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METHODS AND SYSTEMS FOR ORDERING 
INSTRUCTIONS USING FUTURE VALUES

BACKGROUND OF THE INVENTION

Embodiments of the invention relate to methods and sys
tems for ordering software instructions using future values. In 
particular, embodiments of the invention relate to methods 
and system for ordering a first instruction that consumes a 
value of an object such that it is processed before a second 
instruction that defines the value of the object.

Traditionally, data dependencies form the basis of instruc
tion ordering. In other words, in order for instruction ordering 
to be semantically correct, the production or definition of a 
value of an object must precede any consumption of the value 
of the object.

Following traditional instruction ordering, processors 
assign producer instructions (i.e., instructions that produce a 
value) a production tag (e.g., a name or an identifier). Typi
cally, a production tag includes a physical location of the 
processor, such as a register, that will store the generated or 
produced value. Processors then provide consumer instruc
tions (i.e., instructions that consume a value produced with a 
producer instruction) with tags assigned to producer instruc
tions that provide the values consumed with the consumer 
instructions. Processors then hold the consumer instructions 
in specific buffers of a processor, often called reservation 
stations. When the processor finishes processing a producer 
instruction, the processor signals the availability of the value 
produced with the producer instruction. The processor then 
releases any consumer instructions holding a tag matching 
the tag of the completed producer instruction.

SUMMARY OF THE INVENTION

The instruction-ordering requirement as described above 
limits the reordering or reorganizing of instructions. How
ever, reorganizing instructions is often beneficial to proces
sors configured to continue processing (i.e., fetching and 
scheduling execution of) instructions without waiting for the 
results of previously processed instructions to become avail
able.

Accordingly, embodiments of the invention provide a 
method of ordering software instructions. The method 
includes placing a first instruction that consumes a value of an 
object before a second instruction that produces the value of 
the object such that the first instruction is processed before the 
second instruction and a physical location is allocated to the 
value of the object upon processing the first instruction.

Additional embodiments provide a method of processing 
software instructions. The method includes allocating a 
physical location to a value of an object, upon encountering a 
first instruction that consumes a value of an object that is not 
defined. The method also includes mapping the value pro
duced with a second instruction that produces the value of the 
object to the physical location.

Another embodiment provides a computer-readable 
medium including instructions for organizing an instruction 
set. The instruction set includes a first instruction that con
sumes a value of an object and a second instruction that 
produces the value of the object. The computer-readable 
medium includes instructions for ordering the instructions 
sequentially such that the first instruction is before the second 
instruction. The computer-readable medium also includes 
instructions for flagging the object referenced in the first 
instruction as a future value object.

1
Some additional embodiments provide a system for orga

nizing and processing an instruction set. The instruction set 
includes a first instruction that consumes a value of an object 
and a second instruction that produces the value of the object. 
The system includes an instruction organizing application 
configured to order the instructions sequentially such that the 
first instruction is before the second instruction and to flag the 
object referenced in the first instruction as a future value 
object. The system also includes a processor configured to 
allocate a physical location to the value of the object upon 
processing the first instruction and to map the value produced 
with the second instruction to the physical location.

Further embodiments provide a method of processing a 
repeated instruction. The method includes fetching a repeated 
instruction, executing the repeated instruction, and holding a 
first copy of the repeated instruction with a predicate upon 
releasing the repeated instruction for execution where the 
predicate has a true state and a false state.

Yet another embodiment provides an instruction organizer. 
The instruction organizer includes an instruction-ordering 
module configured to place a first instruction that consumes a 
value of an object before a second instruction that produces 
the value of the object. The instruction organizer also includes 
a future-value-object-flagging module configured to flag a 
reference to the object included in the first instruction as a 
reference to a future value object.

Embodiments also provide a processor. The processor 
includes a renamer configured to 1) obtain a first instruction 
including a future value object flag and a reference to a first 
object, 2) to allocate a first physical location for a value of the 
object and map the reference to the first object to the first 
physical location if the future value object flag is set, and, 3) 
if the future value object flag is not set, to map the reference 
to the first obj ect to a previously-allocated physical register as 
designated with a previously-allocated physical location 
identifier stored in a map table.

Other embodiments provide a renamer. The renamer 
includes a map table configured to store previously-allocated 
physical location identifiers that map an object identifier to a 
physical location, to receive an object identifier, and to trans
mit a previously-allocated physical location identifier and a 
physical location allocator configured to receive a future 
value object flag and to allocate a first physical location and 
transmit a first physical location identifier associated with the 
first physical location if the future value object flag is set.

Other features and advantages of embodiments of the 
invention will become apparent to those skilled in the art upon 
review of the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
FIG. 1 illustrates an exemplary instruction set representing 

traditional instruction ordering.
FIG. 2 illustrates an exemplary renaming process per

formed with a processor upon encountering the instruction set 
of FIG. 1.

FIG. 3 illustrates another exemplary renaming process per
formed with a processor upon encountering the instruction set 
of FIG. 1.

FIG. 4 illustrates another exemplary instruction set repre
senting future value instruction ordering.

FIG. 5 illustrates an exemplary renaming process per
formed with a processor upon encountering the instruction set 
of FIG. 4.

FIG. 6 illustrates an exemplary instruction set representing 
traditional instruction ordering.
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FIG. 7 illustrates the instruction set of FIG. 6 reordered 
using future value instruction ordering.

FIG. 8 illustrates another exemplary instruction set repre
senting traditional instruction ordering.

FIG. 9 illustrates the instruction set of FIG. 8 reordered 
using future value instruction ordering and a predicted branch 
path.

FIG. 10 illustrates the instruction set of FIG. 9 and a rolled- 
back processing path taken when a predicted branch path is 
incorrect.

FIG. 11 illustrates the instruction set of FIG. 9 and a cor
rected processing path.

FIG. 12 illustrates anther exemplary instruction set includ
ing a first branch path and a second branch path.

FIG. 13 illustrates the instruction set of FIG. 12 reordered 
using future value instruction ordering.

FIG. 14 illustrates exemplary processing of the instruction 
set of FIG. 13 including the first branch path.

FIG. 15 illustrates exemplary processing of the instruction 
set of FIG. 13 including the second branch path.

FIG. 16 illustrates the instruction set of FIG. 12 including 
a modified first branch path and a second branch path.

FIG. 17 is a schematic diagram of an exemplary processor 
and memory module.

FIG. 18 represents a portion of the memory module of FIG. 
17 that stores an instruction organizing application.

FIG. 19 illustrates exemplary modules of the instruction 
organizing application of FIG. 18.

FIG. 20 is a schematic diagram of an exemplary renamer 
included in the processor of FIG. 17.

FIG. 21 illustrates an exemplary instruction set including a 
loop.

FIG. 22 illustrates the instruction set of FIG. 21 repre
sented with recursive instructions.

FIGS. 23-27 illustrate exemplary processing states of a 
processor executing the instruction set of FIG. 22.

FIG. 28 illustrates exemplary internal production per
formed with a processor executing recursive instructions.

It is to be understood that the invention is not limited in its 
application to the details of construction and the arrangement 
of components set forth in the following description or illus
trated in the drawings. The invention is capable of other 
embodiments and of being practiced or of being carried out in 
various ways. Also, it is to be understood that the phraseology 
and terminology used herein is for the purpose of description 
and should not be regarded as limiting. The use of “includ
ing,” “comprising,” or “having” and variations thereof herein 
is meant to encompass the items listed thereafter and equiva
lents thereof as well as additional items. Unless limited oth
erwise, the terms “connected,” “coupled,” and “mounted,” 
and variations thereof herein are used broadly and encompass 
direct and indirect connections, couplings, and mountings. In 
addition, the terms “connected” and “coupled” and variations 
thereof are not restricted to physical or mechanical connec
tions or couplings.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary instruction set 10 represent
ing traditional instruction ordering or flow. The instruction set 
10 includes a first instruction 12 labeled as “II” and a second 
instruction 14 labeled as “12.” The first instruction 12 and the 
second instruction 14 include a reference to an object or 
variable x. In terms of the object or variable x, the first instruc
tion 12 is a producer instruction since it produces a value for 
the object x, and the second instruction 14 is a consumer 
instruction since it consumes the value of the object x. As
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described above, the instruction set 10 represents traditional 
instruction ordering since the consumption of the value of the 
object x sequentially follows the definition or production of 
the value of the object x.

