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- 4 7 3  - 4 1 4
TAAGTTCAGTAAATATAATCGGGTGAATATCTCATCATGTAATTAAATATCTTAATCTC 

YACT ( -  strand, YACT box)
NGATT ( -  strand, ARR element)

GTGA (+ strand, GTGA motif)
GATA ( -  strand, GATA box)

AATTAAA(AT rich)
GATA ( - ,  GATA box)

NGATT ( - ,  ARR)
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A
WT AGTTC|AGTA|AATAT|AATCG|G|GTGA|A|TATC|TCATCA ( P o s i t i o n s  3 - 3 4  

( i n c l u s i v e )  o f  SEQ ID  N O . 1 )
M u t2  AGTTCAGTAAATATc c T a G GGTGAAT q c t TCATCA (SE Q  ID  N O : 7 )
M u t3  AGTTCAGTAAATATc c T a G GGTGAATATCTCATCA (SE Q  ID  N O :8)
M u t4  AGTTCAGTAAATATAATCGGGTGAAT q c t TCATCA (SE Q  ID  N O :9)
M u t5  AGTTCAGTAAATATAATCGGt C C t A T q c t TCATCA (SE Q  ID  N O :1 0 )  
M u t6  AGTTCAGTAAATATc c T a c Gt c c t A T q c t TCATCA (SE Q  ID  N O : 1 1 )  
M u t7  A G TTC t t c A AATATc c T a c Gt c c t A T q c t TCATCA (SE Q  ID  N O :1 2 )

FIG. 5



U.S. Patent Sep. 17, 2013 Sheet 6 of 7 US 8,536,406 B2

A
w t - 4 5 0  t g a ^ t a t c |t c a t c a t g t a a |t t a a a |ta |t c |t t a a t c
57 (inclusive)of SEQ ID NO: 1)
M u t 3 TGAAT g c C TCATCATGTAAcc A c A T g c C TTAATC
M u t 4 TGAAT q c C TCATCATGTAATTAAAT q c C TTAATC
M u t 5 TGAAT g c C TCATCATGTAAc c A c A TATCTTAATC
M u t 6 TGAATATCTCATCATGTAAc c A c A TATCTTAATC
M u t 7 TGAATATCTCATCATGTAATTAAAT q c C TTAATC
M u t 8 TGAAT q c C TCATCATGTAATTAAATATCTTAATC
M u t 9 TGc c T g c t TCATCATGTAATTAAATATCTTAATC
M u t 10  TGc c T q c t TCATCATGTAAc c A tA q c T q TTAATC
M u t 11 TGc c T g c t TCt t t c TGTAATTAAATATCTTAATC
M u t 12 TGc c T q c t TCATCATc c t t TTAAATATCTTAATC

(Positions 24-

(SEQ ID NO:13) 
(SEQ ID NO:14) 
(SEQ ID NO:15) 
(SEQ ID NO:16) 
(SEQ ID NO:17) 
(SEQ ID NO:18) 
(SEQ ID NO:19) 
(SEQ ID NO:20) 
(SEQ ID NO:21) 
(SEQ ID NO:22)

B

FIG. 6
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A

w t  - 4 2 2  t t |a a t c t |c c a t t a |t t t c t |t a a t t t t t t t t a  
4 9 3  ( i n c l u s i v e )  o f  SEQ ID  N O . 5 )

M u t4  T T cg T aT C C A T T A g T g C T T A A T T T T T T T T A
M u t5  T T c q T a T C C A TT A TT T C TT A A TT T TT T TT A
M u t6  TTA A TCTCCA TTA g T g C T T A A T T TT T TT T A

( P o s i t i o n s  4 6 5 -

(SEQ ID NO:23) 
(SEQ ID NO:24) 
(SEQ ID NO:25)

B

FIG. 7
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COMTl GENE FIBER-SPECIFIC PROMOTER 

ELEMENTS FROM POPLAR
CROSS-REFERENCE TO RELATED 

APPLICATIONS
This application is a national stage filing under 35 U.S.C. 

371 of International Application No. PCT/US2009/041956, 
filed on Apr. 28, 2009, which claims the benefit of priority to 
U.S. Provisional Patent Application Ser. No. 61/048,435, 
filed on Apr. 28,2008, each of which is incorporated herein by 
reference in its entirety.

STATEMENT REGARDING FEDERAL 
SPONSORED RESEARCH OR DEVELOPMENT

This invention was supported in part by grant nos. 
OR22072-121 and EPA82947901-129. The United States 
government has certain rights in this invention.

BACKGROUND
Manipulation and control of the amounts and types of 

cellulose and lignin synthesized and deposited in plants and 
trees is of interest in the forestry, paper and biofuels indus
tries. Tree species synthesize large quantities of lignin, par
ticularly in and around the vascular tissues. Manipulating 
lignin and/or cellulose in plants and trees can prove beneficial 
by providing trees and plants with improved disease resis
tance, increased strength for use in construction, increased 
biomass usable as fuel or biofuel, improved digestibility 
(such as for forage crops), as well as having qualitative and 
quantitative variation in cellulose and/or lignin for paper pro
cessing. However, progress in this area has been impeded by 
difficulties in regulating gene expression in transgenic plants 
in tissue- or cell-type specific manners.

SUMMARY
In one embodiment, the invention provides a nucleic acid 

construct containing a fiber-specific element having at least 
15 consecutive base pairs of SEQ ID NO: 1, or a reverse 
complement of at least 15 consecutive base pairs of SEQ ID 
NO: 1, operably connected to a promoter sequence not 
natively associated with SEQ ID NO: 1.

In another embodiment, the invention provides a nucleic 
acid construct containing two or more fiber-specific elements 
that each have at least 9 consecutive base pairs of SEQ ID NO: 
1, or a reverse complement of at least 9 consecutive base pairs 
ofSEQIDNO: 1, operably connected to a promoter sequence 
not natively associated with SEQ ID NO: 1.

In a further embodiment, the invention provides a nucleic 
acid construct containing at least two fiber-specific elements 
operably connected to a promoter sequence. Each of fiber 
specific elements contain at least 9 consecutive base pairs of 
SEQ ID NO: 1, or a reverse complement of at least 9 con
secutive base pairs of SEQ ID NO: 1, and are from partially or 
completely overlapping regions of SEQ ID NO: 1, or are the 
same.

