
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Michigan Tech Patents Vice President for Research Office

6-29-2010

Methods and systems for ordering instructions using future Methods and systems for ordering instructions using future

values values

Soner Onder
Michigan Technological University, soner@mtu.edu

Follow this and additional works at: https://digitalcommons.mtu.edu/patents

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Onder, Soner, "Methods and systems for ordering instructions using future values" (2010). Michigan Tech
Patents. 113.
https://digitalcommons.mtu.edu/patents/113

Follow this and additional works at: https://digitalcommons.mtu.edu/patents

 Part of the Engineering Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151509016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/patents
https://digitalcommons.mtu.edu/vpr-office
https://digitalcommons.mtu.edu/patents?utm_source=digitalcommons.mtu.edu%2Fpatents%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.mtu.edu%2Fpatents%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/patents/113?utm_source=digitalcommons.mtu.edu%2Fpatents%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/patents?utm_source=digitalcommons.mtu.edu%2Fpatents%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.mtu.edu%2Fpatents%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages

US007747993B2

(12) United States Patent
Onder

(io) Patent No.: US 7,747,993 B2
(45) Date of Patent: Jun. 29, 2010

(54) METHODS AND SYSTEMS FOR ORDERING
INSTRUCTIONS USING FUTURE VALUES

(75) Inventor: Soner Onder, Laurium, MI (US)

(73) Assignee: Michigan Technological University,
Houghton, MI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 979 days.

(21) Appl. No.: 11/026,425

(22) Filed: Dec. 30, 2004

(65) Prior Publication Data

US 2006/0150161 A1 Jul. 6, 2006

(51) Int.Cl.
G06F 9/45 (2006.01)

(52) U.S.C1........................... 717/159; 717/140; 717/141;
717/160; 717/161; 712/212

(58) Field of Classification Search 717/140 161;
712/216-219

6,526,572 B1 * 2/2003 Brauch et al...................... 717/154
6,587,940 B l* 7/2003 Soltis e ta l........................ 712/216
6,643,767 B1 * 11/2003 Sato 712/219
6,675,380 B l* 1/2004 M cKinseyetal................ 717/161
6,877,088 B2* 4/2005 Dice 712/235
6,948,162 B2* 9/2005 Kalogeropulos 717/159
7,269,827 B2 * 9/2007 Metzger 717/151

2003/0033510 A l* 2/2003 Dice 712/235
2003/0101442 A l * 5/2003 Wu 717/156
2003/0145313 A l * 7/2003 Kalogeropulos 717/156
2003/0196197 A l * 10/2003 Fu et al.............................. 717/161
2004/0261068 A l* 12/2004 Ju 717/159
2005/0039167 A l * 2/2005 Fernandes et al................. 717/116

(Continued)

OTHER PUBLICATIONS

R.M. Tomasulo; An Efficient Algorithm for Exploiting Multiple
Arithmetic Units; IBM Journal of Research and Development; Jan.
1967; pp. 25-33; vol. 11, No. 1.

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,161,216 A * 11/1992 Reps e ta l......................... 717/151
5,367,651 A * 11/1994 Smith e ta l........................ 717/149
5,655,122 A * 8/1997 Wu 717/152
5,699,537 A * 12/1997 Sharangpani et al............ 712/217
5,724,565 A * 3/1998 Dubey et al...................... 712/245
5,778,233 A * 7/1998 Besaw et al....................... 717/154
5,812,811 A * 9/1998 Dubey e ta l....................... 712/216
5,881,307 A * 3/1999 Park e ta l............................. 712/23
5,961,630 A * 10/1999 Zaidi et al......................... 712/200
6,115,808 A * 9/2000 Arora 712/219
6,128,775 A * 10/2000 Chow e ta l........................ 717/156
6,182,284 B l* 1/2001 Sreedhar et al................... 717/146
6,401,195 B l* 6/2002 Arora e ta l........................ 712/218
6,434,590 B l* 8/2002 B lellochetal................... 718/102
6,516,462 B l* 2/2003 O kunevetal..................... 717/154

(Continued)

Primary Examiner—WeiY Zhen
Assistant Examiner—Matthew J Brophy
(74) Attorney, Agent, or Firm—Michael Best & Friedrich
LLP

(57) ABSTRACT

A method of ordering instructions. The method can include
placing a first instruction that consumes a value of an object
before a second instruction that produces the value of the
object such that the first instruction is processed before the
second instruction and a physical location is allocated to the
value of the object upon processing the first instruction.

43 Claims, 23 Drawing Sheets

US 7,747,993 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0055541 A l* 3/2005 Aamodt et al................... 712/217
2005/0138480 A l * 6/2005 Srinivasan et al................... 714/38
2005/0289530 A l* 12/2005 Robison 717/159
2006/0090063 A l * 4/2006 Theis 712/239

OTHER PUBLICATIONS

Janies E. Smith; A Study of Branch Prediction Strategies; Proceed
ings of the 8* Annual Symposium on Computer Architecture; May
12-14, 1981; pp. 135-148; IEEE Computer Society and ACM
SIGARCH; Minneapolis, Minnesota.
J.R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren; Con
version of Control Dependence to Data Dependence; Conference
Record of the 10* Annual ACM Symposium on Principles of Pro
gramming Languages; Jan. 24-26, 1988; pp. 177-1988; ACM
SIGACT-SIGPLAN; Austin Texas.
Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck; Detecting
Equality of Variables in Programs; Conference Record of the 15*
Annual ACM Symposium on Principles of Programming Languages;
Jan. 13-15, 1988; pp. 1-11; ACM Press.
Susan Howitz, Jan Prins, and Thomas Reps; On the Adequacy of
Program Dependence Graphs for Representing Programs; Proceed
ings of the 15* Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages; Jan. 13-15, 1998; pp. 146-
157; ACM Press.
Ron Cytron, Jeanne Ferrante, Barry K. Rosen, MarkN. Wegman, and
F. Kenneth Zadeck; An Efficient Method of Computing Static Single
Assignment Form; Conference Record of the 16* Annual ACM Sym
posium on Principles of Programming Languages; Jan. 11-13, 1989;
ACM SIGACT-SIGPLAN and ACM Press; Austin, Texas.
James R. Larus; SPIM S20: A MIPS R2000 Simulator; Technical
Report CS-TS-90-966; 1990; pp. 1-25; Computer Science Depart
ment, University of Wisconsin Madison.
Robert A. Ballance, Arthur B. MacCabe, and Karl J. Ottenstein; The
Program Dependence Web: A Representation Supporting Control-,
Data-, and Demand-Driven Interpretation of Imperative Languages;
Proceedings of the ACM SIGPLAN 1990 Conference on Program
ming Language Design and Implementation; Jun. 20-22, 1990; pp.
257-271; White Plains, New York.
Tse-Yu Yeh and Yale N. Patt; Two-level Adaptive Training Branch
Prediction; Proceedings of the 24* Annual International Symposium
on Microarchitecture; Nov. 18-20, 1991; pp. 51-61; 1991; ACM
SIGNMICRO and IEEE Computer Society TC-MICRO; Albuquer
que, New Mexico.
Tse-Yu Yeh and Yale N. Patt; Alternative Implementations of Two-
Level Adaptive Branch Prediction; Proceedings of the 19* Annual
International Symposium on Computer Architecture; May 19-21,
1992; pp. 124-134; Gold Coast, Australia.
Shien-Tai Pan, Kimming So, and Joseph T Rahmeh; Improving the
Accuracy of Dynamic Branch Prediction Using Branch Correlation;
Proceedings of the 5* International Conference on Architectural
Support for Programming Languages and Operating Systems; Oct.
12-15, 1992; pp. 76-84.
Cecile Moura; Super DLX: A Generic Superscalar Simulator;
ACAPS Technical Memo 64; Apr. 13, 1993; pp. 1-78; School of
Computer Science, McGill University.
Scott McFarling; Combining Branch Predictors; WRL Technical
Note TN-36; Jun. 1993; pp. 1-25; Digital Western Research Labora
tory; Palo Alto, California.
Brad Calder and Dirk Grunwald; Fast & Accurate Instruction Fetch
and Branch Prediction; Proceedings of the 2 \st Annual International
Symposium and Computer Architecture; Apr. 18-21, 1994; pp. 2-11;
IEEE Computer Society TCCA and ACM SIGAECH Computer
Architecture News.
Jens Knoop, Oliver Ruthing, and Bernhard Steffen; Partial Dead
Code Elimination; Proceedings of the ACM SIGPLAN 1994 Con
ference on Programming Language Design and Implementation; Jun.
20-24, 1994; pp. 147-158; Orlando, Florida.
Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale Patt; Branch Clas
sification: a New Mechanism for Improving Branch Predictor Per

