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Abstract

A continuous investigation on the improvement of internal combustion engines is nec-

essary due to the stringent emission and fuel economy regulations. Low Temperature

Combustion (LTC) is a promising field of research since it can simultaneously reduce

NOx and soot while attaining high thermal efficiencies in automotive engines. A

thorough study of several LTC regimes is necessary to understand the quantitative

comparison and the extent of feasibility of these regimes functioning on an automotive

engine. This thesis concentrates on an experimental investigation of three different

LTC modes namely Homogeneously Charged Compression Ignition (HCCI), Partially

Premixed Compression Ignition (PPCI) and Reactivity Controlled Compression Ig-

nition (RCCI) on a 2.0-liter 4-cylinder gasoline engine.

A detailed experimental study of the LTC regimes with over 2,500 data points on a

GM 2.0 L Ecotec engine is performed to study the relationship among the engine vari-

ables, combustion and performance characteristics. The operating range extension of

the engine for lean limit and load limit while functioning in each combustion mode

is discussed through operating region maps. Performance metric maps for indicated

specific fuel consumption (ISFC), brake specific fuel consumption (BSFC), thermal ef-

ficiency and exhaust temperature are developed and discussed. The optimized maps

are developed for each LTC regime considering the best ISFC at each speed-load

xxxvii



condition. Moreover, the behavior of the engine for each combustion mode is inves-

tigated and discussed through the trends observed for combustion phasing (CA10,

CA50, CA90 and BD) and performance metrics (IMEP, indicated thermal efficiency,

combustion efficiency).

The results show that the RCCI combustion mode offers the best indicated thermal

efficiency of 47% among the three LTC modes. The Start of Injection (SOI) of n-

heptane is found as a dominant factor in order to determine the optimal combustion

phasing. The results of a comparative study indicate that HCCI is more suitable

for running the engine at low loads, PPCI for low-mid loads and RCCI for mid-high

loads.
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Chapter 1

Introduction

Over the past two decades, the demand for highly fuel efficient vehicles has increased

significantly, owing to the constantly changing emission standards and environmental

concerns. New engine technologies are being explored to enhance thermal efficiency

and minimize fuel consumption in engines. Automotive manufacturers are trying

to comply with emission standards which are designed by environmental legislators

and also provide low fuel consumption and high performance engines for customers.

Therefore, many experimental and numerical studies were carried out by researchers

on these issues. The studies have focused on improving combustion efficiency of

internal combustion engines, reduction in emissions and use of alternative fuels [6, 7,

8].
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Figure 1.1 represents the soot and NOx regions for different combustion modes as a

plot of local equivalence ratio vs local temperature. It can be seen that the lower

equivalence ratio results in higher NOx while higher equivalence ratios lead to soot

formation. The challenge that researchers currently face is to reduce the soot and

NOx emissions, simultaneously. In order to accomplish this, a number of combustion

regimes have been explored. NOx formation occurs at temperatures higher than

2000 K. Therefore, with a decrease in in-cylinder temperatures and avoiding rich

local zones, the problem of soot and NOx emissions could be eliminated to a fair

extent.

Figure 1.1: Contour plots of soot, NOx, HC and CO depicting the oper-
ating regions of several combustion regimes [1] (Letter of permission D.1)

Low temperature combustion techniques such as HCCI, PPCI and RCCI have proven

to be promising alternatives to the conventional Spark ignition and diesel combustion

engines beacause of their ability to reduce the in-cylinder local temperatures and the

rich zones simultaneously. In all the three LTC modes, the injection of fuel is either
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in the port or early during compression stroke in the cylinder. This results in the

fuel being premixed, hence avoiding the local rich zones in the cylinder. Moreover,

RCCI combustion can be accomplished with split injections over a time period in a

cycle, which results in better homogeneity of the air-fuel mixture [9]. Considering

this factor, it is of prime importance to reduce the need for aftertreatment systems,

while achieving high engine efficiencies.

This chapter describes the evolution of LTC engines explaining their evolution, back-

ground, advantages and challenges. It also outlines the operating principle of HCCI

engines. Moreover, the research goals and scope of the study are introduced.

1.1 The evolution of Low temperature Combus-

tion (LTC) engines

Spark ignition (gasoline) engines are one of the commonly used IC engines in commer-

cial automobiles these days. Spark ignition engines do not use very high compression

ratio due to knock limit and therefore the thermal efficiency is lower in these engines.

Also in the spark ignition engines, speed and load conditions are controlled by throt-

tling fresh cylinder charge which results in throttling loss. Cylinder charge in spark

ignition engines is homogenous because fuel and air are mixing in intake port. Com-

bustion phenomena in spark ignition engines encompass flame propagation which is
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initiated by the spark plug. Since fuel and air are taken into the cylinder together,

the fuel sticks on the cylinder wall and piston cavity. Consequently, oxidation is not

fully done on these surface and unburned hydrocarbon (HC) emissions are high in

spark ignition engines. [6] Compression ignition (diesel) engines are another type of

internal combustion engines that are used widely nowadays. High compression ratio is

used in these engines which result in high thermal efficiency. There are no throttling

losses due to the fact that fuel is sprayed directly into the cylinder. Adverse aspect

of compression ignition engines is heterogeneous cylinder charge which is caused by

subsequent fuel addition to air inside the cylinder. Nitrogen oxides (NOx) and soot

(PM) emissions are high in diesel engines. [7]

Homogeneous charge compression-ignition engines have advantages of spark ignition

engines as well as benefits of compression ignition engines. The homogeneous air-

fuel mixture is taken into the cylinder without throttling losses. This homogeneous

mixture undergoes simultaneous self-ignition throughout the cylinder without the

flame propagation while being compressed by piston. Thus the combustion efficiency

is higher and the heat transfer losses are lower due to shorter combustion duration.

Also thermal efficiency is high because of high compression ratio implementation in

these engines. Considering these characteristics we can conclude that HCCI engines

provide high thermal efficiency while emitting very low levels of NOx and PM [6, 7,

8]. However, HCCI engines suffer from some problems and commercial use of these

engines needs resolution of these weak points which are related to ignition timing and
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the combustion rate control. These two problems are difficult to overcome. First,

there is no mechanism for ignition timing control similar to spark in spark ignition

engines or injection timing in direct injection engines. Second, chemical reaction’s

dependence on the fuel properties is more dominant in HCCI engines than spark

ignition and diesel engines. HCCI engines face with issues such as misfire at low load

and knocks at high load. Therefore, HCCI engines have a limited operating range [8].

Recently, many studies have been carried out about the potential control methods as

intake air heating [10, 11], variable compression ratio [12, 13], variable valve timing

[14, 15] and EGR system [16, 17], etc. Most of studies have focused on the effects

of physical and chemical properties of different alternative fuels to control HCCI

combustion [6, 18, 19]. In these studies, the important results were obtained about

control of the HCCI combustion process. However, satisfactory result was not gained

at high-load operation of HCCI engines due to lack of a direct method to control

combustion phasing. Another way to overcome the disadvantages of HCCI engines is

application of dual mode engine as HCCI/SI engine. A dual-mode HCCI/SI engine is

equipped with variable valve timing and ignition system, that can operate in HCCI

mode at low and medium load, while operates in SI mode at high load when necessary.

In contrast, transition between modes is not acceptably stable especially from SI

mode to HCCI mode. It is necessary to make further improvements on controlling

strategies in order to eliminate between cycle to cycle variations. Generally, HCCI

and SI operation are combined for obtaining the best performance in double-mode
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engine [20, 21].

In order to overcome the difficulty of combustion phasing control in HCCI, an al-

ternative LTC mode called Partially Premixed Compression Ignition (PPCI) was

introduced in 2005 [22, 23]. Unlike HCCI, the fuel was premixed in a fuel tank (in a

desired ratio based on the RON) and was injected directly into the engine cylinder

using direct injection. The tests were performed on a boosted Diesel engine with high

EGR rates. This type of combustion is more suitable for high octane fuels, since the

high volatility of gasoline enabled better mixing of the fuel and air after injection.

In this study, a significantly lower fuel consumption, NOx and PM were observed.

Extensive research has been conducted in order to understand the dynamics and com-

bustion characteristics of PPCI combustion [5, 24]. An experimental and numerical

investigation was performed on a light duty diesel engine to identify the characteristics

of GDICI combustion. A parametric study was performed to analyze the feasibility

of full load operation of the engine. It was observed that low-emission engine con-

cepts could be extended to high octane high speed engine operation. Owing to the

high volatility and octane number of gasoline, there was a significant reduction in the

combustion temperatures and ultra-low NOx was achieved, while the ISFC was about

180 g/kW-h. It was also observed that the injection pressure had to be optimized in

order to obtain an optimized operating map for a given load. It was observed that

the maps were highly sensitive to EGR rate, boost pressure and intake air tempera-

ture. Moreover, increasing the intake air temperature and reducing the EGR rate had
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very comparable effects on the operating map region [24]. The effects of boost pres-

sure was investigated on PPCI combustion in an early direct injection HCCI engine

through experimental methods. It was observed that intake manifold pressure had

a significant effect on the operating range extension of the engine. The in-cylinder

pressure increased and the combustion was advanced with boosting. Moreover, the

best indicated thermal efficiency was obtained when the engine was run at a combus-

tion phasing slightly after TDC. The peak thermal efficiency obtained was about 40

%, which is very much comparable to that of diesel engines. Moreover, higher engine

loads could be achieved with higher boost pressures and the engine load boundary

was extended significantly [5]. Partial fuel stratification is an approach that has

been studied extensively ever since its inception. It has been observed that the auto-

ignition knocking tendency could be reduced with PPCI [25, 26]. With this reduction

in knock intensity, the combustion phasing control became much easier. As a result of

this, higher thermal efficiencies could be attained at higher loads [27]. When partial

fuel stratification was compounded with the introduction of reactivity of equivalence

ratio stratification, it was possible to further precisely control the combustion phas-

ing and the gradient of heat release [28]. The knock intensity was further reduced

at mid-high load condition. This technique has been termed as reactivity controlled

compression ignition (RCCI). It is a dual fuel combustion strategy that uses a higher

reactivity fuel to be injected directly into the cylinder and the low reactive fuel to

be injected in the intake manifold. It has been observed that with RCCI, the engine
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operation region could be extended to high load condition, while attaining thermal

efficiencies close to the conventional diesel combustion (CDC). The experiments were

performed with pump gas 87 octane fuel as the low reactive fuel and ultra-low sulfur

diesel as the high reactive fuel. While the MPRR was significantly reduced, indicat-

ing acceptable operating region without knock, the EPA 2010 standards for NOx and

soot was also met [29]. With RCCI combustion, the gross thermal efficiencies could

be escalated to 60 %, with simultaneous reduction in friction and pumping losses.

Using an engine with a compression ratio of 18.6:1, a 50 % reduction in heat transfer

losses and combustion losses were obtained. Moreover, the NOx and PM levels were

near-zero. This shows that thermodynamic conditions and combustion parameters

need to be optimized in order to extend the lean limit operation and higher thermal

efficiencies at all test points. Moreover, improvement in supercharger efficiencies, low

temperature of the exhaust and reduction in friction losses play a key role in attaining

high gross efficiencies [30].

1.2 Principle of Operation of LTC engines

HCCI combustion has been an interesting field of research due to its ability to attain

ultra low NOx and near zero PM emissions. This can be achieved by firstly obtaining

a homogeneous air-fuel mixture and then providing sufficient heat for the mixture to

auto-ignite at the end of compression stroke. Achieving these tasks can prove to be
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challenging. [31]

Figure 1.2: Comparison of diesel, Gasoline and HCCI engine [2] (Permis-
sion letter given in D.2)

If complete homogeneity is obtained for a mixture, there is a rise in temperature

and pressure of the mixture during compression. This leads to auto-ignition of the

mixture. However, this differs from a typical diesel CI. In case of HCCI the auto-

ignition does not occur at a certain place in the cylinder, but simultaneously across

the combustion chamber. Contrary to SI combustion, there is no high temperature

flame front in HCCI during the auto-ignition of the mixture. This leads to reduced

in-cylinder gas temperatures and lean mixtures, thereby reducing the NOx formation

to near-zero levels. Moreover, due to the absence of local rich zones in the cylinder,

the soot emissions is also simultaneously reduced. [32] [33]. In a HCCI engine, the
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fuel and air are premixed in the intake port, while in case of PPCI the mixture

preparation happens in the cylinder, similar to Gasoline direct injection. The air-

fuel mixture is compressed during the compression stroke and combustion is attained

by auto-ignition of the mixture at the end of compression. In order to auto ignite

the mixture at the end of compression stroke, the gas temperature at the start of

compression has to be higher. This can be achieved by either pre-heating the intake

air or by trapping residuals in the cylinder. As a result of this, the chemical reactions

become more faster and catalyze the combustion process of the mixture. [34]

Although the start of main heat release usually occurs when the temperature reaches

a value of 1050– 1100K for gasoline or less than 800K for diesel, many hydrocar-

bon components in gasoline and diesel undergo low temperature oxidation reactions

accompanied by a heat release that can account for up to 10% of the total energy

released. The heat release rate and combustion characteristics of HCCI combustion

depends on several factors such as the chemical kinetics of the fuel used, dilution

strategies used and the temperature-pressure history of the mixture during compres-

sion. [34]

While high efficiencies and ultra-low NOx can be obtained using HCCI, it is limited

to low loads and there is no direct means to control combustion phasing [35]. In

case of RCCI, two fuels with different reactivities are used. The lower reactive fuel

(typically iso-octane) is injected in the port and the higher reactive fuel (typically
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n-heptane) is injected late directly in to the cylinder. The heat release for RCCI

occurs in three stages: the cool flame, the PRF burn and the late burn. The first

stage reaction occurs due to the n-heptane injection which corresponds to the cool

flame. The first stage of HTHR occurs due to the PRF burn, where n-heptane and

the entrained iso-octane combust resulting in a heat release. The final stage of heat

release occurs due to the late burn of the lower reactive fuel i.e iso-octane. The

changing fuel ratio results in the change of shape and the magnitude of heat release

[36]. This is discussed elaborately in Chapter 4.

1.3 Research Goals and Scope of Research

Low temperature combustion is a promising alternative to conventional SI and CI

engines, given the high gross efficiencies, while affirming to the EPA emission stan-

dards. However, the operating region for both the lean limit operation and load limit

operation for all major LTC regimes on a same engine is not thoroughly discussed in

literature. This research is one of its kind, given the fact that all three combustion

modes: HCCI, PPCI and RCCI could be run on the same engine. Therefore, the

thesis focuses on operating region extension for all three LTC modes, by adopting

different techniques. The range of operation for each mode is individually studied

and explained. The operating region maps for the load and speed are created. In

order to understand the performance characteristics of the engine, maps for BSFC,
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ISFC and net indicated thermal efficiency are developed. Moreover, it is important

to understand the effect of operating conditions on the performance and combustion

characteristics of the engine. Parameters such as engine speed, fuel-air equivalence

ratio, intake air temperature, boost pressure, research octane number (RON) and

fuel rail pressure were varied independently, one at a time, keeping other parameters

constant. A parametric study was performed on the engine for each LTC mode in-

dependently under steady state conditions. Blends of n-Heptane and iso-Octane are

used as the fuels. Since they are primary reference fuels and have an octane rating

of 0 and 100, respectively, they are very similar to the octane rating of conventional

diesel and gasoline, respectively. In the thesis, the term Research Octane Number

(RON) is used for PPCI and HCCI combustion modes. However, the term premixed

ratio (PR), the ratio of premixed fuel (iso-octane) to the total energy supplied, is

used for RCCI mode. The ultimate goal of the project is to understand and evalu-

ate thoroughly the operating region characteristics of each of the three combustion

modes and parametric studies to understand the effect of operating conditions on the

performance and combustion characteristics of the engine.

1.4 Organization of Thesis

This thesis is organized into six different chapters as represented in Figure 1.3. Chap-

ter 1 gives an overview of background, evolution and principle of operation of LTC
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engines. The research goals and scope of the thesis are discussed. Chapter 2 gives

an overview of the experimental setup, instrumentation and calibration of the com-

Figure 1.3: Thesis Organization

ponents involved. The calculations involved in the calculation of the engine analysis

parameters are elaborated. Further, an uncertainty analysis of the dependent and in-

dependent parameters is discussed. Chapters 3, 4 and 5 discuss the results for three

different combustion modes HCCI, RCCI and PPCI, respectively. In these three chap-

ters, maps for operating regions, ISFC, BSFC, exhaust gas temperature and thermal

efficiency were discussed. Moreover, optimized maps for each of these parameters

were also developed. A parametric study of the effect of intake air temperature,

boost pressure, RON and SOI were conducted and discussed. Finally, chapter 6 sum-

marizes the results and significant contribution towards the thesis. It also provides
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recommendations for the future research based on the results from this thesis.
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Chapter 2

Engine Instrumentation and

Experimentation

An experimental GDI engine was modified and instrumented to run in several LTC

modes including HCCI, PPCI and RCCI. This chapter elaborates the contributions

made to the instrumentation of the engine from this thesis.