In another embodiment, the invention provides a method of 
directing expression of a polypeptide to the fibers of a plant by 
transforming the plant with constructs containing fiber-spe
cific elements of the invention.

Other aspects of the invention will become apparent by 
consideration of the detailed description and accompanying 
drawings.

1
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of the 59 base-pair 
sequence of SEQ ID NO: 1 which identifies elements within 
SEQ ID NO: 1 that may direct transcription of a polynucle
otide to the fibers of a plant.

FIG. 2 is a schematic representation showing promoter 
deletion: GUS fusion constructs

FIG. 3 is a schematic representation showing constructs 
containing fiber-specific elements operably connected to a 
promoter element and a polynucleotide encoding a GUS 
reporter polypeptide.

FIG. 4 is a schematic representation showing constructs 
containing fiber-specific elements operably connected to a 
promoter element and a polynucleotide encoding a GUS 
reporter polypeptide.

FIG. 5A is a schematic representation showing constructs 
used to make probes for use in an Electrophoretic Mobility 
Shift Assay. FIG. 5B is a photograph showing the results of an 
Electrophoretic Mobility Shift Assay

FIG. 6A is a schematic representation showing constructs 
used to make probes for use in an Electrophoretic Mobility 
Shift Assay. FIG. 6B is a photograph showing the results of an 
Electrophoretic Mobility Shift Assay

FIG. 7A is a schematic representation showing constructs 
used to make probes for use in an Electrophoretic Mobility 
Shift Assay. FIG. 7B is a photograph showing the results of an 
Electrophoretic Mobility Shift Assay

DETAILED DESCRIPTION
Manipulation of the amounts and types of cellulose and 

lignin in plants is of importance in forestry, agriculture and 
paper processing. Preferably, expression of genes affecting 
biochemical pathways involved in the metabolism of lignin 
and cellulose is regulated with respect to particular tissues or 
regions of the plant, such as the vascular tissue and the plant 
fibers.

Specificity of expression in the plant fibers is particularly 
desirable for manipulating enzymes involved in lignin and 
cellulose biosynthesis. The fiber-specific elements of the 
instant invention can be used to express nucleotide sequences 
in vascular tissue and plant fibers to modify the content and 
composition of cellulose, thereby affecting plant growth and 
biomass characteristics. The biosynthesis of lignin and com
position of lignin in the plant fibers may also be manipulated 
to produce plants or trees adapted for a particular end-use.

In one embodiment, the present invention provides a nucle
otide construct that can be used to direct expression of a 
polypeptide to the fibers of a plant. The nucleotide construct 
contains a fiber-specific element and a promoter sequence not 
natively associated with the fiber-specific element. The con
struct can be used to develop other constructs including 
sequences encoding polypeptides (“coding sequences”) that 
one wishes to specifically express in plant fibers. The coding 
sequence is operably linked to the promoter sequence to allow 
fiber-specific expression in plants into which the constructs 
are delivered. Optionally, the constructs may include features 
useful in gene cloning, including, but not limited to, unique 
restriction sites, multiple cloning sites, selectable markers, 
origins of replication, etc.

As described in the Examples below, a 59 base sequence 
(SEQ ID NO: 1), found upstream of the coding sequence of a 
Populus tremuloides caffeic acid O-methyltransferase I gene 
(PtrCOMTl), was discovered to direct fiber-specific expres
sion of a GUS coding sequence.
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SEQ ID NO: 1 corresponds to nucleotides of positions 

-473 to -413 of the positive DNA strand upstream of the 
transcription start site (TSS) of the PtrCOMPTl gene, with 
position 1 of SEQ ID NO: 1 corresponding to position -473 
upstream from the transcription start site. The transcription 
start site is 92 nucleotides upstream of the ATG translation 
start site, andbegins at position 888 of SEQ IDNO. 5. SEQ ID 
NO: 1 isincludedwithina978base sequence (SEQ ID NO:5) 
located upstream of the translation start site (ATG) of the 
PtrCOMTl coding sequence (SEQ ID NO: 6), with position 
1 of SEQ ID NO: 5 corresponding to position -886 of the 
sequence upstream from the transcription start site (TSS) of 
PtrCOMTl.

It is envisioned that subsequences of the sequence of SEQ 
ID NO:l would be sufficient to serve as a fiber-specific ele
ment, provided that the subsequence have the ability to func
tion with a promoter sequence to allow fiber-specific expres
sion of a coding sequence or other polynucleotide operably 
linked to the promoter.

As used herein, a fiber-specific element is an element that, 
when associated with a promoter sequence, increases or 
causes fiber-specific expression of a coding sequence oper
ably linked to the promoter sequence, relative to the expres
sion of the coding sequence linked to a promoter sequence not 
associated with the element.

Fiber-specific expression means that expression of poly
nucleotides occurs predominantly in the plant fibers. Fiber- 
specific expression may be determined by operably connect
ing the promoter sequence and the fiber-specific element to a 
reporter sequence, such as a sequence encoding GUS ((3-glu- 
curonidase), and evaluating expression of the reporter 
sequence or polypeptide in the fibers, and other regions of the 
plant. One of skill in the art will appreciate that fiber-specific 
expression does not exclude the possibility that the reporter 
sequence or polypeptide may be expressed at relatively low 
levels in non-fiber parts of the plant.

As used herein, the fibers of a plant, or plant fibers, refers to 
one or more cells or cell types comprising the vascular tissue 
of the plant, including, for example, the xylem libriform 
fibers, xylem fiber tracheids and phloem fibers of 
angiosperms, and tracheids of gymnosperms. Constructs of 
the invention may be used to direct transcription of a poly
nucleotide in one or more of these cell types.

Suitably, a fiber specific element may comprise consecu
tive base pairs of SEQ ID NO: 1, e.g., at least 5, at least 6, at 
least 7, at least 8, at least 9, at least 10, at least 11, at least 12, 
at least 13, at least 14, at least 15, at least 16, at least 17, at least 
18, at least 19, at least 20, at least 25, at least 30, at least 35, 
at least 40, at least 45, or at least 50 consecutive base pairs of 
SEQ ID NO: 1, or of a reverse complement of SEQ ID NO: 1.

