

Michigan Technological University
Digital Commons @ Michigan Tech

Michigan Tech Patents

Vice President for Research Office

12-11-2012

Manipulation of plants by transformation with sequences promoting cell division

Victor B. Busov Michigan Technological University, vbusov@mtu.edu

Steven H. Strauss

Follow this and additional works at: https://digitalcommons.mtu.edu/patents

Part of the Engineering Commons

Recommended Citation

Busov, Victor B. and Strauss, Steven H., "Manipulation of plants by transformation with sequences promoting cell division" (2012). *Michigan Tech Patents*. 117. https://digitalcommons.mtu.edu/patents/117

Follow this and additional works at: https://digitalcommons.mtu.edu/patents

(12) United States Patent

Busov et al.

(54) MANIPULATION OF PLANTS BY TRANSFORMATION WITH SEQUENCES **PROMOTING CELL DIVISION**

- (75) Inventors: Victor B. Busov, Houghton, MI (US); Steven H. Strauss, Corvallis, OR (US)
- (73) Assignees: The State of Oregon Acting by and **Through The State Board of Higher Education on Behalf of Oregon State** University, Corvallis, OR (US); Michigan Technological University, Houghton, MI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 299 days.
- (21) Appl. No.: 12/663.063
- (22) PCT Filed: Jun. 9, 2008
- (86) PCT No.: PCT/US2008/066293 § 371 (c)(1), (2), (4) Date: Dec. 4, 2009
- (87) PCT Pub. No.: WO2008/154479 PCT Pub. Date: Dec. 18, 2008

(65)**Prior Publication Data**

US 2010/0175152 A1 Jul. 8, 2010

Related U.S. Application Data

- (60) Provisional application No. 60/933,646, filed on Jun. 7,2007.
- (51) Int. Cl.

WO

C12N 15/82	(2006.01)
C12N 15/29	(2006.01)
C12N 5/10	(2006.01)
C07K 14/00	(2006.01)

- (52) U.S. Cl. 800/290; 800/286; 800/303; 800/319: 435/320.1; 435/419; 435/468; 536/23.6; 530/350; 530/379
- (58) Field of Classification Search None See application file for complete search history.

(56)**References** Cited

U.S. PATENT DOCUMENTS

7,196,245 B2* 3/2007 Jiang et al	6,395,892	B1 *	5/2002	Strauss et al 536/24.1
2005/0198711 A1 9/2005 Evans	0,090,023 7,196,245	B1 * B2 *	3/2004	Jiang et al 800/298
1006/0070142 A1 $2/2006$ Venetalar	2005/0198711	Al	9/2005	Evans

FOREIGN PATENT DOCUMENTS

2011038332 3/2011

OTHER PUBLICATIONS

Jiang et al. 2007a. Alignment of sequence encoding SEQ ID No. 2 with SEQ ID No. 499 of US Patent 7,196,245.*

US 8,329,992 B2 (10) **Patent No.:** (45) Date of Patent: Dec. 11, 2012

Jiang et al. 2007b. Alignment of SEQ ID No. 1 with SEQ ID No. 499 of US Patent 7,196,245.*

Altshul, S.F. et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucl. Acids Res. (1997) 25(17):3389-3402.

Bonke, M. et al., "APL regulates vascular tissue identitiy in Arabidopsis," Nature (2003) 426(6963):181-186.

Brunner et al., "Poplar genome sequence: functional genomics in an ecologically dominant plant species," Trends in Plant Science (2004) 9:49-56.

Byzova et al., "Arabidopsis sterile apetala, a multifunctional gene regulating influorescence, flower and ovule development," Genes & Development (1999) 13:1002-1014.

Chen, H. et al., "Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection," Biotechniques (1994) 16:664-668.

Gleave, A., "A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome," Plant Mol. Biol. (1992) 20:1203-1207. Han, K.H. et al., "An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus)," Plant Cell Rep. (2000) 19:315-320.

Kumar, M. et al., "An update on the nomenclature for the cellulose synthase genes in *Populus*," Trends in Plant Sci. (2009) 14:248-254. Liu, Y.G. et al. "Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR," Plant J. (1995) 8:457-463. Matsumura, Y. et al., "Characterization of genes in the asymmetric

leaves2/lateral organ boundaries (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members," Plant J. (2009) 58(3):525-537. Shuai, B. et al., "The lateral organ boundaries gene defines a novel,

plant-specific gene family," Plant Physiol. (2002) 129(2):747-761. Sterky et al., "A *Populus* EST resource for plant functional genom-

ics," Proc. Natl. Acad. Sci. USA (2004) 101:13951-13956. Tan, G.H. et al., "SiteFinding-PCR: a simple and efficient PCR method for chromosome walking," Nucl. Acids Res. (2005) 33(13):e122.

Tuskan et al., "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)," Science (2006) 313:1596-1604.

UniProtKB/TrEMBL Direct Submission Accession B9HU24, Jun. 16, 2009, retrieved from internet (Nov. 12, 2010) http://www.uniprot. org/uniprot/B9HU24.txt?version=3>.

Wilkins, O. et al., "Expansion and diversification of the Populus R2R3-Myb family of transcription factors," Plant Physiol. (2009) 149(2):981-993

Zhao, C. et al., "The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl," Plant Physiol. (2005) 138(2):803-818.

Zhu, Q.H. et al., "DPTF: a database of poplar transcription factors," Bioinformatics (2007) 23(10):1307-1308.

International Search Report and Written Opinion for Application No. PCT/US2008/066293 dated Oct. 15, 2008 (6 pages).

International Search Report and Written Opinion for Application No. PCT/US10/050371 dated Feb. 2, 2011 (11 pages).

Invitation to Pay Additional Fees for Application No. PCT/US2010/ 050371 dated Nov. 23, 2010 (2 pages).

* cited by examiner

Primary Examiner — David T Fox

(74) Attorney, Agent, or Firm - Michael Best & Friedrich LLP

(57)ABSTRACT

Polynucleotides encode polypeptides for increasing the rate of growth of plants. Introduction of the polynucleotides into plants produces plants having altered characteristics, such as increased growth, increased leaf area and reduced fertility. Expression of polypeptides in plants or plant cells promotes cell division. Expression of the polynucleotides in plants in the antisense orientation produces plants that are sterile or have smaller leaves.

24 Claims, 2 Drawing Sheets

FIG. 2

45

MANIPULATION OF PLANTS BY TRANSFORMATION WITH SEQUENCES PROMOTING CELL DIVISION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. 371 of International Application No. PCT/US2008/066293, filed on Jun. 9, 2008, which claims the benefit of priority to U.S. provisional application 60/933,646, filed on Jun. 7, 2007, which is are incorporated herein by reference in their entireties.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the following agencies: CREES/USDA, Grant No. 2004-35300-14687 The United States government has certain rights in this inven- 20 tion.

INTRODUCTION

Modified plants having altered characteristics such as ²⁵ increased leaf size may increase the supply of leafy vegetables for food consumption, plant-derived pharmaceutical or industrial products, biomass supply for the generation of biofuels or contribute to carbon remediation programs. Increasing the leaf size of a plant may increase the overall photosynthetic capacity of the plant, which may result in an ³⁰ increased yield of plant material in leaves and other tissues.

SUMMARY

The invention provides an isolated polynucletide compris-³⁵ ing a contiguous coding sequence encoding a polypeptide having at least 95% identity with SEQ ID NO: 2, and plants and plant cells containing such polynucleotides. In one aspect, the plant containing the isolated polynucleotide exhibits increased expression of the polypeptide, relative to a ⁴⁰ control plant, and may exhibit increased growth and/or reduced fertility.

In another aspect, the invention provides an isolated polypeptide comprising a sequence having at least 95% identity with SEQ ID NO: 2.

In another aspect, the invention provides methods of producing transgenic plants by introducing into a plant cell a polynucleotide encoding a polypeptide comprising an amino acid sequence having at least 95% identity with SEQ ID. NO 2, and regenerating the transformed cell to produce a transgenic plant. In one aspect, the transformed plant exhibits increased growth and/or reduced fertility.

In another aspect, the invention provides methods of producing transgenic plants by introducing into a plant cell a polynucleotide encoding a polypeptide comprising an amino ⁵⁵ acid sequence having at least 95% identity with the reverse complement (antisense) of SEQ ID. NO: 1 and regenerating the transformed cell to produce a transgenic plant. The polynucleotide is suitably operably linked to a promoter. In one aspect, the plant containing the antisense sequence exhibits ⁶⁰ decreased growth and/or sterility.

BRIEF DESCRIPTION OF THE FIGURES

FIG. **1** is a graph showing the correlation of plastocron 65 index and leaf length for control plants and poplar hybrid plants overexpressing the polynucleotides of the invention.

FIG. **2** is a photograph showing a sample leaf from (A) a control poplar plant and (B) a poplar plant over-expressing a SAP polypeptide (SEQ ID NO. 2).

DETAILED DESCRIPTION

The present invention relates to novel polynucleotides and polypeptides and use of the polynucleotides and polypeptides for modifying the phenotype of plants or plant cells. The invention further provides modified plants or plant cells comprising the polynucleotides of the invention. Suitably, the modified plants or plant cells exhibit increased growth or cell division compared with control plants or plant cells. The polynucleotides and polypeptides are of the present invention are termed SAP polynucleotides and SAP polypeptides because they show some similarity to STERILE APETALA (SAP) sequences from *Arabidopsis thaliana*.

It was surprisingly discovered that increasing the expression of a SAP polypeptide in plants (for example, by introducing SEQ ID NO: 2 into the plant) results in plants that exhibit increased growth, larger leaves, and/or show reduced fertility or are sterile, relative to plants in which expression of the SAP polypeptide has not been increased.

SAP polynucleotides useful in the invention include SEQ ID NO: 1, which is derived from the hybrid poplar clone resulting from a cross of Populus alba and Populus tremula. One of skill in the art will appreciate that, given the degeneracy of the genetic code, many other suitable polynucleotides are encompassed within the invention. SEQ ID NO. 1 encodes the polypeptide shown in SEQ ID NO: 2. SEQ ID NO: 2 has 58% amino acid identity to the SAP polypeptide sequence from Arabidopsis thaliana (SEQ ID NO: 5). The cDNA for the SAP polypeptide from Arabidopsis thaliana is shown in SEQ ID NO: 4, from position 82 to position 1422 (including the stop codon). SEQ ID NO: 2 has 61% amino acid identity to a polypeptide sequence from Vitis vinifera (SEQ ID NO: 7). The polynucleotide encoding SEQ ID NO. 7 from Vitis vinifera is shown in SEQ ID NO: 6. The genomic structure of the polynucleotide containing the SAP polynucleotide coding sequence from Poplar hybrid (SEQ ID NO: 1) is shown in SEQ ID NO. 8. Position 1 of SEQ ID NO: 8 corresponds to position 9250675 of the sequenced genome and position 5197 of SEQ ID NO: 8 at corresponds to position 9245479 of the sequenced genome. SEQ ID NO: 8 contains the 5' UTR from position 1 to position 200, exon 1 from position 201 to position 443, an intron from position 444 to position 3860, exon 2 from position 3861 to position 4997 including the stop codon (to position 4994 excluding the stop codon), and the 3' UTR from position 4998 to position 5197.