formance; Proceedings of the 27* Annual International Symposium
on Microarchitecture; Nov. 1994; pp. 22-31; San Jose, California.
James R. Larus and Eric Schnarr; EEL: Machine-Independent
Executable Editing; Proceedings of the ACM SIGPLAN 1995 Con
ference on Programming Language Design and Implementation,
SIGPLAN Notices; Jun. 18-21,1995; pp. 291-300; vol. 30, No. 6; La
Jolla, California.
Po-Yung Chang, Marius Evers, and Yale N. Patt; Improving Branch
Prediction Accuracy by Reducing Pattern History Table Interference;
Proceedings of the 1996 Conference on Parallel Architectures and
Compilation Techniques; Oct. 20-23, 1996; pp. 48-57; Boston, Mas
sachusetts; Oct. 1996; pp. 48-57; IEE Computer Society Press.
Eric Rotenberg, Steve Bennett, and James E. Smith; Trace Cache: a
Low Latency Approach to High Bandwidth Instruction Fetching;
Proceedings of the 29* Annual International Symposium on
Microarchitecture; Jan. 9-13, 1999; pp. 24-34; IEEE Computer Soci
ety TCCA; Paris, France.
Doug Burger and Todd M. Austin; The SimpleScalar Tool Set, Ver
sion 2.0; University of Wisconsin-Madison Computer Science
Department Technical Report #1342; Jun. 1997; pp. 1-21.
Deszo Sima, Terence Fountain, and Peter Kacsuk; Advanced Com
puter Architectures: A Design Space Approach; 1997; pp. 559-563;
Addison-Wesley.
Mikko H. Lipasti and John Paul Shen; Superspeculative
Microarchitecture for Beyond AD 2000; IEEE CS Press Book (Com
panion CD); Sep. 1997; pp. 59-66; vol. 30, No. 9.
Yale N. Patt, Sanjay J. Patel, Marius Evers, Daniel H. Friendly, and
Jared Stark; One Billion Transistors, One Uniprocessor, One Chip;
IEE Computer; Sep. 1997; pp. 51-57; vol. 30, No. 9.
James E. Smith, and Sriram Vajapeyam; Trace Processors: Moving to
Fourth-Generation Microarchitectures; Sep. 1997; pp. 68-74; IEEE
Computer.
Eric Sprangle, Robert S. Chappell, Mitch Alsup, and Yale N. Patt; The
Agree Predictor: A Mechanism for Reducing Negative Branch His
tory Interference; Proceedings of the 24* International Conference
on Computer Architecture; 1997; pp. 284-291; Denver, Colorado.
Rastislav Bodik and Rajiv Gupta; Partial Dead Code Elimination
using Slicing Transformations; Proceedings of the ACM SIGPLAN
1997 Conference on Programming Language Design and Implemen
tation, SIGPLAN Notices; Jun. 15-18, 1997; pp. 159-170; vol. 32,
No. 6; Las Vegas, Nevada.
Rajiv Gupta, David A. Berson, and Jesse Z. Fang; Path Profile Guided
Partial Dead Code Elimination Using Prediction; Proceedings of the
1997 International Conference on Parallel Architectures and Compi
lation Techniques; Nov. 10-14, 1997; pp. 102-113; IEEE Computer
Society Press; San Fransisco, CA.
Daniel Homes Friendly, Sanjay Jeram Patel, and Yale N. Patt; Alter
native Fetch and Issue Policies for the Trace Cache Fetch Mecha
nism; Proceedings ofthe 30* Annual IEEE-ACM International Sym
posium on Microarchitecture; Dec. 1997; pp. 24-33.
Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N. Mudge; The Bi-
Mode Branch Predictor; Proceeding of the 30* Annual International
Symposium on Microarchitecture; Dec. 1-3, 1997; pp. 4-13; IEEE
Computer Society TC-Micro and ACM SIGMICRO; Triangle Part,
North Carolina.
Antonio Gonzalez, Jose Gonzalez, and Mateo Valero; Virtual-Physi
cal Registers; Proceedings of the 4* International Symposium on
High-Performance Computer Architecture; Jan. 31-Feb. 4, 1998; pp.
1-10; IEEE Computer Society TCCA; Las Vegas, Nevada.
Soner Onder and Rajiv Gupta; Automatic Generation of
Microarchitecture Simulators; Proceedings ofthe IEEE International
Conference on Computer Languages; May 1998; pp. 1-10; Chicago.
George Z. Chrysos and Joel S. Emer; Memory Dependence Predic
tion using Store Sets; Proceedings of the 25* International Confer
ence on Computer Architecture; Jun. 1998; pp. 142-153.
A.N. Eden and T. Mudge; The YAGS Branch Prediction Scheme;
Proceedings of the 3 l s/ Annual International Symposium on
Microarchitecture; Nov. 30-Dec. 2,1998; pp. 69-77; IEEE Computer
Society TC-MICRO and ACM SIGMICRO; Dallas, Texas.
Daniel Holmes Friendly, Sanjay Jeram Patel, and Yale N. Patt; Put
ting the Fill Unit to Work: Dynamic Optimizations for Trace Cache
Microprocessors; Proceedings of the 3 Ist Annual International Sym

US 7,747,993 B2
Page 3

posium on Microarchitecture; Nov. 30-Dec. 2, 1998; pp. 173-181;
IEEE Computer Society TC-MICRO and ACM SIGMICRO; Dallas,
Texas.
Karel Driesen and Urs Holzle; Accurate Indirect Branch Prediction;
Proceedings of the 25^ International Conference on Computer Archi
tecture; 1998; p p .167-178.
Eric Rotenberg, Quinn Jacobson, and Jim Smith; A Study of Control
Independence in Superscalar Processors; Proceedings of the 5th Inter
national Symposium on High-Performance Computer Architecture;
Jan. 9-13, 1999; pp. 115-124; IEEE Computer Society TCCA;
Orlando, Florida.
Sriram Vajapeyam, PJ. Joseph, and Tulika Mitra; Dynamic
Vectorization: A Mechanism for Exploiting Far-Flung ILP in Ordi
nary Programs; Proceedings of the 26th Annual International Sym
posium on Computer Architecture, Computer Architecture News;
May 2-4, 1999; pp. 16-27; vol. 27, No. 2; IEEE Computer Society
TCCA and ACM SIGARCH; Atlanta, Georgia.
Bryan Black, Bohuslav Rychlik, and John Paul Shen; The Block-
based Trace Cache; Proceedings of the 26th International Conference
on Computer Architecture; May 1999; pp. 196-207.
Yuan Chou, Jason Fung, and John Paul Shen; Reducing Branch
Misprediction Penalties Via Dynamic Control Independence Detec
tion; Conference Proceedings of the 1999 International Conference
on Supercomputing, Rhodes; Jun. 20-25, 1999; pp. 109-118; ACM
SIGARCH; Rhodes, Greece.
Kevin Skadron; Characterizing and Removing Branch Mispredic
tions; PhD Thesis, Princeton University; Jun. 1999; pp. 1-229.
Soner Onder; Scalable Superscalar Processing; PhD Thesis, Univer
sity of Pittsburgh; Jul. 1999; pp. 1-158.
Soner Onder, Jun Xu, and Rajiv Gupta; Caching and Predicting
Branch Sequences for Improved Fetch Effectiveness; Proceedings of
the International Conference on Parallel Architectures and Compila
tion Techniques; Oct. 1999; pp. 1-9.

Teresa Monreal, Antonio Ganzalez, Mateo Valero, Jose Gonzalez,
and Victor Vinals; Delaying Physical Register Allocation Through
Virtual-Physical Registers; Proceedings of the 32”^ Annual Interna
tional Symposium on Microarchitecture; Nov. 1999; pp. 186-192;
Haifa, Israel.
Eric Rotenberg and Jim Smith; Control Independence in Trace Pro
cessors; Proceedings of the 32”^ Annual International Symposium on
Microarchitecture, Nov. 16-18, 1999; pp. 4-15; Haifa, Israel.
Amir Roth and Gurindar S. Sohi; Register Integration: A Simple and
Efficient Implementation of Squash Reuse; Proceedings of the 33"*
Annual International Symposium on Microarchitecture; Dec. 10-13,
2000; pp. 223-234; IEEE Computer Society TC-MICRO and ACM
SIGMICRO; Monterey California.
Daniel A. Jimenez and Calvin Lin; Dynamic Branch Prediction with
Perceptronds; Proceedings of the 1th International Symposium on
High-Performance Computer Architecture; Jan. 20-24, 2001; pp.
197-206; Monterrey, Mexico.
Chen-Yong Cher and T. N. Vijaykumar; Skipper: A
Michroarchitecture for Exploiting Control-flow Independence; Pro
ceedings of the 24th Annual International Symposium on
Microarchitecture; Dec. 1-5,2001; pp. 4-15; IEEE Computer Society
TC-MICRO and ACM SIGMICRO; Austin, Texas.
Soner Onder and Rajiv Gupta; Dynamic Memory Disambiguation in
the Presence of Out-of-order Store Issuing; Journal of Instruction
Level Parallelism; Jun. 2002; pp. 170-176; vol. 4.
John L. Hennessy and David A. Patterson; Computer Architecture: A
Quantitative Approach, 3rd Edition; 2002; pp. 313-314 andAl-A66;
Morgan Kaufmann Publishers, Inc.
Vinay S. Belgaumkar; General Dynamic Predication for SuperScalar
Processors; Masters Thesis, Michigan Technological University; Jan.
2003; pp. 1-63.

* cited by examiner

U.S. Patent Jun. 29, 2010 Sheet 1 of 23 US 7,747,993 B2

FIG. 1

FIG. 2

FIG. 3

U.S. Patent Jun. 29, 2010 Sheet 2 of 23 US 7,747,993 B2

FIG. 4

FIG. 5

U.S. Patent Jun. 29, 2010 Sheet 3 of 23 US 7,747,993 B2

FIG. 6

U.S. Patent Jun. 29, 2010 Sheet 4 of 23 US 7,747,993 B2

FIG. 7

U.S. Patent Jun. 29, 2010 Sheet 5 of 23 US 7,747,993 B2

FIG. 8

U.S. Patent Jun. 29, 2010 Sheet 6 of 23 US 7,747,993 B2

FIG. 9

U.S. Patent Jun. 29, 2010 Sheet 7 of 23 US 7,747,993 B2

FIG. 10

U.S. Patent Jun. 29, 2010 Sheet 8 of 23 US 7,747,993 B2

FIG. 11

U.S. Patent Jun. 29, 2010 Sheet 9 of 23 US 7,747,993 B2

FIG. 12

U.S. Patent Jun. 29, 2010 Sheet 10 of 23 US 7,747,993 B2

FIG. 13

U.S. Patent Jun. 29, 2010 Sheet 11 of 23 US 7,747,993 B2

FIG. 14

U.S. Patent Jun. 29, 2010 Sheet 12 of 23 US 7,747,993 B2

170

FIG. 15

U.S. Patent Jun. 29, 2010 Sheet 13 of 23 US 7,747,993 B2

FIG. 16

FIG. 17

U
.S. Patent

Jun. 29,2010
Sheet 14 of 23

U
S 7,747,993 B

2

U.S. Patent Jun. 29, 2010 Sheet 15 of 23 US 7,747,993 B2

FIG. 18

FIG. 19

U.S. Patent Jun. 29, 2010 Sheet 16 of 23 US 7,747,993 B2

U.S. Patent Jun. 29, 2010 Sheet 17 of 23 US 7,747,993 B2

FIG. 21

FIG. 22

U.S. Patent Jun. 29, 2010 Sheet 18 of 23 US 7,747,993 B2

FI
G

.
23

U.S. Patent Jun. 29, 2010 Sheet 19 of 23 US 7,747,993 B2

FI
G

. 2
4

U.S. Patent Jun. 29, 2010 Sheet 20 of 23 US 7,747,993 B2

FI
G

. 2
5

U.S. Patent Jun. 29, 2010 Sheet 21 of 23 US 7,747,993 B2

FI
G

. 2
6

FIG. 27

U
.S. Patent

Jun. 29,2010
Sheet 22 of 23

U
S 7,747,993 B

2

U.S. Patent Jun. 29, 2010 Sheet 23 of 23 US 7,747,993 B2

FIG. 28

US 7,747,993 B2

METHODS AND SYSTEMS FOR ORDERING
INSTRUCTIONS USING FUTURE VALUES

BACKGROUND OF THE INVENTION

Embodiments of the invention relate to methods and sys
tems for ordering software instructions using future values. In
particular, embodiments of the invention relate to methods
and system for ordering a first instruction that consumes a
value of an object such that it is processed before a second
instruction that defines the value of the object.

Traditionally, data dependencies form the basis of instruc
tion ordering. In other words, in order for instruction ordering
to be semantically correct, the production or definition of a
value of an object must precede any consumption of the value
of the object.

Following traditional instruction ordering, processors
assign producer instructions (i.e., instructions that produce a
value) a production tag (e.g., a name or an identifier). Typi
cally, a production tag includes a physical location of the
processor, such as a register, that will store the generated or
produced value. Processors then provide consumer instruc
tions (i.e., instructions that consume a value produced with a
producer instruction) with tags assigned to producer instruc
tions that provide the values consumed with the consumer
instructions. Processors then hold the consumer instructions
in specific buffers of a processor, often called reservation
stations. When the processor finishes processing a producer
instruction, the processor signals the availability of the value
produced with the producer instruction. The processor then
releases any consumer instructions holding a tag matching
the tag of the completed producer instruction.