In one embodiment, the fiber-specific element may be 
designed to contain one or more particular non-contiguous 
subsequences of SEQ ID NO: 1 and/or its reverse comple
ment (designated the negative strand herein). These subse
quences may work alone or in concert to target transcription 
and/or expression to the plant fibers.

Subsequences potentially suitable for use in a fiber-specific 
element are depicted in FIG. 1 and include a GTGA motif, (+ 
strand, positions 23-26 inclusive of SEQ ID NO: 1), one or 
more AT rich regions (+/- strand, positions 41-47, 10-19, 
26-30, 40-50, and 52-56 (each inclusive) of SEQ ID NO: 1), 
YACT box (- strand, positions 8-11 inclusive of SEQ ID NO: 
1), an Arabidopsis response regulator element (NGATT, 
where N is any nucleotide) (-  strand, positions 17-21 and 
54-58 inclusive of SEQ ID NO: 1), GTGA motif ( -  strand, 
positions 23-26 inclusive of SEQ ID NO: 1), one or more 
GATA boxes (- strand, positions 28-31 and 48-51 inclusive of

3
SEQ ID NO: 1). Constructs of the invention may contain at 
least one, at least two, at least three, at least four, at least five, 
at least six or at least seven of these elements, and/or the 
reverse complement of the subsequences identified above, in 
any combination effective to direct fiber-specific expression. 
For example, the construct may contain, in the forward and/or 
reverse complement form, a GATA box, an Arabidopsis 
response regulator element and the AT-rich element, such as 
the element from positions 41-46 of SEQ ID NO: 1.

A construct according to the present invention may contain 
more than one fiber-specific element, for example, it may 
contain at least two, at least three, at least four, at least five, at 
least six, at least seven, at least eight, at least nine, at least ten, 
at least fifteen, or at least twenty, or more fiber-specific ele
ments, which may include the same sequence, or non-identi
cal overlapping or non-overlapping sequences within SEQ ID 
NO: 1, and/or the reverse complement of SEQ ID NO: 1. In 
one embodiment, the fiber-specific elements are present as 
tandem repeats. The inclusion of repeated sequences suitably 
enhances the specificity of expression of a nucleotide 
sequence, such as a coding sequence, to the plant fibers.

In addition to the fiber-specific elements of SEQ ID NO: 1, 
the constructs may include other sequences that enhance or 
alter transcription or expression of a polynucleotide. For 
example, the constructs may include at least 5, at least 6, at 
least 7, at least 8, at least 9, at least 10, at least 11, at least 12, 
at least 13, at least 14, or at least 15 consecutive base pairs of 
SEQ ID NO: 2, SEQ ID NO: 3, and/or SEQ ID NO: 4, or a 
reverse complement of SEQ ID NO: 2, SEQ ID NO: 3, and/or 
SEQ ID NO: 4. SEQ ID NO: 2 is from -414 to -398 base- 
pairs upstream of the transcription start site (TSS) of the 
PtrCOMTl coding sequence. SEQ ID NO: 3 is from -310 to 
-270 base-pairs upstream of the TSS of the PtrCOMTl cod
ing sequence. SEQ IDNO: 4 is from -270 to -215 base-pairs 
upstream of the TSS of the PtrCOMTl coding sequence. 
These elements of SEQ ID NO: 2-4 may be used alone or in 
combination with each other, and/or with the fiber-specific 
elements of SEQ IDNO: 1.

The constructs also contain a promoter sequence that is not 
natively associated with the fiber-specific element and which 
is operably connected to fiber-specific element, such that 
when the construct is introduced into a plant, transcription 
will occur specifically in plant fibers.

As used herein, a “promoter sequence” is intended to mean 
a nucleic acid that binds RNA polymerase, either directly or 
via transcription factors, and facilitates transcription of DNA 
to generate an mRNA molecule from a nucleic acid molecule 
that is operably linked to the promoter.

A promoter sequence not natively associated with the fiber- 
specific element may include any promoter sequence other 
than the promoter of PtrCOMTl. Suitable promoter 
sequences include, without limitation, the CaMV 35S mini
mal promoter, the NOS promoter from Agrobacterium, man- 
nopine synthetase promoter, and sequences upstream of poly
nucleotides encoding enzymes of the cellulose synthesis 
pathway or phenylpropanoid pathway.

Other suitable promoter sequences not natively associated 
with the fiber-specific element may include modified Ptr
COMTl promoter sequences, i.e., promoter sequences that 
have been reconstituted to contain one or more sub-regions 
and/or altered regions of the ptrCOMPTl sequence.

In some embodiments, the promoter sequence may include 
the native PtrCOMTl sequence if the fiber-specific elements 
are repeated or are manipulated to be in a different position or 
orientation than is found in the native PtrCOMTl sequence. 
This includes, for example, constructs in which two or more
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of the fiber-specific elements are from partially or completely 
overlapping regions of SEQ ID NO: 1, or are the same.

The one or more fiber-specific elements do not need to be 
directly connected to each other, to the promoter sequence, or 
to the polynucleotide to be transcribed, and the construct may 
contain nucleotides intervening between these sequences, 
while still being capable of directing expression of a poly
nucleotide to the plant fibers.

A construct according to the present invention may contain 
a particular desired polynucleotide to be transcribed that is 
operably connected to the promoter sequence. As used herein, 
“operably connected” with respect to the promoter sequence 
and the desired polynucleotide means that the promoter 
sequence can facilitate transcription of the desired nucleotide 
sequence to produce an RNA molecule under appropriate 
conditions. The RNA generated may code for a protein or 
polypeptide or may code for an RNA interfering, or antisense 
molecule. When the nucleotide sequence is a coding 
sequence, the polypeptide is suitably expressed.

