Michigan
Technological
University

Methods for simultaneous control of lignin content and composition, and cellulose content in plants

Vincent Lee C. Chiang
Laigeng Li

Follow this and additional works at: https://digitalcommons.mtu.edu/patents
Part of the Biological Engineering Commons

Recommended Citation

Chiang, Vincent Lee C. and Li, Laigeng, "Methods for simultaneous control of lignin content and composition, and cellulose content in plants" (2005). Michigan Tech Patents. 88.
https://digitalcommons.mtu.edu/patents/88

Follow this and additional works at: https://digitalcommons.mtu.edu/patents
Part of the Biological Engineering Commons
(54) METHODS FOR SIMULTANEOUS CONTROL OF LIGNIN CONTENT AND COMPOSITION, AND CELLULOSE CONTENT IN PLANTS
(75) Inventors: Vincent Lee C. Chiang, Hancock, MI
(US); Laigeng Li, Houghton, MI (US)
Assignee: Board of Control of Michigan Technological University, Houghton, MI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 125 days.
(21) Appl. No.: 09/947,027
(22) Filed:

Sep. 5, 2001
(65)

Prior Publication Data
US 2002/0124281 A1 Sep. 5, 2002
Related U.S. Application Data
(60) Provisional application No. 60/230,086, filed on Sep. 5, 2000.

Int. Cl^{7} \qquad C12N 5/04; C12N 15/82; C12N 15/29; A01H 5/00
\qquad 800/278; 800/290; 800/286; 800/298; 800/319; 800/287; 800/284; 800/303; 800/289; 435/468; 435/419
Field of Search 800/290, 287,
800/278, 286, 298, 284, 303, 319, 289; 536/23.1, 23.6; 435/468, 419
(56)

References Cited

U.S. PATENT DOCUMENTS

6,015,943 A * 1/2000 Boudet et al.
OTHER PUBLICATIONS
Hu et al., 1998, PNAS 95:5407-5412.*
Hu et al 1999, Nature Biotechnology 17:808-812.*
Levee et al 1999, Molecular Breeding 5:429-440.*
Kajita et al 1997, Plant Science 128 :109-118.*
Piquemal et al 1998, Plant Journal 13(1) :71-83.*
Anterola et al 2002, Phytochemistry 61:221-294.*
Moonan et al 2002, Journal of Virology 76(3):1339-1348.*
Bugos et al., 1991, Plant Mol. Biol. 17:203.
Chang, H.M., and Sarkanen, K.V., 1973, Tappi 56:132.
Hu et al., 1999, Nature Biotech. 17:808.
Marton, J., Sarkanen, K.V., and Ludwig, C.H., eds (WileyInterscience, New York), 639.
Tsai et al., 1994, Plant Cell Report 14:94.
Boudet et al., 1995, New Phytol. 129:203.
Ibrahim, 1997, Trends Plant Sci. 2:249.
Joshi and Chiang, 1998, Plant Mol. Biol. 37:663.
Brasileiro et al., 1991, Plant Mol. Bio. 17:441.
Brasileiro et al., 1992, Transgenic Res. 1:133.
Chen et a1., 1998, Nature Biotechnology 16, 11:1060.
Chen et al., 1999, Planta 207:597.
Vasil et al., 1996, Bio/Technology 10:667.
Danekar et al., 1987, Bio/Technology 5:587.

De Block, 1990, Plant Physiol. 93:1110.
Ebinuma et al., 1997, Proceedings of the National Academic of Sciences 94:2117.
Fillatti et al., 1987, Mol. Gen. Genet. 206:192.
Freudenberg, K., 1965, Scence 148:595.
Horsch et al., 1985, Science 227:1229.
Howe et al., 1991, Woody Plant Biotech. Plenum Press, New York, 283.
Hu et al., 1998, Proc. Natl. Acad. Sci. USA 95:5407.
Humphreys et al., 1999, Proc. Nat. Acad. Sci. USA 96:10045.
Jornvall et al., 1987, Eur. J. Biochem. 167:195.
Jefferson et al., 1987, Plant Molecular Biology Reporter, 5:387.
Lawton et al., 1987, Plant Mol. Biol. 9:315.
Buxton and Roussel, 1988, Crop. Sci. 28,:553.
Jung and Vogel, 1986, J. Anim., Sci. 62:1703.
Leple et al., 1992, Plant Cell Reports 11:137.
Li et al, 1997, Proc. Natl. Acad. Sci. USA 94:5461.
Li et al., 1999, Plant Mol. Biol. 40:555.
Li et al., 2000, J. Biol. Chem. 275:6537.
McGranahan et al., 1988, Bio/Technology 6:800.
McGranahan et al., 1990, Plant Cell Reports 8:512.
Nelson et al. 1996, Pharmacogenetics 6:1.
Odell et al., 1985, Nature 313:810.
Parsons et al., 1986, Bio/Technology 4:533.
Pythoud et al., 1987, Bio/Technology 5:1323.
Sullivan et al., 1993, Plant Cell Reports 12:303.
Sarkanen, K.V., and Hergert, H.L., 1971, Lignins: Occurrence, Formation, Structure and Reaction, K.V. Sarkanen and C.H. Ludwig, eds (New York: Wiley-Interscience), 43. Trotter, P.C., 1990, Tech. Assoc. Pulp Paper Ind. J. 73:198. Tsai et al., 1998, Plant Physiol. 117:101.
Walker et al., 1987, PNAS USA 84:6624.
Wang et al., 1992, Mol. Cell. Biol. 12:3399.
Wu et al., 2000, Plant J. 22:495.
Yang et al., 1990, PNAS USA 87:4144.
Yamazaki et al., 1993, J. Biochem. 114:652.
Zhang, X.-H., and Chiang, V.L., 1997, Plant Physiol. 113:65.
(List continued on next page.)
Primary Examiner-David T. Fox
Assistant Examiner-Stuart F. Baum
(74) Attorney, Agent, or Firm-Michael Best + Friedrich LLP

ABSTRACT

The present invention relates to a method of concurrently introducing multiple genes into plants and trees is provided. The method includes simultaneous transformation of plants with multiple genes from the phenylpropanoid pathways including 4CL, CAld5H, AldOMT, SAD and CAD genes and combinations thereof to produce various lines of transgenic plants displaying altered agronomic traits. The agronomic traits of the plants are regulated by the orientation of the specific genes and the selected gene combinations, which are incorporated into the plant genome.

30 Claims, 25 Drawing Sheets

OTHER PUBLICATIONS

Needleman and Wunsch, 1970 J. Mol. Biol. 48: 443-453. Alt-Mörbe et al., 1989, Mol. Plant-Microbe. Interac., 2:301-308.
Chandler et al., 1989, The Plant Cell, 1:1175-1183.
Chen, Ph.D. Thesis, 1991, North Carolina State University, Raleigh, North Carolina.
Chiang, V.L., and Funaoka, M., 1990, Holzforschung 44:309.
Ebert et al. 1987, PNAS USA, 84:5745-5749.
Fullner and Nester, 1996, J. Bacteriol., 178:1498-1504.
Fullner et al., 1996, Science, 273:11071109.
Huang et al., 1991, In Vitro Cell Dev. Bio., 4:201.
Hudspeth et al., 1989, Plant Mol. Biol., 12:579-589.
Klopfenstein et al., 1991, Can. J. For. Res. 21:1321.
Laursen et al., 1994, Plant Mol. Biol., 24:51-61.
Li et al., 2001, Plant Cell, 13:1567-1585.
MacKay et al., 1995, Mol. Gen. Genet. 247:537.
Minocha et al., 1986, Proc. TAPPI Research and Develop-
ment Conference, TAPPI Press, Atlanta, 89.
Nilsson, et al., 1992, Transgenic Res., 1:209-220.

Osakabe et al., 1999, Proc. Nati. Acad. Sci. USA 96:8955-8960.
Sambrook et al., $2^{\text {nd }}$ ed. 1982.
Spencer et al., 1992, Plant Mol. Biol., 18:201-210.
Tricoli et al., 1995, Bio/Technology, 13:1458-1465.
Wilde et al., 1992, Plant Physiol., 98:114-120.
Kajita, et al., 1996, Plant Cell Physiol., 37(7): pp. 957-965.
Napoli et al., 1990, The Plant Cell, 2: 279-289.
van der Krol, 1988, Nature 333: 866-869.
Bugos et al., 1992, Phytochemistry, vol. 31, No. 5, pp. 1495-1498.
EMBL Acc\#X62096 Bugos et al., 1991; Alignment with SEQ ID No: 6.
Bevan et al., 1983, Nature, 304:184.
Hu, et al., 1998, PNAS USA, 95:5407.
Gou, et al., The Plant Cell, Jan. 2001, v13, 73-88.
MacKAY, et al., PNAS USA, 1997 Jul. 22; 84(15): 8255-8260.
Parvathi, et al., The Plant Journal, 2001, 25(2): 193-202.

* cited by examiner

FIG. 2A SAD cDNA sequence

1 TTTTTTTTTTT TTTCCTAGCC TTCCTTCTCG ACGATATTTC TCTATCTGAA 51 GCAAGCACCA TGTCCAAGTC ACCAGAAGAA GAACACCCTG TGAAGGCCTT

101 CGGGTGGGCT GCTAGGGATC AATCTGGTCA TCTTTCTCCC TTCAACTTCT
151 CCAGGAGGGC AACTGGTGAA GAGGATGTGA GGTtCAAGGT GCTGTACTGC

AAATTACTGT CCAAAAATGA TCCTGACATA CGCCTCCATC TACCATGACG GAACCATCAC TTACGGTGGC TACTCAGATC ACATGGTCGC TAACGAACGC 501 TACATCATTC GATTCCCCGA TAACATGCCG CTTGACGGTG GCGCTCCTCT 551 CCTTTGTGCC GGGATTACAG TGTATAGTCC CTTGAAATAT TTTGGACTAG 601 ATGAACCCGG TAAGCATATC GGTATCGTTG GCTTAGGTGG ACTTGGTCAC AAAAGCCTCT TGAGCTACCT GCCTTTTCTT TGATTGCTGG AAGGAAGATA 951 GTrGCCGGGA GTGGTATTGG AGGCATGAAG GAGACACAAG AGATGATTGA 1001 TTTTGCAGCA AAACACAACA TCACAGCAGA TATCGAAGTT ATTTCAACGG 1051 ACTATCTTAA TACGGCGATA GAACGTTTGG CTAAAAACGA TGTCAGATAC 1101 CGATTCGTCA TTGACGTTGG CAATACTTTG GCAGCTACGA AGCCCTAAGG 1151 AGAAGATCCC ATGTTCTCGA ACCCTTTATA AAATCTGATA ACATGTGTTG 1201 ATTTCATGAA TAAATAGATT ATCTTTGGGA TTTTTCTTTA ATAAACGAAG 1251 TGTTCTCGAA AACTTAACAT CGGCAATACC CTGGCAGCTA CGAGAAACGC 1301 TTTAGAATTG TTTGTAAGTT TGTTTCATTA GGGTGATACC ATGCTCTCGA 1351 GTCCTTTGTA AGATCCATTT ATAGTTGCGT GAATGCTATG AACAAATAAT 1401 ATGTTTGCGG CTTCTCTTCA AAAAAAAAAA AAAAAAAAAA AAAAAA

FIG. 2B SAD protein sequence

1 MSKSPEEEHP VKAFGWAARD QSGHLSPFNF SRRATGEEDV RFKVLYCGIC
51 HSDLHSIKND WGFSMYPLVP GHEIVGEVTE VGSKVKKVNV GDKVGVGCLV
101 GACHSCESCA NDLENYCPKM ILTYASIYHD GTITYGGYSD HMVANERYII
151 RFPDNMPLDG GAPLLCAGIT VYSPLKYFGL DEPGKHIGIV GLGGLGHVAV
201 KFAKAFGSKV TVISTSPSKK EEALKNFGAD SFLVSRDQEQ MQAAAGTLDG
251 IIDTVSAVHP LLPLFGLLKS HGKLILVGAP EKPLELPAFS LIAGRKIVAG
301 SGIGGMKETQ EMIDFAAKHN ITADIEVIST DYLNTAIERL AKNDVRYRFV
351 IDVGNTLAAT KP*

FIG. 3A Aspen (P. tremuloides) PtCAld5H cDNA sequence
tAAAGTCTTG TGGATTACAC AAAATACAGA CTGAAAACAT CCATAGGCAC CAACACATAA ACCATCCATG GATTCTCTTG TCCAATCTTT GCAAGCTTCA CCCATGTCTC TCTTCTTGAT CGTTATCTCT TCACTCTTCT TCTTCGGTCT CCTCTCTCGC CTTCGCCGAA GATTGCCATA TCCACCAGGG CCTAAAGGGT tgCCACtTGT AGGTAGCATG CACATGATGG ACCAAATAAC TCACCGTGGG tTAGCTAAAC tAGCTAAGCA ATATGGTGGG CTCTtTCATA tGCGCATGGG GTACTTGCAT ATGGTCACTG TTTCATCTCC TGAAATAGCT CGCCAAGTTC tGCAGGTCCA GGACAACATT TTCTCCAACA GACCAGCCAA CATAGCCATA agttacttan cctatgatcg tgcagatatg gcctttgccc actacgatcc tTTCTGGCGA CAGATGCGTA AGCTCTGCGT CATGAAGCTT TTTAGCCGGA AAAGGGCTGA ATCATGGGAG TCTGTGAGAG ATGAGGTGGA CTCAATGCTT AAGACAGTTG AAGCCAATAT AGGCAAGCCT GTGAATCTTG GGGAATTGAT ttttacgitg accatganca tcacttacag agcagctttc ggggctanai ATGAAGGACA GGATGAGTTC ATCAAGATTT TGCAGGAGTT CTCTAAGCTT TITGGAGCAT TCAACATGTC TGATTTCATT CCCTGGCTGG GCTGGATTGA CCCCCAAGGG CTCAGCGCTA GACTTGTCAA GGCTCGCAAG GCTCTTGATA gattcatcga ctctatcatc gatgatcata tccaganang anancagant AAGTTCTCTG AAGATGCTGA AACCGATATG GTCGATGACA tGCTAGCCTT tTATGGTGAA GAAGCAAGGA AAGTAGATGA ATCAGATGAT TTACAAAAAG CCATCAGCCT TACTAAAGAC AACATCAAAG CCATAATCAT GGATGTGATG TTTGGTGGGA CAGAGACGGT GGCGTCGGCA ATAGAGTGGG TCATGGCGGA gctaftgang agtccagagg atcanaiang agtccagcan gagctcgcag AgGtGgtgg t ttagagcga cgcgtggagg anagtgatat tgacaiact ACGTTCTTGA AATGCGCCCT CAAAGAAACC TTAAGGATGC CCCACTTCTC TTACATGAAA C tCATTCCAAA GCAAACAAGG GTGATGATCA ATGCTTATGC gacangant ch catggganga tcctgatgct trtangcct GAAACCAGGG GTGCCTGATT TTAAAGGGAA TCACTTTGAG tCGGGTCTGG TCGGAGGTCT TGCCCCGGTA TGCAGCTTGG GTTATACACA CtTgAtttg CTgTtgctce cttgcttcat tgttttacat gggaittgcc tGAtGGCATG AAACCGAGTG AACTTGACAT GACTGATATG TTTGGACTCA CCGCGCCAAG AGCAACTCGA CTCGTTGCCG TTCCGAGCAA GCGTGTGCTC tGTCCTCTCT AAGGAAGGGA AAAAGGTAAG GGATGGAAAT GAATGGGATT CCCTTCTTTC GTGGATTCTA TACAGAATTG AGGCCATGGT GACAAAGGGT CAATTTGCAG GTTTTTTTTT TTATATATAT ATATATATAA TTGGGTTAAA AAAAAAAAAA AAAA
FIG. 3B Aspen (P. tremuloides) PtCAld5H protein sequence
1 MDSLVQSLQA SPMSLFLTVI SSLFFFGLLS RLRRRLPYPP GPKGLPLVGS
51 MHMMDQITHR GLAKLAKQYG GLFHMRMGYL HMVTVSSPEI ARQVLQVQDN
101 IFSNRPANIA ISYLTYDRAD MAFAHYGPFW RQMRKLCVMK LFSRKRAESW
151 ESVRDEVDSM LKTVEANIGK PVNLGELIFT LTMNITYRAA FGAKNEGQDE
201 FIKILQEFSK LFGAFNMSDF IPWLGWIDPQ GLSARLVKAR KALDRFIDSI
251 IDDHIQKRKQ NKFSEDAETD MVDDMLAFYG EEARKVDESD DLQKAISLTK
301 DNIKAIIMDV MFGGTETVAS AIEWVMAELM KSPEDQKRVQ QELAEVVGLE
351 RRVEESDIDK LTFLKCALKE TLRMHPPIPL LLHETSEDAE VAGYFIPKQT
401 RVMINAYAIG RDKNSWEDPD AFKPSRFLKP GVPDFKGNHF EFIPFGSGRR
SCPGMQLGLY TLDLAVAHLL HCFTWELPDG MKPSELDMTD MFGLTAPRAT
501
RLVAVPSKRV LCPL*

FIG. 4A Aspen (P. tremuloides) PtAldOMT cDNA sequence
GenBank accession number: X62096

FIG. 4B Aspen (P. tremuloides) PtAldOMT protein sequence
GenBank accession number: X62096
1 MGSTGETQMT PTQVSDEEAH LFAMQLASAS VLPMILKTAI ELDLLEIMAK

51 AGPGAFLSTS EIASHLPTKN PDAPVMLDRI LRLLASYSIL TCSLKDLPDG 101 KVERLYGLAP VCKFLTKNED GVSVSPLCLM NQDKVLMESW YYLKDAILDG 151 GIPFNKAYGM TAFEYHGTDP RFNKVFNKGM SDHSTITMKK ILETYKGFEG 201 LTSLVDVGGG TGAVVNTIVS KYPSIKGINF DLPHVIEDAP SYPGVEHVGG 251 DMFVSVPKAD AVFMKWICHD WSDAHCLKFL KNCYDALPEN GKVILVECIL 301 PVAPDTSLAT KGVVHVDVIM LAHNPGGKER TEKEFEGLAK GAGFQGFEVM 351 CCAFNTHVIE FRKKA