SUMMARY OF THE INVENTION

The instruction-ordering requirement as described above
limits the reordering or reorganizing of instructions. How
ever, reorganizing instructions is often beneficial to proces
sors configured to continue processing (i.e., fetching and
scheduling execution of) instructions without waiting for the
results of previously processed instructions to become avail
able.

Accordingly, embodiments of the invention provide a
method of ordering software instructions. The method
includes placing a first instruction that consumes a value of an
object before a second instruction that produces the value of
the object such that the first instruction is processed before the
second instruction and a physical location is allocated to the
value of the object upon processing the first instruction.

Additional embodiments provide a method of processing
software instructions. The method includes allocating a
physical location to a value of an object, upon encountering a
first instruction that consumes a value of an object that is not
defined. The method also includes mapping the value pro
duced with a second instruction that produces the value of the
object to the physical location.

Another embodiment provides a computer-readable
medium including instructions for organizing an instruction
set. The instruction set includes a first instruction that con
sumes a value of an object and a second instruction that
produces the value of the object. The computer-readable
medium includes instructions for ordering the instructions
sequentially such that the first instruction is before the second
instruction. The computer-readable medium also includes
instructions for flagging the object referenced in the first
instruction as a future value object.

1
Some additional embodiments provide a system for orga

nizing and processing an instruction set. The instruction set
includes a first instruction that consumes a value of an object
and a second instruction that produces the value of the object.
The system includes an instruction organizing application
configured to order the instructions sequentially such that the
first instruction is before the second instruction and to flag the
object referenced in the first instruction as a future value
object. The system also includes a processor configured to
allocate a physical location to the value of the object upon
processing the first instruction and to map the value produced
with the second instruction to the physical location.

Further embodiments provide a method of processing a
repeated instruction. The method includes fetching a repeated
instruction, executing the repeated instruction, and holding a
first copy of the repeated instruction with a predicate upon
releasing the repeated instruction for execution where the
predicate has a true state and a false state.

Yet another embodiment provides an instruction organizer.
The instruction organizer includes an instruction-ordering
module configured to place a first instruction that consumes a
value of an object before a second instruction that produces
the value of the object. The instruction organizer also includes
a future-value-object-flagging module configured to flag a
reference to the object included in the first instruction as a
reference to a future value object.

Embodiments also provide a processor. The processor
includes a renamer configured to 1) obtain a first instruction
including a future value object flag and a reference to a first
object, 2) to allocate a first physical location for a value of the
object and map the reference to the first object to the first
physical location if the future value object flag is set, and, 3)
if the future value object flag is not set, to map the reference
to the first obj ect to a previously-allocated physical register as
designated with a previously-allocated physical location
identifier stored in a map table.

Other embodiments provide a renamer. The renamer
includes a map table configured to store previously-allocated
physical location identifiers that map an object identifier to a
physical location, to receive an object identifier, and to trans
mit a previously-allocated physical location identifier and a
physical location allocator configured to receive a future
value object flag and to allocate a first physical location and
transmit a first physical location identifier associated with the
first physical location if the future value object flag is set.

Other features and advantages of embodiments of the
invention will become apparent to those skilled in the art upon
review of the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
FIG. 1 illustrates an exemplary instruction set representing

traditional instruction ordering.
FIG. 2 illustrates an exemplary renaming process per

formed with a processor upon encountering the instruction set
of FIG. 1.

FIG. 3 illustrates another exemplary renaming process per
formed with a processor upon encountering the instruction set
of FIG. 1.

FIG. 4 illustrates another exemplary instruction set repre
senting future value instruction ordering.

FIG. 5 illustrates an exemplary renaming process per
formed with a processor upon encountering the instruction set
of FIG. 4.

FIG. 6 illustrates an exemplary instruction set representing
traditional instruction ordering.

2

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

FIG. 7 illustrates the instruction set of FIG. 6 reordered
using future value instruction ordering.

FIG. 8 illustrates another exemplary instruction set repre
senting traditional instruction ordering.

FIG. 9 illustrates the instruction set of FIG. 8 reordered
using future value instruction ordering and a predicted branch
path.

FIG. 10 illustrates the instruction set of FIG. 9 and a rolled-
back processing path taken when a predicted branch path is
incorrect.

FIG. 11 illustrates the instruction set of FIG. 9 and a cor
rected processing path.

FIG. 12 illustrates anther exemplary instruction set includ
ing a first branch path and a second branch path.

FIG. 13 illustrates the instruction set of FIG. 12 reordered
using future value instruction ordering.

FIG. 14 illustrates exemplary processing of the instruction
set of FIG. 13 including the first branch path.

FIG. 15 illustrates exemplary processing of the instruction
set of FIG. 13 including the second branch path.

FIG. 16 illustrates the instruction set of FIG. 12 including
a modified first branch path and a second branch path.

FIG. 17 is a schematic diagram of an exemplary processor
and memory module.

FIG. 18 represents a portion of the memory module of FIG.
17 that stores an instruction organizing application.

FIG. 19 illustrates exemplary modules of the instruction
organizing application of FIG. 18.

FIG. 20 is a schematic diagram of an exemplary renamer
included in the processor of FIG. 17.

FIG. 21 illustrates an exemplary instruction set including a
loop.

FIG. 22 illustrates the instruction set of FIG. 21 repre
sented with recursive instructions.

FIGS. 23-27 illustrate exemplary processing states of a
processor executing the instruction set of FIG. 22.

FIG. 28 illustrates exemplary internal production per
formed with a processor executing recursive instructions.

It is to be understood that the invention is not limited in its
application to the details of construction and the arrangement
of components set forth in the following description or illus
trated in the drawings. The invention is capable of other
embodiments and of being practiced or of being carried out in
various ways. Also, it is to be understood that the phraseology
and terminology used herein is for the purpose of description
and should not be regarded as limiting. The use of “includ
ing,” “comprising,” or “having” and variations thereof herein
is meant to encompass the items listed thereafter and equiva
lents thereof as well as additional items. Unless limited oth
erwise, the terms “connected,” “coupled,” and “mounted,”
and variations thereof herein are used broadly and encompass
direct and indirect connections, couplings, and mountings. In
addition, the terms “connected” and “coupled” and variations
thereof are not restricted to physical or mechanical connec
tions or couplings.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary instruction set 10 represent
ing traditional instruction ordering or flow. The instruction set
10 includes a first instruction 12 labeled as “II” and a second
instruction 14 labeled as “12.” The first instruction 12 and the
second instruction 14 include a reference to an object or
variable x. In terms of the object or variable x, the first instruc
tion 12 is a producer instruction since it produces a value for
the object x, and the second instruction 14 is a consumer
instruction since it consumes the value of the object x. As

3
described above, the instruction set 10 represents traditional
instruction ordering since the consumption of the value of the
object x sequentially follows the definition or production of
the value of the object x.

FIG. 2 illustrates an exemplary renaming process per
formed with a processor encountering or processing the
instruction set 10. Upon fetching the first instruction 12, the
processor selects an available physical location (e.g., a regis
ter) for a value of the object x and replaces the obj ect identifier
x in the first instruction 12 with a name or identifier associated
with the selected physical location. In the example illustrated
in FIG. 2, the object identifiers is replaced with the physical
location identifier R27. When the second instruction 14,
which consumes the value of the object x, is fetched, the
object identifier x in the second instruction 14 is also replaced
with the location identifier, R27, such that the first instruction
12 and the second instruction 14 map or associate the value of
the object x to the same physical location. In some embodi
ments, a processor uses a map table to replace all references
to a particular object identifier to the same location. The
processor can also select or allocate a virtual physical location
or tag for a value of the object x. The processor can then map
the virtual physical location or tag to a true physical location
when a value for the object x is available.

FIG. 3 illustrates another exemplary renaming process per
formed with a processor with respect to the instruction set 10
of FIG. 1. As illustrated in FIG. 3, the creation of the asso
ciation between the object identifier x and the physical loca
tion identifier R27 is not bound to a specific instruction, and
the processor creates an association between the object iden
tifier x and the physical location identifier R27 before
encountering the first instruction 12 or the second instruction
14. Upon encountering the first instruction 12 and the second
instruction 14, the processor replaces the object identifier x
with the previously associated physical location identifier
R27.

As illustrated in FIG. 3, the creation of the association
between an object identifier and a physical location identifier
R27 can be separated from the encountering of a producer
instruction initially defining or introducing the object identi
fier while maintaining correct instruction ordering semantics.
Consequently, it becomes irrelevant as to whether the pro
ducer instruction or the consumer instruction is encountered
first.

In some embodiments, traditional instruction ordering can
be reversed or disregarded by identifying an instruction that
includes an object identifier that will be the first reference to
the object identifier encountered with the processor regard
less of whether the instruction is a producer of the value of the
object identifier or a consumer of the value of the object
identifier.

FIG. 4 illustrates another exemplary instruction set 20 rep
resenting future value or reverse instruction ordering. The
instruction set 20 includes a first instruction 22 labeled as “I I ”
and a second instruction 24 labeled as “12.” In contrast to the
instruction set 10, the first instruction 22 is a consumer
instruction with respect to object identifier x, since the first
instruction 22 consumes a value of the object x. The second
instruction 24 is a producer instruction with respect to object
identifier x, since the second instruction 24 produces the
value of the object x. The instruction set 20 represents future
value instruction ordering, which deviates from traditional
instruction ordering since the consumption of the value of the
object x comes before the definition or production of a value
of the object x.

In some embodiments, to maintain proper instruction
ordering semantics, the object x is flagged as a “future value

4

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

object” in the first instruction 22 (illustrated x^in FIG. 4). The
flagging of the object x as a future value object indicates that
the value of the object x will be defined or produced in the
“future.” The “future” can include the future processing of the
instruction that includes the flagged object or the processing
of a subsequent instruction.

It should be understood that an instruction set representing
future value instruction ordering can include multiple con
sumer instructions sequentially ordered before a correspond
ing producer instruction, and, in some embodiments, the flag
ging of the object x as a future value object indicates that the
reference to the object x is the first reference to be encoun
tered with the processor upon processing the instruction set.
In other words, only the first reference to a value of an object
is flagged as a future value object when multiple consump
tions of the value occur before the corresponding production
of the value. For example, for a sequence of instructions
{consumerj, consumer2, . . . , consumer,,, producer}, only the
reference to the object in the consumer 1 instruction is flagged
as a future value object identifier since the reference is the first
reference of the object identifier encountered with a processor
when processing the sequence. Likewise, the references to the
object in the remaining consumer instruction, as well as the
producer instruction, will not be flagged as a future value
object.

FIG. 5 illustrates an exemplary renaming process per
formed with a processor upon encountering the instruction set
20. In some embodiments, if an object identifier flagged as a
future value object is referenced as consuming a value of an
object, the processor treats the consumption of a value of an
object as it would traditionally treat a definition or production
of the value of the object and allocates a physical location for
the value of the object. Subsequent references to the value of
the object are then mapped to the same physical location.

