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Chapter 2, “A Generalization of the Hamilton-Waterloo Problem on Complete
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result in this work is due to the mutual cooperation of both authors, and they deserve
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Alspach, D.L. Kreher, and A. Pastine, and submitted for publication to Australasian

Journal of Combinatorics and is currently in review. All results in this work are due
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to the mutual cooperation of the three authors, and they deserve equal credit for

them. The resulting paper was mainly written by B. Alspach, and reviewed by D.L.

Kreher and A. Pastine.

Chapters 1, 2, and 3 are designed to be read independently. To achieve this some

definitions and results occur in more than one chapter.

The Introduction to this dissertation was written using excerpts and ideas from each

of the aforementioned papers.

Figure 0.3 is licensed under a Creative Commons Attribution-Noncommercial-Share

Alike License.
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Abstract

Gerhard Ringel was an Austrian Mathematician, and is regarded as one of the most

influential graph theorists of the twentieth century. This work deals with two problems

that arose from Ringel’s research: the Hamilton-Waterloo Problem, and the problem

of R-Sequences.

The Hamilton-Waterloo Problem (HWP) in the case of Cm-factors and Cn-factors

asks whether Kv, where v is odd (or Kv − F , where F is a 1-factor and v is even),

can be decomposed into r copies of a 2-factor made entirely of m-cycles and s copies

of a 2-factor made entirely of n-cycles. Chapter 1 gives some general constructions

for such decompositions and apply them to the case where m = 3 and n = 3x.

This problem is settled for odd v, except for a finite number of x values. When v is

even, significant progress is made on the problem, although open cases are left. In

particular, the difficult case of v even and s = 1 is left open for many situations.

Chapter 2 generalizes the Hamilton-Waterloo Problem to complete equipartite graphs

K(n:m) and shows that K(xyzw:m) can be decomposed into s copies of a 2-factor con-

sisting of cycles of length xzm; and r copies of a 2-factor consisting of cycles of length

yzm, whenever m is odd, s, r 6= 1, gcd(x, z) = gcd(y, z) = 1 and xyz 6= 0 (mod 4).

Some more general constructions are given for the case when the cycles in a given

xv



two factor may have different lengths. These constructions are used to find solutions

to the Hamilton-Waterloo problem for complete graphs.

Chapter 3 completes the proof of the Friedlander, Gordon and Miller Conjecture

that every finite abelian group whose Sylow 2-subgroup either is trivial or both non-

trivial and non-cyclic is R-sequenceable. This settles a question of Ringel for abelian

groups.

xvi



Introduction

Gerhard Ringel was born in Kollnbrunn, Austria, in 1919. He received his PhD in

1951 at the Friedrich-Wilhelms Universität. He became a professor at Freie Univer-

sität Berlin in 1958, and from 1967 to 1970 he held the position of chairman of the

mathematical institute. In 1970 he became a full professor at University of Califor-

nia, Santa Cruz, where he was chairman of the mathematics department from 1972

to 1984. He passed in Santa Cruz in June 24th 2008.

During his many years working in the field he collected many honors and awards, in-

cluding two honorary doctorates. The Universität Karlsruhe awarded him a honorary

doctorate in political science in 1983. In 1994 he received an honorary doctorate in

mathematics from Freie Universität in Berlin.

Ringel is in the list of people that made graph theory an interesting and influential

field of study. His conjectures are known by most graph theorists. Among them, we

have the Ringel’s conjecture, the Ringel-Kotzig conjecture, the Oberwolfach problem
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and the Earth Moon problem. Asides from his conjectures, Ringel’s most popular

result is the Ringel-Youngs Theorem (also known as Heawood’s Conjecture). This

is one of the most important results in Graph Theory, where they proved that four

colors are enough to create a political map on any surface, with no two adjacent

countries sharing their color.

This manuscript is concerned with two problems first introduced by Ringel. Our focus

will be on the Hamilton-Waterloo Problem, and R-sequenceability. The Hamilton-

Waterloo Problem is the natural continuation of the Oberwolfach problem, first posed

by Ringel in 1967 at a conference in Oberwolfach. The problem of R-sequenceability

was posed by Ringel in 1974, [36]. We now introduce the concepts necessary to

understand what these problems ask, and what our contributions are.

Definition 0.0.1 A graph is an ordered pair Γ = (V,E), where V is a set of elements

called vertices, and E is a family of 2-element subsets of V called edges.

If {x, y} ∈ E, then we say that x and y are adjacent. Sometimes the set of vertices

and the family of edges of a graph Γ are denoted V (Γ), and E(Γ), respectively. The

degree of a vertex is the number of vertices that are adjacent to it.
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Example 1: As an example we can take

V =
{
a, b, c, d, e, f, g, h

}
and

E =
{
{a, b}, {a, c}, {a, d}, {b, d}, {f, g}, {f, h}, {g, h

}
.

The graph Γ = (V,E) has as vertices the elements a, b, c, d, e, f, g, h, where the

vertex a is adjacent to the vertices b, c, and d; the vertex b is adjacent to the

vertices a and d, and so on. The degrees of the vertices are

x a b c d e f g h

deg(x) 3 2 1 2 0 2 1 1

There are many ways to represent graphs. The most common way is by drawing

a picture where each vertex is represented by a point or a circle, and each edge

is represented by a line connecting the points (or circles) of its respective vertices.

Figure 0.1 shows this kind of representation for the graph from Example 1.

a b e

d c f

g h

Figure 0.1: Representation of the graph in Example 1
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Related to graphs are directed graphs, where instead of having a family of subsets for

the edges E, we have a set of ordered pairs A. Hence if (x, y) ∈ A we say that there

is an arc from x to y. We sometimes write A(Γ) to denote the set of arcs of Γ.

Example 2: As an example we can take

V = {a, b, c, d, e, f, g, h}

and

A = {(a, b), (a, c), (c, a), (d, a), (d, b), (f, g), (g, h), (h, f).

In this way the graph has as vertices the elements a, b, c, d, e, f, g, h, where there

are arcs from vertex a to the vertices b, c; there is an arc from vertex c to vertex

a, and so on.

Similar to the picture representation of a graph directed graphs can also be drawn,

the only difference is that arcs are represented by arrows. In this way if (x, y) ∈ A,

in the drawing there will be an arrow going pointing from x to y. Figure 0.2 shows

this representation for the graph described in Example 2.

Graphs are used in a wide range of fields to represent symmetric binary relations. A

few examples of what graphs can represent follow:

4



a b e

d c f

g h

Figure 0.2: Representation of the graph in Example 2

• Social networks, where each vertex represents a person, and two vertices are

adjacent if the people are friends.

• Computer networks, where each vertex represents a computer, and two vertices

are adjacent if the computers are connected in the network.

• Molecules, where each vertex represents an atom, and two vertices are adjacent

if the atoms are bonded.

Figure 0.3: spikedmath.com/382.html

Similarly directed graphs are used to represent asymmetric binary relations. For

instance:
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• Flight connections, where each vertex represents an airport, and an arrow (x, y)

represents a flight from airport x to airport y.

• Websites, where each vertex represents a web page, and an arrow (x, y) repre-

sents a link from the web page x to the web page y.

• Ownership of companies, where each vertex represents a company, and an arrow

(x, y) means that the company x owns the company y.

There are many different properties of graphs that can be studied. A particular

property asks when two different graphs are technically the same. We say that two

graphs Γ1 = (V1, E1), Γ2 = (V2, E2) are isomorphic if there is a bijection ϕ : V1 → V2,

such that {x, y} ∈ E1 if and only if {ϕ(x), ϕ(y)} ∈ E2. If this is the case, we say

that ϕ is an isomorphism between Γ1 and Γ2. If Γ1 and Γ2 are isomorphic we write

Γ1 ' Γ2.

Example 3: Let

V1 = {a, b, c, d, e, f, g, h},

E1 = {{a, b}, {a, c}, {a, d}, {b, d}, {f, g}, {f, h}, {g, h},

V2 = {1, 2, 3, 4, 5, 6, 7, 8},

E2 = {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {4, 7}, {5, 7}.
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Then the bijection ϕ defined by

ϕ(1) = f ϕ(5) = b

ϕ(2) = g ϕ(6) = c

ϕ(3) = h ϕ(7) = d

ϕ(4) = a ϕ(8) = e

is an isomorphism between Γ1 = (V1, E1) and Γ2 = (V2, E2).

A path is a graph Γ = (V,E), such that

V = {v1, v2, v3, . . . , vn},

E = {{v1, v2}, {v2, v3}, . . . , {vi, vi+1}, . . . , {vn−1, vn}}.

A path with n vertices is usually denoted Pn. If we add the edge {vn, v1}, then the

graph is called a cycle and is denoted Cn.

An example of a path with four vertices and a cycle with five vertices is given in

Figure 0.4.
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Γ H

Figure 0.4: A path with four vertices, Γ ' P4, and a cycle with five vertices,
H ' C5.

A graph that has every pair of vertices adjacent to each other is called complete. The

complete graph on n vertices is usually denoted Kn.

A connected component of a graph is a maximal set of vertices C, such that for each

pair of vertices x, y ∈ C, there is a path joining them.

Many interesting pure and applied problems can be described in the framework of

graph decomposition, which asks whether the edges of a graph Γ = (V,E) can be par-

titioned into subsets E1, . . . , Ek, such that the graphs Γ1 = (V,E1), . . . ,Γk = (V,Ek)

are isomorphic to certain predetermined graphs called factors. Graph decomposition

has applications in networking [26], block designs [14], and bioinformatics [38], among

others.

Given two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2), we say that Γ2 is a subgraph of

Γ1 if V2 ⊂ V1 and E2 ⊂ E1. A subgraph F of Γ is called a n-factor if every vertex of

F has degree n. Notice that in a 1-factor every connected component has exactly 2

vertices, and in a 2-factor every connected component is a cycle. A 2-factor were each

8



connected component has x vertices is called Cx-factor. A [ne11 , n
e2
2 , . . . , n

ep
p ]-factor of

Γ is 2-factor of Γ with ei connected components of size ni, i = 1, 2, . . . , p. We allow

ni = nj, which means that a [33, 52]-factor is also a [32, 31, 52]-factor.

Example 4: Figure 0.5 gives a decomposition of the complete graph Γ ' K6. It is

decomposed into 3 factors:

• F1 is a 2-factor with one connected component. It is a C6-factor, or a

[61]-factor.

• F2 is a 2-factor with two connected components. It is a C3-factor, a [32]-

factor, or a [31, 31]-factor.

• F3 is a 1-factor, with three connected components.

Γ

F1 F2 F3

Figure 0.5: A decomposition of the complete graph Γ ' K6

If the vertices of a graph Γ = (V,E) can be partitioned into sets Γ1,Γ2, . . . ,Γm, such

9



that if x, y ∈ Γi for some i, then {x, y} 6∈ E. The sets Γi are called partite sets. If the

number of parts is m, then the graph is also called m-partite. If all the partite sets

have the same number of vertices, then the graph is called equipartite. If every pair

of vertices belonging to different partite sets are adjacent, then the graph is called

complete multipartite (equipartite). A complete equipartite graphs with m partite

sets of size n is denoted K(n:m). Figure 0.6 shows a complete equipartite graph with

4 parts of size 3, K(3:4).

Γ3

Γ1

Γ2

Γ4

Figure 0.6: The complete equipartite graph Γ ' K(3:4)
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In 1967, during a conference in Oberwolfach, Ringel asked whether it was possible

to seat the v conference attendees at n round tables for dinner during v−1
2

nights, in

such a way that every attendee sits next to every other attendee exactly once. This

is equivalent to asking whether the complete graph Kv can be decomposed into v−1
2

copies of a 2-factor F (in a 2-factor every component is a cycle, which represents a

round table). To achieve this decomposition v needs to be odd, because the vertices

(attendees) need to have even degree. Later a version with v even was introduced by

Huang, Kotzig and Rosa [25]. In this case, the attendees will never sit next to their

spouses (and we are assuming that every attendee has a spouse). This is equivalent

to asking for a decomposition of Kv into v−2
2

copies of a 2-factor F , and one copy of

a 1-factor (each attendee together with their spouse).

In [28] Liu first worked on the generalization of the Oberwolfach problem, where

instead of avoiding their spouses, the attendees avoid all the other members of their

delegation. The assumption was that all the delegations had the same number of

people. Thus we are seeking to decompose the complete equipartite graph K(m:n)

with n partite sets (delegations) of size m each (members of a delegations) into (n−1)m
2

copies of a 2-factor F . Here (n− 1)m has to be even. In [22] Hoffman and Holliday

worked on the equipartite generalization of the Oberwolfach problem when (n− 1)m

is odd, decomposing into (n−1)m−1
2

copies of a 2-factor F , and one copy of a 1-factor.

The Hamilton-Waterloo problem, first mentioned in [17], is a generalization of the

11



Oberwolfach problem, in which the conference is being held at two different cities.

Because the table arrangements are different, we have two 2-factors, F1 and F2.

The Hamilton-Waterloo problem then asks whether the complete graph Kv can be

decomposed into r copies of the 2-factor F1 (tables at Hamilton) and s copies of the

2-factor F2 (tables at Waterloo), such that s + r = v−1
2

, when v is odd, and having

s+ r = v−2
2

and a 1-factor when v is even.

The uniform Oberwolfach problem (when all the tables have the same size, i.e. all the

cycles of the 2-factor have the same size) has been completely solved by Alspach and

Haagkvist [2] and Alspach, Schellenberg, Stinson and Wagner [3]. For the non-uniform

case of the Oberwolfach problem, many results have been obtained. For a survey of

results up to 2006 see [12]. The uniform Oberwolfach problem over equipartite graphs

has been completely solved by Liu [29] and Hoffman and Holliday [22]. In the non-

uniform case Bryant, Danziger and Pettersson [11] completely solved the case when

the 2-factor is bipartite. For the Hamilton-Waterloo problem most of the results are

uniform, see for example [5] or [13].

The Hamilton-Waterloo problem can be generalized for complete equipartite graphs

in the same way as the Oberwolfach problem was generalized.

Figure 0.7 shows a Hamilton-Waterloo decomposition of K10 into a 1-factor, 2 C10-

factors, and 2 C5-factors. Figure 0.8 shows a Hamilton-Waterloo decomposition of

K(5:3) into 3 C15-factors and 2 C3-factors.
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Figure 0.7: A Hamilton-Waterloo decomposition of K10 into a 1-factor, 2
C10-factors and 2 C5-factors.

Chapter 1 considers the Hamilton-Waterloo problem over the complete graph K3xy,

looking for decompositions into r C3-factors and s C3x-factors. In this chapter we

show that such decompositions can be achieved except maybe when s = 1, or when

x ∈ {2, 4, 6, 12}.
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Figure 0.8: A Hamilton-Waterloo decomposition of K(5:3) into 3 C15-factors
and 2 C3-factors.

Chapter 2 is concerned with the Hamilton-Waterloo problem over the complete

equipartite graph K(v:m), into s F1-factors and r F2-factors. In this chapter we show

that such decompositions can be achieved if the following conditions are satisfied:

• m = nm′ is odd, and n divides the size of all the cycles;

• if there are cycles of size x in one of the 2-factors, then x divides v, and there

are k v
nx

such cycles.

• 4 does not divide the size of any cycle;

• if there are even cycles, then 4 divides v;
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• s, r 6= 1;

except for certian lengths of cycles when v is even.

We turn now to the problem of R-sequenceability. For this we first need to introduce

the algebraic concept of group.

Definition 0.0.2 Given a set of elements G and a binary operation ∗ : G×G→ G,

we say that (G, ∗) is a group if the following conditions are satisfied:

Closure: If a, b ∈ G, then a ∗ b ∈ G.

Associativity: If a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c).

Identity: There exists an element e ∈ G, such that if a ∈ G, then a ∗ e = e ∗ a = a.

Inverse: If a ∈ G, then there is b ∈ G, such that a ∗ b = b ∗ a = e.

The element e can be proven to be unique, and is known as the identity of the group.

Given a ∈ G, the element b ∈ G such that a ∗ b = e is also unique, it is called the

inverse of a, and denoted b = a−1. When the operation is known we sometimes

refer as the group as G, instead of (G, ∗). Because of the associativity property, it is

common to write strings of products without parentheses. This means that instead

of writing (a ∗ b) ∗ c, we would write a ∗ b ∗ c.

15



Example 5: The set of integers together with the usual addition, (Z,+), is a group.

We know that given two integers a, b, then a+ b is an integer, showing closure.

Associativity is also one of the known properties of addition over the integers.

The identity element is 0, and the inverse of an element a is −a.

Notice that we could not use the product as the operation, because we do not

have inverses for our elements.

Some other examples of groups are:

• The integers, with addition as the operation.

• The rationals except for zero, with product as the operation.

• The set of non-singular matrices of a given size, with product as the operation.

• The permutations of a set, with composition as the operation.

• The set of vectors with m coordinates and real numbers as entries, with vector

addition as the operation.

We will mainly deal with finite groups. This is, groups containing only a finite number

of elements.

Example 6: Usually the first finite groups introduced are the integers modulo n,

(Zn,+n). This group contains the numbers {0, 1, . . . , n− 2, n− 1} as elements,
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and the operation, called addition modulo n is defined as:

a+n b =


a+ b if a+ b ≤ n− 1

a+ b− n if a+ b ≥ n

.

Because 0 ≤ a+ b ≤ 2n− 2, we get that a+ b ≤ n− 1 or 0 ≤ a+ b−n ≤ n− 1,

hence the set is closed under +n. Associativity is inherited from integer addition

+. The identity element is 0, and the inverse of an element a 6= 0 is n− a.

Some other examples of finite groups are:

• The n-th roots of unity, with multiplication as the operation.

• The symmetries of a regular polygon, with composition as the operation.

• The permutations of a finite set, with composition as the operation.

• The set of isomorphisms from a graph onto itself (automorphisms), with com-

position as the operation.

• The set of vectors with m coordinates and integers modulo n as entries, with

vector addition modulo n as the operation.

A pair of elements a and b in a group commute if a∗b = b∗a. Notice that in particular

the identity of a group commutes with every element of the group. If every pair of
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elements of a group commute, then the group is said to be abelian. If we look back

at our examples, the first two are abelian, the last two are not.

If the group G is abelian, usually +, 0, and −a are used to represent the operation,

identity, and inverse of a ∈ G. For groups in general the operation is usually repre-

sented by ∗ or by ·; the identity element is represented by 1, I or e; and the inverse

of a ∈ G by a−1. When the operation is represented by ·, it is common to write ab

instead of a · b.

A nice connection between Graph Theory and Group Theory are Cayley Digraphs.

Given a group G, and S a subset of elements of G, such that the identity element is

not in S, the Cayley Digraph Γ =
−−→
Cay(G;S) is the directed graph that has:

V (Γ) = {g | g ∈ G},

A(Γ) = {(g, gs) | g ∈ G, s ∈ S}.

We will say that arcs of the form (g, gs) are generated by the element s.

Example 7: The set of integers modulo 9, Z9, is a group, with elements

0, 1, 2, 3, 4, 5, 6, 7, 8 and addition modulo 9 as the operation, +. The Cayley

digraph
−−→
Cay(Z9; {2, 3}) is shown in Figure 0.9, where the blue arcs are of the

form (g, g + 2), and the red arcs are of the form (g, g + 3).

18



0

1

2

3

45

6

7

8

Figure 0.9: The Cayley digraph
−−→
Cay(Z9; {2, 3})

In 1961 B. Gordon [19] defined a group G to be sequenceable when there exists a

permutation

g0, g1, g2, . . . , gn−1

of its elements so that the sequence of partial products

g0, g0g1, g0g1g2, . . . , g0g1g2 · · · gn−1

are distinct. In that same paper he proved the following theorem.

Theorem 1 A finite abelian group G is sequenceable if and only if G contains a

unique non-identity element a, such that a = −a.

In 1974 G. Ringel [36] asked when there exists a permutation

g1, g2, . . . , gn−1
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of the non-identity elements of a group such that the sequence

g2g
−1
1 , g3g

−1
2 , . . . , gn−1g

−1
n−2, g1g

−1
n−1

also is a permutation of the non-identity elements. A group G that admits such a

permutation is called R-sequenceable. As a matter of fact, L. Paige [33] used this

concept in 1951, but it was Ringel’s problem that motivated the most important

paper on this topic.

One can investigate these problems using Cayley digraphs. In particular the Cayley

digraph with S = G \ {e}, that is, the set S has everything in it other than the

identity element. We use the special notation
−→
K (G) for this Cayley digraph.

It is easy to see that a fixed element s ∈ S generates a subdigraph consisting of

directed cycles of length |s|, the order of s in G. Thus, we obtain a decomposition

of
−−→
Cay(G;S) into |S| directed 2-factors. We call this decomposition the Cayley fac-

torization of
−−→
Cay(G;S) and denote it by

−→
F (G;S). Figure 0.10 shows the Cayley

factorization
−→
F (Z6; {1, 2, 3, 4, 5}) of the Cayley digraph

−→
K (Z6).

If
−→
D is a subdigraph of

−−→
Cay(G;S) with |S| arcs, and

−→
D has exactly one arc from

each directed 2-factor in
−→
F (G;S), then we say that

−→
D is orthogonal to

−→
F (G;S). In

this language, the group G is sequenceable when
−→
K (G) has an orthogonal directed

path of length |G|, and G is R-sequenceable when
−→
K (G) has an orthogonal directed
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cycle of length |G| − 1.

Example 8: Figure 0.11(a) shows an orthogonal directed path of length 10 for Z10.

The vertices used by the path are:

0, 1, 9, 2, 8, 3, 7, 4, 6, 5.

The arcs used are generated by the elements:

1, 8, 3, 6, 5, 4, 7, 2, 9.

Notice that each non-identity element from G generates exactly one of these

arcs, thus the directed path is orthogonal.

Figure 0.11(b) shows an orthogonal directed cycle of length 6 for Z6. The

vertices used by the cycle are:

1, 4, 6, 5, 2, 3, 1.

The arcs used are generated by the elements:

3, 2, 6, 4, 1, 5.

Notice that each non-identity element from G generates exactly one of these
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arcs, thus the directed cycle is orthogonal.

Chapter 3 studies the R-sequenceability of abelian groups. In this chapter we show

that every abelian group is either sequenceable or R-sequenceable. This completely

solves the problem of Ringel for abelian groups.
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Figure 0.10: The Cayley digraph
−→
K(Z6) and its Cayley Factorization

−→
F (Z6; {1, 2, 3, 4, 5})
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Figure 0.11: Orthogonal directed subgraphs
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Chapter 1

On the Hamilton-Waterloo

Problem with triangle factors and

C3x-factors1

1.1 Introduction

The Oberwolfach problem was first proposed by Ringel in 1967, and involves seating

v conference attendees at t round tables over v−1
2

nights such that each attendee

sits next to each other attendee exactly once. It is mathematically equivalent to

1The material in this paper was previously published by Australasian Journal of Combinatorics
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decomposing Kv into 2-factors where Kv is the complete graph on v vertices and

each 2-factor is isomorphic to a given 2-factor Q. In the original statement of the

problem, we have that v must be odd. It was later extended to the spouse-avoiding

Oberwolfach problem, allowing for even v by decomposing Kv − F , where F is a

1-factor.

The Hamilton-Waterloo Problem (HWP) is an extension of the Oberwolfach Problem.

Instead of seating v attendees at the same t tables each night, the Hamilton-Waterloo

problem asks how the v attendees can be seated if they split their nights between

two different venues. The attendees will all spend the same r nights in Hamilton,

which has round tables of size m1,m2, . . . ,mk, and s nights in Waterloo, which has

round tables of size n1, n2, . . . , np where
∑k

i=1mi =
∑p

i=1 ni = v. The case when

m1 = m2 = · · · = mk = m and n1 = n2 = · · · = np = n is called the Hamilton-

Waterloo Problem with uniform cycle sizes, and this variant of the problem gets most

of the attention. Graph theoretically, this problem is equivalent to decomposing Kv

(or Kv − F when v is even) into 2-factors where each 2-factor consists entirely of

m-cycles (a Cm-factor) or entirely of n-cycles (a Cn-factor). Throughout this paper,

the word factor is assumed to be a 2-factor unless otherwise stated. We frequently

refer to a C3-factor as a triangle factor and a Hamilton cycle as a Hamilton factor.

A decomposition of a graph G is a partition of the edge set of G. A decomposition

of Kv into Cm-factors is called a Cm-factorization. We will refer to a solution to
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the Hamilton-Waterloo Problem with r factors of m-cycles, s factors of n-cycles, and

v points as a resolvable (Cm, Cn)-decomposition of Kv into r Cm-factors and s Cn-

factors, and we will let (m,n)–HWP(v; r, s) denote such a decomposition. In order

for an (m,n)–HWP(v; r, s) to exist, it is clear that r + s = v−1
2

(or r + s = v−2
2

, for

even v), and both m and n must divide v. These conditions are summarized in the

following theorem.

Theorem 2 [1] The necessary conditions for the existence of an (m,n)–HWP(v; r, s)

are

1. If v is odd, r + s = v−1
2

,

2. If v is even, r + s = v−2
2

,

3. If r > 0, m|v,

4. If s > 0, n|v.

Recall that the Oberwolfach Problem involves seating v conference attendees at t

round tables such that each attendee sits next to each other attendee exactly once.

The Oberwolfach Problem for constant cycle lengths was solved in [2, 3, 23, 34]. This

is equivalent to the Hamilton-Waterloo Problem with r = 0 or s = 0.

Theorem 3 [2, 3, 23, 34] There exists a resolvable m-cycle decomposition of Kv

(or Kv − F when v is even) if and only if v ≡ 0 (mod m), (v,m) 6= (6, 3) and
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(v,m) 6= (12, 3).

An equipartite graph is a graph whose vertex set can be partitioned into u subsets

of size h such that no two vertices from the same subset are connected by an edge.