2.1 Engine Setup and Specifications

Figure 2.1 shows the schematic of the experimental setup of the engine used for run-

ning tests in LTC modes. A GM 2.0 L 4-stroke, 4-cylinder Gasoline Direct Injection
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Ecotec engine was used for this purpose. The specifications of the engine is shown in

Table 2.1.

Figure 2.1: Schematic of the LTC engine setup

The turbocharger was disabled. Instead, an Eaton M62 supercharger driven by an ex-

ternal 20 hp e-motor was used. The e-motor was controlled remotely with a GS34040

Variable Frequency Drive (VFD) unit and dSpace MicroAutoBox. An external fuel

pump was used to supply fuel at 3 bar pressure to the Port Fuel injectors. Two air

heaters between the supercharging station and the intake manifold were used to pre-

heat the intake air to the desired temperature. A 460 hp GE AC Dynamometer was

used to control the speed and load of the engine. The mass flow rate of intake air

was measured using Merriam MDT500 air flow measurement system [4]. The LTC
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experimental setup is shown in Figure 2.2. More information with respect to the

instrumentation of the engine can be obtained from the previous works [37, 38, 39]

Table 2.1
Engine Specifications

Engine Type 4 stroke, Gasoline
Number of Cylinders 4

Cylinder volume 1998 cc
Bore 86 mm

Stroke 86 mm
Compression ratio 9.2:1
Max engine power 164 @ 5300 (kW/rpm)
Max engine torque 353 @ 2400 (Nm/rpm)

Diameter of intake valves 35.17 mm
Firing order 1-3-4-2

IVO 25.5/-24.5 (CAD bTDC)
IVC 2/-48 (CAD bBDC)
EVO 36/-14 (CAD bBDC)
EVC 22/-28 (CAD bTDC)

Valve lift 10.3 mm

2.2 Port Fuel Injectors (PFI) Instrumentation,

Calibration and Assembly

Eight Bosch EV14 port fuel injectors were used for the engine. The EV14 specifica-

tions are given in Table 2.2.
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Figure 2.2: Experimental LTC Engine Setup

Table 2.2
Port Fuel Injector (Bosch EV14) Specifications

Part No. 0 280 158 116
Flow rate/min 237 g/min

Type E
Housing L

Resistance 12 ohm
Tilt angle 22◦

Two Fuel Rails with four injectors were mounted on an interface which was then

mounted on the intake manifold of the engine. Figure 2.3 shows the PFI assembly on

the engine setup.

The port fuel injectors were controlled using a low side driver unit from Rapid Pro.
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Figure 2.3: Port fuel injector assembly

A model as shown in Figure 2.4 was developed in Simulink for Injectors actuation

and control. The injector control blocks resided in a sub-system triggered by an angle

interrupt. In order to update the injection pulse pattern at run time, the angle value

of the interrupt was set lower than the smallest angle value of the new injection pulse

pattern. Figure 2.5 represents the display panel for the injectors control. The RON,

injection start angle and the fuel mass are the inputs to the model. On the basis of

this, the required pulse width is calculated for injectors on rail 1 (x1) and rail 2 (x2).

a1, a2, b1 and b2 are the calibration factors for rails 1 and 2.

19



Figure 2.4: Triggered sub-system for PFI control

Figure 2.5: Monitoring Panel on dSPACE Control Desk for PFI Control

Low Temperature Combustion engines have the flexibility of being operated with dif-

ferent fuel combinations. For the experiments, iso-octane and n-heptane were blended

volumetrically in different proportions so as to attain the desired research octane

number (RON). As discussed in this section, the engine is equipped with two PFI

rails with four injectors on each rail. The injectors on Rail 1 inject n-heptane while
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injectors on Rail 2 inject iso-octane. The percentage of the injected isooctane and n-

heptane determines the RON of the fuel. RON number can be regulated by changing

the injection durations of the injectors. Therefore, there arises the need to estimate

the amount of fuel injected for a given injection duration. This requires the cali-

bration of the PFI injectors for different fuel types because each fuel has a different

density value. Micro Motion 1500 transmitter and CMF050 flow sensor were used

for the calibration of the PFI injectors. Injected fuel mass was measured via Prolink

III software. Prior to the calibration of PFI injectors, the accuracy of the new fuel

flow meter was tested using DI injectors which were previously calibrated. Figure 2.6

illustrates the verification result for DI injectors. The average error was determined

to be 0.27 mg/cycle that corresponds 1 %.

500 600 700 800 900 1000 1100 1200

16

18

20

22

24

26

28

30

32

34

36

 Measured
 dSPACE

In
je

c
te

d
 F

u
e

l 
M

a
s

s
 (

m
g

/c
y

c
)

Fuel Mass Flow Rate (mg/s)

DI Gasoline

e
av

=0.274 mg/cyc  (1.06 %)
 

 

Figure 2.6: Verification of dSPACE model for calculating injected fuel mass
from using DI injectors
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Figure 2.7(a) illustrates the calibration of the PFI injectors for iso-octane fuel. In

order to calibrate the injectors, one of the rail lines was connected to the fuel tank

which contained iso-octane. The engine was run at 1000 rpm and injection durations

were changed between 3 ms and 11 ms. The mass of fuel injected was measured for

two minutes for every injection duration value. The gain and offset values were then

determined and a polynomial was fitted as shown in Figure 2.7(a). Figure 2.7(b)

illustrates the verification of the calibration of PFI injectors for iso-octane fuel. For

mass flow rate of fuel greater than 100 mg/s, an average error of 0.05 mg/cycle was

obtained. It was observed that the error increased significantly below 100 mg/s. This

can be attributed to the non-linear characteristics of the injector at very low Fuel flow

rates. However, for practical applications, the minimum injection duration will be

greater than 3 ms. Therefore, this calibration factors hold good. The PFI injectors

were also calibrated for n-heptane fuel and the same procedure was followed. Figure

2.2.8(a) and Figure 2.8(b) show the calibration and verification of the calibration for

n-heptane, respectively.
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(b) Verification

Figure 2.7: Calibration and Verification of the PFI injectors for Iso-Octane fuel
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(b) Verification

Figure 2.8: Calibration and Verification of the PFI injectors for n-Heptane fuel
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2.3 Supercharger control using dSpace

The supercharger can either be controlled manually using the VFD unit or remotely

by supplying an analog voltage between 0-10 V. The former method requires the user

to manually change the frequency of the e-motor to attain the desired boost pressure.

Supercharger VFD unit runs with a voltage range of 0-10 V. The user changes the

frequency of the VFD unit and the VFD controller decides the voltage that needs to

be supplied to run the e-motor at a given speed. The correlation between the terminal

voltage and the operating frequency of the e-motor is given in Equation (2.1).

V = ν

fsys
fo (2.1)

Where V is the terminal voltage, fsys is the operation frequency of the system and fo

is the actual operating frequency of the e-motor.

The manual speed setting method is not time efficient and user friendly. More-

over, it is not applicable when the engine needs to be tested for transient conditions.

Therefore, the latter method was developed and the supercharger was controlled and

monitored using dSpace MicroAutoBox (MABX). MABX can supply analog voltage

in the range of 0-4.75 V. Therefore, a voltage multiplier circuit was designed in order
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to amplify the voltage from 0- 4.75 V to 0- 9.5 V. A schematic of the VFD with the

phase monitor relay is depicted in Figure 2.9

Figure 2.9: Supercharger VFD unit

In order to determine the required terminal voltage for a given boost pressure, two

frequency maps with engine speed as a function of boost pressure were developed by

operating the supercharger manually. These maps were then used as a lookup table in

the Matlab Simulink model. Frequency maps were obtained for intake valve opening

(IVO) of -24.5 and 25.5 CAD bTDC. Figure 2.10 illustrate the frequency maps for
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-24.5 and 25.5 CAD IVO bTDC.

(a) IVO = -24.5 CAD bTDC

(b) IVO = 25.5 CAD bTDC

Figure 2.10: Supercharger Frequency maps for IVO of a) -24.5 CAD bTDC and b)
25.5 CAD bTDC
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Figure 2.11 shows the Matlab Simulink model developed for the MABX to supply

the necessary terminal voltage to the VFD. The required frequency is determined

from the look-up table. The desired manifold pressure is commanded by the user via

dSpace control desk interface. Figure 2.12 shows the screenshot of the supercharger

user control panel on the control desk interface. The model gets the instantaneous

engine speed from the crank position sensor and frequency was determined from the

look-up table. Determined frequency is converted to the voltage value by means of

desired gain2 in the model. MicroAutoBox supplies the voltage in terms of duty cycle

(in the range of 0-1). Therefore, the calculated voltage is converted to the duty cycle

level via desired gain 3 in the model.

Figure 2.11: Simulink Model for Supercharger Control using dSpace

The Supercharger Control using dSpace has a mean error of 1.2 kPa between the set

desired manifold pressure and the output boost pressure. This difference resulted

from the variable resistance of the electrical circuitry between the VFD and MABX.
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In order to compensate for the decrease in voltage, an average offset value of 0.32 V

was used. Although there is a slight difference between the desired and actual values

of MAP, the error was less than 1%.

Figure 2.12: Supercharger User Control panel on dSpace control desk
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2.4 Engine Analysis Parameters

A MATLAB code was developed for the combustion analysis. Data from dSpace,

LabVIEW and ACAP were synchronized on a time basis and were used as the in-

put to the code. The outputs of the code were the averaged in-cylinder pressure

trace, average brake mean effective pressure, average intake manifold absolute pres-

sure, piston displacement relative to the crank angle, instantaneous cylinder volume,

stroke volume, combustion chamber volume, volumetric efficiency, lambda, equiva-

lence ratio, maximum pressure rise rate (MPRR), gross work, indicted mean effective

pressure (IMEP), Coefficient of Variance (COV) of indicated mean effective pressure,

expansion and compression polytropic index, in-cylinder temperature prediction, heat

transfer, heat release rate, cumulative heat release rate, CA10, CA50, CA90, fuel mass

burn fraction, combustion duration, thermal efficiency, combustion efficiency, effective

power, effective torque, effective specific fuel consumption, indicated power, indicated

torque, indicated specific fuel consumption and mechanical efficiency.

2.4.1 Engine Geometry

Cylinder volume and first derivative of cylinder volume must be computed versus

crank angle in order to calculate net work, heat release rate, indicate mean effective
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pressure, amount of heat transfer and some engine performance parameters.

The displacement volume, combustion chamber volume and the total cylinder volume

were computed using Equations 2.2, 2.3 and 2.4, respectively.

Vs = π
D2

4 H (2.2)

Vc = Vs
CR− 1 (2.3)

Vtotal = Vs + Vc (2.4)

Where Vs is the displacement volume (m3), Vc is the combustion chamber volume

(m3), Vtotal is the cylinder volume (m3), D is the cylinder bore (m), H is the stroke

length (m) and CR is the compression ratio.

The instantaneous piston displacement can be calculated using Equation 2.5.

S = L+ r − r cosθ − L cosβ (2.5)
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The term cosθ can be expressed in terms of crank angle θ as shown in the set of

equations below [40].

L sinβ = r sinθ (2.6)

sinβ = r

L
sinθ (2.7)

sin2β + cos2β = 1 (2.8)

cosβ =
√

1− sin2β (2.9)

cosβ =
√

1− ( r
L
sinθ)2 (2.10)

From Equation 2.5 and 2.10, the following correlation for piston displacement is ob-

tained [40].
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S(θ) = L+ r − r cosθ − L
√

1− ( r
L
sinθ)2 (2.11)

S(θ) = r(1− cosθ) + 1
λ
−

√
1

(λ)2 − sin
2θ (2.12)

Where L is the connecting rod length (m), r is the diameter of the crankshaft (m), λ

is the ratio of diameter of the crankshaft to the connecting rod length, θ is the angle

of the crank shaft (deg), and S(θ) is the instantaneous displacement of the piston

with respect to the crankshaft angle (rad).

The instantaneous cylinder volume with respect to the crank angle is given in Equa-

tion 2.13.

V = Vc + π
D2

4 S(θ) (2.13)

The first derivative of instantaneous cylinder volume is given in Equation 2.14.

dV

dθ
= π

D2

4 r (sinθ + cosθ sinθ√
( 1
λ2 − sin2θ))

(2.14)
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2.4.2 Net Work and Mean effective pressure

The work and indicated mean effective pressure (IMEP) can be calculated for each

cycle using in-cylinder pressure data. IMEP values can be used in determining the

engine efficiency since IMEP values are independent of the cylinder volume, cylinder

number and engine speed.

Pressure data for the gas in the cylinder over operating cycle of the engine can be

used to calculate the work transfer from gas to the piston. The cylinder pressure and

corresponding cylinder volume throughout the engine cycle can be shown on a P-V

diagram. The indicated work per cycle is obtained by the area under the curve on

the PV diagram.

W =
∮
P dV (2.15)

Where, W is work (Joule), P is cylinder pressure (Pa) and dV is displaced volume

(m3). There are two ways of defining the work done per cycle. Gross indicated work

per cycle Wgross; work delivered to the piston over the compression and expansion

stroke only. Net indicated work per cycle Wnet; work delivered to the piston over the

entire four stroke cycle. Wgross = (area A + area B) and Wnet = (area A + area C)
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- (area B + area C ) = (area A - area B), where each of these areas is regarded as

a positive quantity. Area B + area C = work transfer between the piston and the

cylinder gases during the inlet and exhaust strokes and is called the pumping work

(Wpump). In case of naturally aspirated engines, the pumping work transfer will be

to the cylinder gases because the pressure during the inlet stroke is less than the

pressure during the exhaust stroke [41]. The pumping work transfer will be from the

cylinder gases to the piston if the exhaust stroke pressure is lower than the intake

pressure, which is normally the case with highly loaded turbocharged engines. Net

work is equal to area A - area B.

Wnet = Wgross −Wpump (2.16)

IMEPgross = Wgross

Vk
(2.17)

IMEPnet = Wnet

Vk
(2.18)
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2.4.3 Polytropic Index

The polytropic index remains constant during the compression and expansion process

but it changes during the combustion process. Start and end of combustion can

be determined through keen observation of polytropic index. The polytropic index

during compression and expansion stroke can be expressed as follows:

P V nc = C (2.19)

nc P V nc−1dV + dP V nc = 0 (2.20)

nc = −V dP

P dV
(2.21)

2.4.4 Combustion Stability

Combustion stability is defined in terms of Coefficient of Variation of the Net IMEP.

Compared to traditional S.I. engines, the initiation of HCCI combustion and the
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following heat release process are controlled by the chemical reaction rates, which

depend on the temperature, pressure and mixture properties including fuel compo-

sition, air/fuel ratio and EGR rate. Numerous factors that influence the mode and

extent of cycle-to-cycle variation have been identified. These include fluctuations in

the following parameters and factors: (1) intake temperature and pressure; (2) intake

air/fuel ratio or fuel flow rate; (3) coolant and lubrication oil temperatures; (4)the

presence of diluents as a result of either external or internal EGR; (5) thermal and

mixture composition stratification as results of in-homogeneity; (6) the intensity of

intake charge motion and bulk turbulence; (7) the completeness of combustion in

the preceding cycle; and (8) fuel mixing system and homogeneous mixture formation

strategies [16], [42].

The COVIMEP is calculated by:

COVimep(%) = σimep
µimep

x100 (2.22)

where σimep is the standard deviation of IMEP and µimep is the mean in IMEP.
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2.4.5 Heat Transfer Coefficient Correlation

The heat losses account towards approximately 10-15 % of the energy which is trans-

ferred to the cylinder as a result of ignition of fuel during the combustion [40]. Force

and net work which is applied over the piston decrease due to heat loss from the

piston, piston ring crevices, combustion chamber surfaces and cylinder walls. So,

thermal efficiency and engine performance are influenced by heat transfer. Heat flux

drops to the negative and heat is transferred from cylinder walls to the charge mixture

as the temperature of the cylinder charge mixture is lower than the temperature of

cylinder walls. Heat flux rises to the highest level and heat is transferred from charge

mixture to the cylinder during combustion especially at maximum cylinder pressure

and temperatures [31, 32, 33].

According to Newton’s law of cooling, heat transfer to the cylinder walls can be

calculated as follows [40]:

dQht

dθ
= 1

6n hg A (Tg − Tw) (2.23)

A = V

Ap
π D + 2 Ap (2.24)
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Ap = π D2

4 (2.25)

Where, dQht
dθ

is instant heat transfer versus crank angle (J/deg), n is engine speed

(RPM), hg is the instantaneous convection heat transfer coefficient, W/(m2 K), Tg

is instantaneous in-cylinder mean gas temperature versus crank angle degree (K), Tw

is cylinder wall temperature (K), A is heat transfer surface area versus crank angle

(m2), V is instantaneous cylinder volume versus crank angle (m3), D is cylinder bore

(m) and Ap is piston crown area (m2)

hg (Convection heat transfer coefficient) is dependent on cylinder bore, cylinder vol-

ume, in-cylinder pressure, in-cylinder gas temperature and mean in-cylinder gas ve-

locity. A correlation was obtained by Woschni for the calculation of the convection

heat transfer coefficient as defined in Equation 2.26 and it was used commonly in the

internal combustion engines [40, 42, 43].

hg = 3.26D−0.2 Tg
−0.55 P 0.8 w0.8 (2.26)

Where, D is the cylinder bore (m), P is the in cylinder pressure (kPa) and w is the

mean gas velocity (m/s).