FIG. 2 illustrates an exemplary renaming process per
formed with a processor encountering or processing the 
instruction set 10. Upon fetching the first instruction 12, the 
processor selects an available physical location (e.g., a regis
ter) for a value of the object x and replaces the obj ect identifier 
x in the first instruction 12 with a name or identifier associated 
with the selected physical location. In the example illustrated 
in FIG. 2, the object identifiers is replaced with the physical 
location identifier R27. When the second instruction 14, 
which consumes the value of the object x, is fetched, the 
object identifier x in the second instruction 14 is also replaced 
with the location identifier, R27, such that the first instruction 
12 and the second instruction 14 map or associate the value of 
the object x to the same physical location. In some embodi
ments, a processor uses a map table to replace all references 
to a particular object identifier to the same location. The 
processor can also select or allocate a virtual physical location 
or tag for a value of the object x. The processor can then map 
the virtual physical location or tag to a true physical location 
when a value for the object x is available.

FIG. 3 illustrates another exemplary renaming process per
formed with a processor with respect to the instruction set 10 
of FIG. 1. As illustrated in FIG. 3, the creation of the asso
ciation between the object identifier x and the physical loca
tion identifier R27 is not bound to a specific instruction, and 
the processor creates an association between the object iden
tifier x and the physical location identifier R27 before 
encountering the first instruction 12 or the second instruction 
14. Upon encountering the first instruction 12 and the second 
instruction 14, the processor replaces the object identifier x 
with the previously associated physical location identifier 
R27.

As illustrated in FIG. 3, the creation of the association 
between an object identifier and a physical location identifier 
R27 can be separated from the encountering of a producer 
instruction initially defining or introducing the object identi
fier while maintaining correct instruction ordering semantics. 
Consequently, it becomes irrelevant as to whether the pro
ducer instruction or the consumer instruction is encountered 
first.

In some embodiments, traditional instruction ordering can 
be reversed or disregarded by identifying an instruction that 
includes an object identifier that will be the first reference to 
the object identifier encountered with the processor regard
less of whether the instruction is a producer of the value of the 
object identifier or a consumer of the value of the object 
identifier.

FIG. 4 illustrates another exemplary instruction set 20 rep
resenting future value or reverse instruction ordering. The 
instruction set 20 includes a first instruction 22 labeled as “I I ” 
and a second instruction 24 labeled as “12.” In contrast to the 
instruction set 10, the first instruction 22 is a consumer 
instruction with respect to object identifier x, since the first 
instruction 22 consumes a value of the object x. The second 
instruction 24 is a producer instruction with respect to object 
identifier x, since the second instruction 24 produces the 
value of the object x. The instruction set 20 represents future 
value instruction ordering, which deviates from traditional 
instruction ordering since the consumption of the value of the 
object x comes before the definition or production of a value 
of the object x.

In some embodiments, to maintain proper instruction 
ordering semantics, the object x is flagged as a “future value
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object” in the first instruction 22 (illustrated x^in FIG. 4). The 
flagging of the object x as a future value object indicates that 
the value of the object x will be defined or produced in the 
“future.” The “future” can include the future processing of the 
instruction that includes the flagged object or the processing 
of a subsequent instruction.

It should be understood that an instruction set representing 
future value instruction ordering can include multiple con
sumer instructions sequentially ordered before a correspond
ing producer instruction, and, in some embodiments, the flag
ging of the object x as a future value object indicates that the 
reference to the object x is the first reference to be encoun
tered with the processor upon processing the instruction set. 
In other words, only the first reference to a value of an object 
is flagged as a future value object when multiple consump
tions of the value occur before the corresponding production 
of the value. For example, for a sequence of instructions 
{consumerj, consumer2, . . . ,  consumer,,, producer}, only the 
reference to the object in the consumer 1 instruction is flagged 
as a future value object identifier since the reference is the first 
reference of the object identifier encountered with a processor 
when processing the sequence. Likewise, the references to the 
object in the remaining consumer instruction, as well as the 
producer instruction, will not be flagged as a future value 
object.

FIG. 5 illustrates an exemplary renaming process per
formed with a processor upon encountering the instruction set 
20. In some embodiments, if an object identifier flagged as a 
future value object is referenced as consuming a value of an 
object, the processor treats the consumption of a value of an 
object as it would traditionally treat a definition or production 
of the value of the object and allocates a physical location for 
the value of the object. Subsequent references to the value of 
the object are then mapped to the same physical location.

In some embodiments, since the value consumed with the 
first instruction 22 is produced in the future, the processing of 
the first instruction 22 is halted or held until the value con
sumed with the first instruction is produced or becomes avail
able. When the producer instruction (e.g., the second instruc
tion 24) producing the value of the object is finally 
encountered, the processor maps or renames the object iden
tifier to the same physical location previously allocated.

It should be understood that instructions representing tra
ditional instruction ordering can also reference objects 
flagged as future value objects. For example, an instruction 
set includes a sequence of instructions {producer, consumer!, 
consumer2, consumer,,}, which represent traditional instruc
tion ordering. As described above, an object can be flagged as 
a future value object if a value of the object reference with the 
instruction is going to be defined or produced in the “future.” 
The “future” can include the processing of the instruction 
including the object flagged as a future value object or the 
processing of a subsequent instruction. Therefore, the refer
ence to the object included in the producer instruction of the 
above sequence is flagged as a future value object since the 
value of the object will be defined in the future with the 
processing (i.e., the execution) of the producer instruction. 
Likewise, each reference to the object identifier in the con
sumer instructions will not be flagged as a future value object 
since the value of the object consumed with the consumer 
instructions is defined or produced in the past (rather than in 
the future) with the processing of the producer instruction.

In some embodiments, ordering instructions in non-tradi- 
tional or future value instruction order as described above, 
allows instructions to be reordered or reorganized to improve 
or increase processing power of a processor. For example, 
processors performing instruction level parallelism often
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reorder instructions to avoid instruction processing pipeline 
interruptions due to processing branch instructions, data-de- 
pendent instructions, and/or resource-conflicting instruc
tions.

Branch instructions can disrupt the normal sequential flow 
of a program since a processor may not be able to determine 
a subsequent instruction to process until after the branch 
instruction is processed. Since a processor using instruction 
level parallelism starts processing (i.e., fetches) subsequent 
instructions before it finishes processing previous instruc
tions, the processor may not know which subsequent instruc
tion to start processing because it has not finished processing 
a branch instruction.

One attempt to solve processing conflicts due to branch 
instructions is to reorganize the order of the instructions such 
that branch-independent instructions (i.e., instructions that do 
not depend on the processing of a branch instruction and, 
therefore, will be processed regardless of the results of pro
cessing the branch instruction) are processed in parallel with 
the processing of the branch instruction. By processing 
branch-independent instructions before processing branch- 
dependent instructions (i.e., instructions that may or may not 
be processed depending on the result of processing the branch 
instruction), the processing of control-dependent instructions 
can be delayed until the branch instruction is processed and 
the processor knows what instructions should be processed 
next.

Data-dependent instructions can also hinder processing 
performance since the processing of a data-dependent 
instruction can depend on the results of another instruction 
that may or may not be finished processing. In some embodi
ments, if  a data-dependent instruction is processed too closely 
to the instruction that the data-dependent instruction depends 
on, the processing of the instruction that the data-dependent 
instruction depends on may not be finished and the results 
may not be ready or available. In some situations, instructions 
may be reordered to increase the time between processing a 
data-dependent instruction and the instruction that the data 
dependent instruction depends on to allow more time for the 
instruction that the data-dependent instruction depends on to 
process such that the results are available for the data-depen
dent instruction when the data-dependent instruction is pro
cessed.

Resource-conflicting instructions can also cause instruc
tion processing delays since resource-conflicting instructions 
are instructions processed in parallel where each instruction 
requires access to a particular resource, such as a memory 
module. In some embodiments, reordering the resource con
flicting instructions such that they do not require access 
simultaneously reduces potential conflicts.

In some embodiments, future value instruction ordering 
allows greater freedom to reorder instructions to accommo
date branch instruction processing, data-dependent instruc
tion processing, and/or resource-conflicting instruction pro
cessing since consumer instructions can be placed before 
producer instructions without violating instruction ordering 
semantics.

FIG. 6 illustrates an exemplary instruction set 30. In some 
embodiments, a processor performing instruction level par
allelism processes the instruction set 30. Performing instruc
tion level parallelism allows the processorto process multiple 
instructions in parallel. Forthe instruction set 30 illustrated in 
FIG. 6, an exemplary processor may be configured to process 
four instructions in parallel and may fetch four instructions 
per cycle. The processor may also be configured to process an 
instruction in one cycle. Given the above configurations for a 
processor processing the instruction set 30, the processor can
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fetch the first subset 35 of the instruction set 30 on a first clock 
cycle. The first subset 35 can include a first instruction 40 
labeled “II,” a second instruction 42 labeled “12,” a third 
instruction 44 labeled “13,” and a fourth instruction 46 labeled 
“14.” The fourth instruction 46 includes a branch instruction, 
and, in some embodiments, processing the fourth instruction 
46 can determine a branch direction and, consequently, sub
sequent instructions to process.