The coding sequence or other polynucleotide to be tran
scribed may be any one where expression in the plant fibers is 
desirable. In one embodiment, the nucleotide sequence to be 
transcribed encodes a polypeptide that is an enzyme of the 
phenylpropanoid pathway, an enzyme in the G-lignin path
way, an enzyme in the S-lignin pathway, a cellulose synthase, 
a sucrose synthase, a cellulase, a transcription factor, an 
enzyme in phytohormone biosynthesis or a microtubule com
ponent. The polynucleotide may encode a polypeptide that 
regulates the synthesis of lignin or cellulose. In one embodi
ment, expression of the polypeptide in the plant fibers may be 
altered by varying external or environmental conditions.

Examples of polynucleotides that may be used to manipu
late lignin content or composition in the plant fibers include 
those encoding one or more of cinnamyl alcohol dehydroge
nase (CAD), cinnamate 4-hydroxylase (C4E1), coumarate 
3-hydroxylase (C3E1), phenolase (PNL), caffeoyl-CoA 
O-methyl transferase (CCoAOMT), cinnamoyl-CoA reduc
tase (CCR), phenylalanine ammonia-lyase (PAL), 4-couma- 
rate:CoA ligase (4CL), peroxidase (PDX) coniferin |3-glu- 
cosidase (CBG), hydroxycinnamoyl-CoA shikimate/quinate 
hydroxycinnamoyl transferase (E1CT), and caffeic acid 3-0- 
methyltransferase (COMT).

When constructs are operably connected to DNA or RNA 
that encodes antisense RNA or interfering RNA, which cor
responds to the coding sequence of a polypeptide of interest, 
a decreased amount of the polypeptide of interest may result. 
Polypeptides targeted for suppression include enzymes 
involved in lignin, cellulose, sucrose, phytohormone or 
microtubule metabolism as discussed above. The use of 
RNAi to inhibit gene expression in plants is specifically 
described in WO 99/61631, which is herein incorporated by 
reference in its entirety.

The present invention also provides vectors comprising the 
nucleic acid constructs. Numerous vectors have been 
described in the literature, many of which are commercially 
available. Suitable vectors include, for example, Ti-plasmids 
derived from the A. tumefaciens, and plasmids capable of 
replication in a bacterial host, such as E. coli. Additionally, 
vectors and constructs may include an origin of replication 
(replicons) for a particular host cell. Various prokaryotic rep- 
licons are known to those skilled in the art, and function to 
direct autonomous replication and maintenance of a recom
binant molecule in a prokaryotic host cell.

A plasmid vector suitable for the introduction of nucleic 
acid of the current invention in monocots may contain, for 
example, in addition to the fiber-specific element and pro
moter region, an intron that provides a splice site to facilitate
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expression of the coding sequence (such as the Elsp70 intron; 
PCT Publication WO 93/19189); and a 3' polyadenylation 
sequence such as the nopaline synthase 3' sequence (NOS 3; 
Fraley et al. (1983) Proc Natl Acad Sci USA 80: 4803-4807). 
This expression cassette may be assembled on high copy 
replicons suitable for the production of laige quantities of 
DNA.

An Agrobacterium-based plant transformation vector for 
use in transformation of dicotyledonous plants is plasmid 
vector pMON530 (Rogers et al. (1987) In Methods in Enzy- 
mology. Edited by R. Wu and L. Grossman, p 253-277. San 
Diego: Academic Press). Plasmid pMON530 is a derivative 
ofpMON505 prepared by transferring the 2.3 kb Stul-Elindlll 
fragment of pMON316 into pMON526. Another useful Ti 
plasmid cassette vector is pMON17227, described in PCT 
Publication WO 92/04449 (herein incorporated by reference 
in its entirety) and contains a sequence encoding an enzyme 
conferring glyphosate resistance fused to the Arabidopsis 
EPSPS chloroplast transit peptide.

Vectors and constructs of the invention may include a 
selectable marker so that transformed cells can be easily 
identified and selected from non-transformed cells. Examples 
of such markers include, but are not limited to, a neomycin 
phosphotransferase coding sequence, which confers kanamy- 
cin resistance; a bar coding sequence, which confers biala- 
phos resistance; a mutant EPSP synthase coding sequence, 
which confers glyphosate resistance; a nitrilase coding 
sequence, which confers resistance to bromoxynil; a mutant 
acetolactate synthase coding sequence, which confers imida- 
zolinone or sulphonylurea resistance; and a methotrexate 
resistant DE1FR coding sequence. Other selectable markers 
include, but are not limited to, those conferring resistance to 
hygromycin, tetracycline and ampicillin.

Various sequences used in the construct can be made by 
any suitable means, including, for example, joining synthe
sized oligonucleotides, joining fragments generated by PCR, 
or using cloning techniques.

The invention also provides host cells which comprise the 
vectors of the current invention. As used herein, a host cell 
refers to the cell in which the coding product is ultimately 
expressed. Accordingly, a host cell can be an individual cell, 
a cell culture or cells as part of an organism.

The invention further provides a method for generating 
plants in which the transcription of polynucleotides and/or 
expression of polypeptides is targeted or directed to the fibers 
of a plant. In one embodiment, the invention provides meth
ods of directing expression of a polypeptide to the fibers of a 
plant by transforming the plant with vectors and/or constructs 
of the invention, such that expression of the polypeptide is 
targeted to the plant fibers.

Transformation of a plant may be carried out by introduc
ing into a plant cell or plant vectors and/or constructs of the 
invention, to form a transformed or transgenic plant. If a plant 
cell is used, the plant may be subsequently regenerated from 
the plant cell. Methods for transforming plants and regener
ating plants from plant cells are known. Suitable methods for 
transforming plants and trees include, without limitation, 
those disclosed Tsai C-J, Podila G K, Chiang V L (1994), 
Plant Cell Reports 14: 94-97; Han, K.-H, Meilan, R , Ma, C., 
and Strauss, S. H. (2000) Plant Cell Reports 19:315-320; and 
Meilan, R. and Ma, C. (2006) In: Methods in Molecular 
Biology, vol. 344:143-151; Kan Wang, Editor, Agrobacte
rium Protocols, 2/e, volume 2, Humana Press Inc., Totowa, 
N.J., and in U.S. Pat. No. 5,922,928, herein incorporated by 
reference in its entirety.