Other suitable SAP polynucleotides of the invention encode a polypeptide comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% identity with SEQ ID NO: 2, and include SEQ ID NO. 1. Percent identity may be determined using the algorithm of Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997). Such algorithm is incorporated into the BLASTP program, which may be used to obtain amino acid sequences homologous to a reference polypeptide, as is known in the art. Suitably, the polynucleotide is an isolated polynucleotide, a recombinant polynucleotide or a synthetic polynucleotide and encodes SEQ ID NO. 2, and/or is a contiguous coding sequence encoding a polynucleotide having at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% identity to SEQ ID NO: 2. As used herein,

"contiguous" with respect to a coding sequence means that the nucleotides of the coding sequence are connected in an unbroken sequence.

Polynucleotides of the invention may be isolated or recombinant and may comprise a contiguous coding sequence 5 encoding a polypeptide corresponding to the sequence from position 1 to position 81 of SEQ ID NO. 2 and/or from position 82 to position 459 of SEQ ID NO. 2, which are encoded by exon 1 and exon 2 of SEQ ID NO. 1. With reference to SEQ ID NO: 1, exon 1 begins at position 1 and 10 ends at position 243 and exon 2 begins at position 244 and ends at position 1380 (or 1377 excluding the stop codon). Suitably, the polynucleotide is an isolated or recombinant polynucleotide and/or a contiguous coding sequence. Suitably, the polynucleotide is a contiguous coding sequence 15 encoding a polynucleotide having at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% identity to the sequence from position 1 to position 81 of SEQ ID NO. 2 and/or to the sequence from position 82 to position 459 of SEO ID NO. 2. 20 As will be appreciated, the invention also encompasses polypeptides including conservative amino acid substitutions, and polynucleotides encoding such polypeptides.

As used herein, "polynucleotide" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either 25 single- or double-stranded form. The use of the terms "polynucleotide constructs" or "nucleotide constructs" herein is not intended to limit the present invention to nucleotide constructs comprising DNA. Polynucleotide constructs and oligonucleotides composed of ribonucleotides and combina- 30 tions of ribonucleotides and deoxyribonucleotides, may also be employed in the methods disclosed herein. The nucleotide constructs, nucleic acids, and nucleotide sequences of the invention additionally encompass all complementary forms of such constructs, molecules, and sequences. 35

It is envisaged the invention encompasses the production of transgenic plants or plant cells by the introduction into a plant or plant cell of polynucleotides encoding a polypeptide comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 40 98%, or at least about 99% identity to SEQ ID NO: 2, to the sequence from position 1 to position 81 of SEQ ID NO. 2, or to the sequence from position 82 to position 459 of SEQ ID NO. 2. Suitably, the polynucleotide is provided as a construct in which a promoter is operably linked to the polynucleotide. 45

It is envisaged that a plant produced by the introduction of such polynucleotides exhibits altered or modified characteristics. The modified characteristics include, but are not limited to, increased growth, reduced fertility, increased leaf area, increased leaf length, increased leaf width, increased 50 leaf number, increased plant height, increased plant diameter, and increased branch length relative to a control or wild-type plant. For example, plants modified according to the present invention may display altered characteristics wherein the leaf area, leaf length, leaf width, leaf number, plant height, plant 55 diameter, and/or branch length is at least about 20%, at least about 30%, at least about 40%, at least about 50%, or at least about 60% greater than a leaf of a control plant.

Plants modified according to the present invention may suitably show reduced fertility or be sterile. For example, 60 plants may show at least a 10%, at least a 20%, at least a 30%, at least a 40%, at least a 50%, at least a 60%, at least a 60%, at least a 60%, at least a 98%, at least a 98%, at least a 99% reduction in the number of seeds produced compared with a control plant. 65

As used herein, a "control plant" is a plant that is substantially equivalent to a test plant or modified plant in all param4

eters with the exception of the test parameters. For example, when referring to a plant into which a polynucleotide according to the present invention has been introduced, a control plant is an equivalent plant into which no such polynucleotide has been introduced. As used herein, "sterile" means that a plant is unable to reproduce naturally.

The polynucleotides of the present invention may be introduced into a plant cell to produce a transgenic plant. As used herein, "introduced into a plant" with respect to polynucleotides encompasses the delivery of a polynucleotide into a plant, plant tissue, or plant cell using any suitable polynucleotide delivery method. Methods suitable for introducing polynucleotides into a plant useful in the practice of the present invention include, but are not limited to, freeze-thaw method, microparticle bombardment, direct DNA uptake, whisker-mediated transformation, electroporation, sonication, microinjection, plant virus-mediated, and *Agrobacterium*-mediated transfer to the plant. Any suitable *Agrobacterium* strain, vector, or vector system for transforming the plant may be employed according to the present invention.

In some embodiments, a plant may be regenerated or grown from the plant, plant tissue or plant cell. Any suitable methods for regenerating or growing a plant from a plant cell or plant tissue may be used, such as, without limitation, tissue culture or regeneration from protoplasts. Suitably, plants may be regenerated by growing transformed plant cells on callus induction media, shoot induction media and/or root induction media.

Suitably, the polynucleotides to be introduced into the plant are operably linked to a promoter sequence and may be provided as a construct. As used herein, a polynucleotide is "operably linked" when it is placed into a functional relationship with a second polynucleotide sequence. For instance, a promoter is operably linked to a coding sequence if the pro-55 moter is connected to the coding sequence such that it may effect transcription of the coding sequence. Suitably, the polynucleotides may be operably linked to at least one, at least two, at least three, at least four, at least five, or at least ten promoters.

Promoters useful in the practice of the present invention include, but are not limited to, constitutive, inducible, temporally-regulated, developmentally regulated, chemically regulated, tissue-preferred and tissue-specific promoters. Suitably, the promoter causes sufficient expression in the plant to produce the phenotypes described herein. Suitable promoters include, without limitation, the 35S promoter of the cauliflower mosaic virus, ubiquitine, tCUP cryptic constitutive promoter, the Rsyn7 promoter, pathogen-inducible promoters, the maize In2-2 promoter, the tobacco PR-1a promoter, glucocorticoid-inducible promoters, and tetracyclineinducible and tetracycline-repressible promoters.

Polynucleotides may also be provided in a vector. Suitable vectors include plasmids and virus-derived vectors. Vectors known in the art that are suitable for transformation into plants, cloning, and protein expression may be used.

It is envisaged that the invention encompasses isolated polypeptides comprising SEQ ID NO: 2, which is the amino acid sequence of the protein product of the poplar SAP, or polypeptides comprising from position 1 to position 81 of SEQ ID NO. 2, and/or from position 82 to position 459 of SEQ ID NO. 2. Suitable SAP polypeptides according to the present invention may have at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% identity with SEQ ID NO: 2, with polypeptides from position 1 to position 81 of SEQ ID NO. 2 and/or from position 82 to position 459 of SEQ ID NO. 2. Polypeptides of the present invention suitably promote division of cells, such as plant cells, and accordingly, the invention provides methods for increasing the rate or amount of cell division in cells and/or maintaining cells in a stage or phase where cell division occurs, for example, in a meristematic stage. Suitably, polypeptides of the invention may be synthesized and contacted with cells.

Accordingly, the invention further provides for methods of increasing the rate of growth and/or rate of cell division in plants, cells or tissue cultures by contacting one or more plant cells with one or more isolated SAP polypeptides, or other-10 wise effecting an increase in the amount or concentration of the SAP polypeptide in the plant cell, such as by introducing a polynucleotide encoding the SAP polypeptide into the cell. The polynucleotide may be introduced in a vector or construct and may be expressed transiently. Plant cells may also be 15 transformed with polynucleotide sequences encoding polypeptides of the invention, such that the polynucleotide stably integrates into the genome or chromosomes of a plant cell.

The polynucleotides may be introduced into the plant or 20 plant cell, either alone or in combination with other polynucleotides. It is envisaged that the expression of the SAP polynucleotides in plant cells, suitably under the control of an inducible promoter, may assist in regenerating plants transformed with other polynucleotides of interest. For example, 25 the expression of the SAP polypeptides may promote cellular regeneration, and may be particularly useful in transformation of plants which are difficult to culture or to regenerate from culture. Without being limited by any theory, it is believed that the SAP polypeptides of the invention may be 30 involved with or stimulate cell division, may promote cells to divide continuously, and/or may promote the retention of cells in a meristematic phase. The invention further provides plant or plant cells produced by the expression of polypeptides of the present invention exhibits altered phenotypes 35 described above.

A variety of plants are suitable for use with methods, polynucleotides and polypeptides of the present invention. For example, as described in the examples below, both poplar and *Arabidopsis* plants transformed with the poplar sequence 40 shown in SEQ ID NO: 1 displayed a phenotype evidenced by larger leaves and exhibited increased growth. The transformed *Arabidopsis* plants also may have reduced fertility as they produced thin siliques, which appeared to be sterile. It is envisaged that the transformed poplar plants will also show 45 reduced fertility or will be sterile.

The plants that can be used in the methods of the invention include any amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants. Suitable plants include, but are not limited to, woody plants and 50 crop plants. Crop plants may include, for example, alfalfa, cotton, maize, rice, tobacco, grapevine, wheat, barley, rye, oat, soybean, lettuce, cabbage, beets, broccoli, cauliflower, squash, potato and tomato. Woody plants may include shrubs, vines, or trees such as aspen, fir, maple, acacia, box elder, 55 horse chestnut, buckthorn, buckeye, mimosa, alder, birch, hornbeam, hickory, chestnut, cedar, red bud, cypress, buck wheat, dogwood, hawthorn, persimmon, olive, eucalyptus, rubber, euonymus, beech, ash, witch-hazel, holly, juniper, myrtle, larch, sweet gum, poplar, oak, magnolia crabapple, 60 redwood, spruce (Norway spruce, dragon spruce, white spruce, black spruce, Colorado blue spruce, red spruce, Himalayan spruce), pine (bristle cone pine, weston white pine, longleaf pine, ponderosa pine, scotch pine, loblolly pine), sycamore, plane, cottonwood, poplar, plum, cherry, 65 laurel, peach, Douglas fir, sumac, willow, elderberry, mountain ash, bladdernut, yew, linden, hemlock, and elm.

As used herein, the term "plant" includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, and progeny of same. Parts of transgenic plants are to be understood within the scope of the invention to comprise, for example, plant cells, protoplasts, tissues, callus, embryos as well as flowers, ovules, stems, fruits, leaves, roots originating in transgenic plants or their progeny previously transformed with a DNA molecule of the invention and therefore consisting at least in part of transgenic cells, are also an object of the present invention. As used herein, the term "plant cell" includes, without limitation, protoplasts and cells of seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.

The invention further provides methods of producing a transgenic plant by introducing in to a plant or plant cell the antisense (reverse complement) of SEQ ID NO.1, or a sequence showing at least about 80%, at least about 95%, at least about 98%, or at least about 99% identity with the reverse complement of SEQ ID NO. 1. Suitably, a transgenic plant may be regenerated from the transformed plant or plant cell. The antisense sequence is suitably operably linked to a promoter functional in the plant. Suitably, the plant transformed with the antisense sequence shows sterility or reduced fertility, lower growth and/or smaller leaves.