In some embodiments, in order to maintain or fill the 
instruction pipeline, a processor continues to process instruc
tions and, therefore, continues to fetch instructions after 
fetching the first subset 35 of instructions. The instruction set 
30, however, provides two possible branch directions, and 
each possible branch direction includes control-dependent 
instructions that may or may not be processed depending on 
the processing of the branch instruction included in the fourth 
instruction 46. The instruction set 30 includes a first possible 
branch path represented with a second subset 50 that includes 
a fifth instruction 52 labeled “15.” The instruction set 30 also 
include a second possible branch path represented with a third 
subset 60 that includes a sixth instruction 62 labeled “16.”

The instruction set 30 further includes a fourth subset 70 
that includes control-independent instructions that are pro
cessed regardless of which possible branch path is processed. 
The fourth subset 70 can include a seventh instruction 72 
labeled “17,” an eighth instruction 74 labeled “18,” a ninth 
instruction 76 labeled “19,” and a tenth instruction 78 labeled 
“ 110.”

In some embodiments, the processor reorders the instruc
tion set 30 to accommodate the processing of the branch 
instruction using future value instruction ordering. As illus
trated in FIG. 7, upon fetching the first subset 35 of instruc
tions, the processor can determine that a branch instruction 
has been encountered and can reorder the instruction set 3 0 to 
place instructions included in the fourth subset 70, which 
includes control-independent instructions, immediately after 
the first subset 35. As described above, using future value 
instruction ordering, the fourth subset 70 can be moved since 
moving the subset 7 0 places a consumption of the value of the 
object x before the production of the value of the object x 
(which is included in the second subset 50 or the sixth subset 
60). In some embodiments, without applying future value 
instruction ordering some of the instructions of the fourth 
subset 70 could not be reordered. For example, the seventh 
instruction 72 could not be placed before the production of the 
value of the object x included in the fifth instruction 52 or the 
sixth instruction 62 using traditional instruction ordering 
since a physical location is only allocated upon processing a 
definition or production of a value and not a consumption of 
a value.

Upon reordering the fourth subset 70 such that it immedi
ately follows the first subset 35, the reference to the value of 
the object x in the seventh instruction 72 can be flagged as a 
future value obj ect (as illustrated by x̂ -in FIG. 7). Flagging the 
reference to the value of the obj ect x can instruct the processor 
to allocate a physical location to the value of the object even 
though the processor has not previously encountered a defi
nition or production of the value.

After reordering the instruction set 30 and flagging the 
reference to the value of the obj ect x in the seventh instruction 
72 as a future value object, the processor can continue pro
cessing instructions by processing control-independent 
instructions included in the fourth subset 70. In some embodi
ments, the instruction set 30 is reorganized such that enough 
control-independent instructions are moved or reordered to 
occupy or fill the instruction processing pipeline until the 
branch instruction included in the fourth instruction 46 is

7
processed to determine one of the possible branch paths to 
process without stalling the instruction processing pipeline 
and decreasing the processing benefits it provides.

It should be understood, however, that processing the con
trol-independent instructions (the fourth subset 70) with the 
processor can include fetching the instructions and holding 
some of the instructions in a reservation station. The proces
sor can hold control-independent instructions if the instruc
tions are data-dependent on instructions that have not been 
executed yet. In essence, however, a processor keeps the 
pipeline full since instructions are still being fetched at a 
maximum or optimizing rate.

In some embodiments, the processor is configured to pre
dict a branch path and to continue fetching along the predicted 
branch path. For example, with respect to the instruction set 
30, if the processor predicts that the first possible branch path 
is the likely path to be processed, the processor can fetch the 
second subset 50, including the fifth instruction 52, and one or 
more instructions included in the fourth subset 70. Alterna
tively, if  the processor predicts that the second possible 
branch path is the likely path, the processor can fetch the sixth 
instruction 62 included in the third subset 60 and instructions 
included in the fourth subset 70.

In some embodiments, if  the prediction of the processor is 
correct, the processor continues operating normally since the 
correct instructions have been processed. Flowever, if the 
prediction of the processor is incorrect, the processor may 
have to restart or reload instructions from the correct path. 
During a restart, processing cycles (i.e., time) are wasted due 
to the cost of restarting or reloading the instruction pipeline as 
well as the fact that useful instructions that may have been 
processed in the meantime are discarded.

Using traditional instruction ordering, if  the prediction of a 
processor is incorrect, the processor may be required to repro
cess (including refetching) incorrect instructions. In some 
embodiments, even control-independent instructions, which 
would have been processed regardless of the branch path 
processed, are completely reprocessed in order to reestablish 
physical location allocations generated with a producer 
instruction and passed to a consumer instruction.

For example, given the example illustrated in FIG. 6, if the 
processor initially followed the first possible branch path 
including the fifth instruction 52, the processor may allocate 
a physical location for the value of the object x defined or 
produced with the fifth instruction 52 and an identifier of the 
physical location would have been associated with the refer
ence to the value of the object x included in the seventh 
instruction 72. If the prediction is incorrect, however, instruc
tion processing may be rolled back to process the second 
possible branch path. The second possible branch path 
includes the sixth instruction 62 and a new physical location 
may be allocated for the value of object x defined or produced 
with the sixth instruction 62, which would then also be asso
ciated with the value of the object x referenced in the seventh 
instruction 72. By rolling back processing, control-indepen
dent instructions are processed twice, and, therefore, the pro
cessing time of the instruction set 30 is increased.

In contrast to the prediction fallbacks described above, 
incorporating future value instruction ordering with branch 
prediction can provide generally less risky or costly branch 
prediction. FIG. 8 illustrates the instruction set 30 represent
ing traditional instruction ordering, and FIG. 9 illustrates the 
instruction set 30 reordered using future value instruction 
ordering, such that the fourth subset 70 immediately follows 
the first subset 35. As described for FIG. 7, reordering the 
instruction set 30 causes the object x referenced in the seventh
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instruction 72 to be flagged as a future value object (jq) since 
the value of the object x will be produced in the “future.”

In the example illustrated in FIG. 9, a processor processing 
the instruction set 30 may predict the second possible branch 
path (including the third subset 60 and the sixth instruction 
62) as the likely branch path. Using the predicted path, the 
processor processes the instructions included in the first sub
set 35, the fourth subset 70, and the third subset 60. The 
processor also processes one or more instructions from a fifth 
subset 80, such as an eleventh instruction 82 labeled “111.” 
The dashed processing path 90 illustrates an exemplary pro
cessing path of the processor.

Following the processing path 90, the processor encounters 
the seventh instruction 72 included in the fourth subset 70 
and, since the reference to the object x in the seventh instruc
tion 72 is flagged as a future value object, the processor 
allocates a physical location for the value of the object x, such 
as a register 100. In some embodiments, the processor then 
holds the seventh instruction 72 in a reservation station (not 
shown) to wait until a value of the object x is available in the 
register 100.

While executing the processing path 90, the processor also 
fetches and executes the sixth instruction 62 included in the 
third subset 60. The sixth instruction 62 is a producer instruc
tion that defines or produces a value of the object x. As 
illustrated in FIG. 9, upon processing the sixth instruction 62, 
a value (e.g., zero) can be stored to the register 100 and the 
stored value can then be available and used with the seventh 
instruction 72.

If the prediction of the processor is incorrect, however (i.e., 
the second subset 50 including the fifth instruction 52 is 
actually the determined branch path), the processor may 
execute the control-independent instructions included in the 
fourth subset 70 with incorrect values. For example, the sev
enth instruction 72 can execute the expression z=Xy+a using 
the value (i.e., zero) produced with the incorrect sixth instruc
tion 62.

As noted, in traditional instruction ordering, once an incor
rect prediction is detected, the processor rolls back or reverses 
to process the correct instructions with correct values. When 
using certain embodiments of future value instruction order
ing, however, the processor does not need to completely 
reprocess control-independent instructions and re-establish 
data dependence links. Rather, a physical location is allocated 
for the value of the object identifier x when the processor 
encounters the seventh instruction 72 that can be associated 
with any subsequent reference to the object x.

In some embodiments, the seventh instruction 72 (and any 
other instructions whose executed result depends on whether 
the prediction of the processor is correct) is purposefully held 
in the reservation station until the prediction of the processor 
is verified. By holding the speculative reordered instructions 
until a definitive branch direction is determined, the specula
tive reordered instructions do not have to be reprocessed (e.g., 
re-fetched). The prediction-dependent instructions can then 
be released once the values that the instructions consume are 
definite.