Plants transformed with vectors and/or constructs contain
ing the fiber-specific elements are also provided. Any plant
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into which the constructs of the invention can be introduced 
and expression targeted to the plant fibers may be used. Suit
able plants include, but are not limited to, woody plants, trees, 
crop plants and biofuel plants such as alfalfa, cotton, maize, 
rice, tobacco, grasses (such as switchgrass), aspen, poplar, 
cottonwood, pines (such as loblolly pine), sweetgum, euca
lyptus, fir, maple, oak, willow and acacia plants. A “woody 
plant” is herein defined as a perennial plant whose stem 
comprises woody tissue. Examples of woody plants may 
include trees, shrubs or vines.

In one embodiment, plants transformed with a vector or 
construct of the invention, show expression or suppression of 
a polypeptide in one or more of the fibers in xylem and 
phloem of normal wood, tension wood (TW) and opposite 
wood (OW) of the plant, relative to a similar plant that has not 
been transformed with a vector or construct of the invention. 
A transformed or transgenic plant suitably produces altered 
(increased or decreased) amounts or ratios of lignin or cellu
lose, or produces lignin or cellulose of a different structure or 
type (such as S lignin, G lignin) compared with plants not 
expressing the polynucleotides.

It is to be understood that the invention is not limited in its 
application to the details of construction and the arrangement 
of components set forth in the following description or illus
trated in the following drawings. The invention is capable of 
other embodiments and of being practiced or of being carried 
out in various ways.

EXAMPLES 
Example 1

PtrCOMTl Promoter DeletiomGUS Fusion 
Constructs and Aspen Transformation

Promoter deletion GUS fusion constructs were generated 
from a 1.5 Kb PtrCOMTl promoter fragment cloned into the 
pGEM-7Z vector backbone and were used to transform aspen 
leaf discs. Thirteen PtrCOMTl promoter deletion::GUS 
fusion constructs (depicted in FIG. 2) were transformed into 
Agrobacterium tumefaciens strain C58/pM90 by the freeze 
and thaw method. Positive transformants were confirmed 
using PCR and transferred to greenhouse pots for further 
analysis.

The thirteen 5'-unidirectional promoter deletion::GUS 
fusions were analyzed in transgenic aspen to examine Ptr
COMTl promoter activity during stem development. Under 
control of the -886/+78 fragment (hereafter referred to as the 
‘full-length’ promoter), GUS activity was localized to the 
metaxylem and cambial zone, with faint staining in the cortex 
of intemode 3. No staining was observed in the primary 
phloem. At intemode 5, promoter activity was restricted to the 
vessels and developing xylem fibers surrounding the vessels. 
GUS staining was also observed in pith cells adjacent to the 
medullary sheath, but was absent in phloem and cortex. In 
stem intemodes undergoing secondary thickening, GUS sig
nal was observed in xylem and phloem fibers, visible at the 
13th internode. GUS staining in xylem was absent in vessels 
and in newly formed fibers of the expanding zone, but pref
erentially localized to older, thick-walled fiber cells that also 
stained red with the Maule reagent, indicative of S-lignin 
deposition. These results suggest the involvement of Ptr
COMTl in S lignin biosynthesis.

Deletion of the promoter to -756 did not appear to affect its 
activity, but removal of an additional 107 by (to -649) abol
ished GUS staining Further deletion to 563 and -473 restored 
GUS staining in xylem and phloem fibers, similar to the
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pattern observed with the full length promoter. Deletion of an 
additional 59 by (-414) resulted in GUS staining in thin- 
walled vessels and fibers of the expanding xylem, cambial 
region and xylary rays, and a near loss of activity in phloem 
fibers. Deletion to -398 abolished GUS staining, but deletion 
to -310 restored weak staining in xylem and phloem fibers. 
The -270 fragment exhibited detectable promoter activity in 
our study, directing GUS in primary xylem, cambial zone, 
cortex and pith at young (third) intemode. At older intem
odes, GUS staining was observed primarily in phloem fibers, 
and weakly in cortex, ray parenchyma and pith. Taken 
together, these results indicate that the PtrCOMTl promoter 
has elements for both activation and repression of transcrip
tion.

Deletion from -756 to -649 resulted in loss of PtrCOMTl 
promoter activity. Apart from WI, this region also contains a 
MYC binding site that partially overlaps an I-box. A 30 by 
oligo (-715 to -687) containing both MYC and I-box inter
acted strongly with xylem nuclear extracts but weakly with 
phloem nuclear proteins. Specificity of the binding was con
firmed by competition with unlabeled oligos containing 
either wildtype or mutated MYC and I-box sequences. 
Labeled oligos containing another I-box element (-246 to 
-275) showed specific interaction with xylem-derived 
nuclear extracts. A xylem-specific gel retardation pattern was 
also detected using probes bearing the MYB1 element, a 
suspected negative regulator between -398 and -310. Dele
tion of this region restored GUS activity to the remaining 3' 
end of the fragment. Competition with a 100-fold molar 
excess of unlabeled wildtype oligo greatly reduced the bind
ing signal, whereas competition with a similar amount of 
mutant oligo did not have an effect. EMSA experiments 
involving another MYB-binding site, MYB2, performed 
using the same amount of xylem nuclear extracts, showed an 
interaction. Finally, a DPBF-containing oligo also interacted 
strongly with xylem, but not phloem nuclear proteins, and the 
specificity of the interaction was validated by competition 
experiments. A GT-1 containing oligo (-149 and -120) 
showed weak interaction with xylem.

The PtrCOMTl promoter directed GUS activity primarily 
to thick-walled fiber cells of xylem and phloem in aspen 
stems. Activities were also noted in non-lignifying cells of 
young intemodes, including cortex, phloem, ray parenchyma 
and pith. The expression of PtrCOMT 1 in thick-walled xylem 
fibers and its absence in newer, thin-walled fibers suggests a 
role for PtrCOMTl in S lignin synthesis and a delay in S 
lignin deposition, relative to G lignin, during early stem 
development in angiosperms. COMT1 promoters were 
responsive to mechanical stress, with their activities becom
ing restricted to the tension wood side, and being expressed in 
all cell types. This pattern of expression suggests their likely 
involvement in synthesis of stress-induced phenylpro- 
panoids, such as lignans in tension wood.