In some embodiments, since the value consumed with the
first instruction 22 is produced in the future, the processing of
the first instruction 22 is halted or held until the value con
sumed with the first instruction is produced or becomes avail
able. When the producer instruction (e.g., the second instruc
tion 24) producing the value of the object is finally
encountered, the processor maps or renames the object iden
tifier to the same physical location previously allocated.

It should be understood that instructions representing tra
ditional instruction ordering can also reference objects
flagged as future value objects. For example, an instruction
set includes a sequence of instructions {producer, consumer!,
consumer2, consumer,,}, which represent traditional instruc
tion ordering. As described above, an object can be flagged as
a future value object if a value of the object reference with the
instruction is going to be defined or produced in the “future.”
The “future” can include the processing of the instruction
including the object flagged as a future value object or the
processing of a subsequent instruction. Therefore, the refer
ence to the object included in the producer instruction of the
above sequence is flagged as a future value object since the
value of the object will be defined in the future with the
processing (i.e., the execution) of the producer instruction.
Likewise, each reference to the object identifier in the con
sumer instructions will not be flagged as a future value object
since the value of the object consumed with the consumer
instructions is defined or produced in the past (rather than in
the future) with the processing of the producer instruction.

In some embodiments, ordering instructions in non-tradi-
tional or future value instruction order as described above,
allows instructions to be reordered or reorganized to improve
or increase processing power of a processor. For example,
processors performing instruction level parallelism often

5
reorder instructions to avoid instruction processing pipeline
interruptions due to processing branch instructions, data-de-
pendent instructions, and/or resource-conflicting instruc
tions.

Branch instructions can disrupt the normal sequential flow
of a program since a processor may not be able to determine
a subsequent instruction to process until after the branch
instruction is processed. Since a processor using instruction
level parallelism starts processing (i.e., fetches) subsequent
instructions before it finishes processing previous instruc
tions, the processor may not know which subsequent instruc
tion to start processing because it has not finished processing
a branch instruction.

One attempt to solve processing conflicts due to branch
instructions is to reorganize the order of the instructions such
that branch-independent instructions (i.e., instructions that do
not depend on the processing of a branch instruction and,
therefore, will be processed regardless of the results of pro
cessing the branch instruction) are processed in parallel with
the processing of the branch instruction. By processing
branch-independent instructions before processing branch-
dependent instructions (i.e., instructions that may or may not
be processed depending on the result of processing the branch
instruction), the processing of control-dependent instructions
can be delayed until the branch instruction is processed and
the processor knows what instructions should be processed
next.

Data-dependent instructions can also hinder processing
performance since the processing of a data-dependent
instruction can depend on the results of another instruction
that may or may not be finished processing. In some embodi
ments, if a data-dependent instruction is processed too closely
to the instruction that the data-dependent instruction depends
on, the processing of the instruction that the data-dependent
instruction depends on may not be finished and the results
may not be ready or available. In some situations, instructions
may be reordered to increase the time between processing a
data-dependent instruction and the instruction that the data
dependent instruction depends on to allow more time for the
instruction that the data-dependent instruction depends on to
process such that the results are available for the data-depen
dent instruction when the data-dependent instruction is pro
cessed.

Resource-conflicting instructions can also cause instruc
tion processing delays since resource-conflicting instructions
are instructions processed in parallel where each instruction
requires access to a particular resource, such as a memory
module. In some embodiments, reordering the resource con
flicting instructions such that they do not require access
simultaneously reduces potential conflicts.

In some embodiments, future value instruction ordering
allows greater freedom to reorder instructions to accommo
date branch instruction processing, data-dependent instruc
tion processing, and/or resource-conflicting instruction pro
cessing since consumer instructions can be placed before
producer instructions without violating instruction ordering
semantics.

FIG. 6 illustrates an exemplary instruction set 30. In some
embodiments, a processor performing instruction level par
allelism processes the instruction set 30. Performing instruc
tion level parallelism allows the processorto process multiple
instructions in parallel. Forthe instruction set 30 illustrated in
FIG. 6, an exemplary processor may be configured to process
four instructions in parallel and may fetch four instructions
per cycle. The processor may also be configured to process an
instruction in one cycle. Given the above configurations for a
processor processing the instruction set 30, the processor can

6

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

fetch the first subset 35 of the instruction set 30 on a first clock
cycle. The first subset 35 can include a first instruction 40
labeled “II,” a second instruction 42 labeled “12,” a third
instruction 44 labeled “13,” and a fourth instruction 46 labeled
“14.” The fourth instruction 46 includes a branch instruction,
and, in some embodiments, processing the fourth instruction
46 can determine a branch direction and, consequently, sub
sequent instructions to process.

In some embodiments, in order to maintain or fill the
instruction pipeline, a processor continues to process instruc
tions and, therefore, continues to fetch instructions after
fetching the first subset 35 of instructions. The instruction set
30, however, provides two possible branch directions, and
each possible branch direction includes control-dependent
instructions that may or may not be processed depending on
the processing of the branch instruction included in the fourth
instruction 46. The instruction set 30 includes a first possible
branch path represented with a second subset 50 that includes
a fifth instruction 52 labeled “15.” The instruction set 30 also
include a second possible branch path represented with a third
subset 60 that includes a sixth instruction 62 labeled “16.”

The instruction set 30 further includes a fourth subset 70
that includes control-independent instructions that are pro
cessed regardless of which possible branch path is processed.
The fourth subset 70 can include a seventh instruction 72
labeled “17,” an eighth instruction 74 labeled “18,” a ninth
instruction 76 labeled “19,” and a tenth instruction 78 labeled
“ 110.”

In some embodiments, the processor reorders the instruc
tion set 30 to accommodate the processing of the branch
instruction using future value instruction ordering. As illus
trated in FIG. 7, upon fetching the first subset 35 of instruc
tions, the processor can determine that a branch instruction
has been encountered and can reorder the instruction set 3 0 to
place instructions included in the fourth subset 70, which
includes control-independent instructions, immediately after
the first subset 35. As described above, using future value
instruction ordering, the fourth subset 70 can be moved since
moving the subset 7 0 places a consumption of the value of the
object x before the production of the value of the object x
(which is included in the second subset 50 or the sixth subset
60). In some embodiments, without applying future value
instruction ordering some of the instructions of the fourth
subset 70 could not be reordered. For example, the seventh
instruction 72 could not be placed before the production of the
value of the object x included in the fifth instruction 52 or the
sixth instruction 62 using traditional instruction ordering
since a physical location is only allocated upon processing a
definition or production of a value and not a consumption of
a value.

Upon reordering the fourth subset 70 such that it immedi
ately follows the first subset 35, the reference to the value of
the object x in the seventh instruction 72 can be flagged as a
future value obj ect (as illustrated by x̂ -in FIG. 7). Flagging the
reference to the value of the obj ect x can instruct the processor
to allocate a physical location to the value of the object even
though the processor has not previously encountered a defi
nition or production of the value.

After reordering the instruction set 30 and flagging the
reference to the value of the obj ect x in the seventh instruction
72 as a future value object, the processor can continue pro
cessing instructions by processing control-independent
instructions included in the fourth subset 70. In some embodi
ments, the instruction set 30 is reorganized such that enough
control-independent instructions are moved or reordered to
occupy or fill the instruction processing pipeline until the
branch instruction included in the fourth instruction 46 is

7
processed to determine one of the possible branch paths to
process without stalling the instruction processing pipeline
and decreasing the processing benefits it provides.

It should be understood, however, that processing the con
trol-independent instructions (the fourth subset 70) with the
processor can include fetching the instructions and holding
some of the instructions in a reservation station. The proces
sor can hold control-independent instructions if the instruc
tions are data-dependent on instructions that have not been
executed yet. In essence, however, a processor keeps the
pipeline full since instructions are still being fetched at a
maximum or optimizing rate.

In some embodiments, the processor is configured to pre
dict a branch path and to continue fetching along the predicted
branch path. For example, with respect to the instruction set
30, if the processor predicts that the first possible branch path
is the likely path to be processed, the processor can fetch the
second subset 50, including the fifth instruction 52, and one or
more instructions included in the fourth subset 70. Alterna
tively, if the processor predicts that the second possible
branch path is the likely path, the processor can fetch the sixth
instruction 62 included in the third subset 60 and instructions
included in the fourth subset 70.

In some embodiments, if the prediction of the processor is
correct, the processor continues operating normally since the
correct instructions have been processed. Flowever, if the
prediction of the processor is incorrect, the processor may
have to restart or reload instructions from the correct path.
During a restart, processing cycles (i.e., time) are wasted due
to the cost of restarting or reloading the instruction pipeline as
well as the fact that useful instructions that may have been
processed in the meantime are discarded.

Using traditional instruction ordering, if the prediction of a
processor is incorrect, the processor may be required to repro
cess (including refetching) incorrect instructions. In some
embodiments, even control-independent instructions, which
would have been processed regardless of the branch path
processed, are completely reprocessed in order to reestablish
physical location allocations generated with a producer
instruction and passed to a consumer instruction.

For example, given the example illustrated in FIG. 6, if the
processor initially followed the first possible branch path
including the fifth instruction 52, the processor may allocate
a physical location for the value of the object x defined or
produced with the fifth instruction 52 and an identifier of the
physical location would have been associated with the refer
ence to the value of the object x included in the seventh
instruction 72. If the prediction is incorrect, however, instruc
tion processing may be rolled back to process the second
possible branch path. The second possible branch path
includes the sixth instruction 62 and a new physical location
may be allocated for the value of object x defined or produced
with the sixth instruction 62, which would then also be asso
ciated with the value of the object x referenced in the seventh
instruction 72. By rolling back processing, control-indepen
dent instructions are processed twice, and, therefore, the pro
cessing time of the instruction set 30 is increased.

In contrast to the prediction fallbacks described above,
incorporating future value instruction ordering with branch
prediction can provide generally less risky or costly branch
prediction. FIG. 8 illustrates the instruction set 30 represent
ing traditional instruction ordering, and FIG. 9 illustrates the
instruction set 30 reordered using future value instruction
ordering, such that the fourth subset 70 immediately follows
the first subset 35. As described for FIG. 7, reordering the
instruction set 30 causes the object x referenced in the seventh

8

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

instruction 72 to be flagged as a future value object (jq) since
the value of the object x will be produced in the “future.”

In the example illustrated in FIG. 9, a processor processing
the instruction set 30 may predict the second possible branch
path (including the third subset 60 and the sixth instruction
62) as the likely branch path. Using the predicted path, the
processor processes the instructions included in the first sub
set 35, the fourth subset 70, and the third subset 60. The
processor also processes one or more instructions from a fifth
subset 80, such as an eleventh instruction 82 labeled “111.”
The dashed processing path 90 illustrates an exemplary pro
cessing path of the processor.