However, in case of low temperature combustion modes, the heat release in cylinder

39



occurs faster than conventional engines like SI and CI and the combustion duration is

shorter. Therefore, in LTC engines, heat transfer ratio is less than that in conventional

engines. For this reason, Chang at al [44] suggested a modified Woschini model for

HCCI engines and a new correlation for LTC engines was developed. Therefore,

Equation (2.27) and (2.28) are used for the calculation of heat transfer coefficient.

hg = αscaling L
−0.2 Tg

−0.73 P 0.8 ν0.8
tuned (2.27)

νtuned = c1 Sp +
c2
6 Vd Tr
Pr Vr

(P − Pmotored) (2.28)

In the equation used, Tg is calculated based on the ideal gas law over the closed cycle

(compression and expansion).

2.4.6 Combustion Efficiency

Combustion efficiency is calculated by the proportion of the total released energy to

the total energy delivered to the cylinder between the start and end of combustion

[42]. The start of combustion of charge mixture can be determined via the second

derivative of cylinder pressure value which rises from negative to positive values.
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Similarly, the end of combustion can be determined via second derivative of cylinder

pressure value closest to the zero. Fuel delivered to the cylinder in a cycle must

be determined in order to find combustion efficiency. The combustion efficiency is

calculated based on the equation given below [42].

ηcombustion =
∫ tend

tstart

dQin
dθ
dθ

mf QLHVfuel

(2.29)

where mf is the mass of fuel, QLHVfuel is the heating value of the fuel and dQin is the

cumulative heat release rate.

2.5 Filter Design for Pressure trace

There are four steps involved in the analysis of In-cylinder pressure: level correction,

angle referencing, cycle averaging and filtering. This chapter stresses on the last two

steps. There are different types of filters that can be used for reducing the effect of

noise and interference on the signal. Two common types of filters are Infinite impulse

response (IIR) and Finite Impulse Response (FIR) filters. The latter is based on

linear phase characteristics of a system, whereas the former is used for systems which

are nonlinear.
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In this study, different filters were studied and the most efficient one in terms of noise

elimination was used for the In-cylinder pressure analysis. Initially, a center weighted

moving average filter was proposed for post processing of the pressure data. However,

it was observed that a moving average filter may not eliminate duct resonances prop-

erly. Moreover, sharp pressure fluctuations were also distorted. It was also observed

that the sampling interval played an important role in determining the smoothing

capability of the filter. Payri et. al. [45] suggested that this smoothing method was

not frequency sensitive since the sharp heat release peaks were smoothed and hence

not recommended. There are a wide range of IIR filters such as Butterworth filter,

Chebyshev filter, Bessel filter etc. Among all these filters, Butterworth has the flat-

test passband and poor roll off rate. Chebyshev filter has a steeper roll off and more

pass band ripple than a Butterworth filter. Since the filtering was done offline, the

order of the filter had to be chosen in such a way that the roll-off is not very steep as

a faster roll-off in the frequency domain corresponds to a slower response rate in the

time domain.

In order to determine the filter cut-off frequency, spectral analysis of the pressure

trace was performed. With the use of a MATLAB script, a Fast Fourier Transform

(FFT) was performed on the pressure trace and the power spectral density of the

cylinder pressure signal was obtained. Based on the power spectral density of the

trace, the filter cut off frequency was determined. A low pass Butterworth filter was

used to filter the pressure trace. The filter cutoff frequency was varied based on the
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operating conditions and the cut-off frequency for each set of data.

2.6 Uncertainty in Analysis

Uncertainty analysis refers to the process of estimating the impact that uncertainties

in measurement have on the estimated parameters. This provides the experimen-

talist a rational way of evaluating the significance of the derived and independent

parameters on each other. In order to understand the uncertainties involved in mea-

surement, an uncertainty analysis is performed on the experimental data. As already

discussed in this chapter, most of the thermodynamic parameters are evaluated from

the in-cylinder pressure trace. Some of these properties are MPRR, heat release rate,

combustion phasing, Burn Duration, IMEP and thermodynamic efficiencies. To eval-

uate these parameters, the geometry of the engine and the thermodynamic properties

at different states of the cycle are taken as the inputs. The calculated parameter Y

can be expressed as a function of one or more independent variables.

Y = f(X1, X2, .....Xi) (2.30)

Using the Uncertainty analysis, the uncertainties involved in each of the measured

variables that propagate into the value of the calculated quantity can be estimated.
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Assuming the individual measurements to be uncorrelated and random, the uncer-

tainty in the calculated quantity can be determined using the Root sum of Squares

(RSS) method. This method for determining the uncertainty propagation is described

in NIST Technical Note 1297 (Taylor B.N and Kuyatt).

UY =
√∑

( ∂Y
∂Xi

)2 U2
x (2.31)

A list of independent parameters used for calculation and post processing is given in

Table 2.3.

Table 2.3
Uncertainties involved in Measurement of independent parameters during

experimentation

Parameter Value Uncertainty (±)
Pin-cylinder 2500- 6000 (kPa) 1 (%)
Crank angle 0-720 (deg) 1 (deg)
Tintake 40-60-80-100 (◦C) 2%
Lambda 1-5.4 0.05
Mass flow rate of intake air 8.1-66.7 (g/s) 0.72%
Mass flow rate of supply fuel 7.4-48 (mg/cycle) 0.1%
Manifold absolute pressure 95- 140 kPa 0.5%
Coolant temperature 60- 80 (◦C) 2%
Engine mounted oil temperature 70- 90 (◦C) 2%
Texhaust 215- 450 (◦C) 2%

As explained in Table 2.4, the range of uncertainties can be obtained for the range
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Table 2.4
Range of Uncertainties involved in estimation of parameters

Parameter Range of Values Range of Uncertainty (±)
Burn Duration (CAD) 3-31 1
CA50(CAD aTDC) -8-15 1
ISFC (g/kWh) 110- 325 1.2- 6.4
BSFC (g/kWh) 130- 380 2.4- 14.5
IMEP (kPa) 280- 1300 0.5- 15.5
ηind,th (%) 25.5- 47.9 0.21- 2.32
ηcomb (%) 75.3- 95.8 0.6- 2.2

of parameters listed in the table, using the procedure discussed earlier in the section.

All error bars for this thesis are calculated using the same procedure and lie in the

range of values listed in the table.

Table 2.5 summarizes the uncertainties involved in calculation of the combustion and

performance parameters with respect to the independent parameters.
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To build confidence in collected data, a repeatability of test was conducted. The

tests were performed at three different time stamps in order to calculate the error in

calculated variables while keeping all controlled parameters constant. The operating

conditions for the tests are described in Table 2.6. The mean and standard deviation

for the test points are given in Table 2.7.

Table 2.6
Test parameters

Parameter Value/Description
Combustion Mode (-) RCCI
Engine Speed (RPM) 1000
Boost Pressure (kPa) 120
Intake Air Temperature (◦C) 40
Fuel Mass (mg/cycle) 15
SOI (deg bTDC) 33
IVO (deg bTDC) 25.5
EVC (deg bTDC) 22
Fuel Premixed Ratio (PR) (-) 20

Table 2.7
Mean and Standard deviation for repeatability (three trials)

Parameter Mean Std Dev
Intake Air Temperature (◦C) 40.6 0.5
Boost Pressure (kPa) 121.5 1.3
CA50(CAD aTDC) 7 1
ISFC (g/kWh) 224.7 3.2
IMEP (kPa) 527.3 2.5
λ (-) 2.34 0.2
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2.7 BMEP Parametrization

Even though the brake torque from the engine dynamometer was calculated using

ACAP combustion analyzer, there was significant noise in the signal captured, as

a result of which the mechanical efficiency of a large number of tests were lesser

than expected. However, the exhaust temperature measurement corroborated the

speculation, since it was seen that all engine cylinders were firing at the time of data

acquisition. As a result of this, the measured values of the brake parameters were not

credible. Thus, there arises the need for developing friction models to estimate the

brake parameters.

Simple models can be used to estimate the FMEP, making use of a few independent

variables, typically one related to the engine load and the other related to the engine

speed, in order to separately account for the energy dissipated by friction due to the

mass of fuel burned and the losses due to the speed. The Chen and Flynn model is

one of the widely used friction model for the estimation of FMEP [46]. It is based on

the following equation:

FMEP = A+B Pmax + C n+D n2 (2.32)
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As shown, this equation accounts for the engine speed (n) effect through constants C

and D, while the load effect is represented by the maximum in cylinder pressure (Pmax)

through constant B. In order to be more precise in the estimation of FMEP, a higher

order polynomial was developed and the load factor was accounted for, introducing

the second and third power of Pmax [46].

FMEP = A+B Pmax + C P 2
max +D P 3

max + E n+ F n2 (2.33)

The friction model was parameterized separately for each combustion mode and the

corresponding coefficients were used for the estimation of FMEP and BMEP for the

respective combustion regime in this thesis.

2.8 Accounting for Supercharger losses

Superchargers are usually mounted on the engine and draw power from the engine

crankshaft. Thereby, a part of the power output from the engine is utilized for driving

the supercharger. However, for the current setup, the supercharger is driven by an

external E-motor which consumes electrical energy. The energy used in driving the

supercharger needs to be accounted for. Therefore, based on an assumption that the

supercharger is mounted on the engine, with a supercharger efficiency of 0.62 [47],
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the power consumed by the supercharger is calculated. The Eaton M62 supercharger

used for this setup is capable of running at speeds upto 14,000 rpm. However, for the

experiments performed, the full capacity of the supercharger was not utilized. The

experiments were run at a boost pressure limit of 1.6 bar and speeds less than 3200

rpm. This corresponds to an inlet volume flow of less than 250 m3/hr. Given the

limited operating region, a well defined supercharger efficiency could not be estimated

based on Figure 2.14. Therefore, based on the operating region of the map, an average

value of 0.62 was assumed to be constant for all supercharger speeds.

Pconsumed = mfair Pboost ηsupercharger (2.34)

The power consumed by the supercharger for a boost pressure of 1.2 bar and 1.4 bar

were calculated for a speed range of 800 to 3200 rpm as depicted in Figure 2.13
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Figure 2.13: Supercharger power consumed if assumed to be mounted on
the engine

Figure 2.14: Supercharger performance map for Eaton M62 supercharger
[3]
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2.9 SI Map for Baseline Comparison

There is a need to quantify the improvement in fuel consumption and thermal effi-

ciency of the LTC modes on a relative basis. In order to carry out this task, a spark

ignition (SI) map was developed for the engine as a baseline comparison, as shown

in Figure 2.15. It can be observed that the engine speed is in the range of 1000-4000

rpm and the engine load is in the range of 370-860 kPa IMEP. The best ISFC of

180 g/kWh was obtained at an engine speed of 3000 rpm and engine load of 390 kPa

IMEP.
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Figure 2.15: ISFC map for Spark Ignition (SI) mode
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Chapter 3

Homogeneous Charge Compression

Ignition (HCCI)

In this chapter a discussion for the effect of operating parameters on HCCI combustion

is presented and maps were developed to determine the operating region for the HCCI

combustion regime. The engine was tested in HCCI combustion mode in order to

determine the operating region of the engine. Operating parameters such as intake

air temperature, boost pressure, engine speed, Research Octane number (RON) of

fuel and equivalence ratio were varied. The data was acquired using dSpace, ACAP

combustion analyzer and LabVIEW. The acquired data was post processed using a

Matlab script developed for this purpose. All indicated parameters were calculated

from the mean pressure trace over 100 engine cycles and crank angle (in deg). In
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order to estimate the brake parameters, the Flynn-Chen Friction Model was used

to parametrize the FMEP and thereby the brake parameters were calculated. Using

the post processed variables, maps for BSFC, exhaust gas temperature, IMEP and

BMEP were created. The range of operating parameters are given in Table 3.1.

Table 3.1
Operating Parameters for HCCI Combustion Mode

Parameter Operating Conditions
Intake Air Temperature 40-60-80-100 (◦C)
Manifold Pressure 95-120-140 (kPa)
Engine Speed 800:200:2400 (rpm)
RON of Fuel 0-20-40 (-)
Lambda 1.8- 3.8 (-)

3.1 Parametrization of BMEP using Flynn-Chen

Model for HCCI combustion regime

As shown in the Figure 3.1, a plot of experimental FMEP vs parameterized FMEP

for HCCI combustion regime is depicted. It can be seen that the FMEP could be

estimated within an error of 14%.

54



Figure 3.1: Experimental FMEP vs Parameterized FMEP

Table 3.2
Error in estimation of FMEP

Model Chen-Flynn with P 2
max and P 3

max

Mean relative error 14 %
Max relative error 37 %
Max absolute error 0.75 bar

Based on the parametrized model for FMEP, the constants obtained for the equation

are given in Table 3.3.
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Table 3.3
Coefficients for the Flynn- Chen Model

Coefficient Value
A -0.3052
B 0.0604
C -0.0016
D 1.1159E-5
E -0.1159
F 0.0316

3.2 Operating Range

The operating range maps for HCCI combustion regime at three different operating

conditions are shown in Figures 3.2 and 3.3. Figure 3.2(a) shows the operating range

for RON 0, 20 and 40 at an intake temperature of 40 ◦C at naturally aspirated condi-

tions. The results are in good agreement with some HCCI studies [48, 49], in which

the operating range for a given octane number reduces with higher engine speeds. It

is also apparent that the operating range changes significantly with change in RON.

The operating range for RON 0 occurs at a leaner equivalence ratio as compared to

RONs 20 and 40. Higher RON reflects a lower reactivity, requires relatively richer

mixture to initiate the combustion. The mixtures with lower lambda values have

higher energy content. Therefore, the engine load can be increased. However, the

control of the SOC is very difficult at higher RONs especially at lower intake air
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temperatures. Studies have shown that HCCI engines operate well at part loads [4].

The pressure oscillations are larger at higher engine loads due to the high MPRR

and HRR characteristics. Moreover, due to the rich fuel-air mixture at higher engine

loads, the auto ignition is due to the locally rich zones in the cylinder. However,

there is a higher knock intensity in these cases. Therefore, the homogeneous air-fuel

mixture could be diluted with trapped residuals and reduce the gradient of the heat

release rate. On the contrary, the compression and combustion temperatures and

pressures are lower. In this case, dilution using residual gases can lead to unstable

combustion and result in a misfire. The HCCI operating range is limited due to this

characteristic of HCCI engines at high engine loads and speeds [50]. As illustrated

in Figure 3.2 and Figure 3.3, it is evident that there is a marked difference in the

operating range for HCCI at an increased intake temperature and boost pressure.

Higher intake temperatures and boost pressures result in enabling HCCI operation

over a wider equivalence ratio and a larger speed range. This is mainly attributed to

the mixture composition at IVC. With an increase in intake temperature and boost

pressure, the density of the air decreases. This results in an increase in the mass flow

rate of air being inducted into the cylinder, thereby making the mixture much leaner.
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3.3 Maps for ISFC, BSFC, Indicated Thermal Ef-

ficiency and Exhaust Gas Temperature

ISFC is an indicator as to how efficient the engine is, in utilizing the fuel supplied

to do useful work, without accounting for the friction losses [51]. Figure 3.4 shows

the ISFC map for HCCI combustion regime for RON 0, 20 and 40 at an intake air

temperature of 40 ◦C and naturally aspirated conditions. It can be observed that the

minimum ISFC is at the low loads for RON 40 with a value of 205 g/kWh. The trend

59



shows that the ISFC improves with higher RON, where the combustion pressures and

the heat release rates are lower [52]. The low ISFC at these points is a result of the

combustion phasing being optimized where the compression work is minimized and

expansion work is maximized [53].
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Figure 3.5: HCCI ISFC map for 40 ◦C intake air temperature and 120 kPa
intake pressure

Brake specific fuel consumption (BSFC) maps are shown in Figure 3.6 for RON 0,

RON 20 and RON 40 at an intake temperature of 40 ◦C. When all the intake air

temperatures and RONs are taken into consideration, it is seen that the load range

of the HCCI engine is between about 50-100 Nm which is ideal for an LTC engine.

BSFC maps are very important to understand the most efficient operation ranges of

the HCCI engine. HCCI engines can be looked upon as range extenders for hybrid
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electrical vehicles in near future [54]. Total efficiency of a hybrid vehicle can be in-

creased by operating the HCCI engine at the most efficient point. Therefore, BSFC,

thermal efficiency, CA50 and similar maps have importance to determine an efficient

operation range. As seen in the figures, the lowest BSFC is obtained as 210 g/kWh

with RON 0. Fuels having high reactivity allow leaner HCCI operation as it is men-

tioned above. As a result of this lower BSFC values are obtained. Increased intake

air temperature causes a decrease in volumetric efficiency of the engine at naturally

aspirated operations. Therefore, BSFC increases at higher intake air temperatures.

