face fluxes to correspond to an absolute velocity field by calling the

function makeAbsolute(phi, U). Since the mesh moves, the flow moves rela-

tively to the mesh. This function makes the flux absolute for the following part
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of the code. Its used because at the end of the loop the flux is made relative

(discussed later). The above function computes: Ff = uf · S.

3. Apply mesh movement (and/or deformation) utilizing a chosen dynamic mesh

library. If the mesh is moving we have a different geometry. The solver updates

the geometry every time step before going to the SIMPLE loop by using the

function mesh.update(). To update the geometry, we need to modify point

positions (IDs in OpenFOAM) in each time step as is discussed later in Sec-

tion 2.5.3.

4. Correct the flux field if the mesh has deformed. In case the mesh is moving

the mass flux is corrected according to it by applying the following statement:

if (mesh.changing() && correctPhi) and calling the library correctPhi.H.

Basically this step computes the face value of mesh motion flux Fbf as the

volume swept by the face in motion such that GCL is satisfied.

5. Convert face fluxes to correspond to a relative velocity field. This is done

by calling the function makeRelative(phi, U) to make fluxes relative. This

function calculates the following: Frelative = urelative · S = Ff − Fbf .

6. SIMPLE Loop: for (k=0; k < nIter; k++)

6.1. Build the momentum Eq. (2.75) applying implicit relaxation 0 < αu < 1

61



to increase the diagonal dominance of the coefficients matrix:

aPukP +
(1− αu)

αu

aPukP +

Nnb∑
nb

anbu
k
nb = RP +

(1− αu)

αu

aPuk−1
P . (2.83)

The pressure gradient term in RP is calculated using the pressure distribu-

tion from an initial guess or the previous iteration. The coefficients aP and

anb (if nonlinear) are computed using velocity filed from an initial guess or

the previous iteration. In this equation we can solve for uk, noting that

at the matrix level the terms are multiplied by cell volume VP before the

relaxation is applied. The equation is under-relaxed and this stage is called

the momentum predictor.

6.2. Define an intermediate velocity field u∗k and compute a corresponding face

flux field F ∗kf according to Eqs (2.79) and (2.80):

u∗k =

(
H
(
uk
)

aP

)
,

F ∗kf =
(
u∗kf · S

)
.

The first equation is calculated by calling U = rAU*UEqn.H() function

where rAU = 1.0/UEqn.A(). The second equation is computed by call-

ing phi = (fvc::interpolate(U) & mesh.Sf()) function. Refer to the

previous discussion for .A() and .H() roles in the momentum equation.

6.3. Store the pressure value of the current iteration by calling the function

62



p.storePrevIter() that computes: P k−1 = P k.

6.4. Build the pressure Eq. 2.81 and solve for P k.

Nf∑
f

[(
1

aP

)
f

(
∇P k

)
f

]
· S =

Nf∑
f

F ∗kf .

This done by executing and calling the following statement:

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phi)

).

6.5. Use this calculated pressure P k to correct the flux field such that it fulfills

the continuity requirement in Eq. 2.70:

F k
f = F ∗kf −

(
1

aP

)
f

(
∇P k

)
f
· S.

This is done by calling the function phi -= pEqn.flux().

6.6. Apply an explicit relaxation to the pressure field for momentum corrector:

P k = P k−1 + αP
(
P k − P k−1

)
, (2.84)

where αP is the under-relaxation factor for pressure that typically takes

on values within range 0.1 ≤ αP ≤ 0.3. This is done by calling the
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function p.relax(). Note that, P k−1 and P k in the right-hand side of

the above equation were calculated from steps 6.3. and 6.4., respectively.

The pressure is explicitly relaxed in this step because in SIMPLE, there

is an omission of velocity correction of neighbor cells, using this velocity

correction to correct velocity is moderate. But for pressure, using this

velocity correction to correct pressure is exaggerated. Thus we need to

do explicit relaxation in pressure field to make pressure correction to be

moderate.

6.7. Convert face fluxes to correspond to a relative velocity field. Once again,

this is executed by calling the function makeRelative(phi, U) that cal-

culates:
(
F k

relative

)
f

= F k
f − Fbf .

6.8. Correct the velocity field utilizing a relaxed pressure field according to

Eq. 2.76, by calling the function U -= rAU*fvc::grad(p) that calculates:

ukP = u∗kP −
∇P k

aP
.

6.9. Use the corrected velocity in previous step to update the viscosity (and/or

other properties), by calling the function turbulence->correct(). In this

step, effective viscosity in turbulence models and/or strain-rate dependent

viscosity in non-Newtonian modes is computed by using ukP from previous

step 6.8..
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6.10. If the convergence is achieved then continue to step 7. Otherwise, repeat

the steps from step 6.1. utilizing the relaxed pressure from step 6.6. and

corrected velocity from step 6.8. as the new guessed values for pressure

and velocity. This set of conservative fluxes (or velocities) is needed to

recalculate the coefficients in H(u) because the non-linear coupling effects

is assumed to be very important. This non-linearity can be seen in the

convection term and viscous stress tensor for non-Newtonian fluids.

7. Return to step 1 or exit time loop and terminate simulation.

The discretization in space and time discussed previously generate a linear system

of algebraic equations for each variable. This system will be solved by using a suit-

able linear solver. The initial and final residual are the calculated residuals before

and after the linear system is solved. The convergence is checked by the residual

values of the velocity and pressure. If the residual of each variable is below a specific

tolerance then the solver will stop. Note that, although transientSimpleDyMFoam

solver featuring SIMPLE algorithm, it is not utilizing the residual controls to test

the convergence. This solver is utilizing two PISO algorithm controls that can be

specified in the <case>\system\fvSolution file: the number of pressure-velocity

coupling loops in each time step is controlled by the keyword nOuterCorrectors. By

increasing this number to a specific value, the convergence is improving and the grid

independence becomes robust. If the mesh is non-orthogonal then step 6.4. can be
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repeated for a specific number of iterations. This number is controlled by the keyword

nNonOrthogonalCorrectors. If any of these numbers (or keywords) is set to zero,

then the solver performs only one time in each time step. Refer to Appendix C.4 for

more information.

2.5 Moving Grid Handling

Moving mesh provides a capability of tackling flow simulations where the spatial do-

main shape or the position of an internal interface changes during the simulation.

This causes a problem of preserving the validity and quality of the mesh during the

simulation. Examples include the boundary motion in peristaltic pumps and internal

combustion engines, where the calculation of the internal points motion inside the

domain is based on the prescribed motion of the boundary, free-surface flow, where

the interface between the phases is captured by the mesh, and Fluid-Structure Inter-

action (FSI), where the deformation of a solid changes the shape of the fluid domain.

Several deforming mesh techniques have been presented in the past, with various

approaches to define and create a robust mesh motion solvers. Behr et al. [95, 96]]

use explicit algebraic expressions in the horizontal and vertical direction with a Fi-

nite Element (FE) Arbitrary Lagrangian-Eulerian (ALE) solver to simulate free-

surface flows with mesh deformation. The most popular method to date is the

spring analogy [97, 98], which aims to link each point of the mesh by fictitious

66



spring and the point motion is obtained as a response to the boundary loading or

displacement. However, this approach proved to lack robustness, particularly for

arbitrary unstructured polyhedral meshes. Farahat et al. [99, 100] improves the

robustness of the method by proposing an additional torsional springs to control

all mechanisms of invalidating a tetrahedral cell. However, Jasak and Tukovic [83]

show that the cost induced by this improvement can be considered as too expen-

sive. Laplacian smoothing approach [101, 102, 103, 104] and the pseudo-solid ap-

proach [105, 106, 107, 108, 109, 110, 111] in the ALE FEM codes are used to create

a robust mesh motion solver. In an effort to simultaneously control the position of

the free-boundary surface and mesh spacing next to it, Helenbrook [112] proposes the

use of a biharmonic equation to govern mesh motion. Bos et al. [113] recognize the

fact that the Radial Basis Function (RBF) interpolation may be formulated in purely

algebraic terms rather than coded into a form of a partial differential equation. Such

formulation would lead to a faster and more robust motion.

2.5.1 Grid Validity and Quality Metrics

If the shape of the domain changes in time, then the solution will be influenced, in

fact, the boundary shape itself may in some cases be a part of the solution. Thus

one can distinguish between boundary motion and internal point motion. Boundary

motion is either prescribed by external factors, e.g. piston and valve motion for
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in-cylinder flow simulation in internal combustion engines, or is a part of the solution

as in free surface tracking simulations. The role of internal point motion is to

accommodate changes in the domain shape (boundary motion) and preserve the

validity and quality of the mesh.

2.5.1.1 Grid Validity Metrics

The investigation of mesh validity can be separated into topological and geometrical

tests. The first set contains the tests that can be performed without knowing the

actual point positions, while the second set deals with the shape of cells and the

boundary. The job of mesh generation, blockMesh as an example, is to produce a

mesh satisfying these requirements.

Topological validity tests consists of the following criteria:

• A point can appear in a given face only once.

• A face cannot belong to more than two cells. A boundary face can belong to

only one patch.

• Two cells can share no more than one face.

• Collecting all faces from one cell and decomposing faces into edges, every edge

must appear in exactly two cell faces in that given cell.
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Geometrical measures (face area, cell volume, face and cell centroid, normal vector,

etc. . . ) are calculated by decomposing the face into triangles and cell into tetrahedra

or pyramids. The tetrahedra are constructed using the cell centroid as apex and the

triangles of the face decomposition as a base. Geometrical validity criteria can be

summarized as follows:

• All cells and faces must be weakly convex. A face is considered convex if all

triangles normals point in the same direction. For a cell, where the metrics are

calculated on a tetrahedral decomposition, an equivalent convexness definition

is used.

• All cells must be geometrically closed: the sum of outward-pointing face area

vectors for cell faces must be zero to machine tolerance.

• For all internal faces, the dot product of the face area vector S and the vector

connecting the two cell centers d =
−−→
PN , see Fig. 2.6a, must be positive; this is

usually termed the orthogonality test.

2.5.1.2 Grid Quality Metrics

Based on the topology of the mesh changes during simulations, OpenFOAM has

two mesh-manipulation approaches. The first approach is called the automatic mesh

motion and it is used when the topology of the mesh is not changing during the
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simulation and only the point positions change. The objective of automatic mesh

motion is to determine the internal point motion to conform with given boundary

motion while preserving mesh validity and quality. By contrast, the other approach

is used when the topology of the mesh changes during the simulation. Note that, a face

in OpenFOAM is stored as a list of point IDs, and not as a list of point coordinates.

When topological changes are triggered, points are renumbered and hence there is no

correspondence between old and new point IDs, so the correlation between the old

and new face and/or volume is no longer valid and needs a special treatment. In this

thesis automatic mesh motion approach has been used, for more details about non

automatic mesh motion handling refer to Giussani [86].

Preserving the mesh quality only relates to the geometrical tests. Once the convexness

and orthogonality tests are satisfied, an initially valid mesh remains valid if no faces

(triangles or quadrilaterals) and cells (tetrahedrons or hexahedrals) are inverted while

the mesh in motion. The most common mesh quality metrics, as illustrated in Fig. 2.6,

are:

• Orthogonality (Fig. 2.6a); cell non-orthogonality is defined by an angle θ ∈

[0 ◦, 90 ◦] between the face normal vector S and the vector connecting the two

cell centers d. This angle should be small in order to minimize the truncation

error of the diffusion term. Mesh orthogonality affects the gradient of the face

center f and it adds diffusion to the solution.
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• Skewness (Fig. 2.6b); cell skewness is the deviation of the vector d that connects

the two cells P and N to the face center f . The deviation vector is represented

with ∆ and fi is the point where the vector d intersects the face f . The degree

of skewness is expressed by the ratio |∆||d| . When ∆ 6= 0, the cell is skewed, i.e.,

when fi 6= f . Skewness affects the interpolation of the cell centered quantities

to the face center f and it adds diffusion to the solution as well.

• Aspect ratio (Fig. 2.6c); mesh aspect ratio is the ratio between the longest side

∆x and the shortest side ∆y. Large aspect ratio is fine if gradients in the long

direction are small, but usually high aspect ratio leads to smear gradients.

• Smoothness (Fig. 2.6d); also known as expansion rate, growth factor or uni-

formity, defines the transition in size between contiguous cells as ∆y1
∆y2

. Large

transition ratios between cells add diffusion to the solution; ideally the maxi-

mum change in mesh spacing should be less than 20%.
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(a) Grid orthogonality

(b) Grid skewness

(c) Grid aspect ratio

(d) Grid smooth transition

Figure 2.6: Grid quality metrics
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2.5.2 Diffusivity Models

In this section, we briefly introduce the main diffusivity models in openFOAM that

outlined by Mordnia [114]. Diffusivity models determine how the points should be

moved after solving the equation of cell motion for each time step. The diffusivity

models available in the path:

OpenFOAM/OpenFOAM-2.1.x/src/fvMotionSolver/motionDiffusivity, and they

should be read from the file dynamicMeshDict in the constant folder of the case. Two

general categories to formulate the variable diffusivity ξ, the distance-based models

and the quality-based models.

2.5.2.1 Quality-Based models

In this method, the diffusion field is a function of cell quality measures (i.e, mean cell

non-orthogonality and/or cell skewness). The most popular models in this category

are:

1. Uniform diffusivity: the mesh manipulation will be done uniformly for all mov-

ing boundaries; that is to say, all cells in each region get stretched or squeezed

with the same ratio. On the other hand, the different parts of the mesh are han-

dled uniformly, depending on their distance from the moving faces. No specific
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data is needed here except the name of the diffusivity model.

2. Directional diffusivity: the mesh stretching or squeezing will be done propor-

tional to the direction of the motion. In this case we need to specify two scalar

coefficients for the model to work. One can use a third mixed coefficient as a

combination of the two. In this thesis, the diffusivity model has been chosen to

be directional.

3. Motion directional diffusivity: the mesh manipulation is done by prioritizing

the moving body and adjusting the cells in a way that is more appropriate for

the moving body, while the mesh manipulation in previous model is done by

considering the slipping boundaries. For the model to work, we need to specify

the scalar coefficients in this model as above.

4. Diffusivity with inverse distance: In this case the user specifies one or more

boundaries and the diffusivity of the field is based on the inverse of the distance

from that boundary.

2.5.2.2 Distance-Based Models

This method is used together with the quality-based method, in which the diffusion

field will be a function of cell center distance L to the nearest selected boundary. These

models are used with inverse-distance method above. The most popular models in
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this category are:

1. Diffusivity with linear inverse distance: in this model the diffusivity field is

based linearly on the inverse of the cell center distance to the nearest boundary,

that is ξ (L) = L−1.

2. Diffusivity with quadratic inverse distance: the same as above, with the only

difference being a quadratic relation instead of a linear one, that is ξ (L) = L−2.

3. Diffusivity with exponential inverse distance: in this model the field diffusivity

is based on the exponential of the inverse of cell-center distance to the selected

boundaries, that is ξ (L) = e−L.

2.5.3 Grid Motion Solvers

According to the complexity of the prescribed boundary motion, mesh deformation

cases can be handled either by simple expressions or by more complex functional

forms.

In algebraic expressions approach [115], the effect of moving mesh on the flow field

may be reformulated in terms of volumetric body force, calculated as a derivative

of motion velocity, either analytically or from user-prescribed motion data. Among

dynamic mesh cases, prescribed solid body motion is the easiest to deal with: the

complete domain is moving with uniform displacement for each time step. Coupled
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with a nonlinear flow model. This approach is efficient and accurate but it is defined

for a small subset of geometries.

When the boundary motion is irregular or solution-dependent, the algebraic mesh

motion expressions are not flexible. An alternative way of looking at the mesh

motion problem is to consider prescribed boundary motion as a boundary con-

dition on the mesh motion equation, and by solving the mesh motion equation,

the internal point motion may be determined. Three obvious choices are consid-

ered; the Laplace equation, Solid Body Rotation stress (SBR) equation, and Ra-

dial Basis Function (RBF) interpolation. The mesh motion solvers available in

the path: OpenFOAM/OpenFOAM-2.1.x/src/fvMotionSolver/fvMotionSolvers. In

OpenFOAM, the mapping between the meshes using the dynamicFvMesh library hap-

pens behind the scenes, and so the FVM physics solver just has to satisfy the moving

mesh terms shown in Eq. (2.64) and it is independent of the mesh. For more details

about moving mesh in OpenFOAM refer to Kassiotis [116] and Mordnia [114].

The main aim of this section is to modify point positions (or IDs in OpenFOAM)

in each time step. These new points are needed to update the geometry by utiliz-

ing moveMesh solver, and to compute the mesh motion fluxes by calling the function

sweptVol() that calculates the volumes swept by the cell faces during the mesh

movement.
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2.5.3.1 Laplace Equation

The Laplace equation with constant or variable diffusion field ξ is

∇ · (ξ∇u) = 0. (2.85)

The solution of Laplace equation is a motion function u which is continuous,

smooth, regular and gives non-overlapping streamlines and hence it passes the

mesh validity constraints. When Laplace equation governs the mesh motion, the

prescribed boundary deformation is not uniformly distributed through the domain.

This potentially leads to local deterioration in mesh quality, because the movement

of points close to the moving boundary is greater than for the other points. Fixing

this problem can be achieved by prescribing variable diffusivity ξ in the Laplacian.

In the above equation, u may represent either the displacement or velocity of a point.

On one hand, by using displacementLaplacian solver, the equations of cell motion

are solved based on the Laplacian of the diffusivity and the cell displacement; this

solver should be read from the file dynamicMeshDict in the constant folder of the

case and an extra file named pointDisplacement in the starting time folder should

be available. The result of the Eq. (2.85) is transfered to the mesh motion solver to

update all mesh points new position as xnew = u + xold. Thus every mesh point is

moved based on its calculated displacement.
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On the other hand, by using velocityLaplacian solver, the equations of cell motion

are solved based on the Laplacian of the diffusivity and the cell motion velocity; this

solver should be read again from the file dynamicMeshDict and an extra file named

pointMotionU in the starting time folder should be available, which determines the

velocity at which each single boundary is moving. The result of the Eq. (2.85) is

transfered to the mesh motion solver to update all mesh points new position as

xnew = uδt + xold. Thus every mesh point is moved based on its calculated velocity.

In this thesis, the cell velocity solver is used since it is giving better results than

the approach using a solver based on cell displacement as shown by Al-Habahbeh [40].

2.5.3.2 Solid Body Rotation Stress Equation

The second method to deform the mesh is based on the linear elasticity equation and

is called the solid body rotation stress (SBR Stress) equation. The equation of linear

elasticity, valid for small displacements, may be written as

∇ · σ = 0, (2.86)

where σ is the stress tensor given in terms of the strain tensor ε by the constitutive

relation

σ = 2µε+ λtr(ε)I, (2.87)
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in which tr indicates the trace and λ and µ are the Lame’s constants [117] related to

the Young’s modulus of elasticity E and Poisson ratio ν as

µ =
E

2 (1 + ν)
, (2.88)

and

λ =


νE

(1 + ν) (1− ν)
for plane stress, (2.89a)

νE

(1 + ν) (1− 2ν)
for plane strain and 3-D. (2.89b)

E > 0 may be thought of as the stiffness of the material, where large E indicates

rigidity. Poisson’s ratio is a measure of how much the material shrinks in the lateral

direction as it extends in the axial direction; for physical materials −1 < ν < 0.5.

The following linear strain consecutive equation, also called the linear kinematic law,

quantifies the change in length and orientation of a material fiber in the elastic body:

ε =
1

2

[
∇u + (∇u)T

]
, (2.90)

where u is the position of an internal mesh point, which is treated as if it was a linear

solid. For convenience, in the plane strain regime consider the matrix

R =

 cos θ sin θ

− sin θ cos θ


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that rotates a given vector x by a clockwise angle θ in a fixed coordinate system (refer

to Fig. 2.7). Then the displacement vector u and linear strain tensor in Eq. (2.90)

are given by:

u = R · x− x or simply: u = (R− I) · x, (2.91)

ε = R− I. (2.92)

Equation (2.90) does not allow for rotation because it gives a non-zero strain for a

rotation (also this can be seen in Eq. (2.92)). To handle this, two approaches have

been proposed by Dwight [118] to request that the deformation equations admit rigid

body motions of the mesh, that is σ = 0 is sufficient for rotations. The first approach

is done by substituting Eq. (2.92) into Eq. (2.87) to get:

σ = (λ+ µ) [2 (cos(θ)− 1)] I, (2.93)

which may be set to zero by choosing λ + µ = 0. This is achieved by replacing the

expressions in Eqs (2.88) and (2.89b) by λ = −E and µ = E. The same effect can be

obtained by setting the Poisson ratio ν to a very large value, which emphasizes that

the equations can no longer be thought of as a model of elasticity. In this approach,

the rigid body is allowed to move and is still linear. Also its computational cost is
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similar to the computational cost needed to solve the Laplace equation.

In the second approach, an improvement for Eq. (2.90) is done by adding an extra

non-linear term to obtain the strain relation (also called Lagrangian strain tensor):

ε =
1

2

[
∇u + (∇u)T +∇u · (∇u)T

]
. (2.94)

Although this approach raising the computational cost of the method, it has been

proven numerically [118] that not only are rigid body rotations admitted, but that

the scheme is much more robust to other deformations.

Finally, as with the Laplace equation the solid body rotation stress mesh motion

equation uses the diffusivity ξ, acting as a stiffness, to improve the quality of the

mesh. Therefore the final form of Eq. (2.86) is achieved by prescribing variable

diffusivity ξ in the Laplacian. The result of this final form u is transfered to the mesh

motion solver to update all mesh points new position as: xnew = u + xold.

Figure 2.7: A clockwise rotation of a vector through angle θ
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2.5.3.3 Radial Basis Function Interpolation

Mesh motion solver based on the Laplace or SBR equation maintains high mesh qual-

ity for problem with limited boundary rotations. To handle this, Bos [113] developed

a new mesh motion solver based on the RBF interpolation for large rotations. This

new mesh motion technique does not need any information about the mesh connectiv-

ity and can be applied to arbitrary unstructured meshes containing polyhedral cells,

the way OpenFOAM deals with the finite volume implementation.

Suppose a set of pairwise distinct points S = {xb1 , . . . ,xbN} ⊆ Rd in the d-Euclidean

space is given. These points are normally called ’centers’. Suppose further, we know

values f1, . . . , fN at the centers and we are searching for a continuous function that

interpolates these values at the centers. Then the radial basis function interpolant of

the following form can be used:

s(x) =
N∑
j=1

αjΦ
(
‖x− xbj‖

)
+ q(x). (2.95)

In Eq. (2.95) s(x) is a interpolation function describing the displacement of all com-

putational mesh points, xbj = (x1bj
, . . . , xdbj )T is known boundary (data) point, N

is the number of boundary points, Φ is a given basis function which depends on the

Euclidean distance between the target point x and the data point xbj , and q is a

polynomial whose minimal degree depends on the choice of Φ. Here fj contains the
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known discrete values of the boundary point displacements.

The coefficients αj, and the polynomial q are determined by the interpolation condi-

tions:

s(xbj) = fj, 1 ≤ j ≤ N, (2.96)

and the additional requirements

N∑
j=1

αjp(xbj) = 0, (2.97)

for all polynomials p with degree less than or equal than that of q. The interpolation

function is unique if Φ is conditionally positive-definite function as is shown in the

below theorem whose proof can be found in [119] and [120].

Definition 2.1. A real-valued continuous function Φ : Rd −→ R is said to be

conditionally positive definite of order m if for any set of pairwise distinct centers

S = {xb1 , . . . ,xbN} ⊆ Rd and α = (α1, . . . , αN)T ⊆ RN satisfying Eq. (2.97) for any

real-valued polynomial p of degree at most m− 1, the quadratic form

N∑
i=1

N∑
j=1

αiαjΦ
(
xbi − xbj

)
is non-negative.

Theorem 2.1. Suppose Φ is conditionally positive definite of order m. Suppose

further that the set of centers S = {xb1 , . . . ,xbN} ⊆ Rd has the property that the zero
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polynomial is the only polynomial of degree less than m that vanishes on it completely.

Then there exists exactly one function s of the form 2.95 that satisfies both 2.96

and 2.97.

If the basis functions are conditionally positive definite of order m ≤ 2, a linear

polynomial for q(x) can be used [121]. The values for the coefficients αj and the

linear polynomial can be obtained by solving the system:

 s(xb)

0

 =

 f

0

 =

 Φbb Qb

QT
b 0


 α

β

 , (2.98)

where α is containing all coefficients αj , β is containing all coefficients of the lin-

ear polynomial q(x), Φbb is (N ×N) matrix with general term
[
Φbibj

]
=
[
Φ(i,j)

]
=[

Φ
(
‖xbi − xbj‖

)]
and Qb is (N × (d+ 1)) matrix with row j given by

[
1 xbj

]
.

We can solve (2.98) directly (because (2.98) leads to a dense matrix system, which

is difficult to solve using standard iterative techniques) using QR-decomposition or

LU-decomposition to find the coefficient arrays α and β. These coefficients are used

to calculate the values for the displacements of all internal mesh points g using the

evaluation function 2.95 as:

gi = s (xi) =
N∑
j=1

αjΦ
(
‖xi − xbj‖

)
+ q (xi) . (2.99)

The result of the above equation is transfered to the mesh motion solver to update
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all internal mesh points new position. Thus every internal mesh point is moved based

on its calculated displacement, such that no connectivity is necessary.

The size of the system 2.98 is ((N + (d+ 1))× (N + (d+ 1))) which is considerably

smaller than other techniques using mesh connectivity such as Laplace or SBR meth-

ods. The mesh connectivity techniques encounter system of size (Nint ×Nint) where

Nint is the total number of internal mesh points, which is a dimension higher than

the total number of boundary points. In contrast to the Laplace and SBR methods,

no partial differential equations need to be solved and the evaluation of all internal

boundary points is straightforward to implement in parallel, since no mesh connec-

tivity is needed. Concerning the robustness, RBF interpolation method is not using

the diffusion coefficient ξ. Instead, the basis function Φ need to be chosen to satisfy

the mesh robustness. For more details about RBF, refer to [121] and [113].
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Chapter 3

Fluid Transport Via Peristaltic

Motion

The main objective of this study is to implement the power of the computational

fluid dynamics (CFD) to design two computational models of geometry and motility

of the intestines and the lower part of an idealized human stomach during emptying,

and to use them to simulate the peristaltic motion for different Newtonian and non-

Newtonian fluids. These simulations were performed in the fixed frame of reference

with a modified solver from open source software package, OpenFOAM. Moreover,

the finite volume method (FVM) is employed to solve the conservation equations of

mass and momentum for velocity and pressure, and the Bird-Carreau Yasuda viscos-

ity law is used to model the non-Newtonian fluid.
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After investigating the convergence criteria and mesh resolution, a comparison to the

experimental and theoretical data has been made to validate the numerical models

and methods. In addition, a parameter study is performed to investigate the influence

of various geometrical and rheological parameters on the material transport efficiency

(TE), i.e. the effect of the traveling wave speed, the amount of deformation in terms

of relative occlusion (RO), and the shear-thinning non-Newtonian fluid and the New-

tonian fluid viscosity.

A parameter study has been performed by Al-Habahbeh [40] to determine the effect

of the shear-thinning behavior, the wave speed and the gap width on the transport

efficiency of Newtonian and non-Newtonian fluids in a 2-D channel of uniform width.

The present work extends that of Al-Habahbeh in two ways. First, we develop a 2-D

axisymmetric numerical model to get a realistic tubular peristaltic flow as encoun-

tered in the small intestine, and second, we examine the influence of the fluid viscosity

variation on the transport efficiency (refer to Appendix D for more details).

From the fluid mechanics viewpoint, and to the best of our knowledge, no rigorous

attempt has been made to develop a realistic model of the lower part of human stom-

ach during the emptying process, that is when the pylorus is open. Based on this, our

present work extends that of Pal et al. [68] in two ways. First, we develop a simple

2-D axisymmetric numerical model, which reduces the high level of complexity in full

3-D models, of the geometry and motility of the lower part of human stomach, to get

a better understanding of the flow field that develops within the stomach during the
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emptying process. Second, a parameter study is performed to investigate the effect

of various geometrical and rheological parameters on the gastric emptying in terms

of (average) transport efficiency.

3.1 Computational Models

3.1.1 Geometries

Two axisymmetric computational models have been developed to simulate the peri-

staltic motion for different fluids in the fixed (laboratory) frame of reference where

the boundary motion is represented by a traveling wave which deforms the boundary

and hence the mesh: a 2-D axisymmetric tubular model and a 2-D axisymmetric

conical model.

Figure 3.1: Computational domain for the axisymmetric tubular model
equipped by the circular deformation and relative occlusion parameters.
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The geometry of the first model is specified as a wedge of a small angle of 5 ◦ and

one cell thick running along the axis of symmetry, straddling one of the coordinate

planes. This model reflects a cross sectional of the upper half of a tube whose length

and diameter are 180 mm and 20 mm, respectively. The deformation on the upper

wall is represented by a circular wave with a diameter of 30 mm as shown in Fig. 3.1.

This wave is moving with a uniform speed in the x-direction and it is generated by

moving the mesh points of the upper wall up and down along the wedges. The geom-

etry and speed of the wave was chosen to reflect that used in experimental studies of

Nahar et al. [1, 39].

On the other hand, the axisymmetric conical model is designed to reflect an axisym-

metric cross section of the lower part of an average sized human stomach as is shown

in Fig. 3.2. This lower part can be considered as a frustum of a circular cone whose

length is 150 mm and with diameters of 100 mm and 10 mm at its widest point and

at the pyloric ring, respectively. The upper wall of this geometry inclines from the

x-axis by angle of 16.7 ◦ and it is deformed by a circular antral wave of a diameter

20 mm. Note that, the center of this wave changes in both horizontal and vertical di-

rections, as the wave propagates toward the pylorus sphincter. Moreover, this antral

wave is moving with a uniform speed in the x-direction and it is generated by moving

the mesh points of the upper wall along the wedges as discussed in the case of the

axisymmetric tubular simulations.

90



Figure 3.2: (A) Schematic diagram of a human stomach. (B) Computa-
tional domain for the axisymmetric conical model equipped by the circular
deformation and relative occlusion parameters.

3.1.2 Governing Equations

The fluid is taken to be a single-phase fluid, and the flow is assumed to be incom-

pressible, isothermal and inelastic. Based on these criteria, the motion of the fluid

in an arbitrary control volume V bounded by a closed surface S is governed by the

conservation laws for mass and momentum:

∂

∂t

∫
V

dV +

∮
S

(u− ub) · n dS = 0, (3.1)

ρ

(
∂

∂t

∫
V

u dV +

∮
S

u (u− ub) · n dS

)
=

∮
S

τ · n dS −
∮
S

P · n dS, (3.2)
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where u is the fluid velocity field, P is the pressure field, ρ is the density, n is the

outward pointing unit normal to the surface S, ub is the velocity of the surface S, and

τ is the viscous stress tensor. Under the scope of this study, neither the wall roughness

nor the friction and the gravity forces were considered in the fluid simulations. The

constitutive equations for the Newtonian and non-Newtonian fluids are τ = µD and

τ = η (γ̇) D, respectively, where µ is the dynamic viscosity, D = ∇u + ∇uT is the

rate-of-strain tensor, η (γ̇) is the shear rate dependent viscosity and the scalar γ̇ is the

strain rate defined as the magnitude of the strain rate tensor as is shown in Eq. (2.10).

The relationship between the rate of change of the volume V and the velocity ub is

defined by Eq. (2.65), the so called geometric conservation law (GCL).

The initial and boundary conditions are as follows: The initial conditions for the

internal pressure and velocity fields are set to zero. Symmetry boundary conditions

for the pressure and the velocity fields have been used along the center line in the

both models. Essentially, this kind of boundary conditions guarantee that there is no

flow across the center line. On the inlet and outlet, the velocity boundary conditions

are set to zero gradient while the pressure boundary conditions are set to the zero

total pressure. This reflects the fact that the experimental system used by Nahar et

al. [1, 39] was closed, i.e., the inlet and outlet boundaries were connected via a large

fluid reservoir which is at constant pressure.
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The total pressure P0 is computed by

P0 = P +
1

2
ρ|u|2, (3.3)

where P stands for the static pressure and 1
2
ρ|u|2 expresses the dynamic pressure.

This means that as long as the velocity field u changes, the value of the pressure field

P is adjusted by the prescribed value of the total pressure P0. On the upper wall, the

normal gradient of the pressure is set to zero and the velocity is set to the velocity of

wall in the normal direction of the wall.

The mesh motion is governed by the Laplace equation

∇ · (ξ∇w) = 0, (3.4)

where w is the cell velocity in a given time step, and ξ is the preset variable of diffusiv-

ity that describes how points should be moved when solving the cell motion equation

for each time step. For more details refer to González [122]. The movement of the

boundary points is propagated into the interior points by diffusion. In the current

simulations, the directional diffusivity field has been used in the Laplace equation to

fix the local distortion in the mesh quality. The directional diffusivity defines the

diffusion coefficients, which are used in the integral form of the conservation equa-

tions, for the three directions in space. After Eq. (3.4) is solved for the cell velocity,

it is used to determine the velocity of the moving cell boundary ub that is used in
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the integral form of the conservation equations. For more details refer to Jasak and

Tukovic [83].

The boundary conditions for cell velocity are as follows. For both geometrical models,

w = 0 on the center line, and the gradient of w is zero on the inlet boundary. On

the outlet boundary, either w = 0 or the gradient of w is zero, depending on whether

we allow the wave to intersect it. The velocity on the upper wall is determined by

a prescribed mathematical formula that gives the position of the mesh points as a

function of time. In this study, the traveling wave that deforms the upper wall is as-

sumed to be single wave and circular in shape. The circular deformation is described

by the following equation (refer to Fig. 3.1)

α (x, t) = (ymax − x tan (θ))−

(
y0(t)−

√
r 2 −

(
x− x0(t)

)
2

)
, (3.5)

where x1 (t) ≤ x ≤ x2 (t), ymax is the maximum y-component of the points on the

undeformed upper wall, (x0 (t) , y0 (t)) is the center of the circle whose radius is r,

θ = arctan
(
ymax−ymin

xmax−xmin

)
is the inclination angle of the upper wall from the x-axis, ymin

is the minimum y-component of the points on the undeformed upper wall, xmax is

the maximum x-component of the points on the center line, and xmin is the minimum

x-component of the points on the center line. The values of ymax, ymin, xmax and

xmin are specified by the user in the <case>/constant/polyMesh/blockMeshDict

file. The x-component of the center and the two ends of the circular arc move with a
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uniform speed in the x-direction,

xi (t) = (xi + ct) cos(θ); i = 0, 1, 2,

where xi’s are the initial values at time t = 0 and c is the wave speed. The y-

component of the center moves in the direction parallel to the undeformed upper

wall which is described by the equation: y = ymax − x tan (θ). Note that, y0(t) = y0

for all t when θ = 0. The values of x0, y0 and r are specified by the user, while

x1 and x2 are computed so that α (xi (t) , t) = 0; i = 1, 2. The above deformation

is valid if y0(t) ≥ ymax for all t. This circular deformation is generated by moving

the mesh points of the upper wall vertically up or down in the y-direction along

the boundary wedges, and this movement depends on the wave horizontal motion as

described in Eq. (3.5). The parameters for this boundary condition are given in the

<case>/0/pointMotionU file. These parameters are: circleRadius and speed to

specify the radius and the speed of the wave, respectively, and yCompFinalCenter

for y0. The occlusion diameter H is computed by subtracting circleRadius from the

y-component of the center y0(t). In this file additional parameters have been added

to control the motion: numOfWaves to specify the number of the waves, period to

initiate a new wave every certain period of time, and l to specify the distance between

the front of the wave and the outlet when the wave start to climb up by a specified

angle of beta and with a speed of alpha.

In OpenFOAM, the corresponding initial and boundary conditions are given in the
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initial time directory of the case. Table 3.1 shows the boundary conditions discussed

above in OpenFOAM language. The condition movingWallNormalVel is a projection

of an existing boundary condition of OpenFOAM, called movingWallVelocity, which

corrects the flux due to the mesh motion so that the total flux across the patch is

zero. The projection is made in the normal direction to the upper wall, that is, on

the wave the relative velocity urelative = u− ub is zero.

Table 3.1
Boundary conditions in OpenFOAM for open outlet.

boundary u P w

inlet zeroGradient zero totalPressure zeroGradient
outlet zeroGradient zero totalPressure zeroGradient or zero fixedValue

center line empty empty zero fixedValue
upper wall movingWallNormalVel C.3 zeroGradient my dynamic mesh solver A.2.2 and A.3.2

3.1.3 Numerical Methods and Computational Details

OpenFOAM was used to simulate peristaltic motion in this study. To solve

such transient flow field, a transient solver for an incompressible, laminar flows

with a dynamic moving mesh capability from the OpenFOAM package, called

transientSimpleDyMFoam, is used. Further, this solver can be used also for tur-

bulent flows by activating the turbulence models. This solver is using a segregated

SIMPLE-based pressure-velocity coupling algorithm in time-stepping mode, as dis-

cussed in Chapter 2.
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The fvSchemes file in the system directory sets the numerical schemes for terms,

such as derivatives in the conservation equations, that are calculated during a simu-

lation. In our simulations, the spatial discretization of the convection-diffusion terms

is achieved by a second order finite volume standard Gaussian method with a lin-

ear central differencing interpolating scheme. An implicit bounded first order Euler

method is used to handle the temporal term.

The fvSolution file in the system directory was designed to handle the settings for

the linear equation solvers and the algorithms to be used by a solver application. In

our simulations, the discrete pressure equations were solved by means of the Gener-

alized Geometric Multi-grid (GAMG) method with the Gauss-Seidel smoother. This

smoother is used together with the solver for an asymmetric matrix system, called

smoothSolver, to solve the discrete momentum velocity equations. The discrete

cell motion equations were solved by using the Preconditioned Conjugate Gradient

(PCG) method with the Diagonal-based Incomplete Cholesky (DIC) preconditioning

for symmetric matrices. Keep in mind that preconditioner is needed for solvers that

rely on a preconditioning strategy to speed up their iterative process, and smoother

is designed to smooth-out numerical issues that usually arise from ill-formed matrices

and strongly uneven intermediate solutions for the matrix equation. For more details

on what preconditioning is, see http://en.wikipedia.org/wiki/Preconditioner.

A good brief source for linear solvers, preconditioners and smoothers in OpenFOAM

is given by Behrens [123]. The number of velocity-pressure iterates in each time step
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was set to 25 and 50 for the tubular and conical geometries, respectively. This number

can be controlled by the keyword nOuterCorrectors in <case>/system/fvSolution.

The absolute tolerances for the linear solvers within each pressure-velocity iterate were

set to 10−10 and the relative tolerance for all variables was set to zero to force the

solutions to the system of equations to absolute tolerances at each time step, which

is recommended when using the PISO algorithm, refer to [124] for more details. Ini-

tially, a small time step size is assigned and then it is adapted through the motion

such that the maximum Courant number (defined by Eq. (2.58)) less than or equal

0.5.

The relative occlusion of the wave (the occlusion diameter to the tube diameter or to

the antral diameter, without the wave) is defined by RO =
(

1− H
H0

)
× 100 (refer to

Figs 3.1 and 3.2). The simulations are carried out for five different Newtonian fluids,

where the higher viscous fluid is obtained by increasing the dynamic viscosity of the

lower one by a factor of 10. The fluid parameters used in this study are summarized

in Table 3.2.

Table 3.2
Newtonian fluids parameters.

Newtonian fluid Dynamic viscosity (Pa s) Density (kg/m3)
N1 (Water) 0.001 1000
N2 0.01 1000
N3 0.1452 1000
N4 1 1360
N5 (Honey) 10 1360
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For the axisymmetric tubular simulations, three different relative occlusions of 20%,

60% and 80% together with three different wave speeds of 2.5 mm/s, 5 mm/s and

10 mm/s have been used. For the axisymmetric conical simulations, three wave speeds

of 1.15 mm/s, 2.3 mm/s and 4.6 mm/s have been used with three different maximum

relative occlusions of 21%, 66% and 80%. These values were chosen to reflect experi-

mental conditions, physical conditions, and to allow parameter study. The above flow

cases are summarized in Table 3.3.

Table 3.3
Relative occlusion and wave speed values used in the axisymmetric tubular

and conical models.

Axisymmetric Axisymmetric
tubular model conical model

RO (%) 20 60 80 21 66 80
Wave speed (mm/s) 2.5 5 10 1.15 2.3 4.6

In the standard cases, as is discussed in more details below, a wave speed of 5 mm/s

and a relative occlusion of 60% are used in the tubular model simulations whereas a

wave speed of 2.3 mm/s and a relative occlusion of 66% are used in the conical model

simulations.

A convergence study is carried out for the Newtonian fluid N3 for the standard simu-

lation cases. Convergence is evaluated by computing the initial residuals, that is, the

residuals for the discrete pressure and velocity equations at the beginning of the last

PISO iteration in each time step. The initial residuals for the discrete x-momentum

and pressure equations are shown in Fig. 3.3 as a function of time.
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(a) Residual of the discrete x-momentum
equation at the beginning of the last (i.e.
25th) PISO iteration in each time step for
the axisymmetric tubular model.
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(b) Residual of the discrete pressure equa-
tion at the beginning of the last (i.e. 25th)
PISO iteration in each time step for the ax-
isymmetric tubular model.
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(c) Residual of the discrete x-momentum
equation at the beginning of the last (i.e.
50th) PISO iteration in each time step for
the axisymmetric conical model.
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(d) Residual of the discrete pressure equa-
tion at the beginning of the last (i.e. 50th)
PISO iteration in each time step for the ax-
isymmetric conical model.

Figure 3.3: Convergence study

This figure shows that the residuals oscillating about the mean level which is accept-

able for an unsteady transient case like this. The initial residuals were approximately

10−4 or less which is sufficient for convergence of the velocity-pressure iterates in each

time step.
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3.1.4 Mesh Independence Study

To make sure that the computational mesh exhibits a sufficient mesh resolution, a

mesh dependence study has been performed for the Newtonian fluid N3 in the case of

fastest wave speed and largest relative occlusion. This is presumably the worst case

scenario where the largest velocity gradients occurs. Tables 3.4 and 3.5 summarize

the undeformed meshes that were used in the tubular and conical simulations, where

the finer mesh is obtained from the coarser one by increasing the number of cells in

the x and y-directions by a factor of 1.5. As the wave travels across the boundary, and

the mesh is deformed, the height of the cells decreases. These computational meshes

consist of one structured hexahedral Cartesian block with a uniform cell distribution

for the case of the tubular simulations while a non-uniform cell distribution has been

used in the case of the conical simulations.

Table 3.4
Computational mesh details for the axisymmetric tubular simulations.

Mesh Number of cells
Total number

of cells
Cell length
∆ x (mm)

Cell height
∆ y (mm)

M1 360× 10× 1 3600 0.5 1
M2 540× 15× 1 8100 0.333 0.667
M3 810× 23× 1 18630 0.222 0.435
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Table 3.5
Computational mesh details for the axisymmetric conical simulations.

Mesh Number of cells
Total number

of cells
Cell length
∆ x (mm)

Cell height ∆ y (mm)
near the pylorus

M3 270× 18× 1 4860 0.056 0.278
M4 405× 27× 1 10935 0.037 0.185
M5 608× 41× 1 24928 0.025 0.122

The results of mesh dependence study along the center line and near the outlet are

shown in Figs 3.4 and 3.5, in which the left and right vertical dashed lines represent

the ends of the wave. Figures 3.4a and 3.5a show that the minimum velocity occurs

under the wave and the negative values of x-component of velocity indicate the pres-

ence of a back-flow.

Moreover, Fig. 3.4a shows that the values of x-component of velocity obtained from

mesh M2 are closer to the ones obtained from mesh M3 than the ones obtained from

mesh M1. On the other hand, Figs 3.4b, 3.5a and 3.5b show that different meshes give

almost an identical values for the x-component of velocity. Therefore, the meshes M2

and M4 are used as the standard computational meshes for the tubular and conical

simulations, respectively.

The undeformed standard tubular mesh had uniform cells of length 0.333 mm and

height 0.667 mm. After deformation, the cell height under the wave was reduced to

0.133 mm for the largest relative occlusion of 80%. The undeformed conical stan-

dard mesh had the smallest cells located near the pylorus with length and height of

0.037 mm and 0.185 mm, respectively.
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After deformation, the cell height under the wave was reduced to 0.074 mm for the

largest maximum relative occlusion of 80%.
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Figure 3.4: Mesh dependence study for the x-component of the velocity of
the Newtonian fluid N3 in the axisymmetric tubular model at t = 16 s. The
wave speed and the relative occlusion are 10 mm/s and 80%, respectively.
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Figure 3.5: Mesh dependence study for the x-component of the velocity of
the Newtonian fluid N3 in the axisymmetric conical model at t = 30 s. The
wave speed and the relative occlusion are 4.6 mm/s and 80%, respectively.
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For the case of the axisymmetric tubular simulations, fluid viscosity and relative

occlusion influence the flow field values dramatically and subsequently the mesh de-

pendence results will be affected accordingly. It has been shown that the meshes M2

and M3 are plausible computational tubular meshes for all fluids for the case of the

relative occlusions of 60% and 20%, respectively, whereas, for the case of the relative

occlusion of 80% the mesh M3 is used for the lower viscous fluids, i.e. N1 and N2,

while the mesh M2 is used for the higher viscous ones, i.e. N3-N5.

3.1.5 Solver Validation

In this section, the solver is validated with experiments of Nahar et al. [1, 2, 125], in

which the peristaltic motion is induced by means of rollers which squeeze a fluid along

a flexible closed tube. Where three pairs of rollers are used to induce the peristaltic

flow by moving the rollers from left to right.

The length of the tube is 320 mm and the diameter of the undeformed tube, before

it is squeezed between the rollers, is 20 mm. After the rollers are applied, the tube

expands along the lengths of the rollers and the diameter between consecutive pairs

of rollers decreases to 11 mm. The gap width between a pair of rollers is 4 mm.

The fluid used in this experiment is a shear-thinning non-Newtonian carboxymethyl-

cellulose aqueous solution at 1.5% w/w with 0.1 M NaCl and Mw = 2.5× 105 g/mol

(CMC 1.5%). According to Stranzinger [126], the CMC 1.5% solution is inelastic for
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concentrations up to 2%. The rheological measurements of this solution were car-

ried out using a Physica rheometer (MCR 300, CC27), as is documented in Nahar

et al. [2, 39, 125]. The fluid density of 1000 kg/m3. The measured shear rate de-

pendent viscosity showed a shear-thinning behavior and it is approximated by the

Bird-Carreau Eq. (2.17), where η0 = 0.1452 Pa s, η∞ = 0 Pa s, k = 0.02673 s and

n = 0.7588. The velocity was measured using the pulsed ultrasound Doppler ve-

locimetry (UVP) technique of Takeda [127].

Since the rollers expand the tube in the third direction, the geometry is no longer

axisymmetric. Due to the amount of expansion in the third direction, we take a 2-D

planar slice in the center of the tube as the computational domain. Therefore, the

2-D planar model of Al-Habahbeh [40] has been used.

The computational domain that is used to simulate the peristaltic motion reflects the

upper half of a deformed channel with length of 180 mm and with height of 5.5 mm.

The tubular mesh M3 in Table 3.4 is used as a computational mesh for the case of the

planar tubular simulations and consists of one structured hexahedral Cartesian block

with a uniform cell distribution. Primarily, the computational planar mesh has 18630

cells with cell length of 0.222 mm and cell height of 0.239 mm. The roller motion

is represented by a circular wave, as described in Eq. (3.5), on the upper wall with

diameter of 30 mm. The relative occlusion of the wave is approximately of 64% and

the contact curve between the roller and the tube is a circular arc with a segment

length of 24 mm.
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In the deformed mesh, the smallest cells are located under the wave and the cell

height is reduced to 0.087 mm. The initial and boundary conditions that the reflect

experimental setup were similar to those used in the axisymmetric tubular simula-

tions. Moreover, the flow solver, the mesh motion solvers, the linear solvers and the

discretization schemes are similar to the ones used in the axisymmetric tubular sim-

ulations, with the number of velocity-pressure iterates in each time step set to 20.

Confirmation that a planar tubular model equipped with this dynamic physical solver

is valid for the peristaltic simulations is presented in Fig. 3.6.
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Figure 3.6: The x-component of the velocity of the non-Newtonian fluid
along the centerline for the planar model. (The dots correspond to experi-
ments [1, 2], the solid curves denote the simulations.)
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It can be seen from this figure that the simulation results show excellent agreement

with the experimental data. Note that only one data point for each roller speed can

be used in this comparison, because the line of measurements for the UVP intersects

our 2-D computational domain at only one point.

3.2 Results and Discussion

Two sets of simulations have been carried out to examine the influence of several rheo-

logical and geometrical parameters on the transport efficiency. In particular, we study

transport efficiency in terms of a shear-thinning non-Newtonian fluid, Newtonian fluid

viscosity, wave speed and relative occlusion. Since the fluid under consideration is

incompressible, the mass transport is expressed in terms of the average speed at the

outlet. Therefore, the transport efficiency can be computed by

TE =
average outlet speed

wave speed
(3.6)

The first set of simulations is the axisymmetric tubular simulations with wave speeds

of 2.5 mm/s, 5 mm/s and 10 mm/s and with relative occlusions of of 20%, 60%

and 80%. The second set represents the axisymmetric conical simulations with wave

speeds of 1.15 mm/s, 2.3 mm/s and 4.6 mm/s and with maximum relative occlusions

of 21%, 66% and 80%. (refer to Table 3.3).
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3.2.1 Variation of the Newtonian Fluid

Due to the laminar behavior of the fluid flow and the proximity of the walls, the flow

field that develops within the dynamic system can be significantly affected by the

rheological properties of the fluid flow, in particular by its viscosity. To examine the

influence of the fluid viscosity on the transport efficiency, several simulations have

been performed for five different Newtonian fluids whose parameters are listed in

Table 3.2.

The Reynolds number is defined by

Re =
ρ u0 L0

η0
, (3.7)

where L0 is the characteristic length scale of geometry, u0 is the characteristic velocity

and η0 is the characteristic viscosity. For our current simulations, the parameters of

the Reynolds number are defined by setting L0 = H, u0 = (wave speed)×
(
H0

H

)2
and

η0 = dynamic viscosity. Consult Figs 3.1, 3.2 and Table 3.2 for details.

Under these considerations, the values of the Reynolds number are computed and

then listed in Tables 3.6 and 3.7 for the case of the tubular and conical simulations,

respectively.
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Table 3.6
Reynolds number at t = 32 s for five Newtonian fluids in the axisymmetric
tubular model. The wave speed is 5 mm/s and three relative occlusions of

20%, 60% and 80% are used.

RO (%) N1 N2 N3 N4 N5
20 62.5 6.25 0.430 0.085 0.0085
60 125 12.5 0.861 0.17 0.017
80 250 25 1.722 0.34 0.034

Table 3.7
Reynolds number at t = 60 s for five Newtonian fluids in the axisymmetric
conical model. The wave speed is 2.3 mm/s and three relative occlusions of

21%, 66% and 80% are used.

RO (%) N1 N2 N3 N4 N5
21 21.4 2.1 0.15 0.03 0.003
66 51.6 5.2 0.36 0.07 0.007
80 88.4 8.8 0.61 0.12 0.012

3.2.1.1 Axisymmetric Tubular Simulations

The transport efficiency results of these simulations are given in Fig. 3.7 for the case of

wave speed of 5 mm/s. This figure shows that the transport efficiency is independent

of the fluid viscosity and increases with relative occlusion.

The color plot of the velocity vectors for one Newtonian fluid N3 at time t = 32 s

in the case of the standard tubular simulations is shown in Fig. 3.8 at the time, the

wave is near the outlet boundaries. This figure shows that the maximum values of

the velocity magnitude are attained in the region near the center line and just under

the wave.
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Figure 3.7: Transport efficiency for five Newtonian fluids in the axisymmet-
ric tubular model. The wave speed is 5 mm/s with three relative occlusions
of 20%, 60% and 80% are used.

Figure 3.8: The velocity vectors of the Newtonian fluid N3 at t = 32 s in
the axisymmetric tubular model. The wave speed and the relative occlusion
are 5 mm/s and 60%, respectively.
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These maximum values are nearly about of three times than that of the wave speed.

In addition, the direction of the vectors in this figure indicates the presence of a back-

flow. The x-component of velocity for five different Newtonian fluids along the center

line and near the outlet at time t = 32 s is shown in Fig. 3.9. This figure shows that the

values of the velocity are almost identical, except for the lowest viscous fluid N1. This

is consistent with the transport efficiency results given in Fig. 3.7. Figure 3.9a shows

that all fluids exhibit a back-flow, reaching the minimum of 0.01 m/s in magnitude

for the case of the lowest viscous fluids in a region that is under the wave and along

the center line, while the higher viscous fluids have almost the same magnitude of

back-flow.

Note that the transport efficiency decreases slightly over the domain in the case of

relative occlusion equals 60%, as is observed in Fig. 3.7. This decrease is due to small

differences in the computed average velocity over the outlet boundary as is shown in

Fig. 3.10.
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Figure 3.9: The x-component of the velocity of five Newtonian fluids in the
axisymmetric tubular model at t = 32 s. The wave speed and the relative
occlusion are 5 mm/s and 60%, respectively.
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Figure 3.10: The x-component of the velocity of the Newtonian fluid N3
near the outlet in the axisymmetric tubular model at two varying wave
positions. The wave speed and the relative occlusion are 5 mm/s and 60%,
respectively.

112



3.2.1.2 Axisymmetric Conical Simulations

The results of the standard conical simulations for one Newtonian fluid N3 at differ-

ent times are shown in Figs 3.11 and 3.12. The first figure exhibits color plots of the

velocity vectors at the times t = 58 s (where the maximum magnitude of velocity is

achieved) and t = 60 s (where the maximum relative occlusion is achieved), while the

second figure shows the x-component of velocity along the center line and near the

outlet at different positions.

Unlike in the tubular simulations (Fig. 3.8) in which the maximum velocity mag-

nitudes occurred directly underneath the wave, Fig. 3.11 shows that the maximum

velocity magnitudes in the conical simulations are in front of the wave. This is due

to the decreasing diameter in the conical geometry.

The circulations pattern is characterized by the direction of velocity vectors as is

shown in Fig. 3.11. The direction of the vectors in this figure indicates the presence

of a back-flow and this is consistent with the negative values of the x-component of

velocity shown in Fig. 3.12a.

This back-flow reaches its maximum magnitude at time t ≈ 53 s, in the region under

the wave and along the center line, and then decreases gradually in magnitude as the

wave propagates toward the pylorus sphincter. Figure 3.11a shows that as the wave

approaches the pylorus sphincter, the increasing occlusion of the wave strengthens

the x-component of velocity, reaching the maximum magnitude of three times than
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that of the wave speed in the most occluded section of the pylorus canal, that is along

the center line and near the outlet at time t = 58 s.

(a) t= 58 s

(b) t= 60 s

Figure 3.11: The velocity vectors (m/s) of the Newtonian fluid N3 in the
axisymmetric conical model. The wave speed is 2.3 mm/s and the maximum
relative occlusion is 66%.

Due to the disturbance between the back-flow, determined by the two moving stag-

nation points on the center line (see Fig. 3.11), and the outlet boundary, the effect of
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Figure 3.12: The x-component of the velocity of the Newtonian fluid N3
in the axisymmetric conical model at different times and/or wave positions.
The wave speed and the maximum relative occlusion are 2.3 mm/s and 66%,
respectively.

the outlet boundary conditions is going to be felt. Therefore, a decaying behavior in

x-component of velocity is developed after the time t = 58 s and till the time t = 60 s

as was shown in Figs 3.11b and 3.12.

The x-component of velocity at the times t = 58 s and t = 60 s along the center

line and near the outlet for five different viscosities is shown in Figs 3.13 and 3.14,

respectively. It is observed from these figures that, at time t = 60 s (that is when the

maximum relative occlusion of 66% is achieved) all fluids (except the water) behave

the same, in which the x-component of velocity becomes smaller in magnitude than

the one computed at time t = 58 s. Figure 3.13 shows that all fluids exhibit a back-

flow, reaching the maximum of 0.0046 m/s in magnitude for the case of the lowest

viscous fluids in a region that is under the wave and along the center line, while the

higher viscous fluids have almost the same magnitude of back-flow.
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Figure 3.13: The x-component of the velocity of five Newtonian fluids in
the axisymmetric conical model along the centerline. The wave speed and
the maximum relative occlusion are 2.3 mm/s and 66%, respectively.
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Figure 3.14: The x-component of the velocity of five Newtonian fluids in
the axisymmetric conical model near the outlet. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 66%, respectively.

These results are in a good agreement with results given in Fig. 3.14. This figure

shows that the velocity profiles computed near the outlet are almost identical for the

case of the higher viscous fluids, and the maximum magnitudes of x-component of
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velocity are achieved along the center line and near the pylorus sphincter.

The above results are consistent with the transport efficiency results for the five

different viscosities, as is shown in the Fig. 3.15.
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Figure 3.15: Transport efficiency for five Newtonian fluids in the axisym-
metric conical model. The wave speed is 2.3 mm/s and the maximum relative
occlusion is 66%.

This figure shows that the transport efficiency increases over the domain and attains

its maximum value at time t ≈ 58 s and then decreases until time t = 60 s where the

maximum relative occlusion of 66% is achieved. The value of the transport efficiency

increased with viscosity at slower rates, where the transport efficiency for the largest

three viscosities appear nearly identical. The computations of the transport efficiency

were initiated at time t = 25 s to avoid the transient effects at the beginning of the
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motion and ended at time t = 60 s, which is also the time when the wave starts

gradually climb up and out of the domain.

The fluid transport can be expressed by the average of the transport efficiency as

is shown in Fig. 3.16. This figure displays the outcomes of simulating five different

Newtonian fluids for the case of the wave speed of 2.3 mm/s and with three distinct

maximum relative occlusions of 21%, 66% and 80%. The average transport efficiency

is computed by averaging the transport efficiency curves starting at different times

or positions. Therefore, the average transport efficiency can be computed by

Average TE =
1

tF − tS

∫ tF

tS

TE (t) dt , (3.8)

where tS is the start time of averaging and tF is the first time that the wave starts

to go up/out of the domain.

Figure 3.16 shows that the average transport efficiency increases with relative oc-

clusion. Specifically, this figure shows that the average transport efficiency increases

with viscosity at small rates for the smallest two viscosities, that is for N1 and N2,

while it is nearly identical for the largest three viscosities. On the other hand, this

kind of the discrepancy between the lower and the higher viscous fluids has not been

observed in the tubular simulations as was shown in Fig. 3.7, because there is no

acceleration in the flow as the wave propagates toward the outlet. Keep in mind that

the conical geometry causes this acceleration. Consequently, the inertial forces will

be dominant for the case of the lower viscous fluids while the viscous forces will be
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dominant for the case of the higher viscous ones.

Note that, the above figure together with the computed values of Reynolds number

Re in Table 3.7, shows: When Re < 1, average transport efficiency curves coincide.

On the other hand, when Re > 1, average transport efficiency decreases with increases

Re. This is because more convection leads to larger back-flow, i.e., more fluid being

pushed backward as opposed to forward, as was shown in Figs 3.13 and 3.14.
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Figure 3.16: Average transport efficiency of five different Newtonian fluids
in the axisymmetric conical model. The wave speed is 2.3 mm/s and three
maximum relative occlusions of 21%, 66% and 80% are used.
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3.2.2 Effect of Shear-Thinning Behavior

A comparison between the Newtonian and the non-Newtonian fluids will be car-

ried out to identify the effect of the shear-thinning non-Newtonian behavior of the

fluid. Two non-Newtonian fluids, BCA and BCB, with shear rate dependent viscosity

expressed by the Bird-Carreau Eq. (2.17) will be used in this study, with the latter

exhibiting considerably more shear-thinning behavior. The fluid parameters are given

in Table 3.8 and the viscosity curves are depicted in Fig. 3.17.

Note that the zero shear rate viscosity η0 for the non-Newtonian fluids is the con-

stant viscosity used for the Newtonian fluid N3. Moreover, the shear-thinning for

both non-Newtonian fluids starts at a strain rate of γ̇ = 1
k

=0.05 s−1.

Table 3.8
Newtonian and non-Newtonian fluid parameters.

Parameters N3 BCA BCB
η0 (Pa s) 0.1452 0.1452 0.1452
η∞ (Pa s) 0 0 0
k (s) — 20 20
n 1 0.75 0.5
Density (kg/m3) 1000 1000 1000
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Figure 3.17: Shear rate dependent viscosity curves.

3.2.2.1 Axisymmetric Tubular Simulations

Simulation results of the Newtonian and non-Newtonian fluids for the case of the

wave speed of 5 mm/s and with relative occlusions of 20%, 60% and 80% are shown

in Fig. 3.18. This figure shows that the transport efficiency increases with relative

occlusion and decreases with more shear-thinning fluid behavior for the case of relative

occlusion of 60%, while it weakly depends on shear-thinning behavior for the case of

the smallest and largest relative occlusions.
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Figure 3.18: Transport efficiency for Newtonian and non-Newtonian fluids
in the axisymmetric tubular model. The wave speed is 5 mm/s and three
relative occlusions of 20%, 60% and 80% are used.

As we mentioned above, the difference between the transport efficiency curves dimin-

ishes for the case of relative occlusions of 20% and 80%, while this difference is clearly

obvious for the case of relative occlusion of 60%. This behavior may be explained

by considering the two extreme cases for relative occlusion, that is when the relative

occlusion either equals 100% or 0%.

For the first extreme case of the relative occlusion of 100%, the peristaltic flow be-

haves like pressure driven Poiseuille flow, and since the tube was modeled as a closed

system with incompressible fluid contents then the mass transport will be conserved

to ensure the continuity and therefore the transport efficiency curves will be the same.

On the other hand, the peristaltic flow behaves similar to a Couette-type flow for the
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case of the relative occlusion of 0% and hence all fluids have the same velocity profiles

near the outlet and therefore they have the same transport efficiency curves. In fact,

the presence of a back-flow for the above two extreme cases is impossible to occur,

which means that the fluid velocity profile near the outlet will not be affected any-

more, and consequently the transport efficiency values will be the same. However,

this is not the case when relative occlusion varies between the above two extreme

cases.

The small differences in the computed average velocity over the outlet boundary as

was shown in Fig. 3.10 stand behind the slight decreasing of the transport efficiency

values over the (geometry) domain in the case of relative occlusion of 60%, as is shown

in Fig. 3.18. This decreasing behavior doesn’t evolve clearly in the case of 20% and

80% relative occlusions as is discussed above for the two extreme cases of relative

occlusion and as is shown later in Fig. 3.26.

The following study has been performed for the standard tubular case at time t = 32 s,

and the results are shown in Figs 3.19 and 3.20.

Figure 3.19 presents the strain rates along the center line for the Newtonian and non-

Newtonian fluids. This figure shows that the maximum values of the strain rates are

achieved at the (left) wave boundary and just under the wave, while the minimum

ones are located along the center line. In this figure, the maximum values of the

strain rate are observed for the more shear-thinning fluids, and reach the maximum

value of 4.7 s−1 for the most shear-thinning fluid.
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Figure 3.19: Strain rate of the Newtonian and non-Newtonian fluids in the
axisymmetric tubular model along the center line and at t = 32 s. The wave
speed and the relative occlusions are 5 mm/s and 60%, respectively.
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Figure 3.20: The x-component of the velocity of the Newtonian and non-
Newtonian fluids in the axisymmetric tubular model at t = 32 s. The wave
speed and the relative occlusion are 5 mm/s and 60%, respectively.

The x-component of velocity for the Newtonian and non-Newtonian fluids along the

center line and near the outlet are shown in Figs 3.20a and 3.20b, respectively. Fig-

ure 3.20a shows that all fluids have a back-flow, and the strength of this back-flow
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increases in magnitude with the shear-thinning behavior, reaching the maximum mag-

nitude of about four times than that of the wave speed for the most shear-thinning

fluids, in a region near the center line and just under the wave. The behavior of this

back-flow is consistent with x-component of velocity profile computed near the outlet,

as is shown in Fig. 3.20b. In this figure the velocity profile for the Newtonian fluid

N3 resembles a parabola, whereas the velocity profiles for the non-Newtonian fluids

are more plug-like, with the more shear-thinning fluid being flatter. Note that, the

results of x-component of velocity near the outlet are consistent with the transport

efficiency results given in Fig. 3.18.

3.2.2.2 Axisymmetric Conical Simulations

The following study has been carried out for the case of the standard conical simula-

tions at different times, and the results are shown in Figs 3.21 - 3.23. Figures 3.21a

and 3.21b show the strain rates along the center line for the Newtonian and non-

Newtonian fluids at times t = 45 s (where the wave is far from the pylorus and a

relative occlusion of 29% is achieved) and t = 60 s (where the wave is close to the

pylorus and the maximum relative occlusion of 66% is achieved), respectively. Fig-

ure 3.21 shows that the maximum strain rates along the center line occur under the

leading half of the wave.
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Moreover, this figure shows that as the wave approaches the pylorus sphincter, the

increasing occlusion of the wave strengthens the strain rate values in the narrow part

of the pyloric canal.
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Figure 3.21: Strain rate of the Newtonian and non-Newtonian fluids in the
axisymmetric conical model along the center line and at times t = 45 s and
t = 60 s. The wave speed and the maximum relative occlusion are 2.3 mm/s
and 66%, respectively.

It can be observed from Fig. 3.21a that the strain rate depends on the shear-thinning

behavior when the wave is far from the pylorus, in which the maximum value of the

strain rate is observed for the most shear-thinning fluid. On the other hand, this

dependence is significantly weakened as the wave propagates gradually toward the

pylorus sphincter as is observed in Fig. 3.21b.

Figure 3.22 shows x-component of velocity for the Newtonian and non-Newtonian

fluids near the outlet at different times and relative occlusions.
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Figure 3.22: The x-component of the velocity of the Newtonian and non-
Newtonian fluids in the axisymmetric conical model near the outlet and at
different times. The wave speed and the maximum relative occlusion are
2.3 mm/s and 66%, respectively.

It can be seen from this figure that increasing the relative occlusion gives higher

velocity along the center line, reaching the maximum value of 7 mm/s at time t = 58 s

and at relative occlusion of 56.6%, and then decaying until time t = 60 s where the

maximum relative occlusion of 66% is achieved. As we mentioned before, this decaying

behavior is due to the influence of the outlet boundary conditions which becomes less

suitable when the wave gets too close to the pylorus. Moreover, the effect of the

shear-thinning behavior increases with relative occlusion, as can be seen from the

increased deviation between the curves, up until the time when the outlet boundary

condition influences the flow behavior. The above observations are consistent with

the ones that we observed in the tubular simulations case.
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Figure 3.23: Transport efficiency for the Newtonian and non-Newtonian
fluids in the axisymmetric conical model. The wave speed is 2.3 mm/s and
the maximum relative occlusion is 66%.

Figure 3.23 shows the transport efficiency for the Newtonian and non-Newtonian flu-

ids as a function of time. This figure shows that the transport efficiency is almost

independent of the shear-thinning behavior when the wave is either far from or close

to the pylorus sphincter, that is for small and/or large values of relative occlusions.

On the contrary, the transport efficiency is slightly influenced by the shear-thinning

behavior for the case of the intermediate values of occlusions, where it decreases with

increasing shear-thinning behavior. These results are in a good agreement with the

tubular transport efficiency results shown in Fig. 3.18, where there is little or no

effect of power-law index, n, for small and large relative occlusions, while transport
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efficiency increases with increased power-law index for intermediate relative occlu-

sions. In addition, this figure shows that the transport efficiency increases over the

domain, reaching the maximum value at time t = 58 s and then decreases due to the

boundary condition effects at the pylorus.

The results of averaging the transport efficiency curves for the Newtonian and non-

Newtonian fluids at different times and with three maximum relative occlusions of

21%, 66% and 80% are shown in Fig. 3.24. This figure shows that the average trans-

port efficiency increases with maximum relative occlusion. Also, the average transport

efficiency depends weakly on the shear-thinning behavior, reaching the minimum for

the most shear-thinning fluid.
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Figure 3.24: Average transport efficiency for the Newtonian and non-
Newtonian fluids in the axisymmetric conical model. The wave speed is
2.3 mm/s and three maximum relative occlusions of 21%, 66% and 80% are
applied.
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3.2.3 Variation of Wave Occlusion and Wave Speed

3.2.3.1 Axisymmetric Tubular Simulations

In order to study the transport efficiency in terms of relative occlusion and wave

speed, several simulations for the Newtonian fluid N3 have been carried out and their

results are shown in Figs 3.25 - 3.27. Figure 3.25 shows that the transport efficiency

is independent of the wave speed and increases with relative occlusion.
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Figure 3.25: Transport efficiency for Newtonian fluid N3 in the axisym-
metric tubular model.
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Figure 3.26 shows the x-component of velocity along the center line and near the

outlet at time t = 32 s for three different relative occlusions and with fixed uniform

wave speed of 5 mm/s. It can be seen from Fig. 3.26a that there exists a back-flow

for all different relative occlusions. It is not surprising to observe from this figure

that the maximum magnitude of this back-flow is nearly about of one, two and three

times that of the wave speed for the case of relative occlusions of 20%, 80% and 60%,

respectively. This can be justified by the fact that there is no back-flow in the case

of the extreme values of relative occlusions as we discussed previously (that is when

relative occlusion either of 0% or 100%). Figure 3.26b shows that the x-component of

velocity near the outlet increases in magnitude with relative occlusion. These results

are in a good agreement with the results of the transport efficiency given in Fig. 3.25.
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Figure 3.26: The x-component of the velocity of the Newtonian fluid N3 in
the axisymmetric tubular model at t = 32 s for different relative occlusions.
The wave speed is 5 mm/s.

131



0.08 0.1 0.12 0.14 0.16 0.18
x-Coord. [ m ]

-0.028

-0.021

-0.014

-0.007

0

0.007

0.014
U

x
 [
 m

 /
s
 ]

Wave Speed = 2.5 mm /s

Wave Speed = 5.0 mm /s

Wave Speed = 10  mm /s

(a) Center line

0 0.002 0.004 0.006 0.008 0.01
y-Coord. [ m ]

0

0.0035

0.007

0.0105

0.014

U
x
 [
 m

 /
s
 ]

Wave Speed = 2.5 mm /s

Wave Speed = 5.0 mm /s

Wave Speed = 10  mm /s

(b) Outlet

Figure 3.27: The x-component of the velocity of the Newtonian fluid N3 in
the axisymmetric tubular model at wave center of x = 160 mm for different
wave speeds. The relative occlusion is 60%.

Figure 3.27 shows the x-component of velocity along the center line and near the outlet

at x = 160 mm for three different wave speeds and with a fixed relative occlusion of

60%. Figure 3.27a indicates the presence of a back-flow for all different wave speeds,

and this back-flow increases linearly in magnitude with wave speed. The previous

results are consistent with x-component of velocity profiles computed near the outlet,

as is shown in Fig. 3.27b. It is obvious from this figure that the velocity values

increase linearly in magnitude with the wave speed.

3.2.3.2 Axisymmetric Conical Simulations

Two sets of simulations for the Newtonian fluid N3 have been performed at different

times and positions to investigate the influence of wave occlusion and wave speed
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on the transport efficiency. The results of the first set are shown in Figs 3.28 and

3.29 with a fixed wave speed of 2.3 mm/s and with three different ranges of relative

occlusions.

Figure 3.28 shows that as the wave approaches the pylorus sphincter, the increasing

occlusion of the wave strengthens the transport efficiency, reaching the maximum of

214%, 168% and 46% at times of t = 57 s, t = 58 s and t = 60 s, respectively. It can

be observed from this figure that the effect of the outlet boundary condition when

the wave gets to close to the pylorus, which is characterized by the decaying behavior

in the transport efficiency, occurs sooner for the highest relative occlusion. These

results are consistent with the results of x-component of velocity computed near the

outlet at three different times, as is illustrated in Fig. 3.29. It can be observed from

this figure that the maximum magnitude of x-component of velocity is about of three

to four times that of the wave speed at time t = 57 s (i.e. black curve corresponding

to Max. RO of 80%) and nearly of three times that of the wave speed at time of

t = 58 s (i.e. red curve corresponding to Max. RO of 66%), while it is less than the

wave speed at time t = 60 s (i.e. green curve corresponding to Max. RO of 21%).

Figure 3.29c shows that the x-component of velocity, near the outlet and at time

t = 60 s, decreases at small rate (on average) as relative occlusion reduced from 80%

to 66%, which is consistent with the results of transport efficiency results given in

Fig. 3.28.
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Figure 3.28: Transport efficiency for the Newtonian fluid N3 in the ax-
isymmetric conical model. The wave speed is 2.3 mm/s and three different
ranges of relative occlusions are applied.

The results of the second set are given in Figs 3.30 - 3.32 with a fixed maximum

relative occlusion of 66% and with three distinct wave speeds of 1.15 mm/s, 2.3 mm/s

and 4.6 mm/s. Figs 3.30 and 3.31 show the x-component of velocity along the center

line and near the outlet at two wave centers of x = 135.5 mm (where the maximum

magnitude of velocity is achieved) and of x = 139.8 mm (where the maximum relative

occlusion of 66% is achieved).
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Figure 3.29: The x-component of the velocity of the Newtonian fluid N3 in
the axisymmetric conical model near the outlet. The wave speed is 2.3 mm/s
and three different sets of relative occlusions are used at times of t = 57 s,
t = 58 s and t = 60 s.

Figure 3.30 shows the presence of a back-flow for all different wave speeds, this

back-flow increases linearly in magnitude with wave speed. It can be observed from

Fig. 3.30a that the maximum magnitudes of x-component of velocity along the center

line are achieved under the wave and they increase linearly in magnitude with wave

speed, reaching the maximum of 5.2 mm/s at wave center of 135.5 mm. These ob-

servations are consistent with the results of x-component of velocity along the outlet,

given in Fig. 3.31. This figure shows that the maximum magnitudes of x-component of
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velocity were achieved near the pylorus and they increased linearly with wave speed,

reaching the maximum of six times than that of the wave speed at wave center of

x = 135.5 mm, as is shown in Fig. 3.31a. These results are consistent with the results

of the transport efficiency and their average as is shown in Figs 3.32 and 3.33.

Figure 3.32 shows that the transport efficiency is almost independent of the wave

speed for a fixed maximum relative occlusion of 66%. Moreover, this figure shows that

the transport efficiency increases over the domain, reaching the maximum of 169%

at relative occlusion of 56.6% (that is at wave center of x = 135.5 mm), and then de-

creases to 133% at relative occlusion of 66% (that is at wave center of x = 139.8 mm).

Recall that, this decaying behavior is evolved because the effect of the outlet bound-

ary conditions was being felt. Figure 3.33 shows the average transport efficiency for

the three different ranges of relative occlusion and three different wave speeds. This

figure shows that the average transport efficiency is essentially independent of the

wave speed and increases with maximum relative occlusion.

136



0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
x-Coord. [ m ]

-0.006

-0.003

0

0.003

0.006

0.009

0.012

0.015

U
x
 [
 m

 /
s
 ]

Wave Speed = 1.15 mm /s

Wave Speed = 2.30 mm /s

Wave Speed = 4.60 mm /s

(a) x = 135.5 mm, RO = 56.6%

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
x-Coord. [ m ]

-0.006

-0.003

0

0.003

0.006

0.009

0.012

0.015

U
x
 [
 m

 /
s
 ]

Wave Speed = 1.15 mm /s

Wave Speed = 2.30 mm /s

Wave Speed = 4.60 mm /s

(b) x = 139.8 mm, RO = 66%

Figure 3.30: The x-component of the velocity of the Newtonian fluid N3 in
the axisymmetric conical model along the center line at two different wave
centers. Three different wave speeds of 1.15 mm/s, 2.3 mm/s and 4.6 mm/s
are used.
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Figure 3.31: The x-component of the velocity of the Newtonian fluid N3 in
the axisymmetric conical model near the outlet at two different wave centers.
Three different wave speeds of 1.15 mm/s, 2.3 mm/s and 4.6 mm/s are used.
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Figure 3.32: Transport efficiency for the Newtonian fluid N3 in the ax-
isymmetric conical model. The maximum relative occlusion is 66% and
three different wave speeds are used.
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3.3 Summary and Conclusion

Two axisymmetric numerical models were developed to model the emptying process

(or the fluid transport) in terms of the (average) transport efficiency, and to get a

better understanding of the flow field that develops within the system, a 2-D ax-

isymmetric tubular model and a 2-D axisymmetric conical model. The first model

corresponds to a realistic tubular peristaltic flows as encountered in the small in-

testine, while the second one simulates the peristaltic flow in the lower part of an

idealized human stomach. These two models are sufficient to reduce the high level of

complexity in full 3-D models.

These models were coupled with the modified CFD finite volume code solver from

the open source software package OpenFOAM, and the fixed (laboratory or Eulerian)

frame of references is used to simulate the peristaltic motion for different Newto-

nian and non-Newtonian fluids. The non-Newtonian fluid is modeled by using the

Bird-Carreau Yasuda viscosity law. A mesh refinement study showed an adequate

mesh independence and the transient computations exhibited plausible convergence

in terms of the initial residual.

To reflect an experimental setup in which the peristaltic flow was induced by deform-

ing a tube using rollers that moved along the tube wall, a 2-D planar model has been

designed. A good agreement was found with experimental data, hence confirming

that the numerical models and methods were valid for the peristaltic simulations.
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In general, the presence of back-flow is a ubiquitous feature of all our simulations,

and the maximum magnitudes of x-component of velocity increase linearly with the

wave speed. Also, the (average) transport efficiency is insensitive to the wave speed

and increases with relative occlusion. Moreover, the maximum values of the strain

rates are achieved at the wave boundary and under the wave, while the minimum

ones are located along the center line and they are insensitive to the power-law index.

In addition, (average) transport efficiency is insensitive to the power-law index for

small and large relative occlusions, while it decreases at small rate with power-law

index for intermediate relative occlusions.

In particular, the simulation results within the tube show that transport efficiency is

insensitive to the Newtonian viscosity and increases with relative occlusion. Moreover,

the maximum magnitudes of x-component of velocity are attained along the center

line and just under the wave. These maximum magnitudes are nearly about of one to

two times than that of the wave speed for small and large relative occlusions, while

it is increased to three times than that of the wave speed for intermediate relative

occlusions. Specifically, the standard tubular simulations results show that the higher

viscous Newtonian fluids have almost the same magnitudes of back-flow, reaching the

maximum magnitude of about of three times than that of the wave speed, while the

minimum magnitude of back-flow, which is about of two times than that of the wave

speed, is attained for the lowest viscous Newtonian fluid. This back-flow increases in

magnitude by reducing the power-law index for the non-Newtonian fluids, reaching
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the maximum magnitude of about of four times than that of the wave speed. By

reducing the power-law index, the maximum values of strain rates increase, reaching

the maximum for the most shear-thinning fluids.

On the other hand, the simulation results within the lower part of human stomach

show that the maximum value of the (average) transport efficiency increased with

Newtonian viscosity at smaller rate, where the maximum (average) transport effi-

ciency for the largest three Newtonian viscosities appear nearly identical. Moreover,

as the wave approaches the pylorus sphincter, the increasing occlusion of the wave

strengthens the magnitudes of x-component of velocity faster, in a region close close

to center line and near the pylorus, reaching the maximum magnitude of about of

three to four times than that of the wave speed. Specifically, the standard conical

simulations results show that the maximum magnitude of x-component of velocity is

about of three times than that of the wave speed. In addition, the maximum mag-

nitude of back-flow is achieved for the most lowest viscous Newtonian fluid, which is

about of two times than that of the wave speed, while the largest three Newtonian

viscosities have almost the same magnitude of back-flow, reaching the maximum mag-

nitude of about of one times than that of the wave speed. The maximum magnitudes

of x-component of velocity are insensitive to the power-law index for small and large

relative occlusions, while they increase with power-law index for the intermediate val-

ues of relative occlusion. When the wave is far from the pylorus, the maximum values

of strain rates increase by reducing the power-law index, while they are insensitive to
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the power-law index when the wave is close to pylorus.
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Chapter 4

Gastric Digestion and Mixing Via

Peristaltic Motion

The human stomach is a J-shaped, muscular, hollow and dilated part of the

gastrointestinal tract that functions as an important organ in the digestive system.

It is located between the esophagus and the first part of small intestine (duodenum)

in the region of the left side of the upper abdominal cavity. Anatomically, the

stomach is subdivided into the fundus, the corpus, and the antrum (Fig. 4.1-A).

The upper part of the stomach (the fundus and the upper corpus) acts as a reservoir

for chewed up food (bolus) that enters the stomach through the esophagus via the

lower esophageal sphincter, while the lower part (the antrum and the distal corpus)

is responsible for mechanical forces and fluid motions that promote not only the
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breakdown and mixing of gastric content, but also its chemical digestion, absorption

and transport. After that, the pyloric sphincter controls the passage of partially

digested food (chyme) from the stomach into the duodenum where peristalsis takes

over to move this through the rest of the small intestines. The curved, twisted shape

of the stomach not only supports gastric mixing, but also separates the stomach into

reservoir and mixing regions.

The chemical processes are typically investigated by means of in vitro analyses.

However, the development of an in vitro system capable of reproducing the fluid

mechanical forces that promote digestion and mixing is a real challenge. Pal et

al. [68] and Ferrua and Singh [3] have develop realistic computational models for the

investigation of the mechanical digestion process when the pylorus valve is closed.

A summary of theses studies are given in Section 4.4. The present investigations

differ from the ones of Pal et al. [68] and Ferrua and Singh [3] in the following three

ways: First, we develop a simple 2-D axisymmetric numerical model (Fig. 4.1-B),

that reduces the high level of complexity in the full 3-D model, to illustrate the

principles of mechanical digestion and mixing within the lower part of a human

stomach. Second, a parameter study is performed to investigate the effect of various

geometrical and rheological parameters on the gastric digestion and mixing, to get

a better understanding of the flow field that developed within the lower part of a

human stomach. Third, but most importantly, antral contractions have been allowed

to live in the vicinity of the pylorus, which is presumably the worst case scenario
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where the largest gradients for velocity and pressure occur.

The simulations were performed in the fixed frame of reference with a modified

solver from open source software package, OpenFOAM. Moreover, the finite

volume method (FVM) is employed to solve the conservation equations of mass and

momentum for velocity and pressure, and the Bird-Carreau Yasuda viscosity law is

used to model the non-Newtonian fluids. After investigating the convergence criteria

and mesh resolution, a comparison to the experimental and numerical data has been

made to validate the numerical models and methods.

4.1 Computational Models

4.1.1 Geometry

As in Chapter 3, a 2-D axisymmetric conical model has been developed to simulate the

peristaltic motion for different fluids in the fixed (laboratory) frame of reference, where

the boundary motion is represented by traveling waves which deform the boundary

and hence the mesh. Within the bounds of this model, the user can input geometrical

and rheological parameters to overcome the difficulty of reproducing gastric motility

and physiology of the lower part of a human stomach.
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The geometry of this model is specified as a wedge of a small angle of 5 ◦ and one cell

thick running along the axis of symmetry, straddling one of the coordinate planes.

The upper wall of this geometry inclines from the x-axis by angle of 16.7 ◦ and it is

deformed by sequence of the ACWs. The ACW is moving with a uniform speed in

the x-direction and it is generated by moving the mesh points of the upper wall along

the wedges.

The model is designed to reflect a cross sectional of the lower part of an average sized

human stomach (Fig. 4.1-A), where the characteristic dimensions are obtained from

the literature of Keet [128], Schulze [42], Pal et al. [46, 68] and Ferrua and Singh [3].

This lower part (antrum) can be considered as a frustum of a circular cone whose

length is 150 mm and with diameters of 100 mm and 10 mm at its widest point and at

the pyloric ring, respectively, as is shown in Fig. 4.1-B. The relative occlusion of the

ACW (the occlusion diameter to the antral diameter without the wave) is defined,

as in Chapter 3, by RO =
(

1− H
H0

)
× 100, refer to Fig. 4.1 for details, where H0

is the stomach width and H is the gap width. Two maximum relative occlusions of

52% and 80% and two types of ACW are used in this study, a circular ACW and a

parabolic ACW.
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Figure 4.1: (A) Schematic diagram of a human stomach. (B) Computa-
tional domain for the axisymmetric conical model equipped by the deforma-
tion of the ACWs and relative occlusion parameters.

The circular deformation is given by

α (x, t) = [ymax − x tan (θ)]−

[
y0(t)−

√
r 2 −

(
x− x0(t)

)
2

]
, (4.1)

where (x0 (t) , y0(t)) is the center of the circle whose radius is r. The parabolic defor-

mation is described as

α (x, t) = [ymax − x tan (θ)]−

[
y0(t) +

(
2(x− x0(t))

λ

)2

(ymax − y0(t))

]
, (4.2)

where (x0 (t) , y0(t)) is the vertex of the parabola whose width is λ.

In these deformations: x1 (t) ≤ x ≤ x2 (t), ymax is the maximum y-component
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of the points on the undeformed upper wall, θ = arctan
(
ymax−ymin

xmax−xmin

)
is the

inclination angle of the upper wall from the x-axis, ymin is the minimum y-

component of the points on the undeformed upper wall, xmax is the maximum x-

component of the points on the center line, and xmin is the minimum x-component

of the points on the center line. These values are specified by the user in the

<case>/constant/polyMesh/blockMeshDict file (see Appendix B).

The x-component of the center (vertex) and the two ends of the circular (parabolic)

arc move with a uniform speed in the x-direction as

xi (t) = (xi + ct) cos(θ); i = 0, 1, 2,

where xi’s are the initial values at time t = 0 and c is the ACW speed. The y-

component of the center (vertex) moves in the direction parallel to the undeformed

upper wall which is described by the equation: y = ymax − x tan (θ). Note that,

y0(t) = y0 for all t when θ = 0. The values of x0, y0, r and λ are specified by the

user, while x1 and x2 are computed so that α (xi (t) , t) = 0; i = 1, 2.

In OpenFOAM, these parameters are specified in the <case>/0/pointMotionU file

(see Appendix B) as follows: circleRadius to specify the radius of the circular ACW,

speed to specify the speed of the ACW, yCompFinalCenter (yCompFinalVertex) in

circular (parabolic) deformation for y0, and chordLength to specify the width λ of the

parabolic ACW. The occlusion diameter H is computed by subtracting circleRadius

from the y-component of the center y0(t) in the circular deformation (see Fig. 3.1),
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and by setting it to the y-component of the vertex y0(t) in the parabolic deformation.

In this file additional parameters have been added to control the motion: numOfWaves

to specify the number of the ACWs, shift to control the degree of occlusion along

the domain in the parabolic deformation, period to initiate a new ACW every certain

period of time, and l to specify the distance between the front of the distal-most ACW

and the outlet when the distal-most ACW start to climb up by a specified angle of

beta and with a speed of alpha. In our current standard simulations (that is when

the speed of the ACW is 2.3 mm/s), the circular ACWs were initiated every 20 s at

138.5 mm from the pylorus with a diameter of 20 mm.
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Figure 4.2: Motility pattern of the distal-most ACW during digestion. The
ACWs speed is 2.3 mm/s.

The relative occlusion increases over the domain as the circular ACW propagates for

60 s to 8.5 mm from the pylorus, reaching the maximum occlusion of 80% and 52%

with corresponding ACW widths of 18.5 mm and 16.3 mm, respectively (Fig. 4.2a).

Similarly, the parabolic ACWs exhibit maximum relative occlusions of 80% and 52%,
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and were initiated every 20 s at 144.6 mm from the pylorus with a width of 7.3 mm.

Also, the relative occlusion increases over the domain as the parabolic ACW prop-

agates for 63 s to 8.5 mm from the pylorus (Fig. 4.2b). After that, the relative

occlusion decreases for both ACWs because the distal-most ACW starts to climb up

by an elevation angle of 45 ◦. For comparison reasons and as is discussed in more

details below, the axial (along x-axis) center and vertex of the distal-most ACW have

almost the same distance from the pylorus, regardless degree of occlusion and wave

shape.

4.1.2 Governing Equations

The fluid is taken to be a single-phase fluid, and the flow is assumed to be incom-

pressible, isothermal and inelastic. Neither the wall roughness nor the friction and

the gravity forces were considered in the fluid simulations. The mesh motion equa-

tion and the flow conservation equations are the same as those introduced in the

Section 3.1.2. Moreover, the boundary conditions for the pressure and velocity on

the inlet and upper wall boundaries and at the center line are the same as those

introduced in the emptying process discussed in the Section 3.1.2. However, different

boundary conditions for the pressure and velocity are required on the outlet (pylorus)

boundary. On the outlet, the velocity boundary conditions are set to zero while the

pressure boundary conditions are set to be zero gradient. The boundary conditions
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for cell velocity w are as follows: w = 0 on the center line, inlet and outlet bound-

aries, i.e. neither the inlet and outlet are allowed to be intersected by the ACWs

nor the center line is allowed to move. The velocity on the upper wall is determined

by a prescribed mathematical formula either by Eq. (4.1) or Eq. (4.2) that gives the

position of the mesh points as a function of time. These boundary conditions are

summarized in Table 4.1 in terms of the OpenFOAM key words.

Table 4.1
Boundary conditions in OpenFOAM for closed outlet.

boundary u P w

inlet zeroGradient zero totalPressure zero fixedValue
outlet zero fixedValue zeroGradient zero fixedValue

center line empty empty zero fixedValue
upper wall movingWallNormalVel C.3 zeroGradient my dynamic mesh solver A.3.2 and B.2.2

4.1.3 Computational Details and Convergence Considera-

tions

The simulations in this chapter have been performed with transientSimple DyMFoam,

the same OpenFOAM code as already described in Chapter 3 for the open pylorus

cases. The data used for a representative computation case are listed in Appendix B.

The simulations are carried out for five different Newtonian fluids, where the higher

viscous fluid is obtained from the lower one by increasing the dynamic viscosity by a

factor of 10. The fluid parameters used in this study are summarized in Table 3.2.
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Three wave speeds of 1.15 mm/s, 2.3 mm/s and 4.6 mm/s have been used with two

different maximum relative occlusions of 52% and 80%. These values were chosen

to reflect characteristic data reported in literature, physical conditions, and to allow

parameter study. In all simulations, the Courant number (Eq. 2.58) has been set to

a value of 0.5 or less, and the absolute tolerances for the linear solvers within each

pressure-velocity iteration have been set to 10−10 while the relative tolerances were

set to zero. For the case of relative occlusion of 52%, the number of velocity-pressure

iterates in each time step was set to 50 and the relaxation factor for the velocity was

set to 0.7. Whereas for the case of relative occlusion of 80%, the number of velocity-

pressure iterates in each time step was reduced to 3 and the relaxation factor for the

velocity was decreased to 0.3 to provide stable convergence.

The convergence of the computations is illustrated by means of residual curves in

Fig. 4.3 for the Newtonian fluid N3. These curves illustrate that the number of

pressure-velocity iterations and the relaxation factors were sufficient to achieve ade-

quate convergence in each time step.
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(a) Residual of the discrete x-momentum
equation at the beginning of the last (i.e.
3rd) PISO iteration in each time step for
the circular ACW.
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(b) Residual of the discrete x-momentum
equation at the beginning of the last (i.e.
3rd) PISO iteration in each time step for
the parabolic ACW.
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(c) Residual of the discrete pressure equa-
tion at the beginning of the last (i.e. 3rd)
PISO iteration in each time step for the cir-
cular ACW.
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(d) Residual of the discrete pressure equa-
tion at the beginning of the last (i.e. 3rd)
PISO iteration in each time step for the
parabolic ACW.

Figure 4.3: Convergence study
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4.1.4 Mesh Independence Study

To make sure that the computational mesh exhibits a sufficient mesh resolution, a

mesh dependence study has been performed for the Newtonian fluid N3 in the case

of fastest wave speed and largest relative occlusion. This is presumably the worst

case scenario where the largest gradients for velocity occur. Table 4.2 summarize the

meshes that were used in this study, where the finer mesh is obtained from the coarser

one by increasing the number of cells in the x and y-directions by a factor of 1.5.

Table 4.2
Computational mesh details for the axisymmetric conical simulations.

Mesh Number of cells
Total number

of cells
Cell length ∆ x (mm)

for circular deformation
Cell length ∆ x (mm)

for parabolic deformation
Cell hight ∆ y (mm)

near the pylorus
M2 180× 12× 1 2160 0.083 0.056 0.417
M3 270× 18× 1 4860 0.056 0.037 0.278
M4 405× 27× 1 10935 0.037 0.025 0.185

The results of the mesh dependence study along the center line for the x-component

of velocity and strain rate are shown in Figs 4.4 and 4.5, respectively, in which the left

and right vertical dashed lines represent the ends of the distal-most ACW. Figure 4.4

shows that the maximum magnitudes of the x-component of velocity along the center

line are achieved near the wave crest. The negative values of the velocity x-component

indicate the presence of a back-flow. It can be observed from this figure that the

maximum magnitudes of the x-component of velocity for the parabolic ACW are

larger than the ones for the circular ACW. It can be seen from this figure that the

three different meshes give almost identical values of the velocity x-component away
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from the wave crest. Near the wave crest these values differ considerably, however,

the values from mesh M3 are closer to the ones obtained from mesh M4 than to the

ones obtained from mesh M2, which indicates mesh convergence.
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(b) Parabolic ACW at t = 31 s

Figure 4.4: Mesh dependence study of the x-component of velocity for
the Newtonian fluid N3 along the center line. The wave speed and relative
occlusion are 4.6 mm/s and 80%, respectively.

These results are consistent and qualitatively similar to the strain rate results given

in Fig. 4.5. From these considerations it can be concluded that mesh M3 exhibits

sufficient mesh independence. Therefore, mesh M3 is used as the standard mesh for

all the subsequent simulations in this chapter.
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(b) Parabolic ACW at t = 31 s

Figure 4.5: Mesh dependence study of the strain rate for the Newtonian
fluid N3 along the center line. The wave speed and relative occlusion are
4.6 mm/s and 80%, respectively.

This computational mesh consists of one structured hexahedral Cartesian block with

a non-uniform cell distribution in the x-direction, where the smallest cells are at the

pylorus. The cell grading is controlled by a geometric distribution whose ratio between

the smallest and the largest cells is 0.1 for the circular wave and 0.15 for the parabolic

wave. Therefore, the undeformed conical standard mesh had the smallest cells near

the pylorus with lengths of 0.056 mm and 0.037 mm for the circular and parabolic

deformation, respectively. The cell size distribution in the vertical direction of the

undeformed mesh is uniform with the smallest cell height of 0.278 mm at the pylorus.

For the deformed mesh, the smallest cells occur under the wave at the maximum

occlusion of 80% and have a cell height of 0.11 mm.
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4.2 Results and Discussion

In this study the mixing process in a stomach is investigated for various fluid proper-

ties and for different geometric parameters. More precisely, the effect of fluid viscosity,

the shear-thinning of non-Newtonian fluids, the ACW speeds, the ACW shapes and

the relative maximum occlusions are studied.

4.2.1 Variation of the Newtonian Fluid

To explore the sensitivity of flow patterns with respect to variations in fluid viscosity,

separate simulations have been performed for five different Newtonian fluids, whose

parameters are listed in Table 3.2, for the case of ACWs speed of 2.3 mm/s. The

result of these simulations are shown in Figs 4.6 – 4.21.

By propagating ACWs toward the pylorus, the simulations predicted two basic antral

flow patterns, at a time when the pylorus is closed. A reverse jet-like pulse (retropul-

sive jet) developed in the most highly occluded region near the pylorus, and a recir-

culating flow patterns (eddies) between and under the ACWs crests (Fig. 4.6), both

of which contribute to food disintegration and mixing. The same observations have

been experimentally reported by Code [129], Keinke et al. [49], Schulze–Delrieu and

Brown [130], Brasseur et al. [131], Li et al. [132], Pallotta et al. [52] and Boulby et
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al. [53], and numerically by Pal et al. [68], Ferrua and Singh [3], and Imai et al. [48].

(a) N1

(b) N5

Figure 4.6: Streamlines of the fluid flow within the lower part of stomach at
t = 60 s, colored by velocity magnitude (m/s). Maximum relative occlusion
of 52% for the distal-most circular ACW is applied.

In this study, the strength of the retropulsive jet is quantified by the velocity mag-

nitude |U | (or by the magnitude of the x-component of velocity for the distal-most

ACW along the center line). Figure 4.6 shows that higher retropulsive jet veloci-

ties are predicted at the locations of the ACWs crests, reaching the maximum value

near the pylorus and along the center line. By contrast, an immediate decay of the

retropulsive jet has been identified in a region away from the ACWs. This decay may

be explained by the improved diffusion of viscous effects together with the presence of
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antrum wall between consecutive ACWs (Ferrua and Singh [3]). Moreover, this figure

shows that by increasing the dynamic viscosity of the fluid to 10 Pa.s, the retropulsive

jet is confined to a smaller region at the core of the luminal antrum, with a jet length

shorter than the one for the case of the lowest viscous fluid N1.

Figure 4.7 gives a color plot of the velocity vector for fluid N3 at a time when the

strongest retropulsive jet is achieved for the case of maximum relative occlusion of

52%. These velocity vectors show that, the strongest fluid motions are obtained in

the most occluded part of the canal, with directions indicating the presence of a

back-flow.

Figure 4.7: The velocity vectors (m/s) of the Newtonian fluid N3 at t =
60 s in the most occluded section of the pylorus canal. The wave speed is
2.3 mm/s and the maximum relative occlusion is 52%.
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This back-flow is consistent with the negative values of x-component of velocity along

the center line as is shown in Figs 4.8 and 4.9. These figures show that all fluids have

a back-flow, and this back-flow increases in magnitude as the ACWs approach the

pylorus sphincter.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.8: The x-component of velocity for five Newtonian fluids along
the center line. The wave speed and the maximum relative occlusion are 2.3
mm/s and 52%, respectively.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.9: The x-component of velocity for five Newtonian fluids along
the center line. The wave speed and the maximum relative occlusion are 2.3
mm/s and 80%, respectively.
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Moreover, the higher viscous fluids behave the same in a location away from the

pylorus, while near the pylorus the strength of the retropulsive jet, as well as the

magnitude of the back-flow, increases with fluid viscosity. Note that the maximum

retropulsive jets for the largest three viscosities appear nearly identical.

Higher viscous fluids exhibit locally more intensive retropulsive jet at the pylorus

with strength much larger than the ACWs speed. This jet constitutes the strongest

mechanical forces for grinding and breakdown of solid particles and mixing of gastric

content.

The strength of the retropulsive jet is relatively insensitive to the ACWs shape and

the same qualitative behavior for the retropulsive jet is seen for larger and smaller

relative occlusion (Figs 4.8 and 4.9). In particular, the ACWs shape has relatively

little influence on low-viscous fluids but larger influence on high-viscous ones, with a

slightly stronger retropulsive jet for the parabolic ACWs. Furthermore, the retropul-

sive jet for 80% relative occlusion is about 6− 7 times stronger than the one for the

case of 52% relative occlusion. Thus, larger relative occlusion leads to much stronger

retropulsive jets and hence enhanced mixing and food disintegration.

The strength of the eddy structures was quantified by the volume averaged vorticity

magnitude |ωavg | (that is, the average rotational motion within the eddy between two

consecutive ACWs), while the formation of the eddies was captured by the develop-

ment the streamlines (lines drawn tangent to velocity vectors) and vorticity contours

of the gastric fluid flow at a fixed time.
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Similar to the retropulsive jet, the strength and formation of eddies were also sensitive

to fluid viscosity as follows: A global recirculation along the center line of the domain

for fluid N1 and a more local recirculation between consecutive ACWs for fluid N5

have been observed (Fig. 4.6), both of which account for global and local mixing. A

lower and more uniform vorticity field that confined to regions close to the ACWs has

been identified for fluid N5 (Figs 4.10) and 4.11. These results are consistent with
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Figure 4.10: The effect of fluid viscosity on the average value of vorticity
field. The wave speed is 2.3 mm/s and two maximum relative occlusions of
52% and 80% were achieved for the distal-most ACW. The shading bars are
consistent with numbers labeled on graphs 4.6 and 4.11.

numerical and experimental observations previously reported in literature (Marciani

et al. [133] and Ferrua and Singh [3]), suggest that a gastric content associated with

high viscous meals seems to be poorly mixed. Akin to the observations of Pal et

al. [68], Fig. 4.10 shows that as the ACW propagates toward the pylorus, its associated

eddies strengthen and reach a maximum magnitude of average vorticity in the most

occluded section of the stomach.
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As for the retropulsive jet, the strength of the antral eddies are relatively insensitive

to the ACW shape and increase with relative occlusion.

(a) N1

(b) N5

Figure 4.11: Contour of vorticity within the lower part of stomach at
t = 63 s, colored by vorticity magnitude (1/s). Maximum relative occlusion
of 52% for the distal-most parabolic ACW is applied.
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Figure 4.12 shows that, as the ACW approaches the pylorus sphincter, the kinetic

pressure field significantly increases, reaching a maximum value in a region close to

the propagation of the distal-most ACW and pylorus. This is consistent with the

fact that the ACW induces large pressure values in front of and under-pressure values

behind the ACW. Observations previously reported by Zuckerman and Lior [134, 135]

suggest that as antral flow approaches the closed pylorus, it behaves like an impinging

jet flow and hence a higher pressure is induced at the pylorus. These pressure build-

ups are then converted into kinetic energy when the fluid is reflected at the pylorus.

This is the source of the retropulsive jets, as is discussed below in more details.

(a) Circular ACWs at t = 60 s

(b) Parabolic ACWs at t = 63 s

Figure 4.12: Kinematic pressure (m2 /s2) of the Newtonian fluid N3. The
wave speed is 2.3 mm/s and maximum relative occlusions of 80% is achieved
for the distal-most ACW.
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These results were consistent with pressure field behavior along the center line for

five Newtonian viscosities, as is shown in Figs 4.13 and 4.14. These figures show that

pressure field strengthened with viscosity and relative occlusion, reaching a maximum

value of about 16 times stronger for the largest viscous fluids in a region under the

distal-most ACW and close to the pylorus sphincter. In contrast, these figures show

that the ACW shape has only a small influence on the pressure field near the pylorus.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.13: Kinematic pressure for five different Newtonian fluids along
the center line. The wave speed and the maximum relative occlusion are 2.3
mm/s and 52%, respectively.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.14: Kinematic pressure for five different Newtonian fluids along
the center line. The wave speed and the maximum relative occlusion are 2.3
mm/s and 80%, respectively.

However, as is illustrated in Figs 4.15 and 4.16, the maximal pressure gradients for

the parabolic waves are considerably higher than for the circular waves. The reason

for this is that the same pressure change for the parabolic wave occurs over a much

shorter distance than for the circular wave. This distance is illustrated in the figures

with the vertical dashed lines which signify the beginning and the end of the ACW.

The x-component of pressure gradient field along the center line are illustrated in

Figs 4.15 and 4.16 for the circular and parabolic wave shapes with maximum relative

occlusions of 52% and 80%.

These figures illustrate the mechanism which causes the retropulsive jet: The flow

induced by the ACWs builds up a high pressure near the pylorus, which then is

converted into kinetic energy when the flow is reflected from the pylorus wall. Since

higher viscous fluids build up a larger pressure, the corresponding retropulsive jet is

locally stronger. These results are consistent with experimental and simulation data
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from the literature (Feinle et al. [136], Choe et al. [137], Simonian et al. [138], Pal

et al. [68], and Ferrua and Singh [3]), which suggest a critical role of the pressure

gradient field in improving digestion process of gastric contents associated with high

viscous meals.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.15: The x-component of kinematic pressure gradient for five dif-
ferent Newtonian fluids along the center line. The wave speed and the max-
imum relative occlusion are 2.3 mm/s and 52%, respectively.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.16: The x-component of kinematic pressure gradient for five dif-
ferent Newtonian fluids along the center line . The wave speed and the
maximum relative occlusion are 2.3 mm/s and 80%, respectively.
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Figure 4.17 is a color plot of the strain rates of Newtonian fluid N3 at a time when

strongest retropulsive flow occurs. This figure shows that the largest values of strain

rates are achieved in the distal antrum in the region of direct contact with the ACW

and just under the ACW. Moreover, as the ACW approaches the pylorus sphincter,

the increasing occlusion of the ACW strengthened the values of strain rates, reaching

maximum values in the most occluded section of the pylorus canal. This result may

be explained by the increased action of the retropulsive jet at the core of the luminal

region, both of which enhance breakdown and mixing of food near the pylorus.

(a) Circular ACWs at t = 60 s

(b) Parabolic ACWs at t = 63 s

Figure 4.17: Strain rate of the Newtonian fluid N3. The wave speed
is 2.3 mm/s and maximum relative occlusions of 80% is achieved for the
distal-most ACW.
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The above observations are consistent with the strain rate fields computed along the

center line for five Newtonian viscosities, as is shown in Figs 4.18 and 4.19.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.18: Strain rate for five different Newtonian fluids along the center
line. The wave speed and the maximum relative occlusion are 2.3 mm/s and
52%, respectively.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.19: Strain rate for five different Newtonian fluids along the center
line. The wave speed and the maximum relative occlusion are 2.3 mm/s and
80%, respectively.

These figures show that, all fluids behave almost the same in a region away from the
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pylorus, while near the pylorus the strain rate field strengthens with viscosity and

relative occlusion, where the largest three viscosities seem to produce nearly identical

results. Also, note that the strain rate field associated with circular ACW is weaker

than that associated with parabolic ACW.

The effect of the strain rate on the digestion process is expressed by the viscous stress

acting on the material. Figures 4.20 and 4.21 show the magnitude of the viscous

stress tensor for the five Newtonian fluids N1 to N5 along the center line for circular

and parabolic ACWs with velocity 2.3 mm/s at the respective relative occlusions of

52% and 80%. In like manner as discussed previously, these forces can be attributed

to the mechanical disintegration of high viscous meals near the pylorus, strengthen

with viscosity and relative occlusion, and become more intensive for parabolic ACW.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.20: The magnitude of kinematic viscous stress tensor for five
different Newtonian fluids along the center line. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 52%, respectively.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.21: The magnitude of kinematic viscous stress tensor for five
different Newtonian fluids along the center line. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 80%, respectively.

4.2.2 Effect of Shear-Thinning Behavior

To identify the effect of the shear-thinning non-Newtonian behavior on fluid motions

and mixing during the digestion process within the antrum, several simulations have

been carried out for one Newtonian fluid and two non-Newtonian fluids, for the ACW

speed of 2.3 mm/s. The results are given in Figs 4.22 – 4.31.

The Bird-Carreau Eq. (2.17) expresses the shear rate dependent viscosity η for these

two non-Newtonian fluids, BCA and BCB, with the later is exhibiting considerably

more shear-thinning behavior. The fluids parameters are given in Table 3.8 and the

viscosity curves are depicted in Fig. 3.17. Note that, the zero shear rate viscosity η0

for the non-Newtonian fluids is the constant viscosity used for the Newtonian fluid

N3. Moreover, the shear-thinning for both non-Newtonian fluids starts at a strain

rate of γ̇ = 1
k

=0.05 s−1.
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The simulations show that, as the ACW approaches the pylorus sphincter, the in-

creasing occlusion of the ACW increases the physical quantity faster, reaching the

maximum in the most occluded section of the antrum. Also, all fluids behave nearly

the same in a location away from the pylorus, while near the pylorus the value of

physical quantity weakened with power-law index. Moreover, the maximum magni-

tude of physical quantity is stronger and more intensive for parabolic ACW. This is

an ubiquitous feature of all physical quantities, Ux, P , (∇P )x, γ̇ and |τ |, at a time

when strongest retropulsive jet is achieved on closed pylorus.

Specifically, the negative velocities under the ACWs crests (Figs 4.22 and 4.23) in-

dicate the presence of a back-flow. This back-flow increases in magnitude with the

power-law index, reaching maximum value under the distal-most ACW and along the

center line for the Newtonian fluid N3. Further, the influence of the ACW shape on

the pressure field is almost negligible (Figs 4.24 and 4.25), where the maximum values

of pressure are achieved in the direction of the distal-most ACW motion for the least

shear-thinning fluids. In other words, N3 reaches a maximum value of about 20 times

larger at 80% relative occlusion than that at 52% relative occlusion.

These observations are in good agreement with theoretical results, suggest a smaller

viscosities of the shear-thinning fluid result in a smaller pressure drop in a channel

or tube (Figs 4.26 and 4.27). In particular, these figures show that axial pressure

gradient is stronger for parabolic ACW than circular ACW by nearly a factor of 2.

This has been explained in the previous section. It has to do that the same pressure
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drop occurs over a much shorter distance. Finally, a little effect of power-law index

for 52% relative occlusion on the maximum strain rate values (Fig. 4.28), while higher

strain rates are obtained with increasing power-law index (Fig. 4.29).
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.22: The x-component of the velocity of the Newtonian and non-
Newtonian fluids along center line. The wave speed and the maximum rela-
tive occlusion are 2.3 mm/s and 52%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.23: The x-component of the velocity of the Newtonian and non-
Newtonian fluids along center line. The wave speed and the maximum rela-
tive occlusion are 2.3 mm/s and 80%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.24: Kinematic pressure of the Newtonian and non-Newtonian
fluids along center line. The wave speed and the maximum relative occlusion
are 2.3 mm/s and 52%, respectively.
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(a) Circular ACWs at t = 60 s.

0.125 0.13 0.135 0.14 0.145 0.15
x-Coord. [ m ]

0

0.02

0.04

0.06

0.08

0.1

P
 [

 m
2
 /

s
2
 ]

 N3

BCA

BCB

(b) Parabolic ACWs at t = 63 s.

Figure 4.25: Kinematic pressure of the Newtonian and non-Newtonian
fluids along center line. The wave speed and the maximum relative occlusion
are 2.3 mm/s and 80%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.26: The x-component of kinematic pressure gradient for the New-
tonian and non-Newtonian fluids along center line. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 52%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.27: The x-component of kinematic pressure gradient for the New-
tonian and non-Newtonian fluids along center line. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 80%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.28: Strain rate of the Newtonian and non-Newtonian fluids along
center line. The wave speed and the maximum relative occlusion are 2.3
mm/s and 52%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.29: Strain rate of the Newtonian and non-Newtonian fluids along
center line. The wave speed and the maximum relative occlusion are 2.3
mm/s and 80%, respectively.
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(a) Circular ACWs at t = 60 s.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.30: The magnitude of kinematic viscous stress tensor of the New-
tonian and non-Newtonian fluids along center line. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 52%, respectively.
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(b) Parabolic ACWs at t = 63 s.

Figure 4.31: The magnitude of kinematic viscous stress tensor of the New-
tonian and non-Newtonian fluids along center line. The wave speed and the
maximum relative occlusion are 2.3 mm/s and 80%, respectively.
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4.2.3 Variation of Wave Speed

To explore sensitivity in flow patterns within the lower part of a human stomach with

respect to the ACW speed variations, separate simulations were carried out for one

Newtonian fluid N3, with the ACW speed increased and reduced by a factor of two

from the standard case. The results are shown in Figs 4.32 – 4.41. These figures show

that, all physical quantities increase with relative occlusion of the ACW and increase

(almost) linearly with the ACW speed, reaching the maximum magnitude at the core

of the luminal region.

In particular, Figs 4.32 and 4.33 show the presence of a back-flow for all different

speeds and relative occlusions of the ACW. This back-flow increases linearly in mag-

nitude with the ACW speed and strengthens in magnitude with the relative occlusion,

and hence attribute to more food mixing and disintegration. Moreover, retropulsive

jet and antral pressure field are relatively insensitive to the ACW shape, with a little

advantage for the parabolic ACWs. The parabolic ACW is observed to produce much

stronger pressure gradients, strain rates and stress viscous forces near the pylorus.

Thus, higher relative occlusion and parabolic shape of the ACWs improve gastric

fluid motions and promote mixing.
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(b) Parabolic ACWs.

Figure 4.32: The x-component of velocity of the Newtonian fluid N3 along
the center line. Three different ACWs speeds and a maximum relative oc-
clusion of 52% are applied.
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Figure 4.33: The x-component of velocity of the Newtonian fluid N3 along
the center line. Three different ACWs speeds and a maximum relative oc-
clusion of 80% are applied.
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(b) Parabolic ACWs.

Figure 4.34: Kinematic pressure of the Newtonian fluid N3 along the center
line. Three different ACWs speeds and a maximum relative occlusion of 52%
are applied.
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(b) Parabolic ACWs.

Figure 4.35: Kinematic pressure of the Newtonian fluid N3 along the center
line. Three different ACWs speeds and a maximum relative occlusion of 80%
are applied.
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(b) Parabolic ACWs.

Figure 4.36: The x-component of kinematic pressure gradient for the New-
tonian fluid N3 along the center line. Three different ACWs speeds and a
maximum relative occlusion of 52% are applied.
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Figure 4.37: The x-component of kinematic pressure gradient for the New-
tonian fluid N3 along the center line. Three different ACWs speeds and a
maximum relative occlusion of 80% are applied.
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Figure 4.38: Strain rate of the Newtonian fluid N3 along the center line.
Three different ACWs speeds and a maximum relative occlusion of 52% are
applied.
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Figure 4.39: Strain rate of the Newtonian fluid N3 along the center line.
Three different ACWs speeds and a maximum relative occlusion of 80% are
applied.
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(b) Parabolic ACWs.

Figure 4.40: The magnitude of kinematic viscous stress tensor of the New-
tonian fluid N3 along the center line. Three different ACWs speeds and a
maximum relative occlusion of 52% are applied.
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Figure 4.41: The magnitude of kinematic viscous stress tensor of the New-
tonian fluid N3 along the center line. Three different ACWs speeds and a
maximum relative occlusion of 80% are applied.
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4.3 Food Mixing and Particle Tracking Technique

In agreement with classical description of the stomach function, Pal et al. [68] sug-

gested that the principle region of gastric mixing is in the antrum near the pylorus,

where the occluding ACWs generate the mechanical forces and fluid motions that

promote food mixing and disintegration. In our study, antral mixing has been inves-

tigated by releasing two sets of four particles from initial locations (black spheres) and

tracing them throughout the simulations. This procedure is illustrated in Fig. 4.42.

The paths of the particles are indicated by the white curves, and the final position of

the particles is marked by white spheres.

Figure 4.42: Mixing in distal antrum illustrated by releasing two sets of
four particles from initial locations (black spheres) to locations when the
maximum relative occlusion is achieved (white spheres). The initial location
for the first set is under the distal-most ACW, while the initial location for
the second one is between the last two consecutive ACWs.

The first set has been planted under the distal-most ACW near the pylorus (where

the maximum retropulsive jet occurred), while the particles of the second one (spheres
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5-8) have been planted randomly in a region between the last two consecutive ACWs

(where the largest recirculation occurred).

Figure 4.42 shows that both flow patterns contribute to mixing in complementary

ways. The gastric content near the stomach wall is transported towards the pylorus

(spheres 6 and 7) whereas the content away from the wall is transported back into the

corpus of the stomach. The content near the pylorus (spheres 1-4) experiences the

high velocities and shear rates of the retropulsive jet, which assist in the breakdown

of food, and causes its transport back into the corpus.

These results are consistent with the observations of Pal et al. [68], suggest that

retropulsive jet near the pylorus causes particles to separate longitudinally, and antral

eddies between two ACW contractions transport particles laterally toward the antral

wall. To quantify the strength of antral gastric mixing of set k of Nk tracer particles,

we use the mixing parameter

Mk =
R (tn, k)

R (t0, k)
, (4.3)

proposed by Pal et al. [68], that defines the level of mixing between time t0 and tn

from the relative spread of particles. The relative spread is measured by using the

root mean square radius (or mixing radius) and is calculated by the equation

R (tn, k) =

√√√√ 1

Nk

Nk∑
j=1

[(
xnj − xnm [k]

)2
+
(
ynj − ynm [k]

)2
+
(
znj − znm [k]

)2
]
, (4.4)

where
(
xnj , y

n
j , z

n
j

)
is the position vector of particle j at time tn, and
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(xnm [k] , ynm [k] , znm [k]) is the center of mass of the Nk particles in the set k at time tn.

For convenience, it has been assumed that the mass of all simulated fluid particles is

the same, and hence the center of mass of set k is computed by averaging the position

vector over all Nk particles. Further, particles that have left the antrum are excluded

from the above calculations.

Figure 4.43 shows that parabolic (narrower ACWs) and more highly occluding ACWs

generate higher values of antral mixing, while gastric contents associated with high

viscous meals seem to be poorly mixed. Specifically, antral mixing of low and high

viscous contents is observed to be more effective in the region where the maximum

retropulsive jet and antral eddy occurred, respectively.
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Figure 4.43: Effect of viscosity, relative occlusion and ACW shape on an
antal mixing. The wave speed is 2.3 mm/s and the comparison is performed
at a time when the strongest retropulsive jet occurred, that is at t = 60 s
for circular ACWs (left) and at t = 63 s for parabolic ACWs (right).
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The actual paths traveled by individual fluid particles ( white path lines) over a pe-

riod of time (60 s and 63 s for circular and parabolic ACWs, respectively) are given in

Fig. 4.42. This figure shows that, as the ACW propagates into the pylorus, the asso-

ciated axial stretching and recirculation patterns interact and strengthen, spreading

particles rapidly and broadly, enhancing mixing in the lower part of stomach.

Since the maximum retropulsive jet is obtained along the center line and under the

distal-most ACW near the pylorus, we selected in this study particle number one and

its associated path line (colored black) to investigate the strain rates (Fig. 4.44) and

viscous stress forces (Fig. 4.45) over time. These figures show that the maximum

magnitudes of strain rates and viscous stress tensor associated with high viscous flu-

ids are larger than lower viscous ones and strengthen with circular ACW.

The dimensionless quantity γ, expresses the total strain rate that a fluid particle ex-

periences by its motion, and is calculated by the line integral of the strain rate field

along the path.

γ =

∫ tn

t0
γ̇ (s) ds . (4.5)

The results of these integrations are summarized in Table 4.3. This table shows

that the gastric content associated with high viscous meals and driven by circular

contractions exerts higher strains, and this establishes the necessary forces to deform

fluid particles and hence break it down eventually.
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Figure 4.44: Effect of viscosity and ACW shape on the strain rate trajec-
tory (black path line in Fig. 4.42) of particle number one. The ACWs speed
is 2.3 mm/s and the maximum relative occlusion is 80%.
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Figure 4.45: Effect of viscosity and ACW shape on the viscous stress
trajectory (black path line in Fig. 4.42) of particle number one. The ACWs
speed is 2.3 mm/s and the maximum relative occlusion is 80%.
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Table 4.3
Effect of viscosity and ACW shape on the total strain computed along the
(black) path line of particle number one (Fig. 4.42). The ACWs speed and

maximum relative occlusion are 2.3 mm/s and 80%, respectively.

Circular ACWs Parabolic ACWs
N1 N5 N1 N5
7.7 8.5 4.8 5.8

4.4 Comparison with Literature

The main aim of this study is to investigate the solver capability for the computa-

tion of single phase peristaltic flow in a deformed lower part of an idealized human

stomach during the digestion process. In order to do that, the flow fields predicted

in our 2-D axisymmetric conical model was compared against the ones predicted by

Pal et al. [68] and by Ferrua and Singh [3]. They assumed that the stomach was

fully filled with liquid contents and ignored the effect of gravity, they only considered

instantaneous flow and mixing, and their stomach geometries were assumed to be

plane-symmetrical.

Our model was coupled with the CFD finite volume code solver, that is

transientSimpleDyMFoam from the OpenFOAM software package, and a sequence of

parabolic ACWs deform the upper wall of the geometry, at a time when three ACWs

coexist and the pylorus is closed.

Pal et al. [68] used statical data reported in literature by Pallotta et al. [52] and
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Indireshkumar et al. [139] to develop a sophisticated 2-D numerical planar model of

gastric mixing and emptying in the stomach. They also used the magnetic resonance

imaging (MRI) movies of a healthy human stomach to capture the total propagation

time and overall pattern of contraction, and later, their numerical model was effec-

tively used to reveal “Magenstrasse” for gastric emptying [46]. MRI analysis showed

that, after the ingestion of 500 mL of glucose solution (10%, w/w), the ACW activity

is developed for 20 min as follows: An ACW originated at the corpus (middle part

of stomach) propagates into the antrum (lower part of stomach) while the pylorus

remains closed, then the pylorus opens briefly while the ACW is in the mid-antrum

to empty gastric contents into the duodenum. When the ACW is within 30 mm of

the pylorus, the antral segment between the ACW and pylorus contracts segmentally,

closing the pylorus.

The model developed by Pal et al. [68] was characterized as follows: The lattice -

Boltzmann numerical method is used together with MRI results to create the geome-

try. Diameters of 100 mm and 11 mm were specified at the antrum widest point and

at the pyloric ring, respectively. A Newtonian fluid with density of 1000 kg/m3 and

a dynamic viscosity of 1 Pa.s is used in simulations. The wave speed (on average)

and width (along x-axis) of the ACWs were assumed to be 2.5 mm/s and 18 mm,

respectively, and the ACWs were initiated every 20 s at 144 mm from the pylorus.

The relative occlusion linearly increased from 0% to 40% as the ACW propagated for

17.5 s to 100 mm from the pylorus, then it remained constant for 16 s. After that, it
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started to linearly increase for 24 s, reaching the maximum occlusion of 90% at the

pylorus with a life span of 57.5 s.

The characteristic details of the pylorus function during the last 17.5 s of the distal-

most ACW life are as follows: An antral segment between the ACW and pylorus

retracts gradually, opening the pylorus briefly as the ACW propagates for 2 s to

39 mm from its sphincter, then the pylorus remains fully open for 6 s to allow some

gastric content into the duodenum. After that, the antral segment contracts grad-

ually for 2 s, closing the pylorus when the ACW is within 20 mm from the pylorus

sphincter. Finally, the pylorus remains closed for the last 5.5 s of the ACW life span

to separate, break apart and mix gastric content.

The above observations are consistent with physiological studies of Indireshkumar

et al. [139] and Hausken et al. [69]. These studies suggest that a gastric emptying

tends to occur during the period when the ACW is distant from the pylorus and the

terminal antrum has not initiated segmental contraction.

More recently, Ferrua and Singh [3] used a fully 3-D numerical model to investigated

effects of content viscosity on gastric flow during the digestion process, and at a time

when the pylorus is closed. A detailed characterization of their model is as follows:

The CFD software FluentTM [140] is used for numerical computations, the stomach

geometry is composed by a 3-D software Gambit [141], and the characteristic dimen-

sions of the stomach geometry are obtained from the literature of Keet [128] and

Schulze [42] in conjunction with the MRI analysis of Pal et al. [46, 68]. Diameters of
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100 mm and 12 mm were specified at the antrum widest point and at the pyloric ring,

respectively. Two Newtonian fluids with density of 1000 kg/m3 are used, where the

first fluid, N1, has a dynamic viscosity of 0.001 Pa.s and the second one, N4∗, has a

dynamic viscosity of 1 Pa.s. The speed (on average) and width (along the x-axis) of

the ACWs were assumed to be 2.3 mm/s and 20 mm, respectively. The ACWs were

initiated every 20 s at 150 mm from the pylorus and the relative occlusion increased

from 0% to 80% as the ACW propagated for 58 s to 5.4 mm from the pylorus.

The flow fields predicted by Ferrua and Singh [3] are compared against the ones that

our model captured and the results, shown in Table 4.4, are generally very good. Our

simulations predict that the magnitude of velocity and vorticity fields are relatively

smaller than the ones reported in the literature by Ferrua and Singh [3], and larger

by nearly one order of magnitude than the ones predicted by Pal et al. [68].

Table 4.4
Solver validation confirmed by comparing the velocity and vorticity fields

in our simulations with the ones reported in literature by Ferrua and
Singh [3]. The ACWs speed and maximum relative occlusion are 2.3 mm/s

and 80%, respectively.

Fluid
Simulation Literature

|U |max cm /s (|ωavg |)max s−1 |U |max cm /s (|ωavg |)max s−1

N1 7.74 0.96 7.8 1
N4∗ 11.23 0.195 11.9 0.21
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4.5 Summary and Conclusions

A 2-D axisymmetric conical model has been developed to reflect a cross section of

the lower part of an average sized human stomach (antrum), to get a better under-

standing of the flow fields that develop within the antrum during the digestion and

mixing process at a time when the pylorus is closed, and to reduce the high level

of complexity in full 3-D models. This model was coupled with the modified CFD

finite volume code solver from the open source software package OpenFOAM, and the

fixed (laboratory or Eulerian) frame of references is used to simulate the peristaltic

motion for different Newtonian and non-Newtonian fluids. The non-Newtonian fluid

is modeled by using the Bird-Carreau Yasuda viscosity law. A mesh refinement study

showed an adequate mesh independence and the transient computations exhibited

plausible convergence in terms of the initial residual.

The flow fields predicted by using a fully 3-D numerical model are compared against

the ones that our model captured, and the results are generally very good. Our sim-

ulations predict that, the magnitude of velocity and vorticity fields are smaller than

the ones reported in the 3-D model, and larger by nearly one order of magnitude than

the ones predicted by using a 2-D numerical planar model.

By propagating ACWs toward the pylorus, two basic antral flow patterns are cap-

tured, a backward retropulsive jet flow developed in the most highly occluded region

near the pylorus and a forward recirculation flow between and under the ACWs
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crests. Both of which together with the other physical quantities such as pressure,

strain rates and viscous stresses contribute to food disintegration and mixing. More-

over, the presence of back-flow is a ubiquitous feature of all our simulations, and

this back-flow increases in magnitude as the ACW approaches the pylorus sphincter,

reaching the maximum magnitude near the pylorus and under the distal-most ACW.

The increasing occlusion of the ACW strengthens these physical quantities faster,

reaching the maximum in the most occluded section of the antrum. Specifically, the

maximum magnitude of velocity (quantities the retropulsive jet strength) is achieved

under the distal-most ACW near the pylorus and along the center line, with strength

much larger than the ACWs speed. This jet constitutes the strongest forces for the

mixing and disintegration of food. The maximum magnitude of the averaged volume

vorticity field (quantities eddies strength) is achieved in a region between the last

two consecutive ACWs near the pylorus. These eddies support a gentle mixing and

disintegration of the gastric contents. The maximum values of kinetic pressure are

achieved in a region close to the propagation of the distal-most ACW and pylorus,

and the highest strain rates are achieved in the region of direct contact with the

distal-most ACW near the pylorus.

Along the center line, all physical quantities behave nearly the same in a location

away from the pylorus, while near the pylorus they strengthen in magnitude with

fluid viscosity, power-law index and relative occlusion of the ACW. The same quali-

tative behavior is seen for larger and smaller relative occlusions and the strength of
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all physical quantities increases linearly with the speed of ACWs. For the high vis-

cous fluids, although the strength of the retropulsive jet is nearly insensitive to fluid

viscosity (Figs 4.8 and 4.9) and the general behavior of pressure field is relatively

insensitive to fluid viscosity at small rate (Figs 4.13 and 4.14), pressure gradient field

is not (Figs 4.15 and 4.16). In fact and as previously reported in literature, the pres-

sure gradients have an essential role in promoting the gastric digestion of high viscous

meals. For the low viscous fluids, the induced back-flow near the center line leads to

a global recirculation of the gastric contents, hence to a large scale mixing. Shear-

thinning of the fluids is relevant in the retropulsive jet region, where the maximum

speed decreases with viscosity.

On one hand, retropulsive jet, eddies and antral pressure field are relatively insen-

sitive to the ACW shape, with a little obvious advantage for parabolic ACWs. On

the other hand, parabolic ACW is observed to produce much stronger and more in-

tensive pressure gradient field, strain rates and stress viscous forces near the pylorus.

Particularly, the shape of the ACWs has relatively little influence on the low-viscous

fluids but larger influence on the high-viscous ones, with retropulsive jet is slightly

stronger for parabolic ACWs.

In the most occluded region of the antrum, the strength of antral mixing increases

with relative occlusion and parabolic shape of the ACW. In particular, low viscous

meals are highly mixed under the distal-most ACW near the pylorus, while high vis-

cous ones are highly mixed in a region between the last two consecutive ACWs near
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the pylorus (Fig. 4.43).
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Chapter 5

Summary and Future Work

In this thesis we have developed computational models for the investigation of fluid

transport and mixing in the human gastro-intestinal tract. The peristaltic motion

was modeled by means of traveling waves which deform the boundary of the tubular

vessels. An axisymmetric tube of uniform diameter was used to describe the small

intestines, and an axisymmetric conical vessel was utilized to model the lower part of

the human stomach.

The computations were performed with a modified finite volume solver within the

open source CFD environment OpenFOAM. The simulations were performed for dif-

ferent Newtonian and non-Newtonian fluids, where the non-Newtonian fluids were

modeled by means of the Bird-Carreau Yasuda viscosity law.

197



The fluid was taken to be a single-phase fluid, and the flow was assumed to be incom-

pressible, isothermal and inelastic. Neither the wall roughness nor the friction and

the gravity forces were considered in the simulations. The mesh motion is governed

by the Laplace equation with a directional diffusion field, which is used to control the

deforming mesh quality. The motion of the fluid is governed by the conservation laws

for mass and momentum on a moving mesh.

Mesh refinement studies showed adequate mesh independence for all cases. The tran-

sient computations exhibited sufficient convergence in terms of the velocity and pres-

sure residuals. Whenever possible, comparisons are made to simulations from the

literature to validate our results. In general, the agreement can be considered very

good. These comparisons show that our 2-D axisymmetric models are sufficient to

reproduce the high level of complexity of fully 3-D models. Also, our simulations

confirm that the numerical methods are valid for such peristaltic motions.

Two fundamentally different flow phenomena were considered, namely fluid transport

and fluid mixing due to peristaltic motion. One of the main fluid transport proper-

ties was the transport efficiency which was investigated in a cylindrical tube and a

conical-shaped vessel. In both cases, the relative occlusion played the most important

part in the transport efficiency, whereas (surprisingly) the wave speed had little or no

influence. The results of this study is documented in Chapter 3 and is summarized

in Section 3.3. The fluid mixing was investigated in the conical vessel for a closed
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pylorus valve. The simulations confirmed that the main mechanism for food disin-

tegration is the retropulsive jet near the pylorus which is induced by the peristaltic

waves. In addition to the retropulsive jet, the mixing and particle tracking provided

additional insights into the mechanical digestion process of the human stomach. The

results of the mixing simulations are documented in Chapter 4 and the comparison

with other studies are discussed in Section 4.4 and the conclusions are reported in

Section 4.5.

Future Work

• It is also of interest to study the effect of gravity and volume of gastric contents

on emptying, digestion and mixing processes.

• Further, more mathematical analyses needed to be done to trace the fluid el-

ements along their particle path lines within the lower part of the stomach to

study the stress, the fluid deformation, the strain rates and the break up of

physical drops along its particle path lines.

• The relationship between the initial locations of tracer particles and the stomach

posture on the overall mixing process in stomach is an interesting future work.

• Moreover, modifying the moving-mesh boundary conditions to generate more

general and realistic types of ACWs and simulating complex fluids using mul-

tiphase flows, could be the subject of future investigations.
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• It would be interesting to use the RBF mesh motion solver to obtain the new

mesh points and to compare the mesh validity and quality metrics against the

ones that obtained from the other techniques, such as Laplace and SBR meth-

ods.

• Finally, to quantitatively validate the flow fields that develop within the stom-

ach, an experimental work confirmation need to be done, and use it as a ref-

erence for numerical computations. In particular, of using a non-intrusive flow

measurement technique, for example, particle imaging velocimetry, to trace the

flow field that develops within a closed system.
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Appendix A

Open Outlet Simulations

A.1 2-D Planar Tubular Simulations

// A. A. Al-Habahbeh-2013. [40]

A.1.1 Case Setup

• Standard case: wave speed = 5 mm/s, Newtonian fluid N3, maximum relative

occlusion = 60%, mesh M3.
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¡case¿/0: File U

• This file contains boundary and initial conditions for the velocity.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

{

type zeroGradient;

}

rightBoundary // outlet

{

type zeroGradient;

}

centerLine
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{

type symmetryPlane;

}

upperWall

{

type movingWallNormalVel;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

}

// ****************************************** //

¡case¿/0: File p

• This file contains boundary and initial conditions for the pressure.
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dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

leftBoundary // inlet

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

rightBoundary // outlet

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}
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centerLine

{

type symmetryPlane;

}

upperWall

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

// ****************************************** //
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¡case¿/0: File pointMotionU

• This file contains some input values that control the movement of the upper

wall.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

{

type zeroGradient;

}

rightBoundary // outlet

{

type zeroGradient;

}
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centerLine

{

type symmetryPlane;

}

upperWall

{

type dynPerCircleApproxGradually;

circleRadius 0.01500;

xCompInitialCenter 0.0;

speed 0.00500;

yCompFinalCenter 0.01900;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

}
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// ******************************************//

¡case¿/constant: File dynamicMeshDict

• This file contains the choice of mesh motion solver and diffusivity field.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object motionProperties;

}

// * * * * * * * * * * * * * * * * * * * * * //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.dylib");

solver velocityLaplacian;

diffusivity directional (1 1200 0);
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// ****************************************** //

¡case¿/constant: File transportProperties

• This file contains the choice of rheology models.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// ****************************************** //

transportModel Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 0.1452e-03;

// ****************************************** //
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¡case¿/constant: File turbulanceProperties

• This file contains the choice of RAS (Reynolds-averaged stress) modeling.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object turbulenceProperties;

}

// * * * * * * * * * * * * * * * * * * * * * //

simulationType laminar; // uses no turbulence models

// ****************************************** //

¡case¿/constant/polyMesh: File blockMeshDict

• This file contains input for the generation of the mesh.
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convertToMeters 1.0e-03;

vertices

(

( 0.00 0.00 -0.10)// vertex#0

(180.00 0.00 -0.10)// vertex#1

(180.00 10.00 -0.10)// vertex#2

( 0.00 10.00 -0.10)// vertex#3

( 0.00 0.00 0.10)// vertex#4

(180.00 0.00 0.10)// vertex#5

(180.00 10.00 0.10)// vertex#6

( 0.00 10.00 0.10)// vertex#7

);

blocks

(

hex (0 1 2 3 4 5 6 7) (810 23 1)

simpleGrading (1 1 1)

// block #0

);
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edges

(

);

boundary

(

leftBoundary // inlet

{

type patch;

faces

(

(0 3 7 4)

);

}

rightBoundary // outlet

{

type patch;

faces

(

(5 6 2 1)
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);

}

centerLine

{

type symmetryPlane;

faces

(

(1 0 4 5)

);

}

upperWall

{

type wall;

faces

(

(2 3 7 6)

);

}
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frontAndBack

{

type empty;

faces

(

(0 1 2 3)

(5 4 7 6)

);

}

);

mergePatchPairs

(

);

// ***************************************** //

¡case¿/system: File controlDict

• This dictionary sets input parameters essential for the creation of the database.

application transientSimpleDyMFoam;
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startFrom startTime;

startTime 0;

stopAt endTime;

endTime 48;

deltaT 0.00005;

writeControl adjustableRunTime;

writeInterval 2;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;
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timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1; // Maximum deltaT in seconds

libs

(

"dynPerCircleApproxGradually.dylib"

"movingWallNormalVel.dylib"

);

// ****************************************** //
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¡case¿/system: File fvSolution

• This file controls the equation solvers, tolerances and algorithms.

solvers

{

pcorr

{

solver GAMG;

tolerance 1e-7;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 20;

mergeLevels 1;

// controls the speed at which coarsening

// or refinement levels is performed.

maxIter 100;
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minIter 1;

}

p

{

$pcorr;

tolerance 1e-6;

relTol 0;

}

pFinal

{

$p;

tolerance 1e-7;

relTol 0;

}

"(U|k|epsilon|omega|nuTilda)"

{

solver smoothSolver;

smoother GaussSeidel;
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nSweeps 1;

tolerance 1e-07;

relTol 0;

maxIter 100;

minIter 1;

};

"(U|k|epsilon|omega|nuTilda)Final"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 2;

tolerance 1e-07;

relTol 0;

maxIter 100;

minIter 1;

}

cellMotionU

{

solver PCG;

preconditioner DIC;

245



tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nOuterCorrectors 20;

nNonOrthogonalCorrectors 0;

correctPhi true;

}

relaxationFactors

{

p 0.3;

U 0.7;

k 0.6;

omega 0.6;

epsilon 0.6;
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}

// ****************************************** //

¡case¿/system: File fvSchemes

• This file sets the numerical schemes for terms, such as derivatives in equations.

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{
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default none;

div(phi,U) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default none;

laplacian(nu,U) Gauss linear corrected;

laplacian(rAU,pcorr) Gauss linear corrected;

laplacian(rAU,p) Gauss linear corrected;

laplacian(diffusivity,cellMotionU)

Gauss linear uncorrected;

laplacian(nuEff,U) Gauss linear uncorrected;

}

interpolationSchemes

{

default linear;

interpolate(HbyA) linear;

}
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snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

pcorr ;

p ;

}

// ****************************************** //

A.1.2 dynPerCircleApproxGradually BC.

• Location: OpenFOAM\OpenFOAM-2.1.x\src.

• Execution: run wmake clean and then wmake libso.
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Make/files file

dynPerCircleApproxGraduallyPointPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/dynPerCircleApproxGradually

Make/options file

EXE_INC = \

-I$FOAM_SRC/triSurface/lnInclude \

-I$FOAM_SRC/meshTools/lnInclude \

-I$FOAM_SRC/dynamicMesh/lnInclude \

-I$FOAM_SRC/finiteVolume/lnInclude \

-I$FOAM_SRC/fvMotionSolver/lnInclude

LIB_LIBS = \

-ltriSurface \

-lmeshTools \

-ldynamicMesh \

-lfiniteVolume \

-lfvMotionSolvers
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dynPerCircleApproxGraduallyPointPatchVectorField.H

Class

Foam::

dynPerCircleApproxGraduallyPointPatchVectorField

Description

Foam::

dynPerCircleApproxGraduallyPointPatchVectorField

SourceFiles

dynPerCircleApproxGraduallyPointPatchVectorField.C

\*---------------------------------------------*/

#ifndef

dynPerCircleApproxGraduallyPointPatchVectorField_H

#define

dynPerCircleApproxGraduallyPointPatchVectorField_H
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#include "fixedValuePointPatchField.H"

// * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

/*--------------------------------------------*\

Class

dynPerCircleApproxGraduallyPointPatchVectorField

Declaration

\*--------------------------------------------*/

class

dynPerCircleApproxGraduallyPointPatchVectorField

:

public fixedValuePointPatchField<vector>

{

// Private data

scalar circleRadius_;

scalar xCompInitialCenter_;

scalar speed_;
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scalar yCompFinalCenter_;

pointField p0_;

public:

//- Runtime type information

TypeName("dynPerCircleApproxGradually");

// Constructors

//- Construct from patch and internal field

dynPerCircleApproxGraduallyPointPatchVectorField

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal field and

// dictionary

dynPerCircleApproxGraduallyPointPatchVectorField
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(

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given patchField<vector>

// onto

// a new patch

dynPerCircleApproxGraduallyPointPatchVectorField

(

const

dynPerCircleApproxGraduallyPointPatchVectorField&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual

autoPtr<pointPatchField<vector> > clone() const
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{

return autoPtr<pointPatchField<vector> >

(

new

dynPerCircleApproxGraduallyPointPatchVectorField

(

*this

)

);

}

//- Construct as copy setting internal field

// reference

dynPerCircleApproxGraduallyPointPatchVectorField

(

const

dynPerCircleApproxGraduallyPointPatchVectorField&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone setting
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// internal field

// reference

virtual autoPtr<pointPatchField<vector> > clone

(

const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new

dynPerCircleApproxGraduallyPointPatchVectorField

(

*this,

iF

)

);

}

// Member functions

// Mapping functions
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//- Map (and resize as needed) from self given

// a mapping

// object

virtual void autoMap

(

const pointPatchFieldMapper&

);

//- Reverse map the given pointPatchField onto

// this

// pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients associated with the
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// patch

// field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * //

#endif

// ***************************************//
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dynPerCircleApproxGraduallyPointPatchVectorField.C

#include

"dynPerCircleApproxGraduallyPointPatchVectorField.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

// * * * * * * Constructors * * * * * * * //

dynPerCircleApproxGraduallyPointPatchVectorField::

dynPerCircleApproxGraduallyPointPatchVectorField

(

const pointPatch& p,

259



const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(p, iF),

circleRadius_(0.0),

xCompInitialCenter_(0.0),

speed_(0.0),

yCompFinalCenter_(0.0),

p0_(p.localPoints())

{}

dynPerCircleApproxGraduallyPointPatchVectorField::

dynPerCircleApproxGraduallyPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchField<vector>(p, iF, dict),

circleRadius_(readScalar
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(dict.lookup("circleRadius"))),

xCompInitialCenter_(readScalar

(dict.lookup("xCompInitialCenter"))),

speed_(readScalar(dict.lookup("speed"))),

yCompFinalCenter_(readScalar

(dict.lookup("yCompFinalCenter")))

{

if (!dict.found("value"))

{

updateCoeffs();

}

if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();

}

}
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dynPerCircleApproxGraduallyPointPatchVectorField::

dynPerCircleApproxGraduallyPointPatchVectorField

(

const

dynPerCircleApproxGraduallyPointPatchVectorField&

ptf,

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector>

(ptf, p, iF, mapper),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

p0_(ptf.p0_)

{}
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dynPerCircleApproxGraduallyPointPatchVectorField::

dynPerCircleApproxGraduallyPointPatchVectorField

(

const

dynPerCircleApproxGraduallyPointPatchVectorField&

ptf,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(ptf, iF),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

p0_(ptf.p0_)

{}

// * * * * * * Member Functions * * * * * //
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void

dynPerCircleApproxGraduallyPointPatchVectorField::

autoMap

(

const pointPatchFieldMapper& m

)

{

fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}

void

dynPerCircleApproxGraduallyPointPatchVectorField::

rmap

(

const pointPatchField<vector>& ptf,

const labelList& addr

)

{

const

dynPerCircleApproxGraduallyPointPatchVectorField&
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aOVptf =

refCast

<const

dynPerCircleApproxGraduallyPointPatchVectorField>

(ptf);

fixedValuePointPatchField<vector>::

rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void

dynPerCircleApproxGraduallyPointPatchVectorField::

updateCoeffs()

{

if (this->updated())

{

return;

}

const polyMesh& mesh =
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this->dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar yCompInitialCenter

(

yMax+circleRadius_

);

scalar varCenterXcomp

(

xCompInitialCenter_+speed_*t.value()

);

scalar varCenterYcomp = 0.0;

if
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(

(t.value() > 0)

&&

(t.value() < 1)

)

{

varCenterYcomp =

yCompInitialCenter-

t.value()*

(yCompInitialCenter-yCompFinalCenter_);

}

else

{

varCenterYcomp = yCompFinalCenter_;

}

scalar yDiff

(

yMax-varCenterYcomp

);
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scalar yDiffSquared

(

yDiff*yDiff

);

scalar yRadicand

(

circleRadius_*circleRadius_-yDiffSquared

);

scalar yRadicandSqrt

(

sqrt(yRadicand)

);

scalar lowerBound

(

varCenterXcomp-yRadicandSqrt

);

scalar upperBound
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(

varCenterXcomp+yRadicandSqrt

);

scalar b = -1.0;

pointField

yCenterShift(p0_.size(),point(0.0,0.0,0.0));

pointField

velocity(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointI)

{

scalar xRadicandSqrt = 0.0;

if

(

(p0_.component(vector::X)()[pointI] > lowerBound)
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&&

(p0_.component(vector::X)()[pointI] < upperBound)

)

{//major

scalar xDiff

(

p0_.component(vector::X)()[pointI]-varCenterXcomp

);

scalar xDiffSquared

(

xDiff*xDiff

);

scalar xRadicand

(

circleRadius_*circleRadius_-xDiffSquared

);

xRadicandSqrt = sqrt(xRadicand);
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yCenterShift[pointI]=

point(0.0,varCenterYcomp-

1*p0_.component(vector::Y)()[pointI],0.0);

}

else

{

xRadicandSqrt = 0.0;

yCenterShift[pointI]=point(0.0,0.0,0.0);

}

velocity[pointI]

=yCenterShift[pointI]+

b*point(0.0,xRadicandSqrt,0.0);

}

pointField::operator=

(

(p0_

+velocity

-p.localPoints()

)/t.deltaT().value()
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);

fixedValuePointPatchField<vector>::

updateCoeffs();

}

void

dynPerCircleApproxGraduallyPointPatchVectorField::

write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("circleRadius")

<< circleRadius_ << token::END_STATEMENT << nl;

os.writeKeyword("xCompInitialCenter")

<< xCompInitialCenter_ << token::END_STATEMENT << nl;

os.writeKeyword("speed")

<< speed_ << token::END_STATEMENT << nl;
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os.writeKeyword("yCompFinalCenter")

<< yCompFinalCenter_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

// * * * * * * * * * * * * * * ** * * * * * //

makePointPatchTypeField

(

pointPatchVectorField,

dynPerCircleApproxGraduallyPointPatchVectorField

);

// * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// **************************************** //
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A.2 2-D Axisymmetric Tubular Simulations

// S. Alokaily, 3-7-2017.

A.2.1 Case Setup

• Standard Case: wave speed = 5 mm/s, Newtonian fluid N3, maximum relative

occlusion = 60%, mesh M2.

¡case¿/0: File U

• This file contains boundary and initial conditions for the velocity.

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// **************************************** //
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dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

{

type zeroGradient;

}

rightBoundary // outlet

{

type zeroGradient;

}

centerLine

{

type empty;

}

275



upperWall

{

type movingWallNormalVel;

value uniform (0 0 0);

}

back

{

type wedge;

}

front

{

type wedge;

}

}

// **************************************** //
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¡case¿/0: File p

• This file contains boundary and initial conditions for the pressure.

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;

}

// **************************************** //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

leftBoundary // inlet

{

type totalPressure;
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p0 uniform 0;

gamma 1;

value uniform 0;

}

rightBoundary // outlet

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

centerLine

{

type empty;

}

upperWall

{

type zeroGradient;
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}

back

{

type wedge;

}

front

{

type wedge;

}

}

// **************************************** //

¡case¿/0: File pointMotionU

• This file contains some input values that control the movement of the upper

wall.

FoamFile

{
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version 2.0;

format ascii;

class pointVectorField;

object pointMotionU;

}

// **************************************** //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

{

type zeroGradient;

}

rightBoundary // outlet

{
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type zeroGradient;

}

centerLine

{

type fixedValue;

value uniform (0 0 0);

}

upperWall

{

type dynPerCircleAxisymm;

circleRadius 0.01500;

xCompInitialCenter 0.0;

speed 0.0050;

yCompFinalCenter 0.01900;

value uniform (0 0 0);

}
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back

{

type wedge;

}

front

{

type wedge;

}

}

// **************************************** //

¡case¿/constant: File dynamicMeshDict

• This file contains the choice of mesh motion solver and diffusivity field.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

282



object motionProperties;

}

// **************************************** //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.dylib" );

solver velocityLaplacian;

diffusivity directional (1 1200 2000);

// **************************************** //

¡case¿/constant: File transportProperties

• refer to Section A.1.1.

¡case¿/constant: File turbulanceProperties

• refer to Section A.1.1.
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¡case¿/constant/polyMesh: File blockMeshDict

• This file contains input for the generation of the mesh.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// ****************************************** //

convertToMeters 1.0e-03;

vertices

(

( 0.00 0.00 0.00)// vertex#0

(180.00 0.00 0.00)// vertex#1

(180.00 10.00 -0.40)// vertex#2

( 0.00 10.00 -0.40)// vertex#3

( 0.00 0.00 0.00)// vertex#4
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(180.00 0.00 0.00)// vertex#5

(180.00 10.00 0.40)// vertex#6

( 0.00 10.00 0.40)// vertex#7

);

blocks

(

hex (0 1 2 3 0 1 6 7) (540 15 1)

simpleGrading (1 1 1)// block #0

);

edges

(

);

boundary

(

leftBoundary // inlet

{
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type patch;

faces

(

(0 3 7 0)

);

}

rightBoundary // outlet

{

type patch;

faces

(

(1 2 6 1)

);

}

centerLine

{

type empty;

faces

(
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(0 1 1 0)

);

}

upperWall

{

type wall;

faces

(

(2 3 7 6)

);

}

back

{

type wedge;

faces

(

(3 2 1 0)

);
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}

front

{

type wedge;

faces

(

(0 1 6 7)

);

}

);

mergePatchPairs

(

);

// ***************************************** //

¡case¿/system: File controlDict

• This dictionary sets input parameters essential for the creation of the database.

FoamFile
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{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// ****************************************** //

application transientSimpleDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 38;

deltaT 0.00005;
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writeControl adjustableRunTime;

writeInterval 2;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.5;
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maxDeltaT 1; // Maximum deltaT in seconds

libs

(

"dynPerCircleAxisymm.dylib"

"movingWallNormalVel.dylib"

);

// ****************************************** //

¡case¿/system: File fvSolution

• This file controls the equation solvers, tolerances and algorithms.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSolution;

}

// ****************************************** //
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solvers

{

pcorr

{

solver GAMG;

tolerance 1e-10;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 20;

mergeLevels 1;

// maxIter 100;

minIter 1;

}

p

{

$pcorr;
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tolerance 1e-10;

relTol 0;

}

pFinal

{

$p;

tolerance 1e-10;

relTol 0;

}

"(U|k|epsilon|omega|nuTilda)"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 1;

tolerance 1e-10;

relTol 0;

// maxIter 100;

minIter 1;

};

293



"(U|k|epsilon|omega|nuTilda)Final"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 2;

tolerance 1e-10;

relTol 0;

// maxIter 100;

minIter 1;

}

cellMotionU

{

solver PCG;

preconditioner DIC;

tolerance 1e-10;

relTol 0;

}

}

PISO
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{

nCorrectors 2;

nOuterCorrectors 25;

nNonOrthogonalCorrectors 0;

correctPhi true;

}

relaxationFactors

{

p 0.3;

U 0.7;

k 0.6;

omega 0.6;

epsilon 0.6;

}

// ****************************************** //
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¡case¿/system: File fvSchemes

• refer to Section A.1.1.

A.2.2 dynPerCircleAxisymm BC.

• Location: OpenFOAM\OpenFOAM-2.1.x\src.

• Execution: run wmake clean and then wmake libso.

Make/files file

dynPerCircleAxisymmPointPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/dynPerCircleAxisymm

Make/options file

• refer to Section A.1.2
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dynPerCircleAxisymmPointPatchVectorField.H

Class

Foam::dynPerCircleAxisymmPointPatchVectorField

Description

Foam::dynPerCircleAxisymmPointPatchVectorField

SourceFiles

dynPerCircleAxisymmPointPatchVectorField.C

/*--------------------------------------------*\

#ifndef dynPerCircleAxisymmPointPatchVectorField_H

#define dynPerCircleAxisymmPointPatchVectorField_H

#include "fixedValuePointPatchField.H"

// ***************************************//

namespace Foam
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{

% /*--------------------------------------------*\

Class dynPerCircleAxisymmPointPatchVectorField

Declaration

/*--------------------------------------------*\

class dynPerCircleAxisymmPointPatchVectorField

:

public fixedValuePointPatchField<vector>

{

// Private data

scalar circleRadius_;

scalar xCompInitialCenter_;

scalar speed_;

scalar yCompFinalCenter_;

pointField p0_;

public:

//- Runtime type information

TypeName("dynPerCircleAxisymm");
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// Constructors

//- Construct from patch and internal field

dynPerCircleAxisymmPointPatchVectorField

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal field and dictionary

dynPerCircleAxisymmPointPatchVectorField

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given patchField<vector>

//onto a new patch

dynPerCircleAxisymmPointPatchVectorField

(

const dynPerCircleAxisymmPointPatchVectorField&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,
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const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual autoPtr<pointPatchField<vector> > clone() const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerCircleAxisymmPointPatchVectorField

(

*this

)

);

}

//- Construct as copy setting internal field

//reference

dynPerCircleAxisymmPointPatchVectorField

(

const dynPerCircleAxisymmPointPatchVectorField&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone setting internal
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//field reference

virtual autoPtr<pointPatchField<vector> > clone

(

const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerCircleAxisymmPointPatchVectorField

(

*this,

iF

)

);

}

// Member functions

// Mapping functions

//- Map (and resize as needed) from self

//given a mapping object

virtual void autoMap

(
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const pointPatchFieldMapper&

);

//- Reverse map the given pointPatchField

//onto this pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients associated with the patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// ***************************************//

} // End namespace Foam

// ***************************************//

#endif

// ***************************************//
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dynPerCircleAxisymmPointPatchVectorField.C

#include "dynPerCircleAxisymmPointPatchVectorField.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"

// **************************************** //

namespace Foam

{

// ******************Constructors********************** //

dynPerCircleAxisymmPointPatchVectorField::

dynPerCircleAxisymmPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(p, iF),
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circleRadius_(0.0),

xCompInitialCenter_(0.0),

speed_(0.0),

yCompFinalCenter_(0.0),

p0_(p.localPoints())

{}

dynPerCircleAxisymmPointPatchVectorField::

dynPerCircleAxisymmPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchField<vector>(p, iF, dict),

circleRadius_(readScalar(dict.lookup("circleRadius"))),

xCompInitialCenter_(readScalar(dict.lookup

("xCompInitialCenter"))),

speed_(readScalar(dict.lookup("speed"))),

yCompFinalCenter_(readScalar(dict.lookup
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("yCompFinalCenter")))

{

if (!dict.found("value"))

{

updateCoeffs();

}

if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();

}

}

dynPerCircleAxisymmPointPatchVectorField::

dynPerCircleAxisymmPointPatchVectorField

(
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const dynPerCircleAxisymmPointPatchVectorField& ptf,

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector>(ptf, p, iF, mapper),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

p0_(ptf.p0_)

{}

dynPerCircleAxisymmPointPatchVectorField::

dynPerCircleAxisymmPointPatchVectorField

(

const dynPerCircleAxisymmPointPatchVectorField& ptf,

const DimensionedField<vector, pointMesh>& iF

)
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:

fixedValuePointPatchField<vector>(ptf, iF),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

p0_(ptf.p0_)

{}

// *******************Member Functions********************* //

void dynPerCircleAxisymmPointPatchVectorField::autoMap

(

const pointPatchFieldMapper& m

)

{

fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}
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void dynPerCircleAxisymmPointPatchVectorField::rmap

(

const pointPatchField<vector>& ptf,

const labelList& addr

)

{

const dynPerCircleAxisymmPointPatchVectorField& aOVptf =

refCast<const dynPerCircleAxisymmPointPatchVectorField>(ptf);

fixedValuePointPatchField<vector>::rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void dynPerCircleAxisymmPointPatchVectorField::updateCoeffs()

{

if (this->updated())

{

return;

}

const polyMesh& mesh = this->dimensionedInternalField().mesh()();
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const Time& t = mesh.time();

const pointPatch& p = this->patch();

scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar yCompInitialCenter

(

yMax+circleRadius_

);

scalar varCenterXcomp

(

xCompInitialCenter_+speed_*t.value()

);

scalar varCenterYcomp = 0.0;

if

(
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(t.value() > 0)

&&

(t.value() < 1)

)

{

varCenterYcomp =

yCompInitialCenter-t.value()*

(yCompInitialCenter-yCompFinalCenter_);

}

else

{

varCenterYcomp = yCompFinalCenter_;

}

scalar yDiff

(

yMax-varCenterYcomp

);

scalar yDiffSquared

(
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yDiff*yDiff

);

scalar yRadicand

(

circleRadius_*circleRadius_-yDiffSquared

);

scalar yRadicandSqrt

(

sqrt(yRadicand)

);

scalar lowerBound

(

varCenterXcomp-yRadicandSqrt

);

scalar upperBound

(

varCenterXcomp+yRadicandSqrt
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);

scalar b = -1.0;

pointField yCenterShift(p0_.size(),point(0.0,0.0,0.0));

pointField velocity(p0_.size(),point(0.0,0.0,0.0));

pointField vel(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointI)

{

scalar xRadicandSqrt = 0.0;

if

(

(p0_.component(vector::X)()[pointI] > lowerBound)

&&

(p0_.component(vector::X)()[pointI] < upperBound)

)

{//major
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scalar xDiff

(

p0_.component(vector::X)()[pointI]-varCenterXcomp

);

scalar xDiffSquared

(

xDiff*xDiff

);

scalar xRadicand

(

circleRadius_*circleRadius_-xDiffSquared

);

xRadicandSqrt = sqrt(xRadicand);

yCenterShift[pointI]

=point(0.0,varCenterYcomp-1*

p0_.component(vector::Y)()[pointI],0.0);
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}

else

{

xRadicandSqrt = 0.0;

yCenterShift[pointI]=point(0.0,0.0,0.0);

}

velocity[pointI]

=yCenterShift[pointI]+b*point(0.0,xRadicandSqrt,0.0);

if

(p0_.component(vector::Z)()[pointI] > 0.0)

{

vel[pointI]=velocity[pointI]+point(0.0,0.0,0.04*

velocity.component(vector::Y)()[pointI]);

}

else

{

vel[pointI]=velocity[pointI]+point(0.0,0.0,-0.04*

velocity.component(vector::Y)()[pointI]);
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}

}

// p0_ and p.localPoints() will return back the points the

// the deformation

pointField::operator=

(

(

p0_+

vel

-p.localPoints()

)/t.deltaT().value()

);

fixedValuePointPatchField<vector>::updateCoeffs();

}

void dynPerCircleAxisymmPointPatchVectorField::write
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(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("circleRadius")

<< circleRadius_ << token::END_STATEMENT << nl;

os.writeKeyword("xCompInitialCenter")

<< xCompInitialCenter_ << token::END_STATEMENT << nl;

os.writeKeyword("speed")

<< speed_ << token::END_STATEMENT << nl;

os.writeKeyword("yCompFinalCenter")

<< yCompFinalCenter_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

// **************************************** //

makePointPatchTypeField

(
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pointPatchVectorField,

dynPerCircleAxisymmPointPatchVectorField

);

// **************************************** //

} // End namespace Foam

// **************************************** //

A.3 2-D Axisymmetric Conical Simulations

// S. Alokaily, 3-7-2017.

A.3.1 Case Setup

• Standard case: wave speed = 2.3 mm/s, Newtonian fluid N3, maximum relative

occlusion = 66%, mesh M4.
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¡case¿/0: File U

• This file contains boundary and initial conditions for the velocity.

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// **************************************** //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

{

type zeroGradient;
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}

rightBoundary // outlet

{

type zeroGradient;

}

centerLine

{

type empty;

}

upperWall

{

type movingWallNormalVel;

value uniform (0 0 0);

}

back

{
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type wedge;

}

front

{

type wedge;

}

}

// **************************************** //

¡case¿/0: File p

• This file contains boundary and initial conditions for the pressure.

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;
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}

// **************************************** //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

leftBoundary // inlet

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

rightBoundary // outlet

{

type totalPressure;

p0 uniform 0;
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gamma 1;

value uniform 0;

}

centerLine

{

type empty;

}

upperWall

{

type zeroGradient;

}

back

{

type wedge;

}

front
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{

type wedge;

}

}

// **************************************** //

¡case¿/0: File pointMotionU

• This file contains some input values that control the movement of the upper

wall.

FoamFile

{

version 2.0;

format ascii;

class pointVectorField;

object pointMotionU;

}

// **************************************** //
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dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

{

type zeroGradient;

}

rightBoundary // outlet

{

type fixedValue;

value uniform (0 0 0);

}

centerLine

{
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type fixedValue;

value uniform (0 0 0);

}

upperWall

{

type dynPerCircleConicalAxisymmMultiwaves;

circleRadius 0.010;

xCompInitialCenter 0.0085;

speed 0.0023;

yCompFinalCenter 0.0548;

period 20;

numOfWaves 1;

alpha 1.0;

beta 60;//inclination angle in radian

l 0.001;

value uniform (0 0 0);

}

back
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{

type wedge;

}

front

{

type wedge;

}

}

// **************************************** //

¡case¿/constant: File dynamicMeshDict

• This file contains the choice of mesh motion solver and diffusivity field.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object motionProperties;
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}

// **************************************** //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

solver velocityLaplacian;

//velocityLaplacianCoeffs

diffusivity directional (1 4 7);

// **************************************** //

¡case¿/constant: File transportProperties

• refer to Section A.1.1.

¡case¿/constant: File turbulanceProperties

• refer to Section A.1.1.
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¡case¿/constant/polyMesh: File blockMeshDict

• This file contains input for the generation of the mesh.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// ***************************************** //

convertToMeters 1.0e-02;

vertices

(

(0.00 0.00 0.00)// vertex#0

(15.00 0.00 0.00)// vertex#1

(15.00 0.50 -0.020)// vertex#2

(0.00 5.00 -0.20)// vertex#3

(0.00 0.00 0.00)// vertex#4

328



(15.00 0.00 0.00)// vertex#5

(15.00 0.50 0.020)// vertex#6

(0.00 5.00 0.20)// vertex#7

);

blocks

(

hex (0 1 2 3 0 1 6 7) (405 27 1)

simpleGrading (0.1 1 1)// block #0 fffmsh

);

edges

(

);

boundary

(

leftBoundary \\ inlet
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{

type patch;

faces

(

(0 3 7 0)

);

}

rightBoundary // outlet

{

type patch;

faces

(

(1 2 6 1)

);

}

centerLine

{

type empty;

faces
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(

(0 1 1 0)

);

}

upperWall

{

type wall;

faces

(

(2 3 7 6)

);

}

back

{

type wedge;

faces

(

(0 1 2 3)

331



);

}

front

{

type wedge;

faces

(

(0 7 6 1)

);

}

);

mergePatchPairs

(

);

// ***************************************** //
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¡case¿/system: File controlDict

• This dictionary sets input parameters essential for the creation of the database.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// ****************************************** //

application transientSimpleDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;
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endTime 65;

deltaT 0.00005;

writeControl adjustableRunTime;

writeInterval 1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;
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adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1; //Maximum deltaT in seconds

libs

(

"dynPerCircleConicalAxisymmMultiwaves.so"

"movingWallNormalVel.so"

);

// ****************************************** //

¡case¿/system: File fvSolution

• This file controls the equation solvers, tolerances and algorithms.

FoamFile

{

version 2.0;

format ascii;

class dictionary;
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object fvSolution;

}

// ****************************************** //

solvers

{

pcorr

{

solver GAMG;

tolerance 1e-10;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 20;

mergeLevels 1;

// maxIter 100;

minIter 1;

}
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p

{

$pcorr;

tolerance 1e-10;

relTol 0;

}

pFinal

{

$p;

tolerance 1e-10;

relTol 0;

}

"(U|k|epsilon|omega|nuTilda)"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 1;

tolerance 1e-10;

relTol 0;
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// maxIter 100;

minIter 1;

};

"(U|k|epsilon|omega|nuTilda)Final"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 2;

tolerance 1e-10;

relTol 0;

// maxIter 100;

minIter 1;

}

cellMotionU

{

solver PCG;

preconditioner DIC;

tolerance 1e-10;

relTol 0;

}
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}

PISO

{

nCorrectors 2;

nOuterCorrectors 50;

nNonOrthogonalCorrectors 0;

correctPhi true;

}

relaxationFactors

{

p 0.3;

U 0.7;

k 0.6;

omega 0.6;

epsilon 0.6;

}
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// ****************************************** //

¡case¿/system: File fvSchemes

• This file sets the numerical schemes for terms, such as derivatives in equations.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// ****************************************** //

ddtSchemes

{

default Euler;

}

gradSchemes

340



{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwind cellLimited Gauss linear 1;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default none;

laplacian(nu,U) Gauss linear corrected;

laplacian(rAU,pcorr) Gauss linear corrected;

laplacian(rAU,p) Gauss linear corrected;

laplacian(diffusivity,cellMotionU) Gauss linear uncorrected;

laplacian(nuEff,U) Gauss linear uncorrected;

}
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interpolationSchemes

{

default linear;

interpolate(HbyA) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

pcorr ;

p ;

}

// ****************************************** //
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A.3.2 dynPerCircleConicalAxisymmMultiwaves BC.

• Location: OpenFOAM\OpenFOAM-2.1.x\src.

• Execution: run wmake clean and then wmake libso.

Make/files file

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/dynPerCircleConicalAxisymmMultiwaves

Make/options file

• refer to Section A.1.2

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField.H

Class

Foam::dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField
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Description

Foam::dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

SourceFiles

dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField.C

/*--------------------------------------------*\

#ifndef dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField_H

#define dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField_H

#include "fixedValuePointPatchField.H"

// ***************************************//

namespace Foam

{

/*--------------------------------------------*\

Class dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField Declaration

\*--------------------------------------------*/

class dynPerCircleConicalAxisymmMultiwaves
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PointPatchVectorField

:

public fixedValuePointPatchField<vector>

{

// Private data

scalar circleRadius_;

scalar xCompInitialCenter_;

scalar speed_;

scalar yCompFinalCenter_;

scalar period_;

scalar alpha_;

scalar beta_;

scalar l_;

scalar numOfWaves_;

scalar k;

scalar sp;

scalar spp;

scalar s;

scalar varCenterYcompPre;

scalar varCenterXcompPre;

pointField p0_;
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public:

//- Runtime type information

TypeName("dynPerCircleConicalAxisymmMultiwaves");

// Constructors

//- Construct from patch and internal field

dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal field and dictionary

dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

(

const pointPatch&,
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const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given

// patchField<vector> onto a new patch

dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

(

const dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual autoPtr<pointPatchField<vector> > clone() const

{

return autoPtr<pointPatchField<vector> >

(
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new dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

(

*this

)

);

}

//- Construct as copy setting internal field reference

dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

(

const dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone setting

// internal field reference

virtual autoPtr<pointPatchField<vector> > clone

(
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const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

(

*this,

iF

)

);

}

// Member functions

// Mapping functions

//- Map (and resize as needed) from self

// given a mapping object

virtual void autoMap

(
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const pointPatchFieldMapper&

);

//- Reverse map the given

// pointPatchField onto this

// pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients

// associated with the patch field

virtual void updateCoeffs();

//- Write
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virtual void write(Ostream&) const;

};

// ***************************************//

} // End namespace Foam

// ***************************************//

#endif

// ***************************************//

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField.C

/*--------------------------------------------*\

#include "dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"

#include <stdio.h>
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#include <iostream> // std::cout

#include <cmath> // std::abs

#define _USE_MATH_DEFINES

#include <math.h>

// **************************************** //

namespace Foam

{

// ******************Constructors********************** //

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField::

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(p, iF),

circleRadius_(0.0),

xCompInitialCenter_(0.0),

speed_(0.0),
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yCompFinalCenter_(0.0),

period_(0.0),

numOfWaves_(0.0),

alpha_(0.0),

beta_(0.0),

l_(0.0),

p0_(p.localPoints())

{}

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField::

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchField<vector>(p, iF, dict),

circleRadius_(readScalar(dict.lookup("circleRadius"))),

xCompInitialCenter_(readScalar

(dict.lookup("xCompInitialCenter"))),
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speed_(readScalar(dict.lookup("speed"))),

yCompFinalCenter_(readScalar

(dict.lookup("yCompFinalCenter"))),

numOfWaves_(readScalar(dict.lookup("numOfWaves"))),

alpha_(readScalar(dict.lookup("alpha"))),

beta_(readScalar(dict.lookup("beta"))),

l_(readScalar(dict.lookup("l"))),

period_(readScalar(dict.lookup("period")))

{

if (!dict.found("value"))

{

updateCoeffs();

}

if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();
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}

}

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField::

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField

(

const dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField& ptf,

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector>(ptf, p, iF, mapper),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

period_(ptf.period_),

alpha_(ptf.alpha_),
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beta_(ptf.beta_),

l_(ptf.l_),

numOfWaves_(ptf.numOfWaves_),

p0_(ptf.p0_)

{}

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField::

dynPerCircleConicalAxisymmMultiwavesPointPatchVectorField

(

const dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField& ptf,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(ptf, iF),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

period_(ptf.period_),
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alpha_(ptf.alpha_),

beta_(ptf.beta_),

l_(ptf.l_),

numOfWaves_(ptf.numOfWaves_),

p0_(ptf.p0_)

{}

// *******************Member Functions********************* //

void dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField::autoMap

(

const pointPatchFieldMapper& m

)

{

fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}

void dynPerCircleConicalAxisymmMultiwaves
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PointPatchVectorField::rmap

(

const pointPatchField<vector>& ptf,

const labelList& addr

)

{

const dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField& aOVptf =

refCast<const dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField>(ptf);

fixedValuePointPatchField<vector>::rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField::updateCoeffs()

{
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if (this->updated())

{

return;

}

const polyMesh& mesh = this->

dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

double gamma=(beta_ * M_PI/180.0);

scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar yMin

(

min(p0_.component(vector::Y)())

);

359



scalar xMax

(

max(p0_.component(vector::X)())

);

scalar xMin

(

min(p0_.component(vector::X)())

);

double param1

(

(yMax-yMin)/xMax

);

double theta=atan(param1);

tensor R(cos(theta),-1*sin(theta),0.0,1*sin(theta),

cos(theta),0.0,0.0,0.0,1.0);

tensor RT(cos(theta),1*sin(theta),0.0,-1*sin(theta),

cos(theta),0.0,0.0,0.0,1.0);

pointField q1(p0_.size(),point(0.0,0.0,0.0));

pointField q2(p0_.size(),point(0.0,0.0,0.0));

pointField q0(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointJ)
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{

q1[pointJ]=p0_[pointJ]-

point(xMin,yMax,p0_.component(vector::Z)()[pointJ]);

q2[pointJ]=q1[pointJ] & RT;

q0[pointJ]=q2[pointJ]+

point(xMin,yMax,p0_.component(vector::Z)()[pointJ]);

}

scalar yCompInitialCenter

(

yMax+circleRadius_

);

scalar xMaxq0

(

max(q0.component(vector::X)())

);

pointField M(q0.size(),point(0.0,0.0,0.0));
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double tFinalCenterXcomp=(xMaxq0/speed_);

if

(

t.value() <=tFinalCenterXcomp

)

{

k = 0.0;

}

if

(

t.value() ==t.deltaT().value()

)

{

sp=xMaxq0;

}

for( int i = numOfWaves_; i >= 1; i=i-1 )
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{

for( int j=i; j<=i; j=j+1 )

{

if(t.value() > (numOfWaves_-i)*period_)

{

double time=t.value()-(numOfWaves_-j)*period_;

scalar varCenterXcomp

(

xCompInitialCenter_+speed_*time

);

scalar varCenterYcomp = 0.0;

if(time+k*period_ == t.value()) {s=sp;} else {s=l_;}
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if

(

(time > 0)

&&

(time < 1)

)

{

varCenterYcomp = yCompInitialCenter-time*

(yCompInitialCenter-yCompFinalCenter_);

}

else

{

if

(

(mag(s) < l_)

)

{

varCenterYcomp =varCenterYcompPre+alpha_*
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speed_*t.deltaT().value()*sin(gamma);

varCenterXcomp=varCenterXcompPre+alpha_*

speed_*t.deltaT().value()*cos(gamma);

s=sp;

}

else

{

varCenterYcomp = yCompFinalCenter_;

}

}

if

(

varCenterYcomp >= yCompInitialCenter

)

{

varCenterYcomp = yCompInitialCenter;

}
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scalar yDiff

(

yMax-varCenterYcomp

);

scalar yDiffSquared

(

yDiff*yDiff

);

scalar yRadicand

(

mag(circleRadius_*circleRadius_-yDiffSquared)

);

scalar yRadicandSqrt

(

sqrt(yRadicand)

);
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scalar lowerBound

(

varCenterXcomp-yRadicandSqrt

);

scalar upperBound

(

varCenterXcomp+yRadicandSqrt

);

scalar Xcenterw=(varCenterXcomp*cos(theta)+

(varCenterYcomp-yMax)*sin(theta));

scalar Ycenterw=(-1.0*varCenterXcomp*

sin(theta)+(varCenterYcomp-yMax)*cos(theta)+yMax);

scalar chordLength=(upperBound-lowerBound);

scalar Xlowerw=lowerBound*cos(theta);

scalar Xupperw=upperBound*cos(theta);

scalar Ylowerw=((yMin-yMax)/xMax)*Xlowerw+yMax;

scalar Yupperw=((yMin-yMax)/xMax)*Xupperw+yMax;

scalar Xbar=(lowerBound+upperBound)/2.0;

scalar Xchordcenterw=Xcenterw;
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scalar Ychordcenterw=((yMin-yMax)/xMax)*Xchordcenterw+yMax;;

scalar gap=varCenterYcomp-circleRadius_;

scalar Xgapw=Xchordcenterw;

scalar Ygapw=Ycenterw-circleRadius_;

scalar Amplitudew=circleRadius_-(varCenterYcomp-yMax);

scalar ROw=(1.0-(Ygapw/Ychordcenterw))*100.0;

scalar DistanceOfAcwCenterFromPylorus=(xMax-Xcenterw);

scalar DistanceOfAcwXupperFromPylorus=(xMax-Xupperw);

scalar b = -1.0;

pointField yCenterShift(q0.size(),point(0.0,0.0,0.0));

pointField velocity(q0.size(),point(0.0,0.0,0.0));

pointField q3(q0.size(),point(0.0,0.0,0.0));

pointField q4(q0.size(),point(0.0,0.0,0.0));

pointField q5(q0.size(),point(0.0,0.0,0.0));

forAll(q0,pointI)

{
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scalar xRadicandSqrt = 0.0;

if

(

(q0.component(vector::X)()[pointI] > lowerBound)

&&

(q0.component(vector::X)()[pointI] < upperBound)

)

{

scalar xDiff

(

q0.component(vector::X)()[pointI]-varCenterXcomp

);

scalar xDiffSquared

(

xDiff*xDiff

);

scalar xRadicand

(
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circleRadius_*circleRadius_-xDiffSquared

);

xRadicandSqrt = sqrt(xRadicand);

yCenterShift[pointI] = point(0.0,varCenterYcomp-1*

q0.component(vector::Y)()[pointI],0.0);

}

else

{

xRadicandSqrt = 0.0;

yCenterShift[pointI]=point(0.0,0.0,0.0);

}

velocity[pointI]=

yCenterShift[pointI]+b*point(0.0,xRadicandSqrt,0.0);

q3[pointI]=velocity[pointI] & R;

if

(p0_.component(vector::Z)()[pointI] > 0.0)
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{

q4[pointI]=q3[pointI]+

point(0.0,0.0,0.04*q3.component(vector::Y)()[pointI]);

}

else

{

q4[pointI]=q3[pointI]+

point(0.0,0.0,-0.04*q3.component(vector::Y)()[pointI]);

}

}

// p0_ and p.localPoints() will return back the points the

// the deformation

if( mag(s) >= l_ ) {s=xMaxq0-upperBound;;}

if( mag(s) <= l_ ) {k=(numOfWaves_ - j);}

M=M+q4;

pointField::operator=
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(

(

p0_+

M

-p.localPoints()

)/t.deltaT().value()

);

if (time+k*period_ == t.value())

{

varCenterYcompPre = varCenterYcomp;

varCenterXcompPre = varCenterXcomp; sp=s;

}

}

}

}

372



fixedValuePointPatchField<vector>::updateCoeffs();

}

void dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField::write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("circleRadius")

<< circleRadius_ << token::END_STATEMENT << nl;

os.writeKeyword("xCompInitialCenter")

<< xCompInitialCenter_ << token::END_STATEMENT << nl;

os.writeKeyword("speed")

<< speed_ << token::END_STATEMENT << nl;

os.writeKeyword("yCompFinalCenter")

<< yCompFinalCenter_ << token::END_STATEMENT << nl;

os.writeKeyword("period")
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<< period_ << token::END_STATEMENT << nl;

os.writeKeyword("alpha")

<< alpha_ << token::END_STATEMENT << nl;

os.writeKeyword("beta")

<< beta_ << token::END_STATEMENT << nl;

os.writeKeyword("l")

<< l_ << token::END_STATEMENT << nl;

os.writeKeyword("numOfWaves")

<< numOfWaves_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

// **************************************** //

makePointPatchTypeField

(

pointPatchVectorField,

dynPerCircleConicalAxisymmMultiwaves

PointPatchVectorField

);
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// **************************************** //

} // End namespace Foam

// **************************************** //
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Appendix B

Closed Outlet Simulations

// S. Alokaily, 3-7-2017.

B.1 Circular ACWs Simulations

B.1.1 Case Setup

• wave speed = 2.3 mm/s, Newtonian fluid N3, maximum relative occlusion =

80%, mesh M3.
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¡case¿/0: File U

• This file contains boundary and initial conditions for the velocity.

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// **************************************** //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary \\ inlet

{

type zeroGradient;
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}

rightBoundary \\ outlet

{

type fixedValue;

value uniform (0 0 0);

}

centerLine

{

type empty;

}

upperWall

{

type movingWallNormalVel;

value uniform (0 0 0);

}

back

{
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type wedge;

}

front

{

type wedge;

}

}

// **************************************** //

¡case¿/0: File p

• This file contains boundary and initial conditions for the pressure.

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;
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}

// **************************************** //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

leftBoundary // inlet

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

rightBoundary // outlet

{

type zeroGradient;
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}

centerLine

{

type empty;

}

upperWall

{

type zeroGradient;

}

back

{

type wedge;

}

front

{

type wedge;

}

382



}

// **************************************** //

¡case¿/0: File pointMotionU

• This file contains some input values that control the movement of the upper

wall.

FoamFile

{

version 2.0;

format ascii;

class pointVectorField;

object pointMotionU;

}

// **************************************** //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);
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boundaryField

{

leftBoundary \\ inlet

{

type fixedValue;

value uniform (0 0 0);

}

rightBoundary // outlet

{

type fixedValue;

value uniform (0 0 0);

}

centerLine

{

type fixedValue;

value uniform (0 0 0);

}

upperWall
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{

type dynPerCircleConicalAxisymmMultiwaves;

circleRadius 0.01;

xCompInitialCenter 0.0085;

speed 0.0023;

yCompFinalCenter 0.05375;

period 20;

numOfWaves 100;

alpha 1.0;

beta 45;

l 0.0001;

value uniform (0 0 0);

}

back

{

type wedge;

}

front

{
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type wedge;

}

}

// **************************************** //

¡case¿/constant: File dynamicMeshDict

• This file contains the choice of mesh motion solver and diffusivity field.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object motionProperties;

}

// **************************************** //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );
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solver velocityLaplacian;

//velocityLaplacianCoeffs

diffusivity directional (1 4 7);

// **************************************** //

¡case¿/constant: File transportProperties

• refer to Section A.1.1.

¡case¿/constant: File turbulanceProperties

• refer to Section A.1.1.

¡case¿/constant/polyMesh: File blockMeshDict

• This file contains input for the generation of the mesh.

FoamFile

{

version 2.0;
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format ascii;

class dictionary;

object blockMeshDict;

}

// ****************************************** //

convertToMeters 1.0e-02;

vertices

(

(0.00 0.00 0.00) // vertex#0

(15.00 0.00 0.00) // vertex#1

(15.00 0.50 -0.020) // vertex#2

(0.00 5.00 -0.20) // vertex#3

(0.00 0.00 0.00) // vertex#4

(15.00 0.00 0.00) // vertex#5

(15.00 0.50 0.020) // vertex#6

(0.00 5.00 0.20) // vertex#7

);
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blocks

(

hex (0 1 2 3 0 1 6 7) (270 18 1)

simpleGrading (0.1 1 1)// block #0 ffmsh

);

edges

(

);

boundary

(

leftBoundary // inlet

{

type patch;

faces

(

(0 3 7 0)

);
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}

rightBoundary // outlet

{

type patch;

faces

(

(1 2 6 1)

);

}

centerLine

{

type empty;

faces

(

(0 1 1 0)

);

}
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upperWall

{

type wall;

faces

(

(2 3 7 6)

);

}

back

{

type wedge;

faces

(

(0 1 2 3)

);

}

front

{

type wedge;
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faces

(

(0 7 6 1)

);

}

);

mergePatchPairs

(

);

// ****************************************** //

¡case¿/system: File controlDict

• This dictionary sets input parameters essential for the creation of the database.

FoamFile

{

version 2.0;

format ascii;

class dictionary;
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location "system";

object controlDict;

}

// ****************************************** //

application transientSimpleDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 65;

deltaT 0.00005;

writeControl adjustableRunTime;

writeInterval 1;
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purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1; //Maximum deltaT in seconds

libs
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(

"dynPerCircleConicalAxisymmMultiwaves.so"

"movingWallNormalVel.so"

);

// ****************************************** //

¡case¿/system: File fvSolution

• This file controls the equation solvers, tolerances and algorithms.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSolution;

}

// ****************************************** //

solvers

{

pcorr
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{

solver GAMG;

tolerance 1e-10;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 20;

mergeLevels 1;

// maxIter 100;

minIter 1;

}

p

{

$pcorr;

tolerance 1e-10;

relTol 0;

}
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pFinal

{

$p;

tolerance 1e-10;

relTol 0;

}

"(U|k|epsilon|omega|nuTilda)"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 1;

tolerance 1e-10;

relTol 0;

// maxIter 100;

minIter 1;

};

"(U|k|epsilon|omega|nuTilda)Final"

{

solver smoothSolver;

smoother GaussSeidel;
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nSweeps 2;

tolerance 1e-10;

relTol 0;

// maxIter 100;

minIter 1;

}

cellMotionU

{

solver PCG;

preconditioner DIC;

tolerance 1e-10;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nOuterCorrectors 3;

nNonOrthogonalCorrectors 0;
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correctPhi true;

}

relaxationFactors

{

p 0.3;

U 0.3;

k 0.6;

omega 0.6;

epsilon 0.6;

}

// ****************************************** //

¡case¿/system: File fvSchemes

• refer to Section A.1.1.
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B.1.2 dynPerCircleConicalAxisymmMultiwaves BC.

• refer to Section A.3.2.

B.2 Parabolic ACWs Simulations

B.2.1 Case Setup

• wave speed = 2.3 mm/s, Newtonian fluid N3, maximum relative occlusion =

80%, mesh M3.

¡case¿/0: File U

• refer to Section B.1.1.

¡case¿/0: File p

• refer to Section B.1.1.
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¡case¿/0: File pointMotionU

• This file contains some input values that control the movement of the upper

wall.

FoamFile

{

version 2.0;

format ascii;

class pointVectorField;

object pointMotionU;

}

// **************************************** //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary // inlet

401



{

type fixedValue;

value uniform (0 0 0);

}

rightBoundary // outlet

{

type fixedValue;

value uniform (0 0 0);

}

centerLine

{

type fixedValue;

value uniform (0 0 0);

}

upperWall

{

type dynPerParabolicConicalAxisymmMultiwaves;
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chordLength 0.007;

xCompInitialVertex 0.0041;

speed 0.0023;

yCompFinalVertex 0.0455;

period 20;

numOfWaves 100;

alpha 1.0;

beta 45;

l 0.0039;

shift 0.044;

T 65;

value uniform (0 0 0);

}

back

{

type wedge;

}

front

{
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type wedge;

}

}

// **************************************** //

¡case¿/constant: File dynamicMeshDict

• This file contains the choice of mesh motion solver and diffusivity field.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object motionProperties;

}

// **************************************** //

dynamicFvMesh dynamicMotionSolverFvMesh;
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motionSolverLibs ( "libfvMotionSolvers.so" );

solver velocityLaplacian;

//velocityLaplacianCoeffs

diffusivity directional (1 3 6);

// **************************************** //

¡case¿/constant: File transportProperties

• refer to Section A.1.1.

¡case¿/constant: File turbulanceProperties

• refer to Section A.1.1.

¡case¿/constant/polyMesh: File blockMeshDict

• This file contains input for the generation of the mesh.

FoamFile

{
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version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// ****************************************** //

convertToMeters 1.0e-02;

vertices

(

(0.00 0.00 0.00) // vertex#0

(15.00 0.00 0.00) // vertex#1

(15.00 0.50 -0.020) // vertex#2

(0.00 5.00 -0.20) // vertex#3

(0.00 0.00 0.00) // vertex#4

(15.00 0.00 0.00) // vertex#5

(15.00 0.50 0.020) // vertex#6

(0.00 5.00 0.20) // vertex#7

);
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blocks

(

hex (0 1 2 3 0 1 6 7) (270 18 1)

simpleGrading (0.15 1 1)// block #0 ffmsh

);

edges

(

);

boundary

(

leftBoundary // inlet

{

type patch;

faces

(

(0 3 7 0)

);
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}

rightBoundary // outlet

{

type patch;

faces

(

(1 2 6 1)

);

}

centerLine

{

type empty;

faces

(

(0 1 1 0)

);

}
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upperWall

{

type wall;

faces

(

(2 3 7 6)

);

}

back

{

type wedge;

faces

(

(0 1 2 3)

);

}

front

{

type wedge;
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faces

(

(0 7 6 1)

);

}

);

mergePatchPairs

(

);

// ****************************************** //

¡case¿/system: File controlDict

• This dictionary sets input parameters essential for the creation of the database.

FoamFile

{

version 2.0;

format ascii;

class dictionary;
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location "system";

object controlDict;

}

// ****************************************** //

application transientSimpleDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 66;

deltaT 0.00005;

writeControl adjustableRunTime;

writeInterval 1;
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purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1; // Maximum deltaT in seconds

libs
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(

"dynPerParabolicConicalAxisymmMultiwaves.so"

"movingWallNormalVel.so"

);

// ****************************************** //

¡case¿/system: File fvSolution

• refer to Section B.1.1.

¡case¿/system: File fvSchemes

• refer to Section A.1.1.

B.2.2 dynPerParabolicConicalAxisymmMultiwaves BC.

• Location: OpenFOAM\OpenFOAM-2.1.x\src.

• Execution: run wmake clean and then wmake libso.

Make/files file

dynPerParabolicConicalAxisymmMultiwavesPointPatchVectorField.C
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LIB = $(FOAM_USER_LIBBIN)/dynPerParabolicConicalAxisymmMultiwaves

Make/options file

• refer to Section A.1.2

dynPerParabolicConicalAxisymmMultiwavesPointPatchVectorField.H

Class

Foam::dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

Description

Foam::dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

SourceFiles

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField.C
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/*--------------------------------------------*\

#ifndef dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField_H

#define dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField_H

#include "fixedValuePointPatchField.H"

// ***************************************//

namespace Foam

{

/*--------------------------------------------*\

Class dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField Declaration

/*--------------------------------------------*\

class dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

:
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public fixedValuePointPatchField<vector>

{

// Private data

scalar xCompInitialVertex_;

scalar chordLength_;

scalar speed_;

scalar yCompFinalVertex_;

scalar period_;

scalar numOfWaves_;

scalar alpha_;

scalar beta_;

scalar l_;

scalar shift_;

scalar T_;

scalar k;

scalar sp;

scalar s;

scalar m;

scalar varVertexYcompPre;

scalar varVertexXcompPre;

pointField p0_;
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public:

//- Runtime type information

TypeName("dynPerParabolicConicalAxisymmMultiwaves");

// Constructors

//- Construct from patch and internal field

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal field and dictionary

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const pointPatch&,
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const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given

// patchField<vector> onto a new patch

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual autoPtr<pointPatchField<vector> > clone() const

{

return autoPtr<pointPatchField<vector> >

(
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new dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

*this

)

);

}

//- Construct as copy setting internal field reference

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone

// setting internal field reference

virtual autoPtr<pointPatchField<vector> > clone

(
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const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

*this,

iF

)

);

}

// Member functions

// Mapping functions

//- Map (and resize as needed) from self given a mapping object

virtual void autoMap

(

const pointPatchFieldMapper&
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);

//- Reverse map the given pointPatchField

// onto this pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients associated with the patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};
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// ***************************************//

} // End namespace Foam

// ***************************************//

#endif

// ***************************************//

dynPerParabolicConicalAxisymmMultiwavesPointPatchVectorField.C

/*--------------------------------------------*\

#include "dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"
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#include <stdio.h>

// **************************************** //

namespace Foam

{

// ******************Constructors********************** //

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(p, iF),

xCompInitialVertex_(0.0),

chordLength_(0.0),

speed_(0.0),
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yCompFinalVertex_(0.0),

period_(0.0),

numOfWaves_(0.0),

alpha_(0.0),

beta_(0.0),

l_(0.0),

shift_(0.0),

T_(0.0),

p0_(p.localPoints())

{}

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:
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fixedValuePointPatchField<vector>(p, iF, dict),

xCompInitialVertex_(readScalar

(dict.lookup("xCompInitialVertex"))),

chordLength_(readScalar

(dict.lookup("chordLength"))),

speed_(readScalar

(dict.lookup("speed"))),

yCompFinalVertex_(readScalar

(dict.lookup("yCompFinalVertex"))),

numOfWaves_(readScalar

(dict.lookup("numOfWaves"))),

alpha_(readScalar(dict.lookup("alpha"))),

beta_(readScalar(dict.lookup("beta"))),

l_(readScalar(dict.lookup("l"))),

shift_(readScalar(dict.lookup("shift"))),

T_(readScalar(dict.lookup("T"))),

period_(readScalar(dict.lookup("period")))

{

if (!dict.found("value"))

{

updateCoeffs();
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}

if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();

}

}

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField& ptf,
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const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector>(ptf, p, iF, mapper),

xCompInitialVertex_(ptf.xCompInitialVertex_),

chordLength_(ptf.chordLength_),

speed_(ptf.speed_),

yCompFinalVertex_(ptf.yCompFinalVertex_),

period_(ptf.period_),

alpha_(ptf.alpha_),

beta_(ptf.beta_),

l_(ptf.l_),

shift_(ptf.shift_),

T_(ptf.T_),

numOfWaves_(ptf.numOfWaves_),

p0_(ptf.p0_)

{}
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dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

(

const dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField& ptf,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(ptf, iF),

xCompInitialVertex_(ptf.xCompInitialVertex_),

chordLength_(ptf.chordLength_),

speed_(ptf.speed_),

yCompFinalVertex_(ptf.yCompFinalVertex_),

period_(ptf.period_),

alpha_(ptf.alpha_),

beta_(ptf.beta_),

l_(ptf.l_),

shift_(ptf.shift_),

T_(ptf.T_),
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numOfWaves_(ptf.numOfWaves_),

p0_(ptf.p0_)

{}

// **************Member Functions************************** //

void dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::autoMap

(

const pointPatchFieldMapper& m

)

{

fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}

void dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::rmap

(

const pointPatchField<vector>& ptf,
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const labelList& addr

)

{

const dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField& aOVptf =

refCast<const dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField>(ptf);

fixedValuePointPatchField<vector>::rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::updateCoeffs()

{

if (this->updated())

{

430



return;

}

const polyMesh& mesh = this->

dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

double gamma=beta_ * (M_PI/180);

scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar yMin

(

min(p0_.component(vector::Y)())

);

scalar xMax

(
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max(p0_.component(vector::X)())

);

scalar xMin

(

min(p0_.component(vector::X)())

);

double param1

(

(yMax-yMin)/xMax

);

double theta=atan(param1);

tensor R(cos(theta),-1*sin(theta),0.0,1*

sin(theta),cos(theta),0.0,0.0,0.0,1.0);

tensor RT(cos(theta),1*sin(theta),0.0,-1*

sin(theta),cos(theta),0.0,0.0,0.0,1.0);

pointField q1(p0_.size(),point(0.0,0.0,0.0));

pointField q2(p0_.size(),point(0.0,0.0,0.0));

pointField q0(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointJ)

{
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q1[pointJ]=p0_[pointJ]-

point(xMin,yMax,p0_.component(vector::Z)()[pointJ]);

q2[pointJ]=q1[pointJ] & RT;

q0[pointJ]=q2[pointJ]+

point(xMin,yMax,p0_.component(vector::Z)()[pointJ]);

}

scalar yCompInitialVertex= yMax;

scalar xMaxq0

(

max(q0.component(vector::X)())

);

pointField M(q0.size(),point(0.0,0.0,0.0));

double tFinalVertexXcomp=(xMaxq0/speed_);

if

(
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t.value() <=tFinalVertexXcomp

)

{

k = 0.0;

}

if

(

t.value() ==t.deltaT().value()

)

{

sp=xMaxq0;

}

for( int i = numOfWaves_; i >= 1; i=i-1 )

{

for( int j=i; j<=i; j=j+1 )

{
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if(t.value() > (numOfWaves_-i)*period_)

{

double time=t.value()-(numOfWaves_-j)*period_;

scalar varVertexXcomp

(

xCompInitialVertex_+speed_*time

);

scalar varVertexYcomp = 0.0;

if(time+k*period_ == t.value()) {s=sp;} else {s=l_;}

if

(

(time > 0)

&&

(time < 1)
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)

{

varVertexYcomp = yCompInitialVertex-time*

(yCompInitialVertex-yCompFinalVertex_);

}

else

{

if

(

(mag(s) < l_)

)

{

varVertexYcomp = varVertexYcompPre+alpha_*

speed_*t.deltaT().value()*sin(gamma);

varVertexXcomp = varVertexXcompPre+alpha_*

speed_*t.deltaT().value()*cos(gamma);

s=sp;
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}

else

{

varVertexYcomp = yCompFinalVertex_+(time-1)*

((shift_-yCompFinalVertex_)/(T_-1));

}

}

if

(

varVertexYcomp > yCompInitialVertex or varVertexYcomp <= 0.0

)

{

varVertexYcomp = yMax;

}
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scalar yDiff

(

mag(yMax-varVertexYcomp)

);

scalar ratio

(

(chordLength_/2.0)*(chordLength_/2.0)

);

scalar coeffA

(

yDiff/ratio

);

scalar lowerBound

(

varVertexXcomp-(chordLength_/2.0)

);

scalar upperBound

(

varVertexXcomp+(chordLength_/2.0)
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);

scalar Xvertexw=(varVertexXcomp*cos(theta)+

(varVertexYcomp-yMax)*sin(theta));

scalar Yvertexw=(-1.0*varVertexXcomp*sin(theta)+

(varVertexYcomp-yMax)*cos(theta)+yMax);

scalar Xlowerw=(lowerBound*cos(theta));

scalar Xupperw=(upperBound*cos(theta));

scalar Ylowerw=(-1.0*lowerBound*sin(theta)+yMax);

scalar Yupperw=(-1.0*upperBound*sin(theta)+yMax);

scalar Xbar=(lowerBound+upperBound)/2.0;

scalar chordLength=chordLength_;

scalar Xchordcenterw=Xvertexw;

scalar Ychordcenterw=((yMin-yMax)/xMax)*

Xchordcenterw+yMax;

scalar gap=varVertexYcomp;

scalar Xgapw=(varVertexXcomp*cos(theta)+

(gap-yMax)*sin(theta));

scalar Ygapw=(-1.0*varVertexXcomp*

sin(theta)+(gap-yMax)*cos(theta)+yMax);
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scalar Amplitudew=yMax-varVertexYcomp;

scalar ROw=(1.0-(Ygapw/Ychordcenterw))*100.0;

scalar DistanceOfAcwVertexFromPylorus=(xMax-Xvertexw);

scalar DistanceOfAcwXupperFromPylorus=(xMax-Xupperw);

pointField velocity(q0.size(),point(0.0,0.0,0.0));

pointField q3(q0.size(),point(0.0,0.0,0.0));

pointField q4(q0.size(),point(0.0,0.0,0.0));

forAll(q0,pointI)

{

scalar yParabola=yMax;

if

(

(q0.component(vector::X)()[pointI]>lowerBound)

&&

(q0.component(vector::X)()[pointI]<upperBound)

)

{//major
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scalar xDiff

(

q0.component(vector::X)()[pointI]-varVertexXcomp

);

scalar xDiffSqu

(

xDiff*xDiff

);

yParabola= coeffA*xDiffSqu+varVertexYcomp;

}

else

{

yParabola= yMax;

}

velocity[pointI]=point(0.0,yParabola,0.0)-

point(0.0,yMax,0.0);

q3[pointI]=velocity[pointI] & R;
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if

(p0_.component(vector::Z)()[pointI] > 0.0)

{

q4[pointI]=q3[pointI]+point(0.0,0.0,0.04*

q3.component(vector::Y)()[pointI]);

}

else

{

q4[pointI]=q3[pointI]+point(0.0,0.0,-0.04*

q3.component(vector::Y)()[pointI]);

}

}

// p0_ and p.localPoints() will return back the points the

// the deformation

if( mag(s) >= l_ ) {s=xMaxq0-upperBound;;}

if( mag(s) <= l_ ) {k=(numOfWaves_ - j);}
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if(upperBound < xMaxq0 && s > 0.0)

{

M=M+q4;

}

pointField::operator=

(

(

p0_+

M

-p.localPoints()

)/t.deltaT().value()

);

if (time+k*period_ == t.value())

{

varVertexYcompPre = varVertexYcomp;

varVertexXcompPre = varVertexXcomp; sp=s;

}
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}

}

}

fixedValuePointPatchField<vector>::updateCoeffs();

}

void dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField::write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("chordLength")

<< chordLength_ << token::END_STATEMENT << nl;

os.writeKeyword("xCompInitialVertex")

<< xCompInitialVertex_<< token::END_STATEMENT << nl;

os.writeKeyword("speed")
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<< speed_ << token::END_STATEMENT << nl;

os.writeKeyword("yCompFinalVertex")

<< yCompFinalVertex_<< token::END_STATEMENT << nl;

os.writeKeyword("period")

<< period_ << token::END_STATEMENT << nl;

os.writeKeyword("alpha")

<< alpha_ << token::END_STATEMENT << nl;

os.writeKeyword("beta")

<< beta_ << token::END_STATEMENT << nl;

os.writeKeyword("l")

<< l_ << token::END_STATEMENT << nl;

os.writeKeyword("shift")

<< shift_ << token::END_STATEMENT << nl;

os.writeKeyword("T")

<< T_ << token::END_STATEMENT << nl;

os.writeKeyword("numOfWaves")

<< numOfWaves_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}
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// **************************************** //

makePointPatchTypeField

(

pointPatchVectorField,

dynPerParabolicConicalAxisymmMultiwaves

PointPatchVectorField

);

// **************************************** //

} // End namespace Foam

// **************************************** //
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Appendix C

OpenFOAM Codes

C.1 shearRate

Application

shearRate

Description

For each time: calculate the shear rate.

\*-------------------------------------------*/
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#include "fvCFD.H"

// ***************************************** //

int main(int argc, char *argv[])

{

timeSelector::addOptions();

# include "setRootCase.H"

# include "createTime.H"

instantList timeDirs = timeSelector::

select0(runTime, args);

# include "createMesh.H"

forAll(timeDirs, timeI)

{

runTime.setTime(timeDirs[timeI], timeI);

Info<< "Time = " <<runTime.timeName()<< endl;
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IOobject Uheader

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ

);

// Check U exists

if (Uheader.headerOk())

{

mesh.readUpdate();

Info<< " Reading U" << endl;

volVectorField U(Uheader, mesh);

Info<< "Calculating shearRate" << endl;

if

(U.dimensions() == dimensionSet(0, 1, -1, 0, 0))

{
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volScalarField shearRate

(

IOobject

(

"shearRate",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

sqrt(

0.5*

(2*symm(fvc::grad(U))&&(2*symm(fvc::grad(U))

))

)

);

shearRate.write();

}

else

{

Info<< " No U" << endl;

}
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Info<< endl;

}

}

return 0;

}

// ****************************************** //

C.2 stressComponentsMag

Application

stressComponents

Description

Calculates and writes the scalar fields

of the six components of the stress

tensor sigma for each time.

\*-------------------------------------------*/
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#include "fvCFD.H"

#include "incompressible/singlePhaseTransportModel

/singlePhaseTransportModel.H"

#include "zeroGradientFvPatchFields.H"

// ****************************************** //

int main(int argc, char *argv[])

{

timeSelector::addOptions();

# include "setRootCase.H"

# include "createTime.H"

instantList timeDirs = timeSelector::select0(runTime, args);

# include "createMesh.H"

forAll(timeDirs, timeI)

{

runTime.setTime(timeDirs[timeI], timeI);
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Info<< "Time = " << runTime.timeName() << endl;

IOobject Uheader

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ

);

// Check U exists

if (Uheader.headerOk())

{

mesh.readUpdate();

Info<< " Reading U" << endl;

volVectorField U(Uheader, mesh);

# include "createPhi.H"

singlePhaseTransportModel laminarTransport(U, phi);
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volSymmTensorField sigma

(

IOobject

(

"sigma",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

laminarTransport.nu()*2*dev(symm(fvc::grad(U)))

);

//---------------------------------

// K.A. Feigl

// Compute magnitude of viscous stress tensor

volScalarField sigmaMag

(

IOobject

(

"sigmaMag",
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runTime.timeName(),

mesh,

IOobject::NO_READ

),

mag(sigma)

);

sigmaMag.write();

// K.A. Feigl

//---------------------------------

volScalarField sigmaxx

(

IOobject

(

"sigmaxx",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

sigma.component(symmTensor::XX)

);
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sigmaxx.write();

volScalarField sigmayy

(

IOobject

(

"sigmayy",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

sigma.component(symmTensor::YY)

);

sigmayy.write();

volScalarField sigmazz

(

IOobject

(

"sigmazz",

runTime.timeName(),
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mesh,

IOobject::NO_READ

),

sigma.component(symmTensor::ZZ)

);

sigmazz.write();

volScalarField sigmaxy

(

IOobject

(

"sigmaxy",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

sigma.component(symmTensor::XY)

);

sigmaxy.write();

volScalarField sigmaxz

457



(

IOobject

(

"sigmaxz",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

sigma.component(symmTensor::XZ)

);

sigmaxz.write();

volScalarField sigmayz

(

IOobject

(

"sigmayz",

runTime.timeName(),

mesh,

IOobject::NO_READ

),
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sigma.component(symmTensor::YZ)

);

sigmayz.write();

volVectorField Ub

(

IOobject

(

"Ub",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

U,

zeroGradientFvPatchVectorField::typeName

);

Ub.correctBoundaryConditions();

Ub.write();

volScalarField sigmaUn

(
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IOobject

(

"sigmaUn",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

0.0*sigma.component(symmTensor::YZ)

);

forAll(sigmaUn.boundaryField(), patchI)

{

sigmaUn.boundaryField()[patchI] =

(

mesh.boundary()[patchI].nf()

& sigma.boundaryField()[patchI]

)().component(vector::X);

}

sigmaUn.write();

}
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else

{

Info<< " No U" << endl;

}

Info<< endl;

}

Info<< "End" << endl;

return 0;

}

// ****************************************** //

C.3 movingWallNormalVel BC.

movingWallNormalVelFvPatchVectorField.H

SourceFiles

461



movingWallNormalVelFvPatchVectorField.C

\*-------------------------------------------*/

#ifndef movingWallNormalVelFvPatchVectorField_H

#define movingWallNormalVelFvPatchVectorField_H

#include "fvPatchFields.H"

#include "fixedValueFvPatchFields.H"

// * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

/*-------------------------------------------*\

Class movingWallNormalVelFvPatch Declaration

\*-------------------------------------------*/

class movingWallNormalVelFvPatchVectorField

:
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public fixedValueFvPatchVectorField

{

// Private data

//- Name of velocity field

word UName_;

public:

//- Runtime type information

// aaalhaba110 08-15-12 (changed the type name

// from movingWallVelocity to:

TypeName("movingWallNormalVel");

// aaalhaba111

// Constructors

//- Construct from patch and internal field

movingWallNormalVelFvPatchVectorField
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(

const fvPatch&,

const DimensionedField<vector, volMesh>&

);

//- Construct from patch, internal field and

// dictionary

movingWallNormalVelFvPatchVectorField

(

const fvPatch&,

const DimensionedField<vector, volMesh>&,

const dictionary&

);

//- Construct by mapping given

// movingWallNormalVelFvPatchVectorField

// onto a new patch

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField&,

const fvPatch&,
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const DimensionedField<vector, volMesh>&,

const fvPatchFieldMapper&

);

//- Construct as copy

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField&

);

//- Construct and return a clone

virtual tmp<fvPatchVectorField> clone() const

{

return tmp<fvPatchVectorField>

(

new movingWallNormalVelFvPatchVectorField(*this)

);

}

//- Construct as copy setting internal field

// reference
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movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField&,

const DimensionedField<vector, volMesh>&

);

//- Construct and return a clone setting internal

// field

// reference

virtual tmp<fvPatchVectorField> clone

(

const DimensionedField<vector, volMesh>& iF

) const

{

return tmp<fvPatchVectorField>

(

new

movingWallNormalVelFvPatchVectorField(*this, iF)

);

}
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// Member functions

//- Update the coefficients associated with the

// patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * //

#endif

// ****************************************** //
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movingWallNormalVelFvPatchVectorField.C

// aaalhaba110 08-15-2012

#include

"movingWallNormalVelFvPatchVectorField.H"

// aaalhaba111

// Note: replacing all movingWallVelocity to the

// new class movingWallNormalVel

#include "addToRunTimeSelectionTable.H"

#include "volFields.H"

#include "surfaceFields.H"

#include "fvcMeshPhi.H"

// *************** Constructors ************ //

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF

468



)

:

fixedValueFvPatchVectorField(p, iF),

UName_("U")

{}

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField& ptf,

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const fvPatchFieldMapper& mapper

)

:

fixedValueFvPatchVectorField(ptf, p, iF, mapper),

UName_(ptf.UName_)

{}
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Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchVectorField(p, iF),

UName_(dict.lookupOrDefault<word>("U", "U"))

{

fvPatchVectorField::operator=

(vectorField("value", dict, p.size()));

}

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const

movingWallNormalVelFvPatchVectorField& mwvpvf
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)

:

fixedValueFvPatchVectorField(mwvpvf),

UName_(mwvpvf.UName_)

{}

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const

movingWallNormalVelFvPatchVectorField& mwvpvf,

const DimensionedField<vector, volMesh>& iF

)

:

fixedValueFvPatchVectorField(mwvpvf, iF),

UName_(mwvpvf.UName_)

{}

// ************* Member Functions ************ //
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void Foam::

movingWallNormalVelFvPatchVectorField::

updateCoeffs()

{

if (updated())

{

return;

}

const fvPatch& p = patch();

const polyPatch& pp = p.patch();

const

fvMesh& mesh = dimensionedInternalField().mesh();

const

pointField& oldPoints = mesh.oldPoints();

vectorField oldFc(pp.size());

forAll(oldFc, i)

{

oldFc[i] = pp[i].centre(oldPoints);
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}

const vectorField

Up((pp.faceCentres() - oldFc)/

mesh.time().deltaTValue());

const volVectorField&

U = db().lookupObject<volVectorField>(UName_);

scalarField phip

(

p.patchField

<surfaceScalarField, scalar>(fvc::meshPhi(U))

);

const vectorField n(p.nf());

const scalarField& magSf = p.magSf();

tmp<scalarField> Un = phip/(magSf + VSMALL);

/* aaalhaba010 08-15-12

(commented out the old operator)

vectorField::

473



operator=(Up + n*(Un - (n & Up)));

aaalhaba011 */

// aaalhaba120 08-15-12 (project the

// movingWallVelocity

// onto normal direction)

// Note: (a & b) is for the dot product between

// vectors

// a and b

vectorField::

operator=((n & (Up + n*(Un - (n & Up))))*n);

// aaalhaba121

fixedValueFvPatchVectorField::updateCoeffs();

}

void Foam::

movingWallNormalVelFvPatchVectorField::

write(Ostream& os) const

{

fvPatchVectorField::write(os);
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writeEntryIfDifferent<word>(os,"U", "U", UName_);

writeEntry("value", os);

}

// ****************************************** //

namespace Foam

{

makePatchTypeField

(

fvPatchVectorField,

movingWallNormalVelFvPatchVectorField

);

}

// ****************************************** //
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C.4 transientSimpleDyMFoam

checkTotalVolume.H

scalar newTotalVolume =

sum(mesh.cellVolumes());

Info<< "Volume: new = "

<< newTotalVolume << " old = " << totalVolume

<< " change = "

<< Foam::mag(newTotalVolume - totalVolume)<<endl;

totalVolume = newTotalVolume;

correctPhi.H

{

wordList pcorrTypes(p.boundaryField().types());

for (label i=0; i<p.boundaryField().size(); i++)

{
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if (p.boundaryField()[i].fixesValue())

{

pcorrTypes[i] =

fixedValueFvPatchScalarField::typeName;

}

}

volScalarField pcorr

(

IOobject

(

"pcorr",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("pcorr", p.dimensions(), 0.0),

pcorrTypes

);
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# include "continuityErrs.H"

// Flux predictor

phi = (fvc::interpolate(U) & mesh.Sf());

rAU == runTime.deltaT();

for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pcorrEqn

(

fvm::laplacian(rAU, pcorr) == fvc::div(phi)

);

pcorrEqn.setReference(pRefCell, pRefValue);

pcorrEqn.solve();

if (nonOrth == nNonOrthCorr)

{

phi -= pcorrEqn.flux();

}

// Fluxes are corrected to absolute velocity and
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// further corrected

// later. HJ, 6/Feb/2009

}

}

createFields.H

Info<< "Reading field p\n" << endl;

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);
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Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

# include "createPhi.H"

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell

(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
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scalar totalVolume = sum(mesh.V()).value();

volScalarField rAU

(

IOobject

(

"rAU",

runTime.timeName(),

mesh

),

mesh,

runTime.deltaT(),

zeroGradientFvPatchScalarField::typeName

);

singlePhaseTransportModel

laminarTransport(U, phi);

autoPtr<incompressible::RASModel> turbulence

(

incompressible::RASModel::
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New(U, phi, laminarTransport)

);

readControls.H

# include "readTimeControls.H"

# include "readPISOControls.H"

bool correctPhi = false;

if (piso.found("correctPhi"))

{

correctPhi = Switch(piso.lookup("correctPhi"));

}

bool checkMeshCourantNo = false;

if (piso.found("checkMeshCourantNo"))

{

checkMeshCourantNo =

Switch(piso.lookup("checkMeshCourantNo"));

}
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transientSimpleDyMFoam.C

Application

transientSimpleDyMFoam

Description

Transient solver for incompressible, turbulent

flow of Newtonian

fluids with dynamic mesh. Solver implements a

SIMPLE-based

algorithm in time-stepping mode.

Author

Hrvoje Jasak, Wikki Ltd. All rights reserved.

Modification

Evaluation of turbulence model moved inside

the

SIMPLE loop.

- Mikko Auvinen, Aalto University
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\*--------------------------------------------*/

#include "fvCFD.H"

// The following is a long line, so will break

// into two

#include //<brk>

"incompressible/singlePhaseTransportModel/

//<brk>

singlePhaseTransportModel.H"

#include "incompressible/RASModel/RASModel.H"

#include "dynamicFvMesh.H"

// * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

# include "setRootCase.H"

# include "createTime.H"

# include "createDynamicFvMesh.H"

# include "initContinuityErrs.H"

# include "createFields.H"
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// * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

# include "readControls.H"

# include "checkTotalVolume.H"

# include "CourantNo.H"

// Make the fluxes absolute

fvc::makeAbsolute(phi, U);

# include "setDeltaT.H"

runTime++;

Info<< "Time = "<<runTime.timeName()<< nl << endl;

bool meshChanged = mesh.update();
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# include "volContinuity.H"

if (correctPhi && meshChanged)

{

// Fluxes will be corrected to absolute velocity

// HJ, 6/Feb/2009

# include "correctPhi.H"

}

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U);

if (checkMeshCourantNo)

{

# include "meshCourantNo.H"

}

// --- SIMPLE loop

for (int ocorr = 0; ocorr < nOuterCorr; ocorr++)

{
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// # include "CourantNo.H" -- mikko

# include "UEqn.H"

rAU = 1.0/UEqn.A();

U = rAU*UEqn.H();

phi = (fvc::interpolate(U) & mesh.Sf());

//+ fvc::ddtPhiCorr(rAU, U, phi);

adjustPhi(phi, U, p);

p.storePrevIter();

for

(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phi)

);
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pEqn.setReference(pRefCell, pRefValue);

if

(ocorr == nOuterCorr - 1&&nonOrth == nNonOrthCorr)

{

pEqn.solve(mesh.solver(p.name() + "Final"));

}

else

{

pEqn.solve(mesh.solver(p.name()));

}

if (nonOrth == nNonOrthCorr)

{

phi -= pEqn.flux();

}

}

# include "continuityErrs.H"

//Explicitly relax pressure for momentum corrector
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p.relax();

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U);

U -= rAU*fvc::grad(p);

U.correctBoundaryConditions();

// The turbulence model evaluation is necessary

// within

// the SIMPLE loop. -- mikko

turbulence->correct();

}

runTime.write();

Info<< "ExecutionTime = "

<< runTime.elapsedCpuTime() << " s"

<< " ClockTime = "

<< runTime.elapsedClockTime() << " s"
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<< nl << endl;

}

Info<< "End\n" << endl;

return(0);

}

// ********************************** //

UEqn.H

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

+ turbulence->divDevReff(U)

);

UEqn.relax();
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// Solve the momentum equation

solve(UEqn == -fvc::grad(p));

Make/files File

transientSimpleDyMFoam.C

EXE = $(FOAM_USER_APPBIN)/transientSimpleDyMFoam

Make/options File

EXE_INC = \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

-I$(LIB_SRC)/dynamicMesh/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/turbulenceModels/RAS \

-I$(LIB_SRC)/transportModels

EXE_LIBS = \

491



-ldynamicFvMesh \

-ldynamicMesh \

-lengine \

-lmeshTools \

-lincompressibleRASModels \

-lincompressibleTransportModels \

-lfiniteVolume \

-llduSolvers
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Appendix D

Transport Efficiency via Peristaltic

Motion in 2-D planer Tube

This study extends the work of Al-Habahbeh [40] in two ways. First, we develop a 2-D

axisymmetric numerical model to get a realistic tubular peristaltic flow as encountered

in the small intestine, see Chapter 3, and second, we examine the influence of the fluid

viscosity variation on the transport efficiency (TE). The characteristic data for the 2-D

planar tube are the same as those for the 2-D axisymmetric tubular model developed

in Section 3.1.1. Recall that the original tube length L is 180 mm. To examine the

influence of the fluid viscosity on the transport efficiency, several simulations have

been performed for five different Newtonian fluids, whose parameters are listed in

Table 3.2, and the results are given in Figs D.1–D.4 for the case of 5 mm/s wave
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speed.

Figure D.1 shows that the transport efficiency strengthened with fluid viscosity and

relative occlusion, where the transport efficiency for the largest four viscosities appears

to be nearly identical. The x-component of velocity for five different Newtonian fluids

near the outlet at time t = 32 s is shown in Fig. D.2. This figure shows that the values

of the velocity are almost identical, except for the lowest viscous fluid N1. This is

consistent with the transport efficiency results given in Fig. D.1 for the case of 60%

relative occlusion.

The unexpected behavior of the lowest viscous fluids N1 may be explained due to the

characteristic geometry length, as is shown in Figs D.3 and D.4 for the case of 60%

relative occlusion. These figures show that, by increasing the original tube length by a

factor of 1.5, the distance between the viscosity curves of the x-component of velocity

near the outlet is almost vanished on overage (Fig. D.3), and hence the transport

efficiency is nearly independent of the fluid viscosity (Fig. D.4).
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Figure D.1: Transport efficiency for five Newtonian fluids in the planar
tubular model. The wave speed is 5 mm/s and three relative occlusions of
20%, 60% and 80% are applied.
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Figure D.2: The x-component of the velocity near the outlet of five New-
tonian fluids in the planar tubular model at t = 32 s. The wave speed and
the relative occlusion are 5 mm/s and 60%, respectively.
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Figure D.3: The x-component of the velocity near the outlet for the lowest
two viscous fluids at t = 50 s in the planar tubular model with length of
1.5 × L. The wave speed and the relative occlusion are 5 mm/s and 60%,
respectively.
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Figure D.4: Transport efficiency for the lowest two viscous fluids along the
domain in the planar tubular model with length of 1.5×L. The wave speed
and the relative occlusion are 5 mm/s and 60%, respectively.
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A comparison between the planar model and the axisymmetric tubular model in terms

of the TE at time t = 32 s and with a fixed uniform wave speed of 5 mm/s is given

in Table D.1. Also, this comparison aims to identify the effect of the shear-thinning

non-Newtonian behavior of the fluid on the TE. Two non-Newtonian fluids, BCA and

BCB, with shear rate dependent viscosity expressed by the Bird-Carreau Eq. (2.17)

will be used in this study, where the fluid parameters are summarized in Table 3.8.

The results indicate that although the TE values obtained within the planar model

are not qualitatively affected, their magnitude are. In particular, the use of an actual

realistic tubular model of the system predicted the TE values to be larger. Specifically,

Table D.1 shows that the TE increases with relative occlusion and decreases with the

power-law index, n.

Table D.1
Transport efficiency for the Newtonian and non-Newtonian fluids at time

t = 32 s. The wave speed is 5 mm/s.

Relative occlusion (%)
Planar tubular model Axisymmetric tubular model
N3 BCA BCB N3 BCA BCB

20 3.47% 2.4% 1.42% 7.04% 4.98% 3.25%
60 34.68% 30.41% 23.39% 56.07% 49.65% 38.02%
80 69.54% 67.61% 64.21% 88.68% 88.43% 85.68%

Finally, a comparison between the planar model and the axisymmetric tubular model

in terms of the TE is given in the Table D.2, in which the simulations are performed

for one Newtonian fluid N3 and at x = 160 mm for three different wave speeds of

2.5 mm/s, 5 mm/s and 10 mm/s. The results of this Table show that the TE is almost

independent of the wave speed and increases with relative occlusion. However, the

497



effect of the wave speed and relative occlusion on the TE is more significant and

considerable for the axisymmetric tubular simulations case.

Table D.2
Transport efficiency for the Newtonian fluid N3 at x = 160 mm. Three

different speeds of 2.5 mm/s, 5 mm/s and 10 mm/s are examined.

Relative occlusion (%)
Planar tubular model Axisymmetric tubular model
Wave speed (mm/s) Wave speed (mm/s)
2.5 5 10 2.5 5 10

20 3.74% 3.74% 3.75% 7.02% 7.04% 7.01%
60 34.67% 34.68% 34.59% 56.08% 56.07% 55.82%
80 69.54% 69.54% 69.53% 88.32% 88.68% 89.02%
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