In some embodiments, since the speculative reordered 
instructions are still being held, the processor is only required 
to roll back to where incorrect processing (i.e., executing) 
began. As illustrated in FIG. 10, a processing path 105 indi
cates the processing of the processor that is retained. The path 
105 includes the instructions of the first subset 35 and the 
instructions of the fourth subset 70. In comparing the pro
cessing path 90 to the processing path 105, the processor 
rolled back or “erased” the processing of the sixth instruction 
62 and the eleventh instruction 82. These instructions are
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labeled as discarded instructions since they were incorrectly 
and unnecessarily processed before the incorrect prediction 
was detected.

FIG. 10 also illustrates that the register 100 is still allocated 
to the value x after the processor rolls back. This is so because 
the processing of the control-independent instructions 
included in the fourth subset 70 was not rolled back. As 
illustrated in FIG. 11, after rolling back, the processor begins 
processing along the correct branch path (processing path 
110). The fifth instruction 52 is executed and a value (e.g., 
five) is stored in the register 100. The value stored in the 
register 100 can then be used to process the seventh instruc
tion 72 and execute the expression z=Xy+a.

In some embodiments, consumer instructions may be reor
dered such that they are processed before corresponding pro
ducer instructions as long as at least one corresponding pro
ducer instruction is guaranteed to be processed in the 
“future.” For example, the second subset 50 and the third 
subset 60 illustrated in FIGS. 6-9 represent possible branch 
paths that both include a producer instruction that produces a 
value for the object x. Since both possible branch paths 
include a producer instruction for the value of the object x, a 
producer instruction for a value of the obj ect x will be encoun
tered regardless of the determined branch path. Therefore, the 
seventh instruction 72 that consumes the value of the object x 
can be placed before the instructions of the second subset 50 
and the third subset.

If, however, a producer instruction is not included in all 
possible branch paths, a consumer instruction can wait for a 
corresponding producer instruction that may never be 
encountered. FIG. 13 illustrates an instruction set 140. The 
instruction set 140 includes a pre-branch instruction subset 
150 that includes an initial producer instruction 152 labeled 
“II” that establishes an initial definition or production of a 
value of the object a. The instruction set 140 also includes a 
first-branch-path instruction subset 160 that includes a sub
sequent producer instruction 162 labeled “12” that produces a 
subsequent value of the object a. The instruction set 140 also 
includes a second-branch-path instruction subset 170 that 
includes a producer instruction 172 labeled “13” that defines 
a value of an object b but does not include a subsequent 
producer instruction producing a value of the object a.

The instruction set 140 further includes a post-branch 
instruction subset 180 that includes a consumer instruction 
182 that consumes the value of the object a. If the first- 
branch-path instruction set 160 is processed, the consumer 
instruction 182 uses “4” as the value of the object a. However, 
if the second-branch-path instruction subset 170 is processed, 
the consumer instruction 182 uses the value of the object a as 
produced with the initial producer instruction 152.

Using future value instruction ordering, the post-branch 
instruction subset 180 can be reordered such that it immedi
ately follows the pre-branch instruction subset 150, as illus
trated in FIG. 13. Upon processing the reordered post-branch 
instruction set 180, a physical location (e.g., a register 190) 
can be allocated for a value of the object a flagged as a future 
value object. In some embodiments, the reference to the 
object a included in the initial producer instruction 152 and 
the reference to the future value object a included in the 
consumer instruction 182 are considered references to differ
ent objects. And, separate physical locations are allocated for 
the value of the object a and for the value of the future value 
object a. For example, as illustrated in FIG. 13, the value of 
the future value object a produced with the initial producer 
instruction (e.g., 2) is not stored in the register 190. Instead, 
the register 190 was allocated specifically for the future value 
object a.
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Alternatively, the reference to the object a included in the 
initial producer instruction 152 and the reference to the future 
value obj ect a included in the consumer instruction 182 can be 
considered references to the same object. In addition, the 
reference to the future value object a included in the consumer 
instruction can be associated with the physical location pre
viously allocated for the object a with the initial producer 
instruction.

If the instruction set 140 is reordered as illustrated in FIG. 
13 and the first-branch-path instruction subset 160 is pro
cessed as the branch direction, the register 190 obtains the 
value produced with the subsequent producer instruction 162 
(e.g., 4). As illustrated in FIG. 14, the value can then be used 
with the consumer instruction 182.

Alternatively, if the second-branch-path instruction subset 
is processed, as illustrated in FIG. 15, the future value object 
a^referenced in the consumer instruction 182 may wait for a 
production of a value of the object a that is never encountered.

In some embodiments, to ensure that a producer instruction 
is processed regardless of the determined branch path, a sub
sequent producer instruction is added to a branch path that 
does not include a subsequent producer instruction. As illus
trated in FIG. 16, a copy of the initial producer instruction 
(instruction 192 labeled “I3a”) can be added to the second- 
branch path instruction subset 170. In some embodiments, a 
subsequent producer instruction is added to the branch path 
that sets the value of the future value object equal to the value 
of the object initially produced by the initial producer instruc
tion 152, if the future value object is allocated a separate 
physical location as described above. In other embodiments, 
the initial producer instruction is moved to the branch path 
without a subsequent producer instruction using partial-dead- 
code elimination techniques.

Another issue that can arise from reordering instructions, is 
changing the order of memory load/store instructions. In 
some embodiments, processors employ dynamic memory 
disambiguation (using a mechanism such as a store set algo
rithm), and the only issue to consider when reordering 
memory instructions is detecting memory order violations. 
Once a memory order violation is detected, a memory depen
dence detector can prevent or restrict a reordered memory 
instruction from issuing early, since it is encountered first 
with a processor. In some embodiments, a block number is 
assigned to each instruction to correctly detect memory order 
violations for reordered instructions. After reordering the 
instructions, the memory load/store instructions retain their 
original block number, which designates a desired execution 
flow of the instructions regardless of how the instructions are 
encountered once reordered.

In certain embodiments, a processor is configured to reor
der instructions using future value instruction ordering. In 
some embodiments, a processor is configured to reorder 
instructions using future value instruction ordering with a 
technique that is similar to predecoding. Predecoding allows 
a processor to determine or estimate the type of a fetched 
instruction. In some embodiments, predecoding is performed 
upon fetching an instruction or storing an instruction to an 
instruction cache of a processor. Predecoding is often used 
with processors performing instruction level parallelism to 
identify branch instructions, or other possibly conflicting 
instructions, in order to compensate for potential pipelining 
conflicts by fetching subsequent instructions out-of-order 
from the normal or initial instruction order. After identifying 
a potential pipelining conflict, the processor can reorder 
instructions using future value instruction ordering to accom
modate potential pipelining conflicts without delaying or 
decreasing the output rate of the instruction pipeline.
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The processor can also be configured to reorder instruc

tions using future value instruction ordering when it experi
ences an instruction-cache miss, which indicates that the a 
subsequent instruction to process is not readily available. The 
processor can attempt to fill or load the pipeline with out-of- 
order instructions creating future value ordered instructions.

In addition, the processor can be configured to reorder 
instructions using future value instruction ordering during 
trace cache construction. A trace cache can be used to save 
instruction sequences processed with a processor such that 
the sequences can be refetched from the trace cache rather 
than from a separate memory or cache, which may take more 
time. In some embodiments, after processing a sequence of 
instructions including a branch instruction (and possibly 
experiencing processing delay due to branch path uncer
tainty), the processor reorders the sequence of instructions 
using future value instruction ordering such that subsequent 
processing of the same sequence of instructions can be per
formed with less processing delay.

In some embodiments, when a processor reorders instruc
tions using future value instruction ordering using any of the 
above techniques, the processor may place a consumer 
instruction before a corresponding producer instruction and 
may flag objects referenced with the consumer instruction as 
future value objects. In some embodiments, a processor flags 
future value objects by associating a flag, such as a single bit, 
with an object identifier. A single bit future value object flag 
can be set to one to indicate future value object references and 
can be cleared or set to zero to indicate non-future value 
object references.

In addition to the various processor configurations dis
cussed above, pre-processing instruction organizing applica
tions and techniques, such as compilers, interpreters, and 
assemblers, can also order or reorder instructions using future 
value instruction ordering. For example, the processor can 
operate a pre-processing instruction organizing application 
(which may be implemented as an “instruction organizer” 
that includes software, hardware, or a combination thereof) to 
translate and/or reorganize an instruction set so that the pro
cessor can execute the instruction set. The instruction orga
nizer can be configured to review a set of instructions, to 
determine potential reordering optimizations that can be per
formed, to reorder instructions, and to flag future value 
objects. In some embodiments, the instruction organizer indi
cates future value objects by setting a bit associated with an 
object identifier. For example, an instruction oiganizer can 
translate source or high-level instructions into to binary or 
machine-readable instructions and can associate a bit with 
each object identifier reference included in an instruction. 
The instruction organizer can set the bit to specify an object is 
a future value object and can clear the bit to specify an object 
is not a future value object. In some embodiments, the instruc
tion organizer also includes an instruction generation appli
cation configured to allow a user to manually indicate future 
value objects based on a manual ordering of the instructions. 
A compiler can then translate the manually specified future 
value objects into future value objects flags orbits.