Promoter deletion analysis revealed that the minimum 3' 
fragment required to sustain the magnitude, tissue-specificity 
and gravitational responsiveness of PtrCOMTl expression 
was -473, although a nominal level of activity could still be 
seen with the -270 promoter. Deletion of -473 to -414 (SEQ 
ID NO: 1) led to an unusual pattern of cambium and expand
ing xylem localized activity, and an ambiguous response to 
mechanical bending. Progressive deletion beyond -414 abol
ished, and then restored PtrCOMTl activity (e.g., -398 and 
310). The unusual activity pattern of -414 suggests that the 
-414 fragment (SEQ ID NO: 1) harbors evolutionary con
served core element(s) for regulating lignin biosynthesis. It is 
envisaged that the I-box between -270 and 215 confers basal 
PtrCOMTl expression in xylem, and is bending-responsive.

8

5

10

15

20

25

30

35

40

45

50

55

60

65



US 8,536,406 B2
9

A slight enhancement of GUS signal in xylem fiber cells with 
deletion -310 was observed. Two regions, -398/-310 and 
-649/-573, appeared to reduce PtrCOMTl expression. A 
tissue-specific element may be present between -414 and 
-398 for directing expression in expanding xylem.

The region between -473 and -414 was found to contain 
one or more dominant fiber-specific elements. The TF-com
plex may hinder TF interaction with the adjacent, expanding 
xylem-specific element at -398/-414, by virtue of their prox
imity. Its deletion would relieve the hindrance, thus enabling 
expression in expanding xylem as seen with -414. The region 
between -756 and -649 contains a MYC box, an I-box, a WI 
box and a GATA-box, all of which were confirmed to interact 
specifically with xylem-derived nuclear proteins. Putative cis 
elements located upstream of -756 or downstream of -215 
did not appear to affect PtrCOMTl expression, although 
downstream MYC (-195 and -88) and MYB2 (-115 and 
-61) elements also exhibited binding with xylem nuclear 
extracts. These elements may confer bending-induced activ
ity in pith, as seen with -270.

PtrCOMTl promoter activity was mainly found in thick- 
walled xylem fibers and was responsive to mechanical stress 
with its activity becoming restricted to the tension wood side. 
The minimum promoter sequence capable of sustaining Ptr
COMTl tissue-specific and gravistimulated expression was 
-473, although basal level of activity could be seen with the 
-270 fragment.

Example 2
Electrophoretic Mobility Shift Assays (EMSA)

EMSA was performed using nuclear protein prepared from 
xylem, phloem and leaf tissues. Binding reactions were car
ried out for 30 minutes at room temperature. Each 25 pi 
binding reaction contained 1 pmol/pl of oligonucleotide 
probe with the promoter taiget sequence labeled with the 
infrared fluorophore IRDye700 (Licor biosciences, Lincoln, 
Nebr.), 10 pg nuclear proteins in lx  binding buffer (10 mM 
Tris-HCl, pH 7.5, 1 mM EDTA, 1 mM DTT, 60% glycerol, 2 
pg poly (dl-dC) and 0.5 mM PMSF. For competition experi
ments, unlabeled oligonucleotides were added with a 50-100- 
fold molar excess ratio relative of the probe. The reaction 
mixture was electrophoresed at 4° C. on a 4% native poly
acrylamide gel run at 50V for 2 hours in Tris-glycine buffer 
(25 mM Tris-HCl, 250 mM glycine and 1 mM EDTA, pH 
8.5). After electrophoresis, the gel was analyzed using the 
Odyssey infrared imaging scanner (Licor Inc.)

In a first competition experiment, a probe containing the 
polynucleotide from position 2 to position 34 of SEQ ID NO. 
1 (inclusive) was generated, and the sequence was mutated to 
provide six additional probes, as shown in FIG. 5A (SEQ ID 
NOs: 7-12). Results of the competition assay are shown in 
FIG. 5B. Competition was abolished when SEQ ID NO: 11 
and 12 were used.
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In a second competition experiment, a probe from position 

24 to position 57 of SEQ ID NO. 1 (inclusive) was generated, 
and the sequence was mutated to provide ten additional 
probes, as shown in FIG. 6A (SEQ ID NOs: 13-22). Results of 
5 the competition assay are shown in FIG. 6B. Competition was 
abolished when probes containing SEQ ID NOs: 13, 15 and 
20 were used.

In a third competition experiment, a probe from position 
465 to position 493 of SEQ ID NO. 5 (inclusive) was gener- 
10 ated, and the sequence was mutated to provide three addi
tional probes, as shown in FIG. 7A (SEQ ID NOs: 23-25). 
Results of the competition assay are shown in FIG. 7B. Com
petition was least effective when the probe containing SEQ 
15 ID NO: 23 was used.

The region from and surrounding position 478 to position 
482 (inclusive) ofSEQIDNO. 5 (TTTCT), and/or the reverse 
complement, may be important for targeting to “stem cell” 
type (meristemic) cells such as cambia and newly formed 
20 xylem cells.

Example 3
Transformation of Plants with Constructs Containing 

25 Fiber-specific Elements
Constructs were formed having a hygromyacin cassette, 

the minimal 35S promoter and a polynucleotide encoding the 
GUS reporter polypeptide. The construct contained various 
30 combinations of SEQ ID NOs. 1, 3 and 4, as shown in FIGS. 
3 and 4. The constructs shown in FIG. 3 were used to trans
form aspen plants. Fiber-specific expression of the GUS 
reporter polynucleotide in the fibers of the aspen plants is 
expected.

It is specifically contemplated that any embodiment of any 
method or composition of the invention may be used with any 
other method or composition of the invention. As used in this 
specification and the appended claims, the singular forms “a,” 
40 “an,” and “the” include plural referents unless the content 
clearly dictates otherwise. Thus, for example, reference to a 
composition containing “a conjugate” includes a mixture of 
two or more conjugates. It should also be noted that the term 
“or” is generally employed in its sense including “and/or” 
45 unless the content clearly dictates otherwise.