Following the processing path 90, the processor encounters
the seventh instruction 72 included in the fourth subset 70
and, since the reference to the object x in the seventh instruc
tion 72 is flagged as a future value object, the processor
allocates a physical location for the value of the object x, such
as a register 100. In some embodiments, the processor then
holds the seventh instruction 72 in a reservation station (not
shown) to wait until a value of the object x is available in the
register 100.

While executing the processing path 90, the processor also
fetches and executes the sixth instruction 62 included in the
third subset 60. The sixth instruction 62 is a producer instruc
tion that defines or produces a value of the object x. As
illustrated in FIG. 9, upon processing the sixth instruction 62,
a value (e.g., zero) can be stored to the register 100 and the
stored value can then be available and used with the seventh
instruction 72.

If the prediction of the processor is incorrect, however (i.e.,
the second subset 50 including the fifth instruction 52 is
actually the determined branch path), the processor may
execute the control-independent instructions included in the
fourth subset 70 with incorrect values. For example, the sev
enth instruction 72 can execute the expression z=Xy+a using
the value (i.e., zero) produced with the incorrect sixth instruc
tion 62.

As noted, in traditional instruction ordering, once an incor
rect prediction is detected, the processor rolls back or reverses
to process the correct instructions with correct values. When
using certain embodiments of future value instruction order
ing, however, the processor does not need to completely
reprocess control-independent instructions and re-establish
data dependence links. Rather, a physical location is allocated
for the value of the object identifier x when the processor
encounters the seventh instruction 72 that can be associated
with any subsequent reference to the object x.

In some embodiments, the seventh instruction 72 (and any
other instructions whose executed result depends on whether
the prediction of the processor is correct) is purposefully held
in the reservation station until the prediction of the processor
is verified. By holding the speculative reordered instructions
until a definitive branch direction is determined, the specula
tive reordered instructions do not have to be reprocessed (e.g.,
re-fetched). The prediction-dependent instructions can then
be released once the values that the instructions consume are
definite.

In some embodiments, since the speculative reordered
instructions are still being held, the processor is only required
to roll back to where incorrect processing (i.e., executing)
began. As illustrated in FIG. 10, a processing path 105 indi
cates the processing of the processor that is retained. The path
105 includes the instructions of the first subset 35 and the
instructions of the fourth subset 70. In comparing the pro
cessing path 90 to the processing path 105, the processor
rolled back or “erased” the processing of the sixth instruction
62 and the eleventh instruction 82. These instructions are

9
labeled as discarded instructions since they were incorrectly
and unnecessarily processed before the incorrect prediction
was detected.

FIG. 10 also illustrates that the register 100 is still allocated
to the value x after the processor rolls back. This is so because
the processing of the control-independent instructions
included in the fourth subset 70 was not rolled back. As
illustrated in FIG. 11, after rolling back, the processor begins
processing along the correct branch path (processing path
110). The fifth instruction 52 is executed and a value (e.g.,
five) is stored in the register 100. The value stored in the
register 100 can then be used to process the seventh instruc
tion 72 and execute the expression z=Xy+a.

In some embodiments, consumer instructions may be reor
dered such that they are processed before corresponding pro
ducer instructions as long as at least one corresponding pro
ducer instruction is guaranteed to be processed in the
“future.” For example, the second subset 50 and the third
subset 60 illustrated in FIGS. 6-9 represent possible branch
paths that both include a producer instruction that produces a
value for the object x. Since both possible branch paths
include a producer instruction for the value of the object x, a
producer instruction for a value of the obj ect x will be encoun
tered regardless of the determined branch path. Therefore, the
seventh instruction 72 that consumes the value of the object x
can be placed before the instructions of the second subset 50
and the third subset.

If, however, a producer instruction is not included in all
possible branch paths, a consumer instruction can wait for a
corresponding producer instruction that may never be
encountered. FIG. 13 illustrates an instruction set 140. The
instruction set 140 includes a pre-branch instruction subset
150 that includes an initial producer instruction 152 labeled
“II” that establishes an initial definition or production of a
value of the object a. The instruction set 140 also includes a
first-branch-path instruction subset 160 that includes a sub
sequent producer instruction 162 labeled “12” that produces a
subsequent value of the object a. The instruction set 140 also
includes a second-branch-path instruction subset 170 that
includes a producer instruction 172 labeled “13” that defines
a value of an object b but does not include a subsequent
producer instruction producing a value of the object a.

The instruction set 140 further includes a post-branch
instruction subset 180 that includes a consumer instruction
182 that consumes the value of the object a. If the first-
branch-path instruction set 160 is processed, the consumer
instruction 182 uses “4” as the value of the object a. However,
if the second-branch-path instruction subset 170 is processed,
the consumer instruction 182 uses the value of the object a as
produced with the initial producer instruction 152.

Using future value instruction ordering, the post-branch
instruction subset 180 can be reordered such that it immedi
ately follows the pre-branch instruction subset 150, as illus
trated in FIG. 13. Upon processing the reordered post-branch
instruction set 180, a physical location (e.g., a register 190)
can be allocated for a value of the object a flagged as a future
value object. In some embodiments, the reference to the
object a included in the initial producer instruction 152 and
the reference to the future value object a included in the
consumer instruction 182 are considered references to differ
ent objects. And, separate physical locations are allocated for
the value of the object a and for the value of the future value
object a. For example, as illustrated in FIG. 13, the value of
the future value object a produced with the initial producer
instruction (e.g., 2) is not stored in the register 190. Instead,
the register 190 was allocated specifically for the future value
object a.

10

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

Alternatively, the reference to the object a included in the
initial producer instruction 152 and the reference to the future
value obj ect a included in the consumer instruction 182 can be
considered references to the same object. In addition, the
reference to the future value object a included in the consumer
instruction can be associated with the physical location pre
viously allocated for the object a with the initial producer
instruction.

If the instruction set 140 is reordered as illustrated in FIG.
13 and the first-branch-path instruction subset 160 is pro
cessed as the branch direction, the register 190 obtains the
value produced with the subsequent producer instruction 162
(e.g., 4). As illustrated in FIG. 14, the value can then be used
with the consumer instruction 182.

Alternatively, if the second-branch-path instruction subset
is processed, as illustrated in FIG. 15, the future value object
a^referenced in the consumer instruction 182 may wait for a
production of a value of the object a that is never encountered.

In some embodiments, to ensure that a producer instruction
is processed regardless of the determined branch path, a sub
sequent producer instruction is added to a branch path that
does not include a subsequent producer instruction. As illus
trated in FIG. 16, a copy of the initial producer instruction
(instruction 192 labeled “I3a”) can be added to the second-
branch path instruction subset 170. In some embodiments, a
subsequent producer instruction is added to the branch path
that sets the value of the future value object equal to the value
of the object initially produced by the initial producer instruc
tion 152, if the future value object is allocated a separate
physical location as described above. In other embodiments,
the initial producer instruction is moved to the branch path
without a subsequent producer instruction using partial-dead-
code elimination techniques.

Another issue that can arise from reordering instructions, is
changing the order of memory load/store instructions. In
some embodiments, processors employ dynamic memory
disambiguation (using a mechanism such as a store set algo
rithm), and the only issue to consider when reordering
memory instructions is detecting memory order violations.
Once a memory order violation is detected, a memory depen
dence detector can prevent or restrict a reordered memory
instruction from issuing early, since it is encountered first
with a processor. In some embodiments, a block number is
assigned to each instruction to correctly detect memory order
violations for reordered instructions. After reordering the
instructions, the memory load/store instructions retain their
original block number, which designates a desired execution
flow of the instructions regardless of how the instructions are
encountered once reordered.

In certain embodiments, a processor is configured to reor
der instructions using future value instruction ordering. In
some embodiments, a processor is configured to reorder
instructions using future value instruction ordering with a
technique that is similar to predecoding. Predecoding allows
a processor to determine or estimate the type of a fetched
instruction. In some embodiments, predecoding is performed
upon fetching an instruction or storing an instruction to an
instruction cache of a processor. Predecoding is often used
with processors performing instruction level parallelism to
identify branch instructions, or other possibly conflicting
instructions, in order to compensate for potential pipelining
conflicts by fetching subsequent instructions out-of-order
from the normal or initial instruction order. After identifying
a potential pipelining conflict, the processor can reorder
instructions using future value instruction ordering to accom
modate potential pipelining conflicts without delaying or
decreasing the output rate of the instruction pipeline.

11
The processor can also be configured to reorder instruc

tions using future value instruction ordering when it experi
ences an instruction-cache miss, which indicates that the a
subsequent instruction to process is not readily available. The
processor can attempt to fill or load the pipeline with out-of-
order instructions creating future value ordered instructions.

In addition, the processor can be configured to reorder
instructions using future value instruction ordering during
trace cache construction. A trace cache can be used to save
instruction sequences processed with a processor such that
the sequences can be refetched from the trace cache rather
than from a separate memory or cache, which may take more
time. In some embodiments, after processing a sequence of
instructions including a branch instruction (and possibly
experiencing processing delay due to branch path uncer
tainty), the processor reorders the sequence of instructions
using future value instruction ordering such that subsequent
processing of the same sequence of instructions can be per
formed with less processing delay.

In some embodiments, when a processor reorders instruc
tions using future value instruction ordering using any of the
above techniques, the processor may place a consumer
instruction before a corresponding producer instruction and
may flag objects referenced with the consumer instruction as
future value objects. In some embodiments, a processor flags
future value objects by associating a flag, such as a single bit,
with an object identifier. A single bit future value object flag
can be set to one to indicate future value object references and
can be cleared or set to zero to indicate non-future value
object references.

In addition to the various processor configurations dis
cussed above, pre-processing instruction organizing applica
tions and techniques, such as compilers, interpreters, and
assemblers, can also order or reorder instructions using future
value instruction ordering. For example, the processor can
operate a pre-processing instruction organizing application
(which may be implemented as an “instruction organizer”
that includes software, hardware, or a combination thereof) to
translate and/or reorganize an instruction set so that the pro
cessor can execute the instruction set. The instruction orga
nizer can be configured to review a set of instructions, to
determine potential reordering optimizations that can be per
formed, to reorder instructions, and to flag future value
objects. In some embodiments, the instruction organizer indi
cates future value objects by setting a bit associated with an
object identifier. For example, an instruction oiganizer can
translate source or high-level instructions into to binary or
machine-readable instructions and can associate a bit with
each object identifier reference included in an instruction.
The instruction organizer can set the bit to specify an object is
a future value object and can clear the bit to specify an object
is not a future value object. In some embodiments, the instruc
tion organizer also includes an instruction generation appli
cation configured to allow a user to manually indicate future
value objects based on a manual ordering of the instructions.
A compiler can then translate the manually specified future
value objects into future value objects flags orbits.

In some embodiments, regardless of whether an object is
flagged as a future value object with a processor or an instruc
tion organizer, the processor uses a future value object flag or
bit to determine how to process an instruction based on the
value or state of the flag. FIG. 17 illustrates an exemplary
processor 200 and memory module 210.