The complete equipartite graph with u subsets of size h is denoted K(h:u), and it

contains every edge between vertices of different subsets. Another key result solves

the Oberwolfach Problem for constant cycle lengths over complete equipartite graphs

(as opposed to Kv). That is to say, with finitely many exceptions, K(h:u) has a

resolvable Cm-factorization.

Theorem 4 [28] For m ≥ 3 and u ≥ 2, K(h:u) has a resolvable Cm-factorization if

and only if hu is divisible by m, h(u− 1) is even, m is even if u = 2, and (h, u,m) 6∈

{(2, 3, 3), (6, 3, 3), (2, 6, 3),

(6, 2, 6)}.

Much of the attention to the HWP has been dedicated to the case of triangle factors

and Hamilton factors. The results for this case have been summarized in the following

theorem.

Theorem 5 [15, 16, 24, 27] There exists a (3, v)–HWP(v; r, s) with
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• 2 ≤ s ≤ v−1
2

and v ≡ 3 (mod 6) except possibly when:

v ≡ 15 (mod 18) and 2 ≤ s ≤ v − 3

6
or s =

v + 3

6
+ 1,

• s = 1 and v ≡ 3 (mod 6) except when v = 9 and possibly when:

v ∈ {93, 111, 123, 129, 141, 153, 159, 177, 183, 201, 207, 213, 237, 249}.

• 2 ≤ s ≤ (v − 2)/2 and v ≡ 0 (mod 6) except possibly when (v, s) ∈

{(36, 2), (36, 4)} or when v ≡ 12 (mod 18) and 2 ≤ s ≤ (v/6)− 1; and

• s = 1 and v ≡ 0 (mod 6) except possibly when v = 18, v ≡ 12 (mod 18) or

v ≡ 6 (mod 36).

When considering the HWP for triangle factors and Hamilton factors, the focus is

on a specific case of the problem. This paper considers a more general family of

decompositions, namely, triangle factors and 3x-factors ofKv for any v that is divisible

by both 3 and 3x. In this instance of the problem, v is of the form 3xy. When x = 1,

the problem of finding a (3, 3x)–HWP(v; r, s) is simply that of finding a resolvable C3-

factorization of Kv, which is also known as a Kirkman triple system (KTS(v)). It was

shown in 1971 by Ray-Chadhuri and Wilson [34] and independently by Lu (see [30])

that a KTS(v) exists if and only if v ≡ 3 (mod 6). When y = 1, then the problem

asks for a decomposition of Kv into triangle factors and Hamilton cycles. This case
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is addressed in [15], [16], and [24], and the results were presented in Theorem 5.

Therefore, we focus on the cases where x ≥ 2 and y ≥ 2. It is a different type of

decomposition than what was considered in [15, 16, 24], because in our case, we let

both x and y vary . However, as expected, the results given in Theorem 5 can be

used in the decompositions we are interested in.

The Hamilton-Waterloo Problem was studied in 2002 by Adams, et. al. [1]. The

paper provides solutions to all Hamilton-Waterloo decompositions on less than 18

vertices. Some notable results involving v = 6 and v = 12 will be relevant to this

paper.

Theorem 6 [1] There exists a (3, 6)–HWP(12; r, s) if and only if r + s = 5 except

(r, s) = (5, 0). There exists a (3, 12)–HWP(12; r, s) if and only if r + s = 5 except

(r, s) = (5, 0). There exists a (3, 6)–HWP(6; r, s) if and only if r + s = 2 except

(r, s) = (2, 0).

The authors in [1] also developed a tripartite construction that could be used when

considering m = 3 and n = 3x. However, it leaves many open cases, because it

relies on the existence of a (3, v)–HWP(v; r, s) for all (r, s) and for all v ≡ 3 (mod 6).

According to Theorem 5, there are some gaps in the existence of these. The problem

is that the construction given in [1] uses a uniform decomposition of K(x:3). Therefore,

we proceed in this paper by developing a new construction that is a bit more general,
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and in particular, depends on the decomposition of K(x:3) into rp Cm-factors and sp

Cn-factors. The flexibility in this construction allows us to settle all but 14 cases of

the existence of a (3, 3x)–HWP(3xy; r, s) for all possible (r, s) whenever both x ≥ 3

and y ≥ 3 are odd. We also introduce a modified construction that is used in the

cases where at least one of x or y is even. We give almost complete results for these

cases as well. In Section 1.3.1 we handle the cases when x ∈ {2, 4} and collect all of

the results into a summarizing theorem in Section 1.4.

1.2 Constructions

In this section, we develop constructions that will later be used to prove our main

results about the Hamilton-Waterloo Problem in the case of triangle factors and C3x-

factors.

Recall that K(x:3) is the complete multipartite graph with 3 parts of size x. Let the

parts be G0, G1 and G2 and the vertices be (a, b) with 0 ≤ a ≤ 2, 0 ≤ b ≤ x − 1.

Consider the edge {(a1, b1), (a2, b2)} which has one vertex from Ga1 and one vertex

from Ga2 . With computations being done in Zx, we say this edge has difference b2−b1.

Let Tx(i) for 0 ≤ i ≤ x− 1 be the subgraph of K(x:3) obtained by taking all edges of

difference: 2i between vertices of G0 and vertices of G1, −i between G1 and G2, and

−i between G2 and G0.
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Lemma 1.2.1 Tx(i) is a triangle factor of K(x:3) for any i.

Proof: It is easy to see that the triangles are of the form {(0, k), (1, k+ 2i), (2, k+ i)}

for every 0 ≤ k ≤ x− 1. �

Let Hx(i, j) be the subgraph of K(x:3) obtained by taking all edges of difference: 2i

between G0 and G1, −i between G1 and G2, and −j between G2 and G0.

Lemma 1.2.2 If gcd(x, i− j) = 1 then Hx(i, j) is a Hamiltonian cycle of K(x:3).

Proof: Since the edges are given by differences it is clear that all vertices have degree

2. We need to show that all the vertices are connected. We will first show that there

is a path between any 2 vertices of G0. Without loss of generality, we will show that

(0, 0) is connected to (0, k) for any k. Starting at (0, 0), we may traverse the path:

(0, 0), (1, 2i), (2, i), (0, i− j). Thus the next time that we reach G0 it is via the vertex

i− j. Since gcd(x, i− j) = 1, the order of i− j in the cyclic group Zx is x. Therefore,

any k modulo x can be written as k′(i − j), which means that we reach the vertex

(0, k) after visiting the part G0 k
′ times. Hence (0, 0) is connected to all the vertices

of G0 via a path.

Because we are taking every edge of a particular difference, it follows that every vertex

in G1 is connected to a vertex in G0, and the same is true for vertices in G2. Hence

all the vertices are connected, and the cycle is Hamiltonian, as we wanted to prove.
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1.2.1 When x is Odd

We can think of a decomposition of a graph G as a partition of the edge set or as a

union of edge disjoint subgraphs. This means that a decomposition of G can be given

by E(G) = ∪E(Fi) or by G = ⊕Fi, where each Fi is an edge disjoint subgraph of G.

The next lemma shows that K(x:3) can be decomposed entirely into triangle factors

or Hamilton cycles when x is odd.

Lemma 1.2.3 Let x be an odd integer, and let φ be a bijection of the set {0, 1, . . . , x−

1} into itself. Then

K(x:3) =
x−1⊕
i=0

Tx(i) =
x−1⊕
i=0

Hx(i, φ(i))

Proof: To prove the first equality,

K(x:3) =
x−1⊕
i=0

Tx(i)

we need to show that between each pair of parts in K(x:3), each difference is covered by

the edges in one of the triangle factors exactly once. It is clear that edges of difference i

between G1 and G2 and between G2 and G0 are covered in Tx(i). Now consider groups
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G0 and G1. Each factor Tx(i) uses the difference 2i. Because gcd(x, 2) = 1, the order

of 2 in the cyclic group Zx is x. So it follows that any i modulo x can be written as

2i′, and thus the difference i between G0 and G1 is covered in Tx(i
′). Notice that we

cover the edges of exactly one difference between any two parts per subgraph, and

we only have x subgraphs. This together with the fact that we are covering all the

differences imply that we cover each difference exactly once. Thus it is equivalent to

decomposing K(x:3).

The second equality
x−1⊕
i=0

Tx(i) =
x−1⊕
i=0

Hx(i, φ(i))

is true because we again cover each difference between any pair of parts exactly once

by the edges in the factors. �

Notice that the subgraph Hx(i, i) is the same as Tx(i). Therefore, decomposing K(x:3)

into s Hamilton cycles and x− s triangle factors is equivalent to finding a bijection φ

such that gcd(x, i− φ(i)) = 1 for s elements of {0, 1, . . . , x− 1} and φ(i) = i for the

rest.

Theorem 7 Let x be odd and let s ∈ {0, 2, 3, . . . , x}. Then:

• there exists a bijection φ on the set {0, 1, . . . , x − 1} with gcd(x, i − φ(i)) = 1

for s elements and r = x− s fixed points; and
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• K(x:3) can be decomposed into s Hamiltonian cycles and r = x − s triangle

factors.

Proof: If s = 0 we just use the identity mapping. Let 2 ≤ s ≤ x, and let e be the

smallest integer such that s ≤ 2e + 1. We have

2e−1 + 1 < s ≤ min{2e + 1, x} = t.

Let r = t− s and define φ as follows:

φ(i) =



0 for i = 1

i+ 2 for i ≡ 0 (mod 2), 0 ≤ i ≤ s− 3

i− 2 for i ≡ 1 (mod 2), 3 ≤ i ≤ s− 1

s− 2 for i ≡ 0 (mod 2), i = s− 1

s− 1 for i ≡ 0 (mod 2), i = s− 2

i for s ≤ i ≤ x− 1

It is an easy exercise to check that φ is a bijection with r = x − s fixed points.

Furthermore, for any non-fixed point we have (i − φ(i)) ∈ {±1,±2} and, because x

is odd, gcd(x, i− φ(i)) = 1. Hence by Lemma 1.2.3,

K(x:3) =
x−1⊕
i=0

Hx(i, φ(i))
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is a decomposition of K(x:3) into s Hamiltonian cycles and r = x− s triangle factors.

�

Unfortunately this construction only works when x is odd. For the cases when x is

even we can get a similar result, although only when x = 2x̄, with x̄ odd.

1.2.2 When x is Even

In this subsection, we develop a construction similar to what is described in Sec-

tion 1.2.1. It relies on the following decomposition of K(4:3) into triangle factors.

Define Γ(i) for i ∈ {0, 1, 2, 3} as follows.

Γ(0) = Γ(1) =

Γ(2) = Γ(3) =

Note that the edges that join G0 to G2 are dashed since they will need to be distin-

guished from the other two edges in each C3. It is easy to see that
⊕3

i=0 Γ(i) is a

C3-factorization of K(4:3).
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Lemma 1.2.4 There exist a decomposition of K(4:3) into s C6-factors and 4− s C3-

factors for any s ∈ {0, 2, 3, 4}.

Proof: Consider the C3 factorization of K(4:3),
⊕3

i=0 Γ(i). Let Λ(α, β) be the graph

that has edges between G0 (the first column) and G1 (the second column) from Γ(α),

has edges between G1 and G2 from Γ(α), and has dashed edges from Γ(β). Notice

that if α 6= β then Λ(α, β) is a union of cycles of size 6.

This way we can get 2 C6-factors by using Λ(0, 1) and Λ(1, 0) instead of Γ(0) and

Γ(1) . We can get 3 C6-factors by using edges Λ(0, 1), Λ(1, 2) and Λ(2, 0) instead of

Γ(0), Γ(1) and Γ(2). And finally we can get 4 C6-factors by using Λ(0, 1), Λ(1, 2),

Λ(2, 3) and Λ(3, 0). This construction gives the desired decompositions. �

For x̄ = 1, Lemma 1.2.4 gives a decomposition of K(4x̄:3) into triangle factors and

C6x̄-factors. We will extend this result to work on any K(4x̄:3) where x̄ > 1 and odd.

The construction works by giving weight x̄ to each vertex in K(4:3).

Replace each vertex in K(4:3) by a set of x̄ vertices. Thus for a = 0, 1, 2, we have

Ga = {(a, b, c) : b = 1, 2, 3, 4; c = 1, 2, . . . , x̄} is a set of 4x̄ vertices.

For α = 0, 1, 2, 3, we construct the triangle factor T2x̄(α, i) of K(4x̄:3) as follows. For

each triangle {(0, b0), (1, b1), (2, b2)} in
⊕3

α=0 Γ(α), construct the complete equipartite

graph K(x̄:3) on the set of vertices {(0, b0, c), (1, b1, c), (2, b2, c) : c = 1, 2, . . . , x̄}.
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To visualize this weighting construction with x̄ = 3 we show a picture of a triangle

from K(4:3). After giving weight 3 to each vertex, the triangle becomes K(3:3).

Decompose eachK(x̄:3) into triangle factors Tx̄(i) for i = 0, 1, . . . , x̄−1 by Lemma 1.2.3.

Thus we have a decomposition of K(4x̄:3) into triangle factors.

Define H2x̄(α, i)(β, j) as the graph obtained by taking T2x̄(α, i) and replacing the

edges between G0 and G2 with the same edges from T2x̄(β, j). Then we have that

H2x̄(α, i)(β, j)⊕H2x̄(β, j)(α, i) = T2x̄(α, i)⊕ T2x̄(β, j)

If α 6= β and gcd(i − j, x̄) = 1 then we claim that H2x̄(α, i)(β, j) is a C6x̄-factor.

Suppose (a, b, c) ∈ H2x̄(α, i)(β, j). Then (a, b) is a vertex of K(4:3). Because α 6= β,

Λ(α, β) is a C6-factor on K(4:3), as shown in the proof of Lemma 1.2.3. Because

gcd(i− j, x) = 1, it follows from Lemma 1.2.2 that K(x̄:3) is a 3x̄-cycle. Thus (a, b, c)

is contained in a cycle of length lcm(6, 3x̄) = 6x̄. Hence H2x̄(α, i)(β, j) is a C6x̄-factor.

Let ψ be a bijection on {(α, i)|0 ≤ α ≤ 3, 0 ≤ i ≤ x̄ − 1}. The previous discussion
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leads us to the following result.

Lemma 1.2.5 Let x̄ be odd. Let s and r be non-negative integers such that s+r = 4x̄.

If ψ satisfies the following:

• ψ(α, i) = (α, i) for r pairs (α, i); and

• ψ(α, i) = (β, j) with α 6= β and gcd(i− j, x̄) = 1 for the s remaining pairs;

then K(4x̄:3) =
⊕

H2x̄(α, i)(ψ(α, i)) is a decomposition of K(4x̄:3) into r triangle factors

and s C6x̄-factors.

Proof: Notice that H2x̄(α, i)(α, i) = T2x̄(α, i), so if ψ(α, i) = (α, i), H2x̄(α, i)(ψ(α, i))

is a triangle factor. When ψ(α, i) = (β, j) with α 6= β and gcd(i − j, x̄) = 1, by

the discussion preceding the lemma, H2x̄(α, i)(ψ(α, i)) is a C6x̄-factor. Therefore

K(4x̄:3) =
⊕

H2x̄(α, i)(ψ(α, i)) is a decomposition of K(4x̄:3) into r triangle factors and

s C6x̄-factors. �

Thanks to Lemma 1.2.5 we only need to show that for any r ∈ {0, 1, . . . , 4x̄− 2, 4x̄}

we have a bijection ψ satisfying the conditions of the lemma and with r fixed points.

Theorem 8 Let x̄ be odd and s ∈ {0, 2, 3, . . . , 4x̄− 1, 4x̄}, then:
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• There exists a bijection ψ satisfying the conditions of Lemma 1.2.5 with r =

4x̄− s fixed points.

• K(4x̄:3) can be decomposed into s C6x̄-factors and r triangle factors.

Proof: If s = 0 we just use the identity mapping.

If 2 ≤ s ≤ 4x̄ we let s0, s1, s2, s3 ∈ {0, 2, 3 . . . , x̄−1} be such that s = s0 +s1 +s2 +s3.

We define ψ as follows, where m ∈ {0, 1, 2, 3} and i+m is taken (mod 4):

ψ(i+m, i) =



(m, 0) for i = 1

(i+m+ 2, i+ 2) for i ≡ 0 (mod 2), 0 ≤ i ≤ sm − 3

(i+m− 2, i− 2) for i ≡ 1 (mod 2), 3 ≤ i ≤ sm − 1

(sm +m− 2, sm − 2) for i ≡ 0 (mod 2), i = sm − 1

(sm +m− 1, sm − 1) for i ≡ 0 (mod 2), i = sm − 2

(i+m, i) for sm ≤ i ≤ x̄− 1

It is an easy exercise to check that ψ is a bijection with 4x̄− (s0 + s1 + s2 + s3) = r

fixed points. Notice that ψ(α, i) − (α, i) ∈ {(0, 0), (±1,±1), (±2,±2)}. This gives

that if ψ(α, i) = (β, j) is not a fixed point of ψ, α 6= β and gcd(i− j, x̄) = 1.
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Hence by Lemma 1.2.5

K(4x̄:3) =
⊕

H2x̄(α, i)(ψ(α, i))

is a decomposition of K(4x̄:3) into s C6x̄-factors and 4x̄− s triangle factors. �

1.2.3 A Weighting Construction

A group divisible design (k, λ)–GDD(hu) is a triple (V ,G,B) where V is a finite set

of size v = hu, G is a partition of V into u groups each containing h elements, and

B is a collection of k element subsets of V called blocks which satisfy the following

properties.

• If B ∈ B, then |B| = k.

• If a pair of elements from V appear in the same group, then the pair cannot be

in any block.

• Two points that are not in the same group, called a transverse pair, appear in

exactly λ blocks.

• |G| > 1.

Here we use the term group to indicate an element of G. In this context, group

simply means a set of elements without any algebraic structure. A resolvable GDD
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(RGDD) has the additional condition that the blocks can be partitioned into parallel

classes such that for each element of V there is exactly one block in each parallel class

containing it. If λ = 1, we refer to the RGDD as a k–RGDD(hu). In this paper, we

will only talk about RGDDs with λ = 1. Necessary and sufficient conditions for the

existence of 3–RGDD(hu)s have been established except in a finite number of cases.

Theorem 9 [35] A (3, λ)–RGDD(hu) exists if and only if u ≥ 3, λh(u − 1) is even,

hu ≡ 0 (mod 3), and (λ, h, u) 6∈ {(1, 2, 6), (1, 6, 3)}
⋃
{(2j+ 1, 2, 3), (4j+ 2, 1, 6) : j ≥

0}.

In particular, we have that a 3–RGDD(3u) exists for all odd u ≥ 3 and a 3–RGDD(6u)

exists for all u ≥ 4. Note that when a 3–RGDD(hu) exists, then B can be partitioned

in h(u−1)
2

parallel classes.

Lemma 1.2.6 Let m ≥ 3, n ≥ 3 and x be positive integers such that both m and n

divide 3x. Suppose the following conditions are satisfied:

• There exists a 3-RGDD(hu),

• there exists a decomposition of K(x:3) into rp Cm-factors and sp Cn-factors, for

p ∈ {1, 2, . . . , h(u−1)
2
},

• there exists an (m,n)–HWP(hx; rβ, sβ).
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Let

rα =

h(u−1)
2∑

p=1

rp and sα =

h(u−1)
2∑

p=1

sp.

Then there exists a (m,n)–HWP(hux; rα + rβ, sα + sβ).

Proof: For a = 1, 2, . . . , u, let the groups of the 3-RGDD(hu) be denoted by

Ga = {(a, b) : b = 1, 2, . . . , h}. Let {P1,P2, . . . ,Ph(u−1)
2

} denote the parallel

classes of the 3-RGDD(hu), and for a = 1, 2, . . . , u, define G∗a = {(a, b, c) : b =

1, 2, . . . , h; c = 1, 2, . . . , x} to be a set of hx vertices. Consider each parallel class Pp

with p ∈ {1, 2, . . . , h(u−1)
2
}. For each block {(a1, b1), (a2, b2), (a3, b3)} ∈ Pp, construct

a decomposition of K(x:3) into rp Cm-factors and sp Cn-factors on the set of vertices

{(a1, b1, c), (a2, b2, c), (a3, b3, c) : c = 1, 2, . . . , x}. Thus we have a decomposition of

K(hx:u) into rα Cm-factors and sα Cn-factors where

rα =

h(u−1)
2∑

p=1

rp and sα =

h(u−1)
2∑

p=1

sp.

Now each part of K(hx:u) can be decomposed into rβ Cm-factors and sβ Cn-factors.

Thus there exists an (m,n)–HWP(hux; r, s) where r = rα + rβ and s = sα + sβ. �

Lemma 1.2.7 Let m ≥ 3, n ≥ 3 and x be positive integers such that both m and n

divide 3x. Suppose the following conditions are satisfied:
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• There exists a 3-RGDD(hu),

• there exists an (m,n)–HWP(3x; rβ, sβ),

• there exists a decomposition of K(x:h) into rγ Cm-factors and sγ Cn-factors,

• there exists a decomposition of K(x:3) into rp Cm-factors and sp Cn-factors, for

p ∈ {1, 2, . . . , h(u−1)
2
}.

Let

rα =

h(u−1)
2
−1∑

p=1

rp and sα =

h(u−1)
2
−1∑

p=1

sp.

Then there exists a (m,n)–HWP(hux; rα + rβ + rγ, sα + sβ + sγ).

Proof: Let {P1,P2, . . . ,Ph(u−1)
2

} denote the parallel classes of the 3-RGDD(hu), and

let W = {1, 2, . . . , x}. Consider each parallel class Pp with p ∈ {1, 2, . . . , h(u−1)
2
− 1}.

For each block {a1, a2, a3} ∈ Pp, construct a decomposition of K(x:3) into rp Cm-

factors and sp Cn-factors with parts {ai} ×W , i = 1, 2, 3. For each block {a1, a2, a3}

in parallel class Pβ where β = h(u−1)
2

, construct an (m,n)–HWP(3x; rβ, sβ) on

{a1 ×W,a2 ×W,a3 ×W}. Take a decomposition of K(x:h) into rγ Cm-factors and

sγ Cn-factors simultaneously on each group of the 3-RGDD(hu). This makes an

(m,n)–HWP(hux; r, s) where r = rα + rβ + rγ and s = sα + sβ + sγ. �
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1.3 Main Results

In this section, we use the constructions given in Section 1.2 to obtain results on the

existence of a (3, 3x)–HWP(3xy; r, s). We consider four different cases depending on

the parity of x and y.

Lemma 1.3.1 Suppose x is even. If there exists a decomposition of K3x − F into

rδ C3-factors and sδ Hamilton cycles, then there exists a decomposition of K6x − F ′

into rδ C3-factors and sδ + 3x
2
C3x-factors, where F is a 1-factor of K3x and F ′ is a

1-factor of K6x.

Proof: Let G1 and G2 be a partition of the 6x points into two subsets of size 3x.

Decompose KG1 − F1 (the complete graph on G1 minus a 1-factor F1) into rδ C3-

factors and sδ Hamilton cycles. In the same manner, decompose KG2 − F2 (the

complete graph on G2 minus a 1-factor) into rδ C3-factors and sδ Hamilton cycles.

Then there is a decomposition of (KG1 ∪KG2) − (F1 ∪ F2) into rδ C3-factors and sδ

C3x-factors. Notice that F ′ = F1∪F2 is a 1-factor of K6x. By Theorem 4, there exists

a decomposition of K(3x:2) into 3x
2
C3x-factors. The union of these edges is K6x.

Therefore there is a decomposition of K6x − F ′ into rδ C3-factors and sδ + 3x
2
C3x-

factors. �
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Theorem 10 For each pair of odd integers x ≥ 3 and y ≥ 3, there exists a

(3, 3x)–HWP(3xy; r, s) if and only if r + s = v−1
2

except when s = 1 and x = 3,

and possibly when s = 1 and

x ∈ {31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 69, 71, 79, 83}.

Proof: By Theorem 9 there exists a 3 − RGDD(3y) for all odd y ≥ 3. There exists a

decomposition of K(x:3) into rp C3-factors and sp C3x-factors for (rp, sp) ∈ {(x, 0), (x−

2, 2), (x − 3, 3), . . . , (0, x)} by Theorem 7. There exists a (3, 3x)–HWP(3x; rβ, sβ)

whenever (rβ, sβ) ∈ {(3x−1
2
, 0), (3x−3

2
, 1), (0, 3x−1

2
)} by Theorems 3 and 5 (excluding

the exception and possible exceptions listed in the statements of these theorems).

So apply Lemma 1.2.6 with m = 3 and n = 3x. We must now show that for each

s ∈ {0, 1, . . . , 3xy−1
2
}, there exists a (3, 3x)–HWP(3xy; r, s). It is easy to see that if sα ∈

{0, 2, 3, . . . , 3xy−3x
2
}, then we can write sα =

∑(3y−3)/2
i=1 sp where sp ∈ {0, 2, 3, . . . , x}.

Thus if s ∈ {0, 2, 3, . . . , 3xy−3x
2
}, then we may write s = sα + sβ by choosing sα = s

and sβ = 0. If s = 1, then choose sα = 0 and sβ = 1. If s = 3xy−3x
2

+ 1, choose

sα = 3xy−3x
2

and sβ = 1. Finally, let i = 2, 3, . . . , 3x−1
2

, and consider s = 3xy−3x
2

+ i.

We may choose sα = s− (3x−1
2

) and sβ = 3x−1
2

because

2 ≤ s− 3x− 1

2
≤ 3xy − 3x

2
.

�
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Theorem 11 For each odd integer x ≥ 3 and each even integer y ≥ 8, there exists a

(3, 3x)–HWP(3xy; r, s) if and only if r + s = 3xy−1
2

except possibly when s = 1.

Proof: By Theorem 9, there exists a 3–RGDD(6y/2) for all even y ≥ 8. By Theorem 7,

for each p ∈ {1, 2, . . . , 6(y/2−1)
2
}, K(x:3) can be decomposed into rp C3-factors and sp

C3x-factors where (rp, sp) ∈ {(x, 0), (x − 2, 2), (x − 3, 3), . . . , (0, x)}, so that rα =∑3(y/2−1)
p=1 rp and sα =

∑3(y/2−1)
p=1 sp. By Theorem 3, K6x can be decomposed into rβ

C3-factors, sβ C3x-factors, and a 1-factor where (rβ, sβ) ∈ {((6x − 2)/2, 0), (0, (6x −

2)/2)}. We must show that for each s ∈ {0, 2, 3, . . . , (3xy − 2)/2} there exists a

(3, 3x)–HWP(3xy; r, s). It is easy to see that such a decomposition exists when s ∈

{0, 2, 3, . . . , (3xy−6x)/2} by choosing sα = s and sβ = 0. For each i ∈ {1, 2, . . . , (6x−

2)/2}, when s = (3xy − 6x)/2 + i, choose sα = s− (6x− 2)/2 and sβ = (6x− 2)/2.

Notice that

2 ≤ sα =
3xy − 6x

2
+i−

(
6x− 2

2

)
≤ 3xy − 6x

2
+

(
6x− 2

2

)
−
(

6x− 2

2

)
≤ 3xy − 6x

2
.

Therefore by Lemma 1.2.6, the proposed (3, 3x)–HWP(3xy; r, s) exists for all specified

pairs (r, s). �

Note that when x is even we cannot apply Theorem 7 to decompose K(x:3). Instead

we can apply Theorem 4 to get a decomposition of K(x:3) into x C3-factors or a

decomposition of K(x:3) into x C3x-factors. In this way we can use Theorem 4 to
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decompose K(x:3) into rp C3-factors and sp C3x-factors, where (rp, sp) ∈ {(x, 0), (0, x)}.

Theorem 12 For each even integer x ≥ 8 and each odd integer y ≥ 3, there exists a

(3, 3x)–HWP(3xy; r, s) if and only if r + s = 3xy−2
2

except possibly when:

• (s, x) ∈ {(2, 12), (4, 12)},

• 1 ≤ s ≤ x
2
− 1 and x ≡ 4 (mod 6),

• s = 1 and x ≡ 2 (mod 12).

Proof: Suppose x ≥ 8 is even. By Theorem 9, there exists a 3-RGDD(3y) for all

odd integers y ≥ 3. By Theorem 4, for each p ∈ {1, 2, . . . , 3(y−1)
2
}, K(x:3) can be

decomposed into rp C3-factors and sp C3x-factors, where (rp, sp) ∈ {(x, 0), (0, x)}. By

Theorem 5, there exists a decomposition of K3x into rβ C3-factors and sβ C3x-factors

and a 1-factor for (rβ, sβ) ∈ {(3x−2
2
, 0), (3x−4

2
, 1), . . . , (0, 3x−2

2
)}, except possibly when

(sβ, x) ∈ {(2, 12), (4, 12)}; 1 ≤ sβ ≤ x
2
− 1 and x ≡ 4 (mod 6); or sβ = 1 and x ≡ 2

(mod 12). We apply Lemma 1.2.6 to obtain a (3, 3x)–HWP(3xy; r, s) with r = rα+rβ

and s = sα+sβ for all s ∈ {0, 1, . . . , 3xy−2
2
} (with the exceptions listed in the statement

of this theorem) as follows. We may write sα =
∑ 3(y−1)

2
p=1 sp where sp ∈ {0, x}, so that

sα ∈ {0, x, 2x, . . . , x · 3y−3
2
}. Write s = t · x + i, where t ∈ {0, 1, . . . , 3y−3

2
} and

i ∈ {0, 1, . . . , 3x−2
2
}. We may choose sα = s− i and sβ = i. �
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Note that the cases of x = 2, 4 are not considered in the previous theorem. They will

be handled in Section 1.3.1. We leave open the case of x = 6 and y odd.

Theorem 13 For each even integer x ≥ 8 and each even integer y ≥ 8, there exists

a

(3, 3x)–HWP(3xy; r, s) if and only if r + s = 3xy−2
2

except possibly when:

• (s, x) ∈ {(2, 12), (4, 12)},

• 2 ≤ s ≤ x
2
− 1 and x ≡ 4 or 10 (mod 12),

• s = 1 and x ≡ 2, 4, or 10 (mod 12).

Proof: There exists a 3-RGDD(6y/2) for all even y ≥ 8 by Theorem 9. There ex-

ists a decomposition of K(x:3) into rp C3-factors and sp C3x-factors for (rp, sp) ∈

{(0, x), (x, 0)} by Theorem 4. By the same result, we also get a decomposition

of K(x:6) into rγ C3-factors and sγ C3x-factors for (rγ, sγ) ∈ {(0, 5x
2

), (5x
2
, 0)}. By

Theorem 5, there exists a decomposition of K3x into rβ C3-factors, sβ C3x-factors,

and a 1-factor for (rβ, sβ) ∈ {3x−2
2
, 0), (3x−4

2
, 1), . . . , (0, 3x−2

2
)}, except possibly when

(sβ, x) ∈ {(2, 12), (4, 12)}; 1 ≤ sβ ≤ x
2
− 1 and x ≡ 4 (mod 6); or sβ = 1 and

x ≡ 2 (mod 12). Write sα =
∑ 3y

2
−4

p=1 sp so sα ∈ {0, x, 2x, . . . , x(3y
2
− 4)}. By

Lemma 1.2.7, we obtain a (3, 12)–HWP(3xy; r, s) for all s ∈ {0, 1, . . . , 3xy−2
2
} as fol-

lows. If s ∈ {0, 1, . . . , 3xy
2
− 5x

2
− 1}, it is easy to see that we can let sγ = 0 and write

s as s = sα + sβ. If s = 3xy
2
− 5x

2
+ i, for i = 0, 1, . . . , 3x

2
− 1 choose sα = (3y

2
− 5)x,
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sβ = i, and sγ = 5x
2

. If s = 3xy
2
− x+ i for i = 0, 1, . . . , x− 1, choose sα = (3y

2
− 4)x,

sβ = x
2

+ i and sγ = 5x
2

. �

We can fill in some of the gaps that we have left by using Theorem 8.

Theorem 14 For each odd integer x̄ ≥ 3 and each even integer y ≥ 6, there exists a

(3, 6x̄)–HWP(6x̄y; r, s) if and only if r + s = 6x̄y−2
2

except possibly when s = 1.

Proof: Assume that y ≡ 2 (mod 4) and y ≥ 6. For all such y, there ex-

ists a 3-RGDD(3
y
2 ) by Theorem 9. There exists a (3, 6x̄)–HWP(12x̄; rβ, sβ) for all

(rβ, sβ) ∈ {(0, 12x̄−2
2

), (12x̄−2
2

, 0)} by Theorem 3. By Theorem 8, we have that K(4x̄:3)

can be decomposed into rp C3-factors and sp C6x̄-factors for (rp, sp) ∈ {(0, 4x̄), (1, 4x̄−

1), . . . , (4x̄ − 2, 2), (4x̄, 0)}. Apply Lemma 1.2.6 with m = 3, n = 6x̄, and x = 4x̄.

Let sα =
∑3( y

2
−1)/2

p=1 sp, then it is easy to see that sα ∈ {0, 2, 3, . . . , 3x̄y − 6x̄}. Write

s = sα + sβ where sα ∈ {0, 2, 3, . . . , 3x̄y − 6x̄} and sβ ∈ {0, 6x̄ − 1}. Then we can

write s as sα+ sβ for every s ∈ {0, 2, 3, . . . , 6x̄y−2
2
} in this way. Thus we can construct

a (3, 6x̄)–HWP(6x̄y; r, s) for all s ∈ {0, 1, . . . , 6x̄y−2
2
}.

Assume y ≡ 0 (mod 4), and y ≥ 12. Then there exists a 3-RGDD(6
y
4 ) by Theorem 9.

There exists a decomposition of K(4x̄:3) into rp C3-factors and sp C6x̄-factors for sp ∈

{0, 2, 3, . . . , 4x̄} by Theorem 8. By Theorem 4, there exists a (C3, C6x̄)-factorization

of K(4x̄:6) for (rγ, sγ) ∈ {(0, 10x̄), (10x̄, 0)}. There exists a (3, 6x̄)–HWP(12x̄; rβ, sβ)

for sβ ∈ {0, 12x̄−2
2
} by Theorem 3. Now we can easily write s = sα + sβ + sγ for
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s ∈ {0, 2, 3, . . . , 3x̄y − 1} and apply Lemma 1.2.7. �

By writing x = 2x̄ Theorem 14 covers the cases when s 6= 1 and x = 6 and also

some of the cases when s 6= 1 and x ≡ 4 (mod 6) (namely the ones where x ≡ 10

(mod 12)). When x ≥ 6 is even and y ≥ 8 is even, the cases that are not covered by

Theorems 13 and 14 are as follows:

• (s, x) ∈ {(2, 12), (4, 12)},

• 2 ≤ s ≤ x
2
− 1 and x ≡ 4 (mod 12),

• s = 1 and x ≡ 2, 4, 10 (mod 12).

Because there is no 3–RGDD(6u) for u ≤ 3, Lemmas 1.2.6 and 1.2.7 are not useful

when y ∈ {2, 4, 6}. However, we still have some results. When y = 2 and x is even we

may apply Lemma 1.3.1 to find a (3, 3x)–HWP(6x; r, s) for s = s1 + 3x
2
, r = r1, where

(s1, r1) is a solution of the Hamilton-Waterloo Problem with triangles and Hamilton

cycles for K3x.

When y = 4 and x ≥ 2 is even, consider K12x. We can partition the vertices into four

parts of size 3x. In the four copies of K3x we have some solutions for the Hamilton-

Waterloo Problem with triangles and Hamilton cycles. The remaining edges give us

K(3x:4), which can be decomposed into all C3x-factors or into all triangle factors. In

this way we can get either all triangle factors, or s = s1 + e1
9x
2
, r = r1 + e2

9x
2

, where
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(s1, r1) is a solution of the Hamilton-Waterloo problem with triangles and Hamilton

cycles for K3x and e1 + e2 = 1, e1, e2 ≥ 0. If y = 6 and x is even, consider K18x. By

following the same method, we can get either all triangle factors, or s = s1 + e1
15x
2
,

r = r1 + e2
15x
2

, where (s1, r1) is a solution of the Hamilton-Waterloo Problem with

triangles and Hamilton cycles for K3x and e1 + e2 = 1, e1, e2 ≥ 0.

1.3.1 When x is Small

In this subsection, we consider the small values of x for which the general constructions

used in Section 1.3 cannot be readily applied. By applying the methods described at

the end of Section 1.3, it is easy to see that the following decompositions exist when

x = 2: a (3, 6)–HWP(24; r, s) for s ∈ {0, 1, 2, 7, 8, 9, 10, 11}, and a (3, 6)–HWP(48; r, s)

for s ∈ {0, 1, 2, 3, 4, 5, 12, 13, 14, 19, 20, 21, 22, 23}. The following three results gives

solutions to the Hamilton-Waterloo Problem, (3, 3x)–HWP(3xy; r, s), for all other

values of y when x = 2.

Theorem 15 There exists a (3, 6)–HWP(6y; r, s) for all y ≡ 2 (mod 4) if and only

if r + s = 6y−2
2

, except when y = 2 and s = 0.

Proof: If y = 2, then there exists a (3, 6)–HWP(12; r, s) for all possible r and s

except when s = 0 by Theorem 6. We now assume that y ≡ 2 (mod 4) and
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y ≥ 6. For all such y, there exists a 3-RGDD(3
y
2 ) by Theorem 9. There exists

a (3, 6)–HWP(12; rβ, sβ) for all (rβ, sβ) ∈ {(0, 5), (1, 4), (2, 3), (3, 2), (4, 1)} by Theo-

rem 6. By Lemma 1.2.4, we have that K(4:3) can be decomposed into rp C3-factors

and sp C6-factors for (rp, sp) ∈ {(0, 4), (1, 3), (2, 2), (4, 0)}. Apply Lemma 1.2.6 with

m = 3, n = 6, and x = 4. Let sα =
∑3( y

2
−1)/2

p=1 sp, then it is easy to see that

sα ∈ {0, 2, 3, . . . , 3y − 6}. Write s = sα + sβ where sα ∈ {0, 2, 3, . . . , 3y − 6} and

sβ ∈ {1, 2, 3, 4, 5}. Then we can write s as sα + sβ for every s ∈ {1, 2, . . . , 6y−2
2
} in

this way. If s = 0, then there exists a (3, 6)–HWP(6y; r, s) by Theorem 3. Thus we

can construct a (3, 6)–HWP(6y; r, s) for all s ∈ {0, 1, . . . , 6y−2
2
}. �

Theorem 16 There exists a (3, 6)–HWP(6y; r, s) for all y ≡ 0 (mod 4) if and only

if r + s = 6y−2
2

, except possibly when y = 4 or y = 8.

Proof: Assume y ≡ 0 (mod 4), and y ≥ 12. Then there exists a 3-RGDD(6
y
4 ) by The-

orem 9. There exists a decomposition of K(4:3) into rp C3-factors and sp C6-factors for

sp ∈ {0, 2, 3, 4} by Lemma 1.2.4. By Theorem 4, there exists a (C3, C6)-factorization

of K(4:6) for (rγ, sγ) ∈ {(0, 10), (10, 0)}. There exists a (3, 6)–HWP(12; rβ, sβ) for

sβ ∈ {1, 2, 3, 4, 5} by Theorem 6. Now we can easily write s = sα + sβ + sγ for

s ∈ {0, 1, . . . , 3y − 1} and apply Lemma 1.2.7. �

Theorem 17 There exists a (3, 6)–HWP(6y; r, s) when y is odd and

s ∈ {1, 2, 3(y−1)
2

+ 1, 3(y−1)
2

+ 2, . . . , 3y − 1}.
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Proof: If y = 1, then exists a (3, 6)–HWP(6; r, s) for all possible r and s except for

(r, s) = (2, 0) by Theorem 6. Assume y ≥ 3 is odd, then there exists a 3-RGDD(3y)

by Theorem 9. There exists a (3, 6)–HWP(6; rβ, sβ) for (rβ, sβ) ∈ {(1, 1), (0, 2)} by

Theorem 6. It is easy to see that K(2:3) can be decomposed into a C3-factor and a

C6-factor or two C6-factors. Apply Lemma 1.2.6 with m = 3, n = 6 and x = 2. Let

sα =
∑3(y−1)/2

p=1 sp with sp ∈ {1, 2} and notice that sα ∈ {3(y−1)
2

, 3(y−1)
2

+1, . . . , 3(y−1)}.

Then we can write s as sα+sβ for every s ∈ {3(y−1)
2

+1, 3(y−1)
2

+2, . . . , 3y−1}. Thus we

obtain a (3, 6)–HWP(6y; r, s) for all such s. We can also obtain a (3, 6)–HWP(6y; r, s)

for s = 1 and s = 2 as follows. There exists a 3-RGDD(6y) by Theorem 9; it has

3(y − 1) parallel classes. There exists a (3, 6)–HWP(6; rβ, sβ) for sβ ∈ {1, 2}. Apply

Lemma 1.2.6 with m = 3, n = 6 and x = 1, and write s = sα + sβ with sα = 0 and

sβ = 1 or sβ = 2. �

Recall from Theorem 6 that there exists a (3, 12)–HWP(12; rδ, sδ) if and only if

sδ ∈ {1, 2, 3, 4, 5}. For each possible decomposition of K12, let sβ = sδ + 6, and

apply Lemma 1.3.1 to obtain a (3, 12)–HWP(24; r, s) for all s ∈ {7, 8, 9, 10, 11}. If

s = 0, then simply apply Theorem 3. Similarly, apply Theorem 3 to obtain a

(3, 12)–HWP(48; r, s) for s = 0. Consider the equipartite graph K(12:4). It has a

C12-factorization and a C3-factorization by Theorem 4. On each part, construct a

(3, 12)–HWP(12; r, s) for s ∈ {1, 2, 3, 4, 5}. Thus we have a (3, 12)–HWP(48; r, s) for

s ∈ {0, 1, 2, 3, 4, 5, 19, 20, 21, 22, 23}. The next theorem settles the Hamilton-Waterloo

Problem, (3, 3x)–HWP(3xy; r, s) when x = 4 for the remaining values of y.
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Theorem 18 For y = 3 and all y ≥ 5, there exists a (3, 12)–HWP(12y; r, s) if and

only if r + s = v−2
2

.

Proof: Let y ≥ 6 be even. There exists a 3-RGDD(6y/2) by Theorem 9. There

exists a decomposition of K(4:3) into rp C3-factors and sp C12-factors for (rp, sp) ∈

{(0, 4), (4, 0)} by Lemma 4. By the same result, we also get a decomposition of

K(4:6) into rγ C3-factors and sγ C12-factors for (rγ, sγ) ∈ {(0, 10), (10, 0)}. Recall that

there exists a (3, 12)–HWP(12; rβ, sβ) for (rβ, sβ) ∈ {(0, 5), (1, 4), (2, 3), (3, 2), (4, 1)}

by Theorem 6. Write sα =
∑ 3y

2
−4

p=1 sp so sα ∈ {0, 4, 8, . . . , 6y − 16}. By Lemma 1.2.7,

we obtain a (3, 12)–HWP(3xy; r, s) for all s ∈ {0, 1, . . . , 6y − 1} as follows. If s = 0,

apply Theorem 3. If s ∈ {1, 2, . . . , 6y − 11}, it is easy to see that we can let sγ = 0

and write s as s = sα + sβ. If s = 6y− 10, choose sα = 6y− 24, sβ = 4, and sγ = 10.

If s = 6y − i for i = 9, 8, 7, 6, choose sα = 6y − 20, sβ = 10 − i and sγ = 10. If

s = 6y − i for i = 5, 4, 3, 2, 1, choose sα = 6y − 16, sβ = 6− i and sγ = 10.

If y ≥ 3 is odd, there exists a 3-RGDD(3y) by Lemma 9. There exists a decomposition

of K(4:3) into rp C3-factors and sp C12-factors for (rp, sp) ∈ {(0, 4), (4, 0)} by Theo-

rem 4. Write sα =
∑ 3(y−1)

2
p=1 sp, so sα ∈ {0, 4, 8, . . . , 6(y − 1)}. Recall the existence of

a (3, 12)–HWP(12; rβ, sβ) for sβ ∈ {1, 2, 3, 4, 5}. Then it is easy to see that we can

write s as sα + sβ for all s ∈ {0, 1, 2, . . . , 6y − 1}. Thus we may apply Lemma 1.2.6

for the result. �
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1.4 Conclusions

The following theorem combines the results from Theorems 10, 11, 12, 13,

14, 15, 16, 17, and 18 (note that we did not include all of the small partially complete

results such as those at the end of Section 1.3):

Theorem 19 Let x ≥ 2, y ≥ 2, and r, s ≥ 0 such that r + s = b3xy−1
2
c. Then there

exist a (3, 3x)-HWP(3xy; r, s) except possibly when:

• s = 1, y ≥ 3, and x ∈ {3, 31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 69, 71, 79, 83}.

• s = 1, x is odd and y is even.

• s = 1, x ≥ 6, x ≡ 2 (mod 12).

• s = 1, y ≥ 8 is even and x ≡ 10 (mod 12).

• s = 1, x ≥ 3 is odd and y is even.

• 1 ≤ s ≤ x
2
− 1, x ≥ 16, x ≡ 4 (mod 12), y is even.

• 1 ≤ s ≤ x
2
− 1, x ≥ 10, x ≡ 4 (mod 6), y is odd.

• (s, x) ∈ {(2, 12), (4, 12)}.

• s = 0, x = 2, y = 2.

• x = 2 and y ∈ {4, 8}.

• s ∈ {3, 4, . . . 3(y−1)
2
}, x = 2 and y ≥ 3 is odd.

• x 6∈ {2, 4} and y ∈ {2, 4, 6}.
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• x = 4 and y ∈ {2, 4}.

• x = 6 and y odd.
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Chapter 2

A Generalization of the

Hamilton-Waterloo Problem on

Complete Equipartite Graphs1

2.1 Introduction

The Oberwolfach Problem was first posed by Ringel in 1967 during a conference in

Oberwolfach. The question was whether it was possible to seat the v conference

attendees at n round tables for dinner during v−1
2

nights, in such a way that every

1The material in this chapter has been submitted to Journal of Combinatorial Designs
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attendee sits next to every other attendee exactly once. This is equivalent to asking

whether the complete graph Kv can be decomposed into v−1
2

copies of a 2-factor F

(in a 2-factor every component is a cycle, which represents a round table). To achieve

this decomposition v needs to be odd, because the vertices (attendees) need to have

even degree. Later a version with v even was studied. In this case, the attendees

will never sit next to their spouses (and we are assuming that every attendee has a

spouse). This is equivalent to asking for a decomposition of Kv into v−2
2

copies of a

2-factor F , and one copy of a 1-factor (each attendee together with their spouse).

In [28] Liu first worked on the generalization of the Oberwolfach problem, where

instead of avoiding their spouses, the attendees avoid all the other members of their

delegation. The assumption was that all the delegations had the same number of

people. Thus we are seeking to decompose the complete equipartite graph K(m:n)

with n partite sets (delegations) of size m each (members of a delegations) into (n−1)m
2

copies of a 2-factor F . Here (n− 1)m has to be even. In [22] Hoffman and Holliday

worked on the equipartite generaliztion of the Oberwolfach problem when (n − 1)m

is odd, decomposing into (n−1)m−1
2

copies of a 2-factor F , and one copy of a 1-factor.

The Hamilton-Waterloo problem is a generalization of the Oberwolfach problem, in

which the conference is being held at two different cities. Because the table ar-

rangements are different, we have two 2-factors, F1 and F2. The Hamilton-Waterloo

problem then asks whether the complete graph Kv can be decomposed into r copies
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of the 2-factor F1 (tables at Hamilton) and s copies of the 2-factor F2 (tables at Wa-

terloo), such that s+ r = v−1
2

, when v is odd, and having s+ r = v−2
2

and a 1-factor

when v is even.

The uniform Oberwolfach problem (when all the tables have the same size, i.e. all the

cycles of the 2-factor have the same size) has been completely solved by Alspach and

Haagkvist [2] and Alspach, Schellenberg, Stinson and Wagner [3]. For the non-uniform

case of the Oberwolfach problem, many results have been obtained. For a survey of

results up to 2006 see [12]. The uniform Oberwolfach problem over equipartite graphs

has been completely solved by Liu [29] and Hoffman and Holliday [22]. In the non-

uniform case Bryant, Danziger and Pettersson [11] completely solved the case when

the 2-factor is bipartite. For the Hamilton-Waterloo problem most of the results are

uniform, see for example [5] or [13]. In particular, Burgess, Danziger and Traetta [13]

proved the following theorem.

Theorem 20 [13] If m and n are odd integers with n ≥ m ≥ 3 and t > 1, then

there is a decomposition of Kmnt into s Cm-factors and r Cn-factors if and only if

t is odd, s, r ≥ 0 and s + r = (mnt − 1)/2, except possibly when r = 1 or 3, or

(m,n, r) = (5, 9, 5), (5, 9, 7), (7, 9, 5), (7, 9, 7), (3, 13, 5).

Theorem 20 covers most of the odd ordered uniform cases. The authors in [13] point

out that it is possible to have solutions where the number of vertices is not a multimple
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of mn. Thus if l = lcm(m,n) and the number of vertices is a multiple of l, but not

divisible by mn, then Theorem 20 cannot be applied. The constructions given in this

paper can be applied to cover some of these cases.

There are some results in the non-uniform case, some examples are Bryant, Danzinger

[9], Bryant, Danzinger, Dean [10] and Haggkvist [20].

The Hamilton-Waterloo problem can be generalized for complete equipartite graphs

in the same way as the Oberwolfach problem was generalized, but not much work has

been done in this direction. Asplund, Kamin, Keranen, Pastine and Özkan [5] gave

some constructions for complete equipartite graphs with 3 parts. Burgess, Danziger

and Traetta [13] studied the case when the graph consists of m partite sets of size n,

and the cycle sizes are m and n. In both papers the constructions were done in order

to get a result on the Hamilton-Waterloo problem for complete graphs. The focus of

this paper is to give a generalization of the Hamilton-Waterloo problem for complete

equipartite graphs with an odd number of partite sets. We obtain results both in the

uniform and non-uniform cases.
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a b c

d

f

e

Figure 2.1: A multipartite graph

0,0 0,1 0,2

1,0

2,0

1,1

Figure 2.2: A multipartite graph labeled according to its partite sets

2.2 Basic Definitions and Results

Let G be a multipartite graph with k partite sets, G0, G1, . . . , Gk−1. We identify each

vertex g of G as an ordered pair (g, i), where g ∈ Gi.

Example 9: Consider the graph in Figure 2.1. If we consider each column as a

partite set, we have 3 partite sets; G0, with vertices a, d and f ; G1 with vertices

b and e; and G2 with c as its only vertex. Then the vertices are (a, 0), (b, 1),

(c, 2), (d, 0), (e, 1), (f, 0).

When it is convenient, we will just denote the vertices (0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), (2, 0), as in Figure 2.2.
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Definition 2.2.1 Let G and H be multipartite graphs. Then we define the partite

product of G and H, G⊗H as follows:

• V (G⊗H) = {(g, h, i)|(g, i) ∈ V (G) and (h, i) ∈ V (H)}.

• E(G ⊗ H) = {{(g1, h1, i), (g2, h2, j)}|{(g1, i), (g2, j)} ∈ E(G) and

{(h1, i), (h2, j)} ∈ E(H)}.

Notice that this definition is quite similar to that of the direct product. The main

difference is that we are doing this product “just in 1 coordinate”. To see that they are

different it suffices to count the number of vertices in the product. If G = H = K3,3,3

then |V (G×H)| = 81 but |V (G⊗H)| = 27.

Indeed, if the k partite sets of G and H have sizes g0, g1, . . . , gk−1 and h0, h1, . . . , hk−1,

respectively, then |V (G⊗H)| = g0h0 + g1h1 + · · ·+ gk−1hk−1, whereas |V (G×H)| =

(
∑
gi) (

∑
hi).

Remark 2.2.2 The partite product depends on the multipartite representation chosen

for a graph. For example, the graphs G and H in Figure 2.3 are isomorphic, but they

behave differently in the product (where we understand that each column is a part of

the multipartite graph).

The next result follows directly from Definition 2.2.1
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0, 0 0, 1 0, 2

1, 0

2, 0

1, 1

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

G H

0, 0, 0 0, 0, 1 0, 0, 2

0, 1, 0 0, 1, 1

0, 2, 0

1, 0, 0 1, 0, 1

1, 1, 0 1, 1, 1

1, 2, 0

2, 0, 0

2, 1, 0

2, 2, 0

G⊗G

0, 0, 0 0, 0, 1 0, 0, 2

0, 1, 0 0, 1, 1 0, 1, 2

1, 0, 0 1, 0, 1 1, 0, 2

1, 1, 0 1, 1, 1 1, 1, 2

H ⊗H

Figure 2.3: Example of the partite product

Lemma 2.2.3 The product is commutative, that is, G⊗H = H ⊗G.

Most of our results will be concerning complete multipartite graphs. We will denote

by K(n:m) the complete multipartite graph with m parts, each of size n.

65



Lemma 2.2.4 If G is k-partite, then G⊗K(1:k) is isomorphic to G.

Proof: Here each part of K(1:k) has just 1 vertex and so |V (G)| = |V
(
G⊗K(1:k))

∣∣.
Because all the vertices of K(1:k) are neighbors, two vertices (g1, k1, i), (g2, k2, j) of

G ⊗ K(1:k) are neighbors if and only if (g1, i) and (g2, j) are neighbors. Therefore

G⊗K(1:k) is isomorphic to G. �

Definition 2.2.5 The complete cyclic multipartite graph C(x:k) is the graph with k

parts of size x, where two vertices (g, i) and (h, j) are neighbors if and only if i− j =

±1 (mod k), with this subtraction being done modulo k. The directed complete cyclic

multipartite graph
−→
C (x:k) is the graph with k parts of size x, with arcs of the form(

(g, i), (h, i+ 1)
)

for every 0 ≤ g, h ≤ x− 1, 0 ≤ i ≤ k − 1.

It should be noted that any decomposition of
−→
C (x:k) gives a decomposition of C(x:k).

Notice that C(1:k) is the cycle with k vertices and C(x:3) is isomorphic to K(x:3). The

next three results are easy to see, so the proofs are left to the reader.

Lemma 2.2.6 Let G and H be k-partite graphs. If each part of G has |V (G)|
k

vertices

and each part of H has |V (H)|
k

vertices, then:

• Each part of G⊗H has |V (G)|×|V (H)|
k2

vertices.

• |V (G⊗H) | = |V (G)|×|V (H)|
k

.
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Lemma 2.2.7 • K(x:k) ⊗K(y:k) is isomorphic to K(xy:k).

• C(x:k) ⊗ C(y:k) is isomorphic to C(xy:k).

•
−→
C (x:k) ⊗

−→
C (y:k) is isomorphic to

−→
C (xy:k).

Lemma 2.2.8 The complete cyclic multipartite graph is the product of the complete

multipartite graph by the cycle. This is: K(x:k) ⊗ C(1:k) = C(x:k).

2.3 Product and Decompositions

We can consider a decomposition of a graph as a partition of the edge set or as a union

of edge disjoint subgraphs. This means that a decomposition of G into H1, . . . , Hs

is given by E(G) = ∪E(Hi) or by G = ⊕Hi. We will think of ⊕ as a boolean sum,

which means that Hi ⊕Hi = ∅.

We have the following easy result.

Theorem 21 (Distribution) Let G = ⊕iGi and H = ⊕jHj be k-partite graphs.

Then G ⊗ H = (⊕iGi) ⊗ (⊕jHj). Furthermore, the following distributive property

holds:

(⊕iGi)⊗ (⊕jHj) = ⊕i (Gi ⊗⊕jHj) = ⊕i ⊕j (Gi ⊗Hj)
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Proof: It is enough to prove that

G⊗ (H1 ⊕H2) = (G⊗H1)⊕ (G⊗H2) ,

where E(H1) ∩ E(H2) = ∅.

Let

{(g1, h1, i), (g2, h2, j)} ∈ E (G⊗ (H1 ⊕H2)) .

This means that

{(h1, i), (h2, j)} ∈ E(H1) ∪ E(H2).

But since E(H1) ∩ E(H2) = ∅, without loss of generality we may assume

{(h1, i), (h2, j)} ∈ E(H1),

and so

{(g1, h1, i), (g2, h2, j)} ∈ E (G⊗H1) ⊂ E ((G⊗H1)⊕ (G⊗H2)) .

Hence

E (G⊗ (H1 ⊕H2)) ⊂ E ((G⊗H1)⊕ (G⊗H2)) .
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Let now

{(g1, h1, i), (g2, h2, j)} ∈ E ((G⊗H1)⊕ (G⊗H2)) .

This means that

{(g1, h1, i), (g2, h2, j)} ∈ E ((G⊗H1)) ∪ E ((G⊗H2)) .

Without loss of generality we may assume

{(g1, h1, i), (g2, h2, j)} ∈ E ((G⊗H1)) ,

which gives

{(h1, i), (h2, j)} ∈ E(H1) ⊂ E(H1 ⊕H2), and

{(g1, h1, i), (g2, h2, j)} ∈ E (G⊗ (H1 ⊕H2)) .

Hence

E ((G⊗H1)⊕ (G⊗H2)) ⊂ E (G⊗ (H1 ⊕H2)) .

Therefore

G⊗ (H1 ⊕H2) = (G⊗H1)⊕ (G⊗H2) ,
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and by induction we get that the product and additions in

G⊗H = (⊕iGi)⊗ (⊕jHj)

are distributive. �

Corollary 2.3.1 Let G and H be multipartite graphs with k partite sets.

• If G can be decomposed into isomorphic copies of Γ and H can be decomposed

into isomorphic copies of K(1:k) = Kk, then G ⊗ H can be decomposed into

isomorphic copies of Γ.

• If G can be factored into isomorphic copies of Γ and H can be factored into

unions of copies of K(1:k) = Kk, then G ⊗ H can be factored into unions of

copies of Γ.

Proof: If G is decomposed into copies of Γ, it means that G = ⊕Gi, where each Gi

is isomorphic to Γ. If H is decomposed into copies of K(1:k) (or union of them), it

means that H = ⊕Hi, where each Hi is isomorphic to K(1:k) (or union of them).

By the Distribution Theorem we only need to show that Gi ⊗Hi is isomorphic to Γ

or to Gi. But by Lemma 2.2.4 we know this is true. �

It is interesting to notice that the set of k-partite graphs, with ⊕ as a sum and ⊗ as
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a product form a commutative ring. The empty graph is the 0 element, and K(1:k) is

the 1 element. All of the elements are additive involutions, Theorem 21 gives us the

distribution laws, and Lemma 2.2.3 shows that the product is commutative.

2.4 Product of Cycles

In this section we will concern ourselves with the product of two or more cycles. Since

our product depends on what kind of partition we are using, we need to ask something

more from our cycles in order to get results.

Definition 2.4.1 Given a graph G we will say that C is a Cn-factor of G if C is

a 2-factor of G where each connected component is of size n. This means that C is

a spanning subgraph of G and C is a union of disjoint cycles of size n. When it is

understood that the graph is G, then we will just call C a Cn-factor (instead of a Cn-

factor of G). Similarly given a directed graph
−→
G we will say that

−→
C is a

−→
C n-factor of

G if
−→
C is a 2-factor of

−→
G where each connected component is a directed cycle of size

n. When it is understood that the graph is
−→
G , the we will just call

−→
C a

−→
C n-factor.

The following lemmas give us an idea of how directed cycles work under the product.

They also illustrate why we introduce
−→
C (x:k) instead of just working with C(x:k).
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Lemma 2.4.2 Let
−→
C be a directed cycle of length n of

−→
C (x:k), and let

−→
C ′ be a directed

cycle of length m of
−→
C (y:k). Then

−→
C ⊗

−→
C ′ is a set of gcd(n,m)

k
disjoint directed cycles

of
−→
C (xy:k) of length l = nm

gcd(n,m)
and xyk − nm

k
isolated vertices.

Proof: Notice that
−→
C has xk− n isolated vertices, because it is a subgraph of

−→
C (x:k).

Likewise,
−→
C ′ has yk −m isolated vertices.

Let (x0, y0, i) be a vertex in
−→
C⊗
−→
C ′. If either (x0, i) or (y0, i) are isolated vertices, then

(x0, y0, i) is isolated. If neither (x0, i) and (y0, i) are isolated, then they respectively

have an arrow coming from (x1, i−1) and (y1, i−1); and an arrow going to (x2, i+1)

and (y2, i + 1), for some 0 ≤ x1, x2 ≤ x − 1, 0 ≤ y1, y2 ≤ y − 1. Hence (x0, y0, i) has

an arrow coming from (x1, y1, i− 1) and an arrow going to (x2, y2, i+ 1). So
−→
C ⊗

−→
C ′

is composed of directed cycles and isolated vertices.

Assume without loss of generality n ≤ m. Let i0, i1, . . . , in−1 be the non-isolated

vertices of
−→
C , in the order they appear, with i0 ∈

−→
C 0; and let j0, j1, . . . , jm−1 be the

non-isolated vertices of
−→
C ′, in the order they appear with j0 ∈

−→
C ′0. Then the directed

cycle starting at (i0, j0) in
−→
C ⊗

−→
C ′ consists of the vertices:

(i0, j0), (i1, j1), . . . , (in−1, jn−1), (i0, jn), . . . (in−1, im−1)

This directed cycle has length l = nm
gcd(n,m)

. Notice that
−→
C ⊗

−→
C ′ has nm

k
non-isolated

vertices, which means that the number of directed cycles is nm
k
gcd(n,m)
nm

= gcd(n,m)
k

. Thus
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−→
C ⊗
−→
C ′ is a set of gcd(n,m)

k
disjoint directed cycles of

−→
C (xy:k) of length l = nm

gcd(n,m)
and

xyk − nm
k

isolated vertices. �

Lemma 2.4.3 Let
−→
G and

−→
H be a

−→
C n-factor and a

−→
Cm-factor of

−→
C (x:k) and

−→
C (y:k),

respectively. Then
−→
G ⊗

−→
H is a

−→
C l-factor of

−→
C (xy:k), where l = nm

gcd(n,m)
.

Proof: Notice that neither
−→
G nor

−→
H have isolated vertices. Let (x0, y0, i) be a vertex

in
−→
G ⊗

−→
H . We know that (x0, i) has an arrow coming from (x1, i− 1) and an arrow

going to (x2, i + 1), for exactly one pair 0 ≤ x1, x2 ≤ x − 1, because
−→
G is a

−→
C n-

factor. Likewise (y0, i) has has an arrow coming from (y1, i− 1) and an arrow going

to (y2, i + 1), for exactly one pair 0 ≤ y1, y2 ≤ y − 1. Hence (x0, y0, i) has an arrow

coming from (x1, y1, i − 1) and an arrow going to (x2, y2, i + 1), so each vertex in

−→
G ⊗

−→
H is in exactly one directed cycle.

Let
−→
G = ⊕i

−→
C (i) and

−→
H = ⊕j

−→
C ′(j), where each

−→
C (i) is a directed cycle of length n,

and each
−→
C ′(j) is a directed cycle of length m.

Then by Theorem 21 we get:

−→
G ⊗

−→
H =

(
⊕i
−→
C (i)

)
⊗
(
⊕j
−→
C ′(j)

)
= ⊕i ⊕j

(−→
C (i)⊗

−→
C ′(j)

)
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But by Lemma 2.4.2 we know that
−→
C (i) ⊗

−→
C ′(j) is composed of gcd(n,m)

k
directed

cycles of length l = nm
gcd(n,m)

. Hence each directed cycle in
−→
G ⊗

−→
H has size l = nm

gcd(n,m)

and
−→
G ⊗

−→
H is a

−→
C l-factor. �

Definition 2.4.4 Given a graph G we will say that F is a [ne11 , n
e2
2 , . . . , n

ep
p ]-factor

of G if F is a 2-factor of G with ei connected components of size ni, i = 1, 2, . . . , p.

If ei is not listed, we will just assume that it is 1. Also, we allow ni = nj, so that the

number of cycles of a certain size is just the sum of the exponents of that number in

the expression [ne11 , . . . , n
ep
p ].

Example 10: A [32, 33, 52, 11, 13]-factor is a subgraph of a graph on 59 vertices,

consisting of 5 cycles of size 3, 2 cycles of size 5, 1 cycle of size 11 and 1 cycle

of size 13. This subgraph can also be written as a [3, 3, 3, 3, 3, 5, 5, 11, 13]-factor

or as a [35, 52, 11, 13]-factor.

Notice that a Cn-factor of a graph on m vertices is a [n
m
n ]-factor.
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2.5 From C(v:n) to K(v:m)

It is advantageous to find solutions to the the Hamilton-Waterloo problem on com-

plete multipartite graphs because they can then be used to obtain solutions to the

Hamilton-Waterloo problem on complete graphs:

Lemma 2.5.1 Let m, n, x, y and v be positive integers. Suppose the following

conditions are satisfied:

• There exists a decomposition of Kv into sα Cxn-factors and rα Cyn-factors.

• There exists a decomposition of K(v:m) into sβ Cxn-factors and rβ Cyn-factors.

Then there exists a decomposition of Kvm into s = sα+sβ Cxn-factors and r = rα+rβ

Cyn-factors.

Proof: Partition the vertices of Kvm into m sets A1, . . . , Am of size v each. The graph

that contains the edges between vertices belonging to a same partite set is the union

of m disjoint copies of Kv. We can decompose each copy of Kv into sα Cxn-factors

and rα Cyn-factors. The graph that contains the edges between vertices belonging

to different parts is isomorphic to K(v:m). We can decompose this graph into sβ

Cxn-factors and rβ Cyn-factors.
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Thus we have a decomposition of Kvm into s = sα + sβ Cxn-factors and r = rα + rβ

Cyn-factors. �

One could write a version of the lemma for non-uniform solutions as follows, where

by mKv we understand the graph consisting of m disconnected copies of Kv.

Lemma 2.5.2 Let m, and v be positive integers. Let F1 and F2 be two 2-factors on

vm vertices. Suppose the following conditions are satisfied:

• There exists a decomposition of mKv into sα copies of F1 and rα copies of F2.

• There exists a decomposition of K(v:m) into sβ copies of F1 and rβ copies of F2.

Then there exists a decomposition of Kvm into s = sα+sβ copies of F1 and r = rα+rβ

copies of F2.

In order to use these lemmas we need two types of ingredients. The first one is the

decomposition of the complete graph Kv. In [2, 3] uniform decompositions were given:

Theorem 22 [2, 3] There exists a decomposition of Kv into Cn-factors if and only

if v ≡ 0 (mod n), (v, n) 6= (6, 3) and (v, n) 6= (12, 3).
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The other ingredient is the decomposition of the complete multipartite graph K(v:m).

In [13] the authors used decompositions of C(v:m) to obtain decompositions of K(v:m).

We describe this type of construction in a formal fashion in the following lemma.

Lemma 2.5.3 Let m, x1, . . . , xp, y1, . . . , yp, and v be positive integers. Let

s1, . . . , sm−1
2

be non-negative integers. Suppose the following conditions are satisfied:

• There exists a decomposition of Km into [n1, . . . , np]-factors.

• For every 1 ≤ i ≤ p, and for every 1 ≤ t ≤ m−1
2

there exists a decomposition of

C(v:ni) into st Cxini
-factors and rt Cyini

-factors.

Let

s =

(m−1)
2∑
t=1

st and r =

(m−1)
2∑
t=1

rt

Then there exists a decomposition of K(v:m) into s [(x1n1)
v
x1 , . . . , (xpnp)

v
xp ]-factors and

r [(y1n1)
v
y1 , . . . , (ypnp)

v
yp ]-factors.

Proof: Using the decomposition of Km into [n1, n2, . . . , np]-factors, we have:

K(1:m) = Km =

m−1
2⊕
t=1

Nt

where each Nt is a [n1, n2, . . . , np]-factor.
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We know that K(v:m) = K(v:m) ⊗K(1:m). This gives:

K(v:m) = K(v:m) ⊗K(1:m)

= K(v:m) ⊗
(⊕m−1

2
t=1 Nt

)
=

⊕m−1
2

t=1

(
K(v:m) ⊗Nt

)

Notice that K(v:m)⊗Nt is a spanning subgraph of K(v:m). Since Nt is a [n1, n2, . . . , np]-

factor, we have Nt =
⊕p

i=1 C(wi), where C(wi) is a cycle of size ni. Therefore,

K(v:m) ⊗Nt = K(v:m) ⊗ (
⊕p

i=1C(wi))

=
⊕p

i=1

(
K(v:m) ⊗ C(wi)

)

But K(v : m)⊗C(wi) is isomorphic to C(v:ni) because C(wi) is isomorphic to C(1:ni).

So for each wi we can decompose K(v : m)⊗C(wi) into st Cxini
-factors and rt Cyini

-

factors. Since C(v:ni) has vni vertices, a Cxini
-factor has v

xi
cycles, hence it is a

[(xini)
v
xi ]-factor. Likewise a Cyini

-factor is a [(yini)
v
yi ]-factor.

Taking the union of one Cxini
-factor for each i gives a [(x1n1)

v
x1 , . . . , (xpnp)

v
xp ]-factor.

Thus we get a decomposition of K(v : m)⊗Nt into st [(x1n1)
v
x1 , . . . , (xpnp)

v
xp ]-factors

and rt [(y1n1)
v
y1 , . . . , (ypnp)

v
yp ]-factors.

Doing this for every 1 ≤ t ≤ m−1
2

, we end up with a decomposition of K(v:m) into s

[(x1n1)
v
x1 , . . . , (xpnp)

v
xp ]-factors and r [(y1n1)

v
y1 , . . . , (ypnp)

v
yp ]-factors. �
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It is important to note that Theorem 22 can be used to obtain decompositions of Km

into Cn-factors. Thus the focus of the next three sections is to find decompositions

of C(v:n). Any decomposition of
−→
C (v:n) is equivalent to a decomposition of C(v:n), by

simply removing the direction of each edge. We will work with the partite product

on directed graphs to find decompositions of
−→
C (v:n), and thus obtain decompositions

of C(v:n).

2.6 Hamilton-Waterloo Problem on Directed

Complete Cyclic Multipartite Graphs

For the entirety of this section, we assume x is odd. In this section we will decompose

−→
C (x:n) into

−→
C n-factors and

−→
C xn-factors (Hamilton Cycles), and

−→
C (4x:n) into

−→
C n-

factors and
−→
C 2xn-factors.

Suppose Gα and Gβ are two parts of size x in an equipartite directed graph G. We

say an arc in G has difference d if ((g1, α), (g2, β)) ∈ E(G) and g2 − g1 ≡ d (mod x).

If {((g1, α), (g2, β)) : g2 − g1 ≡ d (mod x)} ⊂ E(G), then we say that difference d

between parts α and β is covered by G.

Let the partite sets of
−→
C (x:n) be G0, G1, . . . , Gn−1. Write n− 1 = 2e1 + 2e2 + . . .+ 2ek

with eα > eβ if α < β. Notice that k ≤ n
2
. Working modulo x, let Tx(i) be the
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0,0 0,1 0,2 0,3 0,4 0,5 0,6

1,0 1,1 1,2 1,3 1,4 1,5 1,6

2,0 2,1 2,2 2,3 2,4 2,5 2,6

3,0 3,1 3,2 3,3 3,4 3,5 3,6

4,0 4,1 4,2 4,3 4,4 4,5 4,6

Figure 2.4: One directed cycle in T5(1), with n = 7.

directed subgraph of
−→
C (x:n) obtained by taking differences:

• 2ej i between Gj−1 and Gj for 1 ≤ j ≤ k.

• −2i between Gj−1 and Gj for k + 1 ≤ j ≤ 2k − 1.

• −i between Gj−1 and Gj for 2k ≤ j ≤ n− 1.

• −i between Gn−1 and G0.

Example 11: We construct T5(1) with n = 7. We have n − 1 = 6 = 22 + 21, and

k = 2.

This means that from the first column to the second one we add 22, from the

second to the third we add 2; since k = 2, from the third to the forth we subtract

2, and for the rest of the arcs we just subtract 1. Figure 2.4 shows one directed

cycle of this construction.

The rest of the arcs are obtained by developing this base directed cycle modulo x,
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i.e. if ((α, j), (β, j + 1)) ∈ E(Tx(i)) then ((α + h, j), (β + h, j + 1)) ∈ E(Tx(i))

for all h ∈ Zx.

Lemma 2.6.1 Tx(i) is a
−→
C n-factor for any i.

Proof: It suffices to show that the construction gives a base directed cycle of length n.

The directed cycle containing the vertex (0, 0) can be tracked by considering the first

coordinate of each vertex that is visited while passing from G0 to G1 to G2 . . . to G0.

If we add the respective differences of the edges between G0 and G1, G1 and G2, . . .,

Gn−1 andG0, we must show that this total sum is 0. Because 2e1+2e2+. . .+2ek = n−1,

we have for the sum:

i(n− 1)− 2i(k − 1)− i(n− 2k + 1) = i(n− 1)− i(n− 1) = 0.

�

Let Fh(G) be the directed subgraph of the directed graph G that contains only the

arcs between parts h− 1 and h. That is

E(Fh(G)) = {((g1, h− 1)(g2, h)) |{(g1, h− 1)(g2, h)} ∈ E(G)} .

In particular Fn(G) contains the arcs between Gn−1 and G0.
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T3(0) = T3(1) =

H3(0, 1) = H3(1, 0) =

Figure 2.5: T3(0), T3(1), H3(0, 1), H3(1, 0).

Let Hx(i, s) = Tx(i)⊕Fn(Tx(i))⊕Fn(Tx(s)). This means that Hx(i, s) is the directed

subgraph of
−→
C (x:n) obtained by taking the same arcs as Tx(i) between Gj and Gj+1

for 0 ≤ j ≤ n− 2 and Tx(s) between Gn−1 and G0.

Example 12: Figure 2.5 ilustrates T3(0), T3(1), H3(0, 1) and H3(1, 0) with n = 3.

Lemma 2.6.2 If gcd(x, i− s) = 1 then Hx(i, s) is a directed Hamiltonian cycle.

Proof: Because the arcs are given by differences it is clear that each vertex has in-

degree and out-degree both equal to 1. We need to show that all of the vertices are

connected. We will first show that there is a directed path between any 2 vertices of

G0. Without loss of generality, we will show that (0, 0) is connected to (α, 0) for any

α. Because the arcs between groups Gj and Gj+1 are the same as the arcs in Tx(i)

for j = 0, . . . , n− 2 it is easy to see that there is a path from (0, 0) to (i, n− 1). Now

the arc leaving from (i, n − 1) has its other end as (i − s, 0). So (0, 0) is connected
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to (i− s, 0). If we continue on this path, every time we arrive back in G0, we arrive

at the vertex (α′(i− s), 0). Because gcd(x, i− s) = 1, the order of i− s in the cyclic

group Zx is x. Thus any α modulo x can be written as α′(i − s). Hence (0, 0) is

connected to all the vertices of G0.

Because we are defining arcs by differences, every vertex in G1 is connected to a vertex

in G0, every vertex in G2 to a vertex in G1, and so on. Therefore all the vertices are

connected, and the directed cycle is Hamiltonian as we wanted to prove. �

Next we show how to decompose
−→
C (x:n) by using the Hx(i, j) graphs. First we will

decompose
−→
C (x:n) into

−→
C n-factors using the Tx(i) graphs. Then we will show how to

switch some edges in the Tx(i) graphs to obtain Hx(i, j) graphs. It is important to

notice that Hx(i, i) = Tx(i).

Lemma 2.6.3 Let x be odd, and let φ be a bijection on {0, ..., x− 1}. Then

−→
C (x:n) =

x−1⊕
i=0

Tx(i) =
x−1⊕
i=0

Hx(i, φ(i))

Proof: To prove the first equality,

−→
C (x:n) =

x−1⊕
i=0

Tx(i),
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we need to show that any difference between consecutive parts is covered by one of

the Tx(i) graphs. Notice that all the differences in the Tx graphs are given by a power

of 2 times i, or −2i or −i. It is clear that between parts which use difference −i, we

cover all the differences, with difference δ being covered in Tx(x−δ). Because x is odd,

gcd(x, 2e) = 1, so the order of 2e in the cyclic group Cx is x for any 1 ≤ e ≤ x−1. This

means that any δ ≡ 2ej i (mod x) can be written as 2eδ′. Therefore, the difference δ

between the remaining pairs of consecutive groups is covered in some Tx(δ
′). A similar

calculation can be used for differences of the form −2i, because gcd(x, x − 2) = 1.

Here we write δ as −2δ′, and the difference is covered in Tx(δ
′).

For the second equality we have

x−1⊕
i=0

Hx(i, φ(i)) =
x−1⊕
i=0

(Tx(i)⊕ Fn(Tx(i))⊕ Fn(Tx(φ(i))))

=
x−1⊕
i=0

Tx(i)
x−1⊕
i=0

Fn(Tx(i))
x−1⊕
i=0

Fn(Tx(φ(i)))

and

x−1⊕
i=0

Fn(Tx(φ(i))) =
x−1⊕
i=0

Fn(Tx(i))
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because φ is a bijection. So:

x−1⊕
i=0

Tx(i)
x−1⊕
i=0

Fn(Tx(i))
x−1⊕
i=0

Fn(Tx(φ(i))) =
x−1⊕
i=0

Tx(i)
x−1⊕
i=0

Fn(Tx(i))
x−1⊕
i=0

Fn(Tx(i))

=
x−1⊕
i=0

Tx(i)

Hence:

x−1⊕
i=0

Tx(i) =
x−1⊕
i=0

Hx(i, φ(i))

�

In some cases we have Hx(i, i), notice that this is the same as Tx(i). Decomposing

−→
C (x:n) into s directed Hamilton cycles and x − s

−→
C n-factors is now equivalent to

finding a bijection φ with gcd(x, i − φ(i)) = 1 for s elements of {0, ..., x − 1} and

φ(i) = i for the rest. We will use these functions extensively throughout the paper,

so we will refer to them as “the phi-functions”: Let 2 ≤ s ≤ x. Define φs : Zx → Zx

as follows:
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The phi-functions

φs(i) =



i+ 1 for i ≤ (s− 3), i even

i− 1 for i ≤ (s− 3), i odd

i+ 1 for i = s− 2

i− 2 for i = s− 1, s odd

i− 1 for i = s− 1, s even

i for s ≤ i ≤ x− 1

For example, if s = 7 and x = 11, then

φ7 = (01)(23)(456)(7)(8)(9)(10)

Notice that φs has x − s fixed points. For any non-fixed point we have i − φ(i) ∈

{±1, 2}, and so gcd(x, i− φ(i)) = 1 if x is odd.

Theorem 23 Let x be odd. Let s ∈ {0, ..., x}, s 6= 1. Then
−→
C (x:n) can be decomposed

into s
−→
C xn-factors and x− s

−→
C n-factors.

Proof: If s = 0 we just use the identity mapping. Otherwise we use the phi-function
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Γ(0) = Γ(1) =

Γ(2) = Γ(3) =

Figure 2.6: Triangle factors for K(4:3).

φs. Hence the discussion that precedes this theorem shows that

−→
C (x:n) =

x−1⊕
i=0

Hx(i, φs(i))

is a decomposition of
−→
C (x:n) into s

−→
C xn-factors and x− s

−→
C n-factors. �

Next we turn to the case of x even. We begin by considering
−→
C (4:n). In [5] the graphs

in Figure 2.6 were used to decompose K(4:3) into triangle factors and C6-factors. We

extend the ideas used in [5] to decompose
−→
C (4:n) into

−→
C n-factors and

−→
C 2n-factors.

We will define directed subgraphs γi,j and build the directed graphs Γ(j) as the sum

of some of these directed subgraphs. In each of these directed subgraphs, the vertices

in the top row will be said to have height 0, in the second row height 1, and so on.

We begin with the base directed subgraphs from Figure 2.7 . In each subgraph, the

rows are indexed by their height. The following result is easy to verify by inspection

of the graphs γi,j.
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0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

γ0,0 = γ0,1 =

γ0,2 = γ0,3 =

0
1
2
3

0
1
2
3

γ1,0 = γ1,1 =

0
1
2
3

0
1
2
3

γ1,2 = γ1,3 =

0
1
2
3

0
1
2
3

γ2,0 = γ2,1 =

0
1
2
3

0
1
2
3

γ2,2 = γ2,3 =

Figure 2.7: Base directed subgraphs for the decomposition of
−→
C (4:n) into

−→
C n-factors and

−→
C 2n-factors
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Lemma 2.6.4 For any i, j, h, the directed path beginning at height h in the first

column of γi,j finishes at height h in the last column of γi,j.

Let n = 3b + a with 0 ≤ a < 3, b ≥ 2. For 0 ≤ t ≤ b − 2, we define γ0,j(t) as the

directed graph γ0,j on the parts G3t−1, G3t, G3t+1, G3t+2, with calculations done in Zn.

We define γa,j(n) as the directed graph γa,j on the parts G3b−4, G3b−3, . . . , G3b+a−1.

Let Γ(j) =
⊕b−2

t=0 γ0,j(t)⊕ γa,j(n). Notice that γ0,j(0) is on the parts G−1, G0, G1 and

G2. This means that Fn(Γ(j)) is the matching between the first and second columns

in γ0,j(0).

Example 13: Let n = 7. We will construct Γ(0). Since n = 6+1, we have b = 2 and

a = 1. This means that Γ(0) = γ0,0(0) ⊕ γ1,0(7), where γ0,0(0) is on the parts

G−1 = G7−1 = G6, G0, G1 and G2; and γ1,0(7) is on the parts G2, G3, G4, G5

and G6. So we get the picture in Figure 2.8(a), where the arcs from γ0,0(0) are

dashed.

Notice that the first and last columns are both G6. Because the directed graph

−→
C (4:n) has G0 as the first column, we connect the vertices from G0 to the last

column instead, obtaining the picture in Figure 2.8(b); where the dashed arcs

still belong to γ0,0(0).

Using Lemma 2.6.4 we have the following result.
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G6 G0 G1 G2 G3 G4 G5 G6

(a) Γ0 when n = 7

G0 G1 G2 G3 G4 G5 G6

(b) Γ0 when n = 7 after identifying both G6

columns

Figure 2.8: A
−→
C 7 factor of

−→
C (4:7)

Lemma 2.6.5

−→
C (4:n) = Γ(0)⊕ Γ(1)⊕ Γ(2)⊕ Γ(3) =

3⊕
j=0

Γ(j)

is a
−→
C n-factorization of

−→
C (4:n).

Proof: It is easy to verify from the pictures that for any given 0 ≤ i ≤ 2, the directed

graphs γi,0, γi,1, γi,2 and γi,3 are arc disjoint. By Lemma 2.6.4, in each γi,j the directed

paths start and end at the same height. Thus when we connect all the directed paths

in each factor Γ(j), we obtain four directed cycles of length n. Therefore
⊕3

j=0 Γ(j)
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is a
−→
C n-factorization of

−→
C (4:n). �

To construct directed cycles of size 2n, we perform switches on the edges between

columns. Define λi,j = γ0,i(0)⊕Fn(γ0,i(0))⊕Fn(γ0,j(0)). Keep in mind that γ0,i(0) is

on the parts Gn−1, G0, G1, G2, and so Fn(γ0,i(0)) only consists of the edges between

parts Gn−1 and G0.

Lemma 2.6.6 If the directed path that starts at height h1 in part Gn−1 in λi,j ends

at height h2 in G2, then the directed path that starts at height h2 in Gn−1 ends at

height h1 in G2. Even more, if i 6= j then no directed path starts and ends at the

same height.

Proof: We build tables that show for each possible combination of i and j, the starting

and ending heights of the directed paths λi,j. We have one table for each i, with the

rows indexed by the options for j, and the columns indexed by the options for the

starting height of each directed path. The entry in the table gives the finishing height.

i = 0

height 0 height 1 height 2 height 3

j = 0 0 1 2 3

j = 1 3 2 1 0

j = 2 1 0 3 2

j = 3 2 3 0 1
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i = 1

height 0 height 1 height 2 height 3

j = 0 3 2 1 0

j = 1 0 1 2 3

j = 2 2 3 0 1

j = 3 1 0 3 2

i = 2

height 0 height 1 height 2 height 3

j = 0 1 0 3 2

j = 1 2 3 0 1

j = 2 0 1 2 3

j = 3 3 2 1 0

i = 3

height 0 height 1 height 2 height 3

j = 0 2 3 0 1

j = 1 1 0 3 2

j = 2 3 2 1 0

j = 3 0 1 2 3

Notice that whenever i = j we have λi,i = γ0,i(0), in which case we already know

that the starting and ending heights of each directed path are the same. When i 6= j

the starting and ending heights are never the same, but if the starting height in λi,j

is h1 and the ending height is h2, then the directed path with starting height h2 has
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ending height h1. Therefore the result is proven. �

Let Λ(i, j) = Γ(i)⊕ Fn(Γ(i))⊕ Fn(Γ(j)).

Lemma 2.6.7 If i 6= j, Λ(i, j) is a
−→
C 2n-factor.

Proof: Notice that

Λ(i, j) = Γ(i)⊕ Fn(Γ(i))⊕ Fn(Γ(j))

=

(
b−2⊕
t=0

γ0,i(t)

)
⊕ γa,i(n)⊕ Fn(Γ(i))⊕ Fn(Γ(j))

Because Fn(Γ(i)) is the matching between the first and second columns in γ0,i(0), we

have Fn(Γ(i)) = Fn(γ0,i(0)). Therefore,

Λ(i, j) =

(
b−2⊕
t=0

γ0,i(t)

)
⊕ γa,i(n)⊕ Fn(Γ(i))⊕ Fn(Γ(j))

=

(
b−2⊕
t=0

γ0,i(t)

)
⊕ γa,i(n)⊕ Fn(γ0,i(0))⊕ Fn(γ0,j(0))

=

(
b−2⊕
t=1

γ0,i(t)

)
⊕ γa,i(n)⊕ (γ0,i(0)⊕ Fn(γ0,i(0))⊕ Fn(γ0,j(0)))

=

(
b−2⊕
t=1

γ0,i(t)

)
⊕ γa,i(n)⊕ λi,j
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Consider the directed cycle that contains the vertex at height h1 in Gn−1. From

Lemma 2.6.6 we know that in λi,j the directed path that starts at height h1 in Gn−1

finishes at height h2 in G2. By Lemma 2.6.4, the directed paths through all the γi,j(l),

with l ∈ {1, 2, . . . , b − 1, n} start and end at the same heights. So when we reach

Gn−1 again, it is at at height h2. We leave G2 at height h1 this time, and as we

move through all the γi,j(l), with l ∈ {1, 2, . . . , b − 1, n}, the heights never change.

Therefore, we reach Gn−1 again at height h1, closing the directed cycle. This produces

one directed cycle of size 2n. By repeating the process with the directed cycle starting

at one of the vertices that we have not used yet, we get the second directed cycle.

Therefore Λ(i, j) consists of two directed cycles of length 2n. �

Notice that if i = j, then Λ(i, j) = Γ(i) consists of 4 directed cycles of length n.

Theorem 24 If s ∈ {0, 2, 3, 4}, then
−→
C (4:n) can be decomposed into s

−→
C 2n-factors

and 4− s
−→
C n-factors.

Proof: Let π be a permutation of the set {0, 1, 2, 3} with exactly 4 − s fixed points.

Then

−→
C (4:n) =

3⊕
j=0

Γ(j) =
3⊕
j=0

(Γ(j)⊕ Fn(Γ(j))⊕ Fn(Γ(π(j))) =
3⊕
j=0

Λ(j, π(j))

Since Λ(j, π(j)) is a
−→
C 2n-factor if j 6= π(j) and a

−→
C n-factor otherwise, the theorem
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is proven. �

Remark 2.6.8 Notice that if n = 5, we have b = 1 and a = 2. This means we have

Γ(j) = γa,j(5) = γ2,j(5), which is on the parts G−1 = G4, G0, G1, G2, G3, G4. This

will actually close the directed cycle. The results given in Lemmas 2.6.6 and 2.6.7

only apply to b ≥ 2, but it can be shown that the same results are true with b = 1 by

applying similar techniques on γa,j instead of γ0,j.

There is one more basic decomposition that we will use, based on the resolvable

gregarious decomposition of K(w:n) from [6]. We make use of the constructions given

in Lemma 3.1 and Corollary 3.2 of [6], and apply them to
−→
C (w:n) instead of K(w:n).

Definition 2.6.9 A quasigroup (Q, ∗) is a set Q with a binary operation ∗ such that

for each a and b in Q, there exist unique elements x and y in Q such that:

• a ∗ x = b;

• y ∗ a = b.

Definition 2.6.10 Two quasigroups on the same set (Q, ∗), (Q, ◦) are said to be

orthogonal if i ∗ j 6= i ◦ j for every i, j in Q.
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The reader may be familiar with Latin Squares, which are the multiplication tables

of quasigroups, and mutually orthogonal Latin Squares, which are the multiplication

tables of orthogonal quasigroups. In [7], [8] it was shown that if |Q| 6∈ {1, 2, 6} then

there are at least 2 orthogonal quasigroups on Q. Again, the decomposition in the

following theorem is obtained by modifying the construction from Lemma 3.2 in [6]

to work with
−→
C (w:n) instead of K(w:n):

Theorem 25 Let w 6∈ {2, 6} and n odd. Then there is a decomposition of
−→
C (w:n)

into
−→
C n-factors.

Proof: Since w 6∈ {2, 6} there exist two orthogonal quasigroups (Latin Squares) (Q, ◦)

and (Q, ∗) of order w, with Q = {0, 1, 2, . . . , w − 1}. We take directed cycles of the

form:

(i, 0)(j, 1)(i, 2)(j, 3) . . . (i, n−3)(j, n−2)(k, n−1), where 0 ≤ i, j ≤ w−1, k = i◦j.

This produces a decomposition of
−→
C (w:n) into w2 directed cycles of size n. To form

a
−→
C n-factor, given l ∈ Q we take all cycles arising from the pairs i, j with i ∗ j = l

in the second quasigroup (Q, ∗). Thus we have a decomposition of
−→
C (w:n) into w

−→
C n-factors. �
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2.7 Multivariable Functions

Definition 2.7.1 Let x and y be odd. We define T(xy)(i, α) to be the directed subgraph

of
−→
C (xy:n) obtained by taking T(xy)(i, α) = Tx(i)⊗ Ty(α). We also define

H(xy)(i, α)(j, β) = T(xy)(i, α)⊕ Fn(T(xy)(i, α))⊕ Fn(T(xy)(j, β))

This means that H(xy)(i, α)(j, β) is the directed graph obtained by taking the arcs of

T(xy)(i, α) between parts t and t + 1 for 0 ≤ t ≤ n − 2, and the arcs between parts

n− 1 and 0 from T(xy)(j, β).

Example 14: Figure 2.9 illustrates the first part of Definition 2.7.1 by showing Tx(i),

Ty(α) and T(xy)(i, α), for x = 3, y = 5, i = 1 and α = 2, with 3 partite sets.

Figure 2.10 illustrates the second part of Definition 2.7.1 by showing

H(xy)(i, α)(j, β), for x = 3, y = 5, i = 1, α = 2, j = 2, β = 4, with 3 par-

tite sets. Figure 2.10 also shows Hx(i, j) and Hy(α, β), to illustrate Lemma

2.7.2.

Notice that in both figures instead of giving all the coordinates in each vertex, we

give the first two coordinates of all the vertices in each row (the third coordinate

would specify which partite set the vertex belongs to).
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Lemma 2.7.2 Let x, y and n be odd. Then:

H(xy)(i, α)(j, β) = Hx(i, j)⊗Hy(α, β)

Proof: Notice that

Fn(T(xy)(i, α)) = Fn(Tx(i)⊗ Ty(α)) = Fn(Tx(i))⊗ Fn(Ty(α))

Notice also that

Fn(Tx(i)⊗ Ty(α)) = Fn(Tx(i))⊗ Ty(α) = Tx(i)⊗ Fn(Ty(α))

Then we have

Hx(i, j)⊗Hy(α, β) = (Tx(i)⊕ Fn(Tx(i))⊕ Fn(Tx(j)))

⊗ (Ty(α)⊕ Fn(Ty(α))⊕ Fn(Ty(β)))

= Tx(i)⊗ Ty(α)⊕ Fn(Tx(i))

⊗ Fn(Ty(α))⊕ Fn(Tx(j))⊗ Fn(Ty(β))

= T(xy)(i, α)⊕ Fn(T(xy)(i, α))⊕ Fn(T(xy)(j, β))

= H(xy)(i, α)(j, β)

�

98



T3(1)
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0
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1
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T(3,5)(1, 2)
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(0, 1)
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(1, 4)

(2, 0)
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(2, 2)
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(2, 4)

Figure 2.9: T3(1), T5(2) and T(3,5)(1, 2)

99



H3(1, 2)

H5(2, 4)

0

0
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1

2

2
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4

H(3,5)(1, 2)(2, 4)

(0, 0)

(0, 1)

(0, 2)

(0, 3)
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(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

Figure 2.10: H3(1, 2), H5(2, 4) and H(3,5)(1, 2)(2, 4)
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Lemma 2.7.3 Let ψ be a bijection on the set {(i, α)|0 ≤ i ≤ x− 1, 0 ≤ α ≤ y − 1}.

Then

−→
C (xy:n) =

⊕
(i,α)

H(xy)(i, α)ψ(i, α).

Proof: We know that
−→
C (xy:n) =

−→
C (x:n) ⊗

−→
C (y:n) = (

⊕
i Tx(i)) ⊗ (

⊕
α Ty(α)). By

definition of T(xy)(i, α) we get

−→
C (xy:n) =

⊕
(i,α)

T(x,y)(i, α)

We also have ⊕
(i,α)

T(xy)(i, α) =
⊕
(i,α)

H(xy)(i, α)ψ(i, α)

Combining both we get:

−→
C (xy:n) =

⊕
(i,α)

H(xy)(i, α)ψ(i, α)

as we wanted to prove. �

If ψ(i, α) = (j, β) we will denote ψ1(i, α) = j and ψ2(i, α) = β. If gcd(x, i − j) = 1

and α = β, then H(xy)(i, α)(j, β) is a
−→
C xn-factor. This is because

H(xy)(i, α)(j, β) = Hx(i, j)⊗Hy(α, α) = Hx(i, j)⊗ Ty(α)
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By Lemma 2.6.2 Hx(i, j) is a
−→
C xn-factor. By Lemma 2.6.1 Ty(α) is a

−→
C n-factor. Then

by Lemma 2.4.3 Hx(i, j) ⊗ Ty(α) is a
−→
C xn-factor. Thus to obtain a decomposition

of
−→
C (xy:n) into

−→
C xn-factors and

−→
C yn-factors we need a bijection ψ that satisfies the

following set of conditions

Conditions 2.7.4 a) For all (i, α), gcd(x, i− ψ1(i, α)) = 1 and ψ2(i, α) = α, or

b) gcd(y, α− ψ2(i, α)) = 1 and ψ1(i, α) = i.

Lemma 2.7.5 Let x, y, and n be odd. Let sp 6= 1, xy − 1. Then there is a decompo-

sition of
−→
C (xy:n) into sp

−→
C xn-factors and rp = xy − sp

−→
C yn-factors.

Proof: We will describe a bijection ψ that satisfies conditions 2.7.4 with rp pairs (i, α)

that satisfy i = ψ1(i, α).

Let rα, 0 ≤ α ≤ y − 1 be such that:

•
∑

α rα = rp,

• ri ≥ rj if i ≤ j,

• r0 = r1,

• 0 ≤ rα ≤ x, rα 6= x− 1.
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Define the function φα(i) = φs(i), with φs(i) as the phi-function over the set

{0, 1, . . . , x− 1} with s = x− rα. Let π(i) = |{α|φα(i) = i}|. Let σi(α) = φs(α), with

φs(α) as the phi-function over the set {0, 1, . . . , y − 1} with s = π(i). Notice that

ψ(i, α) = (φα(i), σi(α))

is a function satisfying conditions 2.7.4 because if α ≤ π(i), then ψα(i) = i and

gcd(y, α − σi(α)) = 1. If, on the other hand α ≥ π(i), then we have σi(α) = α,

and gcd(x, i − ψα(i)) = 1. Finally, notice that there are rp pairs (i, α) that satisfy

i = ϕ1(i, α). Therefore there is a decomposition of
−→
C (xy:n) into sp

−→
C xn-factors and

rp = xy − sp
−→
C yn-factors. �

We can work with Γ(i) and Λ(i) in a similar fashion as to what we did with Tx(i).

Definition 2.7.6 Let x be odd. We define T(2x)(i, α) to be the directed subgraph of

−→
C (4x:n) obtained by taking T(xy)(i, α) = Tx(i)⊗Γ(α). We also define H(2x)(i, α)(j, β) =

T(2x)(i, α) ⊕ Fn(T(2x)(i, α)) ⊕ Fn(T(2x)(j, β)). This is the directed graph obtained by

taking the arcs of T(2x)(i, α) between parts t and t+ 1 for 0 ≤ t ≤ n− 2, and the arcs

between parts n− 1 and 0 from T(2x)(j, β).

Now we can apply the same techniques that we did to T(xy) and H(xy).

103



Lemma 2.7.7 Let x and n be odd. Then:

H(2x)(i, α)(j, β) = Hx(i, j)⊗ Λ(α, β)

Proof: Notice that

Fn(T(2x)(i, α)) = Fn(Tx(i)⊗ Γ(α)) = Fn(Tx(i))⊗ Fn(Γ(α))

and

Fn(Tx(i)⊗ Γ(α)) = Fn(Tx(i))⊗ Γ(α) = Tx(i)⊗ Fn(Γ(α))

Using this the result is trivial. �

Lemma 2.7.8 Let ϕ by a bijection on the set {(i, α)|0 ≤ i ≤ x − 1, 0 ≤ α ≤ 3}.

Then

−→
C (4x:n) =

⊕
(i,α)

H(2x)(i, α)ϕ(i, α).

Proof: We know that
−→
C (4x:n) =

−→
C (x:n) ⊗

−→
C (4:n) = (

⊕
i Tx(i)) ⊗ (

⊕
α Γ(α)). By

definition of T(2x)(i, α) we get

−→
C (4x:n) =

⊕
(i,α)

T(2x)(i, α)
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We also have ⊕
(i,α)

T(2x)(i, α) =
⊕
(i,α)

H(2x)(i, α)ϕ(i, α)

Combining both we get:

−→
C (4x:n) =

⊕
(i,α)

H(2x)(i, α)ϕ(i, α)

as we wanted to prove. �

Next we develop the conditions needed for our decompositions. Recall that if ϕ(i, α) =

(j, β) we will denote ϕ1(i, α) = j and ϕ2(i, α) = β.

• If α 6= β and gcd(x, i− j) = 1 then

H(2x)(i, α)(j, β) = Hx(i, j)⊗ Λ(α, β)

is a
−→
C 2xn-factor by Lemmas 2.6.2, 2.6.7, and 2.4.3.

• If i = j and α 6= β, then H(2x)(i, α)(j, β) is a
−→
C 2n-factor by Lemmas 2.6.1, 2.6.7,

and 2.4.3.

• If α = β and gcd(x, i− j) = 1, then H(2x)(i, α)(j, β) is a
−→
C xn-factor by Lemmas

2.6.2, 2.6.5, and 2.4.3.

• If i = j and α = β, then H(xy)(i, α)(j, β) is a
−→
C n-factor by Lemmas 2.6.1, 2.6.5,
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and 2.4.3.

So for a decomposition of
−→
C (4x:n) into

−→
C 2xn-factors and

−→
C n-factors we need a bijection

ϕ that satisfies:

Conditions 2.7.9 For all (i, α) such that ϕ(i, α) 6= (i, α), α 6= ϕ2(i, α) and gcd(x, i−

ϕ1(i, α)) = 1.

For a decomposition of
−→
C (4x:n) into

−→
C 2n-factors and

−→
C xn-factors we need a bijection

ϕ that satisfies:

Conditions 2.7.10 a) For all (i, α) either α 6= ϕ2(i, α) and i = j, or

b) α = ϕ2(i, α) and gcd(x, i− ϕ1(i, α)) = 1.

We define a new family of functions θs : Zx × Z4 → Zx × Z4. These functions will

be referred as theta-functions. Let s ∈ {0, 1, . . . , 4x}, s /∈ {1, 4x − 1}, and write

s = 4k + 2a+ 3b, with a, b ∈ {0, 1}, k ≤ x. We define:
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Theta-functions:

θs(i, α) :=



(i+ 1, α + 1) if 0 ≤ i ≤ k − 1, α = 0, 2

(i− 1, α− 1) if 1 ≤ i ≤ k, α = 1, 3

(i+ 1, α + 1) if i = k, a = 1, α = 0

(i− 1, α− 1) if i = k + 1, a = 1, α = 1

(i+ 1, α + 1) if i = k, b = 1, α = 2

(i+ 1, α− 2) if i = k + 1, b = 1, α = 3

(i− 2, α + 1) if i = k + 2, b = 1, α = 1

(i, α) otherwise

If s = 4x− 1 = 4(x− 1) + 3, we define θs in a similar way, with a small change:

θ4x−1(i, α) :=



(i+ 1, α + 1) if 0 ≤ i ≤ x− 2, α = 0, 2

(i− 1, α− 1) if 1 ≤ i ≤ x− 2, α = 1, 3

(x− 2, 2) if i = x− 1, α = 1

(0, 1) if i = x− 1, α = 3

(x− 1, 0) if i = 0, α = 1

(0, 3) if i = x− 1, α = 0

(x− 2, 0) if i = 0, α = 3

(i, α) otherwise
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(0, 0)
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(0, 2)
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(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

(4, 0) (4, 1) (4, 2) (4, 3)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

(4, 0) (4, 1) (4, 2) (4, 3)

x = 5, s = 9, k = 1, a = 1, b = 1 x = 5, s = 19

Figure 2.11: Example of Theta-functions

We give a visual example of θ9 and θ19, for x = 5 in Figure 2.11.

The following lemma is a generalization of a result given in [5].

Lemma 2.7.11 Let sp ∈ {0, 2, . . . , 4x− 1, 4x}, x odd. Then there exists a decompo-

sition of C(4x:n) into sp C2xn-factors and rp = 4x− sp Cn-factors.

Proof: The bijection ψ = θsp satisfies Conditions 7.9. In particular if ψ(i, α) 6= (i, α),

then α 6= ψ2(i, α) and i−ψ1(i, α) ∈ {±1,±2}; and as x is odd, gcd(x, i−ψ1(i, α)) = 1.

Furthermore, ψ has sp non-fixed points. Therefore there exists a decomposition of

C(4x:n) into sp C2xn-factors and 4x− sp Cn-factors. �
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Lemma 2.7.12 Let sp ∈ {0, 2, 3, . . . , 4x− 3, 4x− 2, 4x}. Then there exists a decom-

position of
−→
C (4x:n) into sp

−→
C xn-factors and rp = 4x− sp

−→
C 2n-factors.

Proof: We provide a bijection ϕ that satisfies Conditions 2.7.10 with rp pairs (i, α)

that satisfy i = ϕ1(i, α).

Let rα, 0 ≤ α ≤ 3 be such that:

•
∑

α rα = rp,

• ri ≥ rj if i ≤ j,

• r0 = r1,

• rα ≤ x, rα 6= x− 1.

The only case where such a choice of rα cannot be made is when x = 3, s = 7. This

case is covered in Lemma 2.11.2 in the Appendix.

Define the function ψα(i) = φs(i), with φs(i) as the phi-functions over the set

{0, 1, . . . , x − 1} with s = x − rα. Let π(i) = |{α|ψα(i) = i}|. Let σi(α) be the

permutation on the set {0, 1, 2, 3} that cyclically permutes the first π(i) elements and

fixes the rest. Notice that

ϕ(i, α) = (ψα(i), σi(α))
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is a function satisfying conditions 2.7.10 because if α ≤ π(i), then ψα(i) = i and

σi(α) 6= α. If, on the other hand α ≥ π(i), then we have σi(α) = α, and gcd(x, i −

ψα(i)) = 1. Finally, notice that there are rp pairs (i, α) that satisfy i = ϕ1(i, α).

Therefore there exists a decomposition of
−→
C (4x:n) into sp

−→
C xn-factors and rp = 4x−sp

−→
C 2n-factors. �

We are interested in one more type of decomposition, into
−→
C 2xn and

−→
C yn factors. To

do this we introduce the following:

Definition 2.7.13 Let x and y be odd. Define T(2xy)(i, α, γ) to be the directed sub-

graph of
−→
C (4xy:n) obtained by taking T(2xy)(i, α, γ) = T(2x)(i, α) ⊗ Ty(γ). We also

define

H(2xy)(i, α, γ)(j, β, δ) = T(2xy)(i, α, γ)⊕ Fn(T(2xy)(i, α, γ))⊕ Fn(T(2xy)(j, β, δ)

This means that H(2xy)(i, α, γ)(j, β, δ) is the directed graph obtained by taking the arcs

of T(2xy)(i, α, γ) between parts t and t + 1 for 0 ≤ t ≤ n − 2, and the arcs between

parts n− 1 and 0 from T(2xy)(j, β, δ).

Now we have all the usual results:
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Lemma 2.7.14 Let x, y and n be odd. Then:

H(2xy)(i, α, γ)(j, β, δ) = H(2x)(i, α)(j, β)⊗Hy(γ, δ)

Proof: Notice that

Fn(T(2xy)(i, α, γ)) = Fn(T(2x)(i, α)⊗ Ty(γ)) = Fn(T(2x)(i, α))⊗ Fn(Ty(γ))

Using this the result is trivial. �

Lemma 2.7.15 Let ϕ be a bijection on the set {(i, α, γ)|0 ≤ i ≤ x − 1, 0 ≤ α ≤

3, 0 ≤ γ ≤ y − 1}. Then

−→
C (4xy:n) =

⊕
(i,α,γ)

H(2xy)(i, α, γ)ϕ(i, α, γ).

Proof: We know that
−→
C (4xy:n) =

−→
C (4x:n)⊗

−→
C (y:n) =

(⊕
(i,α) T(2x)(i, α)

)
⊗
(⊕

γ Ty(γ)
)

.

By the definition of T(2xy)(i, α, γ) we get

−→
C (4xy:n) =

⊕
(i,α,γ)

T(2xy)(i, α)
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We also have ⊕
(i,α,γ)

T(2xy)(i, α, γ) =
⊕

(i,α,γ)

H(2xy)(i, α, γ)ϕ(i, α, γ)

Combining both we get:

−→
C (4xy:n) =

⊕
(i,α,γ)

H(2xy)(i, α, γ)ϕ(i, α, γ)

as we wanted to prove. �

We have the following properties:

• If α 6= β, γ = δ, and gcd(x, i− j) = 1, then

H(2xy)(i, α, γ)(j, β, δ) = H(2x)(i, α)(j, β)⊗Hy(γ, γ)

= Hx(i, j)⊗ Λ(α, β)⊗ Ty(γ)

is a
−→
C 2xn-factor by Lemmas 2.6.2, 2.6.7, 2.6.1 and 2.4.3.

• If i = j, α = β, and gcd(y, γ − δ) = 1 then

H(2xy)(i, α, γ)(j, β, δ) = H(2x)(i, α)(i, α)⊗Hy(γ, δ)

= Tx(i)⊗ Γ(α)⊗Hy(γ, δ)
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is a
−→
C yn-factor by Lemmas 2.6.1, 2.6.5, 2.6.2, and 2.4.3.

To get a decomposition of
−→
C (4xy:n) into

−→
C 2xn-factors and

−→
C yn-factors we need a

bijection ϕ that satisfies:

Conditions 2.7.16 a) For all (i, α, γ), gcd(y, γ−ϕ3(i, α, γ)) = 1 or γ = ϕ3(i, α, γ).

b) If γ = ϕ3(i, α, γ), then gcd(x, i− ϕ1(i, α, γ)) = 1 and α 6= ϕ2(i, α, γ).

c) If gcd(y, γ − ϕ3(i, α, γ)) = 1, then i = ϕ1(i, α, γ) and α = ϕ2(i, α, γ).

Now we can write our lemma:

Lemma 2.7.17 Let x, y, and n be odd. Let sp 6= 1, 4xy − 1. Then there is a decom-

position of C(4xy:n) into sp C2xn-factors and rp = 4xy − sp Cyn-factors.

Proof: We give a bijection ϕ that satisfies Conditions 7.16 with rp elements (i, α, γ)

that satisfy i = ϕ1(i, α, γ). Let sp = 4xk + q, with 0 ≤ q ≤ 4x − 1. We have two

cases, k ≤ y − 3, and k ≥ y − 2.

Case 1 If k ≤ y − 3, let sp = 4xk + a − ε, with 2 ≤ a ≤ 4x − 1, 0 ≤ ε ≤ 2.

For y − k + 1 ≤ γ ≤ y − 1, let ψγ(i, α) = θ4x(i, α), the theta-function with

s = 4x. Let ψy−k(i, α) = θ4x−ε(i, α), the theta-function with s = 4x − ε. Let
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ψy−k−1(i, α) = θa(i, α), the theta function with s = a. For 0 ≤ γ ≤ y − k − 2

let ψγ(i, α) = (i, α), the identity function.

Case 2 If k ≥ y − 2, let sp = 4xk′ + 2a − ε, with 2 ≤ a ≤ 4x − ε, 0 ≤ ε ≤ 4, where

k′ ∈ {y−2, y−3} because 2amay be greater than 4x. For y−k+1 ≤ γ ≤ y−1, let

ψγ(i, α) = θ4x(i, α), the theta-function with s = 4x. Let ψy−k(i, α) = θ4x−ε(i, α),

the theta-function with s = 4x − ε. Let ψy−k−1(i, α) = ψy−k−2(i, α) = θa(i, α),

the theta function with s = a. For 0 ≤ γ ≤ y − k − 3 let ψγ(i, α) = (i, α), the

identity function.

Notice that the fixed point of θ4x−1 is (x − 1, 2), the fixed points of θ4x−2 are {(x −

1, 2), (0, 3)}, the fixed points of θ4x−3 are {(x− 1, 2), (0, 3), (x− 1, 0)}, and the fixed

points of θ4x−4 are {(x − 1, 2), (0, 3), (x − 1, 0), (0, 1)}. This means that if 0 ≤ ε ≤ 4

and a ≤ 4x − ε, the fixed points of θ4x−ε are a subset of the fixed points of θa.

Hence if ψδ(i, α) = (i, α), then ψγ(i, α) = (i, α) for all γ ≤ δ. Notice also that

ψ0(i, α) = ψ1(i, α), hence max{δ ∈ {0, . . . , y − 1}|ψδ(i, α) = (i, α)} 6= 1. Therefore

we can define σi,α(γ) = φs(γ), the phi-function over the set {0, 1, . . . , y − 1} with

s = max{δ ∈ {0, . . . , y − 1}|ψδ(i, α) = (i, α)}. Then:

ρ(i, α, γ) = (ψγ(i, α), σi,α(γ))

is a function satisfying conditions 7.16. �

114



Example 15: We provide two visual examples, with x = 3 and y = 5. To make

the picture easier to understand, the points satisfying i = ϕ1(i, α, γ) have been

boxed and underlined, and rearranged with their images at the right side.

In Figure 2.12 we have sp = 25 = 2 · 12 + 1 = 2 · 12 + 2 − 1, giving us

rp = 60− 25 = 35, k = 2, a = 2, ε = 1.

In Figure 2.13 we have sp = 37 = 3 · 12 + 1 = 3 · 12 + 2 · 2 − 3, giving us

rp = 60− 37 = 23, k′ = 3, a = 2, ε = 3.

2.8 Product

In this section the partite product will be applied to the decompositions obtained in

the previous section, to obtain decompositions of larger graphs.

Lemma 2.8.1 Let m = zw with z odd and w 6∈ {2, 6}. Then there is a decomposition

of
−→
C (m:n) into

−→
C zn-factors and a decomposition of

−→
C (4m:n) into

−→
C 2zn-factors.

Proof: We know that
−→
C (m:n) =

−→
C (z:n) ⊗

−→
C (w:n). By Theorem 23 we can decompose

−→
C (z:n) =

⊕
iHz(i, φ(i)) into

−→
C zn-factors, and by Lemma 2.6.1

−→
C (w:n) =

⊕
j Tw(j, j)

into
−→
C n-factors.
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(0, 0, 0)

(0, 1, 0)

(0, 2, 0)

(0, 3, 0)

(1, 0, 0) (1, 1, 0) (1, 2, 0) (1, 3, 0)

(2, 0, 0) (2, 1, 0) (2, 2, 0) (2, 3, 0)γ = 0

s = 0

(0, 0, 1)

(0, 1, 1)

(0, 2, 1)

(0, 3, 1)

(1, 0, 1) (1, 1, 1) (1, 2, 1) (1, 3, 1)

(2, 0, 1) (2, 1, 1) (2, 2, 1) (2, 3, 1)γ = 1

s = 0

(0, 0, 2)

(0, 1, 2)

(0, 2, 2)

(0, 3, 2)

(1, 0, 2) (1, 1, 2) (1, 2, 2) (1, 3, 2)

(2, 0, 2) (2, 1, 2) (2, 2, 2) (2, 3, 2)γ = 2

s = 2

(0, 0, 3)

(0, 1, 3)

(0, 2, 3)

(0, 3, 3)

(1, 0, 3) (1, 1, 3) (1, 2, 3) (1, 3, 3)

(2, 0, 3) (2, 1, 3) (2, 2, 3) (2, 3, 3)γ = 3

s = 12

(0, 0, 4)

(0, 1, 4)

(0, 2, 4)

(0, 3, 4)

(1, 0, 4) (1, 1, 4) (1, 2, 4) (1, 3, 4)

(2, 0, 4) (2, 1, 4) (2, 2, 4) (2, 3, 4)γ = 4

s = 12

(2, 0, 2)

(2, 0, 1)

(2, 0, 0)

(1, 0, 2)

(1, 0, 1)

(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

(0, 1, 2)

(0, 1, 1)

(0, 1, 0)

(2, 1, 2)

(2, 1, 1)

(2, 1, 0)

(1, 1, 1)

(1, 1, 0)

(2, 2, 3)

(2, 2, 2)

(2, 2, 1)

(2, 2, 0)

(1, 2, 2)

(1, 2, 1)

(1, 2, 0)

(0, 2, 2)

(0, 2, 1)

(0, 2, 0)

(0, 3, 2)

(0, 3, 1)

(0, 3, 0)

(2, 3, 2)

(2, 3, 1)

(2, 3, 0)

(1, 3, 2)

(1, 3, 1)

(1, 3, 0)

x = 3, y = 5, sp = 25, rp = 35, k = 2, a = 2, ε = 1

Figure 2.12: Example of Lemma 7.17 Case 1
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(0, 0, 0)

(0, 1, 0)

(0, 2, 0)

(0, 3, 0)

(1, 0, 0) (1, 1, 0) (1, 2, 0) (1, 3, 0)

(2, 0, 0) (2, 1, 0) (2, 2, 0) (2, 3, 0)γ = 0

s = 2

(0, 0, 1)

(0, 1, 1)

(0, 2, 1)

(0, 3, 1)

(1, 0, 1) (1, 1, 1) (1, 2, 1) (1, 3, 1)

(2, 0, 1) (2, 1, 1) (2, 2, 1) (2, 3, 1)γ = 1

s = 2

(0, 0, 2)

(0, 1, 2)

(0, 2, 2)

(0, 3, 2)

(1, 0, 2) (1, 1, 2) (1, 2, 2) (1, 3, 2)

(2, 0, 2) (2, 1, 2) (2, 2, 2) (2, 3, 2)γ = 2

s = 9

(0, 0, 3)

(0, 1, 3)

(0, 2, 3)

(0, 3, 3)

(1, 0, 3) (1, 1, 3) (1, 2, 3) (1, 3, 3)

(2, 0, 3) (2, 1, 3) (2, 2, 3) (2, 3, 3)γ = 3

s = 12

(0, 0, 4)

(0, 1, 4)

(0, 2, 4)

(0, 3, 4)

(1, 0, 4) (1, 1, 4) (1, 2, 4) (1, 3, 4)

(2, 0, 4) (2, 1, 4) (2, 2, 4) (2, 3, 4)γ = 4

s = 12

(2, 0, 2)

(2, 0, 1)

(2, 0, 0)

(1, 0, 1)

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(2, 1, 1)

(2, 1, 0)

(2, 2, 2)

(2, 2, 1)

(2, 2, 0)

(1, 2, 1)

(1, 2, 0)

(0, 2, 1)

(0, 2, 0)

(0, 3, 2)

(0, 3, 1)

(0, 3, 0)

(2, 3, 1)

(2, 3, 0)

(1, 3, 1)

(1, 3, 0)

x = 3, y = 5, sp = 37, rp = 23, k = 4, a = 2, ε = 3, k′ = 3

Figure 2.13: Example of Lemma 7.17 Case 2
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Then

−→
C (m:n) =

−→
C (z:n) ⊗

−→
C (w:n)

=

(⊕
i

Hz(i, φ(i))

)
⊗

(⊕
j

Hw(j, j)

)

=
⊕
i

⊕
j

Hz(i, φ(i))⊗Hw(j, j)

By Lemma 2.4.3 Hz(i, φ(i))⊗Hw(j, j) is a
−→
C zn-factor, and so

−→
C (m:n) can be decom-

posed into
−→
C zn-factors.

For the result on
−→
C (4m:n) we just multiply by

−→
C (4:n):

−→
C (4m:n) =

−→
C (m:n) ⊗

−→
C (4:n)

We can decompose
−→
C (4:n) into

−→
C 2n-factors by Theorem 24 and so when multiplying

by
−→
C (m:n) we obtain a decomposition of

−→
C (4m:n) into

−→
C 2zn-factors. �

We may now use Lemma 2.8.1 and the decompositions obtained in Section 7 to get a

decomposition of
−→
C (xyzw:n) into

−→
C xzn-factors and

−→
C yzn-factors:

Lemma 2.8.2 Suppose
−→
C (m:n) can be decomposed into sp

−→
Cm1n-factors and rp

−→
Cm2n

factors, with sp, rp 6= 1, rp + sp = m. Let z be odd with gcd(m1, z) = gcd(m2, z) = 1
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and w 6∈ {2, 6}. Then there is a decomposition of
−→
C (mzw:n) into s

−→
Cm1zn-factors and

r
−→
Cm2zn-factors for any s, r 6= 1, s+ r = mzw. Furthermore, if m1 and m2 are odd,

there is a decomposition of
−→
C (4mzw:n) into s′

−→
C 2m1zn-factors and r′

−→
C 2m2zn-factors

for any s′, r′ 6= 1, s′ + r′ = 4mzw.

Proof: We start with the product
−→
C (mzw:n) =

−→
C (m:n) ⊗

−→
C (zw:n). By Lemma 2.8.1 we

can decompose
−→
C (zw:n) = ⊕zwi=1Zi, where each Zi is a

−→
C zn-factor.

Let s = mt+ u, with 0 ≤ u ≤ m. If u 6= 1,m− 1 we decompose as follows:

−→
C (mzw:n) =

−→
C (m:n) ⊗

−→
C (zw:n)

=
−→
C (m:n) ⊗ (⊕zwi=1Zi)

= ⊕zwi=1

−→
C (m:n) ⊗ Zi

=
(
⊕ti=1

−→
C (m:n) ⊗ Zi

)
⊕
−→
C (m:n) ⊗ Zt+1 ⊕

(
⊕zwi=t+2

−→
C (m:n) ⊗ Zi

)

From the theorem hypothesis on
−→
C (m:n), we have the following decompositions:

• We decompose
−→
C (m:n) into m

−→
Cm1n-factors for the product ⊕ti=1

−→
C (m:n) ⊗ Zi.

• We decompose
−→
C (m:n) into m

−→
Cm2n-factors for the product ⊕zwi=t+2C(m:n) ⊗ Zi.
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• We decompose
−→
C (m:n) into u

−→
Cm1n-factors and m − u

−→
Cm2n-factors for the

product
−→
C (m:n) ⊗ Zt+1.

Because m1 and m2 are coprime with z, by Lemma 2.4.3 there is a decomposition

into mt+ u = s
−→
Cm1zn-factors and r

−→
Cm2zn-factors.

If u = 1, we decompose as follows:

−→
C (mzw:n) =

(
⊕t−1
i=1

−→
C (m:n) ⊗ Zi

)
⊕
(−→
C (m:n) ⊗ Zt

)
⊕(−→

C (m:n) ⊗ Zt+1

)
⊕
(
⊕zwi=t+2

−→
C (m:n) ⊗ Zi

)

We also have the following decompositions:

• We decompose
−→
C (m:n) into m

−→
Cm1n-factors for the product ⊕t−1

i=1

−→
C (m:n) ⊗ Zi.

• We decompose
−→
C (m:n) into m

−→
Cm2n-factors for the product ⊕zwi=t+2

−→
C (m:n) ⊗Zi.

• We decompose
−→
C (m:n) into m − 2

−→
Cm1n-factors and 2

−→
Cm2n-factors for the

product
−→
C (m:n) ⊗ Zt.

• We decompose
−→
C (m:n) into 3

−→
Cm1n-factors and m − 3

−→
Cm2n-factors for the

product
−→
C (m:n) ⊗ Zt+1.

Because m1 and m2 are coprime with z, this gives a decomposition into m(t − 1) +
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m − 2 + 3 = mt + 1 = s
−→
Cm1zn-factors and r

−→
Cm2zn-factors. If u = m − 1 we just

change the roles of m1 and m2 and take the decomposition for u = 1. Therefore

there is a decomposition of
−→
C (mzw:n) into s

−→
Cm1zn factors and r

−→
Cm2zn-factors for

any s, r 6= 1, r + s = mzw. The decomposition of
−→
C (4mzw:n) into s′

−→
C 2m1zn-factors

and r′
−→
C 2m2zn-factors works in the same way. �

We can now combine this result with our decompositions from Section 7 to obtain the

following result, which we write using non-directed graphs, as we are getting ready

to apply the results from Section 5.

Theorem 26 Let x, y, z, n be odd numbers with gcd(x, z) = gcd(y, z) = 1 and w 6∈

{2, 6}. Then we have the following decompositions:

a) C(xyzw:n) can be decomposed into s Cxzn-factors and r Cyzn-factors for any s, r 6= 1,

s+ r = xyzw.

b) C(4xzw:n) can be decomposed into s C2xzn-factors and r C2zn-factors for any s, r 6= 1,

s+ r = 4xzw.

c) C(4xzw:n) can be decomposed into s C2xzn-factors and r Czn-factors for any s, r 6= 1,

s+ r = 4xzw.

d) C(4xzw:n) can be decomposed into s Cxzn-factors and r C2zn-factors for any s, r 6= 1,
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s+ r = 4xzw.

e) C(4xyzw:n) can be decomposed into s C2xzn-factors and r Cyzn-factors for any s, r 6=

1, s+ r = 4xyzw.

f) C(4xyzw:n) can be decomposed into s C2xzn-factors and r C2yzn-factors for any s, r 6=

1, s+ r = 4xyzw.

Proof:

a)
−→
C (xy:n) can be decomposed into sp

−→
C xn-factors and rp

−→
C yn-factors by Lemma

2.7.5. So by Lemma 2.8.2;
−→
C (xywz:n) can be decomposed into s

−→
C xzn-factors and

r
−→
C yzn-factors.

b)
−→
C (x:n) can be decomposed into sp

−→
C xn-factors and rp

−→
C n-factors by Lemma 23.

Now apply Lemma 2.8.2.

c)
−→
C (4x:n) can be decomposed into sp

−→
C 2xn-factors and rp

−→
C n-factors by Lemma

2.7.11. Now apply Lemma 2.8.2.

d)
−→
C (4x:n) can be decomposed into sp

−→
C xn-factors and rp

−→
C 2n-factors by Lemma

2.7.12. Now apply Lemma 2.8.2.

e)
−→
C (4xy:n) can be decomposed into sp

−→
C 2xn-factors and rp

−→
C yn-factors by Lemma

2.7.17. Now apply Lemma 2.8.2.
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f)
−→
C (xy:n) can be decomposed into sp

−→
C xn-factors and rp

−→
C yn-factors by Lemma

2.7.5. Now apply Lemma 2.8.2.

�

2.9 Main Result

We now to use the decompositions that we obtained for C(v:n) to obtain decomposi-

tions of K(v:m) via Lemmas 2.5.3 and 2.5.1.

Theorem 27 Let m and n be odd, such that m ≡ 0 (mod n). Let s and r be such that

s, r 6= 1 and s+r = vm−1
2

. Let x1, . . . xm/n, y1, . . . ym/n, z1, . . . , zm/n and w1, . . . , wm/n

be such that:

• gcd(xi, zi) = gcd(yi, zi) = 1;

• wi 6∈ {2, 6};

• 2 divides at most one of xi, yi and zi;

• v = xiyiziwi if 2 divides none of xi, yi, zi; and

• v = 2xiyiziwi if 2 divides one of xi, yi, zi.
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Furthermore, let F1 be a [(x1z1n)
v

x1z1 , . . . , (xm/nzm/nn)
v

xm/nzm/n ]-factor, and let F2 be a

[(y1z1n)
v

y1z1 , . . . , (ym/nzm/nn)
v

ym/nzm/n ]-factor. Then there is a decomposition of K(v:m)

into s copies of F1 and r copies of F2.

Proof: By Theorem 22 there is a decomposition of Km into Cn-factors.

Pick s1, . . . , sm−1
2

such that s =
⊕vm−1

2
i=1 si, with 0 ≤ si ≤ v and si 6∈ {1, v − 1}.

By Theorem 26 there is a decomposition of C(v:n) into si Cxizin-factors and ri = v−si

Cyizin-factors.

Therefore by Theorem 2.5.3 there is a decomposition of K(v:m) into s copies of the

2-factor F1 and r copies of the 2-factor F2. �

2.10 Applications

We can use our results to solve many cases of the Hamilton-Waterloo Problem for

complete graphs. For some of them we will need the notion of resolvable group

divisible design.

A resolvable group divisible design (k, λ)–RGDD(hu) is a triple (V ,G,B) where V is

a finite set of size v = hu, G is a partition of V into u groups each containing h

124



elements, and B is a collection of k element subsets of V called blocks which satisfy

the following properties.

• If B ∈ B, then |B| = k.

• If a pair of elements from V appear in the same group, then the pair cannot be

in any block.

• Two points that are not in the same group, called a transverse pair, appear in

exactly λ blocks.

• |G| > 1.

• The blocks can be partitioned into parallel classes such that for each element

of V there is exactly one block in each parallel class containing it.

Here we use the term group to indicate an element of G. In this context, group simply

means a set of elements without any algebraic structure. If λ = 1, we refer to the

RGDD as a k–RGDD(hu).

In [35] the following characterization theorem was proven:

Theorem 28 [35] A (3, λ)–RGDD(hu) exists if and only if u ≥ 3, λh(u− 1) is even,

hu ≡ 0 (mod 3), and (λ, h, u) 6∈ {(1, 2, 6), (1, 6, 3)}
⋃
{(2j+ 1, 2, 3), (4j+ 2, 1, 6) : j ≥

0}.

In [5] the authors used resolvable group divisible designs together with Theorem 28

125



to decompose complete graphs into C3-factors and C3x-factors.

Lemma 2.10.1 [5] Let x ≥ 3, y ≥ 3 and m be positive integers such that both x and

y divide 3m. Suppose the following conditions are satisfied:

• There exists a 3-RGDD(hu),

• there exists a decomposition of K(m:3) into sp Cx-factors and rp Cy-factors, for

p ∈ {1, 2, . . . , h(u−1)
2
},

• there exists a decomposition of Khm into sβ Cx-factors and rβ Cy-factors.

Let

sα =

h(u−1)
2∑

p=1

sp and rα =

h(u−1)
2∑

p=1

rp.

Then there exists a decomposition of Khum into sα + sβ Cx-factors and rα + rβ Cy-

factors.

We can now apply our decompositions to extend the result from [5]. We will be

concerned with prime numbers whose greatest power that divides x is the same as

their greatest power that divides y. Thus we give the following definition:

Definition 2.10.2 Let x and y be natural numbers, with x = pa11 . . . pann and y =

pb11 . . . pbnn their prime factorization. Then we define the special greatest common di-

visor of x and y, s
(
x, y
)

as the smallest number such that paii divides s
(
x, y
)

if and
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only if ai = bi.

Example 16: For example if x = 23325272 and y = 325372114, then s
(
x, y
)

= 3272.

Corollary 2.10.3 Let x, y, n be integers such that

• xy

s

(
x,y

) divides n,

• x, y 6≡ 0 (mod 4), and 4 divides n if 2 divides xy;

• 3n = huxyw

s

(
x,y

) , with h ≡ 0 (mod 3), u ≥ 3, h(u − 1) even, and (h, u) 6∈

{(2, 6), (6, 3)}.

Then there exists a decomposition of K3n into s C3x-factors and r C3y-factors for

every pair (s, r) such that s+ r = b3n−1
2
c, s, r 6= 1.

Proof: Let (s, r) be such that s+r = b3n−1
2
c and s, r 6= 1. If s ≥ r let s0 = b3n−1

2
c and

r0 = 0. Otherwise let s0 = 0 and r0 = b3n−1
2
c. Let s1, . . . , sh(u−1)

2

and r1, . . . , rh(u−1)
2

be such that si + ri = xyw

s

(
x,y

) , si, ri 6= 1 for all i and

rα =

h(u−1)
2∑
i=0

ri and sα =

h(u−1)
2∑
i=0

si.
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From Theorem 28 we know that there is a 3-RGDD(hu). Let z = s
(
x, y
)

, x1 = x
z

and y1 = y
z
. Then

xyw

z
=
x1zy1zw

z
= x1y1zw.

So we may apply Theorem 27 to obtain a decomposition of K(xyw
z

:3) into si C3x1z-

factors and ri C3y1z-factors for each i.

Because hxyw = hx1zyw = hxy1zw we have that 3x1z|(hxyw) and 3y1z|(hxyw).

From Theorem 22 there is a decomposition of Khxyw
z

into C3x1z-factors, and there is

also a decomposition of Khxyw
z

into C3y1z-factors.

Thus we may apply Lemma 2.10.1 to obtain a decomposition of Khuxyw
z

= K3n into s

C3x-factors and r C3y-factors. �

We can also use Lemma 2.5.1 to obtain decompositions of complete graphs into Cx-

factors and Cy-factors:

Corollary 2.10.4 Let m,x, and y be integers such that:

• z = s
(
x, y
)

, w = gcd(x,y)
z
≥ 2,

• xy
z

divides m,

• 4 does not divide x nor y.
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• Neither x nor y is 3 if m
w
∈ {6, 12}.

Then there exists a decomposition of Km into s Cx-factors and r Cy-factors for every

s, r 6= 1.

Proof: Let s, r be such that s+ r = bm−1
2
c and s, r 6= 1.

Let

k =
mz

xy
x′ =

x

zw
y′ =

y

zw
m′ =

m

w
=
xyk

zw
= x′y′zwk

Let sα, sβ, rα, rβ be such that sβ, rβ 6= 1, {sα, rα} = {0, bm′−1
2
c}, s = sα + sβ and

r = rα + rβ. By Theorem 27 there is a decomposition of K(m′:w) into sβ Cx′zw-factors

and rβ Cy′zw-factors. This is a decomposition of K(m′:w) into sβ Cx-factors and rβ Cy-

factors. Because xy
z

divides m, it follows that both x and y divide m′ = m
w

= m z
gcd(x,y)

.

Thus by Theorem 22 there is decompositon of Km′ into sα Cx-factors and rα Cy-

factors (keep in mind that one of sα and rα is 0). Then by Lemma 2.5.1 there is

a decomposition of Km′w into s Cx-factors and r Cy-factors. Therefore there is a

decompostion of Km into s Cx-factors and r Cy-factors. �

Notice that by asking xy
z

to divide m we cover some of the cases left open in [13] for

the odd order case.
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Example 17: Let m = 3353, x = 3152 and y = 3252. We have:

z = s
(
x, y
)

= 52, w = 31, k = 51

And xy
z

= 3352 divides m. So we can decompose Km into s Cx-factors and r

Cy-factors for any s, r 6= 1. Note that l = lcm(x, y) = 3252. The number of

vertices, m, is a multiple of l, however xy 6 |m. Thus, Theorem 20 cannot be

applied here.

Example 18: Let m = 41345371, x = 21315271 and y = 3352. We have:

z = s
(
x, y
)

= 52, w = 31, k = 2151

And xy
z

= 21345271 divides m. So we can decompose Km into s Cx-factors and

r Cy-factors for any s, r 6= 1. Note that because x is even Theorem 20 cannot

be applied here.

We can also use our Lemma 2.5.2 to obtain non-uniform decompositions of complete

graphs:

Corollary 2.10.5 Let v,m, n, x1, . . . , xk, y1, . . . , yk be integers such that:

• m ≥ 3 is odd,
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• n divides m, xi, and yi for every i,

• k = m
n

,

• zi = s
(
xi, yi

)
,

• xiyi
zin

divides v for each i,

• xi divides v for each i,

• 4 does not divide xi nor yi for any i,

• 3 6∈ {x1, . . . , xk, y1, . . . , yk} if k ∈ {6, 12}.

Then there exists a decomposition of Kvm into s [x
vn/x1
1 , . . . , x

vn/xk
k ]-factors and r

[y
vn/y1
1 , . . . , y

vn/yk
k ]-factors for every s, r 6= 1.

Proof: Let s, r be such that s+ r = bvm−1
2
c and s, r 6= 1.

Let

x′i =
xi
zin

y′i =
yi
zin

ki =
vzin

xiyi

Then

v =
xiyiki
zin

=
x′iziny

′
izinki

zin
= x′iy

′
izinki

Let sα, sβ, rα, rβ be such that sβ, rβ 6= 1, {sα, rα} = {0, bv−1
2
c}, s = sα + sβ and r =
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rα+rβ. By Theorem 27 there is a decomposition of K(v:m) into sβ [x
vn/x1
1 , . . . , x

vn/xk
k ]-

factors and rβ [y
vn/y1
1 , . . . , y

vn/yk
k ]-factors. We partition mKv into k copies of nKv,

labeled κ1, . . . κk. Because xiyi
zin

and xi divide v, we get that both xi and yi divide v,

by Theorem 22 there is a decompostion of Kv into sα Cxi-factors and rα Cyi-factors

(keep in mind that one of sα and rα is 0). This means that κi can be decomposed into

sα [x
vn/xi
i ]-factors and rα [y

vn/yi
i ]-factors. Combining these decompositions we get a

decomposition of mKv into sα [x
vn/x1
1 , . . . , x

vn/xk
k ]-factors and rα [y

vn/y1
1 , . . . , y

vn/yk
k ]-

factors.

Then by Lemma 2.5.2 there is a decomposition Kvm into s [x
vn/x1
1 , . . . , x

vn/xk
k ]-factors

and r [y
vn/y1
1 , . . . , y

vn/yk
k ]-factors for every s, r 6= 1. �

Example 19: Let v = 5372113134, m = 3151, n = 5, k = 3, x1 = 5272, y1 =

5172111131, x2 = 51111131, y2 = 5172133, x3 = 5271111134, and y3 = 51. We

have:

z1 = s
(
x1, y1

)
= 72,

x1y1

z1n
= 5272

z2 = s
(
x2, y2

)
= 51,

x2y2

z2n
= 72111134

z3 = s
(
x3, y3

)
= 1,

x3y3

z3n
= 5271111134

We can see that xiyi
zin

and xi divide v for each i.
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Let F1 be the 2-factor consisting of:

• vn
x1

= 52113134 cycles of size x1 = 5272,

• vn
x2

= 5372112133 cycles of size x2 = 51111131,

• and vn
x3

= 5261112 cycles of size x3 = 5271111134.

Let F2 be the 2-factor consisting of:

• vn
y1

= 53112133 cycles of size y1 = 5172111131,

• vn
y2

= 53113131 cycles of size y2 = 5172133,

• and vn
y3

= 5372113134 cycles of size y3 = 51.

Then we can decompose Kvm into s copies of F1 and r copies of F2 for any

s, r 6= 1.
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2.11 Appendix

Lemma 2.11.1 There is a decomposition of C(12:3) into 7 C12-factors and 5 C6-

factors.

Proof: Let G0, G1, and G2 be the partite sets. We will construct each factors by

taking a difference between each pair of partite sets. Notice that if the sum of the

three differences is congruent to 6 modulo 12, this gives a C6-factor. Likewise, if the

sum of the differences is congruent to 4 or 8 modulo 12 we get a C12-factor.

The C6 factors are obtained by taking differences:

G0 to G1 G1 to G2 G2 to G3 total mod 12

0 3 3 6

1 1 4 6

2 2 2 6

3 9 6 6

4 4 10 6
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The C12-factors are obtained by taking differences:

G0 to G1 G1 to G2 G2 to G3 total mod 12

5 10 5 8

6 6 8 8

7 0 9 4

8 5 7 8

9 7 0 4

10 11 11 8

11 8 1 8

Because all possible difference between each pair of partite sets has been taken once,

this provides the desired decomposition. �

Lemma 2.11.2 There is a decomposition of C(12:n) into 7 C3n-factors and 5 C2n-

factors, for any n ≥ 5.

Proof: We have to pick differences between n pairs of partite sets. For the first n− 3

differences sets choose differences that add up to 0. This can be achieved by taking

the difference one would take to decompose C(12:n−3) into Cn−3-factors. For the last

three differences, choose in the same way as we did in the previous lemma. �
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Chapter 3

Finite Abelian Groups And

Sequenceability1

3.1 Introduction

In 1961 B. Gordon [19] defined a group G to be sequenceable when there exists a

permutation

g0, g1, g2, . . . , gn−1

1The material in this chapter has been submitted to Australasian Journal of Combinatorics
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of its elements so that the sequence of partial products

g0, g0g1, g0g1g2, . . . , g0g1g2 · · · gn−1

are distinct. In that same paper he proved the following theorem.

Theorem 3.1.1 A finite abelian group G is sequenceable if and only if its Sylow

2-subgroup is non-trivial and cyclic.

In 1974 G. Ringel [36] asked when there exists a permutation

g1, g2, . . . , gn−1

of the non-identity elements of a group such that the sequence

g2g
−1
1 , g3g

−1
2 , . . . , gn−1g

−1
n−2, g1g

−1
n−1

also is a permutation of the non-identity elements. A group G that admits such a

permutation is called R-sequenceable. As a matter of fact, L. Paige [33] used this

concept in 1951, but it was Ringel’s problem that motivated the most important

paper on this topic (discussed below).

We now provide a context which establishes the close connection between the two
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concepts. Given a group G and a subset S of G such that S does not contain the

identity element of G, we define the Cayley digraph
−−→
Cay(G;S) by letting its vertices

be the elements of G and having an arc (g1, g2) if and only if g2 = g1s for some

s ∈ S. One special such Cayley digraph in which we are particularly interested is

when S = G − {1}, that is, the set S has everything in it other than the identity

element. We use the special notation
−→
K (G) for this Cayley digraph.

It is easy to see that a fixed element s ∈ S generates a subdigraph consisting of

directed cycles whose lengths are all |s|, where |s| denotes the order of s. Thus, we

obtain a factorization of
−−→
Cay(G;S) into |S| directed 2-factors. We call this factoriza-

tion the Cayley factorization of
−−→
Cay(G;S) and denote it by

−→
F (G;S).

If
−→
D is a subdigraph of

−−→
Cay(G;S) with |S| arcs, and

−→
D has exactly one arc from each

directed 2-factor in
−→
F (G;S), then we say that

−→
D is orthogonal to

−→
F (G;S). In this

language, the group G is sequenceable when
−→
K (G) admits an orthogonal Hamilton

directed path, and G is R-sequenceable when
−→
K (G) admits an orthogonal directed

cycle of length |G| − 1.

In spite of the similarity between these two concepts, they arose from quite different

settings. Gordon was interested in complete Latin squares, whereas, Ringel was

considering embeddings of complete graphs into orientable surfaces of positive genus.

We now say a few words about some notational conventions in this paper. We use
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(x, y) to denote an arc from x to y in a digraph, and xy to denote an edge joining x

and y in a graph. Continuing in this vein, (x1, x2, x3, . . . , xn) denotes a directed path

of length n − 1, (x1, x2, . . . , xn, x1) denotes a directed cycle of length n, xy denotes

an edge joining x and y in a graph, x1x2 . . . xn denotes a path of length n − 1 in

a graph and x1x2 . . . xnx1 denotes a cycle of length n in a graph. We use cyclic

notation for permutations and in order to distinguish permutations from directed

paths, we are careful with the exposition. Thus, as a permutation, (1, 2, 3, 4) is the

cyclic permutation mapping 4 to 1, and i to i+ 1 for i = 1, 2, 3.

For the rest of this paper, we consider only finite abelian groups and use additive

notation with one exception. For the direct sum of a copies of the cyclic group Zn,

we write Za
n rather than aZn.

As mentioned above, R. Friedlander, B. Gordon and M. Miller [18] wrote the most

significant paper on Ringel’s problem. They conjectured that if G is a finite abelian

group whose Sylow 2-subgroup is either trivial or both non-trivial and non-cyclic,

then G is R-sequenceable. (In other words, the conjecture is saying that if G is not

covered by Theorem 3.1.1, then it is R-sequenceable.) They established that the

conjecture holds in many cases and introduced the following important strengthening

ofR-sequenceability. If
−→
C = (g1, g2, . . . , gn−1, g1) is a directed cycle of length n−1 that

is orthogonal to
−→
K (G), where G is an abelian group of order n, with the additional

properties that 0 is the vertex missed by
−→
C , and there exist three successive elements
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gi, gi+1, gi+2 on
−→
C such that gi + gi+2 = gi+1, then we say that G is R∗-sequenceable.

We sometimes say that g1, g2, . . . , gn−1 is an R∗-sequence.

Friedlander, Gordon and Miller made considerable progress on the conjecture in [18],

but did not solve it completely. Nevertheless, several of their results are important

tools for the general conjecture. Some of the missing cases were settled in [21, 31, 37].

The proof of the conjecture is completed in this paper. We express the completion in

the form of the following theorem that includes all finite abelian groups.

Theorem 3.1.2 If G is a finite abelian group, then the following hold:

(1) G is sequenceable if the Sylow 2-subgroup is cyclic and non-trivial; and

(2) G is R-sequenceable if the Sylow 2-subgroup either is trivial, or the Sylow 2-

subgroup is non-trivial and non-cyclic.

3.2 First Stage of Proof

Part (1) of Theorem 3.1.2 is covered by Theorem 3.1.1. So we move to part (2) which

has a natural partition into two subcases. The first subcase is that G has even order

with its Sylow 2-subgroup non-trivial and non-cyclic. The second subcase is that G

has odd order, that is, the Sylow 2-subgroup is trivial. We consider the first subcase

next beginning with some useful results from [18].
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Lemma 3.2.1 The cyclic group Zn is R∗-sequenceable for all odd n > 5.

Lemma 3.2.2 Let G be an R∗-sequenceable abelian group and Zn, n > 1, an odd

order cyclic group. Then the following hold:

(1) If G has even order, then G⊕ Zn is R∗-sequenceable; and

(2) If G has odd order, then G⊕Zn is R∗-sequenceable whenever 3 does not divide n.

Lemma 3.2.3 Elementary abelian groups are R-sequenceable.

The next two results are from [21, 32], respectively.

Lemma 3.2.4 If G is an even order abelian group and its Sylow 2-subgroup is neither

Z3
2 nor Z2 ⊕ Z4, then G is R-sequenceable.

Lemma 3.2.5 If G is R∗-sequenceable, then Z3
2 ⊕G is R∗-sequenceable.

We now establish a method for handling the missing even order abelian groups. This

is inspired by Häggkvist’s Lemma in [20]. Consider the cycle u0u1u2 . . . uru0. The

edge uiuj divides the cycle into two subpaths with common end vertices ui and uj.

The length of the edge uiuj is the length of the shorter of the two paths unless both

subpaths have the same length in which case the length of the edge is (r + 1)/2.
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Lemma 3.2.6 If we label the vertices of Kn cyclically as u0, u1, u2, . . . , un−1, where

n = 2m > 4, then there is a Hamilton path whose first edge has length m and every

other edge length is used twice.

Proof: When m is odd, start a path with the edge u0um which has length m. Continue

with the edge umu1 and then zig zag back and forth decreasing the length by one

with each edge until finishing with the edge u(m−1)/2u(m+1)/2. We refer to this kind

of path as a zig-zag path. At this point we have used one edge of each of the lengths

1, 2, 3, . . . ,m.

Next we add the edge u(m+1)/2u(3m−1)/2 which has length m− 1. The unused vertices

are um+1, um+2 through u(3m−3)/2, of which there are (m − 3)/2 such vertices, and

u(3m+1)/2, u(3m+3)/2 through u2m−1, of which there are (m − 1)/2 such vertices. We

now continue with an increasing zig-zag path starting with the edge u(3m−1)/2u(3m+1)/2

and finishing with the edge um+1u2m−1 of length m− 2. The resulting path satisfies

the conclusions of the lemma. Figure 3.1 shows the path for m = 5.

The solution when m is even is different in that we describe an iterative procedure for

which we show that it results in a path with the desired properties. We require some

notation. We denote the current path by P and say the terminal vertex of P is the

end vertex distinct from u0. The interval I[ui, uj], i ≤ j, denotes the set of vertices

{ui, ui+1, . . . , uj}.
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Suppose P misses the α vertices I[u2m−α, u2m−1]. If, in addition, the remaining vertices

missed by P are I[u1, uα−1] and uα+1, the terminal vertex of P is uα, and the edge

lengths not used twice by P are 2, 3, . . . , 2α + 1, then we say the P is R-sided. Note

that the interval notation makes no sense when α = 1. In this case, we treat the

interval [u1, u0] as empty so that P terminates at u1 and the vertex u2 is not on P .

The other possibility is that the remaining vertices missed by P are I[u1, uα+2] and

u2m−α−2, the terminal vertex of P is u2m−α−1, and the edge lengths not used twice

by P are 2, 3, . . . , 2α+ 4. In this case we say the P is L-sided. The interval notation

makes no sense here for α = 0. So we treat the interval [u2m, u2m−1] as empty and

maintain the remaining conditions.

If P is R-sided with α ≥ 3, then extend P by adding the 3-path uαu2m−αuα+1

u2m−α+2. These new edges have lengths 2α− 1, 2α, 2α+ 1 and the terminal vertex of

the updated P is now u2m−α+1. Thus, P is now L-sided and α has decreased by 3.

On the other hand, if P is L-sided with α ≥ 1, then extend P by adding the 3-path

u2m−α−1uα+2u2m−α−2uα. These new edges have lengths 2α+ 1, 2α+ 2, 2α+ 3 and the

terminal vertex of the updated P is now uα. Thus, P is now R-sided and α has not

changed.
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u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

Figure 3.1: A path in K10 satisfying the conditions of Lemma 3.2.6

u0 u1

u2

u3

u4

u5

u6

u7u8
u9

u10

u11

u12

u13

u14

u15

Figure 3.2: A path in K16 satisfying the conditions of Lemma 3.2.6

Construct the initial path P by starting with the edge u0um. Then add an increas-

ing zig-zag path starting with the 2-path umum−1um+1 and continue until finish-

ing with the edge from u(3m−2)/2 to um/2 of length m − 1. Then add the 3-path

um/2u(3m+2)/2u3m/2u(m−4)/2 to complete the initial P . Note that P is an R-sided path

with α = (m− 4)/2.

We now begin iterations of the procedure described above and may continue until
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we reach a path P that is L-sided with α = 0, or R-sided with α ∈ {1, 2}. If P is

L-sided with α = 0, then P terminates at u2m−1, is missing the vertices u1, u2, u2m−2

and requires edges of lengths 2, 3, and 4. The completion u2m−1u1u2m−2u2 does the

job.

If P is R-sided with α = 1, then the terminal vertex is u1, the missing vertices are

u2m−1, u2, and the unused lengths are 2 and 3. The completion u1u2m−1u2 works.

If P is R-sided with α = 2, then the terminal vertex is u2, the missing vertices are

u2m−2, u2m−1, u1, u3, and the unused lengths are 2, 3, 4 and 5. There is no completion

for this case. If this is the initial P , then m = 8 and Figure 3.2 gives a solution for

m = 8. If this is not the initial P , then before the last iteration P was L-sided with

α = 2. So the vertices missed by P are u2m−4, u2m−2, u2m−1, I[u1, u4], the terminal

vertex is u2m−3, and the missing lengths are 2 through 8. The completion that works

is

u2m−3u3u2m−4u4u2m−1u1u2m−2u2.

This completes the proof. �

Lemma 3.2.6 allows us to complete the even order case. Suppose the Sylow 2-subgroup

of G is Z2 ⊕ Z4. If this is the entire group G, then

(0, 2), (1, 3), (0, 3), (1, 1), (1, 0), (1, 2), (0, 1)
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is an R-sequence.

Write G as the direct sum of its Sylow subgroups. From the preceding paragraph we

may assume that there is a summand of the form Zq, where q is an odd prime power.

So G is a direct sum of Z2 ⊕ Z4 ⊕ Zq ∼= Z2 ⊕ Z4q and an odd order abelian group.

Lemma 3.2.6 tells us that there is a path P (undirected) of length 4q − 1 in K4q,

where we are thinking of this as a Cayley graph on Z4q, such that an initial edge of

P has length 2q (that is, joins 0 and 2q) and all remaining edge lengths occur twice

in P . Display the vertices of Z4q ⊕ Z2 as a 2× 4q array with the obvious coordinate

system from Z2 and Z4q.

Build an undirected cycle C of length 8q − 1 as follows. Join (0, 1) to both (2q, 0)

and (2q, 1). Given two edges g1g2 and g3g4 of the same length in P , join (g1, 0) to

(g2, 0) and (g1, 1) to (g2, 1), and join (g3, 0) to (g4, 1) and (g3, 1) to (g4, 0). Finally, if

g is the terminal vertex of P distinct from 0, join (g, 0) to (g, 1).

The preceding construction yields a cycle C (undirected) of length 8q− 1. Note that

the vertex (0, 0) is not included in C. Also note that three successive vertices are

(2q, 0), (0, 1), (2q, 1) and (2q, 1) + (2q, 0) = (0, 1). Hence, if we direct C in either

direction to obtain a directed cycle, both directed cycles provide an R∗-sequence for

Z2 ⊕ Z4q. As the remaining summands in the direct sum of G have odd order, we

may apply part (1) of Lemma 3.2.2 as many times as required to obtain that G is

147



R∗-sequenceble.

If the Sylow 2-subgroup of G is Z3
2 , then Lemma 3.2.3 takes care of the case that

G ∼= Z3
2 , and Lemmas 3.2.1 and 3.2.5 takes care of the case that there is a cyclic

group of odd order bigger than 5 in the direct sum of Sylow p-subgroups. Also, if

both Z3 and Z5 appear in the Sylow subgroups of G, then Lemma 3.2.1 tells us that

Z15 is R∗-sequenceable. Lemma 3.2.5 then takes care of this situation.

So we are left with groups of the form Z3
2⊕Za

3 and Z3
2⊕Zb

5, where a, b > 0. Following

are R∗-sequences for Z3
2 ⊕ Z3

∼= Z2
2 ⊕ Z6 and Z3

2 ⊕ Z5, respectively:

(0, 0, 1), (0, 1, 1), (0, 1, 0), (0, 0, 5), (1, 0, 0), (1, 0, 1), (0, 0, 4), (1, 1, 0),

(1, 1, 4), (1, 0, 5), (1, 1, 2), (1, 1, 5), (0, 1, 5), (1, 0, 2), (0, 1, 3), (1, 1, 1),

(1, 0, 3), (0, 1, 2), (0, 1, 4), (0, 0, 2), (1, 0, 4), (0, 0, 3), (1, 1, 3)

and
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(0, 0, 1), (1, 1, 6), (1, 1, 5), (0, 1, 9), (0, 1, 5), (0, 0, 3), (1, 1, 3), (0, 1, 2),

(1, 1, 4), (0, 1, 0), (1, 0, 3), (0, 1, 7), (0, 0, 6), (0, 0, 9), (1, 0, 9), (1, 0, 1),

(0, 1, 3), (1, 1, 8), (1, 0, 4), (1, 0, 8), (0, 1, 6), (1, 1, 9), (1, 1, 7), (1, 0, 2),

(0, 1, 1), (0, 0, 2), (0, 1, 4), (1, 1, 1), (0, 0, 7), (0, 0, 8), (0, 1, 8), (0, 0, 5),

(1, 1, 2), (1, 0, 6), (0, 0, 4), (1, 0, 5), (1, 0, 0), (1, 0, 7), (1, 1, 0).

We then use part (1) of Lemma 3.2.2 to obtain that G is R∗-sequenceable for both

forms. This completes the proof of Theorem 3.1.2 when G has even order.

3.3 The Gadget

To complete the proof of Theorem 3.1.2 for groups of odd order, we first state the

following corollary which is an easy consequence of Lemma 3.2.1 and Lemma 3.2.2.

Corollary 3.3.1 If G is an odd order abelian group whose Sylow 3-subgroup either is

trivial, or non-trivial and cyclic, or R∗-sequenceable, then G itself is R∗-sequenceable
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unless G ∼= Z3 or G ∼= Z5 both of which are R-sequenceable.

The preceding corollary means that we need only show that abelian groups whose

Sylow 3-subgroups are non-trivial and non-cyclic are R-sequenceable. The method

we employ works, in fact, for all odd order groups and there is no gain in efficiency by

restricting ourelves to those groups satisfying the preceding condition on the Sylow

3-subgroups. Thus, we present the general method.

We work with direct sums. Given the direct sum G⊕H, we shall display the vertices

as an |H| × |G| array, where the columns correspond to the elements of G and the

rows correspond to elements of H. We develop some lemmas which prove to be very

useful, but we need a definition first.

Definition 3.3.2 Let f be a permutation of H and let g1, g2 ∈ G. We define the f -lift

of the arc (g1, g2) onto
−→
K (G⊕H) to be the set of arcs {((g1, h), (g2, f(h))) : h ∈ H}.

We denote this set of arcs by πf (g1, g2).

In spite of the fact we use functional notation for permutations, we compose permu-

tations from left to right because we move through the arrays from left to right. This

gives us the composition rule (fg)(x) = g(f(x)).

Lemma 3.3.1 Let G and H be abelian groups. If (g1, g2, . . . , gr+1) is a directed path
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in
−→
K (G) of length r, and f1, f2, . . . , fr are permutations of H, then the set of arcs

πf1(g1, g2) ∪ πf2(g2, g3) ∪ · · · ∪ πfr(gr, gr+1)

forms n = |H| vertex-disjoint directed paths of length r in
−→
K (G⊕H), where the last

vertex of the directed path with initial vertex (g1, h) is (gr+1, f1f2 · · · fr(h)).

If (g1, g2, . . . , gr, g1) is a directed cycle in
−→
K (G) of length r, and f1, f2, . . . , fr are

permutations of Zn, then the set of arcs

πf1(g1, g2) ∪ πf2(g2, g3) ∪ · · · ∪ πfr(gr, g1)

forms vertex-disjoint directed cycles. The number of directed cycles equals the number

of cycles in the disjoint cycle decomposition of f1f2 · · · fr.

Proof: It is easy to see that πf (g1, g2) for any permutation f of H generates an

orientation of a perfect matching between vertices whose first coordinate is g1 and

vertices whose first coordinate is g2 so that every arc is oriented from g1 to g2. It then

follows directly that we obtain n vertex-disjoint directed paths as claimed.

If we consider the directed path starting at (g1, h), it is straightforward to see that

its terminal vertex is (gr+1, f1f2f3 · · · fr(h)).

151



The argument for a directed cycle in
−→
K (G) is essentially the same except that πfr

generates an arc from vertices in G⊕H whose first coordinate is gr to vertices whose

first coordinate is g1. It is then easy to see that a cycle of length t in the disjoint

cycle decomposition of f1f2f3 · · · fr generates a directed cycle of length rt in G⊕H.

The rest of the lemma now follows. �

Lemma 3.3.1 gives us a way of controlling arcs in
−→
K (G ⊕ H). But we really would

like the arcs in the projection of an arc of
−→
K (G) to be generated by distinct elements

of G ⊕ H. This leads naturally to a known type of permutation. A permutation

f : H → H is an orthomorphism if the function g(x) = f(x)−x also is a permutation.

The next lemma tells us that orthomorphisms are precisely what we need.

Lemma 3.3.2 Let G and H be abelian groups. If f is an orthomorphism of H, then

the arcs of πf (gi, gj) in
−→
K (G⊕H) are generated by the group elements (gj − gi, h) as

h runs through H.

Proof: This follows immediately from the definition of an orthomorphism. �

There are some special orthomorphisms we use. Let |H| be odd and define the permu-

tation T0 on H by T0(h) = −h for h ∈ H. It is easy to see that T0 is an orthomorphism

because H contains no involutions. We extend this particular orthomorphism to Ta,

a ∈ H, by defining Ta(h) = 2a − h. It is straightforward to check that Ta also is
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an orthomorphism. An important feature of these particular orthomorphisms is the

following. When H ∼= Zn, n odd, then the composition

T0T1 = h+ 2 = (0, 2, . . . , n− 1, 1, 3, . . . , n− 2), (3.1)

that is, the product is an n-cycle.

If G is an R∗-sequenceable abelian group of order m, then we have a directed cycle of

length m−1 that misses the vertex 0 and has three successive vertices a, b, c for which

a + c = b. Label the vertices of the directed cycle in succession as g1, g2, . . . , gm−1

so that a = g1, b = g2, c = g3. The canonical labelling of the group G ⊕ H has the

columns labelled so that the leftmost column is labelled g1, the next column is labelled

0, and the remaining columns are labelled g2 through gm−1 from left to right in that

order.

We want to prove that G⊕H is R∗-sequenceable whenever possible. It is natural to

work with lifts of arcs of the directed cycle in
−→
K (G), but this directed cycle misses

the vertex 0 so that we need to get the vertices of the column labelled 0 involved. We
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now describe how to do so.

Definition 3.3.3 Suppose that G is an abelian group with non-zero elements

g1, g2, g3 satisfying g1 + g3 = g2. Consider G ⊕ H with H abelian of odd order

n ≥ 3. The lifts πT0(g1, g2) ∪ πT0(g2, g3) consist of n vertex-disjoint directed paths of

length 2 using all the vertices of columns g1, g2, g3, and whose arcs are generated by

(g2 − g1, h) and (g3 − g2, h) as h runs through H.

Now for each pair h,−h of additive inverses, replace the pair of directed 2-paths

((g1, h), (g2,−h), (g3, h))and ((g1,−h), (g2, h), (g3,−h)), h 6= 0,

by the directed 3-paths

((g1, h), (0,−h), (0, h)(g3,−h)) and ((g1,−h), (g2, h), (g2,−h)(g3, h).

The directed 2-path ((g1, 0), (g2, 0), (g3, 0)) is left unaltered. The new collection of

directed paths is called the gadget on columns g1, 0, g2, g3.

Lemma 3.3.3 The arcs of the gadget on columns g1, 0, g2, g3 are generated by the

elements (g2− g1, h), (g3− g2, h), (0, h′) for all h ∈ H and all h′ 6= 0 in H. Moreover,

the terminal vertex of the directed path whose initial vertex is (g1, h) is (g3,−h).
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Proof: The new arc ((g1, h), (0,−h)) of the gadget is generated by the group element

(g3 − g2,−2h) because g1 + g3 = g2. Similarly, the arc ((0, h), (g3,−h)) is gener-

ated by the group element (g2 − g1,−2h). The two vertical arcs ((0,−h), (0, h)) and

((g2, h), (g2,−h)) are generated by the group elements (0, 2h) and (0,−2h). Finally,

the arc ((g1,−h), (g2, h)) is generated by (g2 − g1, 2h), and the arc ((g2,−h), (g3, h))

is generated by (g3− g2, 2h). Hence, the claims about which group elements generate

the arcs of the gadget follow.

It is easy to see that the directed path beginning at (g1, h) terminates at (g3,−h) for

all h ∈ Zn. �

The next lemma is the basis for establishing Theorem 3.1.2 when G has odd order.

Lemma 3.3.4 Let G be an R∗-sequenceable abelian group of order m. If H is an odd

order abelian group for which there are orthomorphisms f1, f2, . . . , ft of H such that

T0f1f2 · · · ft is an |H|-cycle and m− t−3 ≥ 0 is even, then G⊕H is R∗-sequenceable.

Proof: We use the canonical labelling of G ⊕ H. The first four columns of the

array correspond to the group elements g1, 0, g2, g3 in that order, where g1 + g3 = g2.

Employ the gadget on these first four columns. Because of Lemma 3.3.3, it follows

that if for each remaining (gi, gi+1) and (gr−1, g1), we employ a lift arising from an

orthomorphism of H, the arcs will have been generated by all elements of G⊕H other
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than (0, 0). Moreover, the vertex (0, 0) is isolated and the vertices(g1, 0), (g2, 0), (g3, 0)

occur in succession. Because (g1, 0)+(g3, 0) = (g2, 0), if the arcs form a single directed

cycle, then G⊕H is R∗-sequenceable.

From Lemma 3.3.3, the permutation from column g1 to column g3 is T0. We then

successively employ the orthomorphisms f1, f2, . . . , ft for the following lifts. By hy-

pothesis, the product T0f1f2 · · · ft is a cycle of length |H|.

There are m − (t + 3) further lifts to be employed. If m − (t + 3) = 0, we already

have an |H|-cycle and we are done. If m − (t + 3) > 0, then it is even and we use

T0 for each subsequent lift. The product of an even number of T0 permutations is

the identity as T0 is an involution. Thus, the final product is a cycle of length |H|

completing the proof. �

This method of lifts brings to the fore why the prime 3 is a nagging problem. For a ∈

Zn satisfying gcd(n, a) = 1, let Ma denote the permutation of Zn defined by Ma(x) =

ax. When 3 does not divide n, it is straightforward to check that bothM2 andM(n−1)/2

are orthomorphisms. Note that M2M(n−1)/2 = T0. Then T0M2M(n−1)/2T0T1 = T0T1

is an n-cycle and Lemma 3.2.2 applies for m ≥ 7. When 3 divides n, unfortunately,

M(n−1)/2 is not an orthomorphism forcing us to find special arguments for the prime

3. This is what we now examine.

Corollary 3.3.4 If G is an R∗-sequenceable abelian group of odd order, then G⊕Z3e
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is R∗-sequenceable for e ≥ 2.

Proof: It is easy to verify that the permutations f0 = T0, f1 = M2, and f2 =

(0, 1)(2, 6, 3, 5, 8, 4)(7) satisfy f0f1f2 = (0, 1, 7, 2, 8, 6, 3, 5, 4) for e = 3. This means

that G ⊕ Z9 is R∗-sequenceable when G is R∗- sequenceable according to Lemma

3.3.4.

For e = 3, let f0 = T0. Let f1 and f2 be the following permutations, respectively:

(0, 26, 3, 8, 19, 7, 10, 16, 5, 24, 17, 12, 20, 14, 4, 22, 23, 25, 11, 18, 1, 13, 9, 6, 15, 2)(21)

and

(0, 22, 21, 13, 11)(1, 6, 7)(2, 8, 15, 5, 23, 10, 19, 4, 24, 20, 3, 16, 18, 26, 14, 25)(9, 12)(17).

Again it is easy to verify that the permutation f0f1f2 is a 27-cycle as required. Lemma

3.3.4 then implies that G⊕ Z27 is R∗-sequenceable when G is R∗-sequenceable.

We now want to show that G⊕ Z3e is R∗-sequenceable, when G is R∗-sequenceable,

for all e ≥ 2 and we proceed by induction on e having established the result for

e = 2, 3. Consider e ≥ 4. Let N be the subgroup of Z3e of order 3e−2 so that Z3e/N

is isomorphic to Z9. Use 0, 1, . . . , 8 as the coset representatives and let x correspond
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to the element N + x in the quotient group of order 9.

From above we know there are three orthomorphisms f0, f1, f2 of Z3e/N so that

f0f1f2 = (0, 1, 7, 2, 8, 6, 3, 5, 4), and f0(0) = f1(0) = 0 and f2(0) = 1. Suppose that

fi(x) = y. Then let α be any orthomorphism of N . Define the α-lift action of fi on

N + x by letting fi(n+ x) = α(n) + y, n ∈ N . It is easy to see that fi acting on the

coset N + x picks up all elements of the form N + (y − x) via fi(n + x) − (n + x).

Thus, fi is an orthomorphism of Z3e if the action on each coset is defined via the lift

of an orthomorphism of N as just described.

We now define f0, f1, f2 to ensure that f0f1f2 is a cycle of length 3e. Let α0, α1, α2 be

orthomorphisms of N such that α0α1α2 is a cycle of length 3e−2 on N by induction.

We have that f0 maps 0 to itself. We use the lift of the orthomorphism α0 on N to

define f0 on N . Continuing, we know that f1 also maps 0 to 0. We use the lift of α1

to define f1 acting on N . Finally, to get the action of f2 on N , use the lift of α2 to

define the action of f2 mapping N to N + 1. For all other lifts, use T0 on N .

We claim that f0f1f2 is a cycle of length 3e. To see this, first note that f0f1f2 acts as

[0, 1, 7, 2, 8, 6, 3, 5, 4] on the cosets. Because α0α1α2 is a cycle of length 3e−2 on N and

we use the lifts of these three orthomorphisms to give the action of f0, f1, f2 on N , we

see that if α0α1α2(n1) = n2, then f0f1f2(n1) = n2 + 1. All remaining lifts use T0 and

there are an even number of them so that f0f1f2 is a full cycle of length 9 · 3e−2 = 3e

as required. �
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If every summand in the Sylow 3-subgroup has order at least 9, then any summand

is R∗-sequenceable by Lemma 3.2.1. Repeated applications of Corollary 3.3.4 yield

that the Sylow 3-subgroup is R∗-sequenceable. Corollary 3.3.1 then implies that G is

R∗-sequenceable.

When exactly one summand in the Sylow 3-subgroup is Z3, we require a lemma. Two

useful items for the proof are given first.

The following are R∗-sequences for Z3 ⊕ Z9 and Z3 ⊕ Z27, respectively:

(2, 0), (2, 3), (0, 3), (0, 5), (1, 2), (2, 4), (1, 1), (1, 8)(0, 1), (1, 4), (1, 0), (2, 1), (2, 2),

(2, 8), (1, 6), (0, 2), (1, 7), (0, 8), (1, 3), (0, 7), (1, 5), (0, 4), (2, 7), (0, 6), (2, 6), (2, 5)

and
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(0, 1), (0, 26), (0, 25), (1, 24), (2, 10), (1, 11), (1, 25), (0, 11), (2, 16), (0, 8),

(2, 26), (1, 15), (0, 14), (2, 4), (1, 23), (0, 23), (2, 20), (1, 8), (2, 15), (1, 0),

(0, 10), (0, 17), (1, 19), (2, 14), (0, 19), (1, 20), (1, 13), (1, 7), (1, 18), (1, 3),

(2, 13), (2, 17), (2, 7), (0, 22), (2, 25), (1, 6), (0, 20), (2, 0), (2, 8), (2, 5),

(0, 2), (1, 10), (2, 1), (2, 3), (0, 7), (2, 18), (2, 9), (0, 18), (1, 14), (0, 12),

(1, 26), (1, 2), (0, 6), (2, 12), (2, 22), (1, 4), (2, 2), (2, 21), (0, 21), (2, 23),

(0, 16), (1, 22), (2, 11), (2, 24), (2, 6), (1, 1), (0, 24), (1, 9), (0, 3), (0, 4),

(0, 9), (0, 15), (1, 5), (1, 21), (1, 17), (1, 12), (0, 5), (1, 16), (2, 19), (0, 13).

Lemma 3.3.5 The group G = Z3 ⊕ Z3e, e ≥ 2, is R∗-sequenceable.

Proof: The statement is true for e = 2, 3 because R∗-sequences are given above. We

proceed by induction on e and let e > 3. Let N be the cyclic subgroup of order 3e−2.

The quotient group G/N is isomorphic to Z3 ⊕ Z9. Let the coset representatives be

{(i, j) : 0 ≤ i ≤ 2, 0 ≤ j ≤ 8} and let (i, j) denote the element N + (i, j) of the

quotient group.
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Display the elements of G as a 3e−2 × 9 array where the columns are cosets of the

cyclic subgroup of order 3e−2 and they are written left to right in the order of the

R∗-sequence for Z3 ⊕ Z9 given above, where column (0, 0) is inserted between (2, 0)

and (2, 3).

Even though the columns now correspond to cosets of Z3e−2 rather than the group

itself—as they did earlier when we defined the lift of an arc onto the array for a direct

sum—it should be clear how we define a lift now. Namely, if there is an arc from (i, j)

to (i′, j′) in
−→
K (G/N) and f is a permutation of N , then for each (i, j) + n ∈ (i, j),

we have an arc to (i′, j′) + f(n). We then use the same notation πf for the lift.

We then use πT0 as the lift for the arcs from (2, 0) to (2, 3), and from (2, 3) to (0, 3).

Note that one of the directed paths is (2, 0), (2, 3)(0, 3) and this sequence of three

vertices satisfies (2, 0)+(0, 3) = (2, 3). So if we end up with a directed cycle of length

3e+1 − 1, we have that Z3 ⊕ Z3e is R∗-sequenceable.

It is now clear that if we carry out the obvious gadget operation, we end up with

directed paths of length 3, except for the unaltered directed path, whose initial and

terminal vertices behave like πT0 from column (2, 0) to column (0, 3). In the proof of

Corollary 3.3.4, we show that for all e > 1 there are two orthomorphisms f1, f2 such

that T0f1f2 is a cycle of length of length 3e. So we use these two orthomorphisms for

the next two lifts of arcs along the R∗-sequence for Z3 ⊕ Z9. We then use T0 for all
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subsequent lifts and this leads to a directed cycle of length 3e+1 − 1 as required. �

We continue now with the subcase that the Sylow 3-subgroup has exactly one Z3

term in the direct sum. The Sylow 3-subgroup is not cyclic so that Lemma 3.3.5

and repeated applications of Corollary 3.3.4 imply that the Sylow 3-subgroup is R∗-

sequenceable. Lemma 3.3.1 then implies that G is R∗-sequenceable.

If there are two or more Z3 terms in the direct sum for the Sylow 3-subgroup, there

is a useful fact we exploit. Let

f1 =
(

(0, 0), (2, 0), (0, 2), (1, 2), (1, 0), (0, 1)
)(

(1, 1), (2, 2)
)(

(2, 1)
)

and

f2 =
(

(0, 0), (1, 0), (1, 1), (0, 2), (2, 2), (0, 1)
)(

(1, 2), (2, 0)
)(

(2, 1)
)

be two permutations of Z3 ⊕ Z3. It is easy to check that both are orthomorphisms

and that T0f1f2 is a 9-cycle.

We then conclude that Z3⊕Z3⊕G is R∗-sequenceable when G is R∗-sequenceable and

has odd order from Lemma 3.3.4. So consider the Sylow 3-subgroup H itself. If H has

a summand Z whose order is at least 9, then both Z and Z3⊕Z are R∗-sequenceable

by Lemma 3.2.1 or Lemma 3.3.5. Then H is R∗-sequenceable by starting with Z if

there are an even number of Z3 terms in the direct sum, or starting with Z3⊕Z if there
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are an odd number, and using the preceding fact. Therefore, H is R∗-sequenceable

and Lemma 3.3.1 implies that G is R∗-sequenceable.

The preceding paragraph means we are left with the subcase that the Sylow 3-

subgroup is Za
3 for some a ≥ 2. If this is all of G, then G is R-sequenceable by

Lemma 3.2.3. So we may assume that there is a non-trivial Sylow p-subgroup for

some prime p > 3. If p > 5, then we may repeatedly apply Lemmas 3.2.1, 3.2.2, and

the above fact to obtain that G is R∗-sequenceable.

The same process works for p = 5 except Z3 ⊕ Z3 ⊕ Z5. Following is an R∗-sequence

for this group which completes the proof of Theorem 3.1.2.

(0, 0, 1), (0, 2, 2), (0, 2, 1), (1, 1, 0), (0, 2, 3), (0, 1, 1), (0, 1, 2), (1, 2, 3), (0, 0, 2),

(2, 1, 2), (0, 0, 4), (0, 1, 0), (1, 0, 3), (2, 0, 0), (2, 1, 3), (2, 0, 3), (0, 1, 3), (1, 2, 1),

(2, 2, 1), (1, 1, 2), (2, 1, 0), (1, 0, 2), (1, 0, 0), (2, 0, 4), (1, 1, 1), (2, 2, 0), (2, 2, 2),

(2, 0, 1), (2, 2, 3), (0, 1, 4), (2, 1, 1), (1, 2, 2), (0, 2, 0), (2, 1, 4), (1, 1, 4), (1, 2, 4),

(1, 1, 3), (0, 0, 3), (1, 0, 4), (2, 2, 4), (1, 2, 0), (2, 0, 2), (1, 0, 1), (0, 2, 4).
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Chapter 4

Conclusions and Future Work

In this dissertation research related to two problems introduced by the Austrian

mathematician Gerhard Ringel is presented. The first was the Hamilton-Waterloo

problem. This asks whether complete graphs can be decomposed into combinations

of two 2-factors. The second asks whether the non-identity elements of a group can be

written in a certain order g1, g2, . . . , gn−1 such that each non-identity element appears

exactly once in the sequence g2g
−1
1 , g3g

−1
2 , . . . , gn−1g

−1
n−2, g1g

−1
n−1.
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4.1 The Hamilton-Waterloo Problem

4.1.1 Conclusions on the Hamilton-Waterloo Problem

For the Hamilton-Waterloo problem, in Chapter 1 we considered the Hamilton-

Waterloo problem over the complete graph Kv, were each connected component of

F1 is a cycle of size 3 and each connected component of F2 is a cycle of size 3x. The

results obtained are summarized in the following theorem:

Theorem 29 Let x ≥ 2, y ≥ 2, and r, s ≥ 0 such that r + s = b3xy−1
2
c. Then there

is a decomposition of K3xy into r C3-factors and s C3x-factors, except possibly when:

• s = 1, y ≥ 3, and x ∈ {3, 31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 69, 71, 79, 83}.

• s = 1, x is odd and y is even.

• s = 1, x ≥ 6, x ≡ 2 (mod 12).

• s = 1, y ≥ 8 is even and x ≡ 10 (mod 12).

• s = 1, x ≥ 3 is odd and y is even.

• 1 ≤ s ≤ x
2
− 1, x ≥ 16, x ≡ 4 (mod 12), y is even.

• 1 ≤ s ≤ x
2
− 1, x ≥ 10, x ≡ 4 (mod 6), y is odd.

• (s, x) ∈ {(2, 12), (4, 12)}.
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• s = 0, x = 2, y = 2.

• x = 2 and y ∈ {4, 8}.

• s ∈ {3, 4, . . . 3(y−1)
2
}, x = 2 and y ≥ 3 is odd.

• x 6∈ {2, 4} and y ∈ {2, 4, 6}.

• x = 4 and y ∈ {2, 4}.

• x = 6 and y odd.

The methods used in Chapter 1 relied on Hamilton-Waterloo decompositions of the

complete equipartite graphs K(x:3) and K(4:3). This inspired the work done in Chapter

2.

For the generalization of the Hamilton-Waterloo problem over complete equipartite

graphs, in Chapter 2 decompositions of K(v:m) into s F1-factors and r F2-factors were

found. The main result presented was:

Theorem 30 Let m and n be odd, such that m ≡ 0 (mod n). Let s and r be such that

s, r 6= 1 and s+r = vm−1
2

. Let x1, . . . xm/n, y1, . . . ym/n, z1, . . . , zm/n and w1, . . . , wm/n

be such that:

• gcd(xi, zi) = gcd(yi, zi) = 1;

• wi 6∈ {2, 6};

• 2 divides at most one of xi, yi and zi;
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• v = xiyiziwi if 2 divides none of xi, yi, zi; and

• v = 2xiyiziwi if 2 divides one of xi, yi, zi.

Furthermore, let F1 be a [(x1z1n)
v

x1z1 , . . . , (xm/nzm/nn)
v

xm/nzm/n ]-factor, and let F2 be a

[(y1z1n)
v

y1z1 , . . . , (ym/nzm/nn)
v

ym/nzm/n ]-factor. Then there is a decomposition of K(v:m)

into s copies of F1 and r copies of F2.

These results were applied to obtain decompositions of complete graphs, obtaining

the following corollaries:

Corollary 4.1.1 Let m,x, and y be integers such that:

• z = s
(
x, y
)

, w = gcd(x,y)
z
≥ 2,

• xy
z

divides m,

• 4 does not divide x nor y.

• Neither x nor y is 3 if m
w
∈ {6, 12}.

Then there exists a decomposition of Km into s Cx-factors and r Cy-factors for every

s, r 6= 1.

Corollary 4.1.2 Let v,m, n, x1, . . . , xk, y1, . . . , yk be integers such that:
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• m ≥ 3 is odd,

• n divides m, xi, and yi for every i,

• k = m
n

,

• zi = s
(
xi, yi

)
,

• xiyi
zin

divides v for each i,

• xi divides v for each i,

• 4 does not divide xi nor yi for any i,

• 3 6∈ {x1, . . . , xk, y1, . . . , yk} if k ∈ {6, 12}.

Then there exists a decomposition of Kvm into s [x
vn/x1
1 , . . . , x

vn/xk
k ]-factors and r

[y
vn/y1
1 , . . . , y

vn/yk
k ]-factors for every s, r 6= 1.

The importance of Chapter 2 goes beyond the results obtained. The equipartite

product we introduced will change the way people study problems on equipartite

graphs, and will become one of the main tools to attack such problems. The special

greatest common divisor is an extremely interesting concept that can be studied in

depth and may yield some extremely useful results.
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4.1.2 Future Work on the Hamilton-Waterloo Problem

On the Hamilton-Waterloo problem the first goal is to show that Kv can be decom-

posed into Cx-factors and Cy-factors if xy
gcd(x,y)

divides v for all x, y odd. To do this I

plan to study decompositions of C(x:n) into Cx1n-factors and Cx2n-factors, when x1x2

is odd and x1x2

s

(
x1,x2

) does not divide x.

Some further research problems on this topic are:

• Find decompositions into cycle sizes divisible by 4.

• Study the Hamilton-Waterloo problem over K(v:m), when m is even.

• Find decompositions of K(v:m) into 1 F1-factor and
⌊

(m−1)v
2

⌋
F2-factors.

4.2 R-Sequences

4.2.1 Conclusions on the problem of R-Sequences

On the problem of R-sequences, in Chapter 3 the problem over abelian groups was

completely solved, as shown in the following theorem:
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Theorem 4.2.1 If G is a finite abelian group, then the following hold:

(1) G is sequenceable if the Sylow 2-subgroup is cyclic and non-trivial; and

(2) G is R-sequenceable if the Sylow 2-subgroup either is trivial, or the Sylow 2-

subgroup is non-trivial and non-cyclic.

The problem was studied as two separate cases, abelian groups of even order, and

abelian groups of odd order. The even case was proved by finding some special kind

of cycles of Z4n, and using them to find R∗-sequences of Z2 ⊕Z4n. The odd case was

proved by using orthomorphisms of Z3e to find R∗-sequences of Zn ⊕ Z3e .

4.2.2 Future Work on R-Sequences

In the case of R-Sequences, a natural research problem is to study non-abelian groups.

One possible starting point is to use the even order construction from Chapter 3 to

study when dihedral groups are R-sequenceable. Another is to develop a tool using

normal subgroups and quotient groups instead of direct products, to aide in the study

of R-sequenceable non-abelian solvable groups.

I also plan to study the concept of orthogonalizable groups. A group G is called

orthogonalizable if for every identity free subset S ⊂ G, the Cayley digraph
−−→
Cay(G;S)

admits either an orthogonal path or an orthogonal cycle. So far the only results in

this problem are over abelian groups of small size [4]. The results obtained in Chapter
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3 are a first step towards finding a solution to this problem. The next step would be

to work on cyclic groups. I will start by studying groups of prime order.
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