It also is specifically understood that any numerical value 
recited herein includes all values from the lower value to the 
upper value, i.e., all possible combinations of numerical val
ues between the lowest value and the highest value enumer- 
50 ated are to be considered to be expressly stated in this appli
cation. For example, if a range is stated as 1% to 50%, it is 
intended that values such as 2% to 40%, 10% to 30%, or 1% 
to 3%, etc., are expressly enumerated in this specification.

Various features and advantages of the invention are set 
forth in the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 25

<210> SEQ ID NO 1 
<211> LENGTH: 59 
<212> TYPE: DNA
<213> ORGANISM: Populus tremuloides



<400> SEQUENCE: 1

taagttcagt aaatataatc gggtgaatat ctcatcatgt aattaaatat cttaatctc

<210> SEQ ID NO 2 
<211> LENGTH: 16 
<212> TYPE: DNA
<213> ORGANISM: Populus tremuloides 

<400> SEQUENCE: 2 

cattatttct taattt

<210> SEQ ID NO 3 
<211> LENGTH: 40 
<212> TYPE: DNA
<213> ORGANISM: Populus tremuloides 

<400> SEQUENCE: 3

tttttacttt aaattttttt atatacctga tatatatttt

<210> SEQ ID NO 4 
<211> LENGTH: 55 
<212> TYPE: DNA
<213> ORGANISM: Populus tremuloides 

<400> SEQUENCE: 4

ttttaaatat aacccatgat aaggaagttt tataaacctt tacctgcttg acata

<210> SEQ ID NO 5 
<211> LENGTH: 978 
<212> TYPE: DNA
<213> ORGANISM: Populus tremuloides 

<400> SEQUENCE: 5

aagcttatac aatacataca atcaaacata tcaagaacct tgtgttttag aaaaaatcat

taaaaataaa tgaaaataaa agtagaaaat tgataaacat atataaatta taatatttga

cattacaaca atagcttttc tgattgtatt gaatgatttt gtctaccaaa atcaaatatt

cattcaatca aatgataata aaattatata gatatgaaat tgactaaata aaaaaaatta

tataatgtaa ggtcaacata ttagaaatac tatcaaaaaa taaatatttg tatatatata

acacatataa agatttaatt tatatggcgt gtgtttattc agtaaatttc atttgtatta

atttttaagt catgagtttt ataagatgtt gatttatctt ttattaattt aaataagttc

agtaaatata atcgggtgaa tatctcatca tgtaattaaa tatcttaatc tccattattt

cttaattttt tttatttttt tgttagttat tgttaatgat tttttttatt tatataaatt

attattgatt tatttaatta gatatttgta taaattttta ctttaaattt ttttatatac

ctgatatata ttttttttaa atataaccca tgataaggaa gttttataaa cctttacctg

cttgacatag tacatcctgt tccaatagtc tcacctgaaa caggtttttt tttttttttt

ttaaaaaaaa gagtttagca aataagaaga ggaaaaatat atagaagaaa aggtagggag

tcaggtctcg gaagaagcca tttgtgcatc aattagagag ttagaccaac cacaaggtgg

ttgagcactt caccatatat atcacccact ttccaacacc cttttcagta ttctcatatc

ctccgaaagc

aattcaatct

cttttcactt

cgatcaag

cctttcctta caccttcttc aacgttttgt ttccttgtag

16

40

55

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

9 7 8

<210> SEQ ID NO 6 
<211> LENGTH: 1092 
<212> TYPE: DNA

59
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14
-continued

<213> ORGANISM: Populus tremuloides 

<400> SEQUENCE: 6

atgggttcaa caggtgaaac tcagatgact ccaactcagg tatcagatga agaggcacac 60

ctctttgcca tgcaactagc cagtgcttca gttctaccaa tgatcctcaa aacagccatt 120

gaactcgacc ttcttgaaat catggctaaa gctggccctg gtgctttctt gtccacatct 180

gagatagctt ctcacctccc taccaaaaac cccgatgcgc ctgtcatgtt agaccgtatc 240

ttgcgcctcc tggctagcta ctccattctt acctgctctc tgaaagatct tcctgatggg 300

aaggttgaga gactgtatgg cctcgctcct gtttgtaaat tcttgaccaa gaacgaggac 360

ggtgtctctg tcagccctct ctgtctcatg aaccaggaca aggtcctcat ggaaagctgg 420

ttagtatcct gtcttcacca atctaagaaa tcctgattta catattgaat ttgattataa 480

agtggcttac aaactctcca ctgagattta tgttgttgca catttgctct gtttctcaat 540

cttattatgc tatagaaaag caatccaaag tgaccaaatt gagggatcgg caccacagac 600

ttctctctca ctagagacca ttagagatgg gtgaattagg gtcccaccaa tttgacaatt 660

gcaagccacc actttccctg ccataaaggt tttgcctgcc ggcaaatttg tcgaccagtc 720

caaatgggca tcccctaaag ttctagtttt aagagagaga tatgattaga atatttttct 780

acatatttaa agttacttat ggttaatgtc cgaaaaaata aaaaaatgaa aacatattgt 840

tattgaattt ttataaccat caaacctacc tctctaggtt agaaatttcc ttttcagcta 900

aaagaaattg tattttccaa tggtgatatt aactgttatc taaaataaag tcaaattaat 960

atggtcaatt attgctgtcg atgctttatt tatcaaatat gaaccttcga cgaaagcatc 1020

acttttttct ctctctctca aatttgagtc ataaggatta atggataggc taattgccaa 1080

gaattaatta ac 1092

<210> SEQ ID NO 7 
<211> LENGTH: 35 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 7

agttcagtaa atatcctagg gtgaatgctt catca 35

<210> SEQ ID NO 8 
<211> LENGTH: 35 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 8

agttcagtaa atatcctagg gtgaatatct catca 35

<210> SEQ ID NO 9 
<211> LENGTH: 35 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 9

agttcagtaa atataatcgg gtgaatgctt catca 35

<210> SEQ ID NO 10
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16
-continued