The memory module 210 can include non-volatile memory
such as one or more forms of ROM, one or more disk drives,
RAM, other memory, or combinations of the foregoing. In
some embodiments, the memory module 210 is configured to

12

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

store an instruction oiganizer. FIG. 18 illustrates a portion of
the memory module 210 including an instruction oiganizer
215. FIG. 19 illustrates that the instruction organizer 215 can
include an instruction-ordering module 220 and a future-
value-object-flagging module 225. The instruction-ordering
module 220 can be configured to order instructions using
future value instruction ordering. In some embodiments, the
instruction-ordering module 220 is configured to identify
control-dependent instructions and control-independent
instructions to determine and select potential instructions to
reorder. The instruction-ordering module 220 can also be
configured to ensure that a producer instruction is guaranteed
to be encountered for every consumer instruction referencing
a future value object, and the instruction-ordering module
220 can also be configured to add or move instructions to
guarantee that a producer instruction is encountered. The
future-value-object-flagging module 225 can be configured
to identify future value objects by flagging or marking future
value objects.

As illustrated in FIG. 17, the processor 200 can include an
instruction fetcher/cache 230, an instruction decoder 240, a
renamer 250, a reservation station 260, an arithmetic logic
unit (“ALU”) 270, and an output or results storage 280. It
should be understood that the processor 200 can include other
components or modules in addition to and/or in place of the
modules listed above. The functionality provided with the
modules listed above can also be combined and distributed in
various configurations.

The instruction fetcher/cache 230 fetches one or more
instructions from the memory module 210. In some embodi
ments, a specific physical location or register stores a pro
gram counter that specifies one or more memory addresses of
one or more instructions stored in the memory module 210
that should be fetched with the instruction fetcher/cache 230.
The program counter can be adjusted (i.e., incremented) after
the instruction fetcher/cache 230 fetches one or more instruc
tions from the memory module 210. In some embodiments,
the instruction fetcher/cache is also configured to predecode
fetched instructions.

The instruction decoder 240 decodes one or more instruc
tions. In some embodiments, the instruction decoder 240
determines a type of an instruction (e.g., a memory load
instruction, an arithmetic instruction, a register manipulation
instruction, a memory write instruction, etc), and prepares or
initializes the processor 200 to process the instruction.

The renamer 250 associates or allocates a physical location
or register with object identifiers referenced in instructions. In
some embodiments, the renamer 250 is configured to obtain
an object identifier, to allocate a physical location for a value
of the object and to provide a physical location identifier for
the allocated physical location for subsequent references to
the object. In some embodiments, the renamer 250 uses the
future value flags or bits, set with the processor 200 or the
instruction organizer 215, to determine whether a physical
location has already been allocated for a value of an object.

FIG. 20 illustrates exemplary components of the renamer
250. The renamer 250 includes a map table 300, a physical
location or register allocator 310, and a multiplexer 320. The
map table 300 can be configured to store physical location
associations. For example, if a physical location or register
identified as R27 is allocated to a value for an object a, the
map table 300 can store an association between object a and
register R27. Given one part of a physical location associa
tion, the map table 300 can be configured to provide the other
part. For example, if the renamer 250 obtains an instruction
with a reference to object a, the map table 300 provides the
physical location identifier R27 that identifies the physical

13
location associated with the object a. Subsequent references
to the object a can use the physical location identifier pro
vided from the map table 300 to determine where a value
should be stored or consumed.

In some embodiments, the map table 300 stores one half of
the physical location associations. For example, the map table
300 can store physical location identifiers and the associated
obj ect identifiers canbeusedasan index or hash into the map
table. In some embodiments, the renamer uses characteristics
of an obj ect identifier to determine a specific entry or location
of the map table 300 where an associated physical location
identifier, if available, would be stored.

The register allocator 310 can be configured to allocate a
physical location (e.g., a register) for a value of an object. In
some embodiments, the register allocator 310 allocates a
physical location for a value of an object not referenced with
a previous instruction processed with the processor 200. The
register allocator 310 can also be configured to store physical
location identifiers to the map table to specify allocated
physical locations. As described above, the register allocator
310 may use characteristics of an object identifier to deter
mine where to store associated physical location identifiers.

In some embodiments, the multiplexer 320 is configured to
obtain associated physical location identifiers from the map
table 300 and the register allocator 310. The multiplexer 320
can be configured to transmit or provide the associated physi
cal location identifiers obtained from the map table 300 and
the register allocator 310 to a pipeline register. A pipeline
register may be used to replace or reroute object identifiers
included in instructions to physical locations of the processor
200. In some embodiments, the multiplexer 320 is configured
to transmit either the physical location identifier provided
from the map table 300 or the physical location identifier
provided from the register allocator 310.

In some embodiments, the renamer 250 obtains an instruc
tion 350 as input. The instruction 350 can include an object
identifier 355 and a future-value-object flag or bit 360. As
described above, the map table 300 can obtain the object
identifier 355 and can use the identifier 355 to look up or
determine an associated physical location identifier. Upon
determining or locating an associated physical location iden
tifier, the map table 300 forwards the associated physical
location identifier to the multiplexer 320.

The register allocator 310 can obtain the future value obj ect
flag 360 in addition to the object identifier 355, and, in some
embodiments, the register allocator 310 uses the future value
object flag 360 to determine whether a physical location
should be allocated. Generally, the register allocator 310 allo
cates a new physical location or register if the future value
object flag 360 is set. Otherwise, no memory is allocated.

In some embodiments, the future value object flag 360
indicates a new future value object definition, regardless of
whether the instruction 350 is a producer instruction or a
consumer instruction of the object identified with the object
identifier 355. Therefore, the object requires a new and sepa
rate physical location to store a value.

If the future value object flag 360 is set, the register allo
cator 310 reserves or allocates a register and updates the map
table 300 with a physical location identifier that associates the
newly-allocated physical location with the object identifier
355. In some embodiments, the register allocator 310 uses the
object identifier 355 to determine how or where to store an
associated physical location identifier to the map table 300.
The register allocator 310 can also be configured to forward
an identifier for the allocated physical location to the multi
plexer 320.

14

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

If the future value object flag 360 is not set, the register
allocator 310 does not allocate a physical location. Further,
although not required, the register allocator 310 can forward
an invalid or a specially designated physical location identi
fier to the multiplexer 320 indicating that a physical location
was not allocated.

As described above, the multiplexer 320 can be configured
to obtain physical location identifiers from the map table 300
and the register allocator 310. In some embodiments, if the
register allocator 310 allocates a physical location for a value
of an object, the newly-allocated physical location takes pre
cedence over a previously-allocated physical location. For
example, if the multiplexer 320 obtains a physical location
identifier from the register allocator 310 and from the map
table 300, the multiplexer 320 forwards the physical location
identifierobtainedfromtheregisterallocator310 to apipeline
register and disregards the previously-allocated physical
location identifier obtained from the map table 300. Using
this technique, a reference to an object flagged as a future
value object will be allocated a physical location and subse
quent references to the object that are not flagged as a future
value objects will be renamed or associated with the previ
ously-allocated physical location as stored in the map table
300. For example, upon encountering an instruction includ
ing a reference to object a flagged as a future value object, the
register allocator 310 allocates a physical location for a value
of the object a and stores an identifier to the allocated physical
location to the map table 300. Subsequent instructions, how
ever, encountered with the renamer 250 that include a refer
ence the object a not flagged as a future value object are not
allocated new or separate physical locations. Instead, they are
renamed with the identifier for the previously-allocated
physical location stored in the map table 300.

It should be understood that the renamer 250 can be con
figured to obtain multiple object identifier and future value
object flag pairs included in a single instruction. The register
allocator 210 and map table 200 can be configured to provide
physical location identifiers for each object identifier/future
value object flag pair and provide the physical location iden
tifiers to the multiplexer 320. The renamer 250 can also
include multiple mutliplexers, and each mutliplexer can be
configured to receive physical location identifiers associated
with one object identifier/future value object flag pair.

Returning to FIG. 17, the reservation station 260 can be
configured to hold instructions until they are scheduled for
execution. The reservation station 260 can include a buffer
that stores instructions until they can be released and
executed. As described above, the instructions held in the
reservation station 260 can include a tag that corresponds to a
dependency (e.g., a physical location or register, a resource,
etc.) that an instruction is waiting on. Instructions held with
the reservation station 260 can be released once their depen
dencies (e.g., registers) are resolved or available. The reser
vation station 260 can also temporarily hold instructions
without dependencies that will be released for execution once
the processor 200 is ready to execute them.

The ALU 270 can be configured to obtain instructions from
the reservation station 260 and execute them. Executing
instructions can include performing mathematical processes,
shifting or transferring values stored in physical locations,
writing or loading values from the memory module 210, and
the like.

In some embodiments, the output storage 280 temporarily
stores or caches the results of executing an instruction with
the ALU 270. The output storage 280 can act as a buffer for
execution results. The execution results can be transferred

15
from the output storage 280 to a physical location of the
processor 20 or to the memory module 210.

In some embodiments, the concept of processing instruc
tions that consume a value of an object before processing an
instruction that defines the value of the object can also be
applied to processing loops or repeated instructions. Loops
can include instructions that can be processed multiple times
depending on the processing of a branch instruction. FIG. 21
illustrates an instruction set 400. The instruction set 400
includes a pre-loop instruction 410 (labeled “II”), two loop
instructions 420 and 430 (labeled “12” and “13” respectively),
and a branch instruction 440. The branch instruction 440 can
create a backward branch path such that the two loop instruc
tions 420 and 430 and branch instruction 440 can be repro
cessed.

Loop instructions can be represented as recursive instruc-
tion/predicate pairs {I, P}, indicating that the processing of
the instruction I is guarded with the predicate P. In some
embodiments, the predicate P includes a conditional state
ment that evaluates to one of two possible states—“TRUE” or
“FALSE”—and the instruction I can be reprocessed (i.e.,
executed) until the predicate P evaluates to “FALSE.” In some
embodiments, the predicate P is considered a future value
object since the value of the predicate is defined in the
“future” at the bottom or end of the loop.

With respect to the instruction set 400 illustrated in FIG.
21, the predicate guarding the reprocessing of the two loop
instructions 420 and 430 is defined with the branch instruc
tion 440. The branch instruction 440 includes the conditional
statement if (z) where the object identifier z can reference a
Boolean object that has a value equal to “TRUE” or “FALSE.”
In some embodiments, representing loop instructions as
predicate-guarded recursive instructions allows loop instruc
tions to be processed as a single sequence of instructions.
FIG. 22 illustrates the instruction set 400 with the loop
instructions 420 and 430 and the branch instruction 440 rep
resented as predicate-guarded instructions.

In some embodiments, future value object concepts are
applied to recursive instructions by marking an object that
obtains another value throughout the processing of the loop as
a recursive future value object. As illustrated in FIG. 22, the
reference to object x consumed with the loop instruction 420
is flagged as a recursive future value object (illustrated xr)
since a new value for the object x is produced with the sub
sequent loop instruction 430. Similar to how flagging future
value objects allows a consumer instruction to be processed
(e.g., fetched and held in a reservation station) before a cor
responding producer instruction, flagging future value
objects in recursive instructions allows future iterations of
consumer recursive instructions to be processed (e.g., fetched
and held in a reservation station) before future iterations of
producer recursive instructions.