In some embodiments, regardless of whether an object is 
flagged as a future value object with a processor or an instruc
tion organizer, the processor uses a future value object flag or 
bit to determine how to process an instruction based on the 
value or state of the flag. FIG. 17 illustrates an exemplary 
processor 200 and memory module 210.

The memory module 210 can include non-volatile memory 
such as one or more forms of ROM, one or more disk drives, 
RAM, other memory, or combinations of the foregoing. In 
some embodiments, the memory module 210 is configured to
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store an instruction oiganizer. FIG. 18 illustrates a portion of 
the memory module 210 including an instruction oiganizer 
215. FIG. 19 illustrates that the instruction organizer 215 can 
include an instruction-ordering module 220 and a future- 
value-object-flagging module 225. The instruction-ordering 
module 220 can be configured to order instructions using 
future value instruction ordering. In some embodiments, the 
instruction-ordering module 220 is configured to identify 
control-dependent instructions and control-independent 
instructions to determine and select potential instructions to 
reorder. The instruction-ordering module 220 can also be 
configured to ensure that a producer instruction is guaranteed 
to be encountered for every consumer instruction referencing 
a future value object, and the instruction-ordering module 
220 can also be configured to add or move instructions to 
guarantee that a producer instruction is encountered. The 
future-value-object-flagging module 225 can be configured 
to identify future value objects by flagging or marking future 
value objects.

As illustrated in FIG. 17, the processor 200 can include an 
instruction fetcher/cache 230, an instruction decoder 240, a 
renamer 250, a reservation station 260, an arithmetic logic 
unit (“ALU”) 270, and an output or results storage 280. It 
should be understood that the processor 200 can include other 
components or modules in addition to and/or in place of the 
modules listed above. The functionality provided with the 
modules listed above can also be combined and distributed in 
various configurations.

The instruction fetcher/cache 230 fetches one or more 
instructions from the memory module 210. In some embodi
ments, a specific physical location or register stores a pro
gram counter that specifies one or more memory addresses of 
one or more instructions stored in the memory module 210 
that should be fetched with the instruction fetcher/cache 230. 
The program counter can be adjusted (i.e., incremented) after 
the instruction fetcher/cache 230 fetches one or more instruc
tions from the memory module 210. In some embodiments, 
the instruction fetcher/cache is also configured to predecode 
fetched instructions.

The instruction decoder 240 decodes one or more instruc
tions. In some embodiments, the instruction decoder 240 
determines a type of an instruction (e.g., a memory load 
instruction, an arithmetic instruction, a register manipulation 
instruction, a memory write instruction, etc), and prepares or 
initializes the processor 200 to process the instruction.

The renamer 250 associates or allocates a physical location 
or register with object identifiers referenced in instructions. In 
some embodiments, the renamer 250 is configured to obtain 
an object identifier, to allocate a physical location for a value 
of the object and to provide a physical location identifier for 
the allocated physical location for subsequent references to 
the object. In some embodiments, the renamer 250 uses the 
future value flags or bits, set with the processor 200 or the 
instruction organizer 215, to determine whether a physical 
location has already been allocated for a value of an object.

FIG. 20 illustrates exemplary components of the renamer 
250. The renamer 250 includes a map table 300, a physical 
location or register allocator 310, and a multiplexer 320. The 
map table 300 can be configured to store physical location 
associations. For example, if  a physical location or register 
identified as R27 is allocated to a value for an object a, the 
map table 300 can store an association between object a and 
register R27. Given one part of a physical location associa
tion, the map table 300 can be configured to provide the other 
part. For example, if the renamer 250 obtains an instruction 
with a reference to object a, the map table 300 provides the 
physical location identifier R27 that identifies the physical
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location associated with the object a. Subsequent references 
to the object a can use the physical location identifier pro
vided from the map table 300 to determine where a value 
should be stored or consumed.

In some embodiments, the map table 300 stores one half of 
the physical location associations. For example, the map table 
300 can store physical location identifiers and the associated 
obj ect identifiers canbeusedasan index or hash into the map 
table. In some embodiments, the renamer uses characteristics 
of an obj ect identifier to determine a specific entry or location 
of the map table 300 where an associated physical location 
identifier, if  available, would be stored.

The register allocator 310 can be configured to allocate a 
physical location (e.g., a register) for a value of an object. In 
some embodiments, the register allocator 310 allocates a 
physical location for a value of an object not referenced with 
a previous instruction processed with the processor 200. The 
register allocator 310 can also be configured to store physical 
location identifiers to the map table to specify allocated 
physical locations. As described above, the register allocator 
310 may use characteristics of an object identifier to deter
mine where to store associated physical location identifiers.

In some embodiments, the multiplexer 320 is configured to 
obtain associated physical location identifiers from the map 
table 300 and the register allocator 310. The multiplexer 320 
can be configured to transmit or provide the associated physi
cal location identifiers obtained from the map table 300 and 
the register allocator 310 to a pipeline register. A pipeline 
register may be used to replace or reroute object identifiers 
included in instructions to physical locations of the processor 
200. In some embodiments, the multiplexer 320 is configured 
to transmit either the physical location identifier provided 
from the map table 300 or the physical location identifier 
provided from the register allocator 310.

In some embodiments, the renamer 250 obtains an instruc
tion 350 as input. The instruction 350 can include an object 
identifier 355 and a future-value-object flag or bit 360. As 
described above, the map table 300 can obtain the object 
identifier 355 and can use the identifier 355 to look up or 
determine an associated physical location identifier. Upon 
determining or locating an associated physical location iden
tifier, the map table 300 forwards the associated physical 
location identifier to the multiplexer 320.

The register allocator 310 can obtain the future value obj ect 
flag 360 in addition to the object identifier 355, and, in some 
embodiments, the register allocator 310 uses the future value 
object flag 360 to determine whether a physical location 
should be allocated. Generally, the register allocator 310 allo
cates a new physical location or register if  the future value 
object flag 360 is set. Otherwise, no memory is allocated.

In some embodiments, the future value object flag 360 
indicates a new future value object definition, regardless of 
whether the instruction 350 is a producer instruction or a 
consumer instruction of the object identified with the object 
identifier 355. Therefore, the object requires a new and sepa
rate physical location to store a value.

If the future value object flag 360 is set, the register allo
cator 310 reserves or allocates a register and updates the map 
table 300 with a physical location identifier that associates the 
newly-allocated physical location with the object identifier 
355. In some embodiments, the register allocator 310 uses the 
object identifier 355 to determine how or where to store an 
associated physical location identifier to the map table 300. 
The register allocator 310 can also be configured to forward 
an identifier for the allocated physical location to the multi
plexer 320.
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If the future value object flag 360 is not set, the register 
allocator 310 does not allocate a physical location. Further, 
although not required, the register allocator 310 can forward 
an invalid or a specially designated physical location identi
fier to the multiplexer 320 indicating that a physical location 
was not allocated.

As described above, the multiplexer 320 can be configured 
to obtain physical location identifiers from the map table 300 
and the register allocator 310. In some embodiments, if the 
register allocator 310 allocates a physical location for a value 
of an object, the newly-allocated physical location takes pre
cedence over a previously-allocated physical location. For 
example, if the multiplexer 320 obtains a physical location 
identifier from the register allocator 310 and from the map 
table 300, the multiplexer 320 forwards the physical location 
identifierobtainedfromtheregisterallocator310 to apipeline 
register and disregards the previously-allocated physical 
location identifier obtained from the map table 300. Using 
this technique, a reference to an object flagged as a future 
value object will be allocated a physical location and subse
quent references to the object that are not flagged as a future 
value objects will be renamed or associated with the previ
ously-allocated physical location as stored in the map table 
300. For example, upon encountering an instruction includ
ing a reference to object a flagged as a future value object, the 
register allocator 310 allocates a physical location for a value 
of the object a and stores an identifier to the allocated physical 
location to the map table 300. Subsequent instructions, how
ever, encountered with the renamer 250 that include a refer
ence the object a not flagged as a future value object are not 
allocated new or separate physical locations. Instead, they are 
renamed with the identifier for the previously-allocated 
physical location stored in the map table 300.

It should be understood that the renamer 250 can be con
figured to obtain multiple object identifier and future value 
object flag pairs included in a single instruction. The register 
allocator 210 and map table 200 can be configured to provide 
physical location identifiers for each object identifier/future 
value object flag pair and provide the physical location iden
tifiers to the multiplexer 320. The renamer 250 can also 
include multiple mutliplexers, and each mutliplexer can be 
configured to receive physical location identifiers associated 
with one object identifier/future value object flag pair.