While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention.

It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having" and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

It also is understood that any numerical range recited herein includes all values from the lower value to the upper value. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value enumerated are to be considered to be expressly stated in this application.

The following non-limiting examples are purely illustrative.

EXAMPLES

Example 1

Identification of the SAP Sequence

Hybrid poplar clone INRA 717 (*P. alba×P. tremula*) was transformed with activation tagging vector pSKI074 using

Agrobacterium-mediated transformation. Briefly, Agrobacterium cells carrying the binary vector (such as pV-LEGT02) were grown in luria broth, collected by centrifugation, resuspended in induction medium (MS salts, vitamins, 10 µM AS, 10 mM galactose, 1.28 mM 2-(N-morpholino)ethanesulfonic acid [MES], pH 5.0), and induced at room temperature. Explants were soaked for 10-20 minutes in the bacterial suspension under 0.6-bar vacuum and shaken (50 rpm) at room temperature. The inoculated explants were co-cultivated in dark for 2-3 days at 19-25° C. in callus induction medium (CIM) (MS salts, 0.5 µM benzyladenine, 0.5 µM zeatin, 5 µM naphthalene acetic acid, 5 µM 2,4-Dichlorophenoxyacetic acid, 0.3% gelling agent [such as Phytagar[™] from Gibco BRL], 0.1% gelling agent [such as Phytagel[™] from Sigma], 15 1.28 mM 2-(N-morpholino)ethanesulfonic acid, pH 5.8). Explants were cultured for 10-30 days in the dark on CIM with 500 mg/L cefotaxime and 50 mg/L kanamycin. Shoot regeneration was induced on shoot induction medium (SIM) (MS salts, 10 µM benzyladenine, 10 µM zeatin, 1 µM 20 N-acetylaspartate, 0.3% Phytagar (Gibco BRL), 0.1% Phytagel (Sigma), 1.28 mM 2-(N-morpholino)ethanesulfonic acid, pH 5.8) for several weeks to months, and explants were subcultured every 2-4 weeks. Regenerated shoots were further screened for kanamycin resistance by rooting in medium ²⁵ supplemented with 0.5 µM indole-3-butyric acid and 25 mg/L kanamycin.

Transgenic lines were recovered after the transformation, and the presence of the activation tagging vector was verified by PCR-amplification using primers specific for the activa-³⁰ tion tagging vector. Transgenic lines were grown, and in the second year of growth under a field trial, plants displaying big leaves were identified. Leaves were approximately 50% larger than control plants. FIG. **2** shows the difference in size between a leaf from a control plant (WT) and a comparable leaf from a plant overexpressing SEQ ID NO. 2. This big leaf phenotype was consistently displayed in 4 ramets, i.e., clones of the same line.

To identify the DNA sequence responsible for the phenotype, thermal asymmetric interlaced (TAIL)-PCR was used. Briefly, three PCT reactions were carried out sequentially to amplify target sequences using nested primers specific for the activation tagging vector on one side with higher Tm, and a shorter arbitrary degenerate (AD) primer on the other side 45 with lower Tm, so high temperature annealing favored the specific primer. The first reaction included about 5 high stringency cycles, about 1 low stringency cycle, and about 15 super cycles. Each super cycle included 2 high stringency cycles and 1 reduced stringency cycle. The second reaction 50 included about 12 super cycles of 2 high stringency cycles and 1 reduced stringency cycle. The third reaction included about 20 cycles of reduced stringency.

A genomic DNA sequence flanking the left border of the activation tagging vector in the transgenic plants was identi-55 fied and sequenced. The sequence was used in a BLASTn search of the poplar genome sequence, and the insertion was determined to be located on LG_X at position 9249978. Inspection of the genome regions showed that the vector was inserted in a putative intron sequence of a predicted model 60 fgenesh1_pm.C_LG_XIV000424, consisting of two exons and one intron. RT-PCR was used with primers to amplify the first and second exons as well as the whole cDNA. Primers used to target the exon 1 sequence showed a hyperactivation of this region. In contrast, both full cDNA and exon 2 target-65 ing primers showed down regulation of the whole transcript and the part of the gene downstream of the insertion.

Example 2

Introduction of a Vector Comprising the SAP Sequence into a *Poplar* Hybrid

The coding region of SAP cDNA was PCR-amplified from the transgenic plants. The PCR product was cloned downstream of the CamV35S promoter and upstream of the OCS terminator. The construct was inserted into the NotI site of the pART27 binary vector and transformed into the *Agrobacterium* strain C58 using a freeze thaw method. *Poplar* clone INRA 717 (*P. tremula*×*P. alba*) was transformed using *Agrobacterium*-mediated transformation as described in Example 1. Approximately 40 independent lines were recovered. All transgenic plants were PCR-verified for the presence of the transgene prior to morphological characterization.

Plants were acclimated to greenhouse environment and grown under standard greenhouse conditions. On average, with a leaf plastochron index (LPI) of 45, transgenic plants displayed 58.5% increase in leaf length relative to control with the increase being most pronounced in the older leaves (FIGS. 1 and 2).

Example 3

Transformation of *Arabidopsis thaliana* With a Vector Comprising the SAP Sequence

The vector comprising the SAP sequence of the poplar hybrid (*P. tremula*×*P. alba*), as described in Example 2, was introduced into *Arabidopsis thaliana* using *Agrobacterium*mediated transformation as described in Example 1. The transformed *Arabidopsis thaliana* displayed leaves that were larger than control *Arabidopsis thaliana*. The transformed *Arabidopsis thaliana* also produced thin siliques and appeared to be sterile.

Example 4

Transformation of *Eucalyptus* and *Pinus* With a Vector Comprising the SAP Sequence

The vector comprising the SAP sequence of the poplar hybrid (*P. tremula*×*P. alba*), as described in Example 2, will be transformed into plants from the genus *Eucalyptus* and the genus *Pinus* using *Agrobacterium*-mediated transformation as described in Example 1. It is expected that the transformed plants will display leaves 20-70% larger than control plants and will be sterile or show reduced fertility.

Example 5

In vitro Production of the SAP Protein and Introduction into Plant Cells

The SAP protein from the poplar hybrid (*P. tremula*×*P. alba*), SEQ ID NO: 2, will be expressed in vitro and isolated. Briefly, SEQ ID NO: 1 will be inserted into the multiple cloning site of vector pET21, the vector will be introduced into an *Escherichia coli* expression strain, and the transformed *E. coli* cells will be grown in luria broth and induced to overexpress protein. The *E. coli* cells will be harvested by centrifugation and lysed by sonication. The SAP protein will be further isolated using ion exchange chromatography. Isolated SAP protein will be added to plant cells in culture. It is expected that the SAP protein will promote cellular regeneration.

Example 6

Expression of Antisense SAP Polynucleotide in a Poplar Hybrid

The antisense reverse complement of SEQ ID NO: 1 will be inserted into the NotI site of the pART27 binary vector and transformed into the Agrobacterium strain C58 using a freeze thaw method. A Poplar clone (P. tremula×P. alba) will be 10

transformed using *Agrobacterium*-mediated transformation as described in Example 1. Multiple independent lines will be recovered, and all transgenic plants will be PCR-verified for the presence of the transgene prior to morphological characterization. Plants will be acclimated to greenhouse environment and grown under standard greenhouse conditions. It is expected that the transgenic plants will be sterile and have smaller leaves than control plants not comprising the antisense sequence.

SEQUENCE LISTING									
<160> NUMBER OF SEQ ID NOS: 8 <210> SEQ ID NO 1 <211> LENGTH: 1380 <212> TYPE: DNA									
<213> ORGANISM: Poplar hybrid									
<400> SEQUENCE: 1									
atgtetteet eeteete eteateatea tetageagtg geaatggeaa tggeageggt 60)								
ggtggtaatt acggtgcaag aagagccggt gagtacgaag ggccatcaag gtctcgtcca 120)								
agagccatta acgaggtttg gcctgagcct tttctggaag ctcttgctgc ccaagtcgcc 180)								
attgatgett etegeettgt eggeeggetg gtegeggeae aggeaettge eaatgtattt 240)								
caggtgtgtt caacgtggcg agcagteteg egtteggate etetttggea eegteteaet 300)								
cgcggtatct ggggccgcac caaccttttc catgacactt ggcgagagga gtatatctac 360)								
cgccaccaaa cggcccaaaa cttccgatcc ggaagagctg tccatttcgc tctccacttt 420)								
gatccagetg atgtggatga ecceaaegae eetgatgete taatatgeeg etgteteget 480)								
tteteegate getacettge atgeggtttt getgaeggeg etgteegeet etttgatete 540)								
accaegegee tteatgeaeg caettteege eetgaaeaee atgaeegeet gggeaggtte 600)								
tetegtgegg tetegggeat egteateaeg geeaeaeget tggtgtttge eaegttagat 660)								
ggtgatatee aegtggegge ggtaaatage aatgeeaate caeggaggge eegettaggt 720)								
gaggtgttga acgacggggc attagtggac ttcacgggcc gtgggcgatg gtgggtgggc 780)								
ctatacgctg ggcttccggg ccgggcctat cgtgtctggg atggtaacac cgaagaacct 840)								
ctctttgaag gcggggggtt gactgaccca gaggctgtgt tgggttggca cacgttgaca 900)								
gaagtgactg agtttgtggg ccgagtcagg gtcacgagtc aggaatcggt cgtggcatgc 960)								
acgagttcga gacttgttat ttttgatttg ggggaccttg gggctgtact aagggaggag 1020)								
gactacacta acaggagagg catcttggtg ggttccttcg acgtatgcaa tgaggcgtat 1080)								
gtgattgtag atggcagggg gaatgctagc gtgcgcaggg cggacacctc ggaggagatg 1140)								
tgtggcttta ccgtgaggcc tccaagggga gtgcttgggt gcatgaatgg tgggtacgtg 1200)								
ctaacgtgcg cgggtggtgt agtaagggta tggcagatag agcagcctgg tcgccaagag 1260)								
tatttgtata getteaggga gaggatagge gaggtaaaeg etetegttge agatgagagg 1320)								
cacgtggcag cagcatcaag tgacacgaat atacacctgt gggattttgg ggcacagtag 1380)								
<210> SEQ ID NO 2 <211> LENGTH: 459 <212> TYPE: PRT <213> ORGANISM: Poplar hybrid <400> SEQUENCE: 2									
Met Ser									