When HCCI operation is observed at boosted conditions, it can be observed that the

BSFC improves with an increase in engine speed. The best BSFC is obtained at high

speeds and high loads for all three RONs, as shown in Figure 3.7. The pumping losses

increase with boosting and reduce significantly with an increase in engine speed [40].

Moreover, the combustion duration is longer for lower engine speeds [55], which tends

to have a negative effect on BSFC. However, with an increase in engine speed, the

shorter combustion duration and a lower pumping losses results in an improvement

in BSFC.
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Figure 3.6: HCCI BSFC map for 40 ◦C intake air temperature at naturally
aspirated conditions
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Figure 3.7: HCCI BSFC map for 40 ◦C intake air temperature at 120 kPa
intake pressure

The indicated thermal efficiency map for HCCI at the same operating conditions is

illustrated is Figure 3.8. It can be seen that the map is in accordance with the ISFC

map. The best thermal efficiency is achieved at the lowest ISFC regions. The present

data shows that combustion phasing has a significant effect on HCCI efficiency. All the

best thermal efficiency regions were attained at a combustion phasing of 5-8 ◦aTDC

[40]. A maximum thermal efficiency of 40% was obtained at mid load conditions for

all three RONs at 40 ◦C. This is mainly because of reduced heat transfer losses due
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to lower compression and combustion temperatures [56]. Moreover, the combustion

phasing was optimal, which enabled better mixing of the air-fuel mixture at mid load

conditions. The range of thermal efficiencies for the given operating conditions were

33-40 %.
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Figure 3.8: HCCI indicated thermal efficiency map for 40 ◦C intake air
temperature at naturally aspirated conditions

HCCI holds the advantage of achieving ultra-low NOx and PM, with a relatively

low SFC as compared to SI/CI combustion regimes. However, higher HC and CO
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Figure 3.9: HCCI Indicated thermal efficiency map for 40 ◦C intake air
temperature and 120 kPa intake pressure

emissions is a major challenge for HCCI engines. Moreover, the lower exhaust temper-

atures in HCCI is a limiting factor in constraining the operating range of the engine

[57] because high exhaust gas temperature is required to achieve high efficiency of

the oxidation catalysts. The catalysts can reach conversion efficiencies of around 95

% for HC and CO, as long as the catalyst light off temperatures are in the range of

250- 300 ◦C [40, 58, 59]. As seen in Figure 3.11 for naturally aspirated conditions at

Tintake of 40 ◦C, the exhaust gas temperature range is between 223âĂŞ400 ◦C over the

entire speed and load range. This is an acceptable range for the catalytic converter
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to function properly. Moreover, with this range of temperatures, if the turbocharger

is used to extend operating range for high loads, there would be sufficient energy to

drive the turbo [58]. The exhaust temperature range for boosted conditions is shown

in Figure 3.10 for the entire range of speeds and loads. It can be seen that the ex-

haust temperature increased with an increase in load and speed for both naturally

aspirated and boosted conditions. The range of temperatures is 230 ◦C to 410 ◦C,

which is equivalent to the temperatures attained in SI combustion for low and mid

loads. The energy, if extracted from the exhaust gas using a waste heat recovery sys-

tem, could be used to heat the intake air, thereby eliminating the need of electrical

energy to drive the intake air heater.
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Figure 3.10: HCCI exhaust gas temperature map for 40 ◦C intake air
temperature and Naturally aspirated
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Figure 3.11: HCCI exhaust gas temperature map for 40 ◦C intake air
temperature and 120 kPa Boost Pressure

3.4 Optimized HCCI maps

HCCI tests were carried out for 900 data points over a wide range of operating con-

ditions (Intake air temperature, Boost pressure, RON, Engine speed and equivalence

ratio). An optimized map for best ISFC at each speed-load condition was developed

and other maps for BSFC, thermal efficiency and exhaust temperature were derived

from the optimized data set. The optimized maps were created separately for nat-

urally aspirated and boosted conditions. The data points considered for developing
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these maps are given in Appendix A.2. ISFC maps for intake pressures of 100 kPa

and 120 kPa are illustrated in Figures 3.12 and 3.13, respectively. While it can be

seen that equivalence ratio has a significant effect on the ISFC for naturally aspirated

conditions, engine speed takes over predominance for boosted conditions. ISFC in-

creases with a drop in IMEP and indicated torque since the mixture becomes leaner.

As a result of this, the oxygen dilution is higher and thereby decreasing combustion

temperatures. The best ISFC achieved was 200 g/kWh and 110 g/kWh for naturally

aspirated and boosted conditions, respectively. The speed range and load range im-

proved considerably for a boost pressure of 120 kPa as compared to those for 100

kPa.
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Figure 3.12: HCCI ISFC map for all intake air temperatures and RONs
at naturally aspirated conditions

BSFC maps for boost pressures of 100 kPa and 120 kPa are illustrated in Figures 3.14
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Figure 3.13: HCCI ISFC map for all intake air temperatures and RONs
and 120 kPa intake pressure

and 3.15, respectively. It can be seen that the trends are very similar to that of ISFC

maps. It can be seen that BMEP decreased with decrease in equivalence ratio. The

sweet spot for BSFC (210 g/kWh) for 100 kPa was obtained at 1400 rpm engine speed

and 88 Nm brake torque. For 120 kPa boost pressure, the best BSFC of 130 g/kWh

was obtained at maximum engine speed of 2400 rpm and 80 Nm brake torque. At

high engine speeds, the engine seems to run at a higher combustion efficiency typically

above 92 %. This is a result of better fuel-air mixing and higher homogeneity of the

mixture [60]. However, at low engine speeds and low loads, the BSFC increases due

to the unburned fuel at the exhaust, which approximately corresponds to 80-90 % of

combustion efficiency.
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Figure 3.14: HCCI BSFC map for all intake air temperatures and RONs
at naturally aspirated conditions
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Figure 3.15: HCCI BSFC map for all intake air temperatures and RONs
and 120 kPa intake pressure
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The ηth,ind maps for 100 kPa and 120 kPa boost pressure are illustrated in Fig 3.16

and 3.17, respectively. It can be observed that the net indicated thermal efficiency

improved with an increase in boost pressure. With an increase in operating range in

terms of load and speed, a boost pressure of 120 kPa yielded a peak indicated thermal

efficiency of 46% while 100 kPa intake pressure had a peak thermal efficiency of

41%. Moreover, with an increase in equivalence ratio, the thermal efficiency increased

for both intake pressures. With richer mixture the compression and combustion

temperatures are significantly higher and therefore the combustion efficiencies are

higher [56]. The data shows that for better thermal efficiencies, the combustion

efficiencies should be higher than 91% to prevent this from having a deteriorating

effect on thermal efficiency.
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Figure 3.16: HCCI indicated thermal efficiency map for all intake air tem-
peratures and RONs at naturally aspirated conditions
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Figure 3.17: HCCI indicated thermal efficiency map for all intake air tem-
peratures and RONs and 120 kPa intake pressure

The optimized exhaust temperature map for naturally aspirated and boosted condi-

tions is illustrated in Figures 3.18 and 3.19. A total of 250 data points were considered

to develop the optimized maps and it can be observed from the Appendix A2 that

over 75% of the data points have an exhaust temperature greater than 250 ◦C, which

implies that the HC and CO after treatment could be accomplished with a good

conversion efficiency of the catalytic converter. It can be observed that the exhaust

temperature increases with an increase in engine speed and load due to increase in

compression and combustion temperatures. However, at low loads and low speeds,

the low Texhaust could limit the practical operation of HCCI engines. But this can

be overcome by retarding the combustion phasing for these data points after TDC,

thereby compromising on the thermal efficiency of the engine [56].
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Figure 3.18: HCCI exhaust temperature map for all intake air tempera-
tures and RONs at naturally aspirated conditions
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Figure 3.19: HCCI exhaust temperature map for all intake air tempera-
tures and RONs and 120 kPa intake pressure
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3.5 Effects of RON on HCCI combustion

Pressure and heat release rate traces for different RONs at 1000 rpm engine speed

and intake air temperature of 100 ◦C are seen in Figure 3.20. Lambda value is around

2.4 for each RON. Combustion characteristics of different RONs in HCCI mode such

as CA10, CA50, CA90 and CA10-90 are also seen in Figure 3.21. As it can be seen

from pressure trace, heat release rate trace and CA10 values, the SOC is advanced

with lower RONs. The reactivity of the fuel decreases with an increase in RON.

Higher reactivity enables earlier SOC. This property of the fuel can be useful at

low intake air temperatures and lower engine loads. However, at the high intake air

temperatures and higher engine loads, the control of SOC and combustion phasing

becomes challenging. CA50 is around -6 CAD aTDC for RON0 that results in a lower

thermal efficiency. Typically, the combustion phasing must be 8-10 CAD aTDC in

order to achieve the best thermal efficiency [40]. This can be attributed to the fact

that the heat transfer losses are minimal at the optimal combustion phasing, thereby

leading to better thermal efficiencies [60]. It can be seen in Fig 3.21 that as the CA50

approaches close to 8 CAD aTDC, the thermal efficiency increases. The combustion

phasing retards as the RON increased because SOC is retarded for RON20 and RON40

compared to RON0.

75



Table 3.4
Operating conditions used for the experiments to study the effect of RON

on HCCI combustion

Test Parameters Value/ Desciption
Engine Speed 1000 (rpm)
Injection Pressure 3.5 (bar)
Injection Starting Angle 450 (deg bTDC)
Fuel Type RON 0 -20- 40
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 100 (◦C)
Lambda 2.4
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Figure 3.20: a) Pressure and heat release rates for RON 0, 20 and 40 at 1000 rpm
and intake temperature of 100 ◦C and b) Combustion phasing parameters for HCCI
combustion regime
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Figure 3.21: Effects of the RON on a) IMEP, b) Indicated thermal effi-
ciency and c) Combustion efficiency for HCCI combustion regime

3.6 Effects of Intake Air temperature on HCCI

combustion

Pressure and heat release rate traces for different intake air temperatures at 1000

rpm engine speed are seen in Figure 3.23(a). Lambda value is around 2.3 for each

temperature. Combustion characteristics of different intake air temperatures in HCCI
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mode such as CA10, CA50, CA90 and CA10-90 are also seen in Figure 3.23(b). The

range of values for Tintake and lambda were chosen based on the acceptable operating

region for HCCI combustion with MPRR less than 8 bar/CAD and COV less than 10

% [61]. HCCI combustion became unstable with leaner equivalence ratios because of

misfiring at lower engine speeds and high loads. Moreover, higher MPRR at higher

Tintake and richer equivalence ratios resulted in higher knock intensities. The increase

of Tintake improves the auto-ignition characteristics of the mixture in the cylinder.

The SOC is advanced at higher intake air temperature as seen in Figure 3.23(b)

due to the increased temperature of compression. Furthermore, with an increase in

Tintake, the chemical reactions between HC and oxygen molecules in side the cylinder

was accelerated. As a result of this, the Burn Duration (BD) values decreased with

an increase in Tintake. From Figure 3.22 and 3.23, it can be seen that the best thermal

efficiency is obtained at a combustion phasing of 6 CAD aTDC. The thermal efficiency

is lower at other temperatures for which the IMEP values are relatively lower due to

the change in fuel energy inducted in the cylinder. As a result of this, the ratio of

specific heat of the charge gases decrease due to the higher compression temperatures

[56].
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Table 3.5
Operating conditions used for the experiments to study the effect of intake

air temperature on HCCI combustion

Test Parameters Value/ Desciption
Engine Speed 1000 (rpm)
Injection Pressure 3.5 (bar)
Injection Starting Angle 450 (deg bTDC)
Fuel Type RON 20
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 40, 60, 80, 100 (◦C)
Lambda 2.2
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Figure 3.22: Effects of the intake air temperature on 1. IMEP, 2. Indicated
thermal efficiency and 3. Combustion efficiency for HCCI combustion regime
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Figure 3.23: a) Pressure and heat release rates for intake air tem-
peratures 40, 60, 80 and 100 ◦C at 1000 rpm and RON of 20 and
b) Effects of the intake air temperature on combustion characteris-
tics (CA10 CA50, CA90 and Burn Duration) for HCCI combustion
regime
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3.7 Effect of boost pressure on HCCI combustion

Pressure and heat release rate traces for different intake boost pressures at 1000 rpm

engine speed and intake air temperature of 40 ◦C are seen in Figure 3.24. Lambda

value is around 2.2 for each intake pressure. Combustion characteristics of different

boost pressures in HCCI mode such as CA10, CA50, CA90 and BD are also seen in

Figure 3.25. As seen through Figure 3.24, the peak pressure of combustion increases

with an increase in boost pressure. This is due to the increase in the effective charge

energy being induced into the cylinder owing to the increase in the air flow rate. In

order to maintain the same lambda, the fuel quantity increases. As a result of this,

the IMEP also increases with an increase in boost pressure. However, the thermal

efficiency and the combustion efficiency decreases. The drop in efficiencies is due to

the CA50 being too advanced bTDC. For the same lambda, with an increase in boost

pressure, the CA50 tends to get advanced since the start of combustion is advanced

with higher pressures at IVC.
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Table 3.6
Operating conditions used for the experiments to study the effect of Boost

pressure on HCCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 3.5 (bar)
Injection Starting Angle 450 (deg bTDC)
Fuel Type RON 40
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 40 (◦C)
Lambda 2.2
Boost Pressure 100, 120, 140 (kPa)
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Figure 3.24: Pressure and heat release rates for intake pressures 100 kPa,
120 kPa and 140 kPa at 1000 rpm and RON 40
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Figure 3.25: Effects of intake pressure on combustion characteristics (CA10
CA50, CA90 and Burn Duration) for HCCI combustion regime
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Figure 3.26: Effects of the boost pressure on (a) IMEP, (b) Indicated ther-
mal efficiency and (c) Combustion efficiency for HCCI combustion regime

84



Chapter 4

Reactivity Controlled Compression

Ignition (RCCI)

This chapter presents an overview of the Reactivity Controlled Compression Ignition

(RCCI) combustion regime. RCCI has an advantage over other LTC combustion

regimes in that the combustion phasing can be controlled by the start of injection

of the fuel injected directly into the cylinder. Moreover, the fuel reactivity can be

modified based on the engine speed and load allowing a much stable low temperature

combustion for low load applications [62]. This chapter explores the engine maps for

efficiency and combustion for three different premixed ratios 20, 40 and 60 for RCCI

combustion regime over a range of speed and load conditions. The maps are based

on constraints with all data points over 8 bar/CAD of MPRR and 10 % COVIMEP
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[61] are eliminated. The operating conditions for the tests are represented in Table

4.1.

Table 4.1
Operating Parameters for RCCI Combustion mode

Parameter Operating Conditions
Intake Air temperature 40, 60, 80 (◦C)
Manifold Pressure 120, 140 (kPa)
Engine Speed 800:200:3200 (rpm)
PR of Fuel 20, 40, 60 (-)
Lambda 1.0- 4.2(-)

4.1 Parametrization of BMEP using Flynn-Chen

Model for RCCI combustion regime

Figure4.1 compares the experimental FMEP vs parameterized FMEP for RCCI com-

bustion regime. It can be seen that the FMEP can be estimated within an error of

14%.
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Figure 4.1: Experimental FMEP vs Parameterized FMEP

Table 4.2
Error in estimation of FMEP

Model Chen-Flynn with P 2
max and P 3

max

Mean relative error 14 %
Max relative error 41 %
Max absolute error 0.7 bar
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Table 4.3
Coefficients for the Flynn- Chen Model

Coefficient Value
A -2.9371
B 0.0016
C -0.002
D 9.19E-6
E 0.0806
F -0.0042

Based on the parametrized model for FMEP, the constants obtained for the Chen-

Flynn model are given in Table 4.3.

4.2 Operating Range

RCCI operation over a range of engine speeds and loads was achieved based on a

systematic procedure followed to run the tests. The injection pressure for both the

DI and the PFI rails were held constant at 100 bar and 3 bar, respectively. The

SOI timing was advanced with increase in engine speed. All tests were performed by

monitoring the CA50 online and trying to maintain a constant combustion phasing

of 5-8 deg aTDC. Figure 4.2 shows the operating range map in terms of equivalence

ratio, engine speed and load limits for Tintake of 40 ◦C and boost pressure of 140 kPa.

The operating map shows that the speed range for RCCI mode gets narrower with an
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increase in PR. This is mainly because the reactive fuel quantity (n-heptane) reduces

with an increase in PR. Therefore, the combustion becomes unstable at speeds higher

than 1400 rpm for PR 60. It can also be seen that the engine could be run much

leaner for a lambda of 5.21 at PR 20 as compared to 4.41 at PR 60. The lean limit for

lower PR is much higher because of the combustion stability with the high reactive

fuel dominance.
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Figure 4.2: RCCI IMEP and speed range for 40 ◦C intake air temperature
and boost pressure of 140 kPa

Figure 4.3 represents the operating range map for an intake temperature of 60 ◦C
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and an intake pressure of 140 kPa. It can be observed that the lean limit for PR 20

is pushed further to a lambda value of 6.27 at 800 rpm. This is mainly due to the

increased temperature of the intake charge at IVC. Moreover, the speed range for all

three PRs is improved with an increase in intake temperature.

Figure 4.3: RCCI IMEP and speed range for 60 ◦C intake air temperature
and boost pressure of 140 kPa
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4.3 Maps for ISFC, BSFC, Indicated Thermal ef-

ficiency and Exhaust gas temperature

The ISFC maps for RCCI mode at Tintake of 40 ◦C and Pintake of 140 kPa for all

three PRs are shown in Figure 4.4. It can be seen that the best ISFC points shift

towards higher load conditions at an engine speed of 1400 rpm with an increase in

PR of the fuel blends. Lower load performance for PR 20 is diesel like and the ISFC

improves with load. It is also observed that the ISFC values are higher at low loads

and low speeds for PR 60. This is due to the fact that the combustion efficiency drops

at low loads and low speeds due to the ultra-lean air-fuel mixture. This results in

a decreased combustion temperature and thereby increasing the unburnt fuel at the

exhaust.
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Figure 4.4: RCCI ISFC map for three PRs at 40 ◦C intake air temperature
and intake pressure of 140 kPa

The BSFC maps were parameterized from the Flynn- Chen model and are repre-

sented in Figure 4.5 for the same operating conditions. The combustion efficiency

was relatively lower at 75% for low loads and low engine speeds, as a result of which

an increase in BSFC is observed for all three PRs. The range of BSFC was 230-325

g/kWh with the best BSFC occurring at high speeds and high loads for all PRs. It

can be seen that the BMEP increases with increase in fuel energy content per cycle.
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Figure 4.5: RCCI BSFC map for three PRs at 40 ◦C intake air temperature
and 140 kPa intake pressure

Figure 4.6 shows a comparison of indicated thermal efficiencies for the RCCI mode for

the same operating conditions. It can be seen that the thermal efficiency improves

with load. The maximum thermal efficiency for this map was 45% at 1800 rpm

and 120 Nm load for PR 40, which is 5% better than the ηth,ind for PR 20 at the

same speed-load condition. The compression ratio of the engine, pumping losses and

specific heat ratio play crucial roles in determining the thermal efficiency [32]. For

1800 rpm and 120 kPa for PR 40, the heat transfer losses are significantly reduced
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due to high engine speed. Thereby, the ratio of specific heat is higher with a lower

in-cylinder temperature. This results in better combustion efficiency and thereby

increasing the thermal efficiency.
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Figure 4.6: RCCI Indicated thermal efficiency map for three PRs at 40 ◦C
intake air temperature and 140 kPa intake pressure

For RCCI combustion regime, the exhaust temperature map is shown in Figure 4.7.

It can be seen that at lower loads and lower speeds, Texhaust is less than 200 ◦C, which

implies less capability to reach to catalyst light off temperatures and poses a challenge

with respect to the functioning of the oxidation catalysts. However, it can be seen
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that the temperatures increase as high as 570 ◦C at higher speeds and loads. This is

the typical temperature at which most SI engines work, at mid- high load conditions.

For PR 20, at loads higher than 80 Nm for all engine speeds, the Texhaust is higher

than the catalyst light off temperature of the oxidation catalyst. The Texhaust range

is much wider as compared to that in the HCCI combustion regime.
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Figure 4.7: RCCI Exhaust gas temperature map for three PRs at 40 ◦C
intake air temperature and 140 kPa boost pressure
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4.4 Optimized RCCI maps

The data points for RCCI combustion regime were optimized by considering data

points with best ISFC at each speed-load condition. Maps for BSFC, ηth,ind and Texh

were evaluated for the same optimized set of data points. Figures 4.8 and 4.9 represent

the optimized RCCI map for ISFC for naturally aspirated and boosted conditions,

respectively. It is evident that the speed and load range could be extended with

boosting. In order to obtain the best ISFC for Naturally aspirated conditions, the

engine should be run within the load range of 70-120 Nm, where an ISFC of 180

g/kWh was obtained. At 1400 rpm and 100 Nm indicated torque, the lowest ISFC

of 175 g/kWh was obtained. This data point was run with a combustion phasing

of 7 CAD aTDC and had the best indicated thermal efficiency of 46 %. The start

of injection was varied to keep the combustion phasing between 5-8 CAD aTDC.

Moreover, the mass of fuel unburnt was less than 3 % for this data point. This

shows that both combustion efficiency and combustion phasing play a crucial role in

attaining the optimal ISFC at a given speed-load condition. For boosted conditions,

the speed range was extended to 3400 rpm, while the load range was extended to

210 Nm indicated torque. With this range expansion, the best ISFC was shifted to

higher engine speeds and loads as compared to the ISFC map for naturally aspirated

conditions. At 140 kPa intake pressure, 2400 rpm engine speed and 80 Nm indicated

torque, an ISFC of 176 g/kWh was obtained. It can be seen that the SOI was advanced
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to 65 CAD bTDC for this operating condition, in order to maintain a CA50 of 10

CAD aTDC. Moreover, the engine was run at a PR of 60. Thereby, with lower in-

cylinder temperatures and a two stage HTHR, the combustion was complete with a

combustion efficiency of 98%. With such an optimized set of operating conditions,

the thermal efficiencies and henceforth the ISFC seemed to improve considerably.
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Figure 4.8: RCCI ISFC optimized map for all intake air temperatures and
PRs for naturally aspirated conditions
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Figure 4.9: RCCI ISFC optimized map for all intake air temperatures and
PRs at 140 kPa boost pressure

The BSFC maps as a function of engine speed and load are shown in Figures 4.10 and

4.11 for naturally aspirated and boosted conditions, respectively. It can be seen that

with boosted conditions for the lower speeds, the engine could be run at lower loads

as compared to naturally aspirated. This correlates to the lower equivalence ratio at

boosted conditions, due to the increased density of the air inducted into the cylinder,

making the mixture oxygen-rich and thereby leaner. However, the combustion effi-

ciencies at these points were relatively lower, thereby justifying the higher values of

BSFC.
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Figure 4.10: RCCI BSFC optimized map for all intake air temperatures
and PRs at naturally aspirated conditions
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Figure 4.11: RCCI BSFC optimized map for all intake air temperatures
and PRs at 140 kPa intake pressure
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The most significant observation for RCCI combustion regime is the higher ηth,ind at

a wide range of speed-load conditions. This can be observed in Figures 4.12 and 4.13

for naturally aspirated and boosted conditions, respectively. The ηth,ind is quite high

for high speed-load conditions. The lower equivalence ratio at low speeds and lowest

loads comes with the price of decreased stability and efficiency. The start of injection

pays a crucial role in determining the combustion phasing. As seen through the data,

it is advisable to keep the combustion phasing not greater than 10 CAD aTDC. The

combustion efficiencies tend to drop beyond this point. At low speeds such as 800

rpm, the Start of injection is 18 CAD bTDC, which is too late. However, this is the

optimal SOI for which the desirable combustion phasing could be achieved. The low

thermal efficiency at low speeds could be because of insufficient time for the n-heptane

and iso-octane to mix, thereby leading to unburnt fuel over 15% in the exhaust.
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Figure 4.12: RCCI indicated thermal efficiency optimized map for all in-
take air temperatures and PRs at naturally aspirated conditions
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Figure 4.13: RCCI indicated thermal efficiency optimized map for all in-
take air temperatures and PRs at 140 kPa intake pressure
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The optimized exhaust temperature maps for naturally aspirated and boosted con-

ditions are illustrated in Figures 4.14 and 4.15, respectively. The lower and upper

limits for the temperatures are 190 ◦C and 720 ◦C, respectively. With an increase in

engine speed and load, the Texhaust increases. At loads higher than 70 Nm and all

engine speeds, the exhaust energy can be recovered to either run the turbocharger or

to develop a waste heat recovery system to heat the intake air.
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Figure 4.14: RCCI exhaust temperature optimized map for all intake air
temperatures and PRs at naturally aspirated conditions
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Figure 4.15: HCCI exhaust temperature optimized map for all intake air
temperatures and PRs at 140 kPa intake pressure

4.5 RCCI optimized maps with supercharger

losses accounted

The RCCI tests for boosted conditions were performed using an e-supercharger, which

was driven by an electric motor. This energy consumed by the supercharger was

unaccounted for, in the maps represented in Section 4.3. This section provides an

overview of the change in the performance parameters, fuel consumption assuming

the supercharger was mounted on the engine and drawing power from the engine
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crankshaft. The supercharger efficiency was considered constant with a value of 0.6

[37]. The power consumed at each engine speed and boost pressure is illustrated in

Section 2.8. Based on these values the Net Power from the engine was calculated

by deducting the losses from the supercharger. Figure 4.16 represents the optimized

ISFC map with the supercharger losses accounted for. It can be seen that the best

ISFC point shifted from 175 to 225 g/kWh after accounting for the losses. Moreover,

given that the engine power output is lower at low engine speeds, the best ISFC for a

given engine speed occurs at low power and the ISFC values increase at higher loads.

Therefore it can be seen that the ISFC values increased roughly by 30% after the

losses were accounted for. Moreover, the peak thermal efficiency dropped from 47%

to 37%, which is approximately a 10 % reduction. This provides a good incentive

to use RCCI exhaust energy (in Figures 4.14 and 4.15) for turbocharging the engine

instead of using a supercharger.
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Figure 4.16: Optimized ISFC map for RCCI combustion regime with su-
percharger losses accounted for
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Figure 4.17: Optimized ηth,ind map for RCCI combustion regime with
supercharger losses accounted for
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4.6 RCCI optimized maps with COV of IMEP less

than 5 percent
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Figure 4.18: ISFC optimized map for RCCI combustion regime for COV
of IMEP less than 5% at naturally aspirated conditions
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Figure 4.19: Indicated thermal efficiency optimized map for RCCI combus-
tion regime for COV of IMEP less than 5% at naturally aspirated conditions
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Figure 4.20: ISFC optimized map for RCCI combustion regime for COV
of IMEP less than 5% and boosted conditions
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Figure 4.21: Indicated thermal efficiency optimized map for RCCI com-
bustion regime for COV of IMEP less than 5% and boosted conditions

4.7 Effects of PR on RCCI combustion

This section discusses the effect of premixed ratio (PR) on the combustion charac-

teristics and performance metrics of RCCI combustion regime, with premixed ratios

of 20, 40 and 60. The start of injection was held constant at 25 CAD bTDC and the

tests were performed at the constant total fuel energy. The operating conditions for

performing these tests are given in Table 4.4.
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Table 4.4
Operating conditions used for the experiments to study the effect of PR on

RCCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 100 (bar)
SOI 25 (deg bTDC)
Fuel Type PR 20, 40, 60
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 60 (◦C)
Fuel Mass 18 (mg/cycle)
Intake Pressure 120 (kPa)

Figure 4.22 illustrates the pressure trace and heat release rate curves for the three

PRs used. It can be observed that the peak in-cylinder pressure decreases with an

increase in PR. Moreover, the location of peak pressure (LPP) gets retarded too. The

heat release rate curve shows that there is a significant charge cooling at the time

when n-heptane is injected into the cylinder at 25 CAD bTDC. With n-heptane being

the more reactive fuel, with an increase in PR, the reactivity of mixture decreases

resulting in the combustion phasing to be retarded as illustrated in Figure 4.22 and

Figure 4.24. It can be seen that the CA50 changes from 10 to 15 CAD aTDC as

the PR is increased from 20 to 60. Further owing to the reduced reactivity of fuel

at higher PR, the burn duration (BD) also increases indicating that the combustion

rate is slower as compared to lower PRs.
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An interesting observation from the heat release rate curve is that for PR 60, there

appears to be a two-stage high temperature heat release (HTHR), as shown in Figure

4.23. This can be attributed to the fact that the injection timing was too retarded

bTDC. Iso-octane being injected much earlier in the port at 450 CAD bTDC, gets

sufficient time to mix homogeneously with air and a part of it is consumed shortly after

n-heptane is injected directly into the cylinder. The high pressure and temperature

at TDC catalyzes this process resulting in the combustion of the mixture for the

first stage of HTR. The remaining iso-octane is expected to get consumed after the

TDC. Therefor the first stage heat release is mainly trigerred due to n-heptane being

injected late in the cylinder. The first stage heat release triggers the the remainder

mixture to burn and thereby resulting in the second stage HTR [63].
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Figure 4.22: Pressure and heat release rates for PR 20, 40 and 60 for
operating conditions listed in Table 4.4
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Figure 4.23: Heat release rate characteristics for RCCI combustion
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Figure 4.24: Effects of PR on combustion characteristics (CA10 CA50,
CA90 and Burn Duration) for RCCI combustion regime
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Figure 4.25 illustrates the effect of PR on the performance metrics. Owing to the

increase in the effective area under the curve for the HRR, IMEP increases from

460 kPa to 545 kPa for PR 20 and 60, respectively. Moreover, the indicated ther-

mal efficiency increases with increase in PR because the in-cylinder temperature and

pressure are lower for higher PRs due to the two-stage HTHR for PR 60. At lower

PR, the indicated thermal efficiency is 29 % which is significantly low. This is due

to the incompleteness of combustion [64], as the combustion efficiency is 69 % for

PR20. The combustion efficiency lies in the range of 69% to80 %, indicating that

with higher PR and the two stage HTHR, the completeness of combustion is much

higher as compared to that in lower PRs.
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Figure 4.25: Effects of PR on (a) IMEP, (b) Indicated thermal efficiency
and (c) Combustion efficiency for RCCI combustion regime
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4.8 Effects of Intake Air Temperature on RCCI

Combustion

This section discusses the effect of intake air temperature on RCCI combustion and

performance metrics. Four different temperatures 40, 60, 80 and 100 ◦C are used.

The operating conditions for these tests are given in Table 4.5.

Table 4.5
Operating conditions used for the experiments to study the effect of PR on

RCCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 100 (bar)
SOI 25 (deg bTDC)
Fuel Type PR 20
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 40,60,80,100 (◦C)
Fuel Mass 18 (mg/cycle)
Intake Pressure 120 (kPa)

The effect of intake temperature on the in-cylidner pressure and the Net HRR is

shown in Figure 4.26. The maximum in-cylinder pressure increases with an increase

in intake temperature. Further, the LPP is also advanced with an increase in Tintake.
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Heating the intake air increases the charge temperature that is inducted into the

cylinder. The reaction rate of the fuel molecules are higher at higher temperatures.

Beyond a temperature of 80 ◦C, knocking was observed and the MPRR was higher

than 8 bar/CAD.

As seen through Figures 4.26 and 4.27, the start of combustion (CA10) is advanced

with an increase in Tintake. Owing to the higher charge temperatures, the mixture

starts to combust earlier at higher Tintake. However, it can be observed that the CA50

is 10 CAD aTDC for Tintake of 40 ◦C, but with higher temperatures up to 100 ◦C,

the CA50 remains constant at 8 CAD aTDC. This shows that Tintake has a negligible

effect on CA50, which could probably be better quantified if a higher resolution crank

angle encoder was used.
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Figure 4.26: Pressure and heat release rates for PR 20 for operating con-
ditions listed in Table 4.5
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Figure 4.27: Effect of intake air temperature on combustion characteristics
(CA10 CA50, CA90 and Burn Duration) for RCCI combustion regime

Figure 4.28 shows the effect of Tintake on the performance metrics of RCCI combustion.

The net IMEP and indicated thermal efficiency reduce with an increase in Tintake,

because of the higher in-cylinder temperatures at higher Tintake. The ratio of specific

heats is reduced, decreasing the polytropic expansion coefficient and thereby the

expansion work [46]. As seen in Figure 4.29, the combustion efficiency lies in the

range of 72% to 75% for all Tintake values.
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Figure 4.28: Effects of Tintake on (a) IMEP, (b) Indicated thermal efficiency
and (c) Combustion efficiency for RCCI combustion regime

4.9 Effect of boost pressure on RCCI combustion

An investigation of the experimental results was conducted to study the effect of

boost pressure on RCCI combustion, with the boost pressure varying from 100 kPa

to 140 kPa. All experiments were performed at a constant fuel quantity and constant

SOI as represented in Table 4.6.
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Table 4.6
Operating conditions used for the experiments to study the effect of boost

pressure on RCCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 100 (bar)
SOI 25 (deg bTDC)
Fuel Type PR 20
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 60 (◦C)
Fuel Mass 15 (mg/cycle)
Intake Pressure 100,110,120,130,140 (kPa)

Figure 4.29 shows the effect of boost pressure on the in-cylinder pressure and heat

release rate. It can be noted that the in-cylinder pressure increases with an increase

in boost pressure and the LPP becomes more advanced towards TDC. The pressure

and temperature at the end of compression stroke increases with an increase in boost

pressure. The volume of air inducted increases with increase in boost pressure. This

results in more charge energy being combusted in the cylinder.

As seen in Figures 4.29 and 4.30, the start of combustion (CA10) gets advanced

significantly with increase in boost pressure. The combustion rates are faster at

higher boost pressures due to stratification of the charge [32]. The thermal efficiency

and net IMEP do not change significantly because the CA50 is obtained in the range

of 8-12 CAD aTDC. The combustion efficiency lies between 75% to 80% between 100
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kPa and 140 kPa boost pressures.

Figure 4.29: Pressure and heat release rates for PR 20 for operating con-
ditions listed in Table 4.6
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Figure 4.30: Effects of intake pressure on combustion characteristics (CA10
CA50, CA90 and Burn Duration) for RCCI combustion regime
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Figure 4.31: Effects of intake pressure on (a) IMEP, (b) Indicated Thermal
efficiency and (c) Combustion efficiency for RCCI combustion regime
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Chapter 5

Partially Premixed Compression

Ignition (PPCI)

This chapter presents an investigation of the effect of various operating conditions

on Partially Premixed Compression Ignition (PPCI) combustion mode. Engine maps

were created to study the combustion and performance characteristics and the oper-

ating range of the engine running in PPCI combustion mode was determined. PPCI,

also termed as early injection HCCI, aims to integrate the benefits of HCCI while

improving the controllability of combustion phasing [51]. The ignition delay in PPCI

is much longer than a CDI combustion regime but shorter than HCCI. The direct

injection of the fuel into the cylinder can be used to control the combustion phasing

[65]. The engine was tested in PPCI combustion mode in order to determine the

123



operating region of the engine. Operating parameters such as intake air temperature,

boost pressure, engine speed, Research Octane number (RON) of fuel and equiva-

lence ratio were varied. BSFC, exhaust gas temperature, ISFC and BSFC maps were

created. The range of operating parameters are given in Table 5.1.

Table 5.1
Operating Parameters for PPCI Combustion Mode

Parameter Operating Conditions
Intake Air Temperature 40, 60, 80, 100 (◦C)
Manifold Pressure 95 (kPa)
Engine Speed 800:200:1800 (rpm)
RON of fuel 0, 20, 40 (-)
Lambda 1.4- 5.6 (-)

5.1 Parametrization of BMEP using Flynn-Chen

Model for PPCI combustion regime

A plot of experimental FMEP vs parameterized FMEP based on Chen-Flynn model

is shown in Figure5.1 for PPCI combustion regime indicating that the FMEP can be

estimated with a relative error of 6%.
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Figure 5.1: Experimental FMEP vs Parameterized FMEP

Table 5.2
Error in estimation of FMEP

Model Chen-Flynn with P 2
max and P 3

max

Mean relative error 6 %
Max relative error 16 %
Max absolute error 0.17 bar
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Table 5.3
Coefficients for the Flynn- Chen Model

Coefficient Value
A -2.088
B 0.2483
C -0.0058
D 4.778E-5
E -0.4747
F 0.0841

Based on the parametrized model for FMEP, the constants obtained for the Chen-

Flynn model are given in Table 5.3.

5.2 Operating Range Maps

The operating range maps for three fuel compositions RON 0, 20 and 40 for two

different intake air temperatures 40 ◦C and 80 ◦C are illustrated in Figure 5.2 and

5.3, respectively. At Tintake of 40 ◦C for the high octane fuel RON 40, the lean limit is

550 kPa at 800 rpm while it is 450 kPa at 800 rpm and 80 ◦C. It can be seen that the

engine could be run at a very lean equivalence ratio at higher temperatures, thereby

improving the operating range enabling the load limit to be pushed towards much

leaner operating conditions. For both intake air temperatures, the range of engine

speed is much larger for lower octane fuels RON 0 as compared to RON 40. However,
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owing to the lower octane rating of RON 0, the upper limit of load was limited due to

the knocking tendency of the fuel. Therefore, RON 0 was the best choice to run the

engine at low load conditions, whereas RON 40 was efficient in running the engine at

low-mid load conditions. Moreover, the speed range for all the fuels was limited due

to the lower compression ratio of 9.2:1 being used for the engine.
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Figure 5.2: PPCI IMEP and speed range for 40 ◦C intake air temperature
at naturally aspirated conditions

127



800 1000 1200 1400 1600 1800

300

350

400

450

500

550

600

650

700

λ=2.05

λ=1.65

λ=1.51

λ=1.53

λ=1.48

λ=1.48

λ=1.64
λ=1.39

λ=2.33

λ=1.87

λ=1.52

λ=1.21
λ=1.38

λ=1.57

λ=1.74

λ=2.59

λ=1.68

λ=2.59

λ=1.88

λ=2.0 λ=1.99
λ=1.95

λ=2.31

λ=2.50

λ=2.55

λ=1.70

λ=2.89

λ=1.48

 RON 0
 RON 20
 RON 40

N
e

t 
IM

E
P

 (
k
P

a
)

Engine Speed (RPM)

λ=2.81

 

 

Figure 5.3: PPCI IMEP and speed range for 80 ◦C intake air temperature
at naturally aspirated conditions

5.3 Maps for ISFC, BSFC, Indicated Thermal Ef-

ficiency and Exhaust Gas Temperature

The operating range maps are critical in evaluating the engine’s performance in terms

of brake and indicated specific fuel consumption (SFC), load and thermal efficiency. It

gives a good indication of the regions in which the engine would run efficiently. Figure
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5.4 represents the ISFC map for PPCI combustion mode at an intake temperature of

40 ◦C for three different fuel compositions RON 0, 20 and 40. It can be observed that

the best ISFC is obtained at low loads at each engine speed. This can be attributed to

the lean operation of the engine due to better fuel atomization. The fuel is injected

directly into the cylinder and results in higher value of gamma thereby lowering

in-cylinder combustion temperatures [46]. The heat transfer losses are significantly

reduced. As compared to the ISFC map for HCCI for the same intake temperature

of 40 ◦C, it can be observed that at 800 rpm and 1000 rpm, the engine could be run

at higher loads in case of PPCI. Because of the lower compression temperature of

the gases in case of PPCI, it leads to higher charge density thereby enabling higher

amount of fuel to be inducted [32]. Thereby, the engine could be run at much richer

mixtures within an acceptable MPRR of within 8 bar/CAD, avoiding knock.
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Figure 5.4: PPCI ISFC map for 40 ◦C intake air temperature at naturally
aspirated conditions

The BSFC map for PPCI combustion regime at Tintake of 40 ◦C is shown in Figure

5.5. The sweet spot for BSFC of 250 g/kWh is obtained at a load of 72 Nm and 1000

rpm for RON 20. It can be seen that BSFC increases considerably at lower engine

speeds and high loads. This is mainly due to the friction losses, which are higher at

higher engine speeds. The friction losses increase with an increase in engine speed

[40].
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Figure 5.5: PPCI BSFC map for 40 ◦C intake air temperature at naturally
aspirated conditions

Figure 5.6 represents the net indicated thermal efficiency maps for three RONs 0,

20 and 40 for an intake temperature of 40 ◦C at naturally aspirated conditions. A

maximum TEF of 42% is obtained for an indicated torque of 70 Nm and 800 rpm

engine speed. It can also be seen that the best thermal efficiency is attained at lower

loads for all speeds. This is a typical characteristic of PPCI combustion mode, which

works efficiently at low loads.
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Figure 5.6: PPCI indicated thermal efficiency map for 40 ◦C intake air
temperature at naturally aspirated conditions

Figure 5.7 shows the Texhaust map for PPCI combustion regime at Tintake of 40 ◦C. It

can be seen that the exhaust temperatures have been maintained over 300 ◦C for even

the lowest loads and speeds. This implies that the oxidation catalyst would function

with a good conversion efficiency in order to break down the HC and CO molecules,

since the catalyst light-off temperature is about 250 ◦C and the exhaust temperatures

are way above it over the entire range of speeds and loads.
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Figure 5.7: PPCI exhaust gas temperature map for 40 ◦C intake air tem-
perature at naturally aspirated conditions

5.4 Optimized PPCI maps

Experiments were performed for PPCI combustion mode at 650 different combinations

of operating conditions such as Tintake, Pintake, RON, equivalence ratio and engine

speed. In order to generate the optimized map for PPCI combustion mode, the

points with the best ISFC were chosen at every engine speed- load condition. The
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data points chosen are given in Appendix A.1. The best ISFC obtained was 200

g/kWh at low engine loads. It has also been observed that up to 1400 rpm, the ISFC

increases with an increase in engine load. The charge gets richer with an increase in

load at these data points. However, at speeds higher than 1400 rpm, the ISFC values

vary by a small amount at all loads. This is mainly because the equivalence ratio

range is very narrow for higher engine speeds.
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Figure 5.8: PPCI ISFC optimized map for all intake air temperatures and
RONs at naturally aspirated conditions

Figure 5.9 illustrates the optimized BSFC map for three different fuel compositions
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RON 0, 20 and 40. Lowest BSFC of 250 g/kWh is obtained at high loads and speeds.

The friction losses are high at higher engine speeds and thereby have a significant

effect on the BSFC values. The BSFC values are the highest at 1600 rpm and low

loads. This shows that it is not suitable to run the engine in PPCI mode at higher

engine speeds and low loads.
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Figure 5.9: PPCI BSFC optimized map for all intake air temperatures and
RONs at naturally aspirated

The indicated thermal efficiency maps are shown in Figure 5.10. The range of thermal

efficiencies was 32- 42 % over a load range of 45- 120 Nm. The best thermal efficiency
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points were obtained at an engine load of 450 kPa IMEP for all speeds. Since the

map was an optimized set of data points obtained from a combination of various

parameters, the engine would run quite efficiently at most of the data points with the

combinations used for the map. However, it can be seen that the thermal efficiency

reduces to 35% at low speeds and higher loads, limiting the high load operation at

low speeds for PPCI combustion mode.
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Figure 5.10: PPCI indicated thermal efficiency optimized map for all intake
air temperatures and RONs at naturally aspirated conditions
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The optimized exhaust temperature map for PPCI combustion regime under natu-

rally aspirated conditions is shown in Figure 5.11. It can be observed that Texhaust

for almost all the data points lie above the catalyst light off temperature of 250

◦C. Moreover, the range of Texhaust lies in an acceptable region of 290-490 ◦C. The

range is a trade off between HCCI and RCCI combustion regime, in terms of exhaust

temperature and HC emissions based on the findings in this thesis.

800 1000 1200 1400 1600 1800

350

400

450

500

550

600

650

700

PPCI map

T
in
= 40-60-80-100 

o
C

P
in
 = 95 kPa

RON=0-20-40

N
e
t 
IM

E
P

 (
k
P

a
)

Engine speed (rpm)

283.4

312.0

340.6

369.3

397.9

426.5

455.1

483.7

T
exhaust

(
o
C)

50

60

70

80

90

100

110

In
d
ic

a
te

d
 T

o
rq

u
e
 (

N
m

)

Figure 5.11: PPCI exhaust temperature optimized map for all intake air
temperatures and RONs at naturally aspirated conditions
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5.5 Effect of Intake Air Temperature on PPCI

Combustion

Adjusting intake air temperature is one of the most common methods to control

PPCI combustion [56]. For this reason, four different intake air temperatures are

tested during experiment at a constant lambda and engine speed with RON20 fuel.

Table 5.4 shows the test details for effects of increased intake air temperature.

Table 5.4
Operating conditions used for the experiments to study the effect of intake

air temperature on PPCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 100 (bar)
Injection Starting Angle 100 (deg bTDC)
Fuel Type RON 20
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 40, 60, 80, 100 (◦C)
Lambda 2.0
Intake Pressure 95 (kPa)

The effects of increasing intake air temperature on in-cylinder pressure are shown

in Figure 5.12. The maximum cylinder pressure increases with the increase of the

intake air temperature. At the same time, the location of maximum cylinder pressure
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gradually approaches the TDC with an increase in intake air temperature. In addition,

the maximum cylinder pressure occurred before TDC when the intake air temperature

reached at 100 ◦C, as shown in Figure 5.12. Heating the air taken into the cylinder

increases the reaction rate by providing faster movement of molecules. The start of

combustion is advanced with increase of intake air temperature. During experiments,

the knock was observed at high intake temperatures over 100 ◦C and misfire was

observed at low intake temperatures below 40 ◦C.

Figure 5.12: Effect of intake air temperature on PPCI in-cylinder pressure
at a lambda of 2
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Figure 5.13: Effect of intake air temperature on the PPCI heat release rate
at a lambda of 2

Figure 5.14 shows the effect of intake air temperature on IMEP and BMEP. It can

be observed that the IMEP and BMEP reduce with an increase in Tintake . While

maintaining a constant equivalence ratio, with an increase in intake temperature the

air density decreases. The temperature of compression increases, thereby auto igniting

the charge much earlier. With the combustion phasing being shifted away from the

optimum value of 5-10 CAD aTDC, a drop in IMEP and BMEP is observed.

140



40 60 80 100

300

350

400

450

500

550

M
e

a
n

 E
ff
e

c
ti
v
e

 P
re

s
s
u

re
 (

k
P

a
)

Intake Air Temperature (
o
C)

 IMEP

 BMEP

 

 

Figure 5.14: Effect of Intake temperature on IMEP and BMEP at a lambda
of 2

The indicated thermal efficiency as a function of intake temperature is depicted in

Figure 5.15. With an increase in intake air temperature, the thermal efficiency drops

significantly. Due to the increase in compression and combustion temperature, the

heat transfer losses increase. Moreover, the combustion efficiency is about 87% in case

of 100 ◦C intake temperature. Due to the increase in fuel energy content and a drop

in combustion efficiency, the thermal efficiency drops at higher intake temperatures.
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Figure 5.15: Effect of intake temperature on indicated thermal efficiency
at a lambda of 2

The combustion characteristics at different intake temperatures are shown in Figure

5.16. It can be observed that the CA10, CA50 and CA90 get advanced with an

increase in temperature. The start of injection for all the temperatures were held

constant at 100 CAD bTDC. With an increase in intake air temperature, the start of

combustion gets advanced. This is due to the increase in the IVC temperature of the

air-fuel mixture. Thereby, auto ignition of the mixture occurs much earlier, thereby
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advancing the combustion phasing. An interesting point to note is that the best in-

dicated thermal efficiency of 39.5 % was obtained when the combustion phasing was

about 5 CAD aTDC. This supports the study in literature [40] that the optimal com-

bustion phasing for the best thermal efficiency should be between 5-10 CAD aTDC.

Since the SOI was held constant, the CA50 for the other temperatures got advanced.

However, if the SOI was retarded with an increase in intake air temperature, the

combustion phasing could be controlled to be in the range of 5-10 CAD aTDC.
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Figure 5.16: Effect of intake temperature on combustion phasing at a
lambda of 2
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5.6 Effects of Boost pressure on PPCI combustion

An analysis of the experimental results was conducted to understand the effect of

intake manifold pressure on PPCI combustion. All experiments were performed at

seven different intake pressures from 1.0 bar to 1.6 bar with 0.1 bar intervals at

different loads using n-heptane as the fuel. All tests were conducted at constant

engine speed, intake temperature, injection timing and injection pressure conditions

as given in Table 5.5.

Table 5.5
Operating conditions used for the experiments to study the effect of intake

pressure on PPCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 100 (bar)
Injection Starting Angle 100 (deg bTDC)
Fuel Type RON 0
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 60 (◦C)
Lambda 1.8-6.0
Intake Pressure 100:10:160 (kPa)
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Figure 5.17: Effect of boost pressure on IMEP in the PPCI regime
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Figure 5.18: Variation of cylinder pressure versus crank angle at different
intake manifold pressures at constant fuel energy 749 J in the PPCI regime

Figure 5.17 shows the effects of intake manifold pressure on IMEP. IMEP decreased

with an increase in lambda. This is due to a decrease in input fuel energy quantity

when moving towards lean air-fuel mixture (i.e., high lambda values). Figure 5.17

shows that PPCI combustion can be achieved at a larger range of lambda values with

an increase in the intake manifold pressure. For a fixed lambda condition, as intake

pressure increased, IMEP increased due to delivery of more air and fuel energy to

the cylinder. But for a fixed intake pressure condition, IMEP has a decreasing trend

with increase in lambda values.
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Figure 5.18 and 5.19 show the variations of cylinder pressure and heat release rate

versus crank angle at different intake manifold pressures for a constant input fuel

energy. In-cylinder pressure increased with the increase in intake manifold pressure.

The compression pressure and temperature also increase at the end of compression

stroke with an increase in intake manifold pressure. Higher in-cylinder pressure is

obtained with the increase in intake manifold pressure as intake valve closing (IVC)

pressure and IVC temperature will increase. This significantly affects PPCI com-

bustion which is highly dependent on the temperature-pressure history during the

compression stroke.

Maximum cylinder pressure was obtained near the TDC at higher intake manifold

pressures especially at 150 and 160 kPa. Figure 5.19 shows the two stages of heat

release in which increased intake manifold pressure resulted in earlier low temperature

reactions. Also, main combustion was advanced with the increase of intake manifold

pressure.
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Figure 5.19: Variation of heat release rate versus crank angle at differ-
ent intake manifold pressures at constant fuel energy 749 J in the PPCI
combustion regime

Figure 5.20 shows the variation of indicated thermal efficiency as a function of lambda

and intake manifold pressure. Indicated thermal efficiency increased until a certain

lambda value and then started to decrease for all intake manifold pressures. Maximum

thermal efficiency of 40% was observed at an intake manifold pressure of 100 kPa and

lambda 2.6, which is comparable to that of conventional diesel engines. As the intake

manifold pressure increased, a small decrease in the indicated thermal efficiency was

observed owing to leaner mixtures.
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Figure 5.20: Variation of indicated thermal efficiency with lambda at dif-
ferent intake manifold pressures in PPCI combustion regime

Figure 5.21 depicts the effects of intake manifold pressure on CA50. It is apparent that

combustion is advanced with an increase in intake manifold pressure. Therefore, CA50

is observed bTDC because of early auto-ignition at higher intake manifold pressures.

Thermal efficiency is strongly affected by CA50. CA50 should be kept slightly after

the TDC to obtain higher engine efficiency [40] [66]. An increase in thermal efficiency

is observed when CA50 is slightly after TDC in Figure 5.21. CA50 was retarded

after TDC at lower intake manifold pressure due to an increase of lambda. However,
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indicated thermal efficiency decreased because of very lean mixture at lambda value

of 2.8 and intake manifold pressure of 100 kPa. At this point, the operating region is

close to the misfiring zone with weak auto-ignition capability at very lean mixtures,

leading to low indicated thermal efficiency. At 160 kPa, both the start of combustion

(SOC) and CA50 were advanced especially with richer mixtures. Too early ignitions

bTDC result in low indicated thermal efficiency.
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Figure 5.21: Effect of intake manifold pressure on CA50 at different lambda
values in PPCI combustion regime

150



5.7 Effect of SOI on PPCI combustion

PPCI combustion is strongly dependent on temperature of charge mixture and com-

position during the compression stroke. Injection timing is used commonly in order

to control PPCI combustion, because injection timing alters the homogeneity of the

charge mixture, start of combustion and combustion process. So, the effects of in-

jection timing on PPCI combustion must be investigated in detail. The operating

conditions for studying this effect is given in Table 5.6.

Table 5.6
Operating conditions used for the experiments to study the effect of SOI on

PPCI combustion

Test Parameters Value/ Unit
Engine Speed 1000 (rpm)
Injection Pressure 100 (bar)
SOI 270, 180, 90, 60, 30, 20 (deg bTDC)
Fuel Type RON 0
IVO 25.5 (deg bTDC)
EVC 22 (deg bTDC )
Throttle Body Position 100 (%)
Intake Air Temperature 80 (◦C)
Lambda 1.8
Boost Pressure 95 (kPa)

Figure 5.22 shows the variations of in-cylinder pressure at different SOI versus crank

angle. Maximum in-cylinder pressure was obtained as 4733 kPa at 2 CAD bTDC

when the fuel was injected at 270 CAD bTDC whereas it was obtained 3368 kPa at
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20 CAD bTDC when the fuel was injected 20 CAD bTDC. It was seen that maximum

in-cylinder pressure increased and it was obtained earlier in case of early injection

timing. Early fuel injection causes to obtain more homogeneous charge mixture. So,

fuel molecules can meet with oxygen molecules more easily. In addition, the residence

time for the fuel to vaporize increased and obtain stable combustion conditions as a

result of early injection [40, 67]. Thus, fuel can be ignited earlier according to crank

angle and maximum in-cylinder pressure was obtained earlier. In case of advancing

SOI, the increase of maximum in-cylinder pressure can be explained by the fact that

all fuel energy is released at a small interval of crank angle with more homogeneous

charge mixture. SOC is retarded and large part of combustion occurred in expansion

stroke when the fuel is injected towards to the TDC. This situation causes a decrease

in the maximum in-cylinder pressure.
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Figure 5.22: Effects of SOI on in-cylinder pressure in PPCI combustion
regime

Figure 5.23 shows the heat release rates variation by injection timing. As seen in

the figure there are two peak points in HRR for cases with SOI 180 and 270 CAD

bTDC. The first peak indicates the insufficient in-cylinder temperature to vaporize

of the fuel at the beginning of the injection. Retarded injection provides a higher in-

cylinder temperature because of the single stage heat release. Advanced SOI caused

early ignition as shown in Figure 5.23. Therefore the maximum heat release rate

locations were shifted towards TDC except for SOI of 20 CAD bTDC. This may

cause a reduction in thermal efficiency. Optimal CA50 is very critical in determining
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the best thermal efficiency of the engine at a given operating condition. Theoretically,

an ideal CA50 lies close to TDC [68]. However, when CA50 is located around 8-10 ◦

aTDC in a conventional CI or SI engine [40], net IMEP and thermal efficiency is the

maximum. It is seen that the CA50s were obtained bTDC with advanced injection

timings. This will reduce the thermal efficiency of the engine. CA50 was close to TDC

when the SOI was 30 CAD bTDC. N-heptane is a high reactivity fuel and therefore

it should not be injected early as it leads to too early combustion.
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Figure 5.23: Effects of SOI on heat release rate in PPCI combustion regime

Figure 5.24 gives the CA10, CA50 and CA90 as a function of SOI. As seen in Figure
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5.24, there is no remarkable effect on CA10, CA50 and CA90 when SOI was fixed

at interval of 270 and 90 CAD bTDC. But, CA10, CA50 and CA90 were obtained

later if the injection timing was fixed under 90 CAD bTDC. Combustion phasing was

retarded towards TDC. So, CA10, CA50 and CA90 values were much retarded as

calculated from the cumulative heat release rate.
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Figure 5.24: Effects of SOI on CA10, CA50 and CA90 in PPCI combustion
regime
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Chapter 6

Summary and Conclusions

Experimental investigation has been carried out to determine the operating re-

gions and performance maps for three different low temperature combustion regimes:

HCCI, PPCI and RCCI. Different methods of operating range extension for load limit

and lean limit have been studied. A parametric study has been conducted to study

the effect of several operating conditions on the combustion and performance char-

acteristics of the LTC modes. Major results and contributions from this thesis have

been summarized and conclusions have been outlined.
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6.1 Conclusions

The results and the summary of the findings form this research have been described

in the following sections:

6.1.1 Operating range and performance maps

• HCCI operation for naturally aspirated conditions in this study has a speed

range of 800- 1600 rpm and load range of 250 kPa to 580 kPa IMEP for RON

0, 20 and 40. For boosted conditions the speed limit could be extended to

2000 rpm and the load limits were between 440 kPa to 800 kPa. The higher

in-cylinder pressures and higher intake temperature with the assist of boost

pressure enables extending the load limit and the speed limit for HCCI mode

operation. Moreover, the control of combustion phasing was challenging for

higher RON at lower Tintake. While very high loads result in pressure oscillations

due to the rapid heat release rate, low loads result in unstable combustion due

to the lower in-cylinder temperatures and dilution effect of the trapped exhaust

gases. These two factors limit the HCCI operating range between the lean limit

and the high load limit.

• The most efficient operating region for HCCI is found to be in the range of
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50-100 Nm brake torque. ISFC improved with engine load. The lowest ISFC

of 205 g/kWh was obtained for RON 40 and the best BSFC of 210 g/kWh was

obtained for RON 0. Fuels with higher reactivity tend to allow leaner HCCI

operation. Moreover, a decrease in volumetric efficiency at increased Tintake

and higher boost pressures results in higher pumping losses thereby leading to

higher BSFC values. Combustion phasing plays a crucial role in determining

the optimal thermal efficiency at a given engine load and speed. The best

thermal efficiencies were obtained at an optimal combustion phasing of 5-8 deg

aTDC. A maximum indicated thermal efficiency of 40% was attained at mid load

conditions for all three RONs. The exhaust gas temperatures are in the range of

230 to 410 ◦C which is close to typical catalyst light off temperatures. Thereby,

the operating region for HCCI combustion regime falls in the acceptable range.

• The speed range for the RCCI mode operation gets narrower with an increase

in PR. This is mainly due to the reduced reactivity of fuel at higher PR as a

result of which the combustion becomes unstable at speeds higher than 1400

rpm for PR 60. Moreover, the lean limit for lower PR is much higher due to the

combustion stability provided by the high reactive fuel dominance. At higher

boost pressures, due to the increased charge temperature at IVC, the lean limit

for all PRs could be further expanded. The engine load for the operating region

is in the range of 300 to 1300 kPa IMEP and speed range lies in the range of

800- 3200 rpm, which is considerably higher as compared to HCCI combustion
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regime.

• The best ISFC shifts towards higher load conditions at 1400 rpm with an in-

crease in the PR of the fuel. The best ISFC of 184 g/kWh was obtained for PR

40 at 1800 rpm. At low loads and speeds, the lower combustion efficiencies lead

to an increase in the ISFC. The range of BSFC obtained was 230- 325 g/kWh

with th best BSFC occurring at high speeds and loads for all PRs. The com-

pression ratio of the engine, pumping losses and specific heat ratio play a crucial

role in determining the optimal thermal efficiency. Maximum indicated thermal

efficiency of 45% was obtained at 1800 rpm and 120 Nm indicated torque for

PR 40. Exhaust gas temperatures were in the range of 200 ◦C to 725 ◦C. The

exhaust gas temperatures are well below the catalyst light off temperatures at

low loads. This region is not favorable due to the inability of the oxidation cata-

lysts to function at these temperatures. However, about 90% of the data points

lie in the favorable operating region with respect to the operating temperature

of oxidation catalysts.

• For PPCI combustion mode, the engine could be run much leaner at higher

intake temperatures, pushing the load limit towards much leaner operating con-

ditions. The range of engine speeds is much larger for lower octane fuels RON

0 as compared to RON 40. RON 0 is more suitable to run the engine at low

load conditions, whereas RON 40 is ideal for low-mid load conditions. The load

range for operation was in the range of 320- 750 kPa IMEP, while the speed
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range was 800- 1800 rpm.

• The best ISFC was obtained at low loads for each engine speed. The best ISFC

of 202 g/kWh was attained at 800 rpm and 65 Nm indicated torque for RON

0. The sweet spot for BSFC (250 g/kWh) was obtained at a load of 72 Nm and

1000 rpm for RON 20. A maximum thermal efficiency of 42% is obtained at the

point of the best ISFC. As a typical characteristic of PPCI combustion, the best

efficiencies were obtained at low loads. The exhaust temperatures remained over

300 ◦C even at the lowest loads and speeds. This implies that the oxidation

catalyst would function flawlessly over the entire operating region.

• As a baseline comparison with the SI map, it can be observed that RCCI com-

bustion under naturally aspirated conditions had a much better ISFC at mid

loads in the range of 600-800 kPa IMEP and engine speed in the range of 1200-

2000 rpm. Moreover, PPCI had a 5% improvement in ISFC at 600 kPa engine

load and 1400 rpm of engine speed. for low loads, HCCI combustion regime

had an improvement of about 9% in ISFC values in the load range of 400-600

kPa and engine speed of 800-1600 rpm.

• Cost vs Efficiency Gain The Bosch 62251 port fuel injector costs about $95

each. In order to install four port fuel injectors on the manifold, with the actu-

ation linked to the control unit, the total cost to install the port fuel injection

system could be roughly estimated to be $800. As seen in this study, RCCI

combustion regime can offer upto 14% improvement in fuel economy and upto
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8% improvement in net indicated thermal efficiency over SI mode. Therefore,

it is recommended that an SI-RCCI mode switch could be performed with one

direct injection rail and one port fuel injection rail. With the cost incurred for

the instrumentation of the PFI rail, a significant improvement in overall engine

efficiency can be achieved.

6.1.2 Parametric Study on Combustion and Performance

characteristics

• For HCCI combustion, the combustion phasing gets advanced with lower RON

of the fuel. The higher reactivity of the fuel advances the start of combustion. At

higher Tintake and engine loads, the control of combustion pahsing becomes more

challenging. The best thermal efficiency is attained at a combustion phasing of

8-10 CAD aTDC. With an increase in Tintake, higher in-cylinder pressure and

combustion temperatures result in knocking. However, higher Tintake improves

the auto ignition conditions in the combustion chamber. The SOC is advanced

due to the higher compression temperatures. Higher boost pressure tends to

decrease the thermal efficiency and the combustion efficiency. This is due to

the fact that the CA50 is too advanced at these boost pressures.

• For RCCI combustion, there appears to be a two stage HTHR. The first stage
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heat release is mainly triggerred due to n-heptane being injected late into the

cylinder. The first stage heat release triggers the remainder mixture to burn and

thereby resulting in the second stage HTR. This two stage HTHR occurs due

to the SOI for n-heptane being too retarded. The indicated thermal efficiency

increased with an increase in PR. This is because of the reduced in-cylinder

temperatures and pressures due to the two stage HTHR for PR 60. Moreover,

the combustion efficiency improves with PR because of the higher completeness

of combustion with the two stage HTHR for the conditions studied. With an

increase in Tintake, the SOC tends to get advanced due to the higher charge tem-

peratures. However, the CA50 does not get advanced drastically and remains

around 8-10 CAD aTDC. With an increase in boost pressure, the CA10 gets

advanced significantly. But the thermal efficiency and net IMEP do not change

much since the combustion phasing lies in the range of 8-12 CAD aTDC.

• For PPCI combustion, the IMEP and BMEP tend to reduce with an increase

in Tintake since the temperature of compression increases and thereby reducing

the amount of fuel being injected. The CA10, CA50 and CA90 tend to get ad-

vanced with an increase in Tintake. Due to the increased manifold temperature

of air-fuel mixture, auto ignition occurs much earlier and thereby advancing the

combustion phasing. Thermal efficiencies are strongly affected by combustion

phasing. The best thermal efficiencies are obtained when the combustion phas-

ing are in the range of 5-10 CAD aTDC. PPCI combustion could be achieved
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at a larger range of lambda values with an increase in boost pressure. The two

stage heat release (LTR and HTR) result in reduced in-cylinder temperatures,

thereby resulting in earlier low temperature reactions with increase in boost

pressure. Therefore, the combustion phasing was advanced with increase in

boost pressure. Maximum thermal efficiency of 40% was observed at 100 kPa

boost pressure and lambda of 2.6, which is comparable to that of conventional

diesel engines. Advancing the SOI results in more homogeneous mixture and

provides sufficient time for the fuel to vaporize. Thereby the fuel is ignited early

and maximum in-cylinder pressure is obtained. It was observed that the maxi-

mum in-cylinder pressures and temperatures reduced when SOI approached 20

CAD bTDC. The combustion phasing does not change significantly when the

SOI is retarded from 270 to 90 CAD bTDC. However, when further retarded,

the combustion phasing gets advanced significantly due to the insufficient time

for the mixing of air-fuel mixture, thereby resulting in a heterogeneous mixture.

Moreover, the combustion duration is much larger at retarded SOI.

6.2 Major Contribution towards the thesis

The major contribution towards the thesis are as mentioned below:
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• Instrumentation and calibration of Port Fuel Injection system and Direct Injec-

tion system

• Developed control blocks and control strategies for port fuel injectors and su-

percharger control

• Conducted experiments for three different LTC combustion regimes: HCCI,

RCCI and PPCI over 2500 data points with operating conditions including

intake air temperature, boost pressure, RON, fuel-air equivalence ratio, injection

pressure and engine speed.

• Developed an in-house MATLAB post processing script to calculate over 50

different parameters to understand the engine characteristics and behavior at

each operating condition.

• Investigated the effect of each parameter on the combustion (CA10, CA50,

CA90 and BD) and performance (IMEP, indicated thermal efficiency, combus-

tion efficiency) characteristics of the engine for each of the LTC regime.

• Developed operating region maps to determine the upper and lower limits of

LTC operation

• Developed and studied the performance maps for ISFC, BSFC, indicated ther-

mal efficiency and exhaust temperature) for each of the LTC modes
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6.3 Future Work

• With respect to engine experimentation, several tasks need to be carried out in

order to utilize the maximum capability of the engine in terms of performance

and operating range. One of the major tasks would be to change the compression

ratio of the engine to 12.1:1 by using newly designed pistons [37]. With this,

the load range of the engine is expected to become much more wider. Moreover,

even the overall engine efficiency should improve significantly. It would also be

feasible to run the engine with higher RON fuels.

• One of the shortcomings of this research is that the emissions analyzer was

not at our disposal. Further improvisations to the experimental setup could be

pursued in terms of emission analysis. A detailed emissions study on the engine

could provide more information and corroborate the findings, leading to more

conclusive inferences.

• The homogeneity and mixing characteristics of the fuel should be studied

through detailed analytical models and simulation studies. Ensuring optimal

spray angle and a detailed study of split injection strategies for RCCI could

provide improvements in terms of combustion and overall engine efficiency.

• Development of an LTC-electric hybrid powertrain [54] would be the next step

in terms of improvising the overall system efficiency particularly during engine
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transients. With the assist of torque blending, the engine maps for different

combustion modes could be used to decide the favorable regions of operation

for the LTC engine when working in conjunction with an e-motor.

• A potential area of improvement would be the implementation of model based

predictive controller on the engine. A real time feedback of CA50 and model pa-

rameterization of RCCI combustion is currently being pursued by the students

in the EML team. Implementing the controller on the engine, by studying and

understanding the engine LTC maps would be a task worth pursuing.

• The noise level of the engine is one of the factors that has a significant impact

on the operating region maps. A thorough noise analysis could be performed

in order to determine the combustion noise level which would help researchers

to develop desirable operating region maps.

• In the current setup of the LTC engine, the supercharger is externally run by an

e-motor. Given that the engine is already equipped with the stock turbocharger,

it would be worthwhile to analyze the extent to which the turbocharger could

be utilized to provide the necessary boost pressure.

• The low efficiency islands observed in the ISFC optimized maps for RCCI com-

bustion regime could be improved by optimizing the cam phasing, introducing

EGR or by varying the direct injection pressure. This could be potential re-

search that would improve the areas of low ISFC.
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[26] Y. Yang, J. Dec, N. Dronniou, M. Sjöberg, and W. Cannella. “Partial fuel strat-

ification to control HCCI heat release rates: fuel composition and other factors

affecting pre-ignition reactions of two-stage ignition fuels”. SAE International

Journal of Engines, 4(1):1903–1920, 2011.

[27] J. E. Dec, Y. Yang, and N. Dronniou. “Boosted HCCI-controlling pressure-

rise rates for performance improvements using partial fuel stratification with

conventional gasoline”. SAE International Journal of Engines, 4(1):1169–1189,

2011.

[28] S. L. Kokjohn and R. D. Reitz. “Characterization of dual-fuel PCCI combustion

173



in a light-duty engine”. In Proceedings of the International Multi-Dimensional

Engine Modeling UserâĂŹs Group Meeting, 2010.

[29] D. A. Splitter, M. L. Wissink, T. L. Hendricks, J. B. Ghandhi, and R. D. Re-

itz. “Comparison of RCCI, HCCI, and CDC operation from low to full load”.

In THIESEL 2012 conference on thermo-and fluid dynamic processes in direct

injection engines, 2012.

[30] D. Splitter, M. Wissink, D. DelVescovo, and R. D.” Reitz. “RCCI engine op-

eration towards 60% thermal efficiency. SAE Technical Paper 2013–01–0279,

2013.

[31] X. Lu, D. Han, and Z. Huang. “Fuel design and management for the control

of advanced compression-ignition combustion modes”. Progress in Energy and

Combustion Science, 37(6):741–783, 2011.

[32] H. Zhao. “HCCI and CAI engines for the automotive industry”. Chapter

2,9,11,17, Woodhead Publishing Abington, Cambridge, 2007.

[33] Z. Wang, Z. Zhao, D. Wang, M. Tan, Y. Han, Z. Liu, and H. Dou. “Impact

of pilot diesel ignition mode on combustion and emissions characteristics of a

diesel/natural gas dual fuel heavy-duty engine”. Fuel, 167:248–256, 2016.

[34] M. A. Amin and A. A. Azhar. “Homogenous charge compression ignition (HCCI)

technique: a review for application in two-stroke gasoline engines”. In Applied

Mechanics and Materials, volume 165, pages 53–57. Trans Tech Publ, 2012.

174



[35] S. L. Kokjohn and R. D. Reitz. “Reactivity controlled compression ignition

and conventional diesel combustion: a comparison of methods to meet light-

duty NOx and fuel economy targets”. International Journal of Engine Research,

14(5):452–468, 2013.

[36] D. Splitter, M. Wissink, S. Kokjohn, and R. D. Reitz. “Effect of compression

ratio and piston geometry on RCCI load limits and efficiency”. SAE Technical

Paper 2012–01–0383, 2012.

[37] H. A. Saigaonkar. “An Investigation Of Variable Valve Timing Effects On HCCI

Engine Performance”, MS Thesis, Michigan Technological University, 2014.

[38] V. S. Thakkar. “Modeling and Experimental Setup Of An HCCI Engine”, MS

Thesis, Michigan Technological University, 2014.

[39] D. Kothari. “Experimental Setup And Controller Design For An HCCI Engine”,

MS Thesis, Michigan Technological University, 2014.

[40] J. B. Heywood. “Internal Combustion Engine Fundamentals”. Chapters

2,4,5,6,7,9,10,12,15 ,McGraw-hill New York, 1988.

[41] A. Simi. “Hydrogen Direct Injection In Reciprocating Engines Using Commercial

Injectors”. PhD thesis, UNIVERSITA DI PISA, 2011.

175



[42] H. Li, W. Neill, and W. Chippior. “Cycle-to-cycle variation of a HCCI engine op-

erated with n-heptane”. In Proceeding of Combustion Institute/Canadian Section

(CI/CS) Spring Technical Conference, 2007.

[43] B. Challen and R. Baranescu. “Diesel Engine Reference Book. 2nd Edition”.

Chaper 6, Butterworth-Heinemann Ltd. Pp, 1999.
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Appendix B

MSc Publications

B.1 Conference Papers

† A. Solouk, M. Shakiba, K. Kannan, H. Solmaz, M. Bidarvatan, N. T. Kondi-

pati, P. Dice, M. Shahbakhti, “Fuel Economy Benefits of Integrating a Multi-

Mode Low Temperature Combustion (LTC) Engine in a Series Extended Range

Electric Powertrain”, SAE 2016 International Powertrains, Fuels and Lubricants

Meeting, Baltimore, Maryland, USA, Paper No. 16FFL-0277, 13 pages, 2016.

(Accepted for publication in June 2016)
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The following paper was automatically selected by IRCESM 2015 conference for jour-

nal publication.

† S. Polat, K. Kannan, M. Shahbakhti, A. Uyumaz, “An experimental study

for the effects of supercharging on performance and combustion of an early

direct injection HCCI engine”, International Journal of Advanced Research in

Engineering Vol 1 (1) Apr-Jun 2015.

B.2 Journal Paper

† B. Bahri , M. Shahbakhti, K. Kannan, A. A. Aziz, “Identification of Ringing

operation for Low Temperature Combustion engine”, Applied Energy, 171:142-

152, 2016.
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Appendix C

Program and Data File Summary

The following lists describe the data files and the post processing code that is used

for experiments used for this thesis.

Table C.1
Experimental data files

File Name File Description
HCCI NA.mat 340 data points for HCCI naturally aspirated tests for

all intake temperatures, RON and engine speed
HCCI boosted.mat 435 data points for HCCI boosted tests for all intake

temperatures, RON and engine speed
PPCI NA.mat 387 data points for PPCI Naturally aspirated tests for

all intake temperatures, RON and engine speed
RCCI NA.mat 453 data points for RCCI Naturally aspirated tests for

all intake temperatures, RON and engine speed
RCCI boosted.mat 453 data points for RCCI boosted tests for all intake

temperatures, RON and engine speed
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Table C.2
Experimental data files organized in excel

File Name File Description
Combined data for HCCI natu-
rally aspirated.xlsx

Data points for HCCI naturally aspirated
tests for all intake temperatures, RON and
engine speed

HCCI boosted optimized
sheet.xlsx

Data points for HCCI boosted tests for all
intake temperatures, RON and engine speed

Test Summary PPCI.xlsx Data points for PPCI Naturally aspirated
tests for all intake temperatures, RON and
engine speed

LTC Engine-PCCI Mode-All Ex-
periments.xlsx

Test number and operating conditions for all
PPCI tests summarized

RCCI NA Optimized All.xlsx Data points for RCCI Naturally aspirated
tests for all intake temperatures, RON and
engine speed

RCCI boosted all tests with
BSFC paramterized.xlsx

Data points for RCCI boosted tests for all
intake temperatures, RON and engine speed

RCCI data points effect.xlsx Data points for the parametric study on
RCCI combustion

HCCI data points effect.xlsx Data points for the parametric study on
HCCI combustion

Table C.3
Origin Project files

File Name File Description
HCCI all tests 1-27-
2015.opj

All plots and data for all HCCI tests (natu-
rally aspirated+Boosted)

LTC PPCI maps.opj All plots and data for PPCI tests
RCCI NA COV10.opj All plots and data for all RCCI tests (natu-

rally aspirated+Boosted)
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Table C.4
DSPACE Raw Data for all experiments

Folder Name File Description
dspace exp5 335 Data files for HCCI steady state tests (natu-

rally aspirated)
dspace exp7 213 Data files for HCCI tests (naturally aspirated)
dspace exp9 229 Data files for HCCI tests (Boosted)
dspace exp10 107 Data files for HCCI tests (Boosted)
dspace exp14 39 Data files for HCCI tests (Boosted)
dspace exp19 184 Data files for RCCI tests (naturally aspirated)
dspace exp21 191 Data files for RCCI tests (Boosted)
dspace exp21 191 Data files for RCCI tests (Boosted)
dspace exp22 160 Data files for RCCI tests (Boosted)
dspace exp23 144 Data files for RCCI tests (Boosted)
dspace exp24 99 Data files for RCCI tests (Boosted)
dspace exp25 114 Data files for HCCI tests (Boosted)
PPCI All DSPACE
files (77-test dspace to
106-test dspace)

625 Data files for PPCI tests (naturally aspirated)
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Table C.5
Labview Raw Data for all experiments

Folder Name File Description
labview exp5 335 Data files for HCCI steady state tests (natu-

rally aspirated)
labview exp7 213 Data files for HCCI tests (naturally aspirated)
labview exp9 229 Data files for HCCI tests (Boosted)
labview exp10 107 Data files for HCCI tests (Boosted)
labview exp14 39 Data files for HCCI tests (Boosted)
labview exp19 184 Data files for RCCI tests (naturally aspirated)
labview exp21 191 Data files for RCCI tests (Boosted)
labview exp21 191 Data files for RCCI tests (Boosted)
labview exp22 160 Data files for RCCI tests (Boosted)
labview exp23 144 Data files for RCCI tests (Boosted)
labview exp24 99 Data files for RCCI tests (Boosted)
labview exp25 114 Data files for HCCI tests (Boosted)
PPCI All labview files
(77-test labview to
106-test labview)

625 Data files for PPCI tests (naturally aspirated)
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Table C.6
ACAP Raw Data for all experiments

Folder Name File Description
ACAP exp5 335 Data files for HCCI steady state tests (natu-

rally aspirated)
ACAP exp7 213 Data files for HCCI tests (naturally aspirated)
ACAP exp9 229 Data files for HCCI tests (Boosted)
ACAP exp10 107 Data files for HCCI tests (Boosted)
ACAP exp14 39 Data files for HCCI tests (Boosted)
ACAP exp19 184 Data files for RCCI tests (naturally aspirated)
ACAP exp21 191 Data files for RCCI tests (Boosted)
ACAP exp21 191 Data files for RCCI tests (Boosted)
ACAP exp22 160 Data files for RCCI tests (Boosted)
ACAP exp23 144 Data files for RCCI tests (Boosted)
ACAP exp24 99 Data files for RCCI tests (Boosted)
ACAP exp25 114 Data files for HCCI tests (Boosted)
PPCI All ACAP files
(77-test ACAP to 106-
test ACAP)

625 Data files for PPCI tests (naturally aspirated)
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Table C.7
Matlab Scripts for post processing the data

File Name File Description
Engine data analysis steadystate.m Updated post pro-

cessing script used
for data analysis for
all three combustion
regimes
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Table C.8
Figure files included in this thesis

File Name File Description
LTC.png Figure 1.1
Fig1.png Figure 1.2
ThesisOrganization.png Figure 1.3
ExperimentalTestSetup 12-9-2015.png Figure 2.1
experimental setup.png Figure 2.2
portfuelinjectorassembly.png Figure 2.3
TriggeredSubsystem PFI control.png Figure 2.4
Monitoring panel PFi dspace.png Figure 2.5
verification DI injectors.png Figure 2.6
calibration PFI IsoOctane.png Figure 2.7
Verification PFI IsoOctane.png Figure 2.7
calibration PFI nHeptane.png Figure 2.8
Verification PFI nHeptane.png Figure 2.8
supercharger Test VFD schematic.png Figure 2.9
supercharger frequencyMap24-5IVO.png Figure 2.10
supercharger frequencyMap25-5IVO.png Figure 2.10
simulinkModel superchargerControl.png Figure 2.11
SusperchargerControlPanel controlDesk.png Figure 2.12
FMEP parameterized.png Figure 3.1
OperatingRegion 40 NA.png Figure 3.2
OperatingRegion 100 NA.png Figure 3.2
OperatingRegion 40 boosted120.png Figure 3.3
ISFC 40deg NA.png Figure 3.4
ISFC 40deg boost120.png Figure 3.5
BSFC 40deg NA.png Figure 3.6
BSFC 40deg boost120.png Figure 3.7
ITE 40deg NA.png Figure 3.8
ITE 40deg boost120.png Figure 3.9
Texh 40deg NA.png Figure 3.10
Texh 40deg boost120.png Figure 3.11
IMEP-IT-Speed-ISFCcombinedforalltemparaturesand
fuels HCCI.png

Figure 3.12

CombinedISFCmap.png Figure 3.13
CombinedBSFCmap HCCI.png Figure 3.14
CombinedBSFCmap.png Figure 3.15
IT-IMEP-Speed-ITEcombinedforalltemparatures and
fuels.png

Figure 3.16
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Table C.9
Figure files included in this thesis (Contd.)

File Name File Description
combinedITEmap.png Figure 3.17
Combinedexhaustmap.png Figure 3.18
Combinedexhausttempmap.png Figure 3.19
ROneffect combustion.png Figure 3.20
RON IMEP TEF CEF.png Figure 3.21
tempeffect IMEP CEF TEF.png Figure 3.22
tempeffect combustion.png Figure 3.23
Boostpressureeffect Pressure heatrelease.png Figure 3.24
Boostpressureeffect Combustiongraphs.png Figure 3.25
Boostpressureeffect IMEP TEF CEF.png Figure 3.26
Experimental FMEP vs Parameterized FMEP.png Figure 4.1
P140T40.png Figure 4.2
P140T60.png Figure 4.3
mergeP140T40 ISFC.png Figure 4.4
MergeP140T40 BSFC.png Figure 4.5
MergeP140T40 indeffciency.png Figure 4.6
MergeP140T40 Exhausttemp.png Figure 4.7
ISFC NA RCCI.png Figure 4.8
ISFC.png Figure 4.9
BSFC COV10 NA RCCI.png Figure 4.10
BSFC.png Figure 4.11
ITE NA RCCI.png Figure 4.12
ITE.png Figure 4.13
Exhausttemp NA RCCI.png Figure 4.14
Exhausttemp.png Figure 4.15
ISFC superchargerLossesaccounted.png Figure 4.16
ITE superchargerLossesaccounted.png Figure 4.17
rcciRONeffect pressuretrace constantfuelenergy.png Figure 4.22
Graph94.png Figure 4.23
RONeffect combustion constantfuelenergy1.png Figure 4.24
RONeffect indicated constantfuelenergy.png Figure 4.25
rccitempEffect pressuretrace.png Figure 4.26
rccitempeffect combustion.png Figure 4.27
rccitempeffect performance.png Figure 4.28
boost pressure pressuretrace.png Figure 4.29
rcciboost pressure combustionGraphs.png Figure 4.30
rcciboost pressure performace.png Figure 4.31
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Table C.10
Figure files included in this thesis (Contd.)

File Name File Description
Experimental FMEP vs Parameterized
FMEP.png

Figure 5.1

T40 PPCI.png Figure 5.2
T80 EPS.png Figure 5.3
MergeISFCT40.png Figure 5.4
MergeBSFCT40.png Figure 5.5
MergeITET40.png Figure 5.6
MergeexhausttempT40.png Figure 5.7
ISFCoptimized.png Figure 5.8
BSFCoptimized.png Figure 5.9
ITEoptimized.png Figure 5.10
Texhaustoptimized.png Figure 5.11
pressuretrace.png Figure 5.12
heatresleaserate.png Figure 5.13
MEP temperatureeffect.png Figure 5.14
ITE temperatureeffect.png Figure 5.15
combustionGraphs temperatureeffect.png Figure 5.16
IMEP superchargereffect.png Figure 5.17
4-In-cylinder pressure.png Figure 5.18
5-heatreleaserate.png Figure 5.19
thermaleff superchargereffecr.png Figure 5.20
CA50 superchargereffect.png Figure 5.21
1-pressure.png Figure 5.22
2-heatrelease.png Figure 5.23
combustionGraphs injectiontiming.png Figure 5.24
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Table C.11
Visio Figure files in this thesis

File Name File Description
ThesisOrganization.vsx Figure 1.3
ExperimentalTestSetup 12-9-2015.vsx Figure 2.1
supercharger Test VFD schematic.vsx Figure 2.9
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Table C.12
Project files for testing and data acquisition

File Name File Description
Allengine68.slx Dspace project file for

the Engine Control
Model

Reader20.vi Labview Visual inter-
face for online moni-
toring and control

kaushik configfile 7-16- 2015.nce Labview configuration
file for EML team

215





Appendix D

Letters of Permission

† This permission is for Figure 1.1.

Figure D.1: Copyright permission for the Figure 1.1
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† This permission is for Figure 1.2.

Figure D.2: Copyright permission for the Figure 1.2
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