FIG. 5A 4CL polynucleotide DNA sequence

```
ccctcgcgaa actccgaaaa cagagagcac ctaaaactca ccatctctcc ctctgcatct }\quad6
ttagcccgca atggacgcca ca atg aat cca caa gaa ttc atc ttt cgc tca 112
aaa tta cca gac atc tac atc cog aaa aac ctt cec ctg cat tca tac 160
gtt ctt gag aac ttg tct aaa cat tca tca aaa cot tgc ctg ata aat 208
ggc gcg aat gga gat gtc tac acc tat gct gat gtt gag ctc aca gca 256
aga aga gtt gct tct ggt ctg aac aag att ggt att caa caa ggt gac 304
gtg atc atg ctc ttc cta cca agt tca cct gaa ttc gtg ctt gct ttc 352
cta ggc gct tca cac aga ggt gcc atg atc act gct gcc aat cot ttc 400
tcc. acc cct gca gag cta gca aaa cat gcc aag gcc tcg aga gca aag 448
ctt ctg ata aca cag gct tgt tac tac gag aag gtt aaa gat ttt gce 496
cga gaa agt gat gtt aag.gtc atg tgc gtg gac tct gcc cog gac ggt 544
gct tca ctt ttc aga gct cac aca cag gca gac gaa aat gaa gtg cot 592
cag gtc gac att agt cct gat gat gtc gta gca ttg cet tat tca tca 640
ggg act aca ggg ttg cea aaa ggg gtc atg tta acg cac aaa ggg cta 688
ata acc agt gtg gct caa cag gta gat gga gac aat cct aac ctg tat . }73
ttt cac agt gaa gat gtg att ctg tgt gtg ctt cct atg ttc cat atc 784
tat gct ctg aat tca atg atg ctc tgt ggt ctg aga gtt ggt gcc tcg 832
att ttg ata atg cca aag ttt gag att ggt tct ttg ctg gga teg att 880
gag aag tac aag gta tct ata gca cca gtt gtt cca cot gtg atg atg 928
gca att gct aag tca cet gat ctt gac aag cat gac ctg tct tct ttg 976
agg atg ata aaa tct gga ggg gct cca ttg ggc aag gaa ctt gaa gat 1024
act gtc aga gct aag ttt cct cag gct aga ctt ggt cag gga tat gga 1072
atg acc gag gca gga cct gtt cta gca atg tgc ttg gca ttt gcc aag 1120
gaa cca ttc gac ata aaa cca ggt gca tgt gga act gta gtc agg aat 1168
gca gag atg aag att gtt gac cca gaa aca ggg gtc tct cta ccg agg 1216
aac cag cct ggt gag atc tgc atc cgg ggt gat cag atc atg aaa gga (1264
tat ctt aat gac ccc gag gca acc tca aga aca ata gac aaa gaa gga 1312
tgg ctg cac aca ggc gat atc ggc tac att gat gat gat gat gag ctt 1360
ttc atc gtt gac aga ttg aag gaa ttg atc aag tat aaa ggg ttt cag 1408
gtt gct cct act gaa ctc gaa gct ttg tta ata gcc cat cca gag ata 1456
tcc gat gct gct gta gta gga ttg aaa gat gag gat gcg gga gaa gtt 1504
cct gtt gca ttt gta gtg aaa tca gaa aag tct cag gcc acc gaa gat }155
gaa att aag cag tat att tca aaa cag gtg atc ttc tac aag aga ata 1600
aaa cga gtt ttc ttc att gaa gca att ccc aag gca cca tca ggc aag 1648
atc ctg agg aag aat ctg aaa gag aag ttg cca ggc ata taactgaaga 1697
tgttactgaa catttaacce tctgtcttat ttctttaata cttgcgaatc attgtagtgt 1757
tgaaccaagc atgcttggaa aagacacgta cccaacgtaa gacagttact gttcctagta 1817
tacaagctct ttaatgttcg ttttgaactt gggaaaacat aagttctcet gtcgccatat 1877
ggagtaattc aattgaatat tttggtttct ttaatgat
1915
```

FIG. 5B 4CL Aspen (P. tremuloides) amino acid sequence

FIG. 6A Aspen (P. tremuloides) PtCAD protein sequence
GenBank accession number: AF217957
1 MGSLETERKI VGWAATDSTG HLAPYTYSLR DTGPEDVLIK VISCGICHTD

51 IHQIKNDLGM SHYPMVPGHE VVGEVVEVGS DVTKFKAGDV VGVGVIVGSC 101 KNCHPCKSEL EQYCNKKIWS YNDVYTDGKP TQGGFAESMV VDQKFVVRIP 151 DGMSPEQAAP LLCAGLTVYS PLKHFGLKQS.GLRGGILGLG GVGHMGVKIA 201 KAMGHHVTVI SSSDKKREEA MEHLGADEYL VSSDVESMQK AADQLDYIID 251 TVPVVHPLEP YLSLLKLDGK LILMGVINTP LQFVSPMVML GRKSITGSFI 301 GSMKETEEML EFCKEKGLAS MIEVIKMDYI NTAFERLEKN DVRYRFVVDV 351 AGSKLIP*

FIG. 6B Aspen (P. tremuloides) PtCAD cDNA sequence
GenBank accession number: AF217957

1	AAACTCCATC				
51	TTGAAACAGA	GAGAAAAATT	GTAGGATGGG	cagcancaga	CTCAACTGGG
101	CATCTCGCTC	CTTACACCTA	TAGTCTCAGA	GATACGGGGC	CAGAAGATGT
151	TCTTATCAAG	GTTATCAGCT	GTGGAATTTG	CCATACCGAT	Atccaccana
201	TCAAAAATGA	TCTTGGCATG	TCACACTATC	CTATGGTCCC	TGGCCATGAA
251	GTGGTTGGTG	AGGTTGTTGA	GGTGGGATCA	GATGTGACAA	C
301	TGGAGATGTT	GTTGGTGTTG	GAGTCATCGT	TGGAAGCTGC	C
351	ATCCATGCAA	ATCAGAGCTT	GAGCAATACT	GC	T
401	TACAATGATG	TCTACACTGA	TGGCAAACCC	ACCCAAGGAG	GCTTTGCTGA
451	ATCCATGGTT	gtcgatcana	AGTTTGTGGT	GAGAATTCCT	GATGGGATGT
50	CACCAGAACA	AGCAGCGCCG	CTGTTGTGCG	CTGGATTGAC	AGTTTACAGC
55	CCACTCAAAC	ACTTTGGACT	GAAACAGAGT	GGGCTAAGAG	GAGGGATTTT
601	AGGACTTGGA	GGAGTAGGGC	ACATGGGGGT	GAAGATAGCA	AAGGCAATGG
651	GACACCATGT	AACTGTGATT	AGTTCTTCTG	ACAAGAAGCG	GGAGGAGGCT
701	ATGGAACATC	TTGGTGCTGA	TGAATACCTG	GTCAGCTCGG	Atgtggatag
751	CATGCAAAAA	GCTGCTGATC	AACTTGACTA	TATCATCGAT	ACTGTGCCTG
801	TGGTTCACCC	TCTCGAGCCT	TACCTTTCT	TATTGAAAC	TGATGGCAAG
85	CTGATCTTGA	TGGGTGTTAT	TAATACCCCA	TTGCAGTTTG	TTTCGCCAAT
901	GGTTATGCTT	GGGAGAAAGT	CGATCACCGG	GAGCTTCATA	GGGAGCATGA
951	AGGAGACAGA	GGAGATGCTT	GAGTTCTGCA	AGGAAAAGGG	ATTGGCCTCC
001	AtGAttgat	TGATCAAAAT	GGATTATATC	AACACAGCAT	TCGAGAGGCT
1051	TGAGAAAAAT	GATGTGAGAT	ATAGATTCGT	TGTCGATGTT	GCTGGTAGCA
1101	AGCTTATTCC	CTGAACGACA	ATACCATTCA	TATTCGAAAA	AACGCGATAT
1151	ACATTGATAC	CTGTTTCAGA	CTTGACTTTA	TTTTCGAGTG	ATGTGTTTTG
1201	TGGTTCAAAT	GTGACAGTTT	GTCTTTGCTT	TTAAAATAAA	GAAAAAGTTG
1251	AGTTGTTTTT	TTATTTTCAT	TAATGGGCAT	GCGTTACCTT	GTAATTGAAT
1301	GCGCTGCATC	TGGTGATCTG	TCCCATAAAC	TAATCTCTTG	TGGCAATGAA
1351	AGATGACGAA	CTTTCTGAAA	A	AAAAAAAAAA	AAAAA

Fig. 7. $\mathrm{pBKPpt}_{4 \mathrm{CL}}$ Pt4CL1-a construct

Fig. 8. $\mathrm{pBKPpt}_{4 \mathrm{CL}}$ PtCAld5H-s construct

FIG. 9-1 The alignment of plant AldOMT protein sequences

1

1
2

4
5

$$
6
$$

$$
7
$$

PTQVSDEEAH LFAMQLASAS
PTQVSDEEAH LFAMQLASAS
PTQVSDEEAN LFAMQLASAS
PTHVSDEEAN LFAMQLASAS
PTHISDEEAN LFAMQLASAS
PTQVSDEEAN LFAMQLASAS
PTHVSDEEAN LEAMQLASAS
EAAAAEEEAF VFAMQLTSAS
PVQVTDDEAA LFAMQLASAS
SLTHTEDEAF LEAMQLCSAS
TIPKSEEDTE VFATLLTSAS
51
100
1 VIPMTLKTAT EIDIUETMAK A. GPGAFL STSETASHLP TKNPDAPVMI
2 VLPMILKTAI ELDLLEIMAK A...GPGAFL
3 VLPMVLKAAI ELDLLEIMAK A...GPGVFL
4 VLPMVLKAAI ELDLLEIMAK A...GPGSFL
5 VLPMILKSAL ELDLLEIIAK A...GPGAQI
6 VLPMVLKAAI ELDLLEIMAK A...GPGAFL
7 VLPMVLKAAI ELDVLEIMAK SIPHGSGAYI
8 VLPMVLKSAI ELDVLEIMAK A...GPGAHI
9 VLPMALKSAL ELDLLEIMAKNGSPM
10 VLPMVLKSAV ELDLLELMAK A...GPGAAI
11 VLPMALKSAL ELDLLEIIAK A...GPGAFV
101
1 DRILRLLASY SILTCSLKDL PDGKVERLYG
2 DRILRLLASY SILTCSLKDH PDGKVERLYG
3
4 DRMLRLLASY SILTCSLRTL PDGKVERLYC
5 DRMLRLLACY IILTCSVRTQ QDGKVQRLYG
6 DRIFRLLASY SVLTCTLRNL
7 DRVLRLLASY SVVTCSLREL 8 DRMLRLLASY SVLTCSLRTL PDGKVERLYG PDGKVERLYG PDGKIERLYG STSEIASHLP TKNPDAPVML STSEIASHLP TKNPDAPVML SPTDIASQLP TKNPDAPVML SPSDLASQLP TKNPEAPVML SPIEIASQLP TTNPDAPVML SPGEVAAQLP TQNPEAPVML SPAEIAAQLP TTNPDAPVML STSDIASKLP TKNPDAAVML SPTEIASKLP TKNPEAPVML SPSELAAQLS TQNPEAPVML STSEIAAKIT KRNPKAPVML

9 DRILRLLTSY SVLTCSNRKL

 10 DRMLRLLASY SVLNCTLRTL11 DRILRLLATY DVVKCSLRDS PDGGVERLYG LGPVCKYFTT NEDGVSVAPL

151

200
1 CLMNQDKVLM ES.WYYLKDA ILDGGIPENK AYGMTAFEYH GTDPRFNKVE 2 CLMNQDKVLM ES.WYYLKDA ILDGGIPENK AYGMTAFEYH GTDPRFNKVF 3 CLMNQDKVLL ES.WYHLKDA VLEGGIPENK AYGMTAFEYH GTDPRFNKVF 4 CLMNQDKVLV ES.WYHLKDA VLDGGIPENK AYGMTAFDYH GTDPRFNKVF 5 NLMNQDKVLM ES.WYHLKDA VLDGGIPENK AYGMTAFEYH GTDPRFNKVE 6 NLMNQDKILM ES.WYYLKDA VLEGGIPFNK AYGMTAFEYH GTDPRFNKIF

FIG. 9-2

7 CLMNQDKVLM 8 SLMNQDKVLM ES.WYHLTEA VLEGGIPFNK AYGMTAFEYH GTDPRENTVF 9 CLMNQDKVLM ES.WYHLKDA ILDGGIPFNK AYGMSAFEYH GTDPRFNKVF 10 LLMNQDKVLM ES.WYHLKDA VLDGGIPENK AYGMTAFEYH GTDPRENKVF 11 LLMNQDKVPM QSKRYHLKDA VLDGGIPFNK AYGMTDFEYH GTEPRFNKVF

$$
201
$$

250
TMKKILETYK GFEGLTSLVD VGGGTGAVVN TIVSKYPSIK

1 NKGMSDHSTI TMKKILETYK GFEGLTSLVD VGGGTGAVVN TIVSKYPSIK
TMKKILETYK GFEGLTSLVD VGGGTGAVVN TIVSKYPSIK 2 NKGMSDHSTI TMKKILETYK GFEGLTSLVD VGGGTGAVVN TIVSKYPSIK
TMKKILETYK GFEGLTSVVD VGGGTGAVLN MIVSKYpSIK 3 NRGMADHSTI TMKKILETYK GFEGLTSVVD VGGGTGAVLN MIVSKYpSIK
TMKKILETYK GFEGLKSIVD VGGGTGAVVN MIVSKYPSIK 4 NKGMADHSTI TMKKILETYK GFEGLKSIVD VGGGTGAVVN MIVSKYPSIK
TMKKILETYT GFEGLKSLVD VGGGTGAVIN TIVSKYPTIK 5 NKGMSDHSTI TMKKILETYT GFEGLKSLVD VGGGTGAVIN TIVSKYPTIK 6 NRGMSDHSTI TMKKILETYK GFEGLETVVD VGGGTGAVLS MIVAKYPSMK
TMKKIFEMYT GFEALNTIVD VGGGTGAVLS MIVAKYPSIK 7 NRGMSDHSTI TMKKIFEMYT GFEALNTIVD VGGGTGAVLS MIVAKYPSIK 8 NNGMSNHSTI TMKKILETYK GFEGLGSVVD VGGGTGAHLN MIIAKYFMIK 9 NNGMSNHSTI TMKKILETYK GFEGLTSLVD VGGGIGATLK MIVSKYPNLK 10 NRGMSDHSTM SMKKILEDYK GFEGLNSIVD VGGGTGATVN MIVSKYPSIK 11 NNGVSGHPTI TMKKILEAYK GFEGLTSIVD VGGGTGATLN MIISKYPTIK motif 1

251
1 GINFDLPHVI 2 GINFDLPHVI 3 GINFDLPHVI 4 GINFDLPHVI 5 GINFDLPHVI 6 GINEDLPHVI 7 GINEDLPHVI 8 GINFDLPHVI 9 GINENLPHVI 10 GINFDLPHVI 11 GINEDLPHVI

ES.WYYLKDA ILDGGIPENK AYGMTAFEYH GTDPRENKVF ES.WYHLKDA VLDGGIPFNK AYGMTAFEYH GTDPRENKVF
QSKRYHLKDA VLDGGIPFNK AYGMTDFEYH GTEPRFNKVF
ene

	251				300
1	GINFDLPHVI	EDAPSYPGVE	HVGGDMFVSV	PKADAVEMKW	ICHDWSDAHC
2	GINFDLPHVI	EDAPSYPGVE	HVGGDMFVSV	PKADAVEMKW	ICHDWSDAHC
3	GINFDLPHVI	EDAPQYPGVE	HVGGDMFVSV	PKGDAIFMKW	ICHDWSDEHC
4	GINFDLPHVI	EDAPQYPGVQ	HVGG ${ }^{\text {dMFVSV }}$	PKGNAIFMKW	ICHDWSDEHC
5	GINFDLPHVI	EDAPSYPGVE	HVGGDMFVSI	PKADAVEMKW	ICHDWSDEHC
6	GINEDLPHVI	EDAPPLPGVK	HVGGDMFVSV	PKGDAIFMKW	ICHDWSDDHC
7	GINEDLPHVI	EDAPIYPGVE	HVGGDMFVSV	PKGDAIEMKW	ICHDWSDEHC
8	GINFDLPHVI	EEAPSYPGVE	HVGGDMFVSV	PKGDAIFMKW	ICHDWSDEHC
9	GINENLPHVI	EDAPSHPGIE	HVGGDMFVSV	PKGDAIFMKW	ICHDWSDEHC
10	GINFDLPHVI	GDAPTYPGVE	HVGGDMFASV	PKADAIFMKW	ICHDWSDEHC
11	GINEDLPHVI	DDAPSYPGVE	HVGGDMFVSV	PKGDAIFMKW	CYEWDDAHC

300
EDAPSYPGVE HVGGDMFVSV PKADAVFMKW ICHDWSDAHC EDAPSYPGVE HVGGDMFVSV PKADAVEMKW EDAPQYPGVE HVGGDMFVSV PKGDAIFMKW EDAPQYPGVQ HVGGDMFVSV PKGNAIFMKW EDAPPLPGVK HVGGDMFVSV PKGDAIFMKW EDAPIYPGVE HVGGDMFVSV PKGDAIEMKW EEAPSYPGVE HVGGDMFVSV PKGDAIFMKW EDAPSHPGIE HVGGDMFVSV PKGDAIFMKW GDAPTYPGVE HVGGDMFASV PKADAIFMKW motifII

301
1 LKFLKNCYDA LPENGKVILV ECILPVAPDT SLATKGVVHV 2 LKFLKNCYDA LPENGKVILV E 3 LKFLKNCYAA LPDNGKVILG E 4 IKFLKNCYAA LPDDGKVILA 5 LKELKNCYEA LPDNGKVIVA E 6 AKFLKNCYDA LPNIGKVIVA E 7 LKFLKNCYAA LPEHGKVIVA E 8 LKFLKKCYEA LPTNGKVILA ECILPVAPDA SLPTKAVVHI DVIMLAHNPG 9 VKFLKNCYES LPEDGKVILA ECILPETPDS SLSTKQVVHV DCIMLAHNPG

FIG. 9-3

```
10 LKELKNCYEA LPANGKVIIA ECILPEAPDT SLATKNTVHV DIVMLAHNPG
11 LKELENCYQA LPDNGKVIVA ECILPVVPDT SLATKSAVHI DVIMLAYNTG
```

 motif III
 351389
 1 GKERTEKEFE GLAKGAGFQG FEVMCCAFNT HVIEERKKA
2 GKERTEKEFE GLAKGAGFQG FEVMCCAFNT HVIELRKN~
3 GKERTEQEFQ ALAKGAGEQG FNVACSAENT YVIEELKKN
4 GKERTEQEFE ALAKGSGFQG IRVCCDAFNT YVIEFLKKI
5 GKERTQKEFE DLAKGAGFQG FKVHCNAFNT YIMEFLKKV
6 GKERTQKEFE TLAKGAGFQG FQVMCCAFGT HVMEFLKTA
7 GKERTEKEFE ALAIGAGFKG FKVACCAENT YVMEFLKTA
8 GKERTEKEFE ALAKGAGFEG FRVALCAYNT WIIEFLKKI
9 GKERTEKEFE ALAKASGFKG IKVVCDAFGV NLIELLKKL
10 GKERTEKEFE ALAKGAGFTG FARLVALTTL GSWNSTSN~
11 GKARTEKEFE ALAKGAGFQG FKVVCCAFNS WIMEFCKTA

Plant AldOMTs from

1) Aspen, $X 62096$
2) Poplar, M73431
3) Almond, $X 83217$
4) Strawberry, AF220491
5) Alfalfa, M63853
6) Eucalyptus, X74814
7) Clarkia breweri, AF006009
8) Sweetgum, AF139533
9) Arabidopsis, U70424
10) Tobacco, $X 74452$
11) Vitis vinifera, AF239740

FIG. 10-1 The alignment of full length plant CAD protein sequences available in the GenBank database

1 50

1 MGSLE.TEKT VTGYAARDSS GHLSPYTYNL RKKGPEDVIV KVIYCGICHS 2 MGSLE.SEKT VTGYAARDSS GHLSPYTYNL RKKGPEDVIV KVIYCGICHS 3 MGSLE.SEKT VTGYAARDSS GHLSPYTYNL RKKGPEDVIV KVIYCGICHS 4 MGSLE.SERT VTGYAARDSS GHLSPYTYTL RNKGPEDVIV RVIYCGICHS