-continued

Asn Gly Ser Gly Gly Gly Asn Tyr Gly Ala Arg Arg Ala Gly Glu Tyr Glu Gly Pro Ser Arg Ser Arg Pro Arg Ala Ile Asn Glu Val Trp Pro Glu Pro Phe Leu Glu Ala Leu Ala Ala Gln Val Ala Ile Asp Ala Ser Arg Leu Val Gly Arg Leu Val Ala Ala Gln Ala Leu Ala Asn Val Phe Gln Val Cys Ser Thr Trp Arg Ala Val Ser Arg Ser Asp Pro Leu Trp His Arg Leu Thr Arg Gly Ile Trp Gly Arg Thr Asn Leu Phe His Asp Thr Trp Arg Glu Glu Tyr Ile Tyr Arg His Gln Thr Ala Gln Asn Phe Arg Ser Gly Arg Ala Val His Phe Ala Leu His Phe Asp Pro Ala Asp Val Asp Asp Pro Asn Asp Pro Asp Ala Leu Ile Cys Arg Cys Leu Ala Phe Ser Asp Arg Tyr Leu Ala Cys Gly Phe Ala Asp Gly Ala Val Arg Leu Phe Asp Leu Thr Thr Arg Leu His Ala Arg Thr Phe Arg Pro Glu His His Asp Arg Leu Gly Arg Phe Ser Arg Ala Val Ser Gly Ile Val Ile Thr Ala Thr Arg Leu Val Phe Ala Thr Leu Asp Gly Asp Ile His Val Ala Ala Val Asn Ser Asn Ala Asn Pro Arg Arg Ala Arg Leu Gly Glu Val Leu Asn Asp Gly Ala Leu Val Asp Phe Thr Gly Arg Gly Arg Trp Trp Val Gly Leu Tyr Ala Gly Leu Pro Gly Arg Ala Tyr Arg Val Trp Asp Gly Asn Thr Glu Glu Pro Leu Phe Glu Gly Gly Ala Leu Thr Asp Pro Glu Ala Val Leu Gly Trp His Thr Leu Thr Glu Val Thr Glu Phe Val Gly Arg Val Arg Val Thr Ser Gln Glu Ser Val Val Ala Cys Thr Ser Ser Arg Leu Val Ile Phe Asp Leu Gly Asp Leu Gly Ala Val Leu Arg Glu Glu Asp Tyr Thr Asn Arg Arg Gly Ile Leu Val Gly Ser Phe Asp Val Cys Asn Glu Ala Tyr Val Ile Val Asp Gly Arg Gly Asn Ala Ser Val Arg Arg Ala Asp Thr Ser Glu Glu Met Cys Gly Phe Thr Val Arg Pro Pro Arg Gly Val Leu Gly Cys Met Asn Gly Gly Tyr Val Leu Thr Cys Ala Gly Gly Val Val Arg Val Trp Gln Ile Glu Gln Pro Gly Arg Gln Glu Tyr Leu Tyr Ser Phe Arg Glu Arg Ile Gly Glu Val Asn Ala Leu Val Ala Asp Glu Arg His Val Ala Ala Ala Ser Ser Asp

		concinaca	
435	440	445	
Thr Asn Ile His Leu 7 450	Yrp Asp Phe Gly Ala Gli 455	n	
<210> SEQ ID NO 3 <211> LENGTH: 2820 <212> TYPE: DNA <213> ORGANISM: Popla	ar hybrid		
<400> SEQUENCE: 3			
tagtttatac acgtctttac	s agtacatgtt gtggataga	t tttcctttga tattgtggtc	60
aatttgacac gaattctgta	a gcatttcttt cttttctcg/	a gaggctgggg tgttcttgga	120
ggtttcccag ccctgcaaag	y acggcggggga gatatagtt;	a ggttcagttt caggttcatg	180
tgagaaactg ctggttcttc	z tatttagcca aggtgtgcto	c aggtgctttt gtacacgtac	240
cactctttgg accaacttto	: ttttgtactc tcttgtcca	t ttccaagtga aaactttatc	300
gacgagcttg ctttagtttt	: tattctttgt atagtcaage	g attttcaaat atagtacatg	360
aacactaacg ggaaatacag	y aggtagetta gtaaaattt	t gtttctgcgg gggcacctcc	420
catcatcttt agttcactca	a cctgaacctg ctctcacta	c aageteactg egageteeet	480
gcatctacag tttcgctgag	j aaatettaee acateaaca	t tttaaagtga aaaacgaaac	540
ctaaagaaaa cgaagaaaga	a aatcacgaca tcccacgaa	g aatettaaet agacaaatet	600
aaccattttt atttttttt	y aattgetaat gaaaatteea	a tctgatatgt cagcaatgtt	660
tatggaaatg ctaatataat	: ttttttatca tatcatgct1	t tcgtccgaaa ttattggcag	720
aaattettea teatatttte	: tttcggtaaa tcaatgataa	a aatatttatc catgcttttg	780
gttaaaaatg tataaaaatg	y atgacaggaa gtcaaagcag	g cgaaggggaa tggagaataa	840
aaaatgtttt ttcttagcgg	y ggaaacggat aacaatgac	g acgaggccat ctttaaatat	900
agaattcaaa ttagaaatto	: ttaaagtttt tcctgcccg	t ggctatgcgg acactaaagc	960
caaagaaata tcatcatcag	y tettteecaa ecaattaeca	a actaccaagc atgcatgacc	1020
attgactggg atcgaatgct	: atgagcettt ttatttatt!	t atttatttgg tattgttatt	1080
ttcttaatta aaggcttatt	: aaaataatat ctttattati	t tttaatatta tcacgttaaa	1140
attgtaagaa aaaacaggta	a aaaaacagtt taataaatgo	c tttagcaggc actcatttca	1200
tettttgtge tggttaatte	tctgggaacg tatgaggtt	c ggttcatcat ctgagcgttg	1260
atagtgataa gtgatagatt	: tacatggatt tggggagtga	a ttttttatta aaatattttt	1320
aagaaatgaa ttacaatgaa	a aaataaactg ggaattaga	t tctatatttg gttttgtaag	1380
gagaaatata tagaaaataa	a tatttttat tctttaaaal	t attgaaaatt gaaaggtttt	1440
ttcccaagtt taaaggagga	a aaacactact ttcccctcg	t aaaatgagtt gtatgctttt	1500
ctttgagttg aaaacactto	3 atgctactta tttttcaaa	t gggttatcaa ataattaatt	1560
tcttataaaa caaacgggto	: tctttttatt tttcatagag	g ttatcaaaga aaaaaaagat	1620
gcacgtaatt gtgaaggcta	a ctgtagagta tataacgtag	g agatttttta tttttatttt	1680
agttttgatg aaagaaacca	a tottattgoa gtgotoota	c atatatggac atgtaattcc	1740
actgcctgtt aaaccaggca	a caagetgggt acttegaggg	g tgcaggacac aacaaaaagc	1800
acttgaggtg gcatgaagaa	atgaccaaat ccaaagcata	a tgatttgtga tgataaaaag	1860
gttgagtttt ctccaaacco	j tgataaaaac tagaaaatca	a agcgtgaact tgctgtccct	1920
catgtetgtg ceeeggtgge	; cacagcatat gatttgtga	t gattattagc tatgtacaat	1980
ttgttctata gaatctatga	a aaaggtaact cgggcagtga	a attgcagtaa tgatttgcct	2040

gtgtggtggc	caggcaagcc	gatggagccc	ttggaacgcg	aggctcgtca	cttcaaggta	2100					
cttgcgagca	caaccatggg	ctcatcaaag	tatcaaacta	aaacagcaca	gttcagagag	2160					
agagagagag	agggagagag	agggagagag	agagcagttc	atacttcata	gcattagcag	2220					
cgcaatggaa	ccaaactgcc	gctaaaagga	ttatcccaaa	ttcgaacagt	gcttgacctc	2280					
gaggagcagc	tccaccctgc	cctcgctctt	caaattgaag	cttattttgc	tgttcataag	2340					
tacttagatc	tttttttaa	ttttgtatga	tctgtcaata	tgagacatgc	aacatcgacg	2400					
cacctgggag	aatgctggga	aaataatgtg	tgtgaatgta	gagcaataca	gtagtttaat	2460					
tttttataa	atcaaaataa	tatcattttg	gttaaaaaaa	tagtcaacaa	tttataaccg	2520					
agtttttgac	cgggtcttac	caggccagat	cagttggttc	acctgagttt	ttaatttttc	2580					
ttatttttg	aaattcagct	tggttccagt	tccaaatcaa	tcgggtctca	agtcaatctg	2640					
ttaaaccaga	ttaaatttta	aaattataat	aatatgtaca	acagattgaa	tattttcatg	2700					
agactctatc	ttaaacatag	atttaataat	cttttagatt	ttagatttta	gatttgtttc	2760					
tttattgtta	tttggatacc	gattccacca	ttaaattata	agtttataac	acattaattg	2820					
<210> SEQ ID NO 4 <211> LENGTH: 1806 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana											
<400> SEQUI	ENCE: 4										
gtttcctctc	tcccccacca	ttctttctcc	teteteeget	tcttcttctt	cccctgttcc	60					
tcttataacc	cctctcgtct	catgtctacc	tcctcctctt	cttccgacaa	cggagccggt	120					
ggaagcggcg	gcgttttcga	ggccccatct	ccatcccgcc	ctcgccgcgg	agccaacgat	180					
gtttggccgg	agcettttet	tgaatctctc	gccgttcaag	ttgccgttaa	cgcttccaca	240					
tccgccggcc	tcctcgccgc	ageteegget	cttgccaacg	ttttcgggt	ttgcaccacg	300					
tggctagctg	tetetegete	cgaccatcta	tggcaactac	tatetegeea	agtttgggca	360					
agaacacatt	tgatgcacga	cacgtggcgg	gacgagttca	tctaccgtca	tcggacggct	420					
agaaacttcc	ggacgcgtac	tcacacctac	ttcactctcc	aatttgaccc	gtctgatgtg	480					
gacgagcctg	atagtetete	ttgccgttgt	ctcaccctct	cagacctcta	cttagccgga	540					
gggttcgccg	acggaaccgt	ccggcttttt	cttctaaaca	accgactcca	cgtcaggacc	600					
ttacggccac	ctctacgtga	ccgctttggt	agattctcac	gagccgtctc	aggcattgtt	660					
atctccgact	caaggctcac	gttcgctacg	atggacggag	acatccacgt	ggcggaaata	720					
gacggtgttg	gtcacacacg	cacggcttac	gcaggagata	tagttaacga	cggtgcgttg	780					
gtagatttca	ctggctgtgg	acgttggtgg	gtcggtcttt	tcgcgggtgt	gccaggtcgt	840					
gcctttcaca	tatgggactg	taacagcgaa	gagacaacat	tcgtcggtgg	tacactcacc	900					
gaccctgaag	ctgtcatggg	atggcacacg	ttaacagagc	taacaacgtc	ccttggccgt	960					
ctcagaatct	ccggtaacga	gacggcggta	gcatgcacga	gatggagaat	catggtgatc	1020					
gatctaagaa	accaaggagt	gatcatcgga	gaagacgaag	agccacgtag	aggactaata	1080					
gtgacaggct	tcgatgccaa	cgacgaagcg	tacgttagat	tggacagtag	aggaaacgct	1140					
agcgtgcgaa	gggtgaacac	gcaacaaacg	gtgtgtgagt	tccgtgttag	tggagcggcg	1200					
cagagaagag	taatgggttg	tgttaataga	ctgcacgcgc	taatgtgcgc	aggtggtata	1260					
atgcgcgtgt	gggaggtaga	gagaggagag	tatctgtaca	gtattaggga	gagagtagga	1320					
gaagttgacg	ccattgttgc	cgatgataga	catgtggcgg	ttgcgtcagc	ttcatcaacg	1380					