Returning to FIG. 17, the reservation station 260 can be 
configured to hold instructions until they are scheduled for 
execution. The reservation station 260 can include a buffer 
that stores instructions until they can be released and 
executed. As described above, the instructions held in the 
reservation station 260 can include a tag that corresponds to a 
dependency (e.g., a physical location or register, a resource, 
etc.) that an instruction is waiting on. Instructions held with 
the reservation station 260 can be released once their depen
dencies (e.g., registers) are resolved or available. The reser
vation station 260 can also temporarily hold instructions 
without dependencies that will be released for execution once 
the processor 200 is ready to execute them.

The ALU 270 can be configured to obtain instructions from 
the reservation station 260 and execute them. Executing 
instructions can include performing mathematical processes, 
shifting or transferring values stored in physical locations, 
writing or loading values from the memory module 210, and 
the like.

In some embodiments, the output storage 280 temporarily 
stores or caches the results of executing an instruction with 
the ALU 270. The output storage 280 can act as a buffer for 
execution results. The execution results can be transferred
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from the output storage 280 to a physical location of the 
processor 20 or to the memory module 210.

In some embodiments, the concept of processing instruc
tions that consume a value of an object before processing an 
instruction that defines the value of the object can also be 
applied to processing loops or repeated instructions. Loops 
can include instructions that can be processed multiple times 
depending on the processing of a branch instruction. FIG. 21 
illustrates an instruction set 400. The instruction set 400 
includes a pre-loop instruction 410 (labeled “II”), two loop 
instructions 420 and 430 (labeled “12” and “13” respectively), 
and a branch instruction 440. The branch instruction 440 can 
create a backward branch path such that the two loop instruc
tions 420 and 430 and branch instruction 440 can be repro
cessed.

Loop instructions can be represented as recursive instruc- 
tion/predicate pairs {I, P}, indicating that the processing of 
the instruction I is guarded with the predicate P. In some 
embodiments, the predicate P includes a conditional state
ment that evaluates to one of two possible states—“TRUE” or 
“FALSE”—and the instruction I can be reprocessed (i.e., 
executed) until the predicate P evaluates to “FALSE.” In some 
embodiments, the predicate P is considered a future value 
object since the value of the predicate is defined in the 
“future” at the bottom or end of the loop.

With respect to the instruction set 400 illustrated in FIG. 
21, the predicate guarding the reprocessing of the two loop 
instructions 420 and 430 is defined with the branch instruc
tion 440. The branch instruction 440 includes the conditional 
statement if (z) where the object identifier z can reference a 
Boolean object that has a value equal to “TRUE” or “FALSE.” 
In some embodiments, representing loop instructions as 
predicate-guarded recursive instructions allows loop instruc
tions to be processed as a single sequence of instructions. 
FIG. 22 illustrates the instruction set 400 with the loop 
instructions 420 and 430 and the branch instruction 440 rep
resented as predicate-guarded instructions.

In some embodiments, future value object concepts are 
applied to recursive instructions by marking an object that 
obtains another value throughout the processing of the loop as 
a recursive future value object. As illustrated in FIG. 22, the 
reference to object x consumed with the loop instruction 420 
is flagged as a recursive future value object (illustrated xr) 
since a new value for the object x is produced with the sub
sequent loop instruction 430. Similar to how flagging future 
value objects allows a consumer instruction to be processed 
(e.g., fetched and held in a reservation station) before a cor
responding producer instruction, flagging future value 
objects in recursive instructions allows future iterations of 
consumer recursive instructions to be processed (e.g., fetched 
and held in a reservation station) before future iterations of 
producer recursive instructions.

Recursive future value obj ects can be identified using flags. 
In some embodiments, two flags are used to identity and 
distinguish future value objects from recursive future value 
objects. One flag designates whether the object is a future 
value object (meaning that value of an object will be defined 
in the future), and the other flag designates whether the object 
is a recursive future value object (meaning that another value 
of the object will be defined in the future). In some embodi
ments, an object may be identified as both a future value 
object and a recursive future value object. As illustrated in 
FIG. 22, the object x is flagged as a future value in the 
pre-loop instruction 410 (illustrated Xy) indicating that a value 
of object x will be defined in the future (i.e., with the process
ing of the pre-loop instruction 410). The object y reference
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and the object z reference included in the first loop instruction 
420 are also flagged as a future value objects (illustrated jy  
and Zy-respectively).

The reference to object x included in the loop instruction 
420 is flagged as a recursive future value (illustrated xr) 
indicating that another value of object x will be defined in the 
future.

FIGS. 23-26 illustrates exemplary processing states of a 
processor encountering or processing the instruction set 400. 
In some embodiments, the processing states represent states 
of the processor 200 while processing the instruction set 400. 
In order to accommodate recursive future values objects the 
renamer 250 is configured to receive two flags for each obj ect 
identifier included in an instruction. As described above, if a 
future-value-object flag is set for an object identifier, the 
renamer 250 allocates a physical location for a value of the 
object that will be associated with the object identifier of the 
current instruction and matching object identifiers included in 
subsequent instructions. The renamer 250 can also be config
ured to allocate a physical location for a value of the object if 
a recursive-future-value flag is set. The physical location 
allocated with the renamer 250 for the recursive-future-value 
flag, however, will only be associated with matching object 
identifiers included in subsequent instructions, and will not be 
associated with the current object identifier in the current 
instruction. In some embodiments, the register allocator 310 
does not forward a physical location identifier to the multi
plexer 320 upon allocating a physical location for a recursive 
future value object. Instead, the allocator 310, updates the 
map table 300 with the allocated physical location. By not 
forwarding the new physical allocation to the multiplexer 
320, the current reference to the recursive future value object 
is associated with the identifier for the previously-allocated 
physical location stored in the map table 300. Flowever, since 
the register allocator 310 updates the map table 300, subse
quent references to the object identifier are associated with 
the newly-allocated physical location.

In some embodiments, the processor 200 is configured to 
release instructions from the reservation station 260 for 
execution when any data dependencies are eliminated. The 
processor 200 can also be configured to release instructions 
from the reservation station when a predicate value associated 
with an instruction is set to “TRUE.” The processor 200 can 
further be configured to generate a copy of an instruction and 
leave or store the copy of the instruction in the reservation 
station 260 upon releasing a predicate-guarded recursive 
instruction from the reservation station 260. Furthermore, the 
processor 200 can be configured to remove or eliminate a 
predicate-guarded recursive instruction from the reservation 
station 260 if the predicate is set to “FALSE.”

FIG. 23 illustrates a processing state of the processor 200 
after processing the pre-loop instruction 410. The instruction 
fetcher/cache 230 fetches the pre-loop instruction 410. Since 
the object x included in the pre-loop instruction 410 is flagged 
as a future value object, the renamer 250 allocates a physical 
location 500 for a value of the object x. The pre-loop instruc
tion 410 is then forwarded to the reservation station 260 
where the instruction 410 is released for execution if it does 
not contain any dependencies of other instructions. The 
instruction 410 is executed with the ALU 270 and a value 
(e.g., zero) is stored in the register 500. As illustrated in FIG. 
23, after processing the pre-loop instruction 410, objectx was 
allocated the register 500 anda value was stored to the register 
500. In some embodiments, the reservation station 260 does 
not contain any other instructions.

FIG. 24 illustrates a processing state of the processor 200 
after processing the first loop instruction 420. The instruction
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fetcher/cache 230 fetches the loop instruction 420, and the 
renamer 250 obtains the loop instruction 420. The loop 
instruction 420 includes three object identifiers. The first 
object identifier for an object y is flagged as a future value 
object and so the renamer 250 allocates a physical location 
510 for a value of the object y. The second object identifier 
included in the loop instruction 420 identifies an object x 
flagged as a recursive future value obj ect. As described above, 
the renamer 250 can be configured to allocate a physical 
location for a recursive future value obj ect that will be used or 
associated with subsequent references to the object x, but will 
not be associated with the current reference to the object x. 
Therefore, the renamer 250 allocates a physical location 520 
for a value of the object x (illustrated as x' in FIG. 24).

The first loop instruction also includes an object identifier 
for the object z, which represents the predicate guarding the 
loop instruction 420. The reference to the object z is flagged 
as a future value object since a value of the object z will be 
defined in the future with the branch instruction 440 (rewrit
ten as a predicate producer instruction). Since the object z is 
flagged as a future value object, the renamer 250 allocates a 
physical location 530 for a value of the object z.

After the renaming process is complete, the loop instruc
tion 420 is forwarded to the reservation station 260, and, since 
the instruction 420 represents the initial iteration of the loop 
and as such the predicate does not yet apply to the instruction, 
the loop instruction 420 is released for execution. The ALU 
270 executes the loop instruction 420, and the register 510, 
which is associated with the object y, obtains a value (i.e., 1). 
In some embodiments, the processor 200 signals the avail
ability of the value stored in the physical location 510.