DLVQMRNEMG MSHYPMVPGH EVVGIVTEIG SEVKKFKVGE HVGVGCIVGS DLVQMRNEMG MSHYPMVPGH EVVGIVTEIG SEVKKFKVGE HVGVGCIVGS DLVQMRNEMG MSHYPMVPGH EVVGIVTEIG SEVKKFKVGE HVGVGCIVGS DLVQMHNEMG MSNYPMVPGH EVVGVVTEIG SEVKKEKVGE HVGVGCIVGS DIHQAKNHLG ASKYPMVPGH EVVGEVVEVG PEVAKYGVGD VVGVGVIVGC DIHQAKNHLG ASKYPMVPGH EVVGEVVEVG PEVAKYGVGD VVGVGVIVGC DIHQAKNHLG ASKYPMVPGH EVVGEVVEVG PEVTKYGVGD VVGVGVIVGC DLHQIKNDLG MSNYPMVPGH EVVGEVLEVG SNVTREKVGE IVGVGLLVGC DLHQIKNDLG MSNYPMVPGH EVVGEVLEVG SNVTRFKVGE IVGVGLLVGC DIHQIKNDLG MSHYPMVPGH EVVGEVLEVG SEVTKYRVGD RVGTGIVVGC DIHQIKNDLG MSHYPMVPGH EVVGEVLEVG SEVTKYRVGD RVGTGIVVGC DLHQVKNDLG MSNYPLVPGH EVVGEVVEVG PDVSKFKVGD TVGVGLLVGS DLHQVKNDLG MSNYPLVPGH EVVGKVVEVG ADVSKFKVGD TVGVGLLVGS DIHQIKNDLG MSHYPMVPGH EVVGEVVEVG SDVTKFKAGD VVGVGVIVGS DIHQIKNDLG MSHYPMVPGH EVVGEVVEVG SDVTRFKVGD VVGVGVIVGS DIHQIKNDLG ASNYPMVPGH EVVGEVVEVG SOVTKFKVGD CVGDGTIVGC Zn.
2n2

150
CRSCGNCNQS MEQYCSKRIW TYNDVNHDGT PTQGGFASSM VVDQMFVVRI CRSCGNCNQS MEQYCSKRIW TYNDVNHDGT PTQGGFASSM VVDQMFVVRI CRSCGNCNQS MEQYCSKRIW TYNDVNHDGT PTQGGFASSM VVDQMFVVRI CRSCSNCNGS MEQYCSKRIW TYNDVNHDGT PTQGGFASSM VVDQMFVVRI CRECSECKAN VEQYCNKKIW SYNDVYTDGR PTQGGFASTM VVDQKEVVKI CRECSPCKAN VEQYCNKKIW SYNDVYTDGR PTQGGFASTM VVDQKEVVKI CRECKPCKAN VEQYCNKKIW SYNDVYTDGR PTQGGEASTM VVDQKFVMKI CKSCRACDSE IEQYCNKKIW SYNDVYTDGK ITQGGFAEST VVEQKFVVKI CKSCRACDSE IEQYCNKKIW SYNDVYTDGK ITQGGFAEST VVEQKFVVKI

FIG. 10-2

10	CRSCSPCNSD	QEQYCNKKIW	NYNDVYTDGK	PTQGGFAGEI	VVGERFVVKI
11	CRSCSPCNSD	QEQYCNKKIW	NYNDVYTDGK	PTQGGFAGEI	VVGEREVVKI
12	CRNCGPCKRD	IEQYCNKKIW	NCNDVYTDGK	PTQGGFAKSM	VVDQKFVVKI
13	CRNCGPCKRE	IEQYCNKKIW	NCNDVYTDGK	PTQGGFANSM	VVDQNFVVKI
14	CKNCHPCKSE	LEQYCNKKIW	SYNDVYTDGK	PTQGGFAESM	VVDQKEVVRI
15	CKNCHPCKSE	IEQYCNKKIW	SYNDVYTDGK	PTQGGFAESM	VVHQKFVVRI
16	CKTCRPCKAD	VEQYCNKKIW	SYNDVYTDGK	PTQGGFSGHM	VVDQKFVVKI
2n2					
	151				00
1	PENLPLEQAA	pllcagvtve	SPMKHFAMTE	. PGKKCGILG	LGGVGHMGVK
2	PENLPLEQAA	PLLCAGVTVF	SPMKHFAMTE	. PGKKCGILG	LGGVGHMGVK
3	PENLPLEQAA	PLLCAGVTVF	SPMKHFAMTE	. PGKKCGILG	LGGVGHLGVK
4	PENLPLEQAA	PLLCAGVTVY	SPMKHFGMTE	PGKKCGILG	LGGVGHMGVK
5	PAGLAPEQAA	PLLCAGVTVY	SPLKHFGL.T	TPGLRGGILG	LGGVGHMGVK
6	PAGLAPEQAA	PLLCAGVTVY	SPLKHFGL.T	NPGLRGGILG	LGGVGHMGVK
7	PAGLAPEQAA	Pllcagvtvy	SPLKAFGL.T	tpglrgailg	LGGVGHMGVK
8	PEGLAPEQVA	Pllcagvtvy	SPLSHFGLK.	TPGLRGGILG	LGGVGHMGVK
9	PEGLAPEQVA	PlLCAGVTVY	SPLSHFGLK.	TPGLRGGILG	LGGVGHMGVK
10	PDGLESEQAA	PLMCAGVTVY	SPLVRFGLKQ	. SGLRGGILG	LgGvghmg
11	PDGLESEQAA	PLMCAGVTVY	SPLVRFGLKQ	. SGLRGGILG	LGGVGHMGVK
12	PEGMAPEQAA	PLLCAGITVY	SPLNHFGEKQ	. SGLRGGILG	LGGVGHMGVK
13	PEGMAPEQAA	PLLCAGITVY	SPFNHFGFNQ	. SGFRGGILG	LGGVGHMGVK
14	PDGMSPEQAA	PLLCAGLTVY	SPLKHFGLKQ	. SGLRGGILG	LGGVGHMGVK
15	PDGMSPEQAA	pllcagltvy	SPLKHFGLKQ	. SGlirggilg	LgGVghmgVk
16	PDGMAPEQAA	PLLCAGVTVY	SPLTHFGLKE	IS	K

201

250

1 IAKAFGLHVT VISSSDKKKE EAMEVLGADA YLVSKDTEKM MEAAESLDYI 2 IAKAFGLHVT VISSSDKKKE EAMEVLGADA YLVSKDTEKM MEAAESLDYI 3 IAKAFGLHVT VISSSDKKKE EAMEVLGADA YLVSKDTEKM MEAAESLDYI 4 IAKAFGLHVT VISSSDKKKE EALEVLGADA YLVSKDAEKM QEAAESLDYI 5 VAKAMGHHVT VISSSSKKRA EAMDHLGADA YLVSSDAAAM GPAADSLDYI 6 VAKAMGHHVT VISSSSKKRA EAMDHLGADA YLVSSDAAAM AAAADSLDYI 7 VAKAMGHHVT VISSSSKKRA EAMDHLGADA YLVSSDAAAM AAAADSLDYI 8 VAKALGHHVT VISSSDKKKK EALEDLGADN YLVSSDTVGM QEAADSLDYI 9 VAKALGHHVT VISSSDKKKK EALEDLGADN YLVSSDTVGM QEAADSLDYI 10 IAKAMGHHVT VISSSDKKRT EALEHLGADA YLVSSDENGM KEATDSLDYI
11 IAKAMGHHVT VISSSDKKRT EALEHLGADA YLVSSDENGM KEATDSLDYI
12 IAKAMGHHVT VISSSNKKRQ EALEHLGADD YLVSSDTDKM QEASDSLDYI
13 IAKAMGHHVT VISSSNKKRQ EALEHLGADD YLVSSDTDKM QEAADSLDYI
14 IAKAMGHHVT VISSSDKKRE EAMEHLGADE YLVSSDVESM QKAADQLDYI
15 IAKAMGHHVT VISSSDKKRE EAMEHLGADE YLVSSDVESM QKAADQLDYI
16 LAKAMGHHVT VISSSDKKKE EAIDHLGADA YLVSSDATQM QEAADSLDYI

FIG. 10-3

251					300
1	MDTIPVAHPL	EPYLALLKTN	GKLVMLGVVP	EPLHFVTPLL	ILGRRSIAGS
2	MDTIPVAHPL	EPYLALLKTN	GKLVMLGVVP	EPLHFVTPLL	ILGRRSIAGS
3	MDTIPVAHPL	EPYLALLKTN	GKLVMLGVVP	EPLHFVTPPL	ILGRRSIAGS
4	MDTIPVAHPL	EPYLALLKTN	GKLVMLGVVP	EPLHFVTPLL	ILGRRSIAGS
5	IDTVPVHHPL	EPYLALLKLD	GKLVLLGVIG	EPLSFVSPMV	MLGRKAITGS
6	IDTVPVHHPL	EPYLALLKLD	GKLVLLGVIG	EPLSEVSPMV	MLGRKAITGS
7	IDTVPVHHPL	EPYLALLKLD	GKHVLLGVIG	EPLSEVSPMV	MLGRKAITGS
8	IDTVPVGHPL	EPYLSLLKID	GKLILMGVIN	TPLQFVTPMV	MLGRKSITGS
9	IDTVPVGHPL	EPYLSLLKID	GKLILMGVIN	TPLQFVTPMV	MLGRKSITGS
10	FDTIPVVHPL	EPYLALLKLD	GKLILTGVIN	APLQFISPMV	MLGRKSITGS
11	EDTIPVVHPL	EPYLALLKLD	GKLILTGVIN	APLQFISPMV	MLGRKSITGS
12	IDTVPVGHPL	EPYLSLLKID	GKLILMGVIN	TPLQFISPMV	MLGRKSITGS
13	IDTVPVGHPL	ELYLSLLKID	GKLILIGVIN	TPLQFISPMV	MLGRKSITGS
14	IDTVPVVHPL	EPYLSLLKLD	GKLILMGVIN	TPLQFVSPMV	MLGRKSITGS
15	IDTVPVVHPL	EPYLSLLKLD	GKLILMGVIN	APLQFVTPMV	MLGRKSITGS
16	IDTVPVFHPL	EPYLSLLKLD	GKLILMGVIN	TPLQFISPMV	MLGRKAITGS
	301				350
1	EIGSMEETQE	TLDECAEKKV	SSMIEVVGLD	YINTAMERLE	KNDVRYRFVV
2	EIGSMEETQE	TLDECAEKKV	SSMIEVVGLD	YINTAMKRLE	KNDVRYREVV
3	FIGGMEETQE	TLDECAEKKV	SSMIEVVGLD	YINTAMERLE	KNDVRYREVV
4	FIGSMEETQE	TLDECAEKKV	SSMIEVVGLD	YINTAMERLV	KNDVRYREVV
5	FIGSIDETAE	VLQECVDKGL	TSQIEVVKMG	YVNEALERLE	RNDVRYREVV
6	FIGSIDETAE	VLQECVDKGL	TSQIEVVKMG	YVNEALERLE	RNDVRYREVV
7	FIGSIDETAE	VLQECVDKGL	TSQIEVVKMG	YVNEALDRLE	RNDVRYREVV
8	EVGSVKETEE	MLEFWKEKGL	TSMIEIVTMD	YINKAFERLE	KNDVRYRFVV
9	FVGSVKETEE	MLEEWKEKGL	TSMIEIVTMD	YINKAFERLE	KNDVRYRFVV
10	EIGSMKETEE	MLEECKEKGL	TSQIEVIKMD	YVNTALERLE	KNDVRYREVV
11	EIGSMKETEE	MLEECKEKGL	TSQIEVIKMD	YVNTALERLE	KNDVRYREVV
12	EIGSMKETEE	MLDECKEKGV	TSQIEIVKMD	YINTAMERLE	KNDVRYRFVV
13	FIGSMKETEE	MLDECKEKGV	TSQIEIVKMD	YINTAMERLE	KNDVSYREVV
14	EIGSMKETEE	MLEECKEKGL	ASMIEVIKMD	YINTAFERLE	KNDVRYREVV
15	EIGSMKETEE	MLEECKEKGV	ASMIEVIKMD	YINTAFERLE	KNDVRYREVV
16	EIGSMKETEE	MLDECNEKGI	TSTIEVVKMD	YINTAFERLE	KNDVRYRFVV
	351	370			
1	DVAGSKLDN*				
2	DVAASKLDN*				
3	DVAGSELDN*				
4	DVAASNLDK*				
5	DVAGSNVEAE	AAAADAASN*			
6	DVAGSNVEAE	AAAADAASN*			
7	DVAGSNV..E	EVAADAPSN*			
8	DVKGSKFEE*				
9	DVKGSKFEE*				
10	DVVGSKLD*~	~~~~~~~~~~			

FIG. 10-4

```
11 DVVGSKLD*~ ~~~~~~~~~~
12 DVIGSKLDQ* ~~~~~~~~~~
13 DVAGSKLDQ* ~~~~~~~~~~
14 DVAGSKLIP* ~~~~~~~~~
15 DVAGSKLIH* ~~~~~~~~~~
16 DVAGSKLDQE T*~~~~~~~
```

Full length plant CADs from

1) Radiata pine, U62394
2) Loblolly pine, $z 37992$
3) Loblolly pine, 237991
4) Norway spruce, X72675
5) Maize, aj005702
6) Maize, Y13733
7) Sugarcane, AJ231135
8) Lucerne, AF083332
9) Lucerne, Z19573
10) Eucalyptus, AF038561
11) Eucalyptus, X65631
12) Tobacco, X62343
13) Tobacco, X62344
14) Aspen, AF217957

15 Cottonwood, Z19568
16) Udo, D13991

FIG. 11-1 The alignment of full length plant CAld5H protein sequences

1) Aspen; 2) Poplar, AJ010324; 3) Sweetgum, AF139532; 4) Arabidopsis, U38416. *, Hemebinding signature
1 50
1 ~MDSLVQSLQ AS..PMSLEL IVISSLFFFG LLSRLRRRLP YPPGPKGLPL
2 ~MDSLLQSLQ TL..PMSFEL IIISSIFFLG LISRLRRRSP YPPGPKGFPL3 MDSSLHEALQ PL..PMTLEF I.IPLLLLLG LVSRLRQRLP YPPGPKGLPV4 MESSISQTLS KLSDPTTSLV IVVSLFIFIS EITR.RRRPP YPPGPRGWPI
51100
1 VGSMHMMDQI THRGLAKLAK QYGGLFHMRM GYLHMVTVSS PEIARQVLQV2 IGSMHLMDQL TDRGLAKLAK QYGGLFHMRM GYLHMVAGSS PEVARQVLQV3 IGNMLMMDQL THRGLAKLAK QYGGLFHLKM GFLHMVAVST PDMARQVLQV4 IGNMLMMDQL THRGLANLAK KYGGLCHLRM GFLHMYAVSS PEVARQVLQV
101150
1 QDNIESNRPA NIAISYLTYD RADMAFAHYG PFWRQMRKLC VMKLFSRKRA2 QDNMFSNRPA NIAISYLTYD RADMAFAHYG PFWRQMRKLC VMKLFSRKRA3 QDNIFSNRPA TIAISYLTYD RADMAFAHYG PFWRQMRKLC VMKLESRKRA4 QDSVFSNRPA TIAISYLTYD RADMAFAHYG PFWRQMRKVC VMKVESRKRA
151200
1 ESWESVRDEV DSMLKTVEAN IGKPVNLGEL IFTLTMNITY RAAFGA.KNE2 ESWESVRDEV DSMVKTVESN IGKPVNVGEL IFTLTMNITY RAAFGA.KNE3 ESWESVRDEV DSAVRVVASN IGSTVNIGEL VFALTKNITY RAAFGTISHE
4 ESWASVRDEV DKMVRSVSCN VGKPINVGEQ IFALTRNITY RAAFGSACEK250
1 GQDEFIKILQ EESKLFGAEN MSDFIPWLGW IDPQGLSARL VKARKALDRF2 GQDEFIKILQ EESKLEGAFN ISDFIPWLGW IDPQGLTARL VKARKALDKF3 DQDEFVAILQ EFSQLFGAFN IADEIPWLKW V.PQGINVRI NKARGALDGF4 GQDEFIRILQ EESKLFGAFN VADEIPYEGW IDPQGINKRI VKARNDLDGF
251 300
1 IDSIIDDHIQ KRKQNKESED ...AETDMVD DMLAFYGEEA RKVDESDDLQ
2 IDHIIDDHIQ KRKQNNYSEE ...AETDMVD DMLTFYSEET .KVNESDDLQ
3 IDKIIDDHIQ KGSKN..SEE ...VDTDMVD DLLAFYGEEA .KVSESDDLQ
4 IDDIIDEHMK KKENQNAVDD GDVVDTDMVD DLLAFYSEEA KLVSETADLQ3013501 KAISLTKDNI KAIIMDVMFG GTETVASAIE WVMAELMKSP EDQKRVQQEL
2 NAIKLTRDNI KAIIMDVMFG GTETVASAIE WAMAELLKSP EDIKRVQQEL3 NSIKLTKDNI KA.IMDVMFG GTETVASAIE WAMTELMKSP EDLKKVQQEL4 NSIKLTRDNI KAIIMDVMFG GTETVASAIE WALTELLRSP EDLKRVQQEL

FIG. 11-2
351 4001 AEVVGLERRV EESDIDKLTE LKCALKETLR MHPPIPLLLH ETSEDAEVAG2 ADVVGLERRV EESDFDKLTF FKCTLKETLR LHPPIPLLLH ETSEDAEVAG
3 AVVVGLDRRV EEKDFEKLTY LKCVLKEVLR LHPPIPLLLH ETAEDAEVGG
4 AEVVGLDRRV EESDIEKLTY LKCTLKETLR MHPPIPLLLH ETAEDTSIDG
401 450
1 YEIPKQTRVM INAYAIGRDK NSWEDPDAEK PSRELKPGVP DFKGNHFEEI2 YYVPKKTRVM INAYAIGRDK NSWEDPDSEK PSRELEPGVP DFKGNHFEEI3 YYIPAKSRVM INACAIGRDK NSWADPDTFR PSRELKDGVP DFKGNNFEFI4 EFIPKKSRVM INAFAIGRDP TSWTDPDTER PSRFLEPGVP DFKGSNFEFI
451500
1 PEGSGRRSCP GMQLGLYTLD LAVAHLLHCF TWELPDGMKP SELDMTDMEG
2 PEGSGRRSCP GMQLGLYALD LAVAHLLHCF TWELPDGMKP SELDMTDMFG
3 PEGSGRRSCP GMQLGLYALE TTVAHLLHCE TWELPDGMKP SELEMNDVFG4 PFGSGRRSCP GMQLGLYALD LAVAHILHCF TWKLPDGMKP SELDMNDVFG
501 523
1 LTAPRATRLV AVPSKRVLCP L^{*}
2 LTAPRATRLV AVPRKRVVCP L~~
3 LTAPRAIRLT AVPSPRLLCP LY*
4 LTAPKATRLE AVPTTRLICA L~~