Recursive future value obj ects can be identified using flags.
In some embodiments, two flags are used to identity and
distinguish future value objects from recursive future value
objects. One flag designates whether the object is a future
value object (meaning that value of an object will be defined
in the future), and the other flag designates whether the object
is a recursive future value object (meaning that another value
of the object will be defined in the future). In some embodi
ments, an object may be identified as both a future value
object and a recursive future value object. As illustrated in
FIG. 22, the object x is flagged as a future value in the
pre-loop instruction 410 (illustrated Xy) indicating that a value
of object x will be defined in the future (i.e., with the process
ing of the pre-loop instruction 410). The object y reference

16

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

and the object z reference included in the first loop instruction
420 are also flagged as a future value objects (illustrated jy
and Zy-respectively).

The reference to object x included in the loop instruction
420 is flagged as a recursive future value (illustrated xr)
indicating that another value of object x will be defined in the
future.

FIGS. 23-26 illustrates exemplary processing states of a
processor encountering or processing the instruction set 400.
In some embodiments, the processing states represent states
of the processor 200 while processing the instruction set 400.
In order to accommodate recursive future values objects the
renamer 250 is configured to receive two flags for each obj ect
identifier included in an instruction. As described above, if a
future-value-object flag is set for an object identifier, the
renamer 250 allocates a physical location for a value of the
object that will be associated with the object identifier of the
current instruction and matching object identifiers included in
subsequent instructions. The renamer 250 can also be config
ured to allocate a physical location for a value of the object if
a recursive-future-value flag is set. The physical location
allocated with the renamer 250 for the recursive-future-value
flag, however, will only be associated with matching object
identifiers included in subsequent instructions, and will not be
associated with the current object identifier in the current
instruction. In some embodiments, the register allocator 310
does not forward a physical location identifier to the multi
plexer 320 upon allocating a physical location for a recursive
future value object. Instead, the allocator 310, updates the
map table 300 with the allocated physical location. By not
forwarding the new physical allocation to the multiplexer
320, the current reference to the recursive future value object
is associated with the identifier for the previously-allocated
physical location stored in the map table 300. Flowever, since
the register allocator 310 updates the map table 300, subse
quent references to the object identifier are associated with
the newly-allocated physical location.

In some embodiments, the processor 200 is configured to
release instructions from the reservation station 260 for
execution when any data dependencies are eliminated. The
processor 200 can also be configured to release instructions
from the reservation station when a predicate value associated
with an instruction is set to “TRUE.” The processor 200 can
further be configured to generate a copy of an instruction and
leave or store the copy of the instruction in the reservation
station 260 upon releasing a predicate-guarded recursive
instruction from the reservation station 260. Furthermore, the
processor 200 can be configured to remove or eliminate a
predicate-guarded recursive instruction from the reservation
station 260 if the predicate is set to “FALSE.”

FIG. 23 illustrates a processing state of the processor 200
after processing the pre-loop instruction 410. The instruction
fetcher/cache 230 fetches the pre-loop instruction 410. Since
the object x included in the pre-loop instruction 410 is flagged
as a future value object, the renamer 250 allocates a physical
location 500 for a value of the object x. The pre-loop instruc
tion 410 is then forwarded to the reservation station 260
where the instruction 410 is released for execution if it does
not contain any dependencies of other instructions. The
instruction 410 is executed with the ALU 270 and a value
(e.g., zero) is stored in the register 500. As illustrated in FIG.
23, after processing the pre-loop instruction 410, objectx was
allocated the register 500 anda value was stored to the register
500. In some embodiments, the reservation station 260 does
not contain any other instructions.

FIG. 24 illustrates a processing state of the processor 200
after processing the first loop instruction 420. The instruction

17
fetcher/cache 230 fetches the loop instruction 420, and the
renamer 250 obtains the loop instruction 420. The loop
instruction 420 includes three object identifiers. The first
object identifier for an object y is flagged as a future value
object and so the renamer 250 allocates a physical location
510 for a value of the object y. The second object identifier
included in the loop instruction 420 identifies an object x
flagged as a recursive future value obj ect. As described above,
the renamer 250 can be configured to allocate a physical
location for a recursive future value obj ect that will be used or
associated with subsequent references to the object x, but will
not be associated with the current reference to the object x.
Therefore, the renamer 250 allocates a physical location 520
for a value of the object x (illustrated as x' in FIG. 24).

The first loop instruction also includes an object identifier
for the object z, which represents the predicate guarding the
loop instruction 420. The reference to the object z is flagged
as a future value object since a value of the object z will be
defined in the future with the branch instruction 440 (rewrit
ten as a predicate producer instruction). Since the object z is
flagged as a future value object, the renamer 250 allocates a
physical location 530 for a value of the object z.

After the renaming process is complete, the loop instruc
tion 420 is forwarded to the reservation station 260, and, since
the instruction 420 represents the initial iteration of the loop
and as such the predicate does not yet apply to the instruction,
the loop instruction 420 is released for execution. The ALU
270 executes the loop instruction 420, and the register 510,
which is associated with the object y, obtains a value (i.e., 1).
In some embodiments, the processor 200 signals the avail
ability of the value stored in the physical location 510.

Upon releasing the loop instruction 420 from the reserva
tion station 260, however, a copy of the loop instruction 420
(hereinafter “copy instruction 420a”), including the predi
cate, remains the in reservation station 260. It should be noted
that since the copy instruction 420a represents a subsequent
or future instruction, the reference to object x in the copy of
loop instruction 420 is associated with the physical location
520 allocated for “future” references to the object x.

The copy instruction 420a can remain in the reservation
station since a value has not been signaled as available for the
object x or the object z. In some embodiments, the object z,
when available, is also required to be set to “TRUE” in order
for the copy instruction 420a to be released for execution.

FIG. 25 illustrates a processing state of the processor 200
after processing the second loop instruction 430. The proces
sor 200 fetches the loop instruction 430, and the renamer 430
obtains the loop instruction 420. Similar to the first loop
instruction 420, the second loop instruction 430 also includes
three object identifiers. The first object identifier for an object
x is not flagged as a future value object or as a recursive future
value object. Therefore, the renamer 250 associates the pre
viously-allocated physical location 520 with the reference to
the object x included in the second loop instruction 430.

The second object identifier included in the loop instruc
tion 430 identifies an object y, which is also neither flagged as
a future value object nor as a recursive future value object.
The renamer 250, therefore, associates the previously-allo
cated physical location 510 with the reference to the object y.

The second loop instruction 430 also includes an object
identifier for the object z, which represents the predicate
guarding instruction 430. The renamer associates the previ
ously allocated physical location 530 with the reference to the
object z since the reference to the object z is not flagged as a
recursive future value object or as a future value object.

After associating physical locations with the object iden
tifiers included in the second loop instruction 430, the loop

18

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

instruction 430 is forwarded to the reservation station 260.
Since the instruction 43 0 also represents the initial iteration of
the loop, the loop instruction 430 is released for execution.
Upon releasing the second loop instruction 430 from the
reservation station 260, a copy of the loop instruction 430
(hereinafter “copy instruction 430a”), including the predi
cate, remains in the reservation station 260.

The ALU 270 executes the loop instruction 430, and the
register 520, which is associated with the object x, obtains a
value (i.e., 1), and the processor 200 can signal the availability
of the value stored in the physical location 520. It should be
noted, however, that, in some embodiments, although the
copy instruction 420a is signaled that a value is available in
physical location 520 for object x, the copy instruction 420a
and the copy instruction 430a are not released for execution
since a value for the object z is still not available. The value of
the object z can be used to determine whether the copy
instructions 420a and 430a should be released and executed
again.

In some embodiments, the copy instructions 420a and
430a are released without waiting for a value of the object z.
For example, the processor 200 can be configured to specu
latively release multiple copies of a recursive instruction. The
processor 200 can predict future iterations of recursive
instructions and can release as many copies of a recursive
instruction that the processor 200 predicts will be processed
or as many copies of a recursive instruction that the processor
200 has resources to process.

FIG. 26 illustrates another processing state of the processor
200 after processing the branch instruction 440. The proces
sor 200 fetches the branch instruction 440, and the renamer
430 obtains the branch instruction 440. The branch instruc
tion 440 only includes the obj ect identifier z, which represents
a predicate value. The object identifier z included in the
branch instruction is not flagged as a future value object or as
a recursive future value object, and therefore the renamer 250
associates the previously-allocated physical location 540
with the reference to the object z included in the branch
instruction 440.

After associating the physical location 530 with the object
identifier included in the branch instruction 440, the branch
instruction 440 is forwarded to the reservation station 260.
Since the branch instruction 440 represents the initial itera
tion of the loop and does not include any data dependencies,
the branch instruction 440 is released for execution. Upon
releasing the branch instruction 440 from the reservation
station 260, however, a copy of the branch instruction 440
(hereinafter “copy instruction 440a”), is stored in the reser
vation station 260.

The ALU 270 executes the branch instruction 440, and the
register 530, which is allocated for a value of the object z,
obtains a value (e.g., “TRUE”). The processor 200 can then
signal the availability of the value stored in the physical
location 530 to the copy instruction 420a, the copy instruction
430a, and the copy instruction 440a, which were waiting on
a value of the object z.

In some embodiments, if the value of the object z is set to
“FALSE,” the copy instructions 420a, 430a, and 440a are not
released from the reservation station 260 since the object z is
associated with the predicate guarding the loop instructions
420 and 430 and the branch instruction 440. If the value of the
object z is set to “FALSE,” the copy instructions 420a, 430a,
and 440a should be not executed and can be removed or
eliminated from the reservation station 260.

If, however, the value of the object z is set to “TRUE,” the
copy instructions 420a, 430a, and 440a can be released from
the reservation station 260 and can be executed. The copy

19
instruction 420a, 430a, and 440a can also be released without
considering the value of the object z as described above.

As illustrated in FIG. 27, upon being released from the
reservation station 260, the copy instructions 420a, 430a, and
440a can leave copy instructions 420b, 430b, and 440b
respectively in the reservation station 260. The second copy
instructions 420b, 430b, and 440b, can remain in the reser
vation station 260 until receiving another signal that a value of
the object z is available. In other words, once a recursive
instruction is stored to the reservation station 260, the recur
sive instruction can be repeatedly issued for execution as long
as the guarding predicate is true. The recursive instruction is
destroyed when the predicate becomes false. As a result it is
possible to unravel loop iterations as subsequent instructions
(e.g., subsequent instructions included in the loop) are being
fetched. For example, multiple instances of the same instruc
tion belonging to future loop iterations can be released from
the reservation station and scheduled for execution as the loop
body is being fetched. This process can exploit multiple flows
of control and can provide processors freedom to unravel
loops in a left to right fashion (i.e., instruction belonging to
future iterations of an instruction can be scheduled for execu
tion before instructions that follow the unraveled instruction).
In some embodiments, processors unravel loops using con
ventional sequential means of expanding in a top-to-bottom
fashion, and, as a result, if an instruction does not have loop
carried dependencies, multiple instances of the same instruc
tion are processed in parallel before those instructions that
follow the loop-independent instruction. On the other hand, if
an instruction includes loop carried dependencies, multiple
instances of the instruction belonging to different loop itera
tions can execute as soon as their data dependencies are
satisfied. In this respect, it is possible to fetch fewer instruc
tions than instructions that are executed. Instructions are buff
ered in the reservation station 260 and unravel recursively
from the reservation station as needed instead of re-fetching
the instructions of the loop body multiple times.

As was illustrated in FIG. 22, backward branches can be
generally eliminated and loop instructions can appear as a
straight line of code to the instruction fetcher/cache 230 using
the concepts of recursive instruction/predicate pairs. There
fore, if the processor 200 includes enough resources to cache
the instructions included in a loop body in the reservation
station 260, the instruction fetcher/cache 230 can fetch the
instructions of the loop body once regardless of how many
times the loop actually is executed. Caching instructions in
the reservation 260 station can be viewed as internal produc
tion if the processor 200 is viewed as a system operating in a
steady state. In other words, the processor 200 can execute
and retire more instructions than it fetches. As illustrated in
FIG. 27, buffering future instances of instructions in the res
ervation station 260 can increase the output or production rate
of the processor 200. For example, the processor 200 can be
configured to bring in x instructions on a single fetch cycle.
Flowever, in addition to processing and outputting results for
the x instructions fetched, the processor 200 can also process
and output results for y instructions buffered in the reserva
tion station 260. Thus, the processor 200 can potentially
process (x+y) instructions on a single cycle even though only
x instructions were fetched.

Also, since loops rewritten as predicate-guarded recursive
instructions appear as straight sequences of instructions to the
instruction fetcher/cache 230, the instruction fetcher/cache
230 can “move ahead” of the instructions being executed with
the ALU 270. For example, the instruction fetcher/cache 230
can be fetching instructions sequentially distant or separated
from the instructions currently be executed with the ALU

20

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

270. Creating “distance” between the instructions being
fetched and the instructions being executed can facilitate the
use of more sophisticated branch prediction algorithms since
more “future” instructions are being fetched and therefore
can be examined or considered when attempting to predict a
branch path.

In addition, recursive instructions released from the reser
vation station 260 can leave multiple copies in the reservation
station 260. Providing multiple copies of a recursive instruc
tions allows a recursive instruction to unravel multiple itera
tions ahead.

It should be noted that post-loop instructions can be data-
dependent on values computed within a loop and should be
held in the reservation station 260 until a final (post-loop)
value is available. In some embodiments, a busy bit is asso
ciated with a value produced by a recursive instruction such
that the data-dependent instructions are held until a busy bit is
set or cleared indicating that the recursive instruction is no
longing modifying the value.

In some embodiments, control-independent instruction
may be rewritten as recursive instructions. For example, if
control-independent instructions are reordered before con
trol-dependent instructions and branch prediction is per
formed, the control-independent instructions may be
executed, but may need to be re-executed if a branch predic
tion is incorrect. By leaving a copy of the control-independent
instructions in the reservation station 260 guarded with a
predicate specifying whether the branch prediction was cor
rect or incorrect, control-independent instructions can reissue
from the reservation station 260 as needed. Therefore, they do
not need to be held until a branch prediction is verified or
validated.

Various features and advantages of the invention are set
forth in the following claims.

The invention claimed is:
1. A method of ordering software instructions before

execution and executing the ordered software instructions,
the method comprising:

prior to execution, ordering software instructions by plac
ing a first instruction that consumes a value of an object
before a second instruction that produces the value of the
object such that the first instruction enters a processing
pipeline in a processor before the second instruction;
and

during execution of the software instructions, allocating a
physical location in memory for the value of the object
upon processing the first instruction.

2. A method as claimed in claim 1, further comprising
flagging a reference to the object in the first instruction as a
future value object.

3. A method as claimed in claim 2, wherein flagging a
reference to the object in the first instruction includes setting
a value of a bit.

4. A method as claimed in claim 1, further comprising
determining a first instruction set that includes control-inde
pendent instructions.

5. A method as claimed in claim 4, wherein the first instruc
tion is included in the first instruction set.

6. A method as claimed in claim 5, further comprising
determining a second instruction set that includes control-
dependent instructions.

7. A method as claimed in claim 6, wherein the second
instruction is included in the second instruction set.

8. A method as claimed in claim 6, further comprising
adding a copy of the second instruction to the second instruc
tion set.

21
9. A method of processing software instructions, the

method comprising:
upon executing in a processor a first instruction that con

sumes a value of an object that is not defined, allocating
a physical location to a value of the object; and

upon executing in a processor a second instruction that
produces the value of the object after executing the first
instruction, mapping the value produced with the second
instruction to the physical location as designated by a
physical location identifier stored in a map table.

10. A method as claimed in claim 9, further comprising
flagging a reference to the object in the first instruction as a
future value object.

11. A method as claimed in claim 10, wherein flagging a
reference to the object in the first instruction includes setting
the value of a bit.

12. A method as claimed in claim 9, further comprising
determining a first instruction set that includes control-inde
pendent instructions.

13. A method as claimed in claim 12, further comprising
selecting the first instruction from the first instruction set.

14. A method as claimed in claim 9, further comprising
determining a second instruction set that includes control-
dependent instructions.

15. A method as claimed in claim 14, further comprising
selecting the second instruction from the second instruction
set.

16. A method as claimed in claim 14, further comprising
adding a copy of the second instruction to the second instruc
tion set.

17. A method as claimed in claim 9, further comprising
holding the first instruction during execution to wait for the
value of the object to be produced.

18. A method as claimed in claim 17, further comprising
executing the second instruction and storing the value of the
object to the physical location.

19. A method as claimed in claim 18, further comprising
releasing the first instruction to complete execution after
executing the second instruction.

20. A method as claimed in claim 19, further comprising
executing the first instruction.

21. A system for organizing and processing an instruction
set, the instruction set including a first instruction that con
sumes a value of an object and a second instruction that
produces the value of the object, the system comprising:

a computer running an instruction organizing application
configured to order the instructions sequentially such
that the first instruction is placed before the second
instruction in the sequential order and to flag a reference
to the object as a future value object in the first instruc
tion; and

a computer processor configured to allocate a physical
location to the value of the object upon processing the
first instruction and to map the value produced with the
second instruction to the physical location.

22. A system as claimed in claim 21, wherein the computer
processor is further configured to hold the first instruction to
wait for the value of the object to be produced.

23. A system as claimed in claim 22, wherein the computer
processor is further configured to execute the second instruc
tion and store the value of the object to the physical location.

24. A system as claimed in 23, wherein the computer pro
cessor is further configured to release the first instruction after
executing the second instruction.

25. A system as claimed in claim 24, wherein the computer
processor is further configured to execute the first instruction.

22

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,747,993 B2

26. A system as claimed in claim 21, wherein the computer
running the instruction organizing application is configured
to flag the object as a future value object in the first instruction
by setting a value of a bit.

27. A system as claimed in claim 21, wherein the computer
running the instruction organizing application is further con
figured to determine a first instruction set that includes con
trol-independent instructions.

28. A system as claimed in claim 21, wherein the computer
running the instruction organizing application is further con
figured to select the first instruction from the first instruction
set.

29. A system as claimed in claim 21, wherein the computer
running the instruction organizing application is further con
figured to determine a second instruction set that includes
control-dependent instructions.

30. A system as claimed in claim 29, wherein the computer
running the instruction organizing application is further con
figured to select the second instruction from the second
instruction set.

31. A system as claimed in claim 29, wherein the computer
running the instruction organizing application is further con
figured to add a copy of the second instruction to the second
instruction set.

32. A system comprising:
a computer readable memory; and
a processor including a renamer configured to

obtain a first instruction from the computer readable
memory, the first instruction including a future value
obj ect flag and a reference to a first obj ect, wherein the
future value object flag is set when the first instruction
is a consumer instruction that consumes a value of the
first object and the first instruction is ordered sequen
tially before a second instruction that produces the
value of the first object,

allocate a first physical location for a value of the object
and map the reference to the first object to the first
physical location when the future value object flag is
set, and

map the reference to the first object to a previously-
allocated physical register as designated with a previ
ously-allocated physical location identifier stored in a
map table when the future value object flag is not set.

33. A processor as claimed in claim 32, wherein the
renamer is further configured to store a physical location
identifier to the map table corresponding to the first physical
location when the future value object flag is set.

34. A processor as claimed in claim 32, wherein the
renamer is further configured to obtain a third instruction
including a recursive future value object flag and a reference
to a second object, to allocate a second physical location for
a future value of an object produced with a subsequent recur

23
sive instruction when the recursive future value object flag is
set, and to map the reference to the second object to a previ
ously-allocated physical register as designated with a previ
ously-allocated register identifier stored in a map table.

35. A processor as claimed in claim 34, wherein the
renamer is further configured to store a physical location
identifier to the map table corresponding to the second physi
cal location when the recursive future value object flag is set.

36. A processor as claimed in claim 32, further comprising
a reservation station configured to hold the first instruction
when the future value object flag is set and to release the first
instruction once a second instruction producing the value of
the object is executed with the processor.

37. A processor as claimed in claim 34, further comprising
a reservation station configured to hold a copy of the third
instruction and a predicate having a true state and a false state.

38. A processor as claimed in claim 37, wherein the reser
vation station is further configured to release the copy of the
third instruction when the predicate has a true state.

39. A renamer comprising:
a computer readable memory containing a map table con

figured to store previously-allocated register identifiers
that map an object identifier to a physical location, to
receive an object identifier, and to transmit a previously-
allocated physical location identifier; and

a register allocator configured to receive a future value
object flag associated with an instruction and, if the
future value object flag is set, to allocate a first physical
location and transmit a first physical location identifier
associated with the first physical location,

wherein the future value object flag associated with the
instruction is set when the instruction consumes a value
of the object and the instruction is scheduled for execu
tion before a second instruction that produces the value
of the object.

40. A renamer as claimed in claim 39, further comprising a
multiplexer configured to receive the allocated physical loca
tion identifier and to receive the previously allocated physical
location identifier.

41. A renamer as claimed in claim 39, wherein the register
allocator is further configured to store the first physical loca
tion identifier to the map table if the future value object is set.

42. A renamer as claimed in claim 39, wherein the register
allocator is further configured to receive a recursive future
value object flag and to allocate a second physical location if
the recursive future value object is set.

43. A renamer as claimed in claim 42, wherein the renamer
is further configured to store the second physical location
identifier corresponding to the second physical location if the
recursive future value object flag is set.

24

5

10

15

20

25

30

35

40

45

50

	Methods and systems for ordering instructions using future values
	Recommended Citation

	US000007747993B220100629

