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Abstract 

The heavy-duty diesel (HDD) engines use the diesel oxidation catalyst (DOC), catalyzed 

particulate filter (CPF) and urea injection based selective catalytic reduction (SCR) 

systems in sequential combination, to meet the US EPA 2010 PM and NOₓ emission 

standards. The SCR along with a NH₃ slip control catalyst (AMOX) offer NOₓ reduction 

>90 % with NH₃ slip <20 ppm. However, there is a strong desire to further improve the 

NOₓ reduction performance of such systems, to meet the 2015 California Optional Low 

NOₓ Standard. Integrating SCR functionality into a diesel particulate filter (DPF), by 

coating the SCR catalyst on the DPF, offers potential to reduce the system cost and 

packaging weight/ volume. It also provides opportunity to increases the SCR volume 

without affecting the overall packaging, to achieve NOₓ reduction efficiencies >95 %. 

In this research, the NOₓ reduction and NH₃ storage performance of a Cu-zeolite SCR 

and Cu-zeolite SCR catalyst on a DPF (SCRF®) were experimentally investigated based 

on the engine experimental data at steady state conditions. The experimental setup and 

test procedures for evaluation of NOₓ gaseous emissions and PM oxidation performance 

of the SCRF®, including pressure drop and the temperature distribution with and without 

PM loading in the SCRF® are described. The experimental data for the production-2013-

SCR and the SCRF® were collected (with and without PM loading in the SCRF®) on a 

Cummins ISB 2013 engine, at varying inlet temperatures, space velocities, inlet NOₓ 

concentrations and NO₂/NOₓ ratios, to evaluate the NOₓ reduction, NH₃ storage and NH₃ 

slip characteristics of the SCR catalyst. The SCRF® was loaded with 2 and 4 g/L of PM 

prior to the NOₓ reduction tests to study the effect of PM loading on the NOₓ reduction 

and NH₃ storage performance of the SCRF®.  

The 1-D SCR model developed at MTU was calibrated to the engine experimental data 

obtained from the seven NOₓ reduction tests conducted with the production-2013-SCR. 

The performance of the 1-D SCR model was validated by comparing the simulation and 

experimental data for NO, NO₂ and NH₃ concentrations at the outlet of the SCR. The NO 

and NO₂ concentrations were calibrated to ±20 ppm and NH₃ was calibrated to ±20 ppm. 
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The experimental results for the production-2013-SCR indicate that the NOₓ reduction of 

80 – 85% can be achieved for the inlet temperatures below 250°C and above 450°C and 

NOₓ reduction of 90 – 95% can be achieved for the inlet temperatures between 300 – 

350°C, at ammonia to NOₓ ratio (ANR) 1.0, while the NH₃ slip out of the SCR was <75 

ppm. Conversely, the SCRF® showed 90 – 95 % NOₓ reduction at ANR of 1.0, while the 

NH₃ slip out of the SCRF® was >50 ppm, with and without PM loading in the SCRFc, 

for the inlet temperature range of 200 – 450 °C, space velocity in the range of 13 to 48 

k/hr and inlet NO₂/NOₓ in the range of 0.2 to 0.5. The NOₓ reduction in the SCRF® 

increases to >98 % at ANR 1.2. However, the NH₃ slip out of the SCRF® increases 

significantly at ANR 1.2.  

The effect of PM loading at 2 and 4 g/L on the NOₓ reduction performance of the SCRF® 

was negligible below 300 °C. However, with PM loading in the SCRF®, the NOₓ 

reduction decreased by 3 – 5% when compared to the clean SCRF®, for inlet temperature 

>350 °C. Experimental data were also collected by reference [1] to investigate the NO₂ 

assisted PM oxidation in the SCRF® for the inlet temperature range of 260 – 370 °C, 

with and without urea injection and thermal oxidation of PM in the SCRF® during active 

regeneration for the inlet temperature range of 500 – 600 °C, without urea injection. The 

experimental data obtained from this study and [1] will be used to develop and calibrate 

the SCR-F model at Michigan Tech. The NH₃ storage for the production-2013-SCR and 

the SCRF® (with and without PM loading) were determined from the steady state engine 

experimental data. The NH₃ storage for the production-2013-SCR and the SCRF® 

(without PM loading) were within ±5 gmol/m3 of the substrate, with maximum NH₃ 

storage of 75 – 80 gmol/m3 of the substrate, at the SCR/SCRF® inlet temperature of 

200°C. The NH₃ storage in the SCRF®, with 2 g/L PM loading, decreased by 30%, when 

compared to the NH₃ storage in the SCRF®, without PM loading. The further increase in 

the PM loading in the SCRF®, from 2 to 4 g/L, had negligible effect on NH₃ storage.  
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Chapter 1. Introduction 

Heavy duty diesel engines are used as the power plants in stationery applications, on-road 

and off-road vehicles. They can significantly reduce CO₂ emissions, but they produce 

mainly emissions of nitrogen oxides (NOₓ) and particulate matter (PM) that need to be 

controlled to meet the emission standards. Various agencies around the world have been 

working to regulate the emissions. The tail pipe emission standards for heavy duty diesel 

engines have been regulated since 1974 by the Environmental Protection Agency (EPA) 

in the U.S. The evolution of emission standards in the U.S. from year 2004 – 2015 is 

shown in Table 1.1.  

Diesel engine emissions are controlled with technologies such as high pressure fuel 

injection system, turbocharging, cooled exhaust gas recirculation (EGR) and multiple fuel 

injections using piezo injectors. Diesel engine manufacturers of heavy-duty on-road 

vehicles implemented the usage of Diesel Particulate Filter (DPF) in 2007 to meet the 

standards for PM.  Present aftertreatment systems typically consists of a Diesel Oxidation 

Catalyst (DOC), a Catalyzed Particulate Filter (CPF), Selective Reduction Catalyst (SCR) 

with the urea injection assembly and Ammonia Oxidation Catalyst (AMOX) to meet the 

gaseous and PM emissions, post 2010. 

Table 1.1: US EPA & California Emission Standards for Heavy-Duty CI Engines, 
g/bhp·hr [2] 

Emission 
Gases 

EPA Standard - Implementation Year 
2004 2007-09 2010 2015 

NOₓ 2.00* 1.2 0.2 0.02** 
NMHC 0.5* 0.14 0.14 0.14 
CO 15.5 15.5 15.5 15.5 
PM 0.1 0.01 0.01 0.01 

NOTE: “*”    - Alternative standard: NMHC+NOₓ = 2.5 g/bhp.hr 
     “**”  - Manufactures may choose California Optional Low NOₓ Standard 
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1.1 Diesel Aftertreatment Systems  

A typical arrangement of components in the aftertreatment system for a heavy duty diesel 

engine is shown in the Figure 1.1.  

Figure 1.1:  Overall schematic of the Cummins ISB 2013 production aftertreatment 
system [3] 

The first component is a DOC, which is a flow through catalyst that oxidizes the HC, CO 

and NO in the exhaust stream into H2O, CO₂ and NO₂. For diesel engines, the proportion 

of NO₂ in total engine-out NOₓ is typically 5 - 15%. The oxidation of NO to NO₂ 

provides an increased rate of NO₂ assisted oxidation of PM in the CPF and helps in 

maintaining higher NO₂/NOₓ ratio needed for better NOₓ reduction in the SCR [4]. The 

HC conversion efficiency increases with an increase in exhaust temperature, whereas the 

NO to NO₂ conversion efficiency is maximum at 340 °C DOC inlet temperature, and 

decreases for temperatures less or more than 340 °C [5]. 
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The CPF is a wall flow device, with every other channel open at the inlet but closed at the 

outlet end. The CPF filters the PM in the exhaust gas and oxidizes the PM accumulated in 

the filter either by passive oxidation or active regeneration. The NO₂ assisted oxidation 

occurs due to reaction between the PM accumulated in the CPF and the NO₂ present in 

the exhaust gases, at temperatures between 250 – 400 °C. The thermal oxidation occurs 

due to reaction between PM accumulated in the CPF and the O2 present in the exhaust 

gases, at exhaust temperatures higher than 400°C. Both the mechanisms of PM oxidation 

occur simultaneously. These mechanisms are explained in detail in reference [3, 6, 7]. 

The SCR system is a flow through substrate which reduces the NOₓ in the exhaust gas 

into N2 and H2O using the urea solution injected in the decomposition tube. The urea 

solution with 32.5 % urea concentration by weight, also known as diesel exhaust fluid 

(DEF) is used as the reducing agent. The DEF is dosed into the exhaust gases using an 

injector into the decomposition tube. The decomposition tube helps in mixing the DEF 

spray with the exhaust flow and also accelerates the urea hydrolysis and thermolysis 

process [8]. The urea decomposes into NH₃ and isocyanic acid. The isocyanic acid 

further decomposes into NH₃ and CO2 on the SCR catalytic surface [8]. The NH₃ 

produced by decomposition of the urea is adsorbed and stored on the SCR catalytic 

surface. The NOₓ in the exhaust gases is reduced by the NH₃ stored on the SCR catalyst. 

The SCR substrate is a honeycomb structure with a typical channel density of 400 cells 

per square inch (CPSI). The substrate is made from the ceramic material such as 

cordierite and titanium oxide. The catalytic components such as oxides of vanadium and 

tungsten, iron (Fe) or copper (Cu) zeolites and precious metals are coated on the channels 

of the SCR. The performance of various catalysts, based on the published literature will 

be discussed in the next chapter. 

The AMOX is placed after the SCR substrates or on the back of a substrate to oxidize the 

NH₃ that slips out of the SCR due to various reasons including over injection of DEF, 

low exhaust temperatures and the effect of an aged SCR catalyst. NH₃ is oxidized to N2 

and H2O. Figure 1.1 shows a SCR-A substrate that just has a SCR catalyst and SCR-B 
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represents a substrate coated with the SCR catalyst in the front and the AMOX on the 

back of the substrate. 

1.2 Motivation 

The California optional emission regulations for 2015 require high NOₓ reduction (>95%) 

and low NH₃ slip (<10 ppm). Hence, it is important to understand the NOₓ reduction 

performance of the SCR catalyst and the effect of various inlet temperatures, space 

velocities, inlet NOₓ concentrations and NO₂/NOₓ ratios on the NOₓ reduction 

performance of the SCR catalyst. In order to change the SCR design to achieve improved 

performance and reduced complexity of the SCR systems, extensive studies along with 

modeling efforts are required. An SCR model calibrated to experimental data provides 

possibilities to estimate the SCR states which cannot be directly measured [9]. 

The diesel engine aftertreatment catalysts can be arranged either in DOC + CPF + SCR or 

DOC + SCR + CPF, although each configuration has advantages and disadvantages; the 

selection of configuration will depend on issues such as the need for rapid light-off of the 

SCR, for maximizing passive regeneration, for adequate urea mixing, and for packaging 

space [10]. Furthermore, the California optional emission standards for year 2015 will 

require even lower tailpipe NOₓ emissions when compared to year 2010. One potential 

approach would be increasing the catalyst volume, but it will increase the cost of the 

system due to the precious metals involved and could cause packaging problems.  

The SCR catalyst on a DPF is also known as a SDPF and SCR-in-DPF is an upcoming 

technology in the field of diesel aftertreatment systems which provides a cost-effective 

solution to reduce NOₓ and PM using a single aftertreatment device [11]. One way to 

make the SCR on a DPF is by coating the SCR catalyst on the DPF substrate. The 

reduced aftertreatment volume achieved by the integration of SCR and DPF provides 

opportunity for packaging flexibility and improved thermal management [12]. 

The SCR catalyst on a DPF used in this study is known as the SCRF®, and it was 

developed and supplied by Johnson Matthey and Corning. The SCRF® is a wall flow 

device (DPF) in which the substrate is coated with a Cu-zeolite based SCR catalyst. Thus, 
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the NOₓ and PM can be controlled using a single device. The substrate of the SCRF® 

used in this study is made from cordierite and was supplied by Corning. The PM 

accumulated in the SCRF® is oxidized by NO₂ assisted oxidation and thermal oxidation. 

The NOₓ in the exhaust gas is reduced by the SCR reactions occurring on the SCR 

catalyst.  

The total volume of the production aftertreatment components and the SCRF® is given in 

Table 1.2.  It can be observed that the volume of the production aftertreatment is almost 

10 liters higher than the DOC + SCRF®. This indicates that an additional SCR brick 

could be used and still maintain the weight to volume ratio similar to the production 

aftertreatment system. The additional NOₓ reduction catalyst would help to achieve the 

2015 emission standards shown in Table 1.1.  

Table 1.2: Volume comparison of the Production and DOC-SCRF® systems [3] 

Component 

Volume (L) 

Production DOC + 
SCRF® 

DOC + SCRF® + 
SCR-B 

(Present) (Option 1) (Option 2) 
DOC 4.2 4.2 4.2 
CPF 10.4 - - 
SCRF® - 17.0 17.0 
SCR-A 8.52 - - 
SCR-B 11.4 - 11.4 
AMOX - 2.9 - 
Total 34.5 24.1 32.6 

1.3 Goals and Objectives 

One of the goals of this research is to investigate with the experimental data the NOₓ 

reduction performance of the production-2013-SCR, calibrate the high fidelity MTU 1-D 

SCR model developed by Dr. Song [9] to simulate the SCR outlet gaseous concentrations 

(NO, NO₂ and NH₃), investigate the NOₓ reduction and NH₃ storage performance of the 

SCRF® and compare it with the performance of the production-2013-SCR.  
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The production-2013-SCR from the Cummins ISB 2013 diesel engine aftertreatment 

system and the SCRF® will be used to conduct experiments as a part of the Diesel 

Engine Aftertreatment Consortium efforts at MTU. The experimental data will be 

collected by varying the SCR and the SCRF® inlet temperature, space velocity, NOₓ 

concentration and NO₂/NOₓ ratio. Experimental data for the SCRF® will be collected 

from configuration 1, 2 and 3, which will be used to determine the PM oxidation, PM 

loading, PM filtration, pressure drop and temperature distribution characteristics of the 

SCRF® with and without urea injection and the NOx reduction and NH3 storage in the 

SCRF®, with 0, 2 and 4 g/L PM loading in the SCRF®. Configuration 1 and 2 consist of 

a DOC and a SCRF®. However, in configuration 2, a CPF will be placed upstream of the 

SCRF® during the tests designed to collect experimental data without PM loading in the 

SCRF®. Configuration 3 consists of a DOC, a SCRF® and a SCR downstream of the 

SCRF®.  A SCR-F model will be developed from the MPF model for the CPF [13], with 

the addition of the SCR equations from the MTU 1-D SCR model [9] and the 

experimental data from the SCRF® will be utilized to validate and calibrate the SCR-F 

model. 

The following objectives were developed to meet the research goals: 

1) Develop the procedures and identify the test conditions for steady state testing of

the Cummins ISB 2013 engine and the aftertreatment system to characterize the

NOₓ gaseous emissions performance of the production-2013-SCR and the SCRF®

including the pressure drop and temperature distribution data needed for

calibrating the SCR-F model.

2) Conduct the NOₓ experimental tests as a function of ANR to evaluate the NOₓ

emission performance of the ISB 2013 production-2013-SCR and the SCRF® and

collect data for the 1-D SCR and the SCR-F models. The procedures developed in

Objective 1 will be used to collect the experimental data. The data from the

production-2013-SCR will be considered as the baseline SCR performance and

will be used to compare to the SCRF® data and the SCRF® data will be used to

develop and calibrate the SCR-F model.
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3) Analyze the data for the production-2013-SCR and the SCRF® to determine the

NOₓ conversion efficiency, NH₃ slip and NH₃ storage. The effect of parameters

such as space velocity, SCR and SCRF® inlet temperature, SCR and SCRF®

inlet NO, NO₂ and NOₓ concentrations, ANR and NO₂/NOₓ ratios will be used to

explain the outlet gaseous concentrations (NO, NO₂ and NH₃) and the NOₓ

conversion efficiency. The data consistency will be checked based on nitrogen

balance across the SCR and SCRF®. These data will be used for determining the

ANR for the experimental tests with a SCRF® plus SCR system.

4) Calibrate the 1-D SCR model using the engine experimental data by determining

the storage parameters and the pre-exponential factors for the SCR reactions.

Validate the model performance by comparing the simulation results and the

experimental data.

5) The SCRF® performance will be determined with 2 and 4 g/L of PM and without

PM in the SCRF® (0 g/L) and the SCR and the SCRF® performance, with and

without PM in the SCRF® will be analyzed and compared to the published

literature.

1.4 Thesis Outline 

 The thesis discusses the NOₓ reduction performance of the SCR and the SCRF® based 

on the experimental study conducted on the Cummins ISB 2013 engine with the 

production-2013-SCR and the SCRF®. This chapter presented the brief introduction and 

the motivation for the research. The importance of the aftertreatment system was 

explained, followed by the goals and objectives of the research. 

Chapter 2 provides a literature review of the published papers relating to the SCR and the 

SCR catalyst on the DPF systems. Information regarding the performance of the 

components, based on the experimental and modeling studies were collected from the 

previous technical papers from different organizations. 

Chapter 3 discusses the test cell layout and the experimental procedures used for 

collecting the experimental data. The testing facilities and specific instruments are 
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introduced. The various test procedures and the test matrices are discussed. The important 

modifications in the test procedure are explained. 

Chapter 4 presents the results of this study. The data analysis and implementation of 

nitrogen balance methodology to validate the data consistency are explained. The NOₓ 

reduction and NH₃ storage characteristics of the production-2013-SCR and the SCRF®, 

with and without PM loading in the SCRF® are discussed. Performance of the calibrated 

1-D SCR model are explained by comparing the simulated and experimental results. 

Chapter 5 summarizes the analyzed results from the experimental and the modeling 

studies and the conclusions of the research. Recommendations for future work are 

proposed. 
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Chapter 2. Literature Review 

The urea-SCR technology has been the most effective solution to control NOₓ emissions 

from diesel exhaust gas. The SCR technology was first applied in thermal power plants in 

1970s and was commercially adopted for diesel engines about a decade ago [2]. The 

current hardware commonly uses a DOC+CPF+SCR system configuration to meet the 

heavy-duty emission regulations. Recently developed diesel engines are calibrated to 

produce high engine-out NOₓ (1500 – 2000 ppm) to facilitate passive oxidation of PM in 

the DPF/CPF. This change in engine calibration further increases the demand for high 

NOₓ conversion efficiency from the SCR system. Combining the functions of the SCR 

and the DPF (SCR-on-filter) provides the opportunity for design and packaging 

flexibility, improved thermal management and reduced aftertreatment volume in heavy 

duty diesel engine applications. Due to closer placement of the SCR-on-filter than the 

SCR, SCR-on-filter can operate at higher temperatures and hence achieve higher NOx 

conversion [12]. A literature review of the aspects related to the SCR and the SCR-on-

filter from the published research are presented in the following sections of this chapter. 

2.1 SCR Catalyst Formulations and Experimental Studies 

The major SCR catalysts that are used and studied include Cu-zeolite, Fe-zeolite, vanadia 

and cerium based composite oxides. The vanadia SCR (V-SCR) catalysts consist of V2O5 

as the active component impregnated on TiO₂. Barium (Ba), cerium (Ce), zirconium (Zr), 

terbium (Tb) and erbium (Er) are used to stabilize vanadium [14, 15]. SiO₂ and WO₃ are 

used to increase the thermal durability. The V-SCR has demonstrated maximum NOₓ 

conversion between 300 to 450°C and superior resistance to sulfur poisoning [16]. Hence 

vanadia SCR is preferred in markets with high sulfur fuel.  

The low melting of V2O5 leads to thermal deactivation of V-SCR and loss in NOₓ 

conversion above 550°C [9, 17]. The maximum NOₓ conversion efficiency for V-SCR 

after a 64 hours hydrothermal aging at 670°C was only about 20%, while for Fe and Cu-

zeolite SCR, NOₓ conversion efficiency was >90% after the same hydrothermal aging 
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procedure. A significant improvement in the durability of V-SCR after 100 hours of 

exposure at 650°C was reported by Spenglet et al. [16]. They found that the NOₓ 

conversion efficiency, increased from 30% at 300°C catalyst temperature to 95%, by 

stabilizing the titania support and then immobilizing the vanadia catalyst on the titania. 

However, the V-SCR also releases toxic vanadium compounds such as V2O5, from the 

catalysts at temperatures beyond 600 °C. Hence, a formulation is needed which is 

efficient in NOₓ conversion, thermally stable and more environmental friendly than the 

V-SCR. 

The new generation SCR catalyst technologies also include Cu and Fe based zeolites. The 

characteristic of the Cu-zeolite and Fe-zeolite SCR from various references [4, 18, 19, 20, 

21, 22, 23] are compared and summarized below. 

• Cu-zeolite SCR demonstrates higher NOₓ conversion efficiency than the Fe-

zeolite SCR below SCR inlet temperatures of 350 °C, while Fe-zeolite SCR

provides better NOₓ conversion at temperatures >400 °C.

• Cu-zeolite SCR has higher NH₃ storage capacity than the Fe-zeolite SCR, which

may be the main reason for higher NOₓ reduction in Cu-zeolite SCR than the Fe-

zeolite SCR at low temperatures. The NH₃ storage capacity and NOₓ reduction

performance is significantly affected by the catalyst aging.

• Both the catalysts exhibit a tendency to oxidize NH₃ above 300 °C with high

selectivity to N₂ (>95%). However, higher surface oxidation was observed in Cu-

zeolite SCR than the Fe-zeolite SCR, reducing the effective amount of NH₃

available for NOₓ reduction reactions.

• The NOₓ reduction performance of Cu-zeolite SCR is less dependent on the

NO₂/NOₓ ratio, compared to that of Fe-zeolite SCR. This is due to the ability of

the Cu-zeolite SCR to oxidize the surface NO to NO₂ in situ. However, Fe-Zeolite

provides better NOₓ reduction than the Cu-zeolite SCR at an optimal NO₂/NOₓ

ratio of 0.5.

• Cu-zeolite shows lower NH₃ slip due to its higher NH₃ storage and NH₃

oxidation than the Fe-zeolite SCR.
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• Cu and Fe-zeolite catalysts are thermally more stable than the vanadia based SCR

at temperatures typical of diesel application with active regeneration. However,

their performance can deteriorate irreversibly over time as a result of high

temperature thermal deactivation.

• Cu-zeolite SCR exhibits less tolerance to sulfur poisoning than the Fe-zeolite

SCR. The low temperature (<300 °C) performance of Cu-zeolite SCR decreased

significantly upon exposure to SO₂. However, the sensitivity to SO₂ reduced at

high temperatures, indicating occurrence of desulfation phenomenon.

• The Cu-zeolite produces higher concentration of N₂O than the Fe-zeolite SCR.

N₂O formation could be regulated by optimizing the catalyst’s oxidizing

performance, the urea injection strategy and the NH₃ storage onto the catalyst to

decrease the NH₃ slip.

Studies were performed to combine the Cu-zeolite and Fe-zeolite systems to obtain better 

performance when compared to individual catalysts. The simulation results of a 

combined system were presented in reference [24]. They concluded that the dual-brick 

configuration performs better than the dual-layer configuration in the temperature 

window of 100 to 600°C. The overall NO conversion reduces in the dual-layer catalyst 

due to the diffusional limitations at the intermediate temperature when compared to the 

dual-brick catalyst. The experimental results of combined Cu and Fe-zeolite SCR 

catalysts were presented in reference [22]. They observed that the combined-SCR 

catalysts achieved higher NOₓ reduction during the WHTC and are capable of reducing 

NOₓ over a wider range of operating temperature than achieved using either of the 

individual systems. The best NOₓ reduction was achieved using a combined system with 

a Fe: Cu catalyst ratio of 1:2. To meet the challenge of high NOₓ conversion at low 

temperature, a high porosity substrate which minimizes the pressure drop impact was 

studied in references [25, 26]. Hirose et al. [25] studied the effect of cell structure, Cu-

zeolite amount, high porosity and high cell density on NOₓ reduction and pressure drop. 

They concluded that increasing cell density, porosity and catalyst amount results in 10 – 
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15% increase in NOₓ conversion at high and low temperatures. The improved NOₓ

conversion efficiency also helps in downsizing the SCR substrate volume by 40 – 50 %. 

Recently, many types of doped cerium oxide based catalysts were also studied, such as 

Ce-Ta [27], Ce-Ti [28], Ce-Mo [29] and Ce-Cu-Ti [30], which demonstrated NOₓ 

reduction similar to Cu-zeolite or Fe-zeolite catalysts as shown in Figure 2.1. These Ce-

based composite oxide catalysts exhibit excellent oxygen storage-release capacity, redox 

properties in the NH₃-SCR reaction and increased area per gram of catalyst. Tao Zhang et 

al. [27] studied the novel CeaTabOx series catalysts prepared by co-precipitation method. 

The test results indicated that water vapor and SO₂ (150 ppm) inhibits the catalytic 

activity slightly at 300 °C which may be attributed to the competitive adsorption of H₂O 

and NH₃ molecules on the acid sites and deposition of ammonium sulfate on the surface 

of the catalyst which blocked the active sites [31, 32]. However, the NOₓ conversion was 

still maintained at approximately 80%. 

Figure 2.1: NOₓ conversion of a cerium 
oxide based SCR as a function of 
temperature [27] 

Figure 2.2: NOₓ conversion of a 
Mn(0.25)/Ti based SCR as a function of 

temperature [33] 

A series of manganese oxide based catalysts, supported on TiO₂ nanoparticles were also 

studied by references [33, 34, 35] since the manganese oxide based catalysts exhibit high 

NOₓ reduction in the low temperature region. Pappas et al. [33] conducted reactor based 

experiments to study the optimal content of manganese oxide supported on titania 
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nanotubes and concluded that with the Mn/Ti atomic ratio of 0.25, maximum NOₓ 

conversion efficiency can be achieved in the temperature range of 100 – 300°C. They 

also observed that the NOₓ conversion efficiency greater than 95% can be achieved in the 

temperature range of 100 – 300°C by using the Hombikat type Mn/Ti SCR catalyst as 

shown in Figure 2.2. The catalyst exhibited high activity and resistance to steam 

deactivation. 

2.2 Urea Dosing and Mixing Strategies 

Due to the complexity of the urea-SCR system and stringent standards for NH₃ slipping 

out of the catalyst, the optimized urea dosing in the SCR becomes important. In today’s 

applications, urea dosing is controlled using control algorithms that work on strategies 

including feed-forward control, closed-loop feedback and neutral network model to 

optimize the availability of NH₃ on the catalytic surface [36, 37, 38]. It is also important 

to understand how DEF sprays interact with changing exhaust conditions. Gaynor et al. 

[39] studied a range of dosing strategies in both, ambient air flow (25 – 30 °C) and hot-

air flow (200 – 350 °C) to simulate the real world exhaust conditions. They observed that 

the strategy used to inject DEF has significant impact on spray deflection, spray 

atomization, droplet distribution and spray-wall impingement within the system. Dong et 

al. [40] observed that the low quality spray from an injector which used a single hole of 

0.9 mm and 0.2 MPa assisted air pressure, leads to deposit formation within the pipe and 

the SCR catalyst inlet surface and decrease the NOₓ conversion efficiency of the SCR. 

However, a high quality spray from an injector with four holes of diameter 0.25 mm and 

0.8 MPa assisted air pressure can avoid the deposit formation.  

2.3 SCR Deactivation Effects 

The Cu-zeolite and Fe-zeolite based SCR catalysts have exhibited good NOₓ reduction 

performance and durability. However, the catalysts may become deactivated after being 

exposed to sulfur or hydrocarbon (HC) compounds, prolonged high temperature thermal 

deactivation and Pt-Pd poisoning. The adverse effect of these factors on the SCR will be 

discussed in this section.  
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2.3.1 Sulfur Poisoning 

Ultra-low sulfur diesel (ULSD with sulfur less than 15 ppm) has been used in the US 

since 2006. However, even with the use of ULSD, sulfur poisoning can negatively impact 

the overall SCR performance [41]. The impact of sulfur poisoning was more significant 

in Cu-zeolite than Fe-zeolite catalyst and the damaging effect was noted mainly below 

300 °C [42, 43]. Theis et al. [43] found that for Cu-zeolite, the effect of continued 

exposure to SO₂ was significant and more sensitive at low temperatures than at the high 

temperatures, indicating that desulfation may occur at higher temperatures. For the Fe-

zeolite catalysts, there was little impact of SO₂ on the NOₓ conversion at low 

temperatures. It was concluded that the NOₓ reduction performance of poisoned catalyst 

could be fully recovered after desulfation for 5-10 minutes of lean operation at 650 °C for 

Cu-zeolite and 750 °C for Fe-zeolite. It was also noticed that the NOₓ reduction 

sensitivity to the presence of SO₂ at low temperature was reduced after multiple 

poisoning and desulfation cycles. Cavataio et al. [19] found similar results for desulfation 

of Cu-zeolite and Fe-zeolite catalyst. However, they concluded that the relatively high-

temperature necessary for desulfation was related to the decomposition of sulfates, rather 

than a simple desorption of adsorbed SO₂. 

2.3.2 SCR Thermal Aging 

Aftertreatment systems exposed to high temperatures (>600°C), may cause irreversible 

damages to the catalysts and deteriorate the NOₓ reduction performance of the SCR. 