FIG. 12-1 PLANT 4CL AMINO ACID SEQUENCE ALIGNMENTS

(1)	MNPQ-EFIERSKLPDIYIPKNLPLHSYVLENLSKHSSKPCLI 41
(2)	1:--------------MDAIMNSQEEFIERSKLPDIYIPKNLPLHSYVLENLSKYSSKPCLI 46
(3)	1:-----------MGDCVAPKEDLIERSKLPDIYIPKHLPLHTYCFENISKVGDKSCLI 46
(4)	1:-m-----MPMDTETKQSGDLIFRSKLPDIYIPKHLPLHSYCFENLSEFNSRPCLI 48
(5)	1:------------M-AVQTPQHNIVYRSKLPDIHIPNHLPLHSYIFQNKSHLTSKPCII 45
(6)	1:----------MPMDTETKQSGDLIFRSKLPDIYIPKHLPLHSYCEENLSEFNSRPCLI 48
(7)	1:-------------MEKDTKH-GDIIERSKLPDIYIPNHLPLHSYCFENISEFSSRPCLI 45
(8)	1:MGSME-Q-QQPES-AAPATEASPEIIFRSKLQDIAITNTLPLHRYCFERLPEVAARPCLI 57
(9)	1:MITLAPSIDTPKTDQNQVSDPQTSHVFKSKLPDIPISNHLPLHSYCFQNLSQFAHRPCLI 60
(10)	1:MAPQE-Q-AVSQVMEKQSNNNNSDVIERSKLPDIYIPNHLSLHDYIFQNISEFATKPCLI 58
(11)	1:----A-N-GI-K----KV-E----HLYRSKLPDIEISDHLPLHSYCFERVAEFADRPCLI 44
(12)	$1: \mathrm{M}---\mathrm{A}-\mathrm{N}-\mathrm{GI}-\mathrm{K}---$ KV-E----HLYRSKLPDIEISDHLPLHSYCFERVAEFADRPCII 45
(13)	
(14)	
(15)	LI 2
(16)	
(1)	42 : NG-ANGDVYTYADVELTARRVA-SGLNKIGIQQGDVIMLFLPSSPEFVLAFLGASHRGAM 99
(2)	47 : NG-ANGDVYTYADVELTARRVA-SGLNKIGIQQGDVIMLFLPSSPEFVLAFLGASHRGAI 104
(3)	47:NG-ATGETFTYSQVELLSRKVA-SGLNKLGIQQGDTIMLILPNSPEYFFAFLGASYRGAI 104
(4)	49: DG-ANDRIYTYAEVELTSRKVA-VGLNKLGIQQKDTIMILLPNCPEFVFAFIGASYLGAI 106
(5)	46:NG-TTGDIHTYAKFKLTARKVA-SGLNKLGIEKGDVFMLLLPNTSEFVEAFLGASFCGAM 103
(6)	49 : DG-ANDRIYTYAEVELTSRKVA-VGLNKLGIQQKDTIMILLPNCPEFVFAFIGASYLGAI 106
(7)	46:NG-ANKQIYTYADVELSSRKVA-AGLHKQGIQQKDTIMILLPNSPEFVFAEIGASYLGAI 103
(8)	58: DGATGGVLTYADVDRLSRRLAAALRRAPLGLRRGGVVMSILRNSPEFVLSFFAASRVGAA 117
(9)	61:VG-PASKTFTYADTHLISSKIA-AGLSNLGILKGDVVMILLQNSADFVFSFLAISMIGAV 118
(10)	59 : NGPTGHVYTYSDVHVISRQIAANFHK--LGVNQNDVVMLLLPNCPEFVLSFLAASFRGAT 116
(11)	45 : DG-ATDRTYCFSEVELISRKVA-AGLAKLGLQQGQVVMLLLPNCIEFAFVFMGASVRGAI 102
(12)	$46:$ DG-ATDRTYCFSEVELISRKVA-AGLAKLGLQQGQVVMLLLPNCIEFAFVFMGASVRGAI 103
(13)	
(14)	
(15)	3: DG-STNKTYNEAEVELISRKVA-AGLAKLGLKKGQVVMLLLQNCIEFAFVFMGASVLGAV 60
(16)	5 : DG-ATGKTHCEAEVELISRKVA-AGLVNLGLQQGQVVMLLLQNCVEFAFVFMGAALRGAI 62

(1) 100:ITAANPFSTPAELAKHAKASRAKLLITQACYYEKVK--DEARESDVKVMCVDS-APD-GA 155
(2) 105:VTAANPFSTPAELAKHAKPPRTKLLITQACYYDKVK--DFARESDVKVMCVDS-APD-GC 160
3)
(4)

105: STMANPEFTSAEVIKQLKASQAKLIITQACYVDKVK--DYAAEKNIQIICID-DAP-QDC 160
107:STMANPLFTPAEVVKQAKASSAKIVITQACEAGKVK--DYAIENDLKVICVD-SVP-EGC 162
104:MTAANPEETPAEIAKQAKASKAKLIITFACYYDKVK--DLSCD-EVKLMCIDSPPPDSSC 160
107:STMANPLFTPAEVVKQAKASSAKIIITQACFAGKVK--DYAIENDLKVICVD-SAP-EGC 162
104:STMANPLETAAEVVKQVKASGAKIIVTQACHVNKVK--DYALENNVKIICID-SAP-EGC 159
118: VTTANPMSTPHEIESQLAAAGATVVITESMAADKL-PSHSHGALTVV-LID-E--R-RDG 171 119: ATTANPFYTAPEIFKQFTVSKAKLIITQAMYVDKLRNHDGAKLGEDFKVVTVDDPP-ENC 177 117: ATAANPFFTPAEIAKQAKASNTKLIITEARYVDKIKPLQNDDGVVIVCIDDNESVPIPEG 176 103: VTTANPFYKPGEIAKQAKAAGARIIVTLAAYVEKL-A-D-LQ-SHDVLVITIDDAPKEGC 158 104 : VTTANPFYKPGEIAKQAKAAGARIIVTLAAYVEKL-A-D-LQ-SHDVLVITIDDAPKEGC 159

4:---A------G---------ARIIVTQAAYVDKL-A-D-LQ-SDDMIVIAIDGAPKEGC 40
1:-------KPGEIAKQAKAAGARIIVTQAAYVEKL-A-D-LQ-NDDVIVITIDAAPKDGC 48 61: VTTANPEYKPGEIAKQAKAADARIIVTQAAYVDKL-A-D-LQ-SEDVIVISIDGAPKEGC 116 63:VTTANPEYKPGEIAKQAKAAGARIIVTQAAYVEKL-A-D-LQ-SDDVIVITIDGAPKDGC 118 156 : SLFRAHTQADENEVPQV--------DISPDDVVALPYSSGTTGLPKGVMLTHKGLITSVA 207
(2) 161:LHESELTQADENEVPQV--ー-ー---DFSPDDVVALPYSSGTTGLPKGVMLTHKGLITSVA 212
(3) $161:$ LHFSKLMEADESEMPEV--------VINSDDVVALPYSSGTTGLPKGVMLTHKGLVTSVA 212
(4) 163:VHFSELIQSDEHEIPDV----.---KIQPDDVVAIPYSSGTTGLPKGVMLTHKGLVTSVA 214
(5) 161:LHFSELTQSDENDVPDV--------DISPDDVVALPYSSGTTGLPKGVMLTHKGLVTSVS 212

FIG. 12-2
(6) 163:VHFSELIQSDEHEIPDV-------KIQPDDVVALPYSSGTTGLPKGVMLTHKGLVTSVA 214
(7) 160:LHESVLTQADEHDIPEV-------EIQPDDVVALPYSSGTTGLPKGVMLTHKGLVTSVA 211
(8) 172:CLHFWDDLMSEDEASPLAGDEDDEKVFDPDDVVALPYSSGTTGLPKGVMLTHRSLSTSVA 231
(9) 178:LHFSVLSEANESDVPEV--.-.-. EIHPDDAVAMPESSGTTGLPKGVILTHKSLTTSVA 229
(10) 177:CLRF-TEL-TQSTTEA-SEVIDSVEI-SPDDVVALPYSSGTTGLPKGVMLTHKGLVTSVA 232
(11) 159:QHISVLTEADETQCPAV-------KIHPDDVVALPYSSGTTGLPKGVMLTHKGLVSSVA 210
(12) 160:QHISVLTEADETQCPAV--------KIHPDDVVALPYSSGTTGLPKGVMLTHKGLVSSVA 211
(13) 41:QHISILTEADETQCPSV--------EIHPDDVVALPYSSGTTGLPKGVMLTHKSQVSSVA 92
(14) 49:QHISVLTEADETQCPSV-------EIQPDDVVALPYSSGTTGLPKGVMLTHKGLVSSVA 100
(15) 117:QHISVLTEADETQCPSV-------EIHPDDVVALPYSSGTTGLPKGVMLTHKSLVSSVA 168
(16) 119:KDISVLTEADGTQCPSV-------EIQPDDVVALPYSSGTTGLPKGVMLTHKGLVSSVA 170
(1) 208:QQVDGDNPNLYFHSEDVILCVLPMFHIYALNSMMLCGLRVGASILIMPKFEIGSLLGLIE 267
(2) 213:QQVDGDNPNLYFHSEDVILCVLPMFHIYALNSIMLCGLRVGASILIMPKFDIGTLLGLIE 272
(3) $213: Q Q V D G D N P N L Y M H S E D V M I C I L P L F H I Y S L N A V L C C G L R A G V T I L I M Q K F D I V P F L E L I Q 272$
(4) $215: Q Q V D G E N A N L Y M H S D D V L M C V L P L F H I Y S L N S V L L C A L R V G A A I L I M Q K F D I A Q F L E L I P ~ 274$
(5) 213:QQVDGENPNLYYSSDDVVLCVLPLFHIYSLNSVLLCGLRAGAAILLMQKFEIVSLLELMQ 272
(6) 215:QQVDGENANLYMHSDDVLMCVLPLFHIYSLNSVLLCALRVGAAILIMQKFDIAQFLELIP 274
(7) 212:QQVDGENRNLYIHSEDVLLCVIPLFHIYSLNSVLLCGLRVGAAILIMQKFDIVPFLELIQ 271
(8) 232:QQVDGENPNIGLHAGDVILCALPMFHIYSLNTIMMCGLRVGAAIVVMRRFDLAAMMDLVE 291
(9) 230:QQVDGENPNLYLTTEDVLLCVLPLFHIFSLNSVLLCALRAGSAVLLMQKFEIGTLLELIQ 289
(10) 233:QQVDGENPNLYFHSDDVILCVLPMFHIYALNSIMLCGLRVGAAILIMPKFEINLLLELIQ 292
(11) 211:QQVDGENPNLYFHSDDVILCVLPLFHIYSLNSVLLCALRAGAATLIMQKFNLTTCLELIQ 270
(12) 212:QQVDGENPNLYFHSDDVILCVLPLFHIYSLNSVLLCALRAGAATLIMQKFNLTTCLELIQ 271
(13) 93:QQVDGENPNLYFHSEDVILCVLPLFHIYSLNSVLLCALRAGAATLIMQKFNLTALLELIQ 152
(14) 101:QQVDGENPNLYFHSDDVIICVLPLFHIYSLNSVLLCALRAGAATLIMQKFNMASFLELIQ 160
(15) $169: Q Q V D G E N P N L Y F H S E D V I L C V L P L F H I Y S L N S V L L C A L R A G A A T L I M Q K F N L T T L L E L I Q ~ 228 ~$
(16) $171: Q Q V D G E N P N L Y F H S E D V V M C V L P L F H I Y S L N S V L L C A L R A G A A T L I M Q K F N M T S F L E L I Q ~ 230$
(1) $268: K Y K V S I A P V V P P V M M A I A K S P D L D K H D L S S L R M I K S G G A P L G K E L E D T V R A K F P Q A R L G Q 327$
(2) 273:KYKVSIAPVVPPVMLAIAKSPDFDKHDLSSLRMIKSGGAPLGKELEDTVRAKFPQARLGQ 332
(3) 273:KYKVTIGPEVPPIVLAIAKSPVVDKYDLSSVRTVMSGAAPLGKELEDAVRAKFPNAKLGQ 332
(4) 275:KHKVTIGPEVPPIVLAIAKSPLVDNYDLSSVRTVMSGAAPLGKELEDAVRAKFPNAKLGQ 334
(5) 273:KHRVSVAPIVPPTVLAIAKFPDLDKYDLGSIRVLKSGGAPLGKELEDTVRAKFPNVTLGQ 332
(6) 275:KHKVTIGPFVPPIVLAIAKSPLVHNYDLSSVRTVMSGAAPLGKELEDAVRAKFPNAKLGQ 334
(7) 272:NYKVTIGPEVPPIVLAIAKSPMVDDYDLSSVRTVMSGAAPLGKELEDTVRAKFPNAKLGQ 331
(8) 292:RHRVTIAPLVPPIVVAVAKSEAAAARDLSSVRMVLSGAAPMGKDIEDAFMAKLPGAVLGQ 351
(9) 290:RHRVSVAMVVPPLVLALAKNPMVADFDLSSIRLVLSGAAPLGKELEEALRNRMPQAVLGQ 349
(10) 293:RCKVTVAPMVPPIVLAIAKSSETEKYDLSSIRVVKSGAAPLGKELEDAVNAKFPNAKLGQ 352
(11) 271:KYKVTVAPIVPPIVLDITKSPIVSQYDVSSVRIIMSGAAPLGKELEDALRERFPKAIFGQ 330
(12) 272:KYKVTVAPIVPPIVLDITKSPIVSQYDVSSVRIIMSGAAPLGKELEDALRERFPKAIFGQ 331
(13) 153:RYKVTVAPIVPPIVLEISKNPIVSQYDVPSVRIIMSGAAPLGKELEDALRERFPKAIFGQ 212
(14) 161:RYKVTVAPIVPPIVLDITKSPIISQYDVSSVRIIMSGAAPLGKELEDALRDRFPQAIEGQ 220
(15) 229:RYKVTVAPIVPPIVLDITKNPIVSQYDVSSVRIIMSGAAPLGKELEDALREREPKAIFGQ 288
(16) 231:RYKVTVAPIVPPVVLEITKSPIVSQYDISSVRIIVSGGAPLGKELEDAIRDRLPHAIFGQ 290
(1) $328: G Y G M T E A G P V L A M C L A F A K E P F D I K P G A C G T V V R N A E M K I V D P E T G V S L P R N Q P G E I C I R ~ 387$ (2) $333: G Y G M T E A G P V L A M C L A F A K E P F D I K P G A C G T V V R N A E M K I V D P E T G A S L R R N Q P G E I C I R ~ 392$
(3) 333:GYGMTEAGPVLAMCLAFAKEPYEIKSGACGTVVRNAEMKIVDPETNASLPRNQRGEICIR 392
(4) 335:GYGMTEAGPVLAMCLAFAKEPFDIKSGACGTVVRNAEMKIVDPDTGCSLPRNQPGEICIR 394
(5) 333:GYGMTEAGPVLTMSLAFAKEPFEVKPGGCGTVVRNAELKIVDPETGASLPRNHPGEICIR 392
(6) 335:GYGMTEAGTVLTMCLAFAKEPFDIKSGACGTVVRNAEMKIVDPDTGCSLPRNQPGEICIR 394
(7) 332:GYGMTEAGPVLAMCLAFAKEPFEIKSGACGTVVRNAEMKIVDPETGNSLPRNQSGEICIR 391
(8) 352:GYGMTEAGPVLSMCLAFAKEPFKVKSGACGTVVRNAELKIIDPDTGKSLGRNLRGEICIR 411
(9) 350:GYGMTEAGPVLSMCLGFAKQPFQTKSGSCGTVVRNAELKVVDPETGRSLGYNQPGEICIR 409
FIG. 12-3
(10) 353:GYGMTEAGPVLAMSLGEAKEPFPVKSGACGTVVRNAEMKIVDPDTGDSLSRNQPGEICIR 412
(11) 331:GYGMTEAGPVLAMNLAFAKNPFPVKSGSCGTVVRNAQIKILDTETGESLPHNQAGEICIR 390
(12) 332:GYGMTEAGPVLAMNLAFAKNPFPVKSGSCGTVVRNAQIKILDTETGESLPHNQAGEICIR 391
(13) 213:GYGMTEAGPVI 223
(14) 221:GYGMTEAGPV 230
(15) 289:GYGMTEAGPVLAMNLAFAKEPEPVKSGSC 317
(16) 291:GYGMTEAGPVLAMNLAFAKEPFPVKSGS 318
******** *
(1) 388:GDQIMKGYLNDPEATSRTIDKEGWLHTGDIGYIDDDDELFIVDRLKELIKYKGFQVAPTE 447
(2) 393:GDQIMKGYLNDPEATSRTIDKEGWLHTGDIGYIDDDDELFIVDRLKELIKYKGFQVAPAE 452
(3) 393:GDQIMKGYLNDPESTRTTIDEEGWLHTGDIGFIDDDDELFIVDRLKEIIKYKGFQVAPAE 452
(4) 395:GDQIMKGYLNDPEATARTIEKEGWLHTGDIGFIDDDDELFIVDRLKELIKYKGFQVAPAE 454
(5) 393:GHQIMKGYLNDPEATRTTIDKQGWLHTGDIGEIDDDEELEIVDRLKELIKYKGFQVAPAE 452
(6) 395:GDQIMKGYLNDPEATARTIEEEGWLHTGDIGFIDDDDELFIVDRLKELIKYKGFQVAPAE 454
(7) 392:GDQIMKGYLNDPEATARTIDKEGWLYTGDIGYIDDDDELFIVDRLKELIKYKGFQVAPAE 451
(8) 412:GQQIMKGYLNNPEATKNTIDAEGWLHTGDIGYVDDDDEIFIVDRLKEIIKYRGFQVAPAE 471
(9) 410:GQQIMKGYLNDEAATASTIDSEGWLHTGDVGYVDDDDEIFIVDRVKEIIKYKGFQVPPAE 469
(10) 413:GHQIMKGYLNNPAATAETIDKDGWLHTGDIGLIDDDDELFIVDRLKELIKYKGFQVAPAE 472
(11) 391:GPEIMKGYINDPESTAATIDEEGWLHTGDVEYIDDDEEIFIVDRVKEIIKYKGFQVAPAE 450
(12) 392:GPEIMKGYINDPESTAATIDEEGWLHTGDVGYIDDDEEIFIVDRVKEIIKYKGFQVAPAE 451
(13) 224 :
(14) 231:
(15) 318(16) 319: $=$
(1) 448:LEALLIAHPEISDAAVVGLKDEDAGEVPVAFVVKSEKSQATEDEIKQYISKQVIFYKRIK 507
(2) 453:LEALLLAHPQISDAAVVGMKDEDAGEVPVAFVVKSEKSQATEDEIKQYISKQVIFYKRIK 512
(3) 453:LEALLLTHPTISDAAVVPMIDEKAGEVPVAFVVRTNGETTTEEEIKQFVSKQVVFYKRIF 512
(4) 455:LEALLINHPDISDAAVVPMIDEQAGEVPVAFVVRSNGSTITEDEVKDFISKQVIEYKRIK 514
(5) 453 :LEALLVTHPNISDAAVVPMKDDAAGEVPVAFVVSPKGSQITEDEIKQFISKQVVFYKRIK 512
(6) $455: L E A L L I N H P D I S D A A V V P M I D E Q A G E V P V A F V V R S N G S T I T E D E V K D F I S K Q V I E Y K R I K$ 514
(7) 452 :LEALLLNHPTESDAAVVPMKDEQAEEVPVAFVVRSSGSTITEDEVKDFISKQVIFYKRIK 511
(8) $472: L E A L L N T H P S I A D A A V V G L K---E G E I P V A F V A K T E G S E L S E D D V K Q F V A K E V I Y Y K K I R ~$ 528
(9) 470:LEGLLVSHPSIADAAVVPQKDVAAGEVPVAFVVRSNGFDLTEEAVKEFIAKQVVFYKRLH 529
(10) 473:LEALLIGHPDITDVAVVAMKEEAAGEVPVAFVVKSKDSELSEDDVKQFVSKQVVEYKRIN 532
(11) 451:LEALLVAHPSIADAAVVPQKHEEAGEVPVAFVVKS-S-EISEQEIKEFVAKQVIFYKKIH 508
(12) $452: L E A L L V A H P S I A D A A V V P Q K H E E A G E V P V A F V V K S-S-E I S E Q E I K E F V A K Q V I F Y K K I H$ 509
(13) 224 :
(14) 231
(15) 318:
$-$
(1) 508:RVFFIEAIPKAPSGKILRKNLKEKL-PGI------ 535
(2) 513:RVEFIEAIPKAPSGKILRKNLRETL-PGI--....- 540
(3) 513:RVFFVDAIPKSPSGKILRKDLRARIASGDLPK--- 544
(4) 515:RVFFVETVPKSPSGKILRKDLRARLAAGISN---- 545
(5) 513:RVFFIEAIPKSPSGKILRKELRAKLAAGFAN---- 543
(6) 515:RVFFVETVPKSPSGKILRKDLRARLAAGISN---- 545
(7) 512:RVFFVDAVPKSPSGKILRKDLRAKLAAGLPN---- 542
(8) 529:EVFFVDKIPKAPSGKILRKELRKQLQHLQQEALTN 563
(9) 530:KVYFVHAIPKSPSGKI LRKDLRAKLETAATQTP-- 562
(10) 533:KVFETESIPKAPSGKILRKDLRAKLANGL 561
(11) 509:RVYFVDAIPKSPSGKILRKDLRSRLAAK 536
(12) 510:RVYFVDAIPKSPSGKILRKDLRSRLAAK 537

FIG. 12-4

(14) 231:---------------------------------------

(16) 319

1: aspen AF041049
2: Hybrid populus AF283552
3: Parsley X13324
4: potato M62755
5: Rubus idaeus AF239687
6: solanum AF150686
7: Tobacco D43773
8: rice $\times 52623$

9: soybean x69955
10: Ara AF106084
11: PinusteadaU12012
12: Pinus teada U12013
13: Larix AF144513
14: Pseudolari×AF144528
15: Pseudotsuga AF144511
16: Tsuga AF144526

METHODS FOR SIMULTANEOUS CONTROL OF LIGNIN CONTENT AND COMPOSITION, AND CELLULOSE CONTENT IN PLANTS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/230,086, filed on Sep. 5, 2000, and is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the Energy Biosciences Program, United States Department of Energy, and the United States Department of Agriculture research grant numbers USDA 99-35103-7986, USDA 01-03749, and DOE DE-FG0201ER15179. The United States government has certain rights in this invention.