<211> LENGTH: 35 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 10

agttcagtaa atataatcgg tcctatgctt catca 35

<210> SEQ ID NO 11 
<211> LENGTH: 35 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 11

agttcagtaa atatcctacg tcctatgctt catca 35

<210> SEQ ID NO 12 
<211> LENGTH: 35 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 12

agttcttcaa atatcctacg tcctatgctt catca 35

tgaatgcctc atcatgtaac cacatgcctt aatc 34

tgaatgcctc atcatgtaat taaatgcctt aatc 34

tgaatgcctc atcatgtaac cacatatctt aatc 3 4

<210> SEQ ID NO 16 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide

<400 SEQUENCE: 16

<210> SEQ ID NO 13 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 13

<210> SEQ ID NO 14 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 14

<210> SEQ ID NO 15 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 15
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18
-continued

tgaatatctc atcatgtaac cacatatctt aatc 34

tgaatatctc atcatgtaat taaatgcctt aatc 34

tgaatgcctc atcatgtaat taaatatctt aatc 34

<210> SEQ ID NO 19 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 19

tgcctgcttc atcatgtaat taaatatctt aatc 34

<210> SEQ ID NO 20 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 20

tgcctgcttc atcatgtaac catagctgtt aatc 34

<210> SEQ ID NO 21 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 21

tgcctgcttc tttctgtaat taaatatctt aatc 34

<210> SEQ ID NO 22 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 22

tgcctgcttc atcatccttt taaatatctt aatc 34

<210> SEQ ID NO 23 
<211> LENGTH: 30 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:

<210> SEQ ID NO 17 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 17

<210> SEQ ID NO 18 
<211> LENGTH: 34 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 18
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-continued

<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 23

ttcgtatcca ttagtgctta atttttttta 30

<210> SEQ ID NO 24 
<211> LENGTH: 30 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 24

ttcgtatcca ttatttctta atttttttta 30

<210> SEQ ID NO 25 
<211> LENGTH: 30 
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence 
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide 

<400> SEQUENCE: 25

ttaatctcca ttagtgctta atttttttta 30

11. The construct of claim 10, wherein the first and second 
fiber-specific elements are from non-overlapping regions of 
SEQ ID NO: 1.

12. The construct of claim 10, further comprising a third 
fiber-specific element having at least 5 consecutive base pairs 
of at least one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 
3, or SEQ ID NO: 4, or the reverse complements of at least 5 
consecutive base pairs of at least one of SEQ ID NO: 1, SEQ 
ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4.

13. The construct of claim 10, wherein the first or second 
fiber-specific element is repeated.

14. The construct of claim 10, further comprising a poly
nucleotide encoding a polypeptide operably connected to the 
promoter sequence.

15. The construct of claim 10, wherein the polypeptide is 
selected from an enzyme in the G-lignin pathway, an enzyme 
in the S-lignin pathway, a cellulose synthase, a sucrose syn
thase, a cellulase, a transcription factor, an enzyme in phyto
hormone biosynthesis and a microtubule component.

16. A nucleic acid construct comprising a first fiber-spe
cific element having at least 9 consecutive base pairs of SEQ 
ID NO: 1 or a reverse complement of at least 9 consecutive 
base pairs of SEQ ID NO: 1, a second fiber-specific element 
having at least 9 consecutive base pairs of SEQ ID NO: 1 or a 
reverse complement of at least 9 consecutive base pairs of 
SEQ ID NO: 1 and a third fiber-specific element having at 
least 9 consecutive base pairs of SEQ ID NO: 1 or a reverse 
complement of at least 9 consecutive base pairs of SEQ ID 
NO: 1 operably connected to a promoter sequence, the first, 
and second and third fiber-specific elements being from par
tially or completely overlapping regions of SEQ ID NO: 1, 
being the same, or a combination thereof.

17. The construct of claim 16, further comprising a poly
nucleotide encoding a polypeptide operably connected to the 
promoter sequence.

18. A method of directing expression of a polynucleotide to 
the fibers of a plant comprising transforming the plant with 
the construct of claim 2.

19. The method of claim 18, wherein the plant is a tree.

What is claimed is:
1. A nucleic acid construct comprising a first fiber-specific 

element having at least 15 consecutive base pairs of SEQ ID 
NO: 1 or a reverse complement of at least 15 consecutive base 
pairs of SEQ ID NO: 1 operably connected to a promoter 
sequence not natively associated with the first fiber-specific 
element.

2. The construct of claim 1, further comprising a poly
nucleotide encoding a polypeptide operably connected to the 
promoter sequence.

3. The construct of claim 2, wherein the polypeptide is 
selected from an enzyme in the G-lignin pathway, an enzyme 
in the S-lignin pathway, a cellulose synthase, a sucrose syn
thase, a cellulase, a transcription factor, an enzyme in phyto
hormone biosynthesis and a microtubule component.

4. The construct of claim 1, further comprising a second 
fiber-specific element having at least 5 consecutive base pairs 
of SEQ ID NO: 1.

5. The construct of claim 4, wherein the first and second 
fiber-specific elements are from non-overlapping regions of 
SEQ ID NO: 1.

6. The construct of claim 4, wherein the first and second 
fiber-specific elements are from partially or completely over
lapping regions of SEQ ID NO: 1, or are the same.

7. The construct of claim 1, wherein the construct com
prises SEQ ID NO: 1.

8. The nucleic acid construct of claim 1, wherein the first 
fiber-specific element comprises a GATA box, anArabidopsis 
response regulator element (NGATT), a GTGA box, an AT- 
rich element of at least 5 base-pairs, or a combination thereof.

9. The nucleic acid construct of claim 1, wherein the first 
fiber-specific element comprises a GATA box, a Arabidopsis 
response regulator element (NGATT), a GTGA element, and 
an AT-rich element of at least 5 base pairs.

10. The nucleic acid construct of claim 1, further compris
ing a second fiber-specific element having at least 9 consecu
tive base pairs of SEQ ID NO: 1 or a reverse complement of 
at least 9 consecutive base pairs of SEQ ID NO: 1.
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20. The method of claim 18, wherein the polynucleotide
encodes a polypeptide selected from an enzyme in the G-lig- 
nin pathway, an enzyme in the S-lignin pathway, a cellulose 
synthase, a sucrose synthase, a cellulose, a transcription fac
tor, a phytohormone and a microtubule component. 5

21. A plant produced by the method of claim 18.
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