Hence, it becomes important to understand the thermal aging and hydrothermal 

deactivation of the SCR catalyst. The hydrothermal aging effects were studied by 

references [44, 45, 46, 47]. In general, deactivation of zeolite catalysts by hydrothermal 

aging can occur by can occur through three mechanisms, i.e. dealumination, sintering and 

thermal collapse [48, 49]. When a zeolite is heated to elevated temperatures, its structure 

changes to denser crystalline phases, such as quartz [50]. The presence of water further 

accelerates this phase transition by attacking the aluminum site through a dealumination 

process causing loss of NH₃ storage capacity of the catalyst. The copper sintering 



15 

contributes to a loss of catalytic active sites, since the copper can be sequestered into 

large particles or removed from the catalyst [44]. Luo et al. [46] observed 10 – 15% loss 

in NOₓ conversion efficiency at low and high SCR inlet temperatures, when hydrothermal 

temperatures were increased from 550 – 850°C. NH₃ storage at 200°C decreases from 2.4 

to 1.8 g/L upon aging from 550°C to 850°C [51]. 

2.3.3 Hydrocarbon and Chemical Poisoning 

It is well known that zeolites can absorb and store a considerable amount of hydrocarbons 

(HCs). HCs may reach the SCR catalyst, block the active sites and degrade the 

performance of the SCR causing a HC poisoning effect. Some HCs may get polymerized 

and form carbonaceous deposits on the catalyst. To regenerate the active sites, exposure 

to high temperatures will be required [52]. During the cold start conditions or when the 

upstream DOC is aged, significant amounts of HC can be stored on the SCR catalyst. The 

stored HC will be oxidized based on subsequent stages of operation and raising the 

temperature of the SCR causes thermal deactivation of the SCR [53]. It has been reported 

that the propylene has a negative effect on the zeolite and vanadia-based SCR, due to HC 

deposits inhibiting the formation of NO₂ and adversely affecting the standard and fast 

SCR reactions [51, 54, 55]. 

Chemical poison from engine oil and bio-diesel such K, P, Na and Ca have been reported 

to have negative impact on the performance of the SCR catalysts. The phosphorous 

poisoning causes metaphosphates to replace hydroxyl groups on the active isolated iron 

species on Fe-BEA zeolites [56]. Results show that the increased amount of K and Na 

contamination resulted in a linear decline of BET surface area, NH₃ storage capacity, 

acid sites and the subsequent NOₓ reduction [57]. 

2.4 Modeling the Kinetics of the SCR Reactions 

A numerical model aims at simulating the performance of the SCR including NOₓ 

reduction, NH₃ storage, NH₃ slip and SCR outlet temperature in a wide range of 

scenarios. Models includes SCR reaction kinetics, NH₃ adsorption and desorption 

kinetics and the mass and heat transfer process. This section will explain the SCR 
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reaction mechanisms and estimation of kinetics for SCR reactions for the 1-D flow 

through SCR model developed at MTU by reference [9]. The 1-D SCR model considers 

one single channel, which is discretized into 10 finite elements from inlet to outlet. The 

model consists of two sites S1 and S2. The 1st site S1, supports NH₃ adsorption, desorption 

and all the SCR reactions. Whereas, the 2nd site S2, supports only NH₃ adsorption and 

desorption. NH₃ is the only species that is assumed to be stored on the catalyst surface. 

The exhaust flowing through the channel is known as gas phase or bulk phase. The 

species are transported from the gas phase to the surface phase. The SCR reactions 

between the stored NH₃ and the species occur on the catalyst surface. Assuming all the 

reactions occur on the catalyst surface, mass transfer between gas phase and the surface 

phase are included in the model. The equations are described in section 4.1.1 in reference 

[9]. Heat transfer between the bulk flow and the substrate and between the substrate and 

the ambient is included to simulate the SCR outlet temperatures under transient 

conditions [9]. However, the heat release due to the SCR reactions is negligible and was 

set to zero in the model. 

The global chemical reactions for the urea-SCR system include urea decomposition 

reactions and the SCR reactions that occur on the catalytic surface [9]. A numerical 

model simulating the spray interaction with the exhaust gas is presented in references [58, 

59, 60, 61]. The injected urea goes through a 4-step mechanism of decomposition to 

produce NH₃ [58] . The first step is injection of atomized, aqueous urea solution into the 

hot exhaust stream as shown in equation 2.1. This is followed by evaporation of water 

from the droplets, yielding molten urea. In the third step, pure urea thermally decomposes 

to equimolar amounts of ammonia and isocyanic acid as shown in equation 2.3. In the 

last step, isocyanic acid is hydrolyzed to NH₃ and CO₂ on the catalyst surface as given in 

equation 2.4. Isocyanic acid is stable in the gas phase and requires a catalytic surface to 

accelerate the hydrolysis reaction [9, 62] 
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NH-CO-NH₂(sol)   →   NH-CO-NH₂(droplets)     Eqn. 2.1 

NH-CO-NH₂(aq)   →   NH₂-CO-NH₂ (molten) + xH2O (gas)    Eqn. 2.2 

NH-CO-NH₂(molten)   →   NH₃ (gas) + HNCO (gas)  Eqn. 2.3 

HCNO (gas) +H₂O (gas)   →   NH₃ (gas) + CO₂(gas)              Eqn. 2.4 

The four steps correspond to the overall urea decomposition shown in reaction 2.5. 

NH-CO-NH₂ (aq) + H₂O (gas)   →   2NH₃ (gas) + CO₂ (gas)  Eqn. 2.5 

However, due to complexity of the decomposition process, it was not included in the 

numerical simulations of the SCR chemistry. It was assumed that the urea was 

completely converted to NH₃ and the conversion occurred in the decomposition tube and 

in the first substrate of the SCR system. The stored NH₃ reacts with the species in the 

surface phase [9]. The NH₃ storage equations for the two sites are described in the 

equation 4.5 in reference [9]. NH₃(ads),1 and NH₃(ads),2 are the NH₃ molecules adsorbed on 

the catalytic surface of each site. 

The global SCR reactions taking place on the surface phase consists of 12 reactions as 

shown in Table 2.1 (Table 4.1 from reference [9]). R1 and R2 represent the NH₃ 

adsorption and desorption on the surface of the catalyst on the 1st site. R3 and R4 

represent the NH₃ adsorption and desorption on the surface of the catalyst on the 2nd site. 

Reactions R5 to R12 are the SCR reaction mechanisms than take place on the 1st site. R5 

and R6 are the oxidation reaction of adsorbed NH₃, selectively oxidized to NO or N₂. R7 

and R8 are the standard reactions which have different NH₃/NOₓ stoichiometry ratio. The 

higher NH₃/NOₓ stoichiometry ratio for R8 explains the overconsumption of NH₃. The 

fast and slow reactions are given in R9 and R10 respectively.  R11 is a reversible reaction 

which considers oxidation of NO and decomposition of NO₂. R12 is N₂O formation 

reaction.  
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The reaction rate constants for the twelve reactions are described by the Arrhenius 

equation shown in equation 2.6. The equations for all reactions are provided in Table 2.1. 

𝑘𝑘 = 𝐴𝐴𝑒𝑒−
𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅    Eqn. 2.6 

Where A is the pre-exponential factor, Ea is the activation energy (J/mol), R is the 

universal gas constant (8.314 J/mol K) and T is the temperature (K). 

Table 2.1: Reactions included in the 1-D SCR model from reference [9] 

No. Description Reaction Equation 

R1 Adsorption (Site1) NH₃ + S1 → NH₃(ads),1 

R2 Desorption (Site 1) NH₃(ads),1 → NH₃ + S1 

R3 Adsorption (Site 2) NH₃+ S2 → NH₃(ads),2 

R4 Desorption (Site 2) NH₃(ads),2 → NH₃ + S2 

R5 NH₃ Oxidation 1 (Site 1) 4NH₃(ads),1 + 3O₂ → 2N₂ + 6H₂O 

R6 NH₃ Oxidation 2 (Site 1) 4NH₃(ads),1 + 5O₂ → 4NO + 6H₂O 

R7 Standard SCR 1 (Site 1) 4NH₃(ads),1 + 4NO + O₂ → 4N₂ + 6H₂O 

R8 Standard SCR 2 (Site 1) 5NH₃(ads),1 + 3NO + 9/4O₂ → 4N₂ + 15/2H₂O 

R9 Fast SCR (Site 1) 4NH₃(ads),1 + 2NO + 2NO₂ → 4N₂ + 6H₂O 

R10 Slow SCR (Site 1) 4 NH₃(ads),1 + 3NO₂ → 7/2N₂ + 6H₂O 

R11 NO Oxidation and NO₂ 
Decomposition (Site 1) 

2NO + O₂ ↔ 2NO₂ 

R12 N₂O Formation (Site 1) 6NH₃(ads),1 + 8NO₂ → 7N₂O + 9H₂O 
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2.5 SCR Catalyst on the DPF 

The sequential arrangement of DOC, DPF and SCR has the following challenges: 

1) The volume of the conventional arrangement of DOC, DPF and SCR catalysts is

very large (34.5 L) as shown in Table 1.2. The demand for higher NOₓ reduction

may require more SCR catalyst, further increasing the volume of the conventional

aftertreatment system.

2) The SCR inlet temperature is insufficient during cold start when the DPF is

located upstream of the SCR. This arrangement deteriorates the NOₓ reduction

ability of the SCR.

3) The placement of the SCR upstream of the DPF is an unfavorable condition for

passive oxidation of PM accumulated in the DPF, due to reduction of NO₂ and

heat loss to the ambient in the SCR.

The problem can be potentially resolved by integrating the SCR and DPF functions into 

one single filter, by coating catalysts on or inside the walls of the DPF. The 2-way 

SCR/DPF reduces the volume and mass of the aftertreatment system when compared 

with DPF and flow through type SCR [11, 63]. Moreover, SCR-on-filter offers potential 

for higher NOₓ conversion efficiency due to increase in the effective reaction surface for 

SCR and higher substrate temperature due to passive oxidation of PM. A schematic of 

conventional DPF, SCR and SCR-on-DPF from reference [11] is shown in Figure 2.3. 
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Figure 2.3: Schematic of conventional DPF, SCR and SCR-on-filter [11] 

5.1 PM Oxidation 

Tronconi et al. [64] performed modeling and experimental based studies to evaluate the 

effect of NH₃ on passive oxidation characteristics of a Cu-zeolite SCR-on filter. A 

comparison of modeling results for passive oxidation in the presence and absence of NH₃ 

is shown in Figure 2.4.  The NO₂/NOₓ molar feed ratio was varied from 0 to 1. In Figure 

2.4a, both the CO₂ and CO peaks recorded in the presence of NH₃ are shifted to slightly 

lower temperatures of approximately by 50 °C, which suggests that NH₃ had positive 

effect on active regeneration of PM. Figure 2.4c and d, confirm that the addition of NH₃ 

significantly reduces the passive oxidation of PM at low temperature, since under these 

conditions, the fast SCR reaction (R9 in Table 2.1) and NO₂ SCR reaction (R10 in Table 

2.1) successfully compete with the PM oxidation and the NH₃-SCR reactions (R9, R10 

and R11  in Table 2.1) are the preferred pathway for NO₂ consumption. This 

phenomenon has to be carefully considered for applications which rely on passive 

oxidation.  
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Figure 2.4: Effect of NH₃ and NOₓ on the passive oxidation. GHSV=15 k/hr, H₂O=5%, 
O₂=8% when NH₃ is present, NH₃=500 ppm. a NOₓ=0 ppm, b NOₓ=500 ppm, 
NO₂/NOₓ=0 [64] 

Naseri et al. [65] compared the steady state performance of a Cu-zeolite SCR-on filter 

with the CPF, after loading both the filters up to 3 g/L. Passive oxidation experiments 

were conducted for 30 minutes at a DOC inlet temperature of 300 and 400 °C, using a 

2007 MY heavy duty diesel engine. During tests with the SCR-on-filter, the engine out 

NOₓ was 4.5 g/hp-hr, whereas for CPF tests the engine out NOₓ was less than 1.0 gm/hp-

hr. At 300 °C the CPF gained 10% weight (3.3 g/L for initial PM loading of 3 g/L) at the 

end of 30 minutes, whereas the SCR-on-filter gained 20% weight (PM loading 3.6 g/L for 

initial PM loading of 3 g/L) at the end of 30 minutes, with the urea injection during the 

30 minutes at ANR of 1.2. The passive oxidation in SCR-on-filter was further studied 

with and without urea injection at the same DOC inlet temperatures. At 300 °C the SCR-



22 

on-filter without urea gained 5% weight (3.15 g/L for initial PM loading of 3 g/L) when 

compared to 20% weight gain (3.6 g/L for initial PM loading of 3 g/L) with urea injection 

at ANR of 1.2. At 400°C the PM was oxidized by 25% (2.25 g/L for initial PM loading of 

3 g/L) for no urea injection when compared to 19% PM oxidation (2.43 g/L for initial PM 

loading of 3 g/L) with urea injection at ANR of 1.2. 

Czerwinski et al. [66] studied the passive oxidation performance of a SCR-on-filter with 

PM loading of 3 g/L. They observed that urea dosing significantly hinders passive 

oxidation. The passive oxidation efficiency decreased from 81% without urea injection to 

42% with urea injection at ANR of 1.0. Similar passive oxidation trends for SCR-on-

filter were observed by references [67, 68]. Enhanced PM oxidation can be achieved by 

calibrating the engine to a higher NOₓ/PM ratio and designing the DOC to provide 

NO₂/NOₓ ratio >0.5 [69]. 

2.5.2 NH₃ Storage and Oxidation 

Tan et al. [70] characterized the NH₃ storage in a Cu-zeolite SCR-on-filter and the effects 

of PM loading and catalyst aging on the NH₃ storage through reactor experiments. The 

PM loading reduced the NH₃ storage over degreened SCR-on filter by 30%. However, 

the impact of aging on NH₃ storage was insignificant. The impact on NH₃ storage for 

degreened and aged SCR-on-filter was minimal up to PM loading of 1.2 g/L.  

Schrade et al. [71] performed temperature programmed desorption (TPD) experiments on 

Cu-zeolite SCR-on-filter, with and without PM loading in the filter. The experiments 

were conducted for the SCR-on-filter inlet temperature range of 150 – 250 °C. They 

observed that the NH₃ storage for the SCR-on-filter with PM loading of 2.5 and 9 g/L 

was 12- 20% higher when compared to the NH₃ storage for the SCR-on-filter without 

PM loading.  

The presence of PM has marginal influence on the NH₃ oxidation [64]. During the steady 

state condition, the loaded SCR-on-filter shows slower and reduced NOₓ reduction and 

higher NH₃ slip when compared to empty SCR-on-filter, due to use of some the NO₂ for 

PM oxidation. To avoid NH₃ slip, it is recommended to avoid passing ANR of 0.9 [72]. 
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2.5.3 NOₓ Reduction 
Understanding the NOₓ reduction characteristics of the SCR-on-filter is another 

challenge. In a flow-through SCR, the catalyst is located on the wall while in case of 

SCR-on-filter, the catalyst is located inside the wall or on the wall of the inlet and outlet 

channel. Various research groups have concluded that the SCR-on-filter can achieve NOₓ 

conversion efficiency close to those of flow-through SCR catalysts [10, 65, 73]. 

However, the PM loading on the filter and decrease in residence time affect the NOₓ 

reduction performance of the catalyst. PM loading has minimal impact on standard SCR 

and fast SCR reactions and also improves NOₓ conversion between 250 – 400 °C due to 

oxidation of PM. The competition between SCR and PM oxidation reactions for 

consumption of NO₂ in a SCR-on-filter is schematically illustrated in Figure 2.5 [64]. A 

summary of published research is described in the following paragraphs.  

 

Figure 2.5: Competition between passive oxidation and SCR reactions [64] 

 

Tang et al. [69] conducted steady state and transient tests on a 9.3L 2011MY HDD 

engine, to investigate the NOₓ reduction performance of Cu-zeolite SCR-on-Filter. 

During steady state testing, with ANR of 1.0, a NOₓ conversion efficiency of 90% was 

achieved at an exhaust temperature of 465 °C and NO₂/NOₓ ratio of 0.12. The NOₓ 

conversion dropped to 87% at an exhaust temperature of 250 °C and unfavorable 

NO₂/NOₓ ratio of 0.74. For 1 Cold and 3 Hot NRTC tests, the cumulative NOₓ 
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conversion of 92.6 and 95.5% was observed with a clean and pre-loaded PM to 6.2 g/L 

respectively, at ANR of 1.05. Computational results suggest that the kinetic rates for the 

SCR reactions are much faster than the NO assisted reactions of PM. This is a result of 

reduced local NO₂ concentrations in the PM cake layer which is due to a strong forward 

diffusion/flow of NO₂ [69]. 

Johansen et al. [74] investigated the Cu-DPF and V-DPF based SCR-on-filter with 

material porosity of 73 and 65%, for reactor and engine based experiments respectively. 

Engine tests indicate that the V-DPF shows better NOₓ conversion than the Cu-DPF 

during the NRTC, although ammonia slip is lower for Cu-DPF due to its superior 

ammonia storage capacity. However, the steady state 8-mode test demonstrated that the 

Cu-DPF has better NOₓ conversion than the V-DPF at high temperatures, although at 

intermediate temperature, the NOₓ conversion was similar for both the catalysts as shown 

in Figure 2.6. Reactor tests indicate that below 300 °C, the Cu-DPF has a much higher 

NOₓ conversion than the V-DPF. N₂O formations are similar and kept low below 450°C.  

 

 
Figure 2.6: NOₓ conversions for V-DPF and Cu-DPF compared to V-ft and Cu-ft during 

NRSC [74] 
 

Raymond Conway et al. [75] conducted field trials on a 1998 MY Detroit Diesel S60 

engine equipped with a Cu-zeolite SCR-on-filter of 26.1 L and under floor Cu-zeolite 

SCR of 21.8 L. They concluded that NOₓ reductions of 95% can be achieved with ANR 

close to 1. They also observed that by reducing the SCR catalyst volume by 27%, the 
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NOₓ reduction continued to remain between 90 – 100% depending on the inlet 

temperature. Kojima et al. [76] conducted experiments on a Honda 2.2L i-DTEC engine 

and compared the NOₓ reduction performance of a 2.5 L SCR and SCR-on-filter during 

the steady state and FTP72. They observed that the NOₓ reduction in the SCR-on-filter 

was 15-20% lower than the flow through SCR, below 200 °C. The difference reduced to 

10 % at temperatures above 300 °C. This could be attributed to shorter residence time in 

the SCR-on-filter when compared to the SCR, since the catalyst is coated inside the wall 

in the case of SCR-on-filter. They also found that at temperatures below 200 °C, the PM 

loading of 3 g/L decreased the NOₓ conversion efficiency of SCR-on-filter by 5-10% 

when compared to no PM loading.  

Rappe et al. [77] conducted experiments on a Cu-zeolite catalyst based SCR-on-filter 

with a 2003 VW Jetta TDI engine. They observed that the SCR-on-filter provides >90% 

NOₓ conversion without PM loading in the SCR-on-filter at ANR of 1.0, for inlet 

temperatures between 250 – 400 °C and NO₂/NOₓ ratio between 0.45 – 0.50. However, 

the NOₓ conversion decreased for the NO₂/NOₓ ratios above or below 0.50. The NOₓ 

conversion of the SCR-on-filter with PM loading of 4 g/L improves by 8 – 10 % for inlet 

temperatures below 300°C and NO₂/NOₓ ratio 0.6. Conversely, for a NO₂/NOₓ ratio of 

0.45, the NOₓ conversion decreases for the inlet temperatures between 250 – 350°C. A 

summary of the representative experimental studies is described in Table 2.2.
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2.6 Modeling of SCR Catalyst on the DPF 

The simulation model is a useful and reliable tool to design and optimize the 

aftertreatment devices. It allows investigation of wide range of scenarios in a time and 

cost effective way. It also provides insight into the kinetics of the reactions and the 

internal states of the catalyst which cannot be measured using the experimental setup. 

One of the main objectives of the modeling studies is to understand the interaction 

between the SCR reactions and the PM oxidation, since SCR reactions occur on the 

surface, whereas, PM is deposited inside the wall and on the cake layer. There is also the 

need to understand the temperature and PM distribution along with the filtration 

efficiency that is related to the PM in the wall and the resulting pressure drop across the 

filter. A summary of the modeling studies is presented in Table 2.2. 

Yang et al. [63] considered that the deposition of PM on the surface deteriorates the mass 

transport of the species from gas stream to the catalyst surface, which in turn weakens the 

SCR reactions.   The model also assumes that the passive oxidation of PM changes the 

NO₂/NOₓ ratio, which can have positive or negative impact on SCR reactions, depending 

on the NO₂/NOₓ ratio being higher or lower than 0.5 respectively. However, if the 

reaction rate for NO₂ assisted oxidation of PM is much lower than the reaction rate for 

SCR reactions, then passive oxidation will have minimum impact on the SCR reactions. 

The energy released by oxidation of PM is another factor that influences the SCR 

reactions [63]. The substrate temperature increases with the oxidation of PM, which 

promotes the SCR reactions. 

Strots et al. [79] and Schrade et al. [71] demonstrated that the PM reaction model and the 

SCR kinetics sub-model are sufficient to model the interactions between the SCR and PM 

oxidation reactions observed in SCR-on-filter substrates. The PM reaction model [71] 

consists of PM oxidation by NO₂ and oxygen, both pathways producing CO and CO₂. 

Oxidation of CO on the SCR catalyst is also included in the model. The SCR sub-model 

includes NH₃ storage on two sites, reaction between NH₃ stored on the catalyst with the 

NO and NO₂ in the exhaust stream. The oxidation of NH₃ and NO as well as formation 
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and reactions of N₂O are also included in the SCR in the model. A summary of the 

representative modeling studies is described in Table 2.3. 

The next chapter describes the experimental setup, instrumentation and test matrix used 

for the experimental study of the NOx reduction and NH3 storage in the production-2013-

SCR and the SCRF®, with and without PM loading in the SCRF®. 
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Chapter 3. Experimental Setup, 

Instrumentation and Test Procedures 

This chapter explains the test cell setup for the ISB 2013 engine, the production 

aftertreatment system and the SCRF®, including the instrumentation and the test 

procedures for various aftertreatment configurations. The steady state engine experiments 

were conducted to evaluate the NOₓ reduction and NH₃ storage performance of the 

production-2013-SCR and the SCRF® in the Heavy Duty Diesel Laboratory on the 

campus of Michigan Technological University. 

The overall experimental program to study the Baseline System and the SCRF® is shown 

in Figure 3.1. The Baseline System is the production aftertreatment system supplied by 

Cummins and it consists of a DOC, a CPF and a SCR (production-2013-SCR). 

Figure 3.1: Overall experimental program 
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The PM oxidation, PM loading and PM filtration performance of the CPF and the NOₓ 

reduction and NH₃ storage performance of the production-2013-SCR were determined 

from the experiments conducted on the Baseline System. The experimental PM data 

obtained from the Baseline System, presented in the thesis [3], were used to calibrate the 

MTU 1-D CPF model [80] and the NO, NO₂ and NH₃ data were used to calibrate the 

MTU 1-D SCR model [9]. The MPF model in reference [13] has been used to develop a 

SCR-F model and it will be used to calibrate the baseline data and configuration 1, 2 and 

3 data as shown in Figure 3.1. 

The configuration-1 was performed to study the PM oxidation, PM loading and PM 

filtration performance of the SCRF®, with and without urea injection in the SCRF®. The 

configuration-2 was performed to study the NOₓ reduction and NH₃ storage performance 

of the SCRF®, without PM and with 2 and 4 g/L of PM in the SCRF®. The purpose of 

configuration-3 is to study the NOₓ reduction performance of the SCRF® and the SCR 

together and evaluate the effect of ANR >1.0 on the NO₂ assisted PM oxidation of the 

SCRF®. The experimental data collected for the SCRF® will be used to develop and 

calibrate the SCR-F model being developed at Michigan Tech. The model would be used 

to simulate the PM filtration efficiency, pressure drop, PM oxidation kinetics, SCR 

reaction kinetics and substrate temperatures for the SCRF®. The configurations 

highlighted in red in Figure 3.1 are the main focus of this thesis. 

3.1 Engine Test Cell Setup 

The test cell setup was done to measure, monitor and record the various parameters 

which determine the performance of the diesel aftertreatment components. A picture of 

the test cell is shown in Figure 3.2. The layout of the engine, Baseline System 

(production aftertreatment components), sensors and sampling locations within the test 

cell are shown in Figure 3.3. The engine exhaust flows through a 4-inch diameter exhaust 

pipe, from where it can be directed either into the trap line, which has the aftertreatment 

components, or directly to the building exhaust through the bypass line. The path of 

exhaust flow is selected by opening or closing the pneumatic butterfly valve mounted in 

each exhaust line. In the trap line, the exhaust gas flows through a 25 kW exhaust heater 
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which can be used to raise the temperature of the gas entering the aftertreatment system. 

This enables the evaluation of the aftertreatment system in a controlled and elevated 

temperature range without changing engine operating conditions [9]. 

Figure 3.2: A picture from the heavy duty diesel lab at MTU 

The exhaust flows through the DOC, where the HC, CO and NO are oxidized to H2O, 

CO₂ and NO₂. The next component in the production set-up is the CPF where PM is 

filtered and oxidized. Then the exhaust flows through the decomposition tube on which 

the DEF injector is mounted. The next component is a mixer to ensure homogenous 

mixing of the DEF decomposition products/droplets and the exhaust gas. After this, 

exhaust flows through the two SCR-A substrates (production-2013-SCR) and then to the 

building exhaust through another mixer downstream of the SCR substrates. The mixer 

downstream of the production-2013-SCR ensured proper mixing for tailpipe emission 

measurements by the IMR-MS, and the NOₓ and the NH₃ sensors. The production 

aftertreatment system has one SCR-A substrate (only SCR catalyst present) followed by 

one SCR-B substrate (SCR and oxidation catalyst present). However, the SCR-B 

substrate was replaced by SCR-A substrate in this experimental study, to obtain the NH₃ 
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slip data out of the two SCR-A substrates, which was necessary in order to collect data to 

calibrate the MTU 1-D SCR model. 
 

 
Figure 3.3: Schematic of test cell with the production engine and aftertreatment system 

and the instrumentation [3] 
 

The passive oxidation experiments with urea injection were performed with the SCRF® 

in configuration-1 as shown in Figure 3.1. One of the objectives of this configuration was 

to study the effect of NOₓ reduction in the SCRF® on the NO₂ assisted PM oxidation 

kinetics of the SCRF®. During the passive oxidation experiments with urea injection, 

conducted in configuration-1, the CPF was replaced with the spacer and the two SCR-A 

substrates were replaced with the SCRF® and the spacer as shown in Figure 3.4. The 

NOₓ reduction experiments with the SCRF®, with and without PM loading in the 

SCRF® were performed in configuraton-2, as shown in Figure 3.1. The schematic for 

configuration-2 is shown in Figure 3.5. During the NOₓ reduction experiments without 

PM loading, the CPF was placed upstream of the SCRF®, to filter the PM entering into 

the SCRF®. During the NOₓ reduction experiments with PM loading, the CPF upstream 

of the SCRF® was replaced with the spacer. The test procedures for experiments 

conducted in configurations 1 and 2 are explained later in the chapter. 



34 

Figure 3.4: Schematic of test cell with the production engine and the SCRF® and the 
instrumentation for configuration-1 [3] 

Figure 3.5: Schematic of test cell with the production engine and the SCRF® (with and 
without the upstream CPF) and the instrumentation for configuration-2 [3] 
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3.2 Engine and Dynamometer 

A Cummins 2013 ISB (280 hp) engine that conforms to the U.S EPA 2013 emission 

regulations was used in the research. The specifications of the engine are provided in 

Table 3.1. An engine control module governs the engine and sub-systems such as the 

common rail fuel injection system, the DEF dosing system and the EGR system.  

Table 3.1: Specifications of the Cummins ISB 2013 engine 

Model Cummins ISB 208 kW (280 hp) 
Year of Manufacture 2013 
Cylinders 6, inline 
Bore &Stroke 107 x 124 mm 
Displacement 409 in3 (6.7 L) 
Aspiration Turbocharged 
Aftercooling Cummins Charge Air Cooler 
Turbocharger Variable Geometry Turbocharger (Holset) 
Rated Speed and Power 2400 RPM and 209 kW 
Peak Torque 895 N·m @1600 RPM 
EGR system Electronically controlled and cooled 

 

The engine was coupled to an eddy current dynamometer which regulates the speed and 

the load on the engine. The specifications are provided in Table 3.2. The dynamometer 

was controlled by a Digalog Model 1022A controller and can be operated in the ‘constant 

speed’ and ‘constant load’ modes using the controller. However, during the engine 

testing, the dynamometer controller was set to the ‘constant speed’ mode and the throttle 

was operated to regulate the load on the engine. Throttle (rheostat) varies the fuel flow 

rate supplied to the engine to apply the desired load on the engine. 

Table 3.2: Dynamometer specifications 

 

 

Manufacturer Dynamatic 
Model Number AD8121 
Peak Power (kW) 373@ 1750-7000RPM 
Peak Torque (N-m) 2035@1750RPM 
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3.3 Fuel Properties 

The ULSD that conforms to EPA regulations was used to conduct the experimental tests 

in this research. The fuel properties from reference [3] are reported in Table 3.3, since the 

same fuel was used for the experiments. 

Table 3.3: Specifications of the fuel used for engine testing from reference [3] 

Fuel Type ULSD -2 
API. Gravity at 

 
35.4 

SP. Gravity at 
 

0.848 
Viscosity at 

  
2.999 

Total Sulfur 
 

7 
Initial Boiling 

  
184 

Final Boiling 
  

363 
Cetane Index 48.7 

Water Content 
 

34 
Higher Heating 

  
45.68 

Lower Heating 
 

42.89 
H/C1 1.833 

   1 These values were obtained from reference [81], since similar fuel was used 

3.4 Aftertreatment System 

The Cummins production aftertreatment system and the SCRF® from Johnson Matthey 

and Corning were used to conduct the experiments. The production aftertreatment system 

included a DOC, a CPF, and two SCR-A substrates. The specifications of the production 

aftertreatment system and the SCRF® are given in Table 3.4.  

To reduce the variation in the performance of the catalysts, a de-greening procedure was 

performed for all the aftertreatment components, prior to conduction of the reported tests. 

The test cycle recommended by Cummins was used to perform the de-greening 

procedure. During the de-greening procedure, the engine was run at 1400 RPM and 820 

N-m for 12 hours with active regeneration for 30 mins, starting off after 4 hours and 

recurring every 2 hours after that. The exhaust conditions during the de-greening 

procedure are given in Table 3.5. 
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Table 3.4: Specifications of the ISB 2013 production aftertreatment system and the 
SCRF® 

Substrate DOC CPF 2 * SCR-A SCRF® 
Material Cordierite Cordierite Cordierite Cordierite 
Diameter (inch) 9.0 9 10.5 10.5 
Length (inch) 4 10 121 12 
Cell Geometry Square Square Square Square 
Total Volume (L) 4.17 10.40 17.04 17.04 
Open Volume (L) 3.5 7.3 14.4 10.2 
Cell Density /in2 400 200 400 200 
Cell Width (mil) 46 59 46 55 
Filtration Area (in2) NA 8858 NA 11370 
Open Frontal Area (in2) 26.92 22.15 73.29 25.9 
Channel Wall Thickness 

 
4 12 4 16 

Wall density (g/cm3) 0.91 1.53 0.91 - 
Porosity (%) 35 59 35 50 
Mean Pore Size (µm) NA 15 NA 16 
Number of in cells 25447 6362 34636 8659 
Weight of substrate + 

     
5155 14377 14088 18140 

 

 

Table 3.5: Diesel engine aftertreatment de-greening procedure 

Speed Load 
Exhaust 

Flow 
Rate 

SCRF® 
Inlet 
Temp 

Post-Fuel 
Dosing Duration 

[RPM] [N-m] [kg/min] [°C] [mg/stroke] [Hours] 

1400 830 6.5 

450 0.0 4.0 
602 23.0 0.5 
451 0.0 2.0 
606 23.0 0.5 
448 0.0 2.0 
603 23.5 0.5 
451 0.0 2.0 
601 24.0 0.5 

    Total Hours 12.0 
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3.5 Test Cell Measurements and Data Acquisition 

3.5.1 Exhaust Mass Flow Rate 
The exhaust mass flow rate is considered as the sum of air and fuel flow rates. The air 

flow rate was calculated from the pressure drop (in intake air flow) measured using a 

pressure transducer across the Meriam Instruments Laminar Flow Element (LFE). The 

pressure drop value was used to calculate the intake air standard volumetric flow rate 

which was then converted to the mass flow rate using density of air at the standard 

conditions (20°C and 1 atm pressure). The fuel mass flow rate was measured by a model 

CMFS015M319N2BAECZZ Micro Motion Coriolis Meter. The specifications of the 

flow meter are given in Table 3.6. 

Table 3.6: Coriolis meter specifications 

Manufacturer Micro Motion 
Model CMFS015M319N2BAECZZ 
Measurement Flowrate Density Temperature 
Units [%] [kg/m3] [°C] 
Accuracy ± 0.10 ± 0.5  ± 1.0 
Repeatability ± 0.05 ± 0.2 ± 0.2 

 

3.5.2 Temperature  
The temperature sensors were installed at various locations in the exhaust system, and in 

the CPF and the SCRF® to record the radial and axial gas temperature distribution. K-

type thermocouples manufactured by Omega were used to measure the temperature. The 

details of the thermocouples used are given in Table 3.7. The thermocouple layout in the 

CPF and the SCRF® are given in Figures 3.6 and 3.7. Twenty thermocouples, namely S1 

– S20 were instrumented in the SCRF®. The thermocouples S1 – S10 were inserted into 

the SCRF® through the inlet channels of the SCRF® and the thermocouples S11 – S20 

were inserted into the SCRF® through the outlet channels of the SCRF®. 
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Table 3.7: Specifications of the thermocouples used in the aftertreatment system 

Manufacturer Type Diameter Length Part Number Accuracy Location 
[-] [-] [in.] [in.] [-] [%] [-] 
Omega K 0.020 12 K-MQSS-020-U-12 ± 2.2 °C CPF 
Omega K 0.020 16 K-MQSS-020-U-16 ± 2.2 °C CPF 
Omega K 0.020 12 K-MQSS-020-U-12 ± 2.2 °C SCRF® 
Omega K 0.020 16 K-MQSS-020-U-16 ± 2.2 °C SCRF® 

Omega K 0.125 6 K-MQSS-125-U-6 ± 2.2 °C 

Exhaust, 
Air 
Intake, 
Coolant 

 

 

 

 
Figure 3.6: Thermocouple arrangement in the CPF (adapted from reference [3]) 
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Figure 3.7: Thermocouple arrangement in the SCRF® 

3.5.3 Pressure 
The pressure drop data across the LFE, DOC, CPF, SCR and SCRF® was continuously 

measured and recorded by several differential pressure transducers. The barometric 

pressure was measured by an absolute pressure transducer. The specifications of the 

transducers are given in Table 3.8 

Table 3.8: Specifications of pressure transducers 

Parameters Barometric 
Pressure LFE DOC CPF SCRF® 

Sensor 
Make 

Omega 
Engineering 

Omega 
Engineering 

Omega 
Engineering 

Omega 
Engineering 

Omega 
Engineering 

Model 
Number PX419-26B5V PX429-

10DWU‐10V 
PX429‐
2.5DWU‐10V 

PX409-
2.5DWU-
5V 

 PX429‐
5DWU‐10V 

Type Absolute Differential Differential Differential Differential 
Range 26.00-32.00 0‐10 0‐2.5 0‐2.5 0‐5 
Units in. Hg in. H2O PSID PSID PSID 

Accuracy, 
Linearity, 
Hysteresis 

±0.08% FS ±0.08% FS ±0.08% FS ±0.08% FS ±0.08% FS 

Output 
Voltage 0-5 Vdc 0-10 Vdc 0-5 Vdc 0-10 Vdc 0-10 Vdc 

    Note: FS indicates full scale reading 
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3.5.4 Data Acquisition  

The data acquisition hardware consists of two National Instruments (NI) DAC chassis 

(NI cDAQ-9178). Multiple NI modules were plugged in to collect the engine speed, load, 

temperature and pressure data from the various locations. The details of data acquisition 

system are given in Table 3.9. A NI LabVIEW program was used to log the data and 

display it on the desktop computer for continuous data monitoring during the test. The 

specifications of the various modules are described in reference [9, 1]. 

Table 3.9: Details of the data acquisition system 

Module Measurement Quantity 

NI 9263 Analog Output ±10 V 1 
NI 9239 Analog Input 10 V range 2 
NI 9237 Analog Input ±25 mV/V (Bridge) 1 
NI 9213 Thermocouple 4 
NI 9472 24 V, Digital Output 1 

NI 9205 Analog Input upto ± 10 V (Single ended, 
differential) 1 

NI 9401 Digital Input / Output 1 
 

A PCAN service tool was connected to the desktop computer via USB, to obtain the data 

from the engine via CAN communication (J1939 protocol). The proprietary software 

from Cummins Inc., Calterm, was used record and monitor the data from the engine 

ECM. Calterm was also used to control the post-fuel dosing, urea dosing, throttle position 

and fuel rail pressure. 

3.5.5 Gaseous Emissions 

The gaseous emissions during the NOₓ reduction tests were measured using a V&F 

Airsense ion molecule reaction mass spectrometer (IMR-MS). The details of MS and 

calibration gases used to calibrate the MS are given in Table 3.10. The procedure to 

operate and calibrate the MS is described in Appendix A. N₂O measurement is also 

important for NOₓ reduction experiments on the SCR and the SCRF®, but due to 
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interference caused by the same molecular mass of N₂O and CO₂ (44 amu), accurate 

measurements were not possible with the MS [9]. 

Table 3.10: Specifications of IMR-MS and calibration gases 

Components 
Detection 
Level at 
100 ms 

Monitoring 
Mass 

Ionization 
Gas 

Span 
Gas 

Span gas 
concentration Accuracy 

[-] [ppb] [amu] [-] [-] [ppm] [%] 
NO 100 30 Mercury NO, N2 797 ± 1 
NO₂ 50 46 Mercury NO₂, Air 495 ± 2 
NH₃ 120 17 Mercury NH₃, N₂ 103.8 ± 2 

 

The exhaust gases from different locations were sampled by the MS through the stainless 

steel sampling lines which were heated to 190 °C. Heating the sampling lines avoided the 

condensation of water vapor in the exhaust gas and the adsorption of gaseous emissions 

on the sampling lines [9]. 

Two UniNOₓ-sensors were installed on the production aftertreatment system, one each at 

the engine outlet and the SCR outlet, which measured NOₓ concentrations in the exhaust 

gas and the displayed the values through Calterm. The sensor consists of zirconia based 

multilayer sensing element made by NGK Insulators and a control unit made by 

Continental. A Delphi make sensor was also installed at the outlet of the SCR/SCRF® to 

measure NH₃ slip. The specifications of the sensors are given in Table 3.11. 

Table 3.11: Specification NOₓ and NH₃ sensor on production aftertreatment system 

Component Range Resolution Accuracy Voltage 
Range 

Operating 
Temperature 

[-] [-] [ms] [%] [V] [°C] 

NOₓ Sensor 0-1500 
ppm 0.1 ppm ±10  12-32 100-800 

NH₃ Sensor 0-1500 
ppm 0.1 ppm ±10  13.5-32 200-500 

λ Sensor, O₂ 
(linear) 

12 - 
21% 0.10% ±0.3 - 

±1.4  24 100-800 
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3.5.6 Particulate Matter (PM) 

The concentration of PM was measured by performing hot sampling (without dilution) 

from the engine exhaust flow using a dry gas meter and a manual sampling train (Made 

by Anderson Instruments Inc.). The PM was deposited by passing the sampled raw 

exhaust through an A/E type glass fiber filter. The PM concentration in the engine 

exhaust was determined by recording the pre and post sampling weights of the glass fiber 

filter. The detailed information about PM sampling procedure and the instrument is given 

in reference [3, 7].  

3.5.7 Weighing Balance for SCRF® 

PM was deposited in the SCRF® during passive oxidation tests (configuration1) and NOₓ 

experimental tests (configuration 2) with PM loading of 2 and 4 g/L in the SCRF®. The 

PM loading was performed in stages, and to determine the PM retained in the SCRF®, it 

was weighed four times during a test for configuration 1 and three times for configuration 

2, which is discussed in detail in sections 3.6.5 and 3.6.6. The weight of the SCRF® was 

used to determine the PM mass retained during that stage of the test [3] and the procedure 

used to calculate the PM mass is described in section 3.6.7.  The specifications of the 

weighing balance are given in Table 3.12. The detailed procedure to weigh the SCRF® is 

discussed in reference [3]. 

Table 3.12: Specifications of the weighing balance used to weigh the SCRF® 

Manufacturer Ohaus 
Model Ranger 

 Capacity 35,000 g 
Certified Readability ± 1.0 g 

Readability ± 0.1 g 
Linearity ± 0.3 g 

3.6 Test Matrices and Test Procedures 

The primary objective of conducting the NOₓ reduction tests on the production-2013-

SCR and the SCRF® is to acquire the data to calibrate the 1-D SCR model (developed at 

MTU) and the SCR-F model (being developed at MTU). The inlet and outlet 
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SCR/SCRF® measurements of exhaust temperature, exhaust flow rate, NO, NO₂ and 

NH₃ concentrations at a variety of test conditions were required to calibrate the models. 

In addition, the gas temperature in the substrate and the pressure drop across the SCRF® 

were also needed for calibration of the SCR-F model. Hence, the engine test conditions 

were selected to cover a wide range of SCR/SCRF® inlet exhaust temperature, space 

velocity, NOₓ and NO₂/NOₓ ratio. 

3.6.1 Test Matrix for Configuration 1 

The schematic of several stages in the test procedure of a passive oxidation (PO) test with 

urea dosing is shown in Figure 3.8. The test procedure was adopted by modifying the 

procedures developed by references [3, 82]. 

Figure 3.8: Stages of a passive oxidation test with urea dosing with configuration 1 [1] 

The first two stages are loading stages where the SCRF® is loaded with PM to a target 

value of 2 ± 0.2 g/L. The loaded PM is oxidized in the PO stage, during which the urea 

dosing is performed. PO stage is followed by Stage 3 and Stage 4, which provide the post 

oxidation filter loading characteristics. The detailed procedure for passive oxidation test 

with urea dosing in described in reference [1]. The passive oxidation with urea dosing 

was obtained for five different Test Points and two repeat points. The test matrix for 

passive oxidation with urea injection is given in Table 3.13. 

The primary objective of this configuration was to determine the kinetics of NO₂ assisted 

passive oxidation (PO) of PM in the SCRF®, without and with urea dosing during the 

PO. The urea dosing was performed to study the effect of NOₓ reduction on passive 

oxidation of PM in the SCRF® and vice-versa. The NOₓ reduction data obtained from the 

passive oxidation with urea dosing was analyzed and will be discussed in Chapter 4. 
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Table 3.13: Test matrix for passive oxidation with urea dosing with configuration 1 [1] 

Test Point Speed Load Exhaust 
Flowrate 

SCRF® 
Space 

Velocity 

SCRF® 
Inlet 

Temp. 

PM into 
SCRF® 

NO₂ 
into 

SCRF® 

NOₓ 
into 

SCRF® 
[-] [RPM] [N.m] [kg/min] [k/hr] [°C] [mg/scm] [ppm] [ppm] 
A 1300 302 5.6 16.8 265 2.3 304   590 
C 1402 544 6.8 20.2 340 2.8 301   689 
E 1199 653 7.0 20.8 344 2.2 653 1635 
B 900 456 3.6 10.6 266 1.8 821 1867 

B Rpt 902 449 3.7 11.0 256 1.7 758 1798 
D 2099 594 12.3 36.8 368 3.0 171   505 

D Rpt 2098 594 12.5 37.4 365 3.1 191   497 

 

3.6.2 Test Matrix for NOₓ Experimental Tests (Production-2013-SCR 
and Configuration 2) 

Eight Test Points were selected that span the SCR/SCRF® inlet temperature from 200 to 

450°C with space velocity and NOₓ ranging from 12.0 to 45.2 k/hr and 300 to 1700 ppm 

respectively. The Test Points were chosen based on the engine maps for the ISB 2013 

engine and were validated by running the engine at the specified speed-load and 

collecting the exhaust and gaseous emission data. The Test Points and important exhaust 

parameters for the NOₓ reduction tests with the SCR and the SCRF® in configuration 2 

are given in Table 3.14. The Test Points at temperatures lower than 200 °C were not 

selected to avoid potential urea deposition on the catalyst and the exhaust pipe. Seven 

Test Points were completed for the production SCR, excluding Test Point 7 (due to 

malfunctioning of the urea dosing system). The NOₓ reduction performance of the 

SCRF® was evaluated without and with 2 and 4 g/L PM loading in the SCRF®. The Test 

Points marked with “*” in Table 3.14 (Test Points 1, 3, 6 and 8) were run and were 

selected on the basis of the range of the SCRF® inlet temperatures, space velocities and 

inlet NOₓ concentrations. 
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Table 3.14: Test matrix for NOₓ reduction tests for the production-2013-SCR and the 
SCRF® with configuration 2 

Test 
Point Speed Torque 

Exhaust 
Flow 
rate 

SCRF® Inlet 
Temperature 

SCRF® 
Std. 

Space 
Vel. 

SCRF® 
Inlet 
NOₓ 

SCRF® 
Inlet 

NO₂/NOₓ 

SCRF® 
Inlet 
NO₂ 

[-] [RPM] [N-m] [kg/min] [˚C] [k/hr] [ppm] [-] [ppm] 
  1* 1200 203 4.9 208 14.6 492 0.61 301 

2 1650 203 6.5 231 19.4 306 0.6 184 
  3* 2200 325 10.0 310 29.9 341 0.64 217 

4 2100 377 0.4 331 28.1 372 0.62 230 
5 1660 529 7.8 353 23.3 662 0.54 356 

  6* 1200 580 6.4 354 19.1 1712 0.54 922 
7 2100 750 13.0 404 38.8 546 0.44 242 

  8* 2400 813 16.0 455 47.8 596 0.39 233 
 

3.6.3 Baseline Condition and Aftertreatment Clean-out 

The engine was run at 1660 RPM and 475 N-m, hereafter referred as the “baseline 

condition”, to ensure repeatability of the instrumentation and the engine. To start a test, 

the engine was slowly ramped up from the idling condition to the baseline condition. 

After the engine had stabilized, exhaust emission samples were collected at UDOC and 

DDOC to check the repeatability. Then the CPF inlet temperature was raised to 600 ± 10 

°C by in-cylinder post fuel injection to oxidize PM deposited in the CPF/SCRF® and 

desorb the NH₃ adsorbed on the SCR/SCRF® during the previous test. This is called the 

“aftertreatment clean-out”. Fuel dosing was stopped after the pressure drop across the 

CPF/SCRF® had stabilized indicating that the rate of oxidation of PM is equal to the rate 

of PM being deposited on the CPF/SCRF®. This phenomenon is also known as the 

balance point. A similar procedure was also performed by previous researchers at MTU 

[3, 9, 7, 83, 84]. 

3.6.4 NOₓ Experimental Tests: SCR 

The NOₓ reduction test procedure for the SCR was modified and adapted from reference 

[9]. It consists of three steps. In the first two steps, baseline condition and aftertreatment 

cleanout were performed to have a common start state for the experiments. In the third 

step, the engine was run at the NOₓ reduction Test Point and stabilized. The emission 
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samples were collected at UDOC, DDOC, USCR and DSCR to measure NO, NO₂ and 

NH₃. Then the urea dosing cycle was performed and gaseous emission samples were 

sampled across the SCR to measure the SCR performance. The urea dosing cycle for the 

production-2013-SCR is shown in Figure 3.9. The urea injection was varied to achieve 

the targeted ANR of 0.3, 0.5, 0.8, 1.0, 1.2, 1.0 repeat, 0.8 repeat and 1.2 repeat. The ANR 

was varied from 0.3 to 1.2 to collect data to calibrate the SCR kinetics for modeling and 

predicting NO, NO2 and NH3 concentrations at the SCR outlet. The ANR 1.0 repeat and 

0.8 repeat were performed to validate the repeatability of the production-2013-SCR 

performance. The ANR 1.2 repeat was performed to collect data to calculate the NH₃ 

storage on the production-2013-SCR. 

Figure 3.9: Urea dosing cycle for the production-2013-SCR 

3.6.5 NOₓ Experimental Tests: SCRF® - without PM Loading – 
Configuration 2 

The test procedure to perform the NOₓ reduction in the SCRF®, without PM loading, was 

similar to the test procedure for the production-2013-SCR. The emission data were 

collected at the baseline condition to check the repeatability and then the aftertreatment 

clean-out was performed by increasing the SCRF® inlet temperature to 600 ± 10 °C. 
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After that, the engine was stabilized at the NOₓ reduction Test Point. The Test Points in 

Table 3.11, highlighted with “*” were run for the SCRF®. Then the urea dosing cycle 

was performed and gaseous emissions were sampled at the inlet and outlet of the 

SCRF®. The schematic NOₓ reduction tests on the SCRF® without PM loading is shown 

in Figure 3.10. The production CPF used during the baseline tests was placed upstream of 

the SCRF® as shown in Figure 3.5, which filtered the PM produced by the engine and 

ensured minimum PM deposition in the SCRF®.  

 

 

Figure 3.10: Schematic for NOₓ reduction test on SCRF® without PM Loading 

 

The urea dosing cycle was modified to reduce the test duration. Since 0.3 and 0.5 ANR 

are not performed during the actual engine operation in a vehicle, they were removed to 

modify the urea dosing cycle. The modified urea dosing cycle helped to maintain 

constant PM in the SCRF® during the tests with the target PM loading of 2 and 4 g/L. 

The modified urea dosing cycle is shown in Figure 3.11. The urea injection was varied to 

achieve the targeted ANR of 0.8, 1.0, 1.2 and 1.2 repeat. The ANR was varied from 0.8 

to 1.2 to collect data to calibrate the SCR kinetics for the SCRF® to be used in the SCR-

F model calibration. The ANR 1.2 repeat was performed to collect data to calculate the 

NH₃ storage on the SCRF®, with 0, 2 and 4 g/L PM loading. 
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Figure 3.11: Modified urea dosing cycle for the SCRF® 

 

3.6.6 NOₓ Experimental Tests: SCRF® - with PM Loading (2 g/L) – 

Configuration 2 

During these tests, the SCRF® was loaded to 2.0 ± 0.2 g/L of PM in two stages, namely 

Stage 1 and Stage 2. The test procedure started with the baseline condition and the 

aftertreatment clean-out.  

Stage 1 Loading (S1): After the completion of the clean-out procedure, the engine speed 

and load were changed to 2400 RPM and 200 N-m at a fuel rail pressure reduced from 

1500 to 1050 bar (30% reduction). This stage is called Stage 1 (S1) and the engine 

operating point is called Loading condition. The purpose of this stage is to stabilize the 

SCRF® inlet temperature at the Loading condition, since the weight of the wall flow 

filter varies with the temperature of the filter. The S1 was run for 30 minutes and then the 

engine was shut down to weigh the SCRF®.  

Stage 2 Loading (S2): On completion of the SCRF® weighing procedure, aftertreatment 

components were assembled and the engine was warmed up using the exhaust bypass line 

(Figure 3.3). After the engine stabilized at the Loading condition, the exhaust flow was 
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switched to the trap line (Figure 3.3) and the Stage 2 Loading (S2) duration was started. 

The purpose of this stage is to load the SCRF® to the targeted PM loading of 2.0 ± 0.2 

g/L. The Stage 2 Loading (S2) was run for 330 minutes and at the end the engine was 

shut down to weigh the SCRF®. The detailed S1 and S2 procedures are available in 

reference [3, 1]. The exhaust parameters are given in Table 3.15. 

Table 3.15: Exhaust parameters during the Loading Condition 

Speed Load Exhaust 
Flowrate 

SCRF® Inlet 
Temperature 

SCRF® 
Inlet NO₂ 

SCRF® 
Inlet PM 

NO₂:PM Mass 
Ratio 

[RPM] [N-m] [kg/min] [oC] [ppm] [mg/scm] [NO₂/PM] 
2400 200 11.2 274 72 11.2 11.6 

The Test Points 1 and 3 have low SCRF® inlet temperature (218 and 304°C), hence less 

PM would be oxidized during the urea dosing cycle than Test Points 6 and 8. There will 

be higher PM oxidation at Test Point 6 and Test Point 8 due to higher SCRF® inlet 

temperature (350 to 450°C). Hence, to accumulate PM during the NOₓ reduction test 

condition, the CPF upstream of SCRF® was needed to be replaced with a spacer. To 

have consistency in the test procedure, the CPF was removed during all the data 

collection for the Test Points. The schematic diagram for these tests is given in Figure 

3.12. 

Figure 3.12: Schematic for effect of PM Loading on SCRF® NOₓ reduction 

Test Point - W/PM Stage: The pressure drop across the SCRF® for the Test Point 1 is 

plotted in Figure 3.13. The SCRF® was loaded with PM in Loading Stages S1 and S2. 

Then the test condition for NOₓ reduction is run which is labeled as Test Point 1-W/PM. 

During the Test Point 1-W/PM the urea dosing cycle (Figure 3.11) was performed 

continuously and the test condition was completed without adding PM to the SCRF®, 
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since the rate of PM addition and the rate of PM oxidation are about equal. It can be 

observed that the pressure drop is constant during the NOₓ reduction test condition which 

indicates that the PM in the SCRF® is constant. During the Test Point 1-W/PM stage, 

emission samples were collected at UDOC and USCRF® in the beginning and then 

switched to DSCRF® to measure the NO, NO₂ and NH₃ concentrations during the urea 

dosing cycle. The USCRF® and DSCRF® values were used to evaluate the performance 

of the SCRF®. The same test procedure was followed for Test Point 3-W/PM.  

The pressure drop across the Test Point 8 is plotted in Figure 3.14. It can be observed that 

during Test Point 8-W/PM-I, Test Point 8-W/PM-II and Test Point 8-W/PM-III, the 

pressure drop curves across the SCRF® is steep, which is due to the high PM oxidation 

rate. Hence, it was decided to run the loading condition to redeposit PM in the SCRF® to 

maintain PM loading close to 2 g/L. These stages are labeled as Repeat Loading-I and 

Repeat Loading-II. During the Test Point 8-W/PM-I, emission samples were collected at 

UDOC, DDOC, USCRF® and DSCRF®. The same test procedure was followed for Test 

Point 6 with PM.  

Figure 3.13: Delta Pressure across the SCRF® for Configuration 2 - Test Point 1 with 
PM 

Weighing 
SCRF® 
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Figure 3.14: Delta Pressure across the SCRF® for Configuration 2 - Test Point 1 with 
PM 

 
 

3.6.7 NOₓ Experimental Tests: SCRF® - with PM Loading (4 g/L) – 
Configuration 2 

The engine operating conditions for the Loading condition were modified to accumulate 

the targeted PM loading of 4 g/L in the SCRF®. The exhaust parameters of the modified 

loading condition are given in the Table 3.16. The fuel rail pressure was reduced by 50 % 

for 4 g/L of PM loading in comparison to 30% for 2 g/L. The reduced rail pressure was 

750 bar. 

Table 3.16: Engine and exhaust parameters of the Loading Condition 

PM 
Loadin

g 
 

Speed Load 
Exhaust 

Flow 
Rate 

SCRF® Inlet 
Temperature 

SCRF
® Inlet 

NO₂ 

SCRF® 
Inlet PM 

NO₂:PM 
Mass Ratio 

[g/L] [RPM] [N.m] [kg/min] [oC] [ppm] [mg/scm] [NO₂/PM] 
2 2400 200 11.2 274 72 11.2 11.6 
4 2400 201 11.1 292 40 20.8 3.6 

  

Weighing 
SCRF® 
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The test procedure for NOₓ reduction tests in SCRF® with the PM loading of 4 g/L was 

similar to the tests with the PM loading of 2 g/L. The Test Points 1 and 3 had two PM 

loading stages (S1 and S2) followed by the urea dosing cycle. The Test Points 6 and 8 

had four PM loading stages (S1, S2, Repeat Loading-I and Repeat Loading-II) with 

intermediate urea dosing cycle. 

3.6.8 Calculation of PM Mass Retained and Nitrogen Balance 

The following terms and equations are used in the analysis of the data. The terms used in 

the equations are described below with a brief description. 

PM Mass Retained 
The SCRF® substrate was weighed three times during the NOx experimental tests with 

PM loading of 2 and 4 g/L in configuration 2 as shown in Figures 3.13 and 3.14. The 

SCRF® mass measurements include the mass of the substrate and the PM retained in the 

filter. These mass measurements and PM concentrations at the inlet and outlet of the 

SCRF® are used to calculate the PM mass retained in the SCRF® (PMRetained) at the end 

of each stage. The equations used to calculate the PMRetained  are described in the 

following section. The equations and assumptions are discussed in more detail in 

Appendix C of reference [1]. 

Cin The average PM concentration in the exhaust in mg/scm at the inlet of the 

SCRF® for the stage. 

PMIn Mass of PM in grams produced by the engine and flows into the substrate 

during the stage. The mass of PM that goes into the SCRF® is calculated 

based on the flowrate of exhaust, PM concentration, and the time of the 

stage. 

          𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐼𝐼𝐼𝐼 ∗
𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆
∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

1000
    Eqn. 3.1 

Where Cin is in mg/scm, exhaust flow rate is in (kg/min), stage duration is 

duration of the stage in (minutes) and ρstd is exhaust density taken to be 

1.18 kg/m3 (at 25°C and 101.3 kPa).
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PMOut Mass of PM out of the SCRF® as a result of substrate filtration in grams. 

This includes PM that was filtered but not oxidized  

𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂 = �1 − 𝜂𝜂𝑓𝑓� ∗ 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼   Eqn. 3.2 

Where 𝜂𝜂𝑓𝑓 is the Filtration efficiency of the SCRF®. Only one downstream 

concentration is taken during the test in stage 2, so an assumption is made 

that the filtration efficiency remains roughly constant after the cake layer 

forms. Appendix C in reference [1] discusses the assumption for filtration 

efficiency of stage 1. The efficiency of the stage is given by: 

𝜂𝜂𝑓𝑓 = 𝐶𝐶𝐼𝐼𝐼𝐼−𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂
𝐶𝐶𝐼𝐼𝐼𝐼

        Eqn. 3.3 

PMStart              Mass of PM in the filter at the beginning of the stage in grams. 

PMRetained Mass of PM retained in the substrate at the end of the stage in grams. PM 

retained is a cumulative value, meaning the mass of PM at the end of the 

stage includes what was loaded from the previous stages. 

PMAvailable The theoretical total PM in grams that is or will be available for oxidation 

during the stage.  

𝑃𝑃𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑀𝑀𝐼𝐼𝐼𝐼        Eqn. 3.4 

PMOxidized Mass of PM oxidized during the stage in grams. It comes from the overall 

stage balance. 

  𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Eqn. 3.5 

%PMOxidized The percentage of mass oxidized during the stage.  

%𝑃𝑃𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑃𝑃𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝑃𝑃𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

∗ 100 Eqn. 3.6 

PMLoading The cumulative loading of PM divided by the open volume of the SCRF® 

with units of g/L. The values are considered at the end of the stage.  

𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

    Eqn. 3.7 
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Nitrogen Balance 

Inlet NH3 The NH3 concentration in ppm at the inlet of the SCRF®. 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁₃ = 𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∗𝜌𝜌𝐷𝐷𝐷𝐷𝐷𝐷∗0.325∗2∗𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺𝐺𝐺𝐺𝐺∗1.02
𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∗𝑀𝑀𝑀𝑀𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

  Eqn. 3.8 

Where, DEF flow rate is obtained from Calterm (ml/s), 𝜌𝜌𝐷𝐷𝐷𝐷𝐷𝐷 is density of 

DEF taken to be 1080 (kg/m3) under room condition. The urea 

concentration of the DEF is 32.5% by weight. Molecular weight of the 

urea molecule is 60 (g/gmol) and molecular weight of the exhaust is 28.96 

(g/gmol). 1.02 denotes the 2% correction applied to the DEF flow rate 

recorded by Calterm, since the actual injection verified by conducting 

bucket test at various DEF flow rates is 2% higher than the measurements 

obtained from Calterm (See Appendix C).  

ANR, also described as Target ANR is the ratio of the NH3 concentration (ppm) to the 

NOx concentration (ppm) at the inlet of the SCRF®.  

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁₃
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁ₓ

Eqn. 3.9 

Inlet NH3 concentration was calculated using Equation 3.8 and inlet NOx concentration 

was obtained by adding inlet NO and NO2 concentrations measured using MS. 

The NOx conversion efficiency was calculated using inlet and outlet NOx concentrations 

(ppm) as indicated in equation 3.10.  

𝑁𝑁𝑁𝑁𝑥𝑥 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (%) =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁𝑥𝑥− 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁𝑥𝑥
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁𝑥𝑥

 ∗ 100 Eqn.3.10 

Nitrogen Balance was performed using the NO, NO2 and NH3 concentrations (ppm) at 

the inlet and outlet of the SCRF® to validate the data consistency. The nitrogen balance 

of 100 ± 10 % was considered to be a good agreement since the concentration of N2O and 
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isocyanic acid and cyanuric acid (by products of incomplete urea decomposition) were 

not measured. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (%) = {1 −  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁₃−[(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁ₓ− 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁ₓ)+𝑁𝑁𝑁𝑁₃ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝑁𝑁₃

}*100  Eqn. 3.11 

Where all the concentrations are in ppm. The inlet and outlet NOx were measured using 

the MS and the NH3 slip out of the SCRF® was measured using the sensor. 

The values for various parameters such as the emission concentrations, PM 

concentrations, temperatures and exhaust flow rates recorded during the experiments 

were analyzed and the results will be discussed in detail in Chapter 4. 
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Chapter 4. Results and Discussion 

This chapter discusses the data and the results of the NOₓ reduction tests conducted with 

the production-2013-SCR and the SCRF®. The NOₓ reduction and NH₃ storage 

performance of the production-2013-SCR was evaluated at seven Test Points (Table 

3.14) as discussed in Chapter 3. This chapter also presents the results of 1-D SCR model 

calibration and comparison of the experimental and the simulation results for the seven 

test runs with the production-2013-SCR.  

The NOₓ reduction performance of the SCRF® was evaluated with 2 and 4 g/L PM and 

without PM at four different Test Points in configuration 2 (total twelve tests) and with 

PM at five different Test Points (Table 3.13) in configuration 1 (total seven tests 

including two repeat Test Points. The NOₓ reduction performance and the NH₃ storage in 

the SCRF® and the production SCR are compared to study the difference in the 

performance of the SCRF® and the production-2013-SCR. 

4.1 NOₓ Reduction in Production-2013-SCR (Baseline) 

The engine operating conditions and the important exhaust parameters during the seven 

NOₓ reduction tests for the production-2013-SCR1 are given in Table 4.1. The Test 

Points are arranged in the increasing order of SCR inlet temperature. It is seen that the 

Test Point 1 has the lowest SCR inlet temperature and the lowest standard space velocity, 

while Test Point 8 has the highest SCR inlet temperature and the highest standard space 

velocity. The NO₂/NOₓ ratio varies between 0.22 and 0.48. 

The analysis of NO and NO₂ values across the production-2013-SCR without urea 

injection are given in Table 4.2. The delta NO and NO₂ values were calculated by 

subtracting the SCR outlet from the SCR inlet values as indicated in equations 4.1 and 

4.2. Ideally, change in concentration of NO across the SCR (without urea injection) must 

be equal and opposite to the change in concentration of NO2 across the SCR (without 

urea injection), i.e. ΔNO = -(ΔNO2). In Table 4.2 it is observed that the SCR outlet NO₂ 

concentration has increased and SCR outlet NO concentration has decreased for all the 
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Test Points, which indicates that the Cu-zeolite SCR catalyst has a tendency to oxidize up 

to 20% of upstream NO to NO₂. 

Delta NO = SCR Inlet NO − SCR Oulet NO Eqn. 4.1 

Delta NO₂ = SCR Inlet NO₂ − SCR Outlet NO₂ Eqn. 4.2 

Table 4.1: Engine and exhaust conditions at SCR inlet for NOₓ reduction tests 

Test 
Point 

Speed Load 
Exhaust 

Flow 
Rate 

SCR 
Inlet 

Temp. 

Std. 
Space 

velocity 

SCR 
Inlet 
NOₓ 

SCR 
Inlet 

NO₂/NOₓ 
[RPM] [Nm] [kg/min] [°C] [k/hr] [ppm] [-] 

1 1200 204 4.4 219 12.0 648 0.27 
2 1650 189 6.3 238 17.1 279 0.37 
3 2201 324 9.7 307 26.4 291 0.31 
4 2100 376 9.7 327 26.5 342 0.46 
5 1659 531 7.8 354 21.3 552 0.41 
6 1198 575 6.2 352 16.9 1730 0.40 
8 2400 826 16.4 447 44.7 542 0.18 

Table 4.2: NO and NO₂ concentrations across the production-2013-SCR without urea 
injection 

Test 
Point 

SCR 
Inlet 

Temp. 

SCR 
Inlet 
NO 

SCR 
Outlet 

NO 
Δ NO 

SCR 
Inlet 
NO₂ 

SCR 
Outlet 
NO₂ 

Δ 
NO₂ 

Out/In 
NO₂ 

[-] [°C] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [-] 
1 219 470 439 31 178 189 -11 1.06 
2 238 177 173 3 102 107 -4 1.04 
3 307 199 184 16 91 109 -17 1.19 
4 327 185 172 12 158 173 -15 1.10 
5 354 325 286 40 227 253 -27 1.12 
6 352 1045 926 119 685 847 -162 1.24 
8 447 443 416 26 99 115 -16 1.17 
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The NO, NO₂ and NH₃ concentrations and the NOₓ reduction performance of the 

production-2013-SCR at an ANR of 1.0 are given in Table 4.3. It is observed that the 

NOₓ conversion efficiency increases with increase in the SCR inlet temperature until 

350°C and decreases thereafter. NOₓ conversion efficiency higher than 95% was 

observed in the range of 300 to 350°C. At temperatures below 250°C, the urea to NH₃ 

conversion is not complete (<80%) and at temperatures above 400°C, the oxidation of 

NH₃ to N2 and NO is expected to be significant (>50%). Since N2 (formed by R5 in Table 

2.1), N₂O and isocyanic acid are not considered in the nitrogen balance equation 

(calculated using Equation 3.11), nitrogen balance lower than 90% were observed for 

Test Points 1 and 8.  

Table 4.3: NOₓ reduction performance of the production-2013-SCR at target ANR of 1.0 

Table 4.4: NOₓ reduction performance of the production-2013-SCR at target ANR of 1.2 

Test 
Point 

SCR 
Inlet 

Temp. 
NO, [ppm] NO₂, [ppm] NH₃, 

[ppm] ANR 
NOₓ 

Conv. 
Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 439  116 189  0 604 13 0.96 82 87 
2 238 178  50 110  1 268 2 0.96  82 86 
3 307 186  23 111  0  332  33 1.12  92  93 
4 327 181  6 167  0 318 0 0.93  96 106 
5 354 315  6 255  7 546 0 0.99  99 99 
6 352 926 69 847  2  1720  9  0.97  96  97 
8 447 425  87 121  0  584  67 1.07  84  90 

Test 
Point 

SCR 
Inlet 

Temp. 
NO, [ppm] NO₂, [ppm] NH₃, [ppm] ANR 

NOₓ 
Conv. 

Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 439 87 189 0 728 177 1.16 86 99 
2 238 178 23 110 0 324 44 1.16 92 93 
3 307 186 22 111 0 400 107 1.34 92 96 
4 327 181 0 167 0 385 61 1.13 100 105 
5 354 315 0 255 0 655 91 1.19 100 98 
6 352 926 13 847 0 2078 222 1.17 99 95 
8 447 425 75 121 0 704 150 1.29 86 88 
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Similar trends were observed at ANR of 1.2 as given in Table 4.4. The NOₓ conversion 

efficiency is almost 100% in the SCR inlet temperature range of 300 – 350 °C at ANR of 

1.2. The NOₓ conversion efficiency for seven Test Points with the production-2013-SCR, 

at ANRs of 1.0 and 1.2 are shown in Figure 4.1. 5–10% improvement in NOₓ conversion 

efficiency was observed for all the Test Points (except Test Point 3) with an increase in 

the ANR from 1.0 to 1.2. The NO, NO₂ and NH₃ concentrations and the NOₓ reduction 

performance of the production-2013-SCR at ANR of 0.3, 0.5, 0.8, 1.0-repeat, 0.8-repeat 

and 1.2-repeat are given in Appendix D. 

 

Figure 4.1: NOₓ conversion efficiency of production-2013-SCR for steady state 
conditions at target ANR 1.0 and 1.2 

 

The NH₃ slip for the seven Test Points with the production-2013-SCR, at ANR 1.0 and 

1.2 are shown in Figure 4.2. The NH₃ slip for the various Test Points is less than 50 ppm 

at ANR 1.0, except of the Test Point 8, which is high space velocity and high temperature 

test condition. However, the NH₃ slip increases significantly at ANR 1.2. The increase in 

the NH₃ slip at ANR 1.2 was observed to be ~ 20 % of the inlet NOₓ. 
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Figure 4.2: NH₃ slip in production-2013-SCR for steady state conditions at target ANR 
1.0 and 1.2 

 

4.2 1-D SCR Model Calibration Results 

The experimental data obtained from the seven NOx reduction tests with the production-

2013-SCR were used to calibrate the 1-D SCR model developed by reference [9] and Dr. 

Parker at Michigan Tech. The 1-D SCR model used in this study is discussed in section 

2.4 of this thesis. This section describes the model parameters for the production-2013-

SCR and the comparison of the simulation of SCR outlet concentrations of NO, NO₂ and 

NH₃ data to the experimental data.  

The comparison of the model parameters required to calibrate the model to engine 

experimental data for the production-2013-SCR and production-2010-SCR [9] is shown 

in Table 4.5. It can be seen that the storage capacity Ω1 is comparable for the production-

2013-SCR and production-2010-SCR. However, the storage capacity Ω2 for the 

production-2013-SCR is ~ 10% higher than Ω2 for the production-2010-SCR. The pre-

exponential parameters for R1, R2, R7 and R9 were changed to calibrate the model to the 

engine experimental data obtained with the production-2013-SCR. The model calibration 

procedure is described in Appendix D. 
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Table 4.5: 1-D SCR model calibration parameters 

Parameter 

Calibration 
to 

 ISB2010  
engine data * 

Calibration 
to 

 ISB2013  
engine data 

Test Points 2-
8 

Calibration 
to 

 ISB2013  
engine data 
Test Point 1 

References * 
[18,43,129,130] Unit 

Ω1 4.36 E+01 4.31 E+01 4.50 E+01 1.20E+02 gmol/m3 

Ω2 3.60 E+01 4.07 E+01 5.51 E+01 - gmol/m3 

A_ads1 1.08 E+00 1.18 E+00 1.01 E+01 - m3/gmol·s 

E_ads1 -10.2 ± 4.04 -10.2 ± 4.04 -10.2 ± 4.04 0 kJ/gmol 

A_des1 3.22 E+04 5.0 E+04 3.22 E+04 - 1/s 

E_des1 67.5 ± 12.1 67.5 ± 12.1 67.5 ± 12.1 96.1, 97.5 kJ/gmol 

A_ads2 2.11 E+01 2.11 E+01 2.11 E+01 - m3/gmol·s 

E_ads2 -7.60 ± 1.12 -7.60 ± 1.12 -7.60 ± 1.12 - kJ/gmol 

A_des2 9.58 E+05 9.58 E+05 9.58 E+05 - 1/s 

E_des2 72.4 ± 10.9 72.4 ± 10.9 72.4 ± 10.9 - kJ/gmol 

A_NH₃oxi1 2.33 E+05 2.33 E+05 2.33 E+05 - 1/s 

E_NH₃oxi1 91.1 ± 9.18 91.1 ± 9.18 91.1 ± 9.18 177, 63.8 kJ/gmol 

A_std 7.18 E+07 1.23 E+08 9.08 E+07 - m3/gmol·s 

E_std 77.3 ± 7.92 77.3 ± 7.92 77.3 ± 7.92 48.7, 88.0, 89.1 kJ/gmol 

A_std2 6.17 E+06 6.17 E+06 6.17 E+06 - m3/gmol·s 

E_std2 68.4 ± 7.28 68.4 ± 7.28 68.4 ± 7.28 - kJ/gmol 

A_slo 7.13 E+09 7.13 E+09 7.13 E+09 - m3/gmol·s 

E_slo 109 ± 9.21 109 ± 9.21 109 ± 9.21 58.3, 136.3 kJ/gmol 

A_fst 1.76 E+08 1.55 E+08 9.50 E+06 - m6/gmol2·s 

E_fst 45.2 ± 9.55 45.2 ± 9.55 45.2 ± 9.55 113, 32.1, 77.1 kJ/gmol 
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The results from calibrated model were compared with the experimental data. The 

comparison of NO and NO₂ concentrations at SCR outlet is given in the Table 4.6 and 

4.7 respectively. The model has been calibrated to within ± 20 ppm for both the gases. 

The values highlighted in green have high difference due to inconsistency in the 

experimental data. The comparison of NH₃ concentration at SCR outlet is given in the 

Table 4.8. The model has been calibrated to within ± 30 ppm for NH₃ slip (measured 

using NH₃ sensor).  
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Comparison of the simulation results and experimental measurements for NO, NO2 and 

NH3 concentrations at the SCR outlet are shown in Figure 4.3, 4.4 and 4.5 respectively. 

From Figures 4.3 and 4.4 it is observed that the difference between the simulation results 

and experimental measurements for NO and NO2 concentration is less than 20 ppm for all 

the Test Points at ANR 0.8, 1.0 and 1.2. From Figure 4.5 it can be observed that the 

measured (using NH3 sensor) and simulated values are in good agreement for NH3 slip 

out of the SCR, as the difference between the simulation results and experimental 

measurements is less than 30 ppm for all the Test Points at ANR 1.0 and 1.2. 



67 

Figure 4.3: Comparison of SCR outlet NO concentrations for various Test Points 
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Figure 4.4: Comparison of SCR outlet NO₂ concentrations for various Test Points 
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Figure 4.5: Comparison of NH₃ slip concentrations for various Test Points 
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Comparison the simulation of SCR outlet concentrations of NO, NO₂ and NH₃ data to 

the experimental data for the Test Point 4 (SCR inlet temperature of 327°C, SV of 26.7 

k/hr) and Test Point 1 (SCR inlet temperature of 218°C, SV of 12.0 k/hr) are given in 

Figures 4.6 and 4.7. The simulation results for the other Test Points are described in 

Appendix D. 

The top plot of the Figure 4.6 shows the SCR inlet concentrations of NO, NO₂ and NH₃. 

The bottom three plots of the Figure 4.6 show the SCR outlet concentrations of NO, NO₂, 

NOₓ and NH₃ compared between the model simulation and the experimental results. The 

bottommost plot of the Figure 4.6 compares the NH₃ measured using the MS, the 

production sensor and the simulated values from the SCR model. Since there was a delay 

in the measurement of NH₃ slip using the MS and disagreement in the nitrogen balance 

during a few test runs, NH₃ values measured using the sensor were used for all the 

calculations.  

Figure 4.6: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 4 (SCR inlet temperature 327°C, 

SV 26.7 k/hr) using urea dosing cycle (Figure 3.9) 
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It can be observed that for Test Point 4, the maximum simulation error under the steady 

state urea injection condition is less than 10 ppm for NO and NO₂ and less than 15 ppm 

for NH₃. The simulation results follow the overall trend of the experimental 

measurements for NO and NO₂, under both steady state and transient urea injection.  

However, from Figure 4.7 it can be observed that with the unique set of model 

parameters, NO₂ values simulated by the model are significantly lower than the NO₂ 

values measured during the experiment. Hence, for Test Point 1, a different set of 

parameters was used which is described in Table 4.5. The comparison of results with 

different parameters for Test Point 1 are shown in Figure 4.8. It can be observed that the 

difference for NO and NO₂ species has decreased during the steady state and the transient 

urea dosing conditions.  

Figure 4.7: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 1 (SCR inlet temperature 218°C, 

SV 12.0 k/hr) using urea dosing cycle (Figure 3.9) 
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Figure 4.8: Comparison of the SCR outlet gaseous concentrations between simulation 

results and experimental measurements for Test Point 1 (SCR inlet temperature 218°C, 
SV 12.0 k/hr), using different parameters as shown in Table 4.5 

 

4.3 SCRF® Experimental Data: Configuration 1 (Passive Oxidation 

with Urea Injection) 

This section discusses the results and analysis of the experimental data obtained from 

seven passive oxidation tests conducted with urea injection as a part of the configuration 

1. The purpose of the passive oxidation tests was to study the effect of the NOₓ reduction 

reactions on the kinetics of the NO₂ assisted passive oxidation and to obtain experimental 

data for calibrating the SCR-F model. 

The NO, NO₂ and NOₓ concentrations at the inlet and outlet of the SCRF® and the NOₓ 

conversion efficiency for the seven passive oxidation tests with urea dosing are given in 

Table 4.9. In Table 4.9, PMStart is the PM deposited in the SCRF® at the beginning of 

passive oxidation stage, PMAvailable is the total PM mass available for oxidation during 

passive oxidation stage and PMRetained is the PM retained in the SCRF® at the end of the 

passive oxidation stage, as discussed in section 3.6.7 and reference [1]. PMStart, 
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PMAvailable, PMRetained for stage 1, stage 3 and stage 4 are given in reference [1]. From 

Table 4.9 it is observed that for Test Points A, B and B Rpt, PMOxidized (explained in 

section 3.6.7) is less than 30 % and for Test Points C, D, D Rpt and E, PMOxidized is less 

than 50%. Hence, during the seven passive oxidation tests with urea injection conducted 

in configuration 1, the NOx reduction performance of the SCRF® was studied with PM in 

the SCRF® varying between 2 – 1 g/L (calculated using PMStart and PMRetained in Table 

4.9).  The NOₓ conversion efficiency for Test Point A and B is approximately 90% and 

for Test Points D, D-repeat and E, it is approximately 95% as shown in Figure 4.9. These 

results are in agreement with the results obtained from the production-2013-SCR 

(discussed in section 4.1). The nitrogen balance for Test Points A, B and B-repeat are 

around 90% since all the urea is not converted to ammonia at 250 – 260°C. The Test 

Point B-repeat has NOₓ conversion efficiency of 99%, since 1.10 ANR was maintained 

instead of 1.0. Similarly, the Test Point C has NOₓ conversion efficiency of 88%, since 

0.89 ANR was maintained during the test instead of 1.0. The NH₃ slip for all the Test 

Points is below 20 ppm. It can be concluded that the SCRF® with PM loading of 2 g/L, 

has NOₓ conversion efficiency comparable to the production-2013-SCR in the 

temperature range of 250 to 350°C. The Test Point B-repeat also indicates that the 

SCRF® has the potential to achieve high NOₓ conversion efficiency (98 – 99 %) at ANR 

greater than 1.0, with NH₃ slip less than 20 ppm. The additional data needed to calibrate 

the SCR-F model, pressure drop across the SCRF® and temperature distribution in the 

SCRF®, obtained from configuration 1 (passive oxidation with urea injection) are 

discussed in the reference [1]. 
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Figure 4.9: NOₓ conversion efficiency of the SCRF® – Configuration 1 

4.4 SCRF® Experimental Data: Configuration 2 (NOₓ Reduction with 0, 

2 and 4 g/L PM Loading) 

The purpose of these tests was to determine the NOₓ reduction performance, NH₃ slip and 

NH₃ storage for the SCRF® with and without PM in the SCRF® as a function of ANR. 

The engine conditions and the exhaust parameters at the inlet of the SCRF®, for the 

twelve NOₓ reduction tests with the SCRF® are given in Table 4.10. It can be observed 

that the engine speed and load were consistent during the four Test Points without PM 

and with 2 and 4 g/L PM in the SCRF®. Hence the space velocities, SCRF® inlet 

temperatures, NO₂/NOₓ ratios were also consistent at the SCRF® inlet. The four Test 

Points represent the range of SCRF® inlet temperatures from 200 to 450°C, space 

velocities from 13 to 48 k/hr, NOₓ concentration from 300 to 1600 ppm and NO₂/NOₓ 

ratio from 0.2 to 0.5. The SCRF® inlet conditions described in Table 4.10 are also in 

agreement with the production-2013-SCR inlet conditions given in Table 4.1.  
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Table 4.10: Engine exhaust conditions at SCRF® inlet for NOₓ reduction Test Points 

Parameter PM Loading 
Test Point 

1 3 6 8 

Speed       
[RPM] 

SCRF® - 0 g/L 1199 2200 1202 2401 
SCRF® - 2 g/L 1200 2101 1200 2398 
SCRF® - 4 g/L 1200 2203 1200 2401 

Load               
[Nm] 

SCRF® - 0 g/L 201 330 580 826 
SCRF® - 2 g/L 208 329 588 820 
SCRF® - 4 g/L 203 331 587 818 

Exhaust Flow 
[kg/min] 

SCRF® - 0 g/L 5.0 10.7 6.9 17.0 
SCRF® - 2 g/L 5.0 9.9 6.8 17.6 
SCRF® - 4 g/L 5.0 10.9 6.8 17.7 

SCRF® Inlet 
Temperature 

[°C] 

SCRF® - 0 g/L 218 304 345 443 
SCRF® - 2 g/L 206 305 340 438 
SCRF® - 4 g/L 207 302 343 446 

SCRF® Std. 
Space Vel. 

[k/hr] 

SCRF® - 0 g/L 13.7 29.1 18.8 46.3 
SCRF® - 2 g/L 13.7 27.0 18.6 48.0 
SCRF® - 4 g/L 13.5 29.8 18.6 48.2 

SCRF® Act. 
Space Vel. 

[k/hr] 

SCRF® - 0 g/L 24.5 60.2 42.0 115.2 
SCRF® - 2 g/L 22.6 53.8 39.3 117.9 
SCRF® - 4 g/L 22.7 56.4 35.7 99.6 

SCRF® Inlet 
NO [ppm] 

SCRF® - 0 g/L 345 158 795 411 
SCRF® - 2 g/L 403 161 844 424 
SCRF® - 4 g/L 452 198 793 415 

SCRF® Inlet 
NO₂ [ppm] 

SCRF® - 0 g/L 213 121 674 140 
SCRF® - 2 g/L 203 131 744 125 
SCRF® - 4 g/L 141 143 588 115 

SCRF®        
Inlet NOₓ         

[ppm] 

SCRF® - 0 g/L 558 279 1468 551 
SCRF® - 2 g/L 607 292 1588 548 
SCRF® - 4 g/L 594 341 1381 530 

Upstream 
NO₂/NOₓ 

SCRF® - 0 g/L 0.38 0.43 0.46 0.25 
SCRF® - 2 g/L 0.34 0.45 0.47 0.23 
SCRF® - 4 g/L 0.26 0.42 0.43 0.22 

Engine Out PM 
[mg/scm] 

SCRF® - 0 g/L N/A N/A N/A N/A 
SCRF® - 2 g/L 2.14 4.30 3.59 7.39 
SCRF® - 4 g/L 1.97 4.93 2.85 4.97 

 
N/A - Engine out PM concentrations not measured for tests without PM in the SCRF® 

 
The NO₂/NOₓ ratio at the inlet of the SCRF® is dependent on the NO to NO₂ conversion 

efficiency of the DOC, which in turn is dependent on the DOC inlet temperature and 
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space velocity of the exhaust, flowing through the DOC. The NO conversion efficiency 

of the DOC is defined in equation 4.3.  

NO Conversion Efficiency (%) =  DOC Inlet NO− DOC Outlet NO
DOC Inlet NO

 ∗ 100      Eqn.      4.3

The NO and NO₂ concentrations at the inlet and outlet of the DOC during the twelve NOₓ 

reduction tests are given in Table 4.11. The exhaust conditions and the NO conversion 

efficiency of the DOC are given in the Table 4.12. The NO conversion efficiency was 

maximum in the range of 300 to 350°C which is in agreement with the trend for NO 

conversion efficiency observed by reference [7]. However, the NO conversion efficiency 

for Test Point 1, without PM in the SCRF®, was observed to be 40 %, which is 10 – 20 

% higher than the results obtained from the Test Point 1 with PM loading in the SCRF®. 

This could be due to inconsistency in the NO data obtained from the mass spectrometer. 

Table 4.11: NO and NO₂ concentration at the inlet and outlet of DOC during NOx 
reduction stage – configuration 2 

Test 
Point 

NO [ppm] NO₂ [ppm] 
SCRF® – 0 

g/L 
SCRF® – 2 

g/L 
SCRF® – 4 

g/L 
SCRF® – 0 

g/L 
SCRF® – 2 

g/L 
SCRF® – 4 

g/L 
In Out In Out In Out In Out In Out In Out 

1 575 345 581 403 515 411 5 213 2 203 37 141 
3 257 160 288 161 324 198 18 120 0 131 1 124 
6 1336 795 1484 743 1483 793 18 674 4 644 14 588 
8 542 411 556 424 507 415 1 140 2 125 8 115 

Table 4.12: DOC exhaust conditions and NO conversion efficiency during NOx reduction 
stage – configuration 2 

Test 
Point 

DOC Inlet Temperature [°C] SCRF® Space Velocity [k/hr] NO Conversion Efficiency [%] 

SCRF®- 
0 

SCRF®- 
2 

SCRF®-
4 

SCRF®-
0 

SCRF®-
2 

SCRF®-
4 

SCRF®- 
0 

SCRF®- 
2 

SCRF®- 
4 

1 221 218 214 56 56 55 40 31 20 
3 306 315 316 119 111 121 38 44 39 
6 346 355 362 77 76 76 40 43 46 
8 439 442 449 189 196 197 24 24 18 
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4.4.1 Experimental Data 

The NO, NO₂ and NH₃ slip concentrations downstream of the SCRF® and NOₓ 

conversion efficiency of the SCRF® relative to the ANR for various Test Points, with 

and without PM loading in the SCRF® are shown in Figures 4.10, 4.11, 4.12 and 4.13. 

From Figure 4.10 it can be observed that for Test Point 1, with and without PM loading, 

<10 ppm of NO₂ is remaining downstream of the SCRF® at ANR >0.8. The NO 

concentrations decrease from ~130 ppm to <20 ppm when ANR is increased from 0.8 to 

1.2.The NOₓ conversion efficiency of the SCRF® increases from ~75 % at ANR 0.8 to 

~90 % at ANR 1.0 due to availability of more ammonia to react with NOx in the exhaust 

gases. The NOₓ conversion efficiency of the SCRF® with 2 and 4 g/L of PM loading was 

observed to be 2 – 3 % higher than the NOₓ conversion efficiency of the SCRF® without 

PM loading, at ANR 0.8 and 1.0.  

Figure 4.10: NO, NO₂ NH₃ slip downstream of the SCRF® and NOₓ conversion 
efficiency at various ANR for Test Point 1, with and without PM in the SCRF® (SCRF® 

inlet temperature = 201 °C and SV = 13.7 k/hr) 

The NH₃ slip <10 ppm was observed up to ANR 1.0, with and without PM loading in the 

SCRF®. However, the NH₃ slip increased to 100 -150 ppm at ANR 1.2 due to excess 

ammonia availability in the SCRF®. A reduction in the NOₓ conversion efficiency of the 
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SCRF® with PM loading was observed at ANR 1.2. This is evident from the change in 

the slope of the NOₓ conversion trend of the SCRF® with PM loading (Blue and Red 

lines). The NOₓ conversion efficiency at ANR 1.2 was the least for the SCRF® with PM 

loading of 4 g/L. Hence, at ANR 1.2, the SCRF® with PM loading of 4 g/L had the 

highest NH₃ slip from the SCRF®. 

The trends for NO and NO2 concentrations downstream of the SCRF® for Test point 3 

with and without PM loading were similar to Test Point 1. The NO and NO2 

concentrations decreased to <20 ppm with increase in ANR from 0.8 to 1.0. The NOx

conversion efficiency increased from ~82 % at ANR 0.8 to ~96 % at ANR 1.0. The actual 

ANR for the test with 4 g/L PM loading was higher than the targeted ANR, as indicated 

by the red line (0.8, 1.0 and 1.2). Hence, 2 – 3 % higher NOx conversion efficiency was 

observed. The NH3 slip <10 ppm were observed at ANR 1.0. However, the NH3 slip 

increased to 60 ppm at ANR 1.2. 

Figure 4.11: NO, NO₂ NH₃ slip downstream of the SCRF® and NOₓ conversion 
efficiency at various ANR for Test Point 3, with and without PM in the SCRF® (SCRF® 

inlet temperature = 304 °C and SV = 29.1 k/hr) 
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Figures 4.12 and 4.13 show the NO, NO₂ and NH₃ slip concentrations downstream of the 

SCRF® and NOₓ conversion efficiency of the SCRF® relative to the ANR for Test 

Points 6 and 8 respectively, with and without PM loading in the SCRF®. From Figure 

4.12 it is observed that ~100 ppm NO and ~150 ppm NO2 concentrations were present 

downstream of the SCRF at ANR 0.8 for Test Point 6 without PM loading. However, the 

concentrations decreased to <10 ppm for Test Point 6 with 2 and 4 g/L PM loading at 

ANR 0.8. This is due to the consumption of NO2 via NO2 assisted oxidation of PM. From 

Figures 4.12 and 4.13 it is observed that the NOx conversion for the test without PM 

loading (black line) is 3 – 4 % higher that the tests with 2 and 4 g/L PM loading in the 

SCRF®. This could be attributed to decrease in the effective NO2/NOx ratios on the 

SCRF® catalyst due to consumption of NO2 via NO2 assisted oxidation of PM. The NOx 

conversion efficiency for Test point 8 with PM loading is observed to be ~87 % at ANR 

1.0 and ~92 % at ANR 1.2, which is 6 – 7 % lower than the corresponding NOx 

conversion efficiency for Test Points 3 and 6. 

Figure 4.12: NO, NO₂ NH₃ slip downstream of the SCRF® and NOₓ conversion 
efficiency at various ANR for Test Point 6, with and without PM in the SCRF® (SCRF® 

inlet temperature = 345 °C and SV = 18.8 k/hr) 
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Figure 4.13: NO, NO₂ NH₃ slip downstream of the SCRF® and NOₓ conversion 
efficiency at various ANR for Test Point 8, with and without PM in the SCRF® (SCRF® 

inlet temperature = 443 °C and SV = 46.3 k/hr) 

4.4.2 Analysis of Data 
The analysis of NO and NO₂ concentrations at 0 ANR (without urea injection) for the 

SCRF® without PM loading and with 2 and 4 g/L of PM loading are given in Tables 

4.13, 4.14 and 4.15 respectively. From Table 4.13 it can be observed that the NO and 

NO₂ concentrations at the SCRF® inlet and outlet remain unchanged for all the Test 

Points, without PM loading in the SCRF®. This indicates that the SCRF® has negligible 

tendency to oxidize NO to NO₂. However, the production-2013-SCR showed up to 20 % 

conversion of NO to NO₂ across the two SCR-A brick, without urea injection. 



82 

Table 4.13: NO and NO₂ concentrations at the inlet and outlet of the SCRF® at 0 ANR 
without PM loading in the SCRF® 

Test 
Point 

SCRF® 
Inlet 

Temp. 

SCRF® 
Inlet 
NO 

SCRF® 
Outlet 

NO 

Delta 
NO 

SCRF® 
Inlet 
NO₂ 

SCRF® 
Outlet 
NO₂ 

Delta 
NO₂ 

SCRF® 
Inlet 
NOx

SCRF® 
Outlet 
NOx

Ratio 
of 

In/Out 
NO₂ 

[-] [°C] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [-] 
1 213 345 352 -7 213 200 13 558 552 0.94 
3 301 158 160 -2 121 116 5 279 276 0.96 
6 345 795 808 -13 674 688 -14 1469 1496 1.02 
8 443 411 415 -4 140 139 1 551 554 0.99 

From Table 4.14 and 4.15 it can be observed that the ratio of the SCRF® outlet NO₂ to 

the SCRF® inlet NO₂ decreases with the increase in the SCRF® inlet temperature (Test 

Points are arranged in the increasing order of the SCRF® inlet temperature) and increase 

in PM loading in the SCRF®. This can be attributed to the consumption of NO₂ via NO₂ 

assisted oxidation of PM, as indicated by the reactions in equations 4.4 and 4.5. The 

higher proportion of NO₂ available at the SCRF® inlet is consumed through the NO₂ 

assisted oxidation of PM, as the substrate temperature and PM in the filter increases. The 

NO₂ is converted to NO by oxidation of PM, hence the coherent increase of NO 

concentration at the SCRF® outlet was also observed as indicated in Table 4.12 and 4.13. 

C + NO₂  →  CO + NO   Eqn. 4.4 
C + 2NO₂  →  CO₂ + 2NO Eqn. 4.5 

Table 4.14: NO and NO₂ concentrations at the inlet and outlet of the SCRF® at 0 ANR 
with 2 g/L PM loading in the SCRF® 

Test 
Point 

SCRF® 
Inlet 

Temp. 

SCRF® 
Inlet 
NO 

SCRF® 
Outlet 

NO 

Delta 
NO 

SCRF® 
Inlet 
NO₂ 

SCRF® 
Outlet 
NO₂ 

Delta 
NO₂ 

SCRF® 
Inlet 
NOx 

SCRF® 
Outlet 
NOx

Ratio 
of 

In/Out 
NO₂ 

[-] [°C] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [-] 
1 206 403 387 16 203 205 -2 606 592 1.01 
3 305 161 198 -37 131 88 43 292 286 0.67 
6 340 743 963 -220 644 424 220 1387 1387 0.66 
8 438 424 457 -33 125 52 73 549 509 0.42 
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Table 4.15: NO and NO₂ concentrations at the inlet and outlet of the SCRF® at 0 ANR 
with 4 g/L PM loading in the SCRF® 

Test 
Point 

SCRF® 
Inlet 

Temp. 

SCRF® 
Inlet 
NO 

SCRF® 
Outlet 

NO 

Delta 
NO 

SCRF® 
Inlet 
NO₂ 

SCRF® 
Outlet 
NO₂ 

Delta 
NO₂ 

SCRF® 
Inlet 
NOx

SCRF® 
Outlet 
NOx

Ratio 
of 

In/Out 
NO₂ 

[-] [°C] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [-] 
1 207 452 401 51 141 116 25 593 517 0.82 
3 302 198 249 -51 124 75 49 322 324 0.60 
6 341 793 1151 -358 588 231 357 1381 1382 0.39 
8 446 415 502 -87 115 22 93 530 524 0.19 

The consumption of NO₂, through NO₂ assisted oxidation of PM, changes the NO₂/NOₓ 

ratio across the catalyst. The NO₂/NOₓ ratios at the inlet and outlet of the SCRF® 

without urea injection (0 ANR) are given in Table 4.16. Since the ANR is 0, NO₂ 

consumption through SCR reactions is zero and the changes in the NO₂/NOₓ ratios are 

only due to consumption of NO₂ through NO₂ assisted oxidation of PM. Figure 4.14 

shows the NO₂/NOₓ ratios at the inlet and outlet of the SCRF® at 0 ANR. It can be 

observed that the SCRF® inlet and outlet NO₂/NOₓ ratio remains unchanged for Test 

Point 1, since the SCRF® inlet temperature is approximately 200°C and NO₂ assisted 

oxidation of PM is negligible at that temperature. However, as the SCRF® inlet 

temperature increases for 2 and 4 g/L data, the difference between the inlet and outlet 

NO₂/NOₓ ratios increases due to consumption of NO₂ through NO₂ assisted oxidation of 

PM. As the PM loading in the SCRF® increases from 2 to 4 g/L for the same Test Point, 

the difference between the inlet and outlet NO₂/NOₓ ratios increases further indicating 

higher proportion of NO₂ being consumed through NO₂ assisted oxidation of PM, with 

increase in PM loading from 2 to 4 g/L. Due to NO₂ consumption, the effective NO₂/NOₓ 

ratio at the reaction site on the substrate of the SCRF® could be much lower than the 

NO₂/NOₓ ratios at the SCRF® inlet. Hence, effective NO₂/NOₓ ratio should be 

considered while analyzing the NOₓ reduction performance of the SCRF®.  
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Table 4.16: NO₂/NOₓ ratios at the inlet and outlet of the SCRF® at 0 ANR 

Test 
Point 

SCRF® 
Inlet 

Temp.   
 [°C] 

SCRF® - 0 g/L SCRF® - 2 g/L SCRF® - 4 g/L 

Inlet 
NO₂/NOₓ 

Outlet 
NO₂/NOₓ 

Inlet 
NO₂/NOₓ 

Outlet 
NO₂/NOₓ 

Inlet 
NO₂/NOₓ 

Outlet 
NO₂/NOₓ 

1 213 0.38 0.36 0.34 0.35 0.24 0.22 
3 301 0.43 0.42 0.45 0.31 0.42 0.23 
6 345 0.46 0.46 0.47 0.31 0.43 0.17 
8 443 0.25 0.25 0.23 0.1 0.22 0.04 

Figure 4.14: NO₂/NOₓ ratios at the inlet and outlet of the SCRF® at 0 ANR 

Table 4.17 and 4.18 provide the NO, NO₂ and NH₃ concentrations downstream of the 

SCRF® and the NOₓ conversion efficiency of the SCRF® at ANR of 0.8. It can be 

observed that the NOₓ conversion efficiency improved by 2 – 4% for Test Point 1 and 3, 

with increase in the PM loading. However, for Test Point 6 and 8, NOₓ conversion 

efficiency reduced by 5 – 10%, with increase in PM. The NOₓ conversion efficiency for 

all the Test Points is shown in Figure 4.15. From Figure 4.16 it can be observed that less 

than 10 ppm NH₃ slip was observed downstream of the SCRF® except for Test Point 8, 

which is in agreement with the values observed for the production-2013-SCR, described 

in the section 4.1. 
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Figure 4.15: NOₓ conversion efficiency of the SCRF® with and without PM at ANR 0.8 

Figure 4.16: NH₃ Slip from the SCRF® with and without PM at ANR 0.8 
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Table 4.19 and 4.20 provide the NO, NO₂ and NH₃ concentrations downstream of the 

SCRF® and the NOₓ conversion efficiency of the SCRF® at ANR of 1.0. Since the 

SCRF® inlet NO₂/NOₓ ratios were lower than 0.5, most of NO₂ at the inlet of the 

SCRF® is reduced at ANR of 1.0. Table 4.20 and Figure 4.17 indicate that the NOₓ 

conversion was not affected significantly by PM loading in the SCRF®, at SCRF® inlet 

temperatures below 300°C (Test Point 1 and 3). The NOₓ conversion efficiency for Test 

Point 1 without PM loading is observed to be lower (89 %) due to insufficient 

stabilization time for measurement of the concentrations at the outlet of the SCRF®. The 

NOₓ conversion efficiency for Test Point 3 with 4 g/L PM loading is observed to be 

higher by 2% due to higher ANR (1.03). However, increase in the PM deposition affected 

the NOₓ conversion efficiency of the SCRF®, at SCRF® inlet temperatures above 350°C 

(Test Point 6 and 8). This could be attributed to the reduced effective NO₂/NOₓ ratio in 

the SCRF®, as described in Table 4.16, since a significant amount of NO₂ is consumed 

through the passive oxidation pathway. Hence, the lower effective NO₂/NOₓ ratio reduces 

the NOₓ conversion for Test Point 6 and 8. The SCRF® inlet ANR was maintained very 

close to 1.0 and the nitrogen balance for all the tests is also very close to 100%, 

indicating that the urea injection, NOₓ conversion and ammonia slip phenomenon are in 

agreement. 

Tables 4.21 and 4.22 provide the NO, NO₂ and NH₃ concentrations downstream of the 

SCRF® and the NOₓ conversion efficiency of the SCRF® at ANR of 1.2. Table 4.22 

shows that most of the NOₓ is reduced in the SCRF® at ANR of 1.2 and the NOₓ 

conversion efficiency is above 99% for all the Test Points except Test Point 8. As 

described in Table 4.10, Test Point 8 is a high temperature (450°C) and high SV and (48 

k/hr) Test Point. Oxidation of NH₃ to N2 and NO is a dominant reaction at temperatures 

above 400°C, the NOₓ conversion efficiency is poor. Also the Nitrogen balance is poor 

for this condition since N2 and N₂O are not considered in the nitrogen balance 

estimation. 
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Figure 4.17: NOₓ conversion efficiency of the SCRF® with and without PM at ANR 1.0 

Figure 4.18: NH₃ Slip from the SCRF® with and without PM at ANR 1.0
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Figure 4.19: NOₓ conversion efficiency of the SCRF® with and without PM at ANR 1.2 

Figure 4.20: NH₃ Slip from the SCRF® with and without PM at ANR 1.2 
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Pressure Drop across the SCRF® 

To understand the performance of the SCRF®, the pressure drop across the SCRF® for 

various tests was investigated. The pressure drop across the SCRF® and PMRetained at the 

end of the stages for Test Point 1 and 6 are shown in Figures 4.21 and 4.22 respectively. 

From Figure 4.21 it can be observed that the pressure drop is constant during the NOₓ 

reduction test condition which indicates that the PM in the SCRF® is constant. The 

pressure drop across the Test Point 8 is plotted in Figure 4.22. It can be observed that 

during Test Point 8-W/PM-I, Test Point 8-W/PM-II and Test Point 8-W/PM-III, the 

pressure drop curves across the SCRF® is steep, which is due to the high PM oxidation 

rate. Hence, the loading condition was repeated during the test to redeposit PM in the 

SCRF® to maintain PM loading close to 2 g/L. These stages are indicated as Repeat 

Loading-I and Repeat Loading-II.  

Figure 4.21: Pressure drop across the SCRF® for the Test Point 1, with PM loading 2 g/L 

Weighing 
SCRF® 

2.8 g 
33.3 g 56.2 g 
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Figure 4.22: Pressure drop across the SCRF® for the Test Point 6, with PM loading 2 g/L 
 

SCRF® Temperature Distribution 

In this section, the gas temperature distribution in the SCRF® for the NOₓ experimental 

tests, with and without PM loading is discussed. The study of the gas temperature 

distribution obtained from experimental data is critical since the experimental data will be 

used to calibrate the SCR-F model being developed at MTU. Twenty thermocouples were 

used in the axial and radial direction of the SCRF® labeled from S1 to S20 to obtain the 

temperature distribution in the SCRF®. The layout of the thermocouples arrangement is 

as shown in Figure 3.7. The thermocouples S1 to S10 were inserted into the SCRF® 

through the inlet channels of the SCRF® and the thermocouples S11 to S20 were inserted 

through the outlet channels of the SCRF®. 

The temperature distribution in the SCRF® for Test Point 6 with and without PM loading 

is shown in Figures 4.23, 4.24, 4.25 and 4.26. Figure 4.23 shows the temperature 

distribution for Test Point 6, without PM loading in the SCRF®, without urea injection at 

4.55 hours (5 minutes before the start of the urea dosing cycle). The isothermal lines are 

almost straight indicating uniform temperature distribution in the substrate, as there is no 

25.9 g 30.1 g 2.5 g 
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PM in the substrate and no urea injection to cause exotherm via oxidation of PM or 

occurrence of SCR reactions. Figure 4.24 shows temperature distribution for Test Point 6, 

without PM loading, with urea injection at ANR 1.0 at 5.42 hours (15 minutes after the 

start of ANR 1.0). A drop in the gas temperature is observed in the axial direction before 

125 mm, as the temperatures are lower than 350 °C (in comparison to Figure 4.23). This 

endotherm could be due to evaporative cooling caused by the evaporation of the urea 

solution (DEF) injected into the exhaust stream. 

Figure 4.23: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 6 without PM loading, without urea injection 

To study the temperature distribution, further analysis was performed by comparing the 

SCRF® inlet temperature and temperature distribution in the axial direction at the 

SCRF® radius 0 mm (S1, S6, S11 and S16 from Figure 3.7) relative to ANR as shown in 

Figure 4.25. It is observed that the SCRF® inlet temperature and the temperature 

measured by S1 (first thermocouple in the axial direction at radius 0 mm) decrease as the 

urea injection is performed at ANR of 0.8. However, the temperatures measured by S6, 

S11 and S16 increase as the urea injection is performed at ANR of 0.8. The change in 

temperature with further increase in ANR is negligible. Further investigation will be 

performed to study the cause of the trend in the temperature distribution. 
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Figure 4.24: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 6 without PM loading, at ANR 1.0 

 

 

Figure 4.25: SCRF® inlet and axial temperatures relative to ANR for Test Point 6 
without PM loading 
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Figure 4.26 shows temperature distribution for Test Point 6, with 2 g/L PM loading, with 

urea injection at ANR 1.0 at 13.13 hours (8 minutes after the start of ANR 1.0). A drop in 

temperature is observed in the axial direction between 0 – 75 mm which could be due to 

the endotherm caused by the evaporative cooling caused by the evaporation of the urea 

solution (DEF). However, a 10 – 12 °C increase in temperature is observed in the axial 

direction between 100 – 200 mm which could be due to exotherm caused via oxidation of 

PM and occurrence of SCR reactions.  

Figure 4.26: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 6 with 2 g/L PM loading, at ANR 1.0 

Figure 4.27 shows temperature distribution for Test Point 6, with 4 g/L PM loading, with 

urea injection at ANR 1.0 at 15.92 hours (6 minutes after the start of ANR 1.0). A drop in 

temperature is observed in the axial direction between 0 – 50 mm which could be due to 

the endotherm caused by the evaporative cooling caused by the evaporation of the urea 

solution (DEF). However, a 8 – 12 °C increase in temperature is observed in the axial 

direction between 75 – 200 mm which could be due to exotherm caused via oxidation of 

PM and occurrence of SCR reactions.  
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Figure 4.27: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 6 with 4 g/L PM loading at ANR 1.0 

 

4.5 Comparison of NOₓ Reduction: SCRF® to Production-2013-SCR 
In this section, the NOₓ reduction performance and the NH slip out of the production-

2013-SCR/SCRF®, obtained from the configurations 1 and 2 is compared to the NOₓ 

reduction performance of the production-2013-SCR (Baseline).  

4.5.1 NOₓ Reduction Performance 
The NOₓ conversion efficiency of the production-2013-SCR and the SCRF® are shown 

in the Figure 4.27. It can be observed that the production-2013-SCR could achieve NOₓ 

conversion efficiency of ≤ 85 % in comparison to the ≥ 90 % for the SCRF®, at inlet 

temperatures below 250 °C and above 450 °C. The NOₓ conversion efficiency for the 

SCRF®, with and without PM in the SCRF®, was ≥ 95 % at the inlet temperature range 

of 300 – 400 °C, which is comparable to the production-2013-SCR.  
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Figure 4.28: NOₓ conversion efficiency of the production-2013-SCR and the SCRF® at 
various inlet temperatures

The combination of NOₓ conversion efficiency, ANR and NH₃ slip out of the production-

2013-SCR and the SCRF® during the NOₓ reduction and passive oxidation tests with 

urea injection (baseline, configuration 2 and configuration 1), at ANR 1.0, are shown in 

Figure 4.28. The NH₃ slip >50 ppm for the production-2013-SCR and >20 ppm for the 

SCRF®, was observed for all the test conditions except Test Point 8, which is high 

temperature and high space velocity test condition (refer Table 4.10). The low NH₃ slip 

offers an opportunity to increase the ANR from 1.00 to 1.05 to obtain further 

improvement in the NOₓ reduction in the SCRF®, below SCRF® inlet temperatures of 

400°C. Above 400°C, the oxidation of NH₃ is a dominant phenomenon and improvement 

in NOₓ reduction will be insignificant. The study of the improvement in NOₓ conversion 

efficiency at ANR >1.0 with the SCRF® and a downstream SCR-A brick will be 

performed in the configuration-3, at a later stage of this research. 
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4.5.2 NH₃ Storage 

The NH₃ storage at various inlet temperatures for the production-SCR and the SCRF® 

(with and without PM loading) were estimated using the NOₓ concentrations at the inlet 

and the outlet of the production-2013-SCR/SCRF® and NH₃ concentration at the inlet of 

the production-2013-SCR/SCRF® at 1.2 ANR, estimated using equation 3.8. 

The NOₓ converted and the NH₃ slip out of the SCRF® were subtracted from the inlet 

NH₃ to estimate the NH₃ consumed in the production-2013-SCR/SCRF® as described in 

equation 4.6. The NH₃ consumed values were subtracted from the inlet NH₃ to obtain the 

NH₃ stored on the catalyst as indicated in Figure 4.29. The NH₃ storage stabilizes as the 

NOₓ conversion and NH₃ slip out of the production-2013-SCR/SCRF® stabilize. The 

NH₃ storage was calculated until the curve stabilized. The NH₃ storage on the catalyst 

was estimated using equation 4.7. 

NH₃ Consumed = Inlet NH₃ − (Inlet NOₓ − Outlet NOₓ) − NH₃ Slip    Eqn.   

4.6 

Where, NH₃ consumed, inlet NH₃, inlet NOₓ, outlet NOₓ and NH₃ slip are in ppm. 

NH₃ Storage

=
∫ Yit2
t1 ∗  exhaust flow rate ∗ dt

molecular wt. of air ∗ total volume of the SCR/SCRF®
 Eqn.  4.7 

Where NH₃ storage is in (gmol/m3 of substrate), Yi is the NH₃ concentration stored on the 

catalyst (ppm) (Inlet NH₃ – NH₃ consumed), t1 is the start of urea injection (minutes), t2 

is the time at which NH₃ stored curve stabilizes (minutes), as shown in Figure 4.29, 

exhaust flow rate is in (kg/minute), molecular weight of air is 28.96 (g/gmol) and total 

volume of the production-2013-SCR/SCRF® 17.04 (L). It is also assumed that the 
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production-2013-SCR and the SCRF® catalyst loading is represented by the total volume 

of the substrates i.e 17.04 L. 

Figure 4.30: Inlet NH₃ and NH₃ stored in the SCRF® at Test Point 1 at ANR 1.2 repeat, 
without and with PM loading in the SCRF® (0 and 2 g/L), SV = 13.7 k/hr, SCRF® inlet 

temperature = 210°C 

Equation 3.8, for estimation of inlet NH₃ assumes that all the DEF injected into the 

system is converted to NH₃. However, the DEF to NH₃ conversion reactions are 

dependent on temperature. The results from reference [85] as shown in Figure 4.30 were 

used to obtain the fraction of DEF converted into NH₃ at various temperatures. The NH₃ 

storage (gmol/m3) values were multiplied by the temperature based fraction, to obtain the 

actual NH₃ stored on the production-SCR/SCRF®.  
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Figure 4.31: Fraction of Urea thermolyzed at various locations, SV = 30 k/hr [85] 

From Figure 4.31 it can be observed that the SCR-2010, the production-2013-SCR and 

the SCRF® (without PM) have approximately same ammonia storage capability at lower 

and higher temperatures. However, the SCRF® (without PM) demonstrated lower 

ammonia storage at temperatures around 300°C, when compared to the production-2013-

SCR and the SCR-2010 from reference [9]. Also, the ammonia storage capability of the 

SCRF® with the PM loading of 2g/L, decreases by approximately 30% at lower 

temperatures (200-250°C), when compared to the ammonia storage in the SCRF® 

without PM. The reduced NH₃ storage in the SCRF® with PM loading in the SCRF® is 

also evident from Figure 4.29. The difference reduces as the substrate temperature 

increases. Further PM loading on the SCRF® to 4 g/L had negligible effect on ammonia 

storage. Similar results related to the ammonia storage were observed by Tan et al. [70].  
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Figure 4.32: NH₃ storage in the production-SCR and the SCRF® at various temperatures 

4.6 Calculation of ANR’s for Configuration 3: SCRF® + SCR 

The experimental data for the SCRF® were studied and analyzed to calculate the targeted 

ANR to be maintained during the passive oxidation stage of Test Points A, B, C, D and E 

and NOₓ reduction stage of Test Point 1. The data for Test Points A and E obtained from 

passive oxidation tests with urea injection as a part of configuration 1 are shown in Table 

4.23. The NOₓ and NH₃ concentrations at the inlet and outlet of the SCRF®, NOₓ 

conversion efficiency and ANR were used to calculate the targeted ANR for 

configuration 3 such that maximum NOₓ reduction and minimum NH₃ slip could be 

achieved at the outlet of the SCRF® and SCRF® and SCR-A substrate together. 
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Table 4.23: Performance of the SCRF® during the passive oxidation tests with urea 
injection in configuration 1 [1] 

Test 
Points 

SCRF® 
Inlet 
NOₓ 

SCRF® 
Inlet NH₃ ANR 

SCRF® 
Outlet 
NOₓ 

NH₃ 
Slip 

NOₓ 
Conv. 
Eff. 

Nitrogen 
Balance 

[-] [ppm] [ppm] [-] [ppm] [ppm] [%] [%] 
A 590 607 1.03 55 12 91 90 
E 1450 1465 1.01 80 5 94 94 

From Table 4.23 it is observed that for Test Point A, NOₓ concentration of 55 ppm and 

NH₃ slip of 12 ppm were measured at the outlet of the SCRF®. The NOₓ concentration of 

55 ppm could be reduced in the SCRF® if additional SCRF® inlet NH₃ concentration of 

67 ppm were available (considering 90% nitrogen balance) during the test. Hence, the 

targeted ANR to be performed for Test Point A in configuration 3 (SCRF® with a 

downstream SCR) would be 1.13. The calculations for Test Point A are shown in Figure 

4.32. 

Figure 4.33: Sample calculations to estimate the targeted ANR for Test Point A 

Similarly, for Test Point E, NOₓ concentration of 80 ppm could be reduced in the SCRF® 

if additional SCRF® inlet NH₃ concentration of 85 ppm were available (considering 94% 

nitrogen balance) during the test. Hence, the targeted ANR to be performed for Test Point 

E in configuration 3 would be 1.07. The calculations for Test Point E are shown in Figure 

4.33. 
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Figure 4.34: Sample calculations to estimate the targeted ANR for Test Point E 
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Chapter 5. Summary and Conclusions 

One of the goals of this research was to investigate the effect of temperature and space 

velocity on the NOₓ reduction performance of the SCRF®, with and without PM loading 

in the SCRF® and compare it with the performance of the production-2013-SCR. Also, 

there was a goal to determine the effects of PM loading at 0, 2 and 4 g/L as a function of 

ANR on the outlet NO, NO2 and NH3 and the NOx reduction as affected by the 

temperature and space velocity. Another goal of this research was to determine the NH₃ 

storage for the production-2013-SCR and the SCRF®, to study the effect of PM loading 

on the NH₃ storage. The goals have been met through experimental studies on the 

production-2013-SCR and the SCRF® coupled with the 1-D SCR model calibration. The 

important findings and accomplishments from the study and the recommendation for the 

future work are discussed in this chapter. 

5.1 Summary 

The test procedures were developed and the test conditions were determined to evaluate 

the performance of the production-2013-SCR and the SCRF®. Seven NOₓ reduction tests 

were completed to evaluate the NOₓ reduction and NH₃ slip performance for production-

2013-SCR. Seven passive oxidation and twelve NOₓ reduction tests were completed in 

configurations 1 and 2 respectively, to evaluate the NOₓ reduction and NH₃ slip 

performance of the SCRF®, with 0, 2 and 4 g/L PM loading in the SCRF® as a function 

of temperature and space velocities for ANR 0.8, 1.0 and 1.2. 

NOₓ Reduction in Production-2013-SCR and 1-D SCR Model 

Calibration 

The NOₓ reduction and NH₃ slip characteristics of the Cu-zeolite based production-2013-

SCR were determined at steady state engine operating conditions. During the seven 

different test conditions, SCR inlet temperatures varied from 208 to 447 °C, space 

velocity varied from 12.0 to 44.7 k/hr, NOₓ varied from 280 to 1730 ppm and NO₂/NOₓ 

varied from 0.2 to 0.5. The NOₓ conversion efficiency and NH₃ slip performance of the 
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production-2013-SCR was considered as the baseline performance and was compared 

with the NOₓ reduction in the SCRF®. Nitrogen balance was performed using the NOₓ 

and NH₃ concentrations at the inlet and outlet of the production-2013-SCR, to validate 

the consistency of the experimental data. The nitrogen balance of 100 ± 10 % was 

observed for the seven tests, indicating a good agreement between the concentrations at 

the inlet and outlet of the production-2013-SCR. NH₃ storage on the production-2013-

SCR was calculated using the experimental data. 

The 1-D SCR model was calibrated to the engine experimental data obtained from the 

production-2013-SCR. A unique set of model calibration parameters were determined for 

Test Points with SCR inlet temperatures in the range of 250 to 450°C. However, a 

different set of parameters were used for Test Point 1, which has the SCR inlet 

temperature ~205°C. The calibrated model was validated by comparing the experimental 

and simulated data using NO, NO₂ and NH₃ concentrations at the SCR outlet. 

NOₓ Reduction in SCRF® – with and without PM – Configurations 1 

and 2 

Seven passive oxidation tests with urea injection were conducted in configuration 1 to 

study the effect of NOₓ reduction reactions on the NO₂ assisted PM oxidation. The 

SCRF® was loaded to 1.8 ± 0.4 g/L before start of the passive oxidation stage. The urea 

injection was performed to achieve a constant ANR of 1.0 during the passive oxidation 

stage. The NOₓ reduction and NH₃ slip data for the SCRF® were analyzed and the 

nitrogen balance was performed to validate the consistency of the experimental data.

The Test Points 1, 3, 6 and 8 from Table 3.15 were run in configuration 2, to collect the 

experimental data to determine the NOₓ reduction and NH₃ slip performance of the 

SCRF®, with and without PM loading in the SCRF® (total twelve tests). The four Test 

Points cover the SCRF® inlet temperatures in the range of 200 to 450°C, space velocities 

from 13 to 48 k/hr, SCRF® inlet NOₓ from 280 to 1600 ppm.  During NOₓ reduction tests 

for the SCRF® without PM loading, the CPF was placed upstream of the SCRF® to filter 

the PM entering into the SCRF®. Hence, using the data from four tests without PM 
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loading in the SCRF®, NOₓ reduction performance of the clean SCRF® was determined. 

During NOₓ reduction tests for the SCRF® with PM loading, the CPF was replaced with 

a spacer, so that the engine-out PM was filtered and deposited on the SCRF® to achieve 

the target PM loading of 2 and 4 g/L. The urea dosing cycle was performed to achieve the 

ANR of 0.8, 1.0, 1.2 and 1.2 repeat to study the NOₓ reduction and NO, NO2 and NH₃ 

slip from the SCRF®, with 0, 2 and 4 g/L PM loading.  NH₃ storage on the SCRF®, with 

and without PM loading on the SCRF® was calculated using the experimental data from 

the twelve NOₓ reduction tests in the configuration 2. 

NOₓ reduction, NH₃ slip and NH₃ storage data for the SCRF®, obtained from 

configurations 1 and 2 were compared to the baseline data for the production-2013-SCR. 

5.2 Conclusions 

The experimental data obtained from the tests conducted with the production-2013-SCR 

and the SCRF® (configurations 1 and 2, with and without PM loading) were analyzed to 

determine the NOₓ conversion efficiency, NH₃ storage and NH₃ slip characteristics of the 

production-2013-SCR and the SCRF®. The 1-D SCR model was calibrated using the 

experimental data obtained from the seven tests with the production-2013-SCR. The 

conclusions with respect to the goals and objectives of this study are discussed in the 

following sections. 

NOₓ Reduction, NH₃ storage and 1-D SCR Model Calibration – 
Production-2013-SCR 

1. The production-2013-SCR can achieve 90 – 95 % NOₓ reduction with NH₃ slip

<40 ppm at ANR 1.0, for the inlet temperature range of 300 – 350°C. However,

the NOₓ reduction performance decreases to 80 – 85 % at ANR 1.0, with NH₃ slip

<20

and <70 ppm for inlet temperatures below 250°C and above 450°C respectively.

2. Maximum NH₃ storage of 75 gmol/m3 of substrate at 200 °C was observed on the

production-2013-SCR. The NH₃ storage values for the production-2013-SCR
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were within ±5 gmol/m3 when compared to the production-SCR-2010, for the 

inlet temperature range of 200 – 450°C. 

3. The 1-D SCR model was calibrated to ±20 ppm of the experimental data, for NO

and NO₂ gaseous concentrations at the outlet of the production-2013-SCR. The

model was also calibrated to ±30 ppm of the experimental data, for NH₃ slip out

of the production-2013-SCR.

NOₓ Reduction – SCRF®: Configuration 1 

1. The NOₓ reduction >90 % and NH₃ slip <20 ppm at ANR 1.0, can be achieved

with the SCRF®, with PM loading of 2 g/L in the SCRF®, for the inlet

temperature range of 260 to 370 °C.

2. The SCRF® exhibits potential for the NOₓ reduction >95% at ANR between 1.05

– 1.10, since the NH₃ slip values for the seven passive oxidation tests with urea

injection were <20 ppm at ANR 1.0. 

NOₓ Reduction and NH₃ storage – SCRF®: Configuration 2 

1. The NOₓ reduction >90 % and NH₃ slip <50 ppm at ANR 1.0, can be achieved

with the SCRF®, with and without PM loading in the SCRF®, for the inlet

temperature range of 200 to 450 °C and inlet NO₂/NOₓ ratio in the range of 0.2 to

0.5. Maximum NOₓ reduction of 95% at ANR 1.0 was observed, for the inlet

temperature range of 300 to 400 °C.

2. The SCRF® (with and without PM loading) provides 5 – 7 % improvement in the

NOₓ reduction when compared to the production-2013-SCR at the inlet

temperatures below 250 °C and above 400 °C

3. The SCRF® outlet NO₂/NOₓ ratio decreases above 300 °C with increase in PM

loading on the SCRF® from 0 to 2 g/L and from 2 to 4 g/L. This decrement in

NO₂/NOₓ ratio is due to the consumption of NO₂ via passive oxidation of PM.

Hence, the effective NO₂/NOₓ ratio on the SCR catalyst in the SCRF® could be
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significantly lower than the inlet NO₂/NOₓ ratio, having effects on the NOₓ 

reduction in the SCRF®. 

4. The impact of PM loading on the NOₓ reduction in the SCRF® was insignificant

below 300 °C. The NOₓ reduction decreased by 3 – 5 % above 350 °C with the

increase in PM loading from 0 to 2 and 4 g/L, due to consumption of NO₂ via

passive oxidation of PM.

5. NH₃ storage on the SCRF® without PM loading is similar to the production-

2013-SCR. Maximum storage of 75 gmol/m3 of substrate was observed at 200 °C

for the SCRF®.

6. The SCRF® showed 20 - 30 % reduction in NH₃ storage when comparing 0 g/L

loading to 2 and 4 g/L PM loading for the temperature range of 200 to 350 °C.

The decrease in the NH₃ storage with PM loading was insignificant for the

SCRF® inlet temperatures above 350 °C. The increase in PM loading from 2 to 4

g/L has minimal impact on the NH₃ storage.
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Appendix A. MS Start up, Shut down and 
Calibration Procedures 

The MS is ON and in STANDBY mode during the daily operation. In case the MS is 

turned OFF for the repair or any other purpose for more than 4 hours, the MS is to be 

switched ON at least 5 hours before its use for emission measurement. During the warm-

up period, the system is stabilized for the data collection, since the sensitivity of the cold 

analyzer is unstable and the measurements may not be reliable due to inaccurate 

calibration. It also can cause the MS to drift while measuring emission concentrations 

during the test.  The emission data and the system operation parameters can be 

monitored, recorded and controlled through the V&F Viewer software installed in a 

desktop computer. Ensure that the computer is turned ON and the analyzer is connected 

to the computer via a LAN cable. To initiate the start-up process, open the valve on the 

xenon gas bottle located inside the MS. Purging the analyzer with xenon removes the 

oxygen that may have leaked into the analyzer. The oxygen in the gas lines and analyzer 

may cause damage to the filament which generates electrons. Now switch ON the MS 

and confirm that the red LEDs are displayed on the RF generator, indicating the status of 

the MS. The LEDs will turn orange and green in color as the MS has warmed up and 

stabilized. Open the V&F Viewer and connect to the MS. Select the measurement method 

“SCR” from the drop-down list in the software. Put the MS in the STANDBY mode 

when not in use. Refrain from moving the MS when it is turned ON, to avoid any 

possible damage to the turbo-pump. 

In this study, the MS was used to measure the concentration of NO, NO₂, NH₃ and O₂ in 

the exhaust flow. The MS needs to be calibrated before each test, using the gas bottles for 

each species of known concentration. The N2 gas with purity of 99.999% was used as the 

zero gas. The details of calibration gases are given in Table 3.10. The calibration can be 

performed either automatically, using the calibration option in the software, or manually, 

by adjusting the concentration measurement to that of the calibration gas. For the 

automatic calibration, open the valves on all the calibration gas bottles and N2. Click on 
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“Calibrate” option in the side menu and select all the species to be calibrated. Press 

“Start” to initiate the calibration process. It takes about 8 – 10 minutes to complete the 

procedure. After the calibration procedure, put the MS in the “Measure” mode till the end 

of the test. 

To perform the manual calibration, plug the calibration gas bottle of the species to be 

calibrated into the quick connect valve on the front panel of the MS. Unplug the other 

gases and release the pressure in the line, to prevent their interference during the 

calibration, due to leakage of the gas through the quick connect valve or the gas lines of 

the analyzer. Put the MS in the “Measure” mode. Select the quick connect valve from the 

“Sample inlet” function (the top right section of the software) and the MS starts 

measuring the calibration gas. Now zero the MS by selecting “inert gas” from the list. 

Perform zeroing of MS in automatic mode by selecting only “inert gas” in the list. After 

completion of zeroing step, select other gases of interest. After the measurement has 

stabilized, select the gas type from the “molecule list” displayed on the right side of the 

software. Then select channel calibration and enter the concentration mentioned on the 

gas bottle in the open window. Observe the change in the measurement. If the updated 

concentration measurement is not correct, re-enter the concentration value, else click OK 

to accept the calibration. Then repeat the procedure for each species to be calibrated. The 

calibration procedure was also performed during the test to confirm the accuracy of the 

data. 

To turn OFF the analyzer, select “turn off analyzer” from tools menu of the V&F 

software. This prevents loss of data and ensures proper shut down of the analyzer. Then 

turn OFF the power switch located on the rear panel of the analyzer. Then close the 

valves on the source gas and calibration gas bottles to prevent any possible leakage. Wait 

for 30 mins if the system is to be accessed for replacement/repair of components. This 

provides time for the turbofan to stop completely and the system to cool down.  
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Appendix B. Calibration of NH ₃ Sensor using the 
MS 

NH₃ slip from the SCR/SCRF® was measured using the MS and the NH₃ sensor as 

described in the Chapter 3. It was observed from the experimental results that the NH₃

slip measured by the MS were lower than the values measured by the NH₃ sensor. In 

order to compare the NH₃ slip measurements from the NH₃ sensor and the MS, it is 

important to know the empirical relation between the two values. The IMR-MS is 

calibrated before each test using the calibration gas of known concentration as explained 

in Appendix A. 

To determine the empirical relation between the NH₃ sensor and the IMR-MS, a test was 

conducted. The test condition and results of the NH₃ sensor calibration are given in Table 

B.1. The engine was stabilized at the baseline condition as explained in the Chapter 3. 

During the test, the DEF injection rate was varied to achieve the ANR of 1.2, 1.5, 1.8 and 

2.0. At each ANR the NH₃ slip was measured by the MS and the NH₃ sensor at the same 

time, until the NH₃ measurements from both the instruments reached the steady state for 

5 minutes. Then the steady state NH₃ slip measurements from both the instruments were 

compared to estimate the ratio of NH₃ slip from the sensor to the NH₃ slip from the MS. 

The average of the ratios can be used as the NH₃ sensor calibration factor during 

calibration of the SCR-F model. 

Table B.1: Results of NH₃ sensor calibration 

Speed Load 
Exhaust 

Flow 
Rate 

SCRF® 
Inlet 

Temp. 
ANR NH₃ 

Sensor 
NH₃ 
MS Ratio 

[RPM] [N.m] [kg/min] [°C] [-] [ppm] [ppm] [-] 
1661 478 8.1 325 0.0 0 0 - 
1662 477 8.1 323 1.2 81 71 1.15 
1661 479 8.1 323 1.5 252 220 1.15 
1662 479 8.1 321 1.8 420 360 1.17 
1662 478 8.1 320 2.0 556 469 1.19 
1662 477 8.1 321 0.0 0 6 - 

Average 1.16 
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Appendix C. Calibration of the DEF Injector 
The ANR and the NH₃ concentration at the SCR/SCRF® inlet is estimated from the DEF 

injection rate, exhaust flow rate and urea properties. Hence, it is important to accurately 

control the DEF injection rate. The DEF injection rate is controlled by entering the 

targeted DEF injection rate into the Cummins proprietary software “Calterm”, which 

communicates the command to the engine ECM. The DEF injector calibration procedure 

is described below. 

1) Remove the DEF injector mounted on the decomposition tube.

2) Position a 500 ml measuring cylinder under the DEF injector.

3) Start the DEF injection and continue injecting for 10 minutes. For flow rates

below 0.1 ml/s, perform DEF injection for 20 minutes or higher to reduce the

error.

4) Stop the DEF injection and remove the measuring cylinder. Place it on a flat

surface and wait until no bubbles can be seen in the DEF collected.

5) Record the volume of the DEF collected in the measuring cylinder. Pour the DEF

back into the DEF tank.

The relationship between the targeted DEF flow rate (command sent to the ECM) and the 

actual DEF flow rate (obtained from Calterm) are plotted in Figure C.1. The linear trend 

line characterizes the relationship between the targeted and the actual DEF flow rate. The 

actual DEF flow rate was obtained from the Calterm parameter 

“V_UIM_flm_EstUreaInjRate” and was used to calculate the NH3 concentrations and ANR 

at the inlet of the SCRF®. 
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Figure C.1: Calibration curve for the DEF injection 
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Appendix D. Production-2013-SCR Experimental 
Results, 1-D SCR Model Calibration Procedure 
and Simulation Results 

The NO, NO2 and NH3 concentrations and the NOx reduction performance of the 

production-2013-SCR at ANR of 0.3, 0.5, 0.8, 1.0 (repeat) and 0.8 (repeat) are given in 

Tables D.1 through D.5.  

Table D.1: NOx reduction performance of the production-2013-SCR at target ANR of 0.3 

Test 
Points 

SCR 
Inlet 

Temp. 
NO [ppm] NO₂ 

[ppm] 
NH₃ 

[ppm] ANR 
NOₓ 

Conv. 
Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 470 347 178 125 177 0 0.27 25 99 
2 238 177 142 102 78 72 1 0.26 22 83 
3 307 199 139 91 67 87 0 0.30 30 97 
4 327 185 122 158 127 93 0 0.27 28 101 
5 354 325 203 227 179 165 0 0.30 29 103 
6 352 1045 647 685 578 476 32 0.28 31 113 
8 447 443 336 99 53 163 0 0.30 27 94 

Table D.2: NOx reduction performance of the production-2013-SCR at target ANR of 0.5 

Test 
Points 

SCR 
Inlet 

Temp. 
NO [ppm] NO₂ 

[ppm] 
NH₃ 

[ppm] ANR 
NOₓ 

Conv. 
Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 470 289 178 78 301 1 0.46 42 94 
2 238 177 113 102 34 126 1 0.45 41 106 
3 307 199 105 91 38 148 1 0.51 51 100 
4 327 185 86 158 92 156 0 0.45 48 106 
5 354 325 142 227 122 271 0 0.49 51 106 
6 352 1045 474 685 405 802 0 0.46 50 106 
8 447 443 252 99 12 276 0 0.51 50 101 

Table D.3: NOx reduction performance of the production-2013-SCR at target ANR of 0.8 
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Test 
Points 

SCR 
Inlet 

Temp. 
NO [ppm] NO₂ 

[ppm] 
NH₃ 

[ppm] ANR 
NOₓ 

Conv. 
Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 470 217 178 27 481 1 0.74 61 84 
2 238 177 82 102 23 205 1 0.73 63 85 
3 307 199 50 91 3 238 0 0.82 82 100 
4 327 185 40 158 41 254 0 0.74 76 103 
5 354 325 61 227 38 435 0 0.79 82 104 
6 352 1045 244 685 139 1291 0 0.75 78 104 
8 447 443 124 99 1 442 15 0.82 77 98 

Table D.4: NOx reduction performance of the production-2013-SCR at target ANR of 1.0 
(Repeat) 

Test 
Points 

SCR 
Inlet 

Temp. 
NO [ppm] NO₂ 

[ppm] 
NH₃ 

[ppm] ANR 
NOₓ 

Conv. 
Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 470 110 178 0 606 39 0.94 2 95 
2 238 177 30 102 0 260 12 0.93 89 100 
3 307 199 24 91 0 293 35 1.01 92 103 
4 327 185 6 158 4 316 1 0.92 97 106 
5 354 325 3 227 0 539 6 0.98 100 103 
6 352 1045 85 685 1 1713 5 0.99 95 96 
8 447 443 89 99 0 554 68 1.02 83 94 

Table D.5: NOx reduction performance of the production-2013-SCR at target ANR of 0.8 
(repeat) 

Test 
Points 

SCR 
Inlet 

Temp. 
NO [ppm] NO₂ 

[ppm] 
NH₃ 

[ppm] ANR 
NOₓ 

Conv. 
Efficiency 

Nitrogen 
Balance 

[-] [°C] In Out In Out In Out [-] [%] [%] 
1 219 470 144 178 0 483 6 0.75 77 106 
2 238 177 67 102 2 206 3 0.74 75 103 
3 307 199 49 91 1 232 1 0.80 83 104 
4 327 185 40 158 33 253 0 0.74 79 107 
5 354 325 70 227 33 437 0 0.79 81 103 
6 352 1045 274 685 124 1300 0 0.75 78 102 
8 447 443 131 99 0 443 13 0.82 75 96 

The experimental data acquired from the seven NOₓ reduction Test Points that cover a 

range of SCR inlet temperatures, space velocities and inlet NOₓ concentrations were used 
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to prepare the time varying inputs and calibrate the model. The time varying inputs 

required for the model are: 

I. Exhaust mass flow rate 

II. Concentration of chemical species (NO, NO₂, NH₃, H₂O, CO₂ at the inlet of the

SCR)

III. SCR inlet temperature and pressure

The primary objective of the calibration procedure was to determine a single set of 

parameters that could simulate the NOₓ reduction performance of the production-2013-

SCR for the seven Test Points. The SCR model parameters used for calibrating the model 

to the engine experimental data from the Cummins ISB 2010 engine, were used as the 

starting values. The simulation data from the model were compared with the 

experimental data, to determine the difference and evaluate the performance of the 1-D 

SCR model. The model parameters were changed manually to reduce the cost function. 

The cost function value for each species is defined as the accumulative absolute error 

between the model prediction and the experimental measurement divided by the 

simulation time. The equation calculating the cost function value for each species is given 

in Equation D.1. The Equation D.1 is from reference [9]. 

D.1 

Where Costi is the cost function for gas species i (i =NO, NO₂, NH₃). to and tend are the 

start and stop time in seconds for the simulation. Ci,Sim and Ci,Exp are the model simulated 

and experimentally measured gas concentrations for the gas species i respectively [9]. 

Manual Optimization 
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The manual optimization procedure illustrated in Figure D.1 is explained in the following 

steps:  

I. Run the model with the input file and the initial set of parameters. Initial 

parameters for engine data were taken from Table 5.1 in reference [9]. 

II. The model simulated data and the experimental data were plotted to determine 

the difference in concentrations of NO, NO₂ and NH₃ at the production-2013-

SCR outlet location. The difference in concentration during steady state 

operation was used to estimate the parameter to be optimized. 

III. The parameter is changed to reduce the difference. 

IV. The parameters were changed based on the cost function. The parameters 

were also tuned to reduce the difference between the experimental and 

simulated data during transient and steady state conditions. Then step 2 was 

repeated. 

V. The step III and IV were repeated till the model was calibrated to within ± 20 

ppm for NO and NO₂, and ± 30 ppm for NH₃ concentrations. 

 

The activation energy for the twelve reactions in the MY2013 production-2013-SCR 

were assumed to be same as that of MY2010 production. The pre-exponential factor for 

R1, R2, R7 and R9 described in Chapter 2, which are labelled as “A_ads1”, “A_des1”, ” 

A_std” and “A_fst” respectively, were calibrated based on trial-and-error method since 

only these factors affected the simulation results significantly. The modified pre-

exponential values are highlighted in Table 4.5. The plot of reaction rate constant vs 

1000/T is shown in Figure D.2. It is observed from Figure D.2 that the reaction rate 

constant for each reaction followed a linear trend in the Arrhenius form, meaning that the 

effect of the temperature on the reaction rates was well captured by the model. The slope 

m and the interception c of each fit trend line were used to calculate the pre-exponential 

constant and the activation energy of each reaction. Comparison of the simulation of SCR 

outlet concentrations of NO, NO₂ and NH₃ data to the experimental data for Test Points 

2, 3, 4, 6 and 8 are shown in Figures D.3 to D.7. 
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Time varying 
input data and 

initial set of 
parameters

Run 1-D SCR 
model

Model 
simulated 

data

Difference between 
simulated data and 
experimental data

If the difference is > the objective 
function (NO, NO₂ tolerance ±20 ppm, 

NH₃ tolerance ±30 ppm)

Manually 
optimized 

parameters

Figure D.1: Flow chart of manual optimization procedure to calibrate 1-D SCR model 
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Figure D.2: Arrhenius plots of reaction rate constants for reactions R1, R2, R7 and R9 

Figure D.3: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 2 (SCR inlet temperature 235°C, 

SV 17.2 k/hr 
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Figure D.4: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 3 (SCR inlet temperature 307°C, 

SV 26.4 k/hr 

 

Figure D.5: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 5 (SCR inlet temperature 355°C, 

SV 21.6 k/hr 
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Figure D.6: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 6 (SCR inlet temperature 351°C, 

SV 16.9 k/hr 

Figure D.7: Comparison of the SCR outlet gaseous concentrations between simulation 
results and experimental measurements for Test Point 8 (SCR inlet temperature 447°C, 

SV 44.7 k/hr 
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Appendix E. Engine, Exhaust conditions and PM 
Mass Balance for each Stage – Configuration 2 
(with PM loading) 

The engine conditions, exhaust conditions at the inlet of the SCRF® and PM mass 

balance across the SCRF® for stages 1 and 2 and NOₓ reduction stages are presented in 

this appendix. The engine speed, load, the engine out and SCRF® inlet (temperature, 

NO/NO₂/NOₓ concentration, PM concentration) conditions are analyzed and compared 

for deviation in Table E.1, E.2, E.5, and E.6. The filtration efficiency of the SCRF® and 

PM oxidation in the SCRF® is summarized in Table E.3, E.4, E.7, and E.8.  

Stage 1 and Stage 2 for PM Loading 2 g/L 

It is seen from Table E.1 and E.2 that the species concentration (NO, NO₂ and NOₓ) and 

engine out PM are consistent for all Test Points. The speed and load values were kept at 

constant values of 2400 RPM and 200 Nm and have very small deviation. The average 

engine-out particulate matter is 11.4 mg/scm (milligrams /standard cubic meter) and is 

consistent for all tests with a standard deviation of 0.5 mg/scm and 0.3 mg/scm for stage 

1 and stage 2 respectively. 

The parameters such as PM concentration into SCRF®, NO₂/PM ratio, temperature into 

SCRF® and loading duration which affected the PM deposition and oxidation in the 

SCRF® are given in Table E.3 and E.4. The Test Point 3 (2401 rpm engine speed, 203 

Nm load) has least PMRetained of 27.9 grams in the SCRF® for the high PM concentration 

coming into the SCRF® and hence high PMAvailable for oxidation. Another reason was that 

the Test Point 3 was run for least time period of approximately 300 minutes.  

PM oxidized (percentage) in stage 1 as shown in Table E.3 has the similar trend to that of 

PM oxidized (percentage) in stage 2 as shown in Table E.4. This is because mass loaded 

in stage 1 is estimated assuming the same rate of loading as in stage 2.   The filtration 
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efficiency for stage 2 is obtained using the upstream and downstream SCRF® PM 

samples collected during stage 2. 
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Stage 1 and Stage 2 at 4 g/L Loading 

Table E.5 and E.6 give the consistent values for engine speed, load, SCRF® inlet species 

concentration and engine out PM concentration for all Test Points. The average engine-

out particulate matter is 18.7 mg/scm and 19.4 mg/scm for stage 1 and stage 2 

respectively. 

Table E.8 shows that the PM oxidized (percentage) for stage 2 is consistent for all Test 

Points with mean oxidation 24 %. The PMRetained in the SCRF® is 4 g and 69.4 g for stage 

1 and stage 2 respectively. The filtration efficiency of 99.1% is obtained using the 

samples collected during stage 2 which is considered to be same for stage 1. 
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The PMRetained in the SCRF® at the end of the stage 1, stage 2 and NOx reduction stage 

are given in Table E.9. The PMRetained are calculated using the equations described in 

section 3.6.7 of this thesis. From Table E.9 it is observed that for the NOx experimental 

tests with target PM loading of 2 and 4 g/L, the PMRetained at the end of stage 1 and stage 2 

were consistent and PM loading of 2 ± 0.2 g/L and 4 ± 0.4 g/L were achieved for all the 

tests except for Test Point 3. The stage 2 duration for Test Point 3 was 30 minutes shorter 

than the other Test Points. It is also observed that the PMRetained at the end of NOx 

reduction stage for Test Point 1 is 23 – 24 grams higher that the PMRetained at the end of 

stage 2 for PM loading of 2 and 4 g/L. This could be due to higher NH3 storage in the 

SCRF® and water adsorption in the SCRF since Test Point 1 is a low temperature test 

condition (~213 °C). The NH3 stored in the SCRF® for all Test Points, with PM loading 

of 2 and 4 g/L are given in Table E.10. It is also observed that the Test Points 6 and 8 

indicated significant PM oxidation during NOx reduction stage with PM loading of 2 g/L, 

since the PMRetained at the end of NOx reduction stage is lower than the PMRetained at the 

end of stage 2. However, the PMRetained at the end of NOx reduction stage is higher than 

the PMRetained at the end of stage 2 for Test Points 6 and 8 with PM loading of 4 g/L. This 

appears to be an error in the mass measurement of the SCRF® substrate at the end of 

NOx reduction stage. 

Table E.9: PMRetained in the SCRF® at the end of the stage 1, stage 2 and NOx reduction 
stage for Test Points in configuration 2 

Test 
Points 

SCRF® 
inlet 

Temp. 

Configuration 2 - PMRetained, (grams) 
Target PM Loading - 2 g/L Target PM Loading - 4 g/L 

Stage 1 Stage 2 NOₓ Reduction 
Stage Stage 1 Stage 2 NOₓ Reduction 

Stage 
1 213 2.8 33.3 56.2 4.0 69.2 93.1 
3 301 2.6  27.91 24.6 3.8  61.51 59.8 
6 345 2.5 30.1 25.9 3.9 71.1 82.72 

8 443 2.8 32.5 10.1 4.3 75.7 80.82 

1 – Lower PMRetained since the stage 2 was run for shorter duration 
2 – Appears to be an error in the mass measurement 
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Table E.10: NH₃ stored (grams) in the SCRF® for various Test Points in configuration 2 
Test Point [-] 1 3 6 8 

SCRF® inlet Temp. [°C] 213 301 345 443 
NH₃ stored – PM Loading 2 g/L [g] 14.6 6.9 4.8 4.2 
NH₃ stored – PM Loading 4 g/L [g] 13.9 5.3 4.3 3.9 
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Appendix F. Gaseous Emissions by Stage 
This appendix describes the emission concentrations during stage 1 and stage 2 of NOₓ 

reduction tests with PM loading of 2 and 4 g/L in the SCRF® from Tables F.1 through 

F.4. The emission concentrations for NOₓ reduction at ANRs 0.8, 1.0 and 1.2 are 

discussed in Chapter 4 and the emission concentrations at ANR of 1.2 (repeat) are 

summarized in this section in Tables F.6. All the measurements presented in the Tables 

F.1 through F.5 were measured using a mass spectrometer. The positive and negative 

values of NO conversion efficiency shows reduction and increment in NO concentration 

across the components (DOC, SCRF®) respectively. 

Due to problems with the Mass Spectrometer emission analyzer, the NO₂ concentrations 

were not available correctly at the upstream DOC location for some the Test Points. After 

the repair of the MS, the correct concentrations upstream DOC were obtained for NOx 

reduction tests with PM loading of 4 g/L. The NOₓ is determined as the sum of NO and 

NO₂ concentrations at the respective locations. The effect of PM loading on NOₓ 

reduction efficiency for the four Tests points at ANR-1.2 (repeat) is shown in Figure F.1. 
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NOₓ Reduction Stage 

Table F.5: NO and NO₂ concentrations at inlet and outlet of the SCRF® for NOₓ 

reduction Test Points, at ANR – 0 

Test 
Point 

NO [ppm] NO₂ [ppm] 
SCRF®- 0 SCRF®- 2 SCRF®- 4 SCRF®- 0 SCRF®- 2 SCRF®- 4 
In Out In Out In Out In Out In Out In Out 

1 345 352 403 387 411 401 213 200 203 205 141 116 
3 158 160 161 198 198 249 121 116 131 88 124 75 
6 795 808 743 967 793 1151 674 688 644 426 588 231 
8 411 415 424 457 415 502 140 139 125 52 115 22 
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Appendix G. Pressure Drop Across the SCRF® - 
Configuration 2 (with and without PM loading) 

The pressure drop across the SCRF® for each Test Point, with and without PM loading in 

the SCRF® is discussed in this section. Figures G.1, G.2, G.3 and G.4 show that the 

pressure drop remains constant for the tests without PM loading (0 g/L) in the SCRF®. 

This happens because a CPF was placed upstream of the SCRF®. Hence, there is little 

PM deposition or oxidation phenomenon occurring in the SCRF®. 

Figures G.5 and G.6 show the pressure drop across the SCRF® with PM loading of 2 g/L 

in the SCRF®. PMRetained in the SCRF® at the end of the stages are indicated on the 

pressure drop plots. The Test Point 8 has high SCRF® inlet temperatures and therefore 

the SCRF® was loaded again in between NOₓ reduction test denoted by repeat loadings 

as shown in Figures H.6 for 2 g/L loading. Similar repeat loadings were done for the 

same Test Points for PM loading of 4 g/L as shown in Figures G.9 and G.10. 

Figure G.1: Pressure drop across the SCRF® for the Test Point 1, PM loading 0 g/L 
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Figure G.2: Pressure drop across the SCRF® for the Test Point 3, PM loading 0 g/L 

 

  

Figure G.3: Pressure drop across the SCRF® for the Test Point 6, PM loading 0 g/L 
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Figure G.4: Pressure drop across the SCRF® for the Test Point 8, PM loading 0 g/L 

PM Loading at 4 g/L 

Figure G.5: Pressure drop across the SCRF® for the Test Point 3, with PM loading 2 g/L 

24.6 g 27.9 g 2.6 g 
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Figure G.6: Pressure drop across the SCRF® for the Test Point 8, with PM loading 2 g/L 

PM Loading at 4 g/L 

 

Figure G.7: Pressure drop across the SCRF® for the Test Point 1, with PM loading 4 g/L 

 

10.1 g 2.8 g 32.5 g 

4.0 g 69.2 g 93.1 g 
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Figure G.8: Pressure drop across the SCRF® for the Test Point 3, with PM loading 4 g/L 

Figure G.9: Pressure drop across the SCRF® for the Test Point 6, with PM loading 4 g/L 

3.9 g 82.7 g 71.1 g 

59.8 g 3.8 g 61.5 g 
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Figure G.10: Pressure drop across the SCRF® for the Test Point 8, with PM loading 4 
g/L 

4.3 g 75.7 g 80.8 g 
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Appendix H. Temperature Distribution in the 
SCRF® - Configuration 2 (with and without PM 
loading) 

In this section, the gas temperature distribution in the radial and axial positions in the 

SCRF® during the NOₓ reduction stage, with and without PM loading is discussed. The 

study of the gas temperature distribution obtained from experimental data is critical since 

the experimental data will be used to calibrate the SCR-F model being developed at 

MTU. Figure H.1 shows the thermocouple arrangement in the SCRF® at various radial 

and axial locations. Twenty thermocouples are labeled from S1 to S20. The 

thermocouples S1 to S10 were inserted into the SCRF® through the inlet channels of the 

SCRF® and the thermocouples S11 to S20 were inserted through the outlet channels of 

the SCRF®. 

The gas temperatures in the SCRF® were monitored, recorded and studied using the K-

type thermocouples for the loading and NOₓ reduction stages, with or without PM 

loading in the SCRF®. The temperature distribution in the SCRF® during the loading 

stages performed in configuration 2 are discussed in reference [86]. 

Figure H.1: Thermocouple arrangement in the SCRF® (all dimensions in mm) 
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Figure H.2: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 1 without PM loading, at ANR 1.0 

Figure H.3: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 1 with 2 g/L PM loading, at ANR 1.0 
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Figure H.4: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 1 with 4 g/L PM loading, at ANR 1.0 

 

 

Figure H.5: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 3 without PM loading, at ANR 1.0 
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Figure H.6: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 3 with 2 g/L PM loading, at ANR 1.0 

Figure H.7: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 3 with 4 g/L PM loading, at ANR 1.0 
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Figure H.8: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 8 without PM loading, at ANR 1.0 

Figure H.9: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 8 with 2 g/L PM loading, at ANR 1.0 
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Figure H.10: Temperature distribution in the SCRF® during NOₓ reduction stage for Test 
Point 8 with 4 g/L PM loading at ANR 1.0 

The temperature factor calculated using Equation H.1 [13] for all Test Points in 

configuration 2, with and without PM loading in the SCRF® are shown in Figures H.11, 

H.12 and H.13.  

  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐶𝐶 = 𝑇𝑇𝑠𝑠−𝑇𝑇𝑟𝑟
𝑇𝑇𝑠𝑠−𝑇𝑇𝑚𝑚

           Eqn. H.1 

Where Tm is mean exhaust gas temperature, Ts is wall inner surface temperature, Tr 

temperature at a given radial location, y Axial location. 

The diameter ratio is the ratio of SCRF® diameter at a given measurement location to the 

maximum SCRF® diameter [13]. From Figures H.11, H.12 and H.13 it is observed that 

the temperature factor is almost constant up to the SCRF® diameter ratio of 0.7 

(indicating uniform temperature) and drops to 0 value (minimum temperature) at the 

SCRF® diameter ratio of 1.0 (outer radius of the filter). The maximum gradient in the 

temperature factor is observed at the SCRF® diameter ratio of 0.7 to 1.0, showing that 



165 

more than 90% of the radial temperature reduction is in the 30% of the filter section 

closest to the outer radius of the filter. 

Figure H.11: Temperature factor profile at the SCRF® inlet during NOₓ reduction stage 
without PM loading, at ANR 1.0 

Figure H.12: Temperature factor profile at the SCRF® inlet during NOₓ reduction stage 
with 2g/L PM loading, at ANR 1.0 
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Figure H.13: Temperature factor profile at the SCRF® inlet during NOₓ reduction stage 
with 4g/L PM loading, at ANR 1.0 
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	Abbreviations, Notations and Symbols
	Abstract
	The heavy-duty diesel (HDD) engines use the diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and urea injection based selective catalytic reduction (SCR) systems in sequential combination, to meet the US EPA 2010 PM and NOₓ emission...
	In this research, the NOₓ reduction and NH₃ storage performance of a Cu-zeolite SCR and Cu-zeolite SCR catalyst on a DPF (SCRF®) were experimentally investigated based on the engine experimental data at steady state conditions. The experimental setup ...
	The 1-D SCR model developed at MTU was calibrated to the engine experimental data obtained from the seven NOₓ reduction tests conducted with the production-2013-SCR. The performance of the 1-D SCR model was validated by comparing the simulation and ex...
	The experimental results for the production-2013-SCR indicate that the NOₓ reduction of 80 – 85% can be achieved for the inlet temperatures below 250 C and above 450 C and NOₓ reduction of 90 – 95% can be achieved for the inlet temperatures between 30...
	The effect of PM loading at 2 and 4 g/L on the NOₓ reduction performance of the SCRF® was negligible below 300  C. However, with PM loading in the SCRF®, the NOₓ reduction decreased by 3 – 5% when compared to the clean SCRF®, for inlet temperature >35...

	Chapter 1. Introduction
	Heavy duty diesel engines are used as the power plants in stationery applications, on-road and off-road vehicles. They can significantly reduce CO₂ emissions, but they produce mainly emissions of nitrogen oxides (NOₓ) and particulate matter (PM) that ...
	Diesel engine emissions are controlled with technologies such as high pressure fuel injection system, turbocharging, cooled exhaust gas recirculation (EGR) and multiple fuel injections using piezo injectors. Diesel engine manufacturers of heavy-duty o...
	NOTE: “*”    - Alternative standard: NMHC+NOₓ = 2.5 g/bhp.hr
	“**”  - Manufactures may choose California Optional Low NOₓ Standard
	1.1 Diesel Aftertreatment Systems
	A typical arrangement of components in the aftertreatment system for a heavy duty diesel engine is shown in the Figure 1.1.
	The first component is a DOC, which is a flow through catalyst that oxidizes the HC, CO and NO in the exhaust stream into H2O, CO₂ and NO₂. For diesel engines, the proportion of NO₂ in total engine-out NOₓ is typically 5 - 15%. The oxidation of NO to ...
	The CPF is a wall flow device, with every other channel open at the inlet but closed at the outlet end. The CPF filters the PM in the exhaust gas and oxidizes the PM accumulated in the filter either by passive oxidation or active regeneration. The NO₂...
	The SCR system is a flow through substrate which reduces the NOₓ in the exhaust gas into N2 and H2O using the urea solution injected in the decomposition tube. The urea solution with 32.5 % urea concentration by weight, also known as diesel exhaust fl...
	The SCR substrate is a honeycomb structure with a typical channel density of 400 cells per square inch (CPSI). The substrate is made from the ceramic material such as cordierite and titanium oxide. The catalytic components such as oxides of vanadium a...
	The AMOX is placed after the SCR substrates or on the back of a substrate to oxidize the NH₃ that slips out of the SCR due to various reasons including over injection of DEF, low exhaust temperatures and the effect of an aged SCR catalyst. NH₃ is oxid...

	1.2 Motivation
	The California optional emission regulations for 2015 require high NOₓ reduction (>95%) and low NH₃ slip (<10 ppm). Hence, it is important to understand the NOₓ reduction performance of the SCR catalyst and the effect of various inlet temperatures, sp...
	The diesel engine aftertreatment catalysts can be arranged either in DOC + CPF + SCR or DOC + SCR + CPF, although each configuration has advantages and disadvantages; the selection of configuration will depend on issues such as the need for rapid ligh...
	The SCR catalyst on a DPF is also known as a SDPF and SCR-in-DPF is an upcoming technology in the field of diesel aftertreatment systems which provides a cost-effective solution to reduce NOₓ and PM using a single aftertreatment device [11]. One way t...
	The SCR catalyst on a DPF used in this study is known as the SCRF®, and it was developed and supplied by Johnson Matthey and Corning. The SCRF® is a wall flow device (DPF) in which the substrate is coated with a Cu-zeolite based SCR catalyst. Thus, th...
	The total volume of the production aftertreatment components and the SCRF® is given in Table 1.2.  It can be observed that the volume of the production aftertreatment is almost 10 liters higher than the DOC + SCRF®. This indicates that an additional S...

	1.3 Goals and Objectives
	One of the goals of this research is to investigate with the experimental data the NOₓ reduction performance of the production-2013-SCR, calibrate the high fidelity MTU 1-D SCR model developed by Dr. Song [9] to simulate the SCR outlet gaseous concent...
	The production-2013-SCR from the Cummins ISB 2013 diesel engine aftertreatment system and the SCRF® will be used to conduct experiments as a part of the Diesel Engine Aftertreatment Consortium efforts at MTU. The experimental data will be collected by...
	The following objectives were developed to meet the research goals:

	1.4 Thesis Outline
	The thesis discusses the NOₓ reduction performance of the SCR and the SCRF® based on the experimental study conducted on the Cummins ISB 2013 engine with the production-2013-SCR and the SCRF®. This chapter presented the brief introduction and the mot...
	Chapter 2 provides a literature review of the published papers relating to the SCR and the SCR catalyst on the DPF systems. Information regarding the performance of the components, based on the experimental and modeling studies were collected from the...
	Chapter 3 discusses the test cell layout and the experimental procedures used for collecting the experimental data. The testing facilities and specific instruments are introduced. The various test procedures and the test matrices are discussed. The im...
	Chapter 4 presents the results of this study. The data analysis and implementation of nitrogen balance methodology to validate the data consistency are explained. The NOₓ reduction and NH₃ storage characteristics of the production-2013-SCR and the SCR...
	Chapter 5 summarizes the analyzed results from the experimental and the modeling studies and the conclusions of the research. Recommendations for future work are proposed.


	Chapter 2. Literature Review
	The urea-SCR technology has been the most effective solution to control NOₓ emissions from diesel exhaust gas. The SCR technology was first applied in thermal power plants in 1970s and was commercially adopted for diesel engines about a decade ago [2]...
	2.1 SCR Catalyst Formulations and Experimental Studies
	The major SCR catalysts that are used and studied include Cu-zeolite, Fe-zeolite, vanadia and cerium based composite oxides. The vanadia SCR (V-SCR) catalysts consist of V2O5 as the active component impregnated on TiO₂. Barium (Ba), cerium (Ce), zirco...
	The low melting of V2O5 leads to thermal deactivation of V-SCR and loss in NOₓ conversion above 550 C [9, 17]. The maximum NOₓ conversion efficiency for V-SCR after a 64 hours hydrothermal aging at 670 C was only about 20%, while for Fe and Cu-zeolite...
	The new generation SCR catalyst technologies also include Cu and Fe based zeolites. The characteristic of the Cu-zeolite and Fe-zeolite SCR from various references [4, 18, 19, 20, 21, 22, 23] are compared and summarized below.
	Studies were performed to combine the Cu-zeolite and Fe-zeolite systems to obtain better performance when compared to individual catalysts. The simulation results of a combined system were presented in reference [24]. They concluded that the dual-bric...
	Recently, many types of doped cerium oxide based catalysts were also studied, such as Ce-Ta [27], Ce-Ti [28], Ce-Mo [29] and Ce-Cu-Ti [30], which demonstrated NOₓ reduction similar to Cu-zeolite or Fe-zeolite catalysts as shown in Figure 2.1. These Ce...
	A series of manganese oxide based catalysts, supported on TiO₂ nanoparticles were also studied by references [33, 34, 35] since the manganese oxide based catalysts exhibit high NOₓ reduction in the low temperature region. Pappas et al. [33] conducted ...

	2.2 Urea Dosing and Mixing Strategies
	Due to the complexity of the urea-SCR system and stringent standards for NH₃ slipping out of the catalyst, the optimized urea dosing in the SCR becomes important. In today’s applications, urea dosing is controlled using control algorithms that work on...

	2.3 SCR Deactivation Effects
	The Cu-zeolite and Fe-zeolite based SCR catalysts have exhibited good NOₓ reduction performance and durability. However, the catalysts may become deactivated after being exposed to sulfur or hydrocarbon (HC) compounds, prolonged high temperature therm...
	2.3.1 Sulfur Poisoning
	Ultra-low sulfur diesel (ULSD with sulfur less than 15 ppm) has been used in the US since 2006. However, even with the use of ULSD, sulfur poisoning can negatively impact the overall SCR performance [41]. The impact of sulfur poisoning was more signif...

	2.3.2 SCR Thermal Aging
	Aftertreatment systems exposed to high temperatures (>600 C), may cause irreversible damages to the catalysts and deteriorate the NOₓ reduction performance of the SCR. Hence, it becomes important to understand the thermal aging and hydrothermal deacti...

	2.3.3 Hydrocarbon and Chemical Poisoning
	It is well known that zeolites can absorb and store a considerable amount of hydrocarbons (HCs). HCs may reach the SCR catalyst, block the active sites and degrade the performance of the SCR causing a HC poisoning effect. Some HCs may get polymerized ...
	Chemical poison from engine oil and bio-diesel such K, P, Na and Ca have been reported to have negative impact on the performance of the SCR catalysts. The phosphorous poisoning causes metaphosphates to replace hydroxyl groups on the active isolated i...


	2.4 Modeling the Kinetics of the SCR Reactions
	A numerical model aims at simulating the performance of the SCR including NOₓ reduction, NH₃ storage, NH₃ slip and SCR outlet temperature in a wide range of scenarios. Models includes SCR reaction kinetics, NH₃ adsorption and desorption kinetics and t...
	The global chemical reactions for the urea-SCR system include urea decomposition reactions and the SCR reactions that occur on the catalytic surface [9]. A numerical model simulating the spray interaction with the exhaust gas is presented in reference...
	NH-CO-NH₂(sol)   →   NH-CO-NH₂(droplets)                                                     Eqn. 2.1
	NH-CO-NH₂(aq)   →   NH₂-CO-NH₂ (molten) + xH2O (gas)                             Eqn. 2.2
	NH-CO-NH₂(molten)   →   NH₃ (gas) + HNCO (gas)                                          Eqn. 2.3
	HCNO (gas) +H₂O (gas)   →   NH₃ (gas) + CO₂(gas)                                         Eqn. 2.4
	The four steps correspond to the overall urea decomposition shown in reaction 2.5.
	NH-CO-NH₂ (aq) + H₂O (gas)   →   2NH₃ (gas) + CO₂ (gas)                           Eqn. 2.5
	However, due to complexity of the decomposition process, it was not included in the numerical simulations of the SCR chemistry. It was assumed that the urea was completely converted to NH₃ and the conversion occurred in the decomposition tube and in t...
	The global SCR reactions taking place on the surface phase consists of 12 reactions as shown in Table 2.1 (Table 4.1 from reference [9]). R1 and R2 represent the NH₃ adsorption and desorption on the surface of the catalyst on the 1st site. R3 and R4 r...
	The reaction rate constants for the twelve reactions are described by the Arrhenius equation shown in equation 2.6. The equations for all reactions are provided in Table 2.1.
	𝑘=𝐴,𝑒-−,𝐸𝑎-𝑅𝑇..                                                                                                   Eqn. 2.6
	Where A is the pre-exponential factor, Ea is the activation energy (J/mol), R is the universal gas constant (8.314 J/mol K) and T is the temperature (K).

	2.5 SCR Catalyst on the DPF
	The sequential arrangement of DOC, DPF and SCR has the following challenges:
	The problem can be potentially resolved by integrating the SCR and DPF functions into one single filter, by coating catalysts on or inside the walls of the DPF. The 2-way SCR/DPF reduces the volume and mass of the aftertreatment system when compared w...
	5.1 PM Oxidation
	Tronconi et al. [64] performed modeling and experimental based studies to evaluate the effect of NH₃ on passive oxidation characteristics of a Cu-zeolite SCR-on filter. A comparison of modeling results for passive oxidation in the presence and absence...
	Figure 2.4: Effect of NH₃ and NOₓ on the passive oxidation. GHSV=15 k/hr, H₂O=5%, O₂=8% when NH₃ is present, NH₃=500 ppm. a NOₓ=0 ppm, b NOₓ=500 ppm, NO₂/NOₓ=0 [64]
	Naseri et al. [65] compared the steady state performance of a Cu-zeolite SCR-on filter with the CPF, after loading both the filters up to 3 g/L. Passive oxidation experiments were conducted for 30 minutes at a DOC inlet temperature of 300 and 400  C, ...
	Czerwinski et al. [66] studied the passive oxidation performance of a SCR-on-filter with PM loading of 3 g/L. They observed that urea dosing significantly hinders passive oxidation. The passive oxidation efficiency decreased from 81% without urea inje...

	2.5.2 NH₃ Storage and Oxidation
	Tan et al. [70] characterized the NH₃ storage in a Cu-zeolite SCR-on-filter and the effects of PM loading and catalyst aging on the NH₃ storage through reactor experiments. The PM loading reduced the NH₃ storage over degreened SCR-on filter by 30%. Ho...
	Schrade et al. [71] performed temperature programmed desorption (TPD) experiments on Cu-zeolite SCR-on-filter, with and without PM loading in the filter. The experiments were conducted for the SCR-on-filter inlet temperature range of 150 – 250  C. The...
	The presence of PM has marginal influence on the NH₃ oxidation [64]. During the steady state condition, the loaded SCR-on-filter shows slower and reduced NOₓ reduction and higher NH₃ slip when compared to empty SCR-on-filter, due to use of some the NO...

	2.5.3 NOₓ Reduction
	Understanding the NOₓ reduction characteristics of the SCR-on-filter is another challenge. In a flow-through SCR, the catalyst is located on the wall while in case of SCR-on-filter, the catalyst is located inside the wall or on the wall of the inlet a...
	Tang et al. [69] conducted steady state and transient tests on a 9.3L 2011MY HDD engine, to investigate the NOₓ reduction performance of Cu-zeolite SCR-on-Filter. During steady state testing, with ANR of 1.0, a NOₓ conversion efficiency of 90% was ach...
	Johansen et al. [74] investigated the Cu-DPF and V-DPF based SCR-on-filter with material porosity of 73 and 65%, for reactor and engine based experiments respectively. Engine tests indicate that the V-DPF shows better NOₓ conversion than the Cu-DPF du...
	Raymond Conway et al. [75] conducted field trials on a 1998 MY Detroit Diesel S60 engine equipped with a Cu-zeolite SCR-on-filter of 26.1 L and under floor Cu-zeolite SCR of 21.8 L. They concluded that NOₓ reductions of 95% can be achieved with ANR cl...
	Rappe et al. [77] conducted experiments on a Cu-zeolite catalyst based SCR-on-filter with a 2003 VW Jetta TDI engine. They observed that the SCR-on-filter provides >90% NOₓ conversion without PM loading in the SCR-on-filter at ANR of 1.0, for inlet te...


	2.6 Modeling of SCR Catalyst on the DPF
	The simulation model is a useful and reliable tool to design and optimize the aftertreatment devices. It allows investigation of wide range of scenarios in a time and cost effective way. It also provides insight into the kinetics of the reactions and ...
	Yang et al. [63] considered that the deposition of PM on the surface deteriorates the mass transport of the species from gas stream to the catalyst surface, which in turn weakens the SCR reactions.   The model also assumes that the passive oxidation o...
	Strots et al. [79] and Schrade et al. [71] demonstrated that the PM reaction model and the SCR kinetics sub-model are sufficient to model the interactions between the SCR and PM oxidation reactions observed in SCR-on-filter substrates. The PM reaction...
	The next chapter describes the experimental setup, instrumentation and test matrix used for the experimental study of the NOx reduction and NH3 storage in the production-2013-SCR and the SCRF®, with and without PM loading in the SCRF®.


	Chapter 3. Experimental Setup, Instrumentation and Test Procedures
	This chapter explains the test cell setup for the ISB 2013 engine, the production aftertreatment system and the SCRF®, including the instrumentation and the test procedures for various aftertreatment configurations. The steady state engine experiments...
	The overall experimental program to study the Baseline System and the SCRF® is shown in Figure 3.1. The Baseline System is the production aftertreatment system supplied by Cummins and it consists of a DOC, a CPF and a SCR (production-2013-SCR).
	The PM oxidation, PM loading and PM filtration performance of the CPF and the NOₓ reduction and NH₃ storage performance of the production-2013-SCR were determined from the experiments conducted on the Baseline System. The experimental PM data obtained...
	3.1 Engine Test Cell Setup
	The test cell setup was done to measure, monitor and record the various parameters which determine the performance of the diesel aftertreatment components. A picture of the test cell is shown in Figure 3.2. The layout of the engine, Baseline System (p...
	Figure 3.2: A picture from the heavy duty diesel lab at MTU
	The exhaust flows through the DOC, where the HC, CO and NO are oxidized to H2O, CO₂ and NO₂. The next component in the production set-up is the CPF where PM is filtered and oxidized. Then the exhaust flows through the decomposition tube on which the D...
	The passive oxidation experiments with urea injection were performed with the SCRF® in configuration-1 as shown in Figure 3.1. One of the objectives of this configuration was to study the effect of NOₓ reduction in the SCRF® on the NO₂ assisted PM oxi...

	3.2 Engine and Dynamometer
	A Cummins 2013 ISB (280 hp) engine that conforms to the U.S EPA 2013 emission regulations was used in the research. The specifications of the engine are provided in Table 3.1. An engine control module governs the engine and sub-systems such as the com...
	The engine was coupled to an eddy current dynamometer which regulates the speed and the load on the engine. The specifications are provided in Table 3.2. The dynamometer was controlled by a Digalog Model 1022A controller and can be operated in the ‘co...
	Table 3.2: Dynamometer specifications

	3.3 Fuel Properties
	The ULSD that conforms to EPA regulations was used to conduct the experimental tests in this research. The fuel properties from reference [3] are reported in Table 3.3, since the same fuel was used for the experiments.
	Table 3.3: Specifications of the fuel used for engine testing from reference [3]
	1 These values were obtained from reference [81], since similar fuel was used

	3.4 Aftertreatment System
	The Cummins production aftertreatment system and the SCRF® from Johnson Matthey and Corning were used to conduct the experiments. The production aftertreatment system included a DOC, a CPF, and two SCR-A substrates. The specifications of the productio...
	To reduce the variation in the performance of the catalysts, a de-greening procedure was performed for all the aftertreatment components, prior to conduction of the reported tests. The test cycle recommended by Cummins was used to perform the de-green...
	Table 3.4: Specifications of the ISB 2013 production aftertreatment system and the SCRF®
	Table 3.5: Diesel engine aftertreatment de-greening procedure

	3.5 Test Cell Measurements and Data Acquisition
	3.5.1 Exhaust Mass Flow Rate
	The exhaust mass flow rate is considered as the sum of air and fuel flow rates. The air flow rate was calculated from the pressure drop (in intake air flow) measured using a pressure transducer across the Meriam Instruments Laminar Flow Element (LFE)....
	Table 3.6: Coriolis meter specifications

	3.5.2 Temperature
	The temperature sensors were installed at various locations in the exhaust system, and in the CPF and the SCRF® to record the radial and axial gas temperature distribution. K-type thermocouples manufactured by Omega were used to measure the temperatur...
	Table 3.7: Specifications of the thermocouples used in the aftertreatment system

	3.5.3 Pressure
	The pressure drop data across the LFE, DOC, CPF, SCR and SCRF® was continuously measured and recorded by several differential pressure transducers. The barometric pressure was measured by an absolute pressure transducer. The specifications of the tran...
	Note: FS indicates full scale reading

	3.5.4 Data Acquisition
	The data acquisition hardware consists of two National Instruments (NI) DAC chassis (NI cDAQ-9178). Multiple NI modules were plugged in to collect the engine speed, load, temperature and pressure data from the various locations. The details of data ac...
	A PCAN service tool was connected to the desktop computer via USB, to obtain the data from the engine via CAN communication (J1939 protocol). The proprietary software from Cummins Inc., Calterm, was used record and monitor the data from the engine ECM...

	3.5.5 Gaseous Emissions
	The gaseous emissions during the NOₓ reduction tests were measured using a V&F Airsense ion molecule reaction mass spectrometer (IMR-MS). The details of MS and calibration gases used to calibrate the MS are given in Table 3.10. The procedure to operat...
	The exhaust gases from different locations were sampled by the MS through the stainless steel sampling lines which were heated to 190  C. Heating the sampling lines avoided the condensation of water vapor in the exhaust gas and the adsorption of gaseo...
	Two UniNOₓ-sensors were installed on the production aftertreatment system, one each at the engine outlet and the SCR outlet, which measured NOₓ concentrations in the exhaust gas and the displayed the values through Calterm. The sensor consists of zirc...

	3.5.6 Particulate Matter (PM)
	The concentration of PM was measured by performing hot sampling (without dilution) from the engine exhaust flow using a dry gas meter and a manual sampling train (Made by Anderson Instruments Inc.). The PM was deposited by passing the sampled raw exha...

	3.5.7 Weighing Balance for SCRF®
	PM was deposited in the SCRF® during passive oxidation tests (configuration1) and NOₓ experimental tests (configuration 2) with PM loading of 2 and 4 g/L in the SCRF®. The PM loading was performed in stages, and to determine the PM retained in the SCR...


	3.6 Test Matrices and Test Procedures
	The primary objective of conducting the NOₓ reduction tests on the production-2013-SCR and the SCRF® is to acquire the data to calibrate the 1-D SCR model (developed at MTU) and the SCR-F model (being developed at MTU). The inlet and outlet SCR/SCRF® ...
	3.6.1 Test Matrix for Configuration 1
	The schematic of several stages in the test procedure of a passive oxidation (PO) test with urea dosing is shown in Figure 3.8. The test procedure was adopted by modifying the procedures developed by references [3, 82].
	The first two stages are loading stages where the SCRF® is loaded with PM to a target value of 2 ± 0.2 g/L. The loaded PM is oxidized in the PO stage, during which the urea dosing is performed. PO stage is followed by Stage 3 and Stage 4, which provid...
	The primary objective of this configuration was to determine the kinetics of NO₂ assisted passive oxidation (PO) of PM in the SCRF®, without and with urea dosing during the PO. The urea dosing was performed to study the effect of NOₓ reduction on pass...

	3.6.2 Test Matrix for NOₓ Experimental Tests (Production-2013-SCR and Configuration 2)
	Eight Test Points were selected that span the SCR/SCRF® inlet temperature from 200 to 450 C with space velocity and NOₓ ranging from 12.0 to 45.2 k/hr and 300 to 1700 ppm respectively. The Test Points were chosen based on the engine maps for the ISB 2...

	3.6.3 Baseline Condition and Aftertreatment Clean-out
	The engine was run at 1660 RPM and 475 N-m, hereafter referred as the “baseline condition”, to ensure repeatability of the instrumentation and the engine. To start a test, the engine was slowly ramped up from the idling condition to the baseline condi...

	3.6.4 NOₓ Experimental Tests: SCR
	The NOₓ reduction test procedure for the SCR was modified and adapted from reference [9]. It consists of three steps. In the first two steps, baseline condition and aftertreatment cleanout were performed to have a common start state for the experiment...

	3.6.5 NOₓ Experimental Tests: SCRF® - without PM Loading – Configuration 2
	The test procedure to perform the NOₓ reduction in the SCRF®, without PM loading, was similar to the test procedure for the production-2013-SCR. The emission data were collected at the baseline condition to check the repeatability and then the aftertr...
	The urea dosing cycle was modified to reduce the test duration. Since 0.3 and 0.5 ANR are not performed during the actual engine operation in a vehicle, they were removed to modify the urea dosing cycle. The modified urea dosing cycle helped to mainta...

	3.6.6 NOₓ Experimental Tests: SCRF® - with PM Loading (2 g/L) – Configuration 2
	During these tests, the SCRF® was loaded to 2.0 ± 0.2 g/L of PM in two stages, namely Stage 1 and Stage 2. The test procedure started with the baseline condition and the aftertreatment clean-out.
	Stage 1 Loading (S1): After the completion of the clean-out procedure, the engine speed and load were changed to 2400 RPM and 200 N-m at a fuel rail pressure reduced from 1500 to 1050 bar (30% reduction). This stage is called Stage 1 (S1) and the engi...
	Stage 2 Loading (S2): On completion of the SCRF® weighing procedure, aftertreatment components were assembled and the engine was warmed up using the exhaust bypass line (Figure 3.3). After the engine stabilized at the Loading condition, the exhaust fl...
	The Test Points 1 and 3 have low SCRF® inlet temperature (218 and 304 C), hence less PM would be oxidized during the urea dosing cycle than Test Points 6 and 8. There will be higher PM oxidation at Test Point 6 and Test Point 8 due to higher SCRF® inl...
	Figure 3.12: Schematic for effect of PM Loading on SCRF® NOₓ reduction
	Test Point - W/PM Stage: The pressure drop across the SCRF® for the Test Point 1 is plotted in Figure 3.13. The SCRF® was loaded with PM in Loading Stages S1 and S2. Then the test condition for NOₓ reduction is run which is labeled as Test Point 1-W/P...
	The pressure drop across the Test Point 8 is plotted in Figure 3.14. It can be observed that during Test Point 8-W/PM-I, Test Point 8-W/PM-II and Test Point 8-W/PM-III, the pressure drop curves across the SCRF® is steep, which is due to the high PM ox...

	3.6.7 NOₓ Experimental Tests: SCRF® - with PM Loading (4 g/L) – Configuration 2
	The engine operating conditions for the Loading condition were modified to accumulate the targeted PM loading of 4 g/L in the SCRF®. The exhaust parameters of the modified loading condition are given in the Table 3.16. The fuel rail pressure was reduc...
	The test procedure for NOₓ reduction tests in SCRF® with the PM loading of 4 g/L was similar to the tests with the PM loading of 2 g/L. The Test Points 1 and 3 had two PM loading stages (S1 and S2) followed by the urea dosing cycle. The Test Points 6 ...

	3.6.8 Calculation of PM Mass Retained and Nitrogen Balance
	The following terms and equations are used in the analysis of the data. The terms used in the equations are described below with a brief description.
	PM Mass Retained
	The SCRF® substrate was weighed three times during the NOx experimental tests with PM loading of 2 and 4 g/L in configuration 2 as shown in Figures 3.13 and 3.14. The SCRF® mass measurements include the mass of the substrate and the PM retained in the...
	𝐼𝑛𝑙𝑒𝑡 𝑁𝐻₃=,𝐷𝐸𝐹 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒∗,𝜌-𝐷𝐸𝐹.∗0.325∗2∗,𝑀𝑊-𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝐺𝑎𝑠.∗1.02-𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒∗,𝑀𝑊-𝑈𝑟𝑒𝑎..              Eqn. 3.8
	Where, DEF flow rate is obtained from Calterm (ml/s), ,𝜌-𝐷𝐸𝐹. is density of DEF taken to be 1080 (kg/m3) under room condition. The urea concentration of the DEF is 32.5% by weight. Molecular weight of the urea molecule is 60 (g/gmol) and molecular...
	,𝑁𝑂-𝑥. 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ,%.=, 𝐼𝑛𝑙𝑒𝑡 ,𝑁𝑂-𝑥.− 𝑂𝑢𝑡𝑙𝑒𝑡 ,𝑁𝑂-𝑥.-𝐼𝑛𝑙𝑒𝑡 ,𝑁𝑂-𝑥.. ∗100                      Eqn.3.10
	Nitrogen Balance was performed using the NO, NO2 and NH3 concentrations (ppm) at the inlet and outlet of the SCRF® to validate the data consistency. The nitrogen balance of 100 ± 10 % was considered to be a good agreement since the concentration of N2...
	𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (%)={1−, 𝐼𝑛𝑙𝑒𝑡 𝑁𝐻₃−,,𝐼𝑛𝑙𝑒𝑡 𝑁𝑂ₓ− 𝑂𝑢𝑡𝑙𝑒𝑡 𝑁𝑂ₓ.+𝑁𝐻₃ 𝑆𝑙𝑖𝑝.-𝐼𝑛𝑙𝑒𝑡 𝑁𝐻₃.}*100  Eqn. 3.11
	Where all the concentrations are in ppm. The inlet and outlet NOx were measured using the MS and the NH3 slip out of the SCRF® was measured using the sensor.
	The values for various parameters such as the emission concentrations, PM concentrations, temperatures and exhaust flow rates recorded during the experiments were analyzed and the results will be discussed in detail in Chapter 4.



	SCRF®
	Configuration 3
	DOC+SCRF®+SCR
	NOₓ Reduction with PM and Downstream SCR
	Chapter 4. Results and Discussion
	This chapter discusses the data and the results of the NOₓ reduction tests conducted with the production-2013-SCR and the SCRF®. The NOₓ reduction and NH₃ storage performance of the production-2013-SCR was evaluated at seven Test Points (Table 3.14) a...
	The NOₓ reduction performance of the SCRF® was evaluated with 2 and 4 g/L PM and without PM at four different Test Points in configuration 2 (total twelve tests) and with PM at five different Test Points (Table 3.13) in configuration 1 (total seven te...
	4.1 NOₓ Reduction in Production-2013-SCR (Baseline)
	The engine operating conditions and the important exhaust parameters during the seven NOₓ reduction tests for the production-2013-SCR1 are given in Table 4.1. The Test Points are arranged in the increasing order of SCR inlet temperature. It is seen th...
	The analysis of NO and NO₂ values across the production-2013-SCR without urea injection are given in Table 4.2. The delta NO and NO₂ values were calculated by subtracting the SCR outlet from the SCR inlet values as indicated in equations 4.1 and 4.2. ...
	Delta NO=SCR Inlet NO−SCR Oulet NO                                Eqn. 4.1
	Delta NO₂=SCR Inlet NO₂−SCR Outlet NO₂                         Eqn. 4.2
	The NO, NO₂ and NH₃ concentrations and the NOₓ reduction performance of the production-2013-SCR at an ANR of 1.0 are given in Table 4.3. It is observed that the NOₓ conversion efficiency increases with increase in the SCR inlet temperature until 350 C...
	Table 4.3: NOₓ reduction performance of the production-2013-SCR at target ANR of 1.0
	Similar trends were observed at ANR of 1.2 as given in Table 4.4. The NOₓ conversion efficiency is almost 100% in the SCR inlet temperature range of 300 – 350  C at ANR of 1.2. The NOₓ conversion efficiency for seven Test Points with the production-20...
	The NH₃ slip for the seven Test Points with the production-2013-SCR, at ANR 1.0 and 1.2 are shown in Figure 4.2. The NH₃ slip for the various Test Points is less than 50 ppm at ANR 1.0, except of the Test Point 8, which is high space velocity and high...
	Figure 4.2: NH₃ slip in production-2013-SCR for steady state conditions at target ANR 1.0 and 1.2

	4.2 1-D SCR Model Calibration Results
	The experimental data obtained from the seven NOx reduction tests with the production-2013-SCR were used to calibrate the 1-D SCR model developed by reference [9] and Dr. Parker at Michigan Tech. The 1-D SCR model used in this study is discussed in se...
	The comparison of the model parameters required to calibrate the model to engine experimental data for the production-2013-SCR and production-2010-SCR [9] is shown in Table 4.5. It can be seen that the storage capacity Ω1 is comparable for the product...
	The results from calibrated model were compared with the experimental data. The comparison of NO and NO₂ concentrations at SCR outlet is given in the Table 4.6 and 4.7 respectively. The model has been calibrated to within ± 20 ppm for both the gases. ...
	1 – For Test Point 1, model was calibrated using calibration parameters specific to Test Point 1 (as shown in Table 4.5)
	2 - The value highlighted appears to be an error in measurement of NO concentrations
	1 – For Test Point 1, model was calibrated using calibration parameters specific to Test Point 1 (as shown in Table 4.5)
	2 - The value highlighted appears to be an error in measurement of NO2 concentrations
	Comparison of the simulation results and experimental measurements for NO, NO2 and NH3 concentrations at the SCR outlet are shown in Figure 4.3, 4.4 and 4.5 respectively. From Figures 4.3 and 4.4 it is observed that the difference between the simulati...
	Comparison the simulation of SCR outlet concentrations of NO, NO₂ and NH₃ data to the experimental data for the Test Point 4 (SCR inlet temperature of 327 C, SV of 26.7 k/hr) and Test Point 1 (SCR inlet temperature of 218 C, SV of 12.0 k/hr) are given...
	The top plot of the Figure 4.6 shows the SCR inlet concentrations of NO, NO₂ and NH₃. The bottom three plots of the Figure 4.6 show the SCR outlet concentrations of NO, NO₂, NOₓ and NH₃ compared between the model simulation and the experimental result...
	It can be observed that for Test Point 4, the maximum simulation error under the steady state urea injection condition is less than 10 ppm for NO and NO₂ and less than 15 ppm for NH₃. The simulation results follow the overall trend of the experimental...
	However, from Figure 4.7 it can be observed that with the unique set of model parameters, NO₂ values simulated by the model are significantly lower than the NO₂ values measured during the experiment. Hence, for Test Point 1, a different set of paramet...

	4.3 SCRF® Experimental Data: Configuration 1 (Passive Oxidation with Urea Injection)
	This section discusses the results and analysis of the experimental data obtained from seven passive oxidation tests conducted with urea injection as a part of the configuration 1. The purpose of the passive oxidation tests was to study the effect of ...
	The NO, NO₂ and NOₓ concentrations at the inlet and outlet of the SCRF® and the NOₓ conversion efficiency for the seven passive oxidation tests with urea dosing are given in Table 4.9. In Table 4.9, PMStart is the PM deposited in the SCRF® at the begi...

	4.4 SCRF® Experimental Data: Configuration 2 (NOₓ Reduction with 0, 2 and 4 g/L PM Loading)
	The purpose of these tests was to determine the NOₓ reduction performance, NH₃ slip and NH₃ storage for the SCRF® with and without PM in the SCRF® as a function of ANR. The engine conditions and the exhaust parameters at the inlet of the SCRF®, for th...
	4.4.1 Experimental Data
	The NO, NO₂ and NH₃ slip concentrations downstream of the SCRF® and NOₓ conversion efficiency of the SCRF® relative to the ANR for various Test Points, with and without PM loading in the SCRF® are shown in Figures 4.10, 4.11, 4.12 and 4.13. From Figur...
	The NH₃ slip <10 ppm was observed up to ANR 1.0, with and without PM loading in the SCRF®. However, the NH₃ slip increased to 100 -150 ppm at ANR 1.2 due to excess ammonia availability in the SCRF®. A reduction in the NOₓ conversion efficiency of the ...
	The trends for NO and NO2 concentrations downstream of the SCRF® for Test point 3 with and without PM loading were similar to Test Point 1. The NO and NO2 concentrations decreased to <20 ppm with increase in ANR from 0.8 to 1.0. The NOx conversion eff...
	Figures 4.12 and 4.13 show the NO, NO₂ and NH₃ slip concentrations downstream of the SCRF® and NOₓ conversion efficiency of the SCRF® relative to the ANR for Test Points 6 and 8 respectively, with and without PM loading in the SCRF®. From Figure 4.12 ...

	4.4.2 Analysis of Data
	The consumption of NO₂, through NO₂ assisted oxidation of PM, changes the NO₂/NOₓ ratio across the catalyst. The NO₂/NOₓ ratios at the inlet and outlet of the SCRF® without urea injection (0 ANR) are given in Table 4.16. Since the ANR is 0, NO₂ consum...
	Table 4.17 and 4.18 provide the NO, NO₂ and NH₃ concentrations downstream of the SCRF® and the NOₓ conversion efficiency of the SCRF® at ANR of 0.8. It can be observed that the NOₓ conversion efficiency improved by 2 – 4% for Test Point 1 and 3, with ...
	Table 4.19 and 4.20 provide the NO, NO₂ and NH₃ concentrations downstream of the SCRF® and the NOₓ conversion efficiency of the SCRF® at ANR of 1.0. Since the SCRF® inlet NO₂/NOₓ ratios were lower than 0.5, most of NO₂ at the inlet of the SCRF® is red...
	Tables 4.21 and 4.22 provide the NO, NO₂ and NH₃ concentrations downstream of the SCRF® and the NOₓ conversion efficiency of the SCRF® at ANR of 1.2. Table 4.22 shows that most of the NOₓ is reduced in the SCRF® at ANR of 1.2 and the NOₓ conversion ef...
	Pressure Drop across the SCRF®
	To understand the performance of the SCRF®, the pressure drop across the SCRF® for various tests was investigated. The pressure drop across the SCRF® and PMRetained at the end of the stages for Test Point 1 and 6 are shown in Figures 4.21 and 4.22 res...
	SCRF® Temperature Distribution
	In this section, the gas temperature distribution in the SCRF® for the NOₓ experimental tests, with and without PM loading is discussed. The study of the gas temperature distribution obtained from experimental data is critical since the experimental d...
	The temperature distribution in the SCRF® for Test Point 6 with and without PM loading is shown in Figures 4.23, 4.24, 4.25 and 4.26. Figure 4.23 shows the temperature distribution for Test Point 6, without PM loading in the SCRF®, without urea inject...
	To study the temperature distribution, further analysis was performed by comparing the SCRF® inlet temperature and temperature distribution in the axial direction at the SCRF® radius 0 mm (S1, S6, S11 and S16 from Figure 3.7) relative to ANR as shown ...
	Figure 4.26 shows temperature distribution for Test Point 6, with 2 g/L PM loading, with urea injection at ANR 1.0 at 13.13 hours (8 minutes after the start of ANR 1.0). A drop in temperature is observed in the axial direction between 0 – 75 mm which ...
	Figure 4.27 shows temperature distribution for Test Point 6, with 4 g/L PM loading, with urea injection at ANR 1.0 at 15.92 hours (6 minutes after the start of ANR 1.0). A drop in temperature is observed in the axial direction between 0 – 50 mm which ...


	4.5 Comparison of NOₓ Reduction: SCRF® to Production-2013-SCR
	In this section, the NOₓ reduction performance and the NH slip out of the production-2013-SCR/SCRF®, obtained from the configurations 1 and 2 is compared to the NOₓ reduction performance of the production-2013-SCR (Baseline).
	4.5.1 NOₓ Reduction Performance
	The NOₓ conversion efficiency of the production-2013-SCR and the SCRF® are shown in the Figure 4.27. It can be observed that the production-2013-SCR could achieve NOₓ conversion efficiency of ≤ 85 % in comparison to the ≥ 90 % for the SCRF®, at inlet ...
	The combination of NOₓ conversion efficiency, ANR and NH₃ slip out of the production-2013-SCR and the SCRF® during the NOₓ reduction and passive oxidation tests with urea injection (baseline, configuration 2 and configuration 1), at ANR 1.0, are shown...

	4.5.2 NH₃ Storage
	The NH₃ storage at various inlet temperatures for the production-SCR and the SCRF® (with and without PM loading) were estimated using the NOₓ concentrations at the inlet and the outlet of the production-2013-SCR/SCRF® and NH₃ concentration at the inle...
	The NOₓ converted and the NH₃ slip out of the SCRF® were subtracted from the inlet NH₃ to estimate the NH₃ consumed in the production-2013-SCR/SCRF® as described in equation 4.6. The NH₃ consumed values were subtracted from the inlet NH₃ to obtain the...
	NH₃ Consumed=Inlet NH₃−,Inlet NOₓ−Outlet NOₓ.−NH₃ Slip                Eqn.   4.6
	Where, NH₃ consumed, inlet NH₃, inlet NOₓ, outlet NOₓ and NH₃ slip are in ppm.
	NH₃ Storage=,,t1-t2-Yi.∗ exhaust flow rate∗dt-molecular wt. of air∗total volume of the SCR/SCRF®.                                      Eqn.  4.7
	Where NH₃ storage is in (gmol/m3 of substrate), Yi is the NH₃ concentration stored on the catalyst (ppm) (Inlet NH₃ – NH₃ consumed), t1 is the start of urea injection (minutes), t2 is the time at which NH₃ stored curve stabilizes (minutes), as shown i...
	Equation 3.8, for estimation of inlet NH₃ assumes that all the DEF injected into the system is converted to NH₃. However, the DEF to NH₃ conversion reactions are dependent on temperature. The results from reference [85] as shown in Figure 4.30 were us...
	From Figure 4.31 it can be observed that the SCR-2010, the production-2013-SCR and the SCRF® (without PM) have approximately same ammonia storage capability at lower and higher temperatures. However, the SCRF® (without PM) demonstrated lower ammonia s...


	4.6 Calculation of ANR’s for Configuration 3: SCRF® + SCR

	Chapter 5. Summary and Conclusions
	One of the goals of this research was to investigate the effect of temperature and space velocity on the NOₓ reduction performance of the SCRF®, with and without PM loading in the SCRF® and compare it with the performance of the production-2013-SCR. A...
	5.1 Summary
	The test procedures were developed and the test conditions were determined to evaluate the performance of the production-2013-SCR and the SCRF®. Seven NOₓ reduction tests were completed to evaluate the NOₓ reduction and NH₃ slip performance for produc...
	NOₓ Reduction in Production-2013-SCR and 1-D SCR Model Calibration
	The NOₓ reduction and NH₃ slip characteristics of the Cu-zeolite based production-2013-SCR were determined at steady state engine operating conditions. During the seven different test conditions, SCR inlet temperatures varied from 208 to 447  C, space...
	The 1-D SCR model was calibrated to the engine experimental data obtained from the production-2013-SCR. A unique set of model calibration parameters were determined for Test Points with SCR inlet temperatures in the range of 250 to 450 C. However, a d...
	NOₓ Reduction in SCRF® – with and without PM – Configurations 1 and 2
	Seven passive oxidation tests with urea injection were conducted in configuration 1 to study the effect of NOₓ reduction reactions on the NO₂ assisted PM oxidation. The SCRF® was loaded to 1.8 ± 0.4 g/L before start of the passive oxidation stage. The...
	The Test Points 1, 3, 6 and 8 from Table 3.15 were run in configuration 2, to collect the experimental data to determine the NOₓ reduction and NH₃ slip performance of the SCRF®, with and without PM loading in the SCRF® (total twelve tests). The four T...
	NOₓ reduction, NH₃ slip and NH₃ storage data for the SCRF®, obtained from configurations 1 and 2 were compared to the baseline data for the production-2013-SCR.

	5.2 Conclusions
	The experimental data obtained from the tests conducted with the production-2013-SCR and the SCRF® (configurations 1 and 2, with and without PM loading) were analyzed to determine the NOₓ conversion efficiency, NH₃ storage and NH₃ slip characteristics...
	NOₓ Reduction, NH₃ storage and 1-D SCR Model Calibration – Production-2013-SCR
	and <70 ppm for inlet temperatures below 250 C and above 450 C respectively.
	NOₓ Reduction – SCRF®: Configuration 1
	NOₓ Reduction and NH₃ storage – SCRF®: Configuration 2


	References
	Appendix A. MS Start up, Shut down and Calibration Procedures
	The MS is ON and in STANDBY mode during the daily operation. In case the MS is turned OFF for the repair or any other purpose for more than 4 hours, the MS is to be switched ON at least 5 hours before its use for emission measurement. During the warm-...
	In this study, the MS was used to measure the concentration of NO, NO₂, NH₃ and O₂ in the exhaust flow. The MS needs to be calibrated before each test, using the gas bottles for each species of known concentration. The N2 gas with purity of 99.999% wa...
	To perform the manual calibration, plug the calibration gas bottle of the species to be calibrated into the quick connect valve on the front panel of the MS. Unplug the other gases and release the pressure in the line, to prevent their interference du...
	To turn OFF the analyzer, select “turn off analyzer” from tools menu of the V&F software. This prevents loss of data and ensures proper shut down of the analyzer. Then turn OFF the power switch located on the rear panel of the analyzer. Then close the...

	Appendix B. Calibration of NH₃ Sensor using the MS
	NH₃ slip from the SCR/SCRF® was measured using the MS and the NH₃ sensor as described in the Chapter 3. It was observed from the experimental results that the NH₃ slip measured by the MS were lower than the values measured by the NH₃ sensor. In order ...
	To determine the empirical relation between the NH₃ sensor and the IMR-MS, a test was conducted. The test condition and results of the NH₃ sensor calibration are given in Table B.1. The engine was stabilized at the baseline condition as explained in t...

	Appendix C. Calibration of the DEF Injector
	The ANR and the NH₃ concentration at the SCR/SCRF® inlet is estimated from the DEF injection rate, exhaust flow rate and urea properties. Hence, it is important to accurately control the DEF injection rate. The DEF injection rate is controlled by ente...

	Appendix D. Production-2013-SCR Experimental Results, 1-D SCR Model Calibration Procedure and Simulation Results
	The NO, NO2 and NH3 concentrations and the NOx reduction performance of the production-2013-SCR at ANR of 0.3, 0.5, 0.8, 1.0 (repeat) and 0.8 (repeat) are given in Tables D.1 through D.5.
	The experimental data acquired from the seven NOₓ reduction Test Points that cover a range of SCR inlet temperatures, space velocities and inlet NOₓ concentrations were used to prepare the time varying inputs and calibrate the model. The time varying ...
	The primary objective of the calibration procedure was to determine a single set of parameters that could simulate the NOₓ reduction performance of the production-2013-SCR for the seven Test Points. The SCR model parameters used for calibrating the mo...
	D.1
	Where Costi is the cost function for gas species i (i =NO, NO₂, NH₃). to and tend are the start and stop time in seconds for the simulation. Ci,Sim and Ci,Exp are the model simulated and experimentally measured gas concentrations for the gas species i...
	Manual Optimization
	The manual optimization procedure illustrated in Figure D.1 is explained in the following steps:
	The activation energy for the twelve reactions in the MY2013 production-2013-SCR were assumed to be same as that of MY2010 production. The pre-exponential factor for R1, R2, R7 and R9 described in Chapter 2, which are labelled as “A_ads1”, “A_des1”, ”...

	Appendix E. Engine, Exhaust conditions and PM Mass Balance for each Stage – Configuration 2 (with PM loading)
	The engine conditions, exhaust conditions at the inlet of the SCRF® and PM mass balance across the SCRF® for stages 1 and 2 and NOₓ reduction stages are presented in this appendix. The engine speed, load, the engine out and SCRF® inlet (temperature, N...
	Stage 1 and Stage 2 for PM Loading 2 g/L
	It is seen from Table E.1 and E.2 that the species concentration (NO, NO₂ and NOₓ) and engine out PM are consistent for all Test Points. The speed and load values were kept at constant values of 2400 RPM and 200 Nm and have very small deviation. The a...
	The parameters such as PM concentration into SCRF®, NO₂/PM ratio, temperature into SCRF® and loading duration which affected the PM deposition and oxidation in the SCRF® are given in Table E.3 and E.4. The Test Point 3 (2401 rpm engine speed, 203 Nm l...
	PM oxidized (percentage) in stage 1 as shown in Table E.3 has the similar trend to that of PM oxidized (percentage) in stage 2 as shown in Table E.4. This is because mass loaded in stage 1 is estimated assuming the same rate of loading as in stage 2. ...
	1  –  Stage 2 for the Test Point 3 was run for a shorter duration (300 minutes) when compared to the other Test Points (330 minutes)
	Stage 1 and Stage 2 at 4 g/L Loading
	Table E.5 and E.6 give the consistent values for engine speed, load, SCRF® inlet species concentration and engine out PM concentration for all Test Points. The average engine-out particulate matter is 18.7 mg/scm and 19.4 mg/scm for stage 1 and stage ...
	Table E.8 shows that the PM oxidized (percentage) for stage 2 is consistent for all Test Points with mean oxidation 24 %. The PMRetained in the SCRF® is 4 g and 69.4 g for stage 1 and stage 2 respectively. The filtration efficiency of 99.1% is obtaine...
	2 – Stage 2 for the Test Point 3 was run for a shorter duration (450 minutes) when compared to the other Test Points (510 minutes)
	3 – The value is taken same as that for the Test Point 6 since the downstream SCRF® PM sample was damaged.
	The PMRetained in the SCRF® at the end of the stage 1, stage 2 and NOx reduction stage are given in Table E.9. The PMRetained are calculated using the equations described in section 3.6.7 of this thesis. From Table E.9 it is observed that for the NOx ...
	1 – Lower PMRetained since the stage 2 was run for shorter duration
	2 – Appears to be an error in the mass measurement

	Appendix F. Gaseous Emissions by Stage
	This appendix describes the emission concentrations during stage 1 and stage 2 of NOₓ reduction tests with PM loading of 2 and 4 g/L in the SCRF® from Tables F.1 through F.4. The emission concentrations for NOₓ reduction at ANRs 0.8, 1.0 and 1.2 are d...
	Due to problems with the Mass Spectrometer emission analyzer, the NO₂ concentrations were not available correctly at the upstream DOC location for some the Test Points. After the repair of the MS, the correct concentrations upstream DOC were obtained ...
	Stage 1 and Stage 2 Loading at 2 g/L
	1 – The concentration of NO at USCRF® and DSCRF® are flagged because of calibration issues with the mass spectrometer during Test Point 3.
	2 _ Appears to be an error in the NO2 concentrations due to calibration issues in the MS
	2 _ Appears to be an error in the NO2 concentrations due to calibration issues in the MS
	2 _ Appears to be an error in the NO2 concentrations due to calibration issues in the MS
	2 _ Appears to be an error in the NO2 concentrations due to calibration issues in the MS
	NOₓ Reduction Stage

	Appendix G. Pressure Drop Across the SCRF® - Configuration 2 (with and without PM loading)
	The pressure drop across the SCRF® for each Test Point, with and without PM loading in the SCRF® is discussed in this section. Figures G.1, G.2, G.3 and G.4 show that the pressure drop remains constant for the tests without PM loading (0 g/L) in the S...
	Figures G.5 and G.6 show the pressure drop across the SCRF® with PM loading of 2 g/L in the SCRF®. PMRetained in the SCRF® at the end of the stages are indicated on the pressure drop plots. The Test Point 8 has high SCRF® inlet temperatures and theref...
	PM Loading at 4 g/L
	PM Loading at 4 g/L

	Appendix H. Temperature Distribution in the SCRF® - Configuration 2 (with and without PM loading)
	In this section, the gas temperature distribution in the radial and axial positions in the SCRF® during the NOₓ reduction stage, with and without PM loading is discussed. The study of the gas temperature distribution obtained from experimental data is...
	The gas temperatures in the SCRF® were monitored, recorded and studied using the K-type thermocouples for the loading and NOₓ reduction stages, with or without PM loading in the SCRF®. The temperature distribution in the SCRF® during the loading stage...
	The temperature factor calculated using Equation H.1 [13] for all Test Points in configuration 2, with and without PM loading in the SCRF® are shown in Figures H.11, H.12 and H.13.
	𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑢𝑡𝑟𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐶=,,𝑇-𝑠.−,𝑇-𝑟.-,𝑇-𝑠.−,𝑇-𝑚..                                     Eqn. H.1
	The diameter ratio is the ratio of SCRF® diameter at a given measurement location to the maximum SCRF® diameter [13]. From Figures H.11, H.12 and H.13 it is observed that the temperature factor is almost constant up to the SCRF® diameter ratio of 0.7 ...
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