_																		
gcto	cagaç	gta	ttata	acato	ct at	ggga	attto	c ggt	gcad	ctgt	agco	gtaco	cag a	attad	taaaa	a	1440	
ttt	tttt	tt	taact	tgaa	aa aa	aaaaq	gaaad	tat	ttt	cctc	tgaa	aaaaq	gog a	aaaco	ctaaa	a	1500	
ccta	aggto	gta	tatgi	caggo	gt ti	cctga	attat	aaa	attaa	aatt	ggga	aaagt	cga d	cggag	gggaaq	3	1560	
atg	gtgad	cag	gaggo	gtgaa	aa ti	taca	aaggo	g aaa	attga	attc	ttto	ctaca	aaa q	gtttg	gaccaa	a	1620	
aaaa	attaa	agt	tacto	gttt	t gt	cctaa	aaaco	c aaa	acaaa	agtg	gact	ttt	tet t	gttg	gttcti	t	1680	
gtti	tttt	ccc	ttgto	gttta	ag ge	getet	cctca	a att	ttga	actt	tgta	acgaa	aat q	gtett	tttt	t	1740	
ttt	cctto	cta	cttgt	caact	cd tt	ccact	ttac	tgg	gagtt	tat	tatt	ttgt	tat a	aatgo	gtccca	a	1800	
aaaa	aaa																1806	
<210> SEQ ID NO 5 <211> LENGTH: 446 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana																		
<400)> SH	EQUE	NCE :	5														
Met 1	Ser	Thr	Ser	Ser 5	Ser	Ser	Ser	Asp	Asn 10	Gly	Ala	Gly	Gly	Ser 15	Gly			
Gly	Val	Phe	Glu 20	Ala	Pro	Ser	Pro	Ser 25	Arg	Pro	Arg	Arg	Gly 30	Ala	Asn			
Asp	Val	Trp 35	Pro	Glu	Pro	Phe	Leu 40	Glu	Ser	Leu	Ala	Val 45	Gln	Val	Ala			
Val	Asn 50	Ala	Ser	Thr	Ser	Ala 55	Gly	Leu	Leu	Ala	Ala 60	Ala	Pro	Ala	Leu			
Ala 65	Asn	Val	Phe	Arg	Val 70	Cys	Thr	Thr	Trp	Leu 75	Ala	Val	Ser	Arg	Ser 80			
Asp	His	Leu	Trp	Gln 85	Leu	Leu	Ser	Arg	Gln 90	Val	Trp	Ala	Arg	Thr 95	His			
Leu	Met	His	Asp 100	Thr	Trp	Arg	Asp	Glu 105	Phe	Ile	Tyr	Arg	His 110	Arg	Thr			
Ala	Arg	Asn 115	Phe	Arg	Thr	Arg	Thr 120	His	Thr	Tyr	Phe	Thr 125	Leu	Gln	Phe			
Asp	Pro 130	Ser	Asp	Val	Asp	Glu 135	Pro	Asp	Ser	Leu	Ser 140	Cys	Arg	Cys	Leu			
Thr 145	Leu	Ser	Asp	Leu	Tyr 150	Leu	Ala	Gly	Gly	Phe 155	Ala	Asp	Gly	Thr	Val 160			
Arg	Leu	Phe	Leu	Leu 165	Asn	Asn	Arg	Leu	His 170	Val	Arg	Thr	Leu	Arg 175	Pro			
Pro	Leu	Arg	Asp 180	Arg	Phe	Gly	Arg	Phe 185	Ser	Arg	Ala	Val	Ser 190	Gly	Ile			
Val	Ile	Ser 195	Asp	Ser	Arg	Leu	Thr 200	Phe	Ala	Thr	Met	Asp 205	Gly	Asp	Ile			
His	Val 210	Ala	Glu	Ile	Asp	Gly 215	Val	Gly	His	Thr	Arg 220	Thr	Ala	Tyr	Ala			
Gly 225	Asp	Ile	Val	Asn	Asp 230	Gly	Ala	Leu	Val	Asp 235	Phe	Thr	Gly	Cys	Gly 240			
Arg	Trp	Trp	Val	Gly 245	Leu	Phe	Ala	Gly	Val 250	Pro	Gly	Arg	Ala	Phe 255	His			
Ile	Trp	Asp	Cys 260	Asn	Ser	Glu	Glu	Thr 265	Thr	Phe	Val	Gly	Gly 270	Thr	Leu			
Thr	Asp	Pro 275	Glu	Ala	Val	Met	Gly 280	Trp	His	Thr	Leu	Thr 285	Glu	Leu	Thr			
Thr	Ser	Leu	Gly	Arg	Leu	Arg	Ile	Ser	Gly	Asn	Glu	Thr	Ala	Val	Ala			

290295300Cyo Tri Ara Tri Ara Tri Ara Tri Ara Tri Ara STile Nev Ara Ara SSin S Ara Ara N On On Y Yan11eIle Ol Y On Ara Ara SOl U On Yan Ara Ara SOl U Ara Ara SSin S Ara Ara S11eIle Ol Y On Ara Ara SOl U Ala Tri Yan Ara SSin S Ara Ara SSin S Ara Ara SSin S Ara Ara S11eAra Ara Ara Ara SOl A Ara Ara SOl Y Ara Ara SSin S Ara Ara SSin S Ara Ara S12eYan Ara Ara SOl Ara Ara SYan Ara SYan Ara Ara SSin S Ara Ara S12eYan Ara Ara SYan Ara Ara SYan Ara Ara SYan Ara Ara SSin Or Yan Yan Ara											
Gye Tir Arg Tir Arg Tir Arg Tir Met Val Ile Asp Leu Arg Ann Gln Gly Val 32011e lle Gly Glu Arg Glu Glu Pro Arg Arg Gly Leu Ile Val Tir Gly 325Phe Asp Ala Ann Arg Glu Ala Ty Val Arg Leu Asp Ser Arg Gly Ann 355Ala Ser Val Arg Arg Val Arm Thr Gln Gln Thr Val Cye Glu Phe Arg 325Val Ser Gly Ala Ala Gln Arg Arg Val Met Gly Cye Val Arn Arg Leu 37011e leu Met Cye Ala Glu Glu Pir Arg Arg Val Met Gly Cye Val Arn Arg Leu 37011a leu Met Cye Ala Glu Glu Jir Het Arg Cul Arg Val Tir Glu Val Glu 37511a leu Met Cye Ala Glu Glu Jir Het Arg Val Arg Val Tir Glu Val Glu 37511a leu Met Cye Ala Glu Glu Jir Yir Leu Tir Ser Ile Arg Glu Arg Val Gly Glu Yal Asp 40011a leu Met Cye Ala Glu Glu Tir Arg Arg Val Ala Val Ala Ser Ala Ser Ser 42011a leu Karg Arg Yarg Yan Yan Yan Yan Yan Yan Yang Yang Yang	290		295		300						
11e 11e 01y 01y 12e 11e 12e 1335 Phe Asp Ala Ang 01u Ala Tyr 341 Arg Leu Asp Safe 01y Ass Ala Ser 01y Ala 01u Arg Arg Leu Arg Cyc 01u Phe Arg Arg Arg Arg Cyc Val Asp Arg Cyc Val Arg Leu Arg Cyc Val Arg Leu Mat Oly Cyc Val Arg Leu Arg Cyc Val Arg Leu Arg Arg Cyc Val Arg Leu Arg Arg Cyc Val Arg Cyc <td< td=""><td>Cys Thr A 305</td><td>Arg Trp Arg</td><td>g Ile Met Val 310</td><td>Ile Asp Leu 315</td><td>Arg Asn Gln Gly Val 320</td><td></td></td<>	Cys Thr A 305	Arg Trp Arg	g Ile Met Val 310	Ile Asp Leu 315	Arg Asn Gln Gly Val 320						
Phe Aep Ala Aen Aep Glu Ala Tyr Yal Arg Leu Aep Ser Arg Gly Aen 345 Ala Ser Val Arg Arg Val Aen Thr Gln Gln Thr Val Cyo Glu Phe Arg 345 Val Ser Gly Ala Ala Gln Arg Arg Val Met Gly Cyo Val Aen Arg Leu 375 Val Ser Gly Ala Ala Gln Arg Arg Val Met Gly Cyo Val Aen Arg Leu 375 Ala Ser Gly Ala Ala Gln Arg Arg Val Met Gly Cyo Val Aen Arg Leu 375 Arg Gly Glu Tyr Leu Tyr Ser He Arg Glu Arg Val Gly Gly Uy Lya Aep 400 Arg Gly Glu Tyr Leu Tyr Ser He Arg Glu Arg Val Gly Gly Lya Aep 420 Thr Ala Gln Ser He He His Leu Trp Aep Phe Gly Ala Leu 440 ************************************	Ile Ile G	3ly Glu Asp 325	o Glu Glu Pro	Arg Arg Gly 330	Leu Ile Val Thr Gly 335						
Ala Ser Val Arg Arg Val Aan Thr Gln Gln Thr Val Cys Glu Phe Arg 355 Val Ser Gly Ala Ala Gln Arg Arg Val Wet Gly Cys Val Aan Arg Leu 370 370 Ser Gly Ala Ala Gln Arg Arg Val Wet Gly Cys Val Aan Arg Leu 370 Arg Gly Glu Tyr Leu Tyr Ser 11e Arg Glu Arg Val Gly Glu Val Glu 385 Ala 11e Val Ala Aap Arp Arg His Val Ala Yal Ala Ser Ala Ser Ser 420 Thr Ala Gln Ser 11e 11e His Leu Trp Asp Phe Gly Ala Leu 435 C210> SEQ ID NO 6 C211> LENUTY: 1868 C212> TTPE: DNA C213> SEQUENCE: 6 atglegetgg gtggtggggg tggtgattte gaggggtett exteetagg gdgt tggecagge gggcaegge getteggee geteetage acagagg tttggecege tettegee the ggaagggee gggcaegge getteggee tettegee tettegee tettegee tettegee tettegee tggecage ageacegee tetegeetage tettegee tettegee tettegee tettegee tettegeag getteggeet ettetetete teggeceege tettegee tettegee tettegee geaacegee tegacete tegecage tettege gaecetete gedeateg tettegee geacegee tegacete tegecage tettegee gettegee tettegee tettegee tettegee geacegee tegacete tegecage tettegee gettegee tettegee gedeateg gettegge gedteggee tettegee gettegee tettegee gedeateg tettegee geacegee tegacete tegecage tettegee gettegee tettegee gedeateg gettegge gag degtegget teggeege tettegee gettegee tettegee gedeateg gedeatege gedeegee tettegee gedeateg gedeateg tettegee gedeateg getteggee gedeegee tettegee gedeateg tettegee gedeateg tettegee fe gedeacegee tegacete tetgegeege tettegee tettegee gedeateg fe gedeacegee tegacete teggeceege tettegee tettegee gedeateg fe gedeacegee tegacete teggeegee tettegee gedeateg tegeeted fe gedeacegee gedeagee tettegee gedeacege tegetegee tettegee fe gedeageege gedeageege tetegeate ggedeageeg tegeeted fe gedeageege gedeageege tetegeate ggedeagee gedeagege agaegeage fe fe gedeageege tetegeeate gedeacege gedeageege gedeageege agaegeage fe fe gedeageege tetegeeate gedeacege gedeageege gedeadeege agaegeage fe fe gedeageege tetegeeate gedeageege gedeadeeg gedeatege taceegeage fe fe gedeageege gedeageege gedeadeeg gedeadeeg agedeageege acaegaget fe fe gedeageege tegeeaae cettegeaae gegaeadeeg agedeageeg acaegage	Phe Asp A	Ala Asn Asp 340	o Glu Ala Tyr	Val Arg Leu 345	Asp Ser Arg Gly Asn						
355360365Val Ser GLY Ala Ala Gin Arg Arg Val Met Gly Cyo Val Ann Arg Leu 370375780Ann Arg LeuHis Ala Leu Met Cyn Ala Gly Gly Ile Met Arg Val Typ Glu Val Glu 405100410Arg Gly Glu Tyr Leu Tyr Ser Ile Arg Glu Arg Val Gly Glu Val Arg 405101415Ala Ile Val Ala Ann Arp Anp Arg His Val Ala Val Ala Ser Ala Ser Ser 420405405Thr Ala Gin Ser Ile Ile His Leu Typ App Phe Gly Ala Leu 445445445<210> SEO ID N0 6 <121> LENGTH: 1366 <212> TPF: NAR6060<212> TPF: NAR <212> TPF: NAR61060ggagatggg gtggtgggg tggtgattle gaggteet ectecteet ectected gecaatgt etcaagtg ggtgtggag gtggtgggg tgtgedtte gaggteet ectecteet agecaatgt etcaagtg ggecaatgt etcaagtg60ggttetegge ggggeagt gtetegateg gacettetat ggegaacet etgecaatgt etcaagtg ggecaacet egecaagt tttgacega gacettegge agectege etcated acatggegy agattta teacgecae ggeaacet egecaagt etge etgecaagt etgec	Ala Ser V	Jal Arg Arg	g Val Asn Thr	Gln Gln Thr	Val Cys Glu Phe Arg						
<pre>Nal set Gry Ala Ala Ghi Ala Ghi Ala Yala Met Gry Gry Yal Ami Ala Deu 370 mi 375 mi yala Met Gry Giy Yala Met Gry Gry Try Glu Val Glu 385 mi yang Ala Giy Gly Glu Yi Lee Try Ser Ile Arg Glu Arg Val Gly Glu Val Amp 400 Arg Gly Glu Try Lee Try Ser Ile Arg Glu Arg Val Gly Glu Val Amp 410 415 Ala Ile Val Ala Amp Amp Arg His Val Ala Val Ala Ser Ala Ser Ser 420 430 Thr Ala Gln Ser Ile Ile His Leu Trp Amp Phe Gly Ala Leu 435 440 445 </pre>	3 Val Sor (355 Slucalo alc	360 Cla Arg Arg	Val Mat Cly	365 Cua Val Aan Ara Lou						
His Ala Leu Met Cys Ala Gly Gly Ile Met Arg Val Trp Glu Val Glu 385 Arg Gly Glu Tyr Leu Tyr Ser Ile Arg Glu Arg Val Gly Glu Val Asp 405 Ala Ile Val Ala Asp Asp Arg His Val Ala Val Ala Ser Ala Ser Ser 425 Thr Ala Gln Ser Ile Ile His Leu Trp Asp Phe Gly Ala Leu 435 <210> SEQ ID NO 6 <211> LENGTH: 1368 <212> TPE: DNA <212> GRGANISM: Vitis vinifera <400> SEQUENCE: 6 atgtcgtcgt cttcttctt ttcctcctog tcttcttcat cttcacaaga tggcgaggtt 60 ggtggtggag gtggtgggg tggtgatttc gagggtcttg ctcccaagt ggccattgat 180 gcttctcgga gcattggteg tctggccgt gctcctgcc tcgccaagt ctcccaggt 240 tgctcacagt ggcggcagg g gtctgatgat gaggtctta cgagagttat ctaccgcca 360 cgcaccgcca tgaactteg gaaccacagt ctctctct cttctac cgccaccg 540 ctccacqta gccgtggat cccgacag ctcttgtg cagacttet cgccaccag ff acgtcacgca tcacctet tcggccccg ctcgttet ctcttgc cgccaccage 720 gccaacgca tgacettgc ctccgcca tcgacagg tcccagat ctcccaagt gccaccagat 780 gtctcacga gcactggct ccccacaca aatgtectt tgggcgcatt ccccacag ff acgtcacgca tcacctet tcggccccg ctcgtctc ctctccca cgccaccgc 540 ctccacctg ccgtgggtt cgaggagg cccca ctcgcacca cgccaccage 720 gccaacgca tcacctet tcggcccca ctcgacca tgccaccagt 780 gccgggg gagg gagcctgg ctcccacaca agtgccgg aaccacagt ctccccaca ff acgtcggg g accccacag ctcccacaca agtgccgg aaccacagt ctccccaca ff acgtcggg gacccacag ctcccacaca agtgccacag ff acccacaga gaccctaga ctccccaca cgccacaga ff fcccacagta gcacctaga ctccccaca cgccacaga ff fcccacagta gaccttag ccccacacaga cgccacaga cgccacaga ff fcccacaga gaccctag cccacaga cgccacaga ff fcccacaga gaccctaga cccacaga cgccacaga ff fcccacaga gaccctag cccacaga cgccacaga ff fcccacaga ggaccctag cccacaga agccacaga ff fccgggagg ccctaga cgccacaga agccacaga cgccggg accagaga ff fccgggagg cgcctag fg fcgcaggg fg fgccaggg fgccagag fg fgcagggg fggcagag fg fgcagggg fggcagag fg fgcagggg fggcagag fg fgcagggg fggcagag fg fgcagggg fggcagag fg fgcagggg fggggg fg fgcagggg fgggggg fg fggcaggg fg fggcaggg fg fggagggg fg fggcaggg fg fgcagggg fg fggcaggg fg fggagggg fg fggagggg fg fggagggg fg fggagggg fg fg	370	HY AIA AIG	375	Vai Met Giy	380						
Arg Gly Glu Tyr Leu Tyr Ser Ile Arg Glu Arg Val Gly Glu Val App 405 40 40 42 42 44 45 41 42 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 5 44 45 44 5 44	His Ala I 385	Jeu Met Cys	s Ala Gly Gly 390	Ile Met Arg 395	Val Trp Glu Val Glu 400						
Ala Ile Val Ala Asp Asp Arg His Val Ala Val Ala Ser Ala Ser Ser 420 Thr Ala Gln Ser Ile Ile His Leu Trp Asp Phe Gly Ala Leu 435 * 440 * 445 * 210 > SEQ ID NO 6 * 211 > LENGTH: 1368 * 212 > TFF INA * 213 > ORGANISM: Vilis vinifera * 400 > SEQUENCE: 6 atgtcgtcgt cttcttctt ttctcctccg tcttcttcat cttcacaaga tggcgaggtt 60 ggtggtggag gtggtgggg tggtgattg gaggctctg ctcccaagt ggccattgat 180 gcttctcgga gcattggtcg tctggccgc gctcctgcc tcgccaagt ggccattgat 180 gcttctcgga gcattggtcg tctggccgg gcctttag gaggctctt ctctctca ggcgaagtt 0 atctggggc ggggcagg g gtcatgac gcctctag agaggtta t ctacacagt ggccattgat 180 gcttctcgga gcattggtcg tctggccgg gcctctag gaccttcat ggcgcaacct ctgccgccg 300 atctggggc ggggcagg gttcatgac acatggcgg aagagttta ctacccgcac 360 cgcaccgca tgaactttcg gaaccgccgg tataactaa cgacactgg tttggcccac 420 gcttacgtca gcaccggct ccctcaca atgttct tgggcccc tctttgacct gccaccacg 540 ttccacctg ccgtgggtt cgagggg accgttccc tctgatcc tgcccacgc 600 gtctctgga tatactctc tcgcgcccc tctgatcca tgggccacg 720 gccaaggag gagcctag ccctcaca atgttct tgggtcgt cggccttac 780 gccggcgcc ctggccaag cttccgcac tggatggg aaccgaag gctgtgt cggccatta 900 gccgattcg tggcggg gcggg gcggtgagg gaggccagg gccaggag tggccagg gaaccgaag gccacggag tacacgaag gccgcagg 10 gccgaggg a ccttacca cttcgcac ggccaggaa cggcggg aaccgaaga gccgcaga 960 gccgggg cttcagaac tctcccac tggatggg aaccgaaga gccgcaga 960 gccgggg ctctcagaa cctacgaa ccagaaga gccaggaa gccggga accagaaga gccgaaga 960 gccgggg cttcagaag tggcaggag ggggagatg ggccaagg tacacgaaga gccgaaga 960 gccgaggg tttacggg gaggagg gggggagagg gaggaattag aagaggtg aagaggtag 100 gccgaggt ttacgtcgg gcaggtcag gccagaa agaggga accagaaga 100 gccgaggt ttacgtggg agccgag gaggagg gaggaattag aagaggtg aagaggtag 100 gcgcaaggt ttacgtggg agcgagg gggggg gggggg gggggagaggga accagaaga gccggaga 1000 gcgcagggt ttacgtgg agcgaggg gggggg ggggggg aggggga accaggggg accagggg accagggg accagggg accagggg accagggg accaggggg accaggggg accaggggg accaggggg accagggg accaggggg accaggggg accagggggg accaggggg accaggggg accaggggg accaggggg accagggggg	Arg Gly G	3lu Tyr Leu 405	ı Tyr Ser Ile	Arg Glu Arg 410	Val Gly Glu Val Asp 415						
The Ala Ghn Ser Ile Ile His Leu Trp Asp Phe Gly Ala Leu 435 <210> SEQ ID NO 6 <211> LEWOTH: 1368 <212> TYPE: DNA <213> ORGANISM: Vitis vinifera <400> SEQUENCE: 6 atgtegtegt ettettette tteeteete teteteete etteteete	Ala Ile V	/al Ala Asp 420	o Asp Arg His	Val Ala Val 425	Ala Ser Ala Ser Ser 430						
435440445<210> SEQ ID NO 6 <211> LENGTH: 1368 <213> ORGANISM: Vitis vinifera<400> SEQUENCE: 6atgtcgtcgt cttcttctc ttcccccq tcttctca ctccaaga tggcgagtt60ggtggtgggg gtgggggg tgggggttt gggggctt ctctcttctg gcgacgttc120ggaaatgggg tttggccgga gcctttgg gaggctctg ctcccaagt ggccattgat180gcttctcgga gcattggtcg tctggccgt gctcctgcc tcgccaagt cttccaagtg240tgctqacaat ggcgggcagt gtctggcgt gaccttcat ggcgcaact ctgccgcgt300atctggggc gggcacgg gcttcatga catggcgg aagagttat ctaccgcca360cgacacgcca tgaacttcg gaaccgccg tctcctcgc gctgcctgg actctccga420gcttacgata gcccggca agccacgc tctccccgc gctgcctgg actcccgac420gcttacgta gctcgggat ggagggg accgt gctcctgc gctgcctgg actcccgac480ttccaactg gcggggtt cgggatgg accgttcg tctcgcc tctgccaccg540ctccacgt gcccggca gacctagt ctctccgc gctgcctgg acctcccgac600gctcttgga tcatcctct tcgcgcccc ctcgtctcg ttatcccac tggcgacgt660aacgtcggg gtctcgaat ggtgcccc tctgatccg tatccccac tggcacgc720gccaggcag gagcctag caccagac ggctggg gaacagg gacacagg gaccaggg agccctac780gccaggggg cctgga gcgggt gggatgacg ggcacagg agccggg accagggg accaggat ggccagggggcagggggggggggggggggggggggggggggggggg	Thr Ala G	3ln Ser Ile	e Ile His Leu	Trp Asp Phe	Gly Ala Leu						
atgtogtogt ottettette treeteete tettettettettettettettettettette	435 440 445 <210> SEQ ID NO 6 <211> LENGTH: 1368 <212> TYPE: DNA <213> ORGANISM: Vitis vinifera										
atgtegtegtcttettettettettettetcttettettetcttettettetcoggtggtggagggtggtggggtggtgatttegagggtettegctettetteg120ggaaatggggttggeeggagcetttggtggtggtgggggtggtgggggtggtggg120getteteggagcattggtegtettggeeggegetettggeegg240180tgeteaacatggeggggaggggteteggeeggeteettggee240240tgeteaacatggegggagggggedgeegggaectettaggegaaactetetteettggeegg300atctggggeggggacaggegettettggaacatggeggaagagtttatctacegeegggetacegeegggaacteggegettetteg360360cgeacegeatgaacegeeggtataactatacgaacettega420gettacgteageteceggeaacatggeeggactetecege480ttecaacetegcettegggatggacegttegectetecegee540ctecaacgagaacettegeectececegee600300gtetteggeteatectetteggeggaggctececegee720gecagegaggecateggectececeteggedggg720gecagegaggecateggegecaggagggecaggagg840gteggtgggacecteacegacecagaagagecagggegecggeggagcecteacegagecaggagg900gecaggegacecteacegagecagggaggagg900gecgaggegtggecagggecaggagaggecagggagggegecaggetegecagagtegecagaga1020gegecaggetegecagaggecagggg	<400> 5EQ	SOFFICE: 0									
ggtggtggag gtggtgggg tiggtgatte gagggteett eetettete gegaagtee 120 ggaaatgggg titggeegg geettigg gaggetetg etteeaagt ggeeattgat 180 gettetegga geattggteg tetggeeget geteetgee tegeeaagt etteeaggt 240 tgeteaaeat ggegggeagt gtetegateg gaeetteta ggegeaaet etgeeaegt 300 atetggggee gggeaeggeg getteatgae acatggeggg aagagttat etaeegeeae 360 egeaeegeea tgaaetteg gaacegeegg tataaetata egaeaetgga tittgaeeea 420 gettaegtea geteeggeae ageeaeaget etetegee getgeetgge acteteegae 480 tteeaeetg eegtggtt egaggatgge acegttegee tetttgaeet egeeaeegee 600 gtetetggea teateette tegegeeege etegteetg etteeeae egeeaegee 660 gtetetggea teateete tegegeeege etegteetg etteeeae egeeaegee 660 gtetetggea teateete tegegeeege etegteetg etteeeae tegeeaege 720 geeagegeg gageeetagt egaettegee geetgeagg getgeatge geegetget 840 gtegggggg ageeetagt egaettegee geetgeagg geegette 840 gteggtggga eeeteaeae etteggee geetggggg eggeetete 840 gteggtggga eeeteaeae ettegaee geeggggg eggeetete 840 gteggtggga eeeteaea ettegee ggetgeage geeggtggg eggeetete 840 gteggtggga eeeteaeae ettegaaege gteaggget aaeeegaag getegtette 840 gteggtggga eeeteaega eeeaagge gteatggget ggeaaagtte aaeagagtte 960 egeegatteg tiggeegag geegagteae ageeaggaa tegeeggga acaagagtte 1020 gegeeagget ttategtegg eageteega geeaaeaatg aggegtaegt tategtgga 1080 gggaggggeg tggetaege aceagge gagaatetag aagaggtag eaggttega 1140 gtgggaggta eeeegaag eegagtttg gggteatga aeeggggga eggetteta 1140 gtgggaggta eeeegaag geegagtttg gggteatga aeeggeggta egeetgat 1200 tgeateggga gtgtgataag ageggggag gtggaaegtg gggtgatet gtaeaaettg 1200	atgtcgtcg	jt cttcttct	te tteeteeteg	tettetteat	cttcacaaga tggcgaggtt	60					
ggaaatgggg titiggeegga geettingig gaggeteigg etteeedagt ggeeattgat 110 gettetegga geattggteg tetggeeget geteetgee tegeeaatgt etteeedagt ggeeattgat 240 tgeteaacat ggegggeagt geteedage gaeetteta ggegeaacet etgeegeegt 300 atetggggee gggeaegge getteatgae acatggeggg aagagtttat etaeegeeae 360 egeaeegeea tgaaetteg gaacegeegg tataaetata egaeaetgga titigaeeea 420 gettaegtea geteeggeae ageeaeaget eteeetegee getgeetgge acteteegae 480 tteeaeeteg eeggggtt egaggatgge acegttegee tettigaeet egeeage 540 eteeaegtea geaeetgeet eeeteae aatgteetta tgggteeett eteeeggee 660 geteetggea teateetee tegegeeege etegteteg etteeeteae eggeagete 660 aaegtegegg etetegaeat egttegee etegteteg etteeeteae eggeagegte 660 geeagegeg gageeetagt egaettege ggetgeage getggtgggt eggeetetae 780 geeagegeg gageeetagt egaettege ggetgeage getggtgggt eggeetetae 780 geeggegeee etggeeage etteegaa eggagee gtegaggeg aaaeegaag getegtette 840 gteggtggga eceteaega egeagteeg gteatggget ggeeatgt eaeaggtta 900 geegatteg tiggeeage geegateeg geeggaat eggeeggga aeaegagt 960 egeegagtea tegtetteaa eettagaae ggageaat eggeeggga aeaaggagtte 1020 gegeeagggt ttategtggg eageetege geeaaeatg aggegtaegt tategtgga 1080 gggaggggeg tggetageg aegeagge gagaatetag aagaggtag eaggttegt 1140 gtgggaggta ecetegeagg gegagtttg gggageatg aeaggggga eecettag 1200 tgeategga gtggataag ageggggg gtggaaegt gggtgtatet gtaeaattg 1200	ggtggtgga	ig grggrggg	ggg tggtgatttc	gagggtcctt	cetetteteg gegaegttee	120					
gettettigga geattiggteg tetiggeeget geteetigeee tegeeaatigt etteelagig 240 tgeteaacat ggegggeagt geteetigee gaeettetat ggegeaaeet etgeeeatigt etteelagig 300 atetiggggee gggeaegge getteatigae acatggeggg aagagtttat etaeegeeae 360 egeaeegeea tgaaetteg gaaeegeegg tataaetata egaeaetgga tittgaeeea 420 gettaegtea geteeggeae ageeaeaget eteteetigee getgeetigge aeteteegae 480 tteeaeeteg eegtgggtt egaggatgge acegteegee tettgaeet egeeaeegee 540 eteeaegtea geaeetgeet eesteateae aatgttetta tgggteeett eteeegee 600 geteetiggea teateetee tegegeeege etegteetig etteeetigee 660 aaegtegegg etetegaeat egttgeeet etegateege tettegeeae tegeeaegee 720 geeagegaeg gageeetagt egaettegee ggetgeagee geeggtggg eggeeetae 780 geeggegeee etggeeage etteegeae ggetgeagge gaaaeegaaga getegtette 840 gteggtggga eceteaega eesteagee gteggggg aaaeegaaga getegtette 840 geeggtggga eceteaega eestagaee gteaggget ggeaeatgt eaeagagtt 900 geegatteg ttggeeggt gegagteaeg ageeaggaat eggeeggga aeaagagtte 1020 gegeeagggt ttategtegg eageetegae geeaaeatg aggegtaegt tategtggae 1080 gggaaggge tggetageg aegeaggeg gagaatetag aagaggtag eagettegta 1140 gtgggaggta eeteegaag geeggtttg gggtgeatga aegggggaa egeeetgatg 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaaettg 1200	ggaaalggg	jg tilggeeg	gga geellligig	gaggetetgg	elleecaagt ggeeallgat	180					
tyccaacat gycgygaagt gtetegateg gaeettetat gycgaacet ergeegedt 300 atctggggee gggeaeggeg getteatgae acatggeggg aagagttat etaeegeeae 360 egeaeegeea tgaaettteg gaaeegeegg tataaetata egaeaetgga ttttgaeeea 420 gettaegtea geteeggeae ageeaeaget eteteetgee getgeetgge acteteegae 480 tteeaeeteg eegtgggtt egaggatgge acegttegee tetttgaeet egeeaeege 540 eteeaegtea geaeetgeet eeetatae aatgttetta tgggteeett eteegeegee 600 gtetetggea teateetet tegegeeege etegtetteg etteeeteea eggegaegte 660 aaegtegegg etetegaeat egttgeeet etegtegee getggtgggt eggeetetae 780 geeagegaeg gageeetagt egaettegee getgeagee getggtgggt eggeetetae 780 geeggeggee etggeeage gteggatge geeagge gaeaeegga geeetet 840 gteggtggga eeeteaeege etegtetteg geeagaga geeegtet 840 gteggtggga eeeteaege etegteagge ggeagate 290 geeeaggagg etteegaeage geeaggeeg gaeaeegga aaeeegaag getegtette 840 gteggtggga eeeteaeega egeaggeeggaat eggeegga atgeeaggat 960 egeegagtea tegtetteaa eettagaaae ggaggeaatg taeaegggga aeaagagtte 1020 gegeeagggt ttategtggg eageetegae geeaaeaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt acgeaggeg gagaatetag aagaggtgg eaggttgta 1140 gtgggaggta eeteegaag geeagttttg gggtgeatga acegggggta egeeetgat 1200 tgeateegga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaeettg 1260	gerrerege	ja geallggi	leg tetggeeget	geleetgeee	aggessest staggaget	240					
aterggggee gggeaeggeg getteatgae aeatggeggg aagagtttat etaeegeeae 380 egeaecegeea tgaaettteg gaaecegeegg tataaetata egaeaetgga ttttgaeeea 420 gettaegtea geteeggeae ageeaeaget eteteetgee getgeetgge aeteteegae 480 tteeaeeteg eegtgggtt egaggatgge aeegttegee tetttgaeet egeeaeeege 540 eteeaegtea geaeetgeet eeeteateae aatgttetta tgggteeett eteeegegee 600 gtetetggea teateetet tegegeeege etegtetteg etteeetea eggeagege 660 aaeegtegegg etetegaeat egttgeeeet etegateeeg ttateeeeae tegeeaege 720 geeagegaeg gageeetagt egaettegee getggatgge aaeegaaga getegtete 840 gteggtggga eeeteaege etegatet eggeagee getggtgggt eggeetetae 780 geeggegeee etggeeage ggetgeagee getggtggg eggeetetae 840 gteggtggga eeeteaega etteegaagee gteatggget ggeaeatgt eaeagagt 900 geegatteg ttggeegag gegagteaeg ageeagaat eggeegtge atgeeegag 960 egeegagte tetegeag eggeteega eggeageatg taeeeggga aeaagagte 1020 gegeeagggt ttategtgg eageetegae geeaaeaatg aggegtaegt tategtggae 1080 gggagggget ggetagegt aegeaggeg gagaatetag aagaggtagt eagetttgta 1140 gtgggaggta eetegeag geegagtttg gggtgaatet gtaeaeattg 1200 tgeateegga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaacttg 1260	Lycleade		agt gretegateg	gacettetat		300					
getacegeeatgaaetteg gaaeegeeg tataaetata egaeaetgga ttttgaeeea420gettacgtcagetceggeacagecacagetcteteetgec480ttecacetegcegtgggtttegaggatggeacegttegeetetttgaeet540etceacgtcageacetgeetcecteateaeaatgttettatgggteeet600gettetggeateateetetetegegeege600600getetetggeateateetetetegegeege660aacgtegeggteateetetetegegeege720gecagegeggaeetegeetegeetggegg720gecagegegegageetegeetetegegeegegecagegegeetgeetegeete780gecggegeeteetggeageetegeete840gteggtgggcecteacegacecagaagegteggtgggacecteacegaetgegagegegecagegegetegeetegeagegecageggettegeetegeagegecageggeggecagagegecageggegecagagegecageggegecagagegecageggegecagagegecageggegecagagegecageggegecagagegecageggegecagegegecageggegecageggegecageggegecageggegecagegggetegeedaagecageggegecageggegecageggetegeedaagecagegegecagegegecagegegecagegegecagegetegeedaagecagegegecagegegecageggetegeedaagecageggegecagegegecageggetegeedaagecageggegec	atetggggg	c gggcacgg	jcg getteatgae	acatggeggg	aagagtttat ctaccgccac	360					
gettaegtea geteeggeae ageeaeaget eteteetgee getgeetgge acteteeggee 440 tteeaeeteg eegtgggtt egaggatgge accgttegee tetttgaeet egeeaeeege 540 eteeaegtea geaeetgeet eeetaatea aatgttetta tgggteeett eteeeggee 660 gtetetggea teateetet tegegeeege etegtetteg etteeeteea eggegaegte 660 aaegtegegg etetegaeat egttgeeeet etegateeeg ttateeeeae tegeeaegge 720 geeagegaeg gageeetagt egaettegee geetgeagee getggtgggt eggeetetae 780 geeggegeee etggeeage geetgeagee geetggtgggt eggeetetee 840 gteggtggga eeeteaega etteegeae tgggatggee aaaeegaaga getegtette 840 geeggtggga eeeteaega eeeagaagee gteatggget ggeaeatgt eaeagagt 900 geegatteeg ttggeegagt gegagteaeg ageeaggaat eggeegtgge atgeaegagt 960 eggeegagte teategteteaa eettagaaae ggaggeaatg taeeagggga acaagagtte 1020 gegeeagggt ttategtggg eageetegae geeaaeaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt aegeaggeg gagaatetag aagaggtgt eagetttga 1140 gtgggaaggta eetegeagg gegagtttg gggtgeatga aeggggggta egeeetgatg 1200 tgeateegga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaacttg 1260	cgcaccgcc	a tgaacttt	ccg gaaccgccgg	tataactata	cgacactgga ttttgaccca	420					
<pre>ctccacctcg ccgtgggttt cgaggatgge accgttcgce tetttgacct cgccaccge 540 ctccacgtca gcacctgcct ccctcatcac aatgttctta tgggtccctt ctcccgcgcc 600 gtctctggca tcatectete tegegecege etegtetteg etteceteca eggegacgte 660 aacgtegegg etetegacat egttgeecet etegateceg ttatececae tegecaegge 720 gccagegacg gagecetagt egaettegee ggetgeagee getggtgggt eggeetetee 840 gteggtggga cceteaecga ettecgeate tgggatggeg aaacegaaga getegtette 840 gteggtggga cceteaecga eccagaagee gteatggget ggecaetgt eaeaggtt 960 gccgagtte tegeeteaa egttgeae ggeagteaeg agecaggaat eggeeggga acaagagtte 1020 gcgcagggt ttategtggg cageetegae gecaacaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt acgeaggeg gagaatetag aagaggtgt eagettgat 1140 gtgggaggta cctegeagg gegagtttg gggtgeatga acggggggta egeeetgat 1200 tgeateggga gtgtgataag agegtgggag gtggaacgt gggtgtatet gtacaccttg 1260</pre>	gettaegte	a geteegge	tt agecacaget	eteteetgee	getgeetgge acteteegae	480					
gtetetggea teateetete eetetataa aaegetetta egggetetete eteeegegee 000 gtetetggea teateetete tegegeeege etegtetteg etteeetea eggegaegte 660 aaegtegegg etetegaeat egttgeeeet etegateeeg ttateeeeae tegeeaegge 720 geeagegaeg gageeetagt egaettegee ggetgeagee getggtgggt eggeetetae 780 geeggeggee etggeeaage etteegeate tgggatggeg aaaeegaaga getegtette 840 gteggtggga eeeteaega eeeagaagee gteatggget ggeacatgtt eaeagagtta 900 geegattteg ttggeegagt gegagteaeg ageeaggaat eggeegtgge atgeaegagt 960 egeegagtea tegtetteaa eettagaaae ggaggeaatg taeaegggga aeaagagtte 1020 gegeeagggt ttategtggg eageetegae geeaaeaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt aegeaggeg gagaatetag aagaggtgt eaggtttgta 1140 gtgggaggta eetegeagag gegagtttg gggtgeatga aegggggta egeeetgatg 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaaettg 1260	ctccacctc		cet costostose	accyllogee	tagatagett stagagaga	540					
aacgtegggg ctetegacat egttgeeege etegeteteg etteeteted eggegacgte 000 aacgteggegg etetegacat egttgeeeege etegeteteg etteeteted eggegacgte 720 geeageggeg gageeetagt egaettegee ggetgeagee getggtgggt eggeetetae 780 geeggeggeee etggeeaage etteegeate tgggatggeg aaacegaaga getegtette 840 gteggtggga eceteacega eceagaagee gteatggget ggeacatgtt eacagagtta 900 geegattteg ttggeegagt gegagteacg ageeaggaat eggeegtgge atgeaegagt 960 eggeegagtea tegtetteaa eettagaaae ggaggeaatg taeeaegggga acaagagtte 1020 gegeeaggt ttategtggg eageetega geeaacaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt aegeaggeg gagaatetag aagaggtgt eagetttgta 1140 gtgggaggta eetegeagg gegagtttg gggtgeatga aegggggta egeeetgat 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaacttg 1260	atatataa	ra tratecto	rta tagagagaga	ctcatcttca	cttccctcca cggcgacgtc	660					
gccagcgacg gagcctagt cgacttcgcc ggctgcagcc gctggtgggt cggcctctac 780 gccggcgccc ctggccaage cttccgcate tgggatggcg aaaccgaaga getcgtette 840 gtcggtggga cceteacega cccagaagee gteatggget ggeaetagtt cacagagtta 900 gccgattteg ttggecgagt gegagteaeg agecaggaat eggeegtgge atgeaegagt 960 egeegagtea tegtetteaa eettagaaae ggaggeaatg taeegggga acaagagtte 1020 gegeeaggt ttategtggg eageetegae geeaaeatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt acgeaggeg gagaatetag aagaggtgt caggtttgta 1140 gtgggaggta cetegeagg gegagtttg gggtgeatga acggggggta egeeetgat 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaectg 1260	aacgtcgcc	ng ctctcgad	rat cottoccct	ctcgatcccg	ttatccccac tcgccacggc	720					
gccggcgccc ctggccaage cttccgcate tgggatggcg aaaccgaaga getegtette 840 gteggtggga eceteacega eceagaagee gteatggget ggeacatgtt cacagagtta 900 gecgatteg ttggeegagt gegagteacg agecaggaat eggeegtgge atgeaegagt 960 egeegagtea tegtetteaa eettagaaae ggaggeaatg tacaegggga acaagagtte 1020 gegeeagggt ttategtggg eageetegae gecaacaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt acgeagggeg gagaatetag aagaggtgt caggtttgta 1140 gtgggaggta eetegeagag gegagtttg gggtgeatga acgeggggta egeeetgat 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtacaacttg 1260	accaacaac	cq qaqcccta	agt cgacttcgcc	aactacaacc	getgatgagt cggcetetac	780					
gtcggtggga ccctcaccga cccagaagcc gtcatgggct ggcacatgtt cacagagtta 900 gccgatttcg ttggccgagt gcgagtcacg agccaggaat cggccgtggc atgcacgagt 960 cgccgagtca tcgtcttcaa ccttagaaac ggaggcaatg tacacgggga acaagagttc 1020 gcgccagggt ttatcgtggg cagcctcgac gccaacaatg aggcgtacgt tatcgtggac 1080 gggaggggcg tggctagcgt acgcagggcg gagaatctag aagaggtgtg caggtttgta 1140 gtgggaggta cctcgcagag gcgagtttg gggtgcatga acggggggta cgccctgatg 1200 tgcatcggga gtgtgataag agcgtgggag gtggaacgtg gggtgtatct gtacacttg 1260	accaacaca	c ctqqccaa	age etteegeate	taaataaca	aaaccgaaga gctcgtcttc	840					
geogatteg ttggeegagt gegagteaeg ageeaggaat eggeegtage atgeaegagt 960 egeegagtea tegtetteaa eettagaaae ggaggeaatg tacaegggga acaagagtte 1020 gegeeagggt ttategtggg eageetegae geeaaeaatg aggegtaegt tategtggae 1080 gggaggggeg tggetagegt acgeagggeg gagaatetag aagaggtgt eaggtttgta 1140 gtgggaggta eetegeagg gegagtttg gggtgeatga aeggggggta egeeetgatg 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaeettg 1260	gtcgqtqqc	ga ccctcaco	cga cccaqaaqcc	gtcatqqqct	ggcacatgtt cacagagtta	900					
cgccgagtca tcgtcttcaa ccttagaaac ggaggcaatg tacacgggga acaagagttc 1020 gcgccagggt ttatcgtggg cagcctcgac gccaacaatg aggcgtacgt tatcgtggac 1080 gggaggggcg tggctagcgt acgcagggcg gagaatctag aagaggtgtg caggtttgta 1140 gtgggaggta cctcgcagag gcgagtttg gggtgcatga acggggggta cgccctgatg 1200 tgcatcggga gtgtgataag agcgtgggag gtggaacgtg gggtgtatct gtacaacttg 1260	gccgatttc	cg ttggccaa	agt gcgaqtcacq	agccaqqaat	cggccgtggc atgcacqaqt	960					
gcgccagggt ttatcgtggg cagcctcgac gccaacaatg aggcgtacgt tatcgtggac 1080 gggagggggg tggctagcgt acgcagggcg gagaatctag aagaggtgtg caggtttgta 1140 gtgggaggta cctcgcagag gcgagttttg gggtgