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Abstract

Previous studies with fixed operating temperatures have shown that hydrogenated amorphous 

silicon (a-Si:H) was a promising absorber layer for solar photovoltaic - thermal (PVT) systems 

because of  a)  a  low temperature  coefficient  and b)  the  opportunity  to  reverse  light  induced 

degradation with thermal annealing.  This study further refined the simulation of the optimal 

dispatch  strategy  for  a-Si:H  based  PVT  by  studying  annealing  cycles  and  analysis  of  the 

degradation  at  other  operating  temperatures  controlled  by  the  varying  ambient  temperatures. 

Four representative case studies were evaluated for the combinations of high and low solar flux 

and high and low average  ambient temperature.  Electrically-optimized dispatch strategies are 

found for a range of PVT thermal insulating effectivenesses. The results showed significantly 

more  electricity  generation  in  all  the  case  study  representative  regions  except  for  areas 

dominated by low temperatures and low solar fluxes.   These results indicate that a-Si:H PV 

performance can be improved in most populated regions in the world by integrating it into a PVT 

device  and  using  spike  annealing  to  reverse  light-induced  degradation  effects.  The  model 

presented in this paper uses publicly-available data to implement suitable dispatch strategies and 

execute virtual performance analysis of PVT for any geographic location in the world.

Keywords : amorphous silicon; photovoltaic; solar thermal; PVT; solar photovoltaic-thermal 

system; thermal annealing
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1. Introduction

Crystalline  silicon  (c-Si)  solar  photovoltaic  (PV)  cells  with  commercialized  conversion 

efficiencies in the range of high teens to low twenties are the most widely used on the market,  

representing about 80-90% of the world total PV cell production [1]. High-efficiency c-Si PV 

cells have advantages in performance and area-requirements and are thus normally used as the 

absorber  in  hybrid  solar  photovoltaic  thermal  (PVT)  systems  [2].  PVT systems  combine  a 

photovoltaic cell with a solar thermal collector and  perform dual operation: 1) converts light 

energy directly into electricity and 2) captures the remaining energy normally considered waste 

heat from the PV module for domestic hot water or other heating needs. The combined capture of 

both heat and electricity allow these devices to have higher exergy and thus be more overall 

spatially energy efficient than either stand-alone solar photovoltaic or solar thermal systems [3]. 

This dual use enables PVT technology to provide benefits in terms of energy, exergy efficiency, 

and in some cases cost [3-12]. 

However, there is a inherent technical contradiction with the operating temperature of 

PVT devices. Photovoltaic cell efficiency falls with the rise in temperature and as c-Si has a large 

thermal  coefficient  (-0.45%/K)  [13]  using  it  at  acceptable  operating  temperatures  as  a  PVT 

absorber  material  leads  to  poor  performance  of  the  thermal  component  and  thus  the  whole 

system non-optimized [14-18]. This is because the conventional PVT system is designed to carry 

heat  away  from  the  modules  thereby  cooling  the  cells  and  thus  improving  their  electricity 

conversion efficiency by lowering resistance [9]. Although this is beneficial for the PV, it causes 

the  thermal  component  to  under-perform compared  to  a  stand-alone  solar  thermal  collector 

allowed to operate at higher temperatures. However, thin film hydrogenated amorphous silicon 

(a-Si:H) PV have a thermal coefficient of only -0.13%/K [13], making it acceptably functional at 

higher temperatures. PV materials with low temperature coefficients such as a-Si:H PV allow the 

PVT to be operated at high temperatures, promoting a more unified and potentially optimized 

PVT system [19-21].  

The two primary challenges to widespread commercialization of a-Si:H PV in general are 

relatively low efficiencies (~10%) and light-induced degradation of performance known as the 

Staebler-Wronski effect (SWE) [22]. SWE is associated with increased defect state density in the 

mobility  gap  of  the  material  when  exposed  to  sunlight,  which  cause  a  drop  in  power 
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generation/conversions efficiency with light exposure time until a steady state (degraded steady 

state or DSS) is reached [22-27]. SWE is reversible with annealing at elevated temperatures [22-

27]. Recent, experiments have shown that PVT operating temperatures can be used to provide 

regular high temperature spike thermal annealing (e.g. 1 h at 100oC on a 12 h cycle) is adequate 

to reduce the number of defect states and provide a significantly higher electricity output [20]. In 

order to improve the performance of the PVT system further a previous study investigated the 

impact of annealing cycles in different geographic locations with real solar flux data and showed 

that at standard and sustained PV operating temperatures one anneal pulse per day provided the 

largest electrical output through the year [28]. Overall the results showed additional electricity 

generation  is  possible  over  the  year  with  an  appropriate  dispatch  strategy  of  spike  thermal 

annealing  cycles.  With  operating  temperatures  for  standard  testing  conditions  (25oC),  PV 

operational (50oC) and PVT operational (90oC as this  is  the operational temperature of solar 

thermal systems) provided 23%, 10%, and 1.2% additional electricity generation over a year, 

respectively. Although it is possible to sometimes fix the operating temperature of the PVT the 

ambient temperature that the system operates in can fluctuate widely. To take this real-world 

consideration this paper further refines the simulation of the optimal dispatch strategy for a-Si:H 

based PVT by studying annealing  cycles  and analysis  of  the  degradation  at  other  operating 

temperatures  controlled  by the  ambient  temperature.  Four  case studies  are  evaluated  for  the 

combinations of high and low solar flux and high and low average ambient temperature. Optimal 

dispatch strategies are found for a range of PVT thermal insulating effectivenesses. The results 

are discussed and conclusions are drawn about the optimal dispatch strategy for PVT devices in 

any geographic region.

2. Background  SWE Degradation Associated Parameters

Previous  work  has  introduced  the  a-Si:H  PV  SWE  degradation  kinetics  associated 

parameters  kdss and  udss [28],  which quantify  the  SWE  degradation  rates  and  magnitude  of 

reduced PV performance under illumination. The parameter kdss is associated with the magnitude 

of the DSS and udss is associated with the degradation rate. These parameters were introduced in 

the PV max power generation equation in order to modify the equation for PVT and incorporate 

the effect of SWE into it [28]. Exponential fits [28] to experimental data [27] showing SWE to 
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the DSS were obtained at sustained operating temperatures 25 oC, 50 oC, and 90 oC  for a-Si:H 

PV cell active layer thickness of 630 nm  under 1 sun illumination were used to derive kdss  and 

udss.

When the irradiance is constant, it is notable that the exponential degradation rate and the 

DSS power generation both depend on the operating temperature. To take into account the effect 

of operating temperature outside of these fixed values, the degradation rate and the steady state 

power generation is required to make a function of temperature. This is accomplished in this 

paper to expand the geographic validity of the PVT spike annealing dispatch strategy to any 

location.

3. Methods

3.1 Derivation of Temperature Dependent kdss  and udss

The  degradation  associated  parameters  kdss  and  udss are  represented  as  a  function  of 

temperature  in  order  to  extrapolate  PVT  performance  in  any  region  (ambient  temperature 

dependent operation). These parameters both have unique relationship with temperature. It has 

also  been  experimentally  determined  that  kdss  decreases  and  udss increases  with  increasing 

temperature. In addition as the temperature is increased the power generation reaches steady state 

with a faster degradation rate (requires less time) and this DSS is higher at higher temperatures. 

As  a  first  approximation  the  changes  in  the  parameter  values  have  been  considered  to  be 

changing linearly in the range between the experimentally measured temperatures. Equation (1) 

and (2) linearly calculate the values of kdss  and udss in the intermediate regions between 25 °C to 

50 °C and 50 °C to 90 °C [28] and Figures 1 and 2 shows the corresponding graphs.

kdssx =kdss1+
kdss2−kdss1

T 2−T1

×(T x−T 1)
(1)

udssx =udss1+
udss2−udss1

T 2−T 1

×(T x−T 1)
(2)
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The values of the parameters at temperature x outside the range of 25  °C to 90  °C are again 

calculated  by  extending  the  lines  linearly.  Temperature  1  and  2  are  the  known  (measured 

temperatures).

3.2 Geographic Expansion and Simulation Mechanism Updates

Previous simulations were confined to four specific cities in United States [28]. In order 

to expand the optimization maps for the performance of the PVT it is required to expand the 

modeling  range  by  including  more  solar  and  weather  data  collected  from  worldwide  solar 

resources and satellites. As a primary approach in the present work the solar data for regions all 

over  U.S.  (including  Alaska  and  Hawaii)  and  Canada  has  been  included  in  the  simulation. 

Specifically the hourly solar irradiance and temperature data from the U.S. Air Force weather 

stations has been used [29, 30], National Renewable Energy Lab (NREL)'s Solar Prospector [31] 

and METSTAT-modeled global horizontal solar irradiation data [32] which indicates the total 

amount  of  direct  and  diffuse  solar  radiation  (METSTAT-modeled)  received  on  a  horizontal 

surface during the 60-minute period ending at the timestamp. The Canadian data was obtained 

from the National Resources Canada (NRCAN) website [33]. The hourly  ambient temperature 

data  was  utilized  in  the  simulation  hence  kdss  and  udss
 

fluctuate  in  accordance  with  the 

temperature. Users can input solar data in the simulation using either known USAF station ID or 

geographic coordinates and the open-source script is available [34] that  gives the exact PVT 

output at different operating conditions and dispatch strategies. 

3.3 Inputs for Case Study Locations

For a particular location as the temperature varies the degradation associated parameters also 

vary  hourly.  The  analysis  utilizes  time  series  temperature  data  along  with  the  hourly  solar 

irradiance data. Here four specific locations with different atmospheric conditions were:

1. High solar flux/high temperature

2. High solar flux/low temperature

3. Low solar flux/high temperature

4. Low solar flux/low temperature
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The selected cities are summarized in Table 1. Normally the amount of incidence of solar 

flux depends on the geographic coordinate, incident angle and air mass/optical path of incidence. 

On the other hand, the temperature mostly depends on the humidity and air mass. 

Table 1: Case study locations based on atmospheric criteria

High Solar Flux Low Solar Flux
High Temperature Casa Grande, Arizona Apalachicola, Florida
Low Temperature Aspen, Colorado Anchorage, Alaska

The time series hourly data sets starting from January 1st, 2002 to December 31st, 2002 were 

utilized in the simulation. The details of the four case study cities are provided in Table 2. It is to  

be noted that the average hourly temperature in this cities are lower than 25°C which was the 

lowest  operating  temperature  in  the  consistent  operating  temperature  PVT  dispatch  model 

previously investigated.

Table 2. Summary of climate for case study cities

City Coordinates

Average Hourly 

Temperature (for 

the year 2002) 

[°C ]

Altitude 

[ft]

Average hourly 

solar irradiance 

[W/m2] 

Anchorage (Anchorage 

Borough, Alaska)

61.2167° N, 

149.9000° W
 -3.4 102 100.8 

Casa Grande (Pinal 

County, Arizona)

32.8858° N, 

111.7439° W
21.6 1,398 251.4 

Apalachicola (Franklin 

County, Florida)

29.7253° N, 

84.9925° W
20.4 13 215.0 

Aspen (Pitkin County, 

Colorado)

39.1922° N, 

106.8244° W
5.2 7,890 193.8 
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The daily average solar flux and the temperature reading in the four cases study cities is shown 

in Figures 3 and 4, respectively. Average solar irradiance per day for the cities (Anchorage, Casa 

Grande, Apalachicola, and Aspen) are 2.42, 6.03, 5.16, and 4.65 sun hours respectively. The peak 

sun hour with high flux lies in between 900 to 1600 hrs when the flux is higher than 250 W/m2. 

Also it is noteworthy that during these hours the temperature is comparatively low, which means 

the degradation occurs at a slow rate.

4. Results

4.1 Simulation at Sustained Operating Temperature

As an initial step of the analysis was performed at sustained operating temperatures where 

the  degradation  parameters  are  constant.  The  output  obtained  for  the  sustained  operating 

temperature simulation in the four representative cities is shown in Figure 5, 6, 7 and 8.. In all 

the cases the 90oC operating temperature with a single anneal per day provides the maximum 

power output.

Table  3  Normalized max  electricity  generation  with  respect  to  25oC  max  electricity at 

sustained operating temperatures (anneal cycle: once every day).

Cities
Normalized Max 

Electricity at 25 oC

Normalized Max 

Electricity at 50 oC

Normalized Max 

Electricity at  90 oC
Anchorage, AK 1 1.0025 1.0130

Casa Grande, AZ 1 1.0019 1.0088
Apalachicola, FL 1 1.0017 1.0087
Aspen, Colorado 1 1.0076 1.0103

4.2 Sensitivity and Outdoor Operating Conditions

By comparison to  fixed  operating temperatures,  the  ambient  temperature performance of 

PVT is  more  complicated.  For  the  performance  analysis  an  environmental  insulation  based 

sensitivity study is carried out as summarized by Table 4.

Table 4. PVT Operating Temperature Sensitivity Inputs as a Function of Insulation Level

   Cases Operating Temperature Insulation Level
Case I 90 oC High insulation and control 
Case II Ambient Temperature None (ambient)
Case III Ambient Temperature +25 oC Low 
Case IV Ambient Temperature +50 oC Medium

http://dx.doi.org/10.1016/j.apenergy.2015.03.073
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The effect of insulation level on PVT output as a function of the operating conditions 

dependent on ambient temperature (-10oC to 130oC) is shown in Figure 10. 

4.3 Simulation at Outdoor Operating Conditions

Outdoor  simulations  were  performed  by  taking  into  account  the  outdoor  operating  case 

studies  along  with  the  spike  anneal  cycles.   The  overall  electricity generation  for  the 

representative cities at outdoor operating conditions are shown in Figures 11, 12, 13 and 14. 

From the Figures it can be seen that in each region the PVT panels generate more  electricity 

when operated at ambient temperatures than at STC, which as pointed out before is on average 

lower  than  25oC  in  each  city.  Along  with  the  outdoor  operating  conditions  the  simulated 

annealing cycle cases range from 0 to 6 anneals per day.

In Anchorage, AK (Figure 11) the effect of annealing is very minor and eventually causes a 

power drop; while operation without annealing gives the maximum power. This behavior can be 

attributed to the fact that the annual temperature is very low in Alaska (-3.4 °C on average) and 

at low temperatures the initial degradation rate is very small, although the DSS is worse than for 

higher temperatures.   Also the initial drop in the power during annealing is more significant than 

the post-anneal power increase. This introduces more energy loss rather than compensating for 

the light induced degradation.  Thus, rapid annealing cycles,  which themselves have parasitic 

losses do not generate additional  electricity. In such a case it  is  more suitable to reduce the 

frequency of annealing cycles. This is discussed in detail below.

In Casa Grande, AZ (Figure 12) the flux and temperature are comparatively very high. The 

simulation shows electricity generation is better at outdoor operating temperatures than the other 

sensitivity  controlled  outdoor  operating  conditions.  Maximum  power  is  generated  with  the 

anneal frequency five times per day. It is similar to the case of Apalachicola, FL (Figure 13), 

except that the anneal frequency is six times per day.  The requirement of a high number of 

anneals per day in Casa Grande and Apalachicola is due the more rapid degradation of a-Si:H 

with higher ambient temperatures. Thus more anneal pulses are required to compensate for this 

power loss due to the creation of “fast” defect states [35,36]. Although the anneal pulses are 

accompanied with an initial  power drop, compared to the SWE degradation and after anneal 

rapid power boost, this temporary power drop plays a minor in overall device performance. In 

Aspen, CO (Figure 14) the ambient temperature is low for a reasonable amount of incident solar 
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flux in this region. Simulation result shows that a single anneal per day at outdoor operating 

temperature provides maximum electricity generation.

The max energy output for all the four cities is shown in Figure 15 and includes data for both 

the sustained operating temperature cases and outdoor operating temperature cases. In all the 

locations the outdoor operating temperature yield the maximum output. The max energy obtained 

at Aspen, CO is close to the max energy obtained at Apalachicola, FL regardless the fact that 

Florida  gets  more  solar  flux  than  Colorado.  This  can  be  attributed  to  the  degradation  rate 

stagnating  at  locations  with  lower  ambient  temperatures.  In  Colorado,  for  example,  the  net 

electricity generation without annealing is higher than Florida. In Florida the flux is high, but the 

temperature is relatively high as well, which results in rapid degradation hence the net energy 

generation without annealing is lower. On the other hand additional power generation due to 

annealing is more in Florida compared to Colorado. This is because of the rapid degradation of 

generated power in Florida, which provides an opportunity for the anneal pulses to take place 

and produce more annealing-associated additional electricity.

The  outdoor  operating  condition  simulations  are  summarized  in  Table  5.  The  data 

represents the output  electricity at operating temperature identical to the  ambient temperature. 

The maximum energy obtained for the four cities when annealing is applied and the additional 

energy generated due to annealing is provided in Table 5 .

Table 5 Maximum electricity generation over a year in the four cities at outdoor operating 

temperatures.

Cities Max 

Electricity 

Without 

Annealing 

(kWh)

Max 

Electricity 

With 

Annealing 

(kWh)

Required 

Number of 

Anneals

Additional 

energy 

Generation (%)

Anchorage, AK 0.0046 0.00457
Once every 

other day
-6.5 

Casa Grande, AZ 0.00737 0.0099 5 times/day 34.4 
Apalachicola, FL 0.0063 0.00838 6 times/day 33.2 

Aspen, CO 0.0068 0.00834 1 time/day 22.5 
The following observations summarize the results:
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1. Outdoor  operating  temperature  provides  the  maximum  electricity in  all  the 

representative climate cities.   

2. To  optimize  electrical  output  thermal  spike  annealing  frequency  is  location 

dependent due to the ambient temperature and incident solar flux.

3. The  effect  of  annealing  is  more  significant  in  locations  with  higher  ambient 

temperatures and this effect appears to be relatively invariant to solar flux.

4. The  optimal  annealing  frequency  is  higher  for  regions  with  higher  ambient 

temperatures.  

5. Max energy generation (without annealing at outdoor operating temperatures) is 

higher in regions with lower ambient temperatures. 

6. In locations with extremely low temperatures, the effect of annealing is minor and 

a-Si:H PVT panels do not necessarily generate additional  electricity under rapid 

annealing cycles if the solar flux is low. As for example, the additional energy 

generation due to annealing (once every other day) in Anchorage, AK is -6.52 %, 

which represents an  electricity loss. With a high solar flux and low temperature 

more moderate gains were seen in Colorado.

4.4. Appropriate Dispatch Strategy

 A sensitization was performed for the four representative regions on following bases:

1. The frequency of annealing should be as low as possible to reduce the annealing 

associated thermal energy consumption.

2. The  energy  generation  should  be  within  2%  of  the  maximum  electricity 

generation.

The dispatch strategy reasoning for each city is discussed in detail in following segments.

a) Anchorage (Alaska): The outdoor operating temperature simulation result shows 

that maximum power in  Anchorage was obtained without  annealing and rapid 

annealing reduces power generation. The power degradation rate is very low due 

to  extremely  low  ambient  temperature.  Hence  it  is  required  to  reduce  the 

frequency of annealing cycles to obtain power greater than the no anneal case. 

Using the rules above, annealing only once in a year (8640 hours) was chosen to 

be an ideal strategy for this city. It resulted in generation of .000345% additional 

energy,  which  is  negligible.  Further  reduction  of  annealing  frequency  i.e. 
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annealing  once  in  every  two years  will  possibly  provide  additional  energy.  It 

should be pointed out here that in this case  the thermal side of the PVT would 

rarely be providing useful thermal energy.

b) Casa Grande (Arizona): In Casa Grande the maximum energy was obtained for 

the strategy that consists of five anneals per day at outdoor operating temperature 

producing 34.4% additional energy. Yet a single anneal per day generates 33.4 % 

additional energy. This will significantly reduce the annealing associated heating 

energy consumption. 

c) Apalachicola  (Florida):  In  Apalachicola  the  max  energy  was  obtained  for  a 

dispatch strategy consisting six times annealing per day, which resulted in 33.2% 

additional energy generation. If the anneal cycle is reduced to one time every day 

29.3%  additional  electricity generation  is  still  generated,  while  cutting  the 

annealing associated heating energy consumption down by a factor of six. This 

compares to the exergy for PV being higher than solar thermal for PV systems by 

a factor of six.

d) Aspen (Colorado):  As can be seen in Table 5, the maximum energy for Aspen 

was obtained for a single anneal every day. This strategy is also likely to provide a 

favorable  dispatch  strategy  for  Aspen  with  22.5  %  additional  electricity 

generation.

A comparison is shown in Table 6 of the dispatch strategies that give the maximum electricity 

with  the  strategies  that  gives  favorable  PVT performance.  The calculation  only  involves 

electricity generation and hence it is not the complete optimization. The appropriate dispatch 

strategy in this case can be defined as the strategy that generates  electricity close to max 

possible  electricity with lower frequency of anneal cycles. Similarly max energy dispatch 

strategy refers to the strategy that generates maximum electricity.
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Table 6 Comparison between max energy dispatch strategies and optimized strategies

Cities
Maximum Electricity Dispatch 

Strategy
Appropriate Dispatch Strategy

Required Number 

of Anneals

Additional 

energy 

Generation 

(%)

Required 

Number of 

Anneals

Additional 

energy 

Generation 

(%)

Advantage Drawbacks

Anchorage, AK No Anneal 0 
Once every 

year
.000345

Energy 

generation 

increased

N/A

Casa Grande, AZ 5 times/day 34.35 1 time/day 33.45

Reduces 

annealing 

associated 

energy 

consumption

Energy 

generation 

decreased

Apalachicola, FL 6times/day 33.17 1 time/day 29.33

Reduces 

annealing 

associated 

energy 

consumption

Energy 

generation 

decreased

Aspen, CO 1 time/day 22.47 1 time/day 22.47 N/A N/A



5. Limitations and Future Work

In this study three broad assumptions were made about the operating temperature as a 

function of  ambient temperature.  In reality it  is  unlikely that the PVT operating temperature 

could vary significantly and would depend on the designed solar thermal temperature  and the 

flux  as  well  as  the  ambient  temperature,  which affects  the a-Si:H degradation  behavior  and 

electrical output. Modeling accurate PVT panel temperature as heat is transferred and solar flux 

is  beyond  the  scope  of  this  paper,  but  should  be  completed  for  future  work  along  with 

experimental trials on manufactured a-Si:H PVT. 

The  primary  limitation  of  this  study  is  the  accuracy  of  values  of  the  degradation 

associated constants kdss  and udss, which  were calculated linearly from the plots shown in Figure 

1 and 2. The parameters inside the range 25-90oC likely suffer from very little error, however, the 

extension off the range particularly to lower temperatures could be inaccurate.  Based on the 

change of slope with decreasing temperature of the two parameters it is likely this would have 

the effect of underestimating the degradation at low temperatures, which may explain the outlier 

results  seen  for  the  Alaska  case  study.   Future  work  is  needed  to  run  low  temperature 

degradation/annealing  experiments  to  provide  more  data  points  of  kdss  and  udss values.   A 

secondary problem associated with  the  degradation associated parameters is their value limits. 

The value of udss falls with decrease in temperature and after certain temperature (approximately 

2  oC) the  value  of  udss becomes  negative.  Theoretically  it  is  not  possible  for  udss  to  obtain 

negative value because that refers to rise in power rather than degradation. Thus when udss  value 

is below 0 the value is set to 0. Similarly the max limit for kdss value is 0.4642 and the parameter 

value cannot exceed the limit. Exceeding the limit deteriorates degradation behavior.

The calculation of appropriate dispatch strategy is limited only to electrical performance 

and thus does not include the thermal energy consumption associated with annealing. So these 

dispatch strategies should not be considered to be optimized. A study [3] investigating the exergy 

contributions between solar thermal and PV in PVT, found the electrical component dominates 

the overall exergy efficiency. This indicates that the dispatch strategies in this study will be a 

close approximation of the optimum, but the thermal losses with annealing and the overall effect 

of  the  operating  temperature  on  the  exergy  efficiency  of  the  PVT as  a  whole  should  be 

investigated in future work. In order to do a complete exergy or net energy analysis the energy 
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used in the thermal annealing process must be quantified, which necessitates the quantification of 

the thermal energy component as well.

Other  geographic and weather  related effects  can be taken into account  to  further  refine 

future  dispatch  strategies  for  a-Si:H-based PVT such as  including information  from detailed 

studies of snow and its impact on solar energy devices [36] in snowbound areas. Moreover, using 

trade-off between the thermal power and electric power in PVT is possible and may be beneficial 

to be varied throughout the year given both weather and load considerations. Including such 

functionality into future models will give users more flexibility on usage of PVT and potentially 

improve the PVT operating efficiency further. 

The results showed that annealing contributes to additional electricity generation in PVT in 

almost  all  cases.  But  annealing  is  also  accompanied  with  PVT  panel  thermal  energy 

consumption. Hence it is necessary to optimize the annealing cycle and obtain the most effective 

dispatch strategy for the total energy. This is left for future work, which should use exergy to 

determine the optimal routine. 

6. Conclusions

The  model  presented  here  uses  publicly-available  data  to  implement  suitable  dispatch 

strategies and execute virtual performance analysis of PVT for any geographic location in the 

world. This study further refined the simulation of the optimal dispatch strategy for a-Si:H based 

PVT  by  studying  annealing  cycles  and  analysis  of  the  degradation  at  other  operating 

temperatures controlled by the  ambient temperature. Four case studies were evaluated for the 

combinations  of  high  and  low  solar  flux  and  high  and  low  average  ambient  temperature. 

Optimal dispatch strategies are found for a range of PVT thermal insulating effectivenesses. The 

results showed significantly more electricity generation (between 22-35%) in all the cases except 

for those dominated by low temperatures and low solar fluxes.  The results showed consistently 

high increases in electricity from PVT systems operated in high average temperature locations. 

These results further indicate that a-Si:H PV electrical performance can be improved in most 

populated regions in the world by integrating it into a PVT device and using spike annealing to 

reverse the SWE effect. 
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Figure Captions

Fig. 1 Degradation associated parameter kdss against temperature

Fig. 2 Degradation associated parameter udss against temperature
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Fig 3 Average hourly solar irradiation per day for the four cities

Fig. 4 Average hourly temperature readings per day for the four cities
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Fig. 5 Total electricity generation over a year under different annealing conditions in Anchorage, 

AK at sustained operating temperatures

Fig.  6  Total  electricity generation  over  a  year  under  different  annealing  conditions  in  Casa 

Grande, AZ at sustained operating temperatures
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Fig.  7  Total  electricity generation  over  a  year  under  different  annealing  conditions  in 

Apalachicola, FL at sustained operating temperatures

Fig. 8 Total electricity generation over a year under different annealing conditions in Aspen, CO 

at sustained operating temperatures
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Fig. 9 Maximum electricity generation (obtained for annealing one time every day) over a year 

in the four cities at sustained operating temperatures

Fig. 10 Sensitivity study with different outdoor operating conditions
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Fig. 11  Total  electricity generation over a year under different annealing cycles in Anchorage, 

AK at outdoor operating conditions

Fig. 12 Total electricity generation over a year under different annealing cycles in Casa Grande, 

AZ at outdoor operating conditions
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Fig. 13 Total electricity generation over a year under different annealing cycles in Apalachicola, 

FL at outdoor operating conditions

Fig. 14 Total electricity generation over a year under different annealing cycles in Aspen, CO at 

outdoor operating conditions
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Fig. 15 Maximum electricity generation over a year for the four cities at sustained temperature 

(anneal cycle is one time per day) and outdoor operating conditions (anneal cycle varies from 

one place to another)
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