BACKGROUND OF THE INVENTION

The invention provides a method of introducing two or more genes, involved in lignin biosynthesis, into plant cells. The method of the invention employs either an Agrobacterium-mediated or other appropriate plant gene delivery system by which multiple genes together with a single selectable marker gene are simultaneously transferred and inserted into the genome of plants with high frequencies.

The ability to introduce foreign genes into plants is a prerequisite for engineering agronomic traits in plants. Many systems have been developed for introducing a foreign gene into plant cells, which involve mainly either Agrobacterium- or microprojectile bombardment-mediated transformation (Christou, 1996). The principle of all these systems involves the insertion of a target gene into the host plant genome together with a selectable marker gene encoding either antibiotic or herbicide resistance to aid in the selection of transgenic cells from non-transgenic cells. These systems generally are only effective for introducing a single target gene into the host plant.

To alter agronomic traits, which generally are polygenic in nature, multiple genes involved in complex biosynthetic pathways must be introduced and expressed in plant cells. In this context, the traditional single-gene transfer systems are essentially useless for the following two reasons: 1) it is impractical to introduce multiple genes by repetitive insertion of single genes into transgenic plants due to the time and effort required for recovery of the transgenic tissues; in particular, a repetitive single-gene approach is highly impractical for plant species such as trees which, depending upon the species, require two to three years for transgenic tissue selection and regeneration into a tree; and 2) the presence of a selectable marker gene in a transgenic line precludes the use of the same marker gene in subsequent transformations of plant material from that line. Moreover, the number of available marker genes is limited, and many plant species are recalcitrant to regeneration unless appropriate antibiotic or herbicide selection is used.

Chen et al. (1998) recently reported the genetic transformation of rice with multiple genes by cobombardment of several gene constructs into embryogenic suspension tissues. However, particle bombardment-mediated gene transfer into embryogenic tissues is highly species-dependent, and regeneration of whole plants from embryogenic cells cannot be achieved for a variety of plant species (Horsch et al., 1985).

In contrast, Agrobacterium-mediated gene transfer and whole plant regeneration through organogenesis is a simple process and a less species-dependent system than bombardment-mediated transformation and regeneration via embryogenesis. However, the introduction of more than one gene in a single plasmid vector via Agrobacterium may be technically troublesome and limited by the number or the size of the target genes (Chen et al., 1998). For example, Tricoli et al. (1995) reported the transfer of three target genes to squash via Agrobacterium-mediated gene transfer. A binary plasmid vector containing the three target genes was incorporated into an Agrobacterium strain, which was subsequently used to infect the leaf tissue of squash. As only one line was recovered from numerous infected squash tissues that contained all of the target genes, the use of a single binary vector with a number of genes appears to be a highly inefficient method to produce transgenic plants with multiple gene transfers. Therefore, it was commonly accepted that transfer of multiple genes via Agrobacteriummediated transformation was impractical (Ebinuma et al., 1997), until success of multiple gene transfer via Agrobacterium was first reported in co-pending, commonly owned PCT application, PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants" by Chiang et al, incorporated herein by reference. However, homologous tissue-specific preparation of transgenic trees to specifically alter lignin content, increase S/G (syringyl:guaiacyl) lignin ratio and increase cellulose quantity, as compared to an untransformed plant was unsuccessful.

Yet, the altering of lignin content and composition in plants has been a goal of genetically engineered traits in plants. Lignin, a complex phenolic polymer, is a major part of the supportive structure of most woody plants including angiosperm and gymnosperm trees, which, in turn, are the principal sources of fiber for making paper and cellulosic products. Lignin generally constitutes about 25% of the dry weight of the wood, making it the second most abundant organic compound on earth after cellulose. Lignin provides rigidity to wood for which it is well suited due, in part, to its resistance to biochemical degradation.

Despite its importance to plant growth and structure, lignin is nonetheless problematic to post-harvest, cellulosebased wood/crop processing for fiber, chemical, and energy production because it must be removed or degraded from cellulose at great expense. Certain structural constituents of lignin, such as the guaiacyl (G) moiety, promote monomer cross-linkages that increase lignin resistance to degradation (Sarkanen, 1971; Chang and Sarkanen, 1973; Chiang and Funaoka, 1990). In angiosperms, lignin is composed of a mixture of guaiacyl (G) and syringyl (S) monolignols, and can be degraded at considerably less energy and chemical cost than gymnosperm lignin, which consists almost entirely of guaiacyl moieties (Freudenberg, 1965). It has been estimated that, if syringyl lignin could be genetically incorporated into gymnosperm guaiacyl lignin or into angiosperms to increase the syringyl lignin content, the annual saving in processing of such genetically engineered plants as opposed to their wild types would be in the range of $\$ 6$ to $\$ 10$ billion in the U.S. alone. Consequently, there has been longstanding incentive to understand the biosynthesis of syringyl monolignol to genetically engineer plants to contain more syringyl lignin, thus, facilitating wood/crop processing (Trotter, 1990; Bugos et al., 1991; Boudet et al., 1995; Hu et al., 1999).
Depending on the use for the plant, genetic engineering of certain traits has been attempted. For some plants, as indi-
cated above, there has been a long-standing incentive to genetically modify lignin and cellulose to decrease lignin and increase cellulose contents. For example, it has been demonstrated that the digestibility of forage crops by ruminants is inversely proportional to lignin content in plants (Buxton and Roussel, 1988, Crop. Sci., 28, 553-558; Jung and Vogel, 1986, J. Anim., Sci., 62, 1703-1712). Therefore, decreased lignin and high cellulose plants are desirable in forage crops to increase their digestibility by ruminants, thereby providing the animal with more nutrients per unit of forage.

In other plants, genetically increasing the S / G ratio of the lignin has been sought. As noted above, lignin in angiosperms is composed of guaiacyl (G) and syringyl (S) monomeric units, whereas gymnosperm lignin consists entirely of G units. The structural characteristics of G units in gymnosperm lignin promote monomer cross-linkages that increase lignin resistance to chemical extraction during wood pulp production. However, the S units present in angiosperm lignin prevent such chemical resistant crosslinks. Therefore, without exception, chemical extraction of G lignin in pulping of gymnosperms is more difficult and requires more chemicals, longer reaction times and higher energy levels than the extraction of G-S lignin during pulping of angiosperms (Sarkanen, K. V., 1971, in Lignins: Occurrence, Formation, Structure and Reaction, Sarkanen, K. V. \& Ludwig, C. H., eds., Wiley-Interscience, New York; Chang, H. M. and Sarkanen, K. V., 1973, TAPPI, $56: 132-136)$. As a rule, the reaction rate of extracting lignin during wood pulping is directly proportional to the quantity of the S unit in lignin (Chang, H. M. and Sarkanen, K. V., 1973, TAPPI, 56:132-136). Hence, altering lignin into more reactive G-S type in gymnosperms and into high S/G ratio in angiosperms would represent a pivotal opportunity to enhance current pulping and bleaching efficiency and to provide better, more economical, and more environmentally sound utilization of wood.

Recent results have indicated that high S / G ratio may also add further mechanical advantages to plants, balancing the likely loss of sturdiness of plants with severe lignin reduction (Li et al., 2001, Plant Cell, 13:1567-1585). Moreover, a high S / G lignin ratio would also improve the digestibility of forage crops by ruminants (Buxton and Roussel, 1988, Crop. Sci., 28, 553-558; Jung and Vogel, 1986, J. Anim., Sci., 62, 1703-1712).

In some applications, both a high lignin content and high S/G ratio have been sought (i.e., combining these two traits in plants). For example, it has been demonstrated that when lignin is extracted out from wood during chemical pulping, lignin in the pulping liquor is normally used as a fuel source to provide energy to the pulping and bleaching operations. This lignin-associated energy source, which is not necessary for pulp mills using purchased fuel for energy, is essential to some pulp mills which depend upon internal sources, such as extracted lignin, to be self-sufficient in energy. Therefore, for this purpose, it may be desirable to increase lignin content in pulpwood species, and at the same time to increase the S/G ratio in these species to facilitate the extraction of more lignin to be used as fuel.

Additionally, for grain production and other non-related purposes, increased lignin content and/or S / G lignin ratio are desirable to provide extra sturdiness in plants to prevent the loss of socially and economically important food crops due to dislodging and due to damage to the aerial parts of the plant.

The plant monolignol biosynthetic pathway is set forth in FIG. 1 and will be explained in more detail hereinbelow. The
key lignin control sites in the monolignol biosynthetic pathway are mediated by genes encoding the enzymes 4-coumarate-CoA ligase (4CL) (Lee et al., 1997), coniferyl aldehyde 5-hydroxylase (CAld5H) (Osakabe et al., 1999) and S-adenosyl-L-methionine (SAM)-dependent 5-hydroxyconiferaldehyde O-methyltransferase (AldOMT) (Li et al., 2000), respectively, for the formation of sinapaldehyde (see, FIG. 1). Further, coniferyl alcohol dehydrogenase (CAD) (MacKay et al., 1997) catalyzes the reaction including the substrate coniferaldehyde to coniferyl alcohol. It has recently been discovered that sinapyl alcohol dehydrogenase (SAD) enzymatically converts sinapaldehyde into sinapyl alcohol, the syringyl monolignol, for the biosynthesis of syringyl lignin in plants (see, FIG. 1). See, concurrently filed, commonly owned U.S. non-provisional application entitled "Genetic Engineering of Syringyl-Enriched Lignin in Plants," incorporated herein by reference. It should be noted that the gene encoding the enzyme sinapyl alcohol dehydrogenase (SAD) represents the last gene that is indispensable for genetic engineering of syringyl lignin in plants.
A summary of the conserved regions contained within the coding sequence of each of the above listed proteins is described below. Because SAD is a recently discovered enzyme in Aspen, sequence alignments with other representative species were unable to be performed.

The protein sequence alignments of plant AldOMTs are shown in FIG. 9. All AldOMTs have three conserved sequence motifs (I, II, and III) which are the binding sites of S-adenosyl-L-methionine (SAM), the co-substrate or methyl donor for the OMT reaction (Ibrahim, 1997, Trends Plant Sci., 2:249-250; Li et al., 1997, Proc. Natl. Acad. Sci. USA, 94:5461-5466; Joshi and Chiang, 1998, Plant Mol. Biol., 37:663-674). These signature sequence motifs and the high sequence homology of these proteins to PtAldOMT attest to their function as an AldOMT specific for converting 5-hydroxyconiferaldehyde into sinapaldehyde (Li et al., 2000, J. Biol. Chem., 275:6537-6545), the content of which is incorporated by reference, herein, in its entirety. This AldOMT, like CAld5H, also operates at the aldehyde level of the plant monolignol biosynthetic pathway.

The protein sequence alignments of plant CADs are shown in FIG. 10. It was recently proven that CADs are actually guaiacyl monolignol pathway specific (Li et al., 2001, Plant Cell, 13:1567-1585). Based on high sequence homology, the alignment program picked up CADs from angiosperms as well as gymnosperms (radiata pine, loblolly pine and spruce) which have only G-lignin. All CADs have the Zn 1 binding motif and structural Zn 2 consensus region, as well as a NADP binding site (Jornvall et al., 1987, Eur. J. Biochem., 167:195-201; MacKay et al., 1995, Mol. Gen. Genet., 247:537-545). All these sequence characteristics and high sequence homology to PtCAD attest to these CAD function as a G-monolignol specific CAD (Li et al., 2001, Plant Cell, 13:1567-1585).

The protein sequence alignments of plant Cald5Hs are shown in FIG. 11. Although, there are different types of 5 -hydroxylases, i.e., F5H, CAld5H is the sole enzyme catalyzing specifically the conversion of coniferaldehyde into 5-hydroxyconiferaldehyde. All full-length CAld5Hs have the proline-rich region located from amino acid 40 to 45 which is believed to be involved in the process of correct folding of microsomal P450s and is also important in heme incorporation into P450s (Yamazaki et al. 1993, J. Biochem. 114:652-657). Also they all have the heme-binding domain (PFGXGXXXCXG) that is conserved in all P450 proteins (Nelson et al. 1996, Pharmacogenetics, 6:1-41). These signature sequences and the high sequence homology of these
proteins to PtCAld5H their function as a 5 -hydroxylase that is specific for converting coniferaldehyde into 5-hydroxyconiferaldehyde (Osakabe et al., 1999, Proc. Natl. Acad. Sci. USA, 96:8955-8960).

The protein sequence alignment of plant 4CLs are shown in FIG. 12. In general, 4CL catalyzes the activation of the hydroxycinnamic acids to their corresponding hydroxycinnamoyl-CoA esters. 4CL has the highest activity with p-coumaric acid. 4CL cDNA sequences have been reported from a number of representative angiosperms and gymnosperms, revealing two highly conserved regions, a putative AMP-binding region (SSGTTGLPKGV), and a catalytic motif (GEICIRG). The amino acid sequences of 4CL from plants contain a total of five conserved Cys residues.

Despite recognition of these key enzymes in lignin biosynthesis, there continues to be a need to develop an improved method to simultaneously control the lignin quantity, lignin compositions, and cellulose contents in plants by introducing multiple genes into plant cells.

BRIEF SUMMARY OF THE INVENTION

The invention provides a method of introducing two or more genes involved in lignin biosynthesis present in one or more independent vectors into plant cells. The method of the invention suitably employs an Agrobacterium-mediated or another gene delivery system by which multiple genes together with a single selectable marker gene are simultaneously transferred and inserted into the genome of plants with high frequencies.

If an Agrobacterium-mediated gene delivery system is used, each gene of interest is present in a binary vector that has been introduced into Agrobacterium to yield an isolated Agrobacterium strain comprising the binary vector. Moreover, more than one gene of interest may be present in each binary vector. Plant materials comprising plant cells, e.g., plant seed, plant parts or plant tissue including explant materials such as leaf discs, from a target plant species are suitably inoculated with at least two, preferably at least three, and more preferably at least four or more, of the isolated Agrobacterium strains, each containing a different gene of interest. A mixture of the strains is suitably contacted with plant cells. At least one of the binary vectors in the isolated Agrobacterium strains contains a marker gene, and any marker gene encoding a trait for selecting transformed cells from non-transformed cells may be used. Transformed plant cells are regenerated to yield a transgenic plant, the genome of which is augmented with DNA from at least two, preferably at least three, and more preferably at least four, and even more preferably at least five of the binary vectors.

The method of the invention is thus applicable to all plant species that are susceptible to the transfer of genetic information by Agrobacterium or other gene delivery system. Suitable plant species useful in the method of the invention include agriculture and forage crops, as well as monocots. In particular, plant species useful in the method of the invention include trees, e.g., angiosperms and gymnosperms, and more suitably a forest tree, but are not limited to the tree.

The method of the invention is suitably employed to enhance a desired agronomic trait by altering the expression of two or more genes. Such traits include alterations in lignin biosynthesis (e.g., reduction, augmentation and/or structural changes), cellulose biosynthesis (e.g., augmentation, reduction, and/or quality including high degree of polymerization and crystallinity), growth, wood quality (e.g., high density, low juvenile wood, high mature wood, low reaction
wood, desirable fiber angle), stress resistance (e.g., cold-, heat-, and salt-tolerance, pathogen-, insect- and other disease-resistance, herbicide-resistance), sterility, high grain yield (for forage and food crops), and increased nutrient level.

Thus, the present invention advantageously provides gymnosperm and angiosperm plants with decreased lignin content, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose content in which a single trait or multiple traits are changed.

In another aspect, the invention provides gymnosperm plants with syringyl enriched lignin and/or increased lignin content and/or increased syringyl/guaiacyl (S/G) lignin ratio.
Similarly, the present invention also provides angiosperm plants with increased lignin content.

Other advantages and a filler appreciation of specific attributes and variations of the invention will be gained upon an examination of the following detailed description of exemplary embodiments and the like in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWING(S)

FIG. 1 is a schematic representation of plant monolignol pathways for production of coniferyl alcohol and sinapyl alcohol;

FIG. 2 is the SAD polynucleotide DNA sequence (SEQ ID NO: 1) and the SAD amino acid sequence (SEQ ID NO: 2) respectively FIGS. 2A and 2B;

FIG. 3 is the CAld5H polynucleotide DNA sequence (SEQ ID NO: 3) and the CAld5H amino acid sequence (SEQ ID NO: 4) respectively FIGS. 3A and 3B;

FIG. 4 is the AldOMT polynucleotide DNA sequence (SEQ ID NO: 5) and the AldOMT amino acid sequence (SEQ ID NO: 6) respectively FIGS. 4A and 4B;

FIG. 5 is the 4CL polynucleotide DNA sequence (SEQ ID NO: 7) and the 4CL amino acid sequence (SEQ ID NO: 10) respectively FIGS. 5A and 5B;

FIG. 6 is the CAD polynucleotide DNA sequence (SEQ ID NO: 8) and the CAD amino acid sequence (SEQ ID NO: 9) respectively FIGS. 6A and 6B;

FIG. 7 is a map of the DNA construct, $\mathrm{pBKPpt}_{4 C L}$ Pt4CL1-a, positioned in a plant transformation binary vector.

FIG. 8 is a map of the DNA construct, pBKPpt $_{4 C L}$ PtCAld5H-s, positioned in a plant transformation binary vector.

FIG. 9 is the protein sequence alignment of AldOMTs for representative species of plants.

FIG. 10 is the protein sequence alignment of CADs for representative species of plants.

FIG. 11 is the protein sequence alignment of CAld5Hs for representative species of plants.

FIG. 12 is the protein sequence alignment of 4CLs for representative species of plants.

It is expressly understood that the figures of the drawing are for the purposes of illustration and description only and are not intended as a definition of the limits of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method and DNA constructs useful for the transformation of plant tissue for the
alteration of lignin monomer composition, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose content and transgenic plants resulting from such transformations. The present invention is of particular value to the paper and pulp industries because lignin containing higher syringyl monomer content is more susceptible to chemical delignification. Woody plants transformed with the DNA constructs provided herein offer a significant advantage in the delignification process over conventional paper feedstocks. Similarly, modification of the lignin composition in grasses by the insertion and expression of a heterologous SAD gene offers a unique method for increasing the digestibility of grasses and is of significant potential economic benefit to the farm and agricultural industries.

The terms used in this specification generally have their ordinary meanings in the art, within the context of the invention and in the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the person of skill in the art in describing the compositions and methods of the invention and how to make and use them. It will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to the preferred embodiments.

As used herein, "gene" refers to a nucleic acid fragment that expresses a specific protein including the regulatory sequences preceding (5^{\prime} noncoding) and following (3^{\prime} noncoding) the coding region or coding sequence (See, below). "Native" gene refers to the gene as found in nature with its own regulatory sequences.
"Endogenous gene" refers to the native gene normally found in its natural location in the genome.
"Transgene" refers to a gene that is introduced by gene transfer into the host organism.
"Coding sequence" or "Coding Region" refers to that portion of the gene that contains the information for encoding a polypeptide. The boundaries of the coding sequence are determined by a start codon at the 5^{\prime} (amino) terminus and a translation stop codon at the 3^{\prime} (carboxyl) terminus. A coding sequence can include, for example, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA, and even synthetic DNA sequences.
"Promoter" or "Promoter Sequence" refers to a DNA sequence, in a given gene, which sequence controls the expression of the coding sequence by providing the recognition site for RNA polymerase and other factors required for proper transcription. Most genes have regions of DNA sequence that are promoter sequences which regulate gene expression. Promoter regions are typically found in the 5^{\prime} flanking DNA sequence upstream from the coding sequence in both prokaryotic and eukaryotic cells. A promoter sequence provides for regulation of transcription of the downstream gene sequence and typically includes from about 50 to about 2000 nucleotide base pairs. Promoter sequences also contain regulatory sequences such as enhancer sequences that can influence the level of gene expression. Some isolated promoter sequences can provide
for gene expression of heterologous DNAs, that is DNA different from the natural homologous DNA. Promoter sequences are also known to be strong or weak or inducible. A strong promoter provides for a high level of gene expression, whereas a weak promoter provides for a very low level of gene expression. An inducible promoter is a promoter that provides for turning on and off of gene expression in response to an exogenously added agent or to an environmental or developmental stimulus. An isolated promoter sequence that is a strong promoter for heterologous DNAs is advantageous because it provides for a sufficient level of gene expression to allow for easy detection and selection of transformed cells, and provides for a high level of gene expression when desired. A promoter may also contain DNA sequences that are involved in the binding of protein factors which control the effectiveness of transcription initiation in response to physiological or developmental conditions.
"Regulatory sequence(s)" refers to nucleotide sequences located upstream (5^{\prime}), within, and/or downstream (3') of a coding sequence, which control the transcription and/or expression of the coding sequences in conjunction with the protein biosynthetic apparatus of the cell. Regulatory sequences include promoters, translation leader sequences, transcription termination sequences and polyadenylation sequences.
"Encoding" and "coding" refer to the process by which a gene, through the mechanisms of transcription and translation, provides the information to a cell from which a series of amino acids can be assembled into a specific amino acid sequences to produce an active enzyme. It is understood that the process of encoding a specific amino acid sequence includes DNA sequences that may involve base changes that do not cause a change in the encoded amino acid, or which involve base changes which may alter one or more amino acids, but do not affect the functional properties of the protein encoded by the DNA sequence. It is therefore understood that the invention encompasses more than the specific exemplary sequences. Modifications to the sequences, such as deletions, insertions or substitutions in the sequence which produce silent changes that do not substantially affect the functional properties of the resulting protein molecule are also contemplated. For example, alterations in the gene sequence which reflect the degeneracy of the genetic code, or which result in the production of a chemically equivalent amino acid at a given site, are contemplated. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. In some cases, it may in fact be desirable to make mutants of the sequence to study the effect of retention of biological activity of the protein. Each of these proposed modifications is well within the routine skill in the art, as is the determination of retention of biological activity in the encoded products. Moreover, the skilled artisan recognizes that sequences encompassed by this invention are also defined by their ability to hybridize, under stringent condition, with the sequences exemplified herein.
"Expression" is meant to refer to the production of a protein product encoded by a gene. "Overexpression" refers to the production of a gene product in transgenic organisms that exceed levels of production in normal or nontransformed organisms.
"Functional portion" or "functional fragment" or "functional equivalents" of an enzyme is that portion, fragment or equivalent section which contains the active site for binding one or more reactants or is capable of improving or regulating the rate of reaction. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high substrate specificity.
"Enzyme encoded by a nucleotide sequence" includes enzymes encoded by a nucleotide sequence which includes partial isolated DNA sequences.
"Transformation" refers to the transfer of a foreign gene into the genome of a host organism and its genetically stable inheritance.
"\% identity" refers to the percentage of the nucleotides/ amino acids of one polynucleotide/polypeptide that are identical to the nucleotides/amino acids of another sequence of polynucleotide/polypeptide as identified by a program such as GAP from Genetics Computer Group Wisconsin (GCG) package (version 9.0) (Madison, Wis.). GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: $443-453,1970$) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. When parameters required to run the above algorithm are not specified, the default values offered by the program are contemplated.
"Substantial homology" or "substantial similarity" refers to a 70% or more similarity or 70% homology wherein "\% similarity" or "\% homology" between two polypeptide sequences is a function of the number of similar positions shared by two sequences on the basis of the scoring matrix used divided by the number of positions compared and then multiplied by 100 . This comparison is made when two sequences are aligned (by introducing gaps if needed) to determine maximum homology. The PowerBlast program, implemented by the National Center for Biotechnology Information, can be used to compute optimal, gapped alignments. GAP program from Genetics Computer Group Wisconsin package (version 9.0) (Madison, Wis.) can also be used.
"Lignin monomer composition" refers to the relative ratios of guaiacyl monomer and syringyl monomer found in lignified plant tissue.
"Plant" includes whole plants and portions of plants, including plant organs (e.g., roots, stems, leaves, etc).
"Angiosperm" refers to plants that produce seeds encased in an ovary. A specific example of an angiosperm is Liquidambar styraciflua (L.)[sweetgum].
"Gymnosperm" refers to plants that produce naked seeds, i.e., seeds that are not encased in an ovary. A specific example of a gymnosperm is Pinus taeda (L.)[loblolly pine].

As used herein, the terms "isolated and/or purified" with reference to a nucleic acid molecule or polypeptide refer to in vitro isolation of a nucleic acid or polypeptide molecule from its natural cellular environment, and from association with other components of the cell, such as nucleic acid or polypeptide, so that it can be sequenced, replicated and/or expressed.

An "isolated" strain of Agrobacterium refers to cells derived from a clone of Agrobacterium that is transformed in vitro with an isolated binary vector.

A "vector" is a recombinant nucleic acid construct, such as plasmid, phage genome, virus genome, cosmid, or artificial chromosome to which a polynucleotide in accordance with the invention may be attached. In a specific embodiment, the vector may bring about the replication of the attached segment, e.g., in the case of a cloning vector.
"Sinapyl alcohol dehydrogenase" or "SAD", coniferyl alcohol dehydrogenase or "CAD", coniferaldeyde 5-hydroxylase or "Cald5H", 5-hydroxyconiferaldehyde O-methyltransferase or "AldOMT", and 4-coumarate-CoA ligase or "4CL" refer to enzymes in the plant phenylpropanoid biosynthetic pathway. In the illustrated embodiments of the present invention, the DNA sequences encoding these enzymes were identified from quaking aspen Populus tremuloides. It is understood that each sequence can be used as a probe to clone its equivalent from any plant species by techniques (EST, PCR, RT-PCR, antibodies, etc.) well known in the art.

The Phenyl Propanoid Biosynthetic Pathway

Reference is made to FIG. 1 which shows different steps in the biosynthetic pathways from 4-coumarate (1) to guaiacyl (coniferyl alcohol (6)) and syringyl (sinapyl alcohol (9)) monolignols for the formation of guaiacyl-syringyl lignin together with the enzymes responsible for catalyzing each step. The enzymes indicated for each of the reaction steps are: 4-coumaric acid 3-hydroxylase (C3H) which converts 4-coumarate (1) to caffeate (2); 4-coumarate-CoA ligase (4CL) converts caffeate (2) to caffeoyl CoA (3) which in turn is converted to feruloyl CoA (4) by caffeoyl-CoA O-methyltransferase (CCoAOMT); cinnamoyl-CoA reductase (CCR) converts feruloyl CoA (4) to coniferaldehyde (5); coniferyl alcohol dehydrogenase (CAD) converts coniferaldehyde (5) to the guaiacyl monolignol coniferyl alcohol (6); at coniferaldehyde (5), the pathway splits wherein coniferaldehyde (5) can also be converted to 5-hydroxyconiferaldehyde (7) by coniferaldeyde 5-hydroxylase (Cald5H); 5-hydroxyconiferaldehyde O-methyltransferase (AldOMT) converts 5 -hydroxconiferaldehyde (7) to sinapaldehyde (8) which, in turn, is converted to the syringyl monolignol, sinapyl alcohol (9) by sinapyl alcohol dehydrogenase (SAD). DNA Constructs

According to the present invention, a DNA construct is provided which is a plant DNA having a promoter sequence, a coding region and a terminator sequence. The coding region encodes a combination of enzymes essential to lignin biosynthesis, specifically, SAD, CAD, Cald5OMT, and 4CL protein sequences, substantially similar sequences, or functional fragments thereof. The coding region is suitably a minimum size of 50 bases. The gene promoter is positioned at the 5^{\prime}-end of a transgene (e.g., 4CL alone or together with SAD, Cald5H, and AldOMT, and combinations thereof, or 4 CL and CAD alone, or together with CAld5H, SAD, and AldOMT, and combinations thereof, as described hereinafter) for controlling the transgene expression, and a gene termination sequence that is located at the 3^{\prime}-end of the transgene for signaling the end of the transcription of the transgene.

The DNA construct in accordance with the present invention can be incorporated into the genome of a plant by transformation to alter lignin biosynthesis, increase syringyl/ guaiacyl (S/G) lignin ratio and increase cellulose content. The DNA construct may include clones of CAld5H, SAD, AldOMT, CAD, and 4CL, and variants thereof such as are permitted by the degeneracy of the genetic code and the functional equivalents thereof.

The DNA constructs of the present invention may be inserted into plants to regulate production the following
enzymes: CAld5H, SAD, AldOMT, CAD, and 4CL. Depending on the nature of the construct, the production of the protein may be increased or decreased, either throughout or at particular stages in the life of the plant, relative to a similar control plant that does not incorporate the construct into its genome. For example, the orientation of the DNA coding sequence, promoter, and termination sequence can serve to either suppress lignin formation or amplify lignin formation. For the down-regulation of lignin synthesis, the DNA is in the antisense orientation. For the amplification of lignin biosynthesis, the DNA is in the sense orientation, thus to provide one or more additional copies of the DNA in the plant genome. In this case, the DNA is suitably a full-length cDNA copy. It is also possible to target expression of the gene to specific cell types of the plants, such as the epidermis, the xylem, the roots, etc. Constructs in accordance with the present invention may be used to transform cells of both monocotyledons and dicotyledons plants in various ways known in the art. In many cases, such plant cells may be cultured to regenerate whole plants which subsequently reproduce to give successive generations of genetically modified plants. Examples of plants that are suitably genetically modified in accordance with the present invention, include but are not limited to, trees such a aspen, poplar, pine and eucalyptus.

Promoters and Termination Sequences

Various gene promoter sequences are well known in the art and can be used in the DNA constructs of present invention. The promoter in the constructs in accordance with the present invention suitably provides for expression of the linked DNA segment. The promoter can also be inducible so that gene expression can be turned on or off by an exogenously added agent. It may also be preferable to combine the desired DNA segment with a promoter that provides tissue specific expression or developmentally regulated gene expression in plants.

The promoter may be selected from promoters known to operate in plants, e.g., CaMV35S, GPAL2, GPAL3 and endogenous plant promoter controlling expression of the enzyme of interest. Use of a constitutive promoter such as the CaMV35S promoter (Odell et al. 1985), or CaMV 19S (Lawton et al., 1987) can be used to drive the expression of the transgenes in all tissue types in a target plant. Other promoters are nos (Ebert et al. 1987), Adh (Walker et al., 1987), sucrose synthase (Yang et al., 1990), Δ-tubulin, ubiquitin, actin (Wang et al., 1992), cab (Sullivan et al., 1989), PEPCase (Hudspeth et al., 1989) or those associate with the R gene complex (Chandler et al., 1989). On the other hand, use of a tissue specific promoter permits functions to be controlled more selectively. The use of a tissuespecific promoter has the advantage that the desired protein is only produced in the tissue in which its action is required. Suitably, tissue-specific promoters, such as those would confine the expression of the transgenes in developing xylem where lignification occurs, may be used in the inventive DNA constructs.

A DNA segment can be combined with the promoter by standard methods as described in Sambrook et al., 2nd ed. (1982). Briefly, a plasmid containing a promoter such as the CaMV 35S promoter can be constructed as described in Jefferson (1987) or obtained from Clontech Lab, Palo Alto, Calif. (e.g., pBI121 or pBI221). Typically, these plasmids are constructed to provide for multiple cloning sites having specificity for different restriction enzymes downstream from the promoter. The DNA segment can be subcloned downstream from the promoter using restriction enzymes to ensure that the DNA is inserted in proper orientation with respect to the promoter so that the DNA can be expressed.

The gene termination sequence is located 3^{\prime} to the DNA sequence to be transcribed. Various gene termination sequences known in the art may be used in the present inventive constructs. These include nopaline synthase (NOS) gene termination sequence (see, e.g., references cited in co-pending, commonly-owned PCT application, PCT/US/ 0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.)
Marker Genes
A marker gene may also be incorporated into the inventive DNA constructs to aid the selection of plant tissues with positive integration of the transgene. "Marker genes" are genes that impart a distinct phenotype to cells expressing the marker gene, and thus, allow such transformed cells to be distinguished from cells that do not have the marker. Many examples of suitable marker genes are known to the art and can be employed in the practice of the invention, such as neomycin phosphotransferase II (NPT II) gene that confers resistance to kanamycin or hygromycin antibiotics which would kill the non-transformed plant tissues containing no NPT II gene (Bevan et al., 1983). Numerous other exemplary marker genes used in the method, in accordance with the present invention are listed in Table 1 of co-pending, commonly owned of PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.

Therefore, it will be understood that the following discussion is exemplary rather than exhaustive. In light of the techniques disclosed herein and the general recombinant techniques which are known in the art, the present invention renders possible the introduction of any gene, including marker genes, into a recipient cell to generate a transformed plant.
Optional Sequences in the Expression Cassette
The expression cassette containing DNA sequences in accordance with the present invention can also optionally contain other DNA sequences. Transcription enhancers or duplications of enhancers can be used to increase expression from a particular promoter. One may wish to obtain novel tissue-specific promoter sequences for use in accordance with the present invention. To achieve this, one may first isolate cDNA clones from the tissue concerned and identify those clones which are expressed specifically in that tissue, for example, using Northern blotting. Ideally, one would like to identify a gene that is not present in a high copy number, but which gene product is relatively abundant in specific tissues. The promoter and control elements of corresponding genomic clones may then be localized using the techniques of molecular biology known to those of skill in the art.

Expression of some genes in transgenic plants will occur only under specified conditions. It is known that a large number of genes exist that respond to the environment. In some embodiments of the present invention expression of a DNA segment in a transgenic plant will occur only in a certain time period during the development of the plant. Developmental timing is frequently correlated with tissue specific gene expression.
As the DNA sequence inserted between the transcription initiation site and the start of the coding sequence, i.e., the untranslated leader sequence, can influence gene expression, one can also employ a particular leader sequence. Preferred leader sequence include those which comprise sequences selected to direct optimum expression of the attached gene, i.e., to include a preferred consensus leader sequence which can increase or maintain mRNA stability and prevent inappropriate initiation of translation (Joshi, 1987). Such
sequences are known to those of skill in the art. Sequences that are derived from genes that are highly expressed in plants will be most preferred.

Additionally, expression cassettes can be constructed and employed to target the gene product of the DNA segment to an intracellular compartment within plant cells or to direct a protein to the extracellular environment. This can generally be achieved by joining a DNA sequence encoding a transit or signal peptide sequence to the coding sequence of the DNA segment. Also, the DNA segment can be directed to a particular organelle, such as the chloroplast rather than to the cytoplasm.

Alternatively, the DNA fragment coding for the transit peptide may be chemically synthesized either wholly or in part from the known sequences of transit peptides such as those listed above. The description of the optional sequences in the expression cassette, is commonly owned, co-pending PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.
Transformation
Transformation of cells from plants, e.g., trees, and the subsequent production of transgenic plants using e.g., Agrobacterium-mediated transformation procedures known in the art, and further described herein, is one example of a method for introducing a foreign gene into plants. Although, the method of the invention can be performed by other modes of transformation, Agrobacterium-mediated transformation procedures are cited as examples, herein. For example, transgenic plants may be produced by the following steps: (i) culturing Agrobacterium in low-pH induction medium at low temperature and preconditioning, i.e., coculturing bacteria with wounded tobacco leaf extract in order to induce a high level of expression of the Agrobacterium vir genes whose products are involved in the T-DNA transfer; (ii) coculturing desired plant tissue explants, including zygotic and/or somatic embryo tissues derived from cultured explants, with the incited Agrobacterium; (iii) selecting transformed callus tissue on a medium containing antibiotics; and (iv) converting the embryos into platelets.

Any non-tumorigenic A. tumefaciens strain harboring a disarmed Ti plasmid may be used in the method in accordance with the invention. Any Agrobacterium system may be used. For example, Ti plasmid/binary vector system or a cointegrative vector system with one Ti plasmid may be used. Also, any marker gene or polynucleotide conferring the ability to select transformed cells, callus, embryos or plants and any other gene, such as for example a gene conferring resistance to a disease, or one improving lignin content or structure or cellulose content, may also be used. A person of ordinary skill in the art can determine which markers and genes are used depending on particular needs.

To increase the infectivity of the bacteria, Agrobacterium is cultured in low- pH induction medium, i.e., any bacterium culture media with a pH value adjusted to from 4.5 to 6.0 , most preferably about 5.2 , and at low temperature such as for example about $19-30^{\circ} \mathrm{C}$., preferably about $21-26^{\circ} \mathrm{C}$. The conditions of low- pH and low temperature are among the well-defined critical factors for inducing virulence activity in Agrobacterium (e.g., Altmorbe et al., 1989; Fullner et al., 1996; Fullner and Nester, 1996).

The bacteria is preconditioned by coculturing with wounded tobacco leaf extract (prepared according to methods known generally in the art) to induce a high level of expression of the Agrobacterium vir genes. Prior to inoculation of plant somatic embryos, Agrobacterium cells can be treated with a tobacco extract prepared from wounded leaf
tissues of tobacco plants grown in vitro. To achieve optimal stimulation of the expression of Agrobacterium vir genes by wound-induced metabolites and other cellular factors, tobacco leaves can be wounded and pre-cultured overnight. Culturing of bacteria in low pH medium and at low temperature can be used to further enhance the bacteria vir gene expression and infectivity. Preconditioning with tobacco extract and the vir genes involved in the T-DNA transfer process are generally known in the art.
Agrobacterium treated as described above is then cocultured with a plant tissue explant, such as for example, zygotic and/or somatic embryo tissue. Non-zygotic (i.e., somatic) or zygotic tissues can be used. Any plant tissue may be used as a source of explants. For example, cotyledons from seeds, young leaf tissue, root tissues, parts of stems including nodal explants, and tissues from primary somatic embryos such as the root axis may be used. Generally, young tissues are a preferred source of explants.

The above-described transformation and regeneration protocol is readily adaptable to other plant species. Other published transformation and regeneration protocols for plant species include Danekar et al., 1987; McGranahan et aL, 1988; McGranahan et al., 1990; Chen, Ph.D. Thesis, 1991; Sullivan et al., 1993; Huang et al., 1991; Wilde et al., 1992; Minocha et al., 1986; Parsons et al., 1986; Fillatti et al., 1987; Pythoud et al., 1987; De Block, 1990; Brasileiro et al., 1991; Brasileiro et al., 1992; Howe et al., 1991; Klopfenstein et al., 1991; Leple et al., 1992; and Nilsson et al., 1992.

Characterization

To confirm the presence of the DNA segment(s) or "transgene(s)" in the regenerated plants, a variety of assays may be performed. Such assays include, for example, "molecular biological" assays well known to those of skill in the art, such as Southern and Northern blotting and PCR; "biochemical" assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant.

1. DNA Integration, RNA Expression and Inheritance

Genomic DNA may be isolated from callus cell lines or any plant parts to determine the presence of the DNA segment through the use of techniques well known to those skilled in the art. Note that intact sequences will not always be present, presumably due to rearrangement or deletion of sequences in the cell.

The presence of DNA elements introduced through the methods of this invention may be determined by polymerase chain reaction (PCR). Using this technique, discreet fragments of DNA are amplified and detected by gel electrophoresis. This type of analysis permits one to determine whether a DNA segment is present in a stable transformant, but does not prove integration of the introduced DNA segment into the host cell genome. In addition, it is not possible using PCR techniques to determine whether transformants have exogenous genes introduced into different sites in the genome, i.e., whether transformants are of independent origin. It is contemplated that using PCR techniques it would be possible to clone fragments of the host genomic DNA adjacent to an introduced DNA segment.

Positive proof of DNA integration into the host genome and the independent identities of transformants may be determined using the technique of Southern hybridization. Using this technique, specific DNA sequences that were introduced into the host genome and flanking host DNA sequences can be identified. Hence the Southern hybridiza-
tion pattern of a given transformant serves as an identifying characteristic of that transformant. In addition, it is possible through Southern hybridization to demonstrate the presence of introduced DNA segments in high molecular weight DNA, i.e., confirm that the introduced DNA segment has been integrated into the host cell genome. The technique of Southern hybridization provides information that is obtained using PCR, e.g., the presence of a DNA segment, but also demonstrates integration into the genome and characterizes each individual transformant.

It is contemplated that by using the techniques of dot or slot blot hybridization which are modifications of Southern hybridization techniques, one could obtain the same information that is derived from PCR, e.g., the presence of a DNA segment.

Both PCR and Southern hybridization techniques can be used to demonstrate transmission of a DNA segment to progeny. In most instances the characteristic Southern hybridization pattern for a given transformant will segregate in progeny as one or more Mendelian genes (Spencer et al., 1992; Laursen et al.,1994) indicating stable inheritance of the gene.

Whereas DNA analysis techniques may be conducted using DNA isolated from any part of a plant, RNA may only be expressed in particular cells or tissue types, and hence, it will be necessary to prepare RNA for analysis from these tissues. PCR techniques may also be used for detection and quantitation of RNA produced from introduced DNA segments. In this application of PCR, it is first necessary to reverse transcribe RNA into DNA, using enzymes such as reverse transcriptase, and then through the use of conventional PCR techniques amplify the DNA. In most instances, PCR techniques, while useful, will not demonstrate integrity of the RNA product. Further information about the nature of the RNA product may be obtained by Northern blotting. This technique will demonstrate the presence of an RNA species and give information about the integrity of that RNA. The presence or absence of an RNA species can also be determined using dot or slot blot Northern hybridizations. These techniques are modifications of Northern blotting and demonstrate only the presence or absence of an RNA species. 2. Gene Expression

While Southern blotting and PCR may be used to detect the DNA segment in question, they do not provide information as to whether the DNA segment is being expressed. Expression may be evaluated by specifically identifying the protein products of the introduced DNA segments or evaluating the phenotypic changes brought about by their expression.

Assays for the production and identification of specific proteins may make use of physical-chemical, structural, functional, or other properties of the proteins. Unique physical-chemical or structural properties allow the proteins to be separated and identified by electrophoretic procedures, such as native or denaturing gel electrophoresis or isoelectric focussing, or by chromatographic techniques such as ion exchange or gel exclusion chromatography. The unique structures of individual proteins also offer opportunities for use of specific antibodies to detect their presence in formats such as an ELISA assay. Combinations of approaches may be employed with even greater specificity such as western blotting in which antibodies are used to locate individual gene products that have been separated by electrophoretic techniques. Additional techniques may be employed to absolutely confirm the identity of the product of interest such as evaluation by amino acid sequencing following purification. Although these are among the most commonly employed, other procedures may be additionally used.

Assay procedures may also be used to identify the expression of proteins by their functionality, especially the ability of enzymes to catalyze specific chemical reactions involving specific substrates and products. These reactions may be followed by providing and quantifying the loss of substrates or the generation of products of the reactions by physical or chemical procedures. Examples are as varied as the enzyme to be analyzed and may include assays for PAT enzymatic activity by following production of radiolabelled acetylated phosphinothricin from phosphinothricin.
Very frequently the expression of a gene product is determined by evaluating the phenotypic results of its expression. These assays also may take many forms including but not limited to analyzing changes in the chemical composition, morphology, or physiological properties of the plant. Chemical composition may be altered by expression of DNA segments encoding enzymes or storage proteins which change amino acid composition and may be detected by amino acid analysis, or by enzymes which change starch quantity which may be analyzed by near infrared reflectance spectrometry. Morphological changes may include greater stature or thicker stalks. Most often changes in response of plants or plant parts to imposed treatments are evaluated under carefully controlled conditions termed bioassays.

The invention will be further described by the following non-limiting examples.

EXAMPLE 1

Preparation of Transgenic Aspen

Construction of Binary Vectors

$\mathrm{pBKPpt}_{4 C L}$ Pt4CL1-a: Aspen 4CL1 xylem specific promoter ($\mathrm{PPt}_{4 C L}, 1.1 \mathrm{~kb}$, GenBank AF041051) was prepared and linked to aspen 4CL1 cDNA (Pt4CL1, GenBank AF041049) which was orientated in the antisense direction. Then the cassette containing aspen 4CL1 promoter and antisense aspen 4CL1 cDNA was positioned in a plant transformation binary vector, as shown in FIG. 1. (pBKPpt ${ }_{4 C L}$ Pt4CL1-a construct)
$\mathrm{pBKPpt}_{4 c t}$ PtCAld5H-s: From $^{\mathrm{p}} \mathrm{pBPpt}_{4 C L}$ Pt4CL-a construct, the antisense Pt4CL1 was replaced with PtCAld5H cDNA in a sense orientation, yielding a $\mathrm{pBKPpt}{ }_{4 C L}$ PtCAld5H-s transformation binary construct, as shown in FIG. 8.

Also, Example 1 of PCT application PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference, describes a number of other gene constructs for preparing transgenic plants. The plants are transformed with a genes from the phenylpropanoid pathway (i.e., 4CL, AEOMT, CoAOMT, and CAld5H) using an operably linked to either a homologous or a heterologous and either a constitutive or tissue-specific promoter
Incorporation of Binary Vector into Agrobacterium
According to the protocol described in Tsai et al. (1994, Plant Cell Reports, 14:94-97) Agrobacterium C58/pMP90 strain was grown in LB with selection of gentamicin at 28° C. overnight. Cells were harvested by centrifugation at $10,000 \mathrm{rpm}$ for 10 minutes at $4^{\circ} \mathrm{C}$. The cell pellet was washed with 0.5 volume of ice-cold 20 mM CaCl , and centrifuged again. The cells were then resuspended in 0.1 volume of ice-cold $20 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ in a sample tube. About 1 $\mu \mathrm{g}$ of binary vector DNA was added to $200 \mu \mathrm{~L}$ of the cell suspension and mixed by pipetting. The sample tube was chilled in liquid N_{2} for 5 minutes and thawed at $37^{\circ} \mathrm{C}$. in a water bath for 5 minutes. One mL of LB medium was added and the mixture was incubated at $28^{\circ} \mathrm{C}$. for 3 hours with gentle shaking. Twenty $\mu \mathrm{L}$ of the cells were spread onto a LB
plate containing $25 \mu \mathrm{~g} / \mathrm{mL}$ gentamicin and $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and incubated at $28^{\circ} \mathrm{C}$. for 2 days. PCR (amplification conditions, cycling parameters and primers are described below) was used to verify the presence of DNA from the vector in the transformed colonies. Simultancous Transformation of Aspen with Multiple Genes Via Engineered Agrobacterium Strains

For simultaneous transformation of multiple genes, $\mathrm{pBKPpt}_{4 c l}$ Pt4CL-a and $\mathrm{pBKPpt}_{4 c l} \mathrm{PtCa}^{2} 5 \mathrm{H}$ Agrobacterium clones were cultured in LB medium at $28^{\circ} \mathrm{C}$. overnight separately. The Agrobacterium strains were subcultured individually by a 100 -fold dilution into 50 mL of $\mathrm{LB}(\mathrm{pH}$ 5.4) containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin, $25 \mu \mathrm{~g} / \mathrm{mL}$ gentamycin and $20 \mu \mathrm{M}$ acetosyringone (in DMSO), and grown overnight at $28^{\circ} \mathrm{C}$. with shaking. An equal volume of the same density of individually cultured Agrobacterium strains was then mixed. Leaves excised from sterile tobacco plants were cut into pieces with a size of about $5 \mathrm{~mm}^{2}$ and the leaf discs were then immersed in the Agrobacterium mixture for 5 minutes.

After removing excess Agrobacterium cells, the treated leaf dises were placed on callus induction medium (WPM:Woody Plant Medium, BA: 6-benzyladenine+2,4-D: 2,4-dichlorophenoxyacetic acid; Tsai et al. 1994, Plant Cell Reports, 14:94-97) and cultured for 2 days. Then, the pre-cultured leaf discs were rinsed with sterile water several times to remove the Agrobacterium cells and washed in 1 $\mathrm{mg} / \mathrm{mL}$ claforan and $1 \mathrm{mg} / \mathrm{mL}$ ticarcillin with shaking for 3 hours to kill Agrobacterium. After briefly blot-drying, the pre-cultured and washed leaf discs were cultured on callus induction medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and 300 $\mu \mathrm{g} / \mathrm{mL}$ claforan for selection of transformed cells. After 2 to 3 subcultures (10 days/subculture), the calli grown on the leaf discs were excised and transferred onto shoot induction medium (WPM+TDZ: N-phenyl-N'-1,2,3-thiadiazol-5-ylurea) containing $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin and $300 \mu \mathrm{~g} / \mathrm{ml}$ claforan for regenerating shoots. After shoots were grown to about 0.5 cm high, they excised and planted to rooting media (WPM with kanamycin and claforan). Whole plants about 7 cm high were transplanted into soil and maintained in a greenhouse for subsequent molecular characterization. Genomic DNA Isolation

Genomic DNA was isolated according to Hu et al. (1998). About 100 mg of young leaves were collected from each plant growing in the greenhouse and ground in liquid N_{2} to fine powder for DNA isolation using QIAGEN plant DNA isolation kit (Valencia, Calif.). Specifically, the powdered tissue was added to extract buffer containing 2% hexadecyltrimethylammonium bromide (CTAB), 100 mM Tris$\mathrm{HCl}, \mathrm{pH} 8.0,20 \mathrm{mM}$ EDTA, 1.4 M NaCl and 30 mM β-mercaptoethanol at $5 \mathrm{~mL} / \mathrm{g}$ tissue. The extraction mixture was incubated in a tube at $60^{\circ} \mathrm{C}$. for 1 hour with occasional shaking. One volume of chloroform-isoamyl alcohol (24:1) was added and mixed gently. The two phases were separated by centrifugation at $10,000 \times \mathrm{g}$ for 10 minutes. The aqueous phase was transferred to a new tube and extracted with chloroform in the presence of 1% CTAB and 0.7 M NaCl . The DNA was precipitated by addition of $2 / 3$ volume of isopropanol ($-20^{\circ} \mathrm{C}$.) and kept at $-20^{\circ} \mathrm{C}$. for 20 minutes. Following the centrifugation at $10,000 \times \mathrm{g}$ for 10 minutes, the pelleted DNA was washed with 70% ethanol 10 mM ammonia acetate. Then the pellet was dissolved in 2 mL TE buffer (10 mM Tris- $\mathrm{HCl} / 0.1 \mathrm{mM}$ EDTA, pH 8) and treated with 2 $\mu \mathrm{g}$ RNase A at $37^{\circ} \mathrm{C}$. for 20 minutes. The DNA was precipitated by addition of 2 mL of 5 M ammonia acetate
and 10 mL of 95% ethanol at $-20^{\circ} \mathrm{C}$. for 20 minutes. After centrifugation, the pellet was washed with 70% ethanol. After a brief drying, genomic DNA was dissolved in TE buffer.
PCR Verification of Foreign Gene Insertion in Host Plant Genome

PCR was used to verify the integration of the gene constructs in the genome of transgenic plants. Two specific primers were synthesized for each construct and used to PCR-amplify the corresponding construct in genome of transgenic Aspen. For the $\mathrm{PBKPPt}_{4 C L}$ Pt4CL1-a construct, two specific primers were synthesized that amplify a 4CL cDNA fragment. Pt4CL1 promoter sense primer (5'CAGGAATGCTCTGCACTCTG3') (SEQ ID NO:11) and Pt4CL1 sense primer (5'ATGAATCCACAAGAATTCAT3') (SEQ ID NO:12). at the translation start region. Primers for PCR verification of pBKPpt_{4} CL PtCald5H-s construct are Pt4CL1 promoter sense primer (5 'CAGGAATGCTCTGCACTCTG3') (SEQ ID NO:13) and PtCald5H antisense primer (5'TTAGAGAGGACAGAGCACACG3') (SEQ ID NO:14) at translation stop region.
The PCR reaction mixture contained 100 ng genomic DNA of transformed aspen, and $0.2 \mu \mathrm{M}$ of each primer, 100 $\mu \mathrm{M}$ of each deoxyribonucleotide triphosphate, $1 \times \mathrm{PCR}$ buffer and 2.5 Units of Taq DNA polymerase (Promega Madison, Wis.) in a total volume of $50 \mu \mathrm{~L}$. The cycling parameters were as follows: $94^{\circ} \mathrm{C}$. for 1 minute, $56^{\circ} \mathrm{C}$. for 1 minute (for 4 CL and CAld5H or can vary between cDNA templates used) according to different gene checked) and $72^{\circ} \mathrm{C}$. for 2 minute, for 40 cycles, with 5 minutes at $72^{\circ} \mathrm{C}$. extension. The PCR products were electrophoresized on a 1% agarose gel.

EXAMPLE 2

Preparation of Other Transgenic Plants
It is important to recognize that there is a substantial percentage of sequence homology among the plant genes involved in the lignin biosynthetic pathway, discussed herein. This substantial sequence homology allows the method in accordance with the invention disclosed herein to be applicable to all plants that possess the requisite genes involved in the lignin biosynthetic pathway. To demonstrate the substantial sequence homology among plant genes, the percentage sequence homology is set forth in tabular form, for example, CAld5H genes (Table 1), AldOMT genes (Table 2), CAD genes (Table 3), and 4CL genes (See FIG. 12). Therefore, it is possible to alter lignin monomer composition, increase S/G lignin ratio, and increase cellulose content in all plants by using the method in accordance with the invention, described herein.

TABLE 1

Protein sequence homology (\%) of plant Coniferyl Aldehyde 5-hydroxylase (CAld5H) from 1) Aspen; 2) Poplar, AJ010324; 3) Sweetgum, AF139532; 4) Arabidopsis (Ferulic Acid 5-hydroxylase, F5H)				
1	2	3	4	
1				
2	99	84		
3	84	83	83	

TABLE 2

Protein sequence homology (\%) of plant AldOMTs from 1) Aspen, X62096; 2) Poplar, M73431; 3) Almond, X83217; 4) Strawberry, AF220491; 5) Alfalfa, M63853; 6) Eucalyptus, X74814; 7) Clarkia breweri, AF006009; 8) Sweetgum, AF139533; 9) Arabidopsis, U70424; 10) Tobacco, X74452; 11) Vitis vinifera, AF239740											
	1	2	3	4	5	6	7	8	9	10	11
1											
2	99										
3	92	92									
4	91	90	94								
5	90	90	89	89							
6	89	89	89	87	87						
7	88	88	89	88	87	90					
8	88	87	88	87	86	85	83				
9	84	84	85	86	82	82	82	83			
10	83	83	83	82	81	82	80	83	77		
11	80	80	78	77	78	77	78	80	76	77	

incorporated into plant cells by Agrobacterium mediated transformation, as set forth by the method in accordance with the invention and after PCR confirmation of transgene integration, 14 positive transgenic trees were randomly selected, representing three different trangenic groups, i.e., Groups I, II and III. Group I (plant \#21, 22, 23, 25, and 37) consists of those with the integration of only antisense Pt4CL1 cDNA (Table 4). Group II plants (\# 32, 84, 93, and 94) harbored only sense PtCAld5H cDNA, whereas Group III plants (\#71, 72, 74, and 141) contained both antisense Pt4CL1 and sense PtCAld5H transgenes. These transgenic trees were then further analyzed for their lignin and cellulose contents and lignin S/G ratio (Table 4). It is clear that, when compared with the control, untransformed aspen, transgenic plants (\#21, 22, 23, 25, and 37) engineered for the suppression of 4CL gene with antisense Pt4CL1 transgene had drastic reductions in their lignin content, with significant increases in their cellulose content. Transgenic plants (\#32, $84,93,94$, and 108) engineered for the overexpression of

TABLE 3

Protein sequence homology (\%) of plant CADs from 1) Aspen, AF217957; 2) Cottonwood, Z19568 and 3) Udo, D13991; 4) Tobacco, X62343; 5) Tobacco, X62344; 6) Eucalyptus, AF038561; 7) Eucalyptus, X65631; 8) Lucerne, AF083332; 9) Lucerne, Z19573; 10) Maize, AJ005702; 11) Maize, Y13733; 12) Sugarcane, AJ231135; 13) Radiata pine, U62394; 14) Loblolly pine, Z37992; 15) Loblolly pine, Z37991; 16) Norway spruce, X72675.																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																
2	97															
3	85	84														
4	82	82	84													
5	80	80	81	94												
6	81	81	82	80	78											
7	81	80	81	80	78	80										
8	79	79	80	80	79	79	79									
9	79	80	80	79	78	78	79	99								
10	78	77	79	76	74	76	77	73	73							
11	78	78	79	77	74	76	76	73	72	99						
12	77	76	78	74	73	75	74	73	73	95	96					
13	70	71	69	70	70	69	68	67	68	67	68	68				
14	69	70	69	69	69	69	68	68	68	67	67	67	99			
15	69	70	68	69	69	68	68	67	67	67	67	67		95		
16	69	69	70	70	69	68	68	68	67	69	69	67		95	94	

To further demonstrate the versatility of this invention in transferring a variety of foreign genes and the applicability of this invention to plants other than the herbaceous species, different binary vectors were constructed and transferred into aspen (Populus tremuloides) tree. Two binary vectors, each containing a cDNA sequence and a neomycin phosphotransferase (NPT II) cDNA encoding kanamycin resistance, were constructed. Each vector was then individually mobilized into Agrobacterium strain C58 to create two isolated (engineered) Agrobacterium strains. It should be noted that about 50 transgenic tobacco plants were generated by the same technique harboring 4 different sets of foreign genes, as described in the PCT application PCTUS0027704 filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.

Table 4 summarizes the numerical results from simultaneous manipulating xylem-specific expression of 4CL and CAld5H in transgenic aspen. After DNA constructs were

CAld5H with sense PtCA1b5H transgene had pronounced increases in their S / G ratio, but their lignin and cellulose contents remained essentially unaffected. When engineered for the simultaneous suppression of 4CL gene and overexpression of CAld5H gene, transgenic plants (\#71, 72, 74, and 141) all exhibited low lignin content, high S/G ratio and elevated cellulose quantity. In summary, these results show that multiple genes carried by individual Agrobacterium strains can be integrated simultaneously into the plant genome.
Moreover, it was demonstrated as shown herein below, that transgenic plants with a nearly 30% increase in cellulose content and over 50% lignin quantity reduction, accompanied with a significant augmentation of the S / G ratio, can be easily produced. It is conceivable that more genes can also be efficiently transferred at one time. Only one suitable marker gene is required for this system, although a number of marker genes can also be employed.

TABLE 4

Plant \# S	Simultaneous manipulating xylem-specific expression of 4CL and CAld5H in transgenic aspen.														
	Control	21	22	23	25	37	32	84	93	94	108	71	72	74	141
Gene integrated															
4CL-a		Y	Y	Y	Y	Y						Y	Y	Y	Y
CAld5 H -s							Y	Y	Y	Y	Y	Y	Y	Y	Y
Lignin content (\%)	22.4	16.0	15.3	14.4	13.1	14.9	22.4	21.6	21.1	20.7	19.7	13.2	13.7	12.4	10.7
Lignin S/G ratio	2.2	2.1	2.0	2.2	2.3	2.1	4.8	4.0	5.5	4.9	3.0	3.3	3.6	3.4	2.7
Cellulose content (\%)	41.4	43.1	ND	ND	47.3	ND	40.0	ND	44.7	ND	ND	ND	49.2	ND	53.3

ND: not determined

EXAMPLE 3

Production of Commercially Desirable Agronomic Traits in Transformed Plants
The following genetic transformations illustrate the production of commercially desirable agronomic traits in plants.
Gymnosperms
A. To produce syringyl-enriched lignin in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H, and AldOMT genes in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system allows. These three genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
B. To produce decreased lignin content, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose quantity in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H and AldOMT genes in the sense orientation and 4CL gene in either sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
C. To produce decreased lignin content, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose quantity in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H and AldOMT genes in the sense orientation and 4CL and CAD genes in either sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These five genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
D. To produce increased lignin content in gymnosperm plants, gymnosperm plants are genetically transformed with 4CL gene in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system.
E. To produce increased lignin content and increased syringyl/guaiacyl (S/G) lignin ratio in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H, AldOMT, and 4CL genes in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
F. To produce increased lignin content, increased syringyl/ guaiacyl (S/G) lignin ratio in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H, AldOMT, and 4CL genes in the sense orientation and CAD gene in the antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.

Angiosperms

A. To produce increased S / G lignin ratio in angiosperm plants, angiosperm plants are genetically transformed with either CAld5H, AldOMT, or SAD genes in sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These three genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
B. To produce decreased lignin content, increased S/G lignin ratio and increased cellulose quantity in angiosperm plants, angiosperm plants are genetically transformed with either SAD, CAld5H, or AldOMT genes in the sense orientation and 4CL gene in the sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
C. To produce decreased lignin content, increased S/G lignin ratio and increased cellulose quantity in angiosperm plants, angiosperm plants are genetically transformed with either SAD, CAld5H, or AldOMT genes in the sense orientation and 4CL and CAD genes in the sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These five genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
D. To produce increased lignin content in angiosperm plants, angiosperm plants are genetically transformed with 4CL gene in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system.
E. To produce increased lignin content and increased S/G ratio in angiosperm plants, angiosperm plants are genetically transformed with 4CL in the sense orientation and either SAD, CAld5H, or AldOMT genes also
in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
F. To produce increased lignin content and increased S/G ratio in angiosperm plants, angiosperm plants are genetically transformed with 4CL in the sense orientation and either SAD, CAld5H, or AldOMT genes also in the sense orientation and CAD in the antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
All publications, patents and patent applications cited herein are incorporated herein by reference. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details herein may be varied considerably without departing from the basic principles of the invention. Accordingly, it is intended that the present invention be solely limited by the broadest interpretation that can be accorded the appended claims.

REFERENCES

Bugos et al., 1991, Plant Mol. Biol. 17:203.
Chang, H. M., and Sarkanen, K. V., 1973, Tappi 56:132.
Chiang, V. L., and Funaoka, M., 1990, Holzforschung 44:309.
Hu et al., 1999, Nature Biotech. 17:808.
Sarkanen, K. V., and Ludwig, C. H., eds (WileyInterscience, New York), 639.
Tsai et al., 1994, Plant Cell Report 14:94.
Boudet et al., 1995, New Phytol. 129:203.
Ibrahim, 1997, Trends Plant Sci. 2:249.
Li et al., 1997, Proc. Natl. Acad. Sci. USA 94:5461.
Joshi and Chiang, 1998, Plant Mol. Biol. 37:663.
Brasileiro et al., 1991, Plant Mol. Bio. 17:441.
Brasileiro et al., 1992, Transgenic Res. 1:133.
Chen et al., 1998, Nature Biotechnology 16, 11:1060.
Chen, Ph.D. Thesis, 1991, North Carolina State University, Raleigh, N.C.
Chen et al., 1999, Planta 207:597.
Christou, 1996, Bio/Technology 10:667.
Chandler et al., 1989.
Danekar et al., 1987, Bio/Technology 5:587.
De Block, 1990, Plant Physiol. 93:1110.
Ebinuma et al., 1997, Proceedings of the National Academic of Sciences 94:2117.
Ebert et al. 1987.
Fillatti et al., 1987, Mol. Gen. Genet. 206:192.
Freudenberg, 1965.
Horsch et al., 1985, Science 227:1229.

Howe et al., 1991, Woody Plant Biotech. Plenum Press, New York, 283.
Huang et al., 1991, In Vitro Cell Dev. Bio. 4:201.
Hudspeth et al., 1989, Plant Mol. Biol., 12:579.
Hu et al., 1998, Proc. Natl. Acad. Sci. USA 95:5407.
Hu et al., 1999, Nat. Biotechnol. 17:808.
Humphreys et al., 1999, Proc. Nat. Acad. Sci. USA 96:10045.

Jornvall et al., 1987, Eur. J Biochem. 167:195.
Jefferson et al.,1987.
Klopfenstein et al., 1991, Can. J For. Res. 21:1321.
Lawton et al., 1987, Plant Mol. Biol. 9:31F.
Buxton and Roussel, 1988, Crop. Sci. 28,:553.
Jung and Vogel, 1986, J. Anim., Sci. 62:1703.
Leple et a1., 1992, Plant Cell Reports 11:137.
Li et al., 1997, Proc. Natl. Acad. Sci. USA, 94:5461.
Li et al., 2001, Plant Cell, 13:1567.
Li et al, 1997, Proc. Natl. Acad. Sci. USA 94:5431.
Li et al., 1999, Plant Mol. Biol. 40:555.
Li et al., 2000, J. Biol. Chem. 275:6537.
MacKay et al., 1995, Mol. Gen. Genet. 247:537.
MacKay et al., 1997.
McGranahan et al., 1988, Bio/Technology 6:800.
McGranahan et al., 1990, Plant Cell Reports 8:512.
Minocha et al., 1986, Proc. TAPPI Research and Development Conference, TAPPI Press, Atlanta, 89.
Nelson et al. 1996, Pharmacogenetics 6:1.
Odell et al., 1985, Nature 313:810.
Osakabe et al., 1999, Proc. Nati. Acad. Sci. USA 96:8955.
Parsons et al., 1986, Bio/Technology 4:533.
Pythoud et al., 1987, Bio/Technology 5:1323.
Sambrook et al., $2^{\text {nd }}$ ed. 1982.
Sullivan et al., 1993, Plant Cell Reports 12:303.
Sarkanen, K. V., and Hergert, H. L., 1971, Lignins: Occurrence, Formation, Structure and Reaction, K. V. Sarkanen and C. H. Ludwig, eds (New York: WileyInterscience), 43.
Trotter, P. C., 1990, Tech. Assoc. Pulp Paper Ind. J. 73:198.

Tsai et al., 1998, Plant Physiol. 117:101.
Tsai et al., Plant Cell Reports 14:94.
Tricoli et al., 1995.
Walker et al., 1987, PNAS USA 84:6624.
Wang et al., 1992, Mol. Cell. Biol. 12:3399.
Wu et al., 2000, Plant J. 22:495.
Yang et al., 1990, PNAS USA 87:4144.
Yamazaki et al., 1993, J. Biochem. 114:652.
Zhang, X.-H., and Chiang, V. L., 1997, Plant Physiol. 113:65.

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 362
$<212>$ TYPE: PRT
$<213>$ ORGANISM: aspen populus tremuloides
$<400>$ SEQUENCE $: 2$

-continued

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 1764
$<212>$ TYPE: DNA
$<213>$ ORGANISM: aspen populus tremuloides
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: CAld5H

$<400>$ SEQUENCE : 3
taaagtcttg tggattacac aaaatacaga ctgaaaacat ccataggcac caacacataa
accatccatg gattctcttg tccaatcttt gcaagcttca cccatgtctc tcttcttgat

cgttatctct tcactcttct tcttcggtct cctctctcgc cttcgccgaa gattgccata
-continued

tccaccaggg	cctaaagggt tgccacttgt	aggtagcatg cacatgatgg accaaataac	240
tcaccgtggg	ttagctaaac tagctaagca	atatggtggg ctctttcata tgcgcatggg	300
gtacttgcat	atggtcactg tttcatctcc	tgaaatagct cgccaagttc tgcaggtcca	360
ggacaacatt	ttctccaaca gaccagccaa	catagccata agttacttaa cctatgatcg	420
tgcagatatg	gcctttgccc actacggtcc	tttctggcga cagatgcgta agctctgcgt	480
catgaagctt	tttagccgga aaagggctga	atcatgggag tctgtgagag atgaggtgga	540
ctcaatgctt	aagacagttg aagccaatat	aggcaagcct gtgaatcttg gggaattgat	600
ttttacgttg	accatgaaca tcacttacag	agcagctttc ggggctaaaa atgaaggaca	660
ggatgagttc	atcaagattt tgcaggagtt	ctctaagctt tttggagcat tcaacatgtc	720
tgatttcatt	ccctggctgg gctggattga	cccccaaggg ctcagcgcta gacttgtcaa	780
ggctogcaag	gctcttgata gattcatcga	ctctatcatc gatgatcata tccagaaaag	840
aaaacagaat	aagttctctg aagatgctga	aaccgatatg gtcgatgaca tgctagcott	900
ttatggtgaa	gaagcaagga aagtagatga	atcagatgat ttacaaaag ccatcagcct	960
tactaaagac	aacatcaaag ccataatcat	ggatgtgatg tttggtggga cagagacggt	1020
ggcgtcggca	atagagtggg tcatggcgga	gctaatgaag agtccagagg atcaaaaag	1080
agtccagcaa	gagctcgcag aggtggtggg	tttagagcgg cgcgtggagg aaagtgatat	1140
tgacaaactt	acgttcttga aatgcgccet	caaagaaacc ttaaggatgc acccaccaat	1200
cccacttctc	ttacatgaaa cttctgagga	tgctgaggtt gctggttatt tcattccaaa	1260
gcaaacaagg	gtgatgatca atgcttatgc	tattgggaga gacaagaatt catgggaaga	1320
tcctgatgct	tttaagcctt caaggttttt	gaaaccaggg gtgcctgatt ttaaagggaa	1380
tcactttgag	tttattcctt togggtctgg	toggaggtct tgccecggta tgcagcttgg	1440
gttatacaca	cttgatttgg ctgttgctca	ttgcttcat tgttttacat gggaattgcc	1500
tgatggcatg	aaaccgagtg aacttgacat	gactgatatg tttggactca cogcgccaag	1560
agcaactcga	ctcgttgccg ttcogagcaa	gcgtgtgctc tgtcctctct aaggaaggga	1620
aaaaggtaag	ggatggaaat gaatgggatt	cccttctttc gtggattcta tacagaattg	1680
aggceatggt	gacaaagggt caatttgcag	gtttttttt ttatatatat atatatataa	1740
ttgggttaaa	aaaaaaaaa aaaa		1764

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 514
$<212>$ TYPE: PRT
$<213>$ ORGANISM: aspen populus tremuloides
$<400>$ SEQUENCE : 4

-continued

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 365
$<212>$ TYPE: PRT
$<213>$ ORGANISM: aspen populus tremuloides
$<400>$ SEQUENCE: 6

-continued

$<210>$ SEQ ID NO 7
$<211>$ LENGTH: 1915
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: aspen populus tremuloides
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: 4CL
$<400>$ SEQUENCE : 7
ccctcgcgaa actccgaaaa cagagagcac ctaaaactca ccatctctcc ctctgcatct
ttagcccgca atggacgcca caatgaatcc acaagaattc atctttcgct caaaattacc
agacatctac atcccgaaaa accttcccct gcattcatac gttcttgaga acttgtctaa

acattcatca aaaccttgcc tgataaatgg cgcgaatgga gatgtctaca cctatgctga
-continued

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 1395
$<212>$ TYPE: DNA
$<213>$ ORGANISM: aspen populus tremuloides
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: CAD; GenBank accession number: AF217957
$<400>$ SEQUENCE : 8
aaactccatc cctctctctt agcctcgttg tttcaagaaa atgggtagcc ttgaaacaga 60
gagaaaaatt gtaggatggg cagcaacaga ctcaactggg catctcgctc cttacaccta 120
tagtctcaga gatacggggc cagaagatgt tcttatcaag gttatcagct gtggaatttg 180
ccataccgat atccaccaaa tcaaaaatga tcttggcatg tcacactatc ctatggtccc 240
tggccatgaa gtggttggtg aggttgttga ggtgggatca gatgtgacaa agttcaaagc 300
tggagatgtt gttggtgttg gagtcatcgt tggaagctgc aagaattgtc atccatgcaa 360
-continued

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 357
$<212>$ TYPE: PRT
$<213>$ ORGANISM: aspen populus tremuloides
$<400>$ SEQUENCE : 9

-continued

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 535
$<212>$ TYPE: PRT
$<213>$ ORGANISM: aspen populus tremuloides
$<400>$ SEQUENCE : 10

-continued

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 20
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: aspen populus tremuloides
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Pt4CL1 promoter sense primer
$<400>$ SEQUENCE : 11

```
\(<210>\) SEQ ID NO 12
<211> LENGTH: 20
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: aspen populus tremuloides
\(<220>\) FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Pt4CL1 sense primer
<400> SEQUENCE: 12
atgaatccac aagaattcat 20
\(<210>\) SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
\(<213>\) ORGANISM: aspen populus tremuloides
\(<220>\) FEATURE:
<221> NAME/KEY: misc_feature
\(<223>\) OTHER INFORMATION: Pt4CL1 promoter sense primer
<400> SEQUENCE: 13
caggaatgct ctgcactctg
<210> SEQ ID NO 14
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: aspen populus tremuloides
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: PtCal5H antisense primer
<400> SEQUENCE: 14
ttagagagga cagagcacac g

What is claimed is:
1. A method of producing a transgenic plant comprising: (a) introducing into a plant cell at least one polynucleotide sequence encoding at least two of 4CL antisense RNA, aspen CAld5H, aspen AldOMT and SEQ ID NO:2; and (b) regenerating the transformed cell to produce a transgenic plant.
2. The method of claim 1, wherein the polynucleotide sequence comprises a sequence encoding 4CL antisense RNA and sequences encoding CAld5H, AldOMT, and SEQ ID NO:2.
3. The method of claim 2 wherein the transgenic plant comprises decreased lignin content, increased syringyl/ guaiacyl (S/G) lignin ratio, or increased cellulose content compared to a non-transformed plant.
4. The method of claim 2 wherein the plant is an angiosperm or a gymnosperm.
5. The method of claim 1 wherein the lignin content of the transgenic plant is decreased relative to the lignin content of a non-transformed plant.
6. The method of claim 1 wherein the transgenic plant comprises an increased syringyl/guaiacyl (S/G) lignin ratio relative to a non-transformed plant.
7. The method of claim 1 wherein the transgenic plant comprises increased cellulose content relative to a nontransformed plant.
8. The method of claim 1 wherein the plant is an angiosperm.
9. The method of claim \(\mathbf{8}\) wherein the angiosperm is a Populus tremuloides.
10. The method of claim 1 wherein the plant is a gymnosperm.
11. The method of claim 1, wherein the polynucleotide comprises 4CL in an antisense orientation; and wherein the
transgenic plant comprises a characteristic selected from the group consisting of altered lignin content, increased syringyl/guaiacyl (S/G) lignin ratio, altered cellulose content and combinations thereof compared to a non-transformed control plant.
12. The method of claim \(\mathbf{1 1}\) wherein the transgenic plant comprises decreased lignin content.
13. The method of claim 11 wherein the transgenic plant comprises increased syringyl/guaiacyl ( \(\mathrm{S} / \mathrm{G}\) ) lignin ratio.
14. The method of claim 11 wherein the transgenic plant comprises increased cellulose content.
15. The method of claim 11 wherein the plant is an angiosperm.
16. The method of claim \(\mathbf{1 5}\) wherein the angiosperm is a Populus tremuloides.
17. The method of claim 11 wherein the plant is a gymnosperm.
18. The method of claim 1 wherein each polynucleotide coding sequence is operably linked to a promoter sequence functional in the plant and a termination sequence; and wherein the plant comprises a characteristic selected from the group consisting of altered lignin content, increased syringyl/guaiacyl (S/G) lignin ratio, altered cellulose content, altered agronomic traits, and combinations thereof compared to a control plant that is not transformed with the polynucleotide sequence.
19. The method of claim 18 wherein the promoter is tissue-specific.
20. The method of claim 18 wherein the plant is an angiosperm.
21. The method of claim \(\mathbf{2 0}\) wherein the angiosperm is a Populus tremuloides.
22. The method of claim \(\mathbf{1 8}\) wherein the plant is a gymnosperm.
23. The method of claim \(\mathbf{1 8}\) wherein the plant comprises an altered agronomic trait selected from the group consisting of growth, wood quality, stress resistance, sterility, grain yield or nutritional value.
24. The method of claim 1, wherein the polynucleotide 5 sequence encodes 4CL antisense RNA and CAld5H.
25. The method of claim 24, wherein the transgenic plant comprises decreased lignin content, increased syringyl/ guaiacyl (S/G) lignin ratio, or increased cellulose content compared to a non-transformed plant.
26. The method of claim 24 , wherein the CAld5H comprises SEQ ID NO:4.
27. The method of claim 1, wherein the CAld5H comprises SEQ ID NO:4.
28. The method of claim 27, wherein the polynucleotide sequence comprises SEQ ID NO:3.
29. The method of claim 1 , wherein the AldOMT comprises SEQ ID NO:6.
30. The method of claim 29, wherein the polynucleotide sequence comprises SEQ ID NO:5.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. : 6,855,864 B2 Page 1 of 1
APPLICATION NO. : 09/947027
DATED : February 15, 2005
INVENTOR(S) : Vincent Lee C. Chiang et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Beginning at Column 1, line 11, delete the following paragraph:

> "STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the Energy Biosciences Program, United States Department of Energy, and the United States Department of Agriculture research grant numbers USDA 99-35103-7986, USDA 01-03749, and DOE DE-FG02-01ER15179. The United States government has certain rights in this invention."

\section*{Signed and Sealed this}

Twelfth Day of December, 2006


JON W. DUDAS
Director of the United States Patent and Trademark Office```