Upon releasing the loop instruction 420 from the reserva
tion station 260, however, a copy of the loop instruction 420 
(hereinafter “copy instruction 420a”), including the predi
cate, remains the in reservation station 260. It should be noted 
that since the copy instruction 420a represents a subsequent 
or future instruction, the reference to object x in the copy of 
loop instruction 420 is associated with the physical location 
520 allocated for “future” references to the object x.

The copy instruction 420a can remain in the reservation 
station since a value has not been signaled as available for the 
object x or the object z. In some embodiments, the object z, 
when available, is also required to be set to “TRUE” in order 
for the copy instruction 420a to be released for execution.

FIG. 25 illustrates a processing state of the processor 200 
after processing the second loop instruction 430. The proces
sor 200 fetches the loop instruction 430, and the renamer 430 
obtains the loop instruction 420. Similar to the first loop 
instruction 420, the second loop instruction 430 also includes 
three object identifiers. The first object identifier for an object 
x is not flagged as a future value object or as a recursive future 
value object. Therefore, the renamer 250 associates the pre
viously-allocated physical location 520 with the reference to 
the object x included in the second loop instruction 430.

The second object identifier included in the loop instruc
tion 430 identifies an object y, which is also neither flagged as 
a future value object nor as a recursive future value object. 
The renamer 250, therefore, associates the previously-allo
cated physical location 510 with the reference to the object y.

The second loop instruction 430 also includes an object 
identifier for the object z, which represents the predicate 
guarding instruction 430. The renamer associates the previ
ously allocated physical location 530 with the reference to the 
object z since the reference to the object z is not flagged as a 
recursive future value object or as a future value object.

After associating physical locations with the object iden
tifiers included in the second loop instruction 430, the loop
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instruction 430 is forwarded to the reservation station 260. 
Since the instruction 43 0 also represents the initial iteration of 
the loop, the loop instruction 430 is released for execution. 
Upon releasing the second loop instruction 430 from the 
reservation station 260, a copy of the loop instruction 430 
(hereinafter “copy instruction 430a”), including the predi
cate, remains in the reservation station 260.

The ALU 270 executes the loop instruction 430, and the 
register 520, which is associated with the object x, obtains a 
value (i.e., 1), and the processor 200 can signal the availability 
of the value stored in the physical location 520. It should be 
noted, however, that, in some embodiments, although the 
copy instruction 420a is signaled that a value is available in 
physical location 520 for object x, the copy instruction 420a 
and the copy instruction 430a are not released for execution 
since a value for the object z is still not available. The value of 
the object z can be used to determine whether the copy 
instructions 420a and 430a should be released and executed 
again.

In some embodiments, the copy instructions 420a and 
430a are released without waiting for a value of the object z. 
For example, the processor 200 can be configured to specu
latively release multiple copies of a recursive instruction. The 
processor 200 can predict future iterations of recursive 
instructions and can release as many copies of a recursive 
instruction that the processor 200 predicts will be processed 
or as many copies of a recursive instruction that the processor 
200 has resources to process.

FIG. 26 illustrates another processing state of the processor 
200 after processing the branch instruction 440. The proces
sor 200 fetches the branch instruction 440, and the renamer 
430 obtains the branch instruction 440. The branch instruc
tion 440 only includes the obj ect identifier z, which represents 
a predicate value. The object identifier z included in the 
branch instruction is not flagged as a future value object or as 
a recursive future value object, and therefore the renamer 250 
associates the previously-allocated physical location 540 
with the reference to the object z included in the branch 
instruction 440.

After associating the physical location 530 with the object 
identifier included in the branch instruction 440, the branch 
instruction 440 is forwarded to the reservation station 260. 
Since the branch instruction 440 represents the initial itera
tion of the loop and does not include any data dependencies, 
the branch instruction 440 is released for execution. Upon 
releasing the branch instruction 440 from the reservation 
station 260, however, a copy of the branch instruction 440 
(hereinafter “copy instruction 440a”), is stored in the reser
vation station 260.

The ALU 270 executes the branch instruction 440, and the 
register 530, which is allocated for a value of the object z, 
obtains a value (e.g., “TRUE”). The processor 200 can then 
signal the availability of the value stored in the physical 
location 530 to the copy instruction 420a, the copy instruction 
430a, and the copy instruction 440a, which were waiting on 
a value of the object z.

In some embodiments, if  the value of the object z is set to 
“FALSE,” the copy instructions 420a, 430a, and 440a are not 
released from the reservation station 260 since the object z is 
associated with the predicate guarding the loop instructions 
420 and 430 and the branch instruction 440. If the value of the 
object z is set to “FALSE,” the copy instructions 420a, 430a, 
and 440a should be not executed and can be removed or 
eliminated from the reservation station 260.

If, however, the value of the object z is set to “TRUE,” the 
copy instructions 420a, 430a, and 440a can be released from 
the reservation station 260 and can be executed. The copy
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instruction 420a, 430a, and 440a can also be released without 
considering the value of the object z as described above.

As illustrated in FIG. 27, upon being released from the 
reservation station 260, the copy instructions 420a, 430a, and 
440a can leave copy instructions 420b, 430b, and 440b 
respectively in the reservation station 260. The second copy 
instructions 420b, 430b, and 440b, can remain in the reser
vation station 260 until receiving another signal that a value of 
the object z is available. In other words, once a recursive 
instruction is stored to the reservation station 260, the recur
sive instruction can be repeatedly issued for execution as long 
as the guarding predicate is true. The recursive instruction is 
destroyed when the predicate becomes false. As a result it is 
possible to unravel loop iterations as subsequent instructions 
(e.g., subsequent instructions included in the loop) are being 
fetched. For example, multiple instances of the same instruc
tion belonging to future loop iterations can be released from 
the reservation station and scheduled for execution as the loop 
body is being fetched. This process can exploit multiple flows 
of control and can provide processors freedom to unravel 
loops in a left to right fashion (i.e., instruction belonging to 
future iterations of an instruction can be scheduled for execu
tion before instructions that follow the unraveled instruction). 
In some embodiments, processors unravel loops using con
ventional sequential means of expanding in a top-to-bottom 
fashion, and, as a result, if  an instruction does not have loop 
carried dependencies, multiple instances of the same instruc
tion are processed in parallel before those instructions that 
follow the loop-independent instruction. On the other hand, if 
an instruction includes loop carried dependencies, multiple 
instances of the instruction belonging to different loop itera
tions can execute as soon as their data dependencies are 
satisfied. In this respect, it is possible to fetch fewer instruc
tions than instructions that are executed. Instructions are buff
ered in the reservation station 260 and unravel recursively 
from the reservation station as needed instead of re-fetching 
the instructions of the loop body multiple times.

As was illustrated in FIG. 22, backward branches can be 
generally eliminated and loop instructions can appear as a 
straight line of code to the instruction fetcher/cache 230 using 
the concepts of recursive instruction/predicate pairs. There
fore, if  the processor 200 includes enough resources to cache 
the instructions included in a loop body in the reservation 
station 260, the instruction fetcher/cache 230 can fetch the 
instructions of the loop body once regardless of how many 
times the loop actually is executed. Caching instructions in 
the reservation 260 station can be viewed as internal produc
tion if the processor 200 is viewed as a system operating in a 
steady state. In other words, the processor 200 can execute 
and retire more instructions than it fetches. As illustrated in 
FIG. 27, buffering future instances of instructions in the res
ervation station 260 can increase the output or production rate 
of the processor 200. For example, the processor 200 can be 
configured to bring in x instructions on a single fetch cycle. 
Flowever, in addition to processing and outputting results for 
the x instructions fetched, the processor 200 can also process 
and output results for y instructions buffered in the reserva
tion station 260. Thus, the processor 200 can potentially 
process (x+y) instructions on a single cycle even though only 
x instructions were fetched.

Also, since loops rewritten as predicate-guarded recursive 
instructions appear as straight sequences of instructions to the 
instruction fetcher/cache 230, the instruction fetcher/cache 
230 can “move ahead” of the instructions being executed with 
the ALU 270. For example, the instruction fetcher/cache 230 
can be fetching instructions sequentially distant or separated 
from the instructions currently be executed with the ALU
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270. Creating “distance” between the instructions being 
fetched and the instructions being executed can facilitate the 
use of more sophisticated branch prediction algorithms since 
more “future” instructions are being fetched and therefore 
can be examined or considered when attempting to predict a 
branch path.

In addition, recursive instructions released from the reser
vation station 260 can leave multiple copies in the reservation 
station 260. Providing multiple copies of a recursive instruc
tions allows a recursive instruction to unravel multiple itera
tions ahead.

It should be noted that post-loop instructions can be data- 
dependent on values computed within a loop and should be 
held in the reservation station 260 until a final (post-loop) 
value is available. In some embodiments, a busy bit is asso
ciated with a value produced by a recursive instruction such 
that the data-dependent instructions are held until a busy bit is 
set or cleared indicating that the recursive instruction is no 
longing modifying the value.

In some embodiments, control-independent instruction 
may be rewritten as recursive instructions. For example, if 
control-independent instructions are reordered before con
trol-dependent instructions and branch prediction is per
formed, the control-independent instructions may be 
executed, but may need to be re-executed if a branch predic
tion is incorrect. By leaving a copy of the control-independent 
instructions in the reservation station 260 guarded with a 
predicate specifying whether the branch prediction was cor
rect or incorrect, control-independent instructions can reissue 
from the reservation station 260 as needed. Therefore, they do 
not need to be held until a branch prediction is verified or 
validated.

Various features and advantages of the invention are set 
forth in the following claims.

The invention claimed is:
1. A method of ordering software instructions before 

execution and executing the ordered software instructions, 
the method comprising:

prior to execution, ordering software instructions by plac
ing a first instruction that consumes a value of an object 
before a second instruction that produces the value of the 
object such that the first instruction enters a processing 
pipeline in a processor before the second instruction; 
and

during execution of the software instructions, allocating a 
physical location in memory for the value of the object 
upon processing the first instruction.

2. A method as claimed in claim 1, further comprising 
flagging a reference to the object in the first instruction as a 
future value object.

3. A method as claimed in claim 2, wherein flagging a 
reference to the object in the first instruction includes setting 
a value of a bit.

4. A method as claimed in claim 1, further comprising 
determining a first instruction set that includes control-inde
pendent instructions.

5. A method as claimed in claim 4, wherein the first instruc
tion is included in the first instruction set.

6. A method as claimed in claim 5, further comprising 
determining a second instruction set that includes control- 
dependent instructions.

7. A method as claimed in claim 6, wherein the second 
instruction is included in the second instruction set.

8. A method as claimed in claim 6, further comprising 
adding a copy of the second instruction to the second instruc
tion set.
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9. A method of processing software instructions, the 

method comprising:
upon executing in a processor a first instruction that con

sumes a value of an object that is not defined, allocating 
a physical location to a value of the object; and

upon executing in a processor a second instruction that 
produces the value of the object after executing the first 
instruction, mapping the value produced with the second 
instruction to the physical location as designated by a 
physical location identifier stored in a map table.

10. A method as claimed in claim 9, further comprising 
flagging a reference to the object in the first instruction as a 
future value object.

11. A method as claimed in claim 10, wherein flagging a 
reference to the object in the first instruction includes setting 
the value of a bit.

12. A method as claimed in claim 9, further comprising 
determining a first instruction set that includes control-inde
pendent instructions.

13. A method as claimed in claim 12, further comprising 
selecting the first instruction from the first instruction set.

14. A method as claimed in claim 9, further comprising 
determining a second instruction set that includes control- 
dependent instructions.

15. A method as claimed in claim 14, further comprising 
selecting the second instruction from the second instruction 
set.

16. A method as claimed in claim 14, further comprising 
adding a copy of the second instruction to the second instruc
tion set.

17. A method as claimed in claim 9, further comprising 
holding the first instruction during execution to wait for the 
value of the object to be produced.

18. A method as claimed in claim 17, further comprising 
executing the second instruction and storing the value of the 
object to the physical location.

19. A method as claimed in claim 18, further comprising 
releasing the first instruction to complete execution after 
executing the second instruction.

20. A method as claimed in claim 19, further comprising 
executing the first instruction.

21. A system for organizing and processing an instruction 
set, the instruction set including a first instruction that con
sumes a value of an object and a second instruction that 
produces the value of the object, the system comprising:

a computer running an instruction organizing application 
configured to order the instructions sequentially such 
that the first instruction is placed before the second 
instruction in the sequential order and to flag a reference 
to the object as a future value object in the first instruc
tion; and

a computer processor configured to allocate a physical 
location to the value of the object upon processing the 
first instruction and to map the value produced with the 
second instruction to the physical location.

22. A system as claimed in claim 21, wherein the computer 
processor is further configured to hold the first instruction to 
wait for the value of the object to be produced.

23. A system as claimed in claim 22, wherein the computer 
processor is further configured to execute the second instruc
tion and store the value of the object to the physical location.

24. A system as claimed in 23, wherein the computer pro
cessor is further configured to release the first instruction after 
executing the second instruction.

25. A system as claimed in claim 24, wherein the computer 
processor is further configured to execute the first instruction.

22

5

10

15

20

25

30

35

40

45

50

55

60

65



US 7,747,993 B2

26. A system as claimed in claim 21, wherein the computer 
running the instruction organizing application is configured 
to flag the object as a future value object in the first instruction 
by setting a value of a bit.

27. A system as claimed in claim 21, wherein the computer 
running the instruction organizing application is further con
figured to determine a first instruction set that includes con
trol-independent instructions.

28. A system as claimed in claim 21, wherein the computer 
running the instruction organizing application is further con
figured to select the first instruction from the first instruction 
set.

29. A system as claimed in claim 21, wherein the computer 
running the instruction organizing application is further con
figured to determine a second instruction set that includes 
control-dependent instructions.

30. A system as claimed in claim 29, wherein the computer 
running the instruction organizing application is further con
figured to select the second instruction from the second 
instruction set.

31. A system as claimed in claim 29, wherein the computer 
running the instruction organizing application is further con
figured to add a copy of the second instruction to the second 
instruction set.

32. A system comprising:
a computer readable memory; and
a processor including a renamer configured to

obtain a first instruction from the computer readable 
memory, the first instruction including a future value 
obj ect flag and a reference to a first obj ect, wherein the 
future value object flag is set when the first instruction 
is a consumer instruction that consumes a value of the 
first object and the first instruction is ordered sequen
tially before a second instruction that produces the 
value of the first object,

allocate a first physical location for a value of the object 
and map the reference to the first object to the first 
physical location when the future value object flag is 
set, and

map the reference to the first object to a previously- 
allocated physical register as designated with a previ
ously-allocated physical location identifier stored in a 
map table when the future value object flag is not set.

33. A processor as claimed in claim 32, wherein the 
renamer is further configured to store a physical location 
identifier to the map table corresponding to the first physical 
location when the future value object flag is set.

34. A processor as claimed in claim 32, wherein the 
renamer is further configured to obtain a third instruction 
including a recursive future value object flag and a reference 
to a second object, to allocate a second physical location for 
a future value of an object produced with a subsequent recur
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sive instruction when the recursive future value object flag is 
set, and to map the reference to the second object to a previ
ously-allocated physical register as designated with a previ
ously-allocated register identifier stored in a map table.

35. A processor as claimed in claim 34, wherein the 
renamer is further configured to store a physical location 
identifier to the map table corresponding to the second physi
cal location when the recursive future value object flag is set.

36. A processor as claimed in claim 32, further comprising 
a reservation station configured to hold the first instruction 
when the future value object flag is set and to release the first 
instruction once a second instruction producing the value of 
the object is executed with the processor.

37. A processor as claimed in claim 34, further comprising 
a reservation station configured to hold a copy of the third 
instruction and a predicate having a true state and a false state.

38. A processor as claimed in claim 37, wherein the reser
vation station is further configured to release the copy of the 
third instruction when the predicate has a true state.

39. A renamer comprising:
a computer readable memory containing a map table con

figured to store previously-allocated register identifiers 
that map an object identifier to a physical location, to 
receive an object identifier, and to transmit a previously- 
allocated physical location identifier; and

a register allocator configured to receive a future value 
object flag associated with an instruction and, if the 
future value object flag is set, to allocate a first physical 
location and transmit a first physical location identifier 
associated with the first physical location,

wherein the future value object flag associated with the 
instruction is set when the instruction consumes a value 
of the object and the instruction is scheduled for execu
tion before a second instruction that produces the value 
of the object.

40. A renamer as claimed in claim 39, further comprising a 
multiplexer configured to receive the allocated physical loca
tion identifier and to receive the previously allocated physical 
location identifier.

41. A renamer as claimed in claim 39, wherein the register 
allocator is further configured to store the first physical loca
tion identifier to the map table if the future value object is set.

42. A renamer as claimed in claim 39, wherein the register 
allocator is further configured to receive a recursive future 
value object flag and to allocate a second physical location if 
the recursive future value object is set.

43. A renamer as claimed in claim 42, wherein the renamer 
is further configured to store the second physical location 
identifier corresponding to the second physical location if the 
recursive future value object flag is set.

24

5

10

15

20

25

30

35

40

45

50


	Methods and systems for ordering instructions using future values
	Recommended Citation

	US000007747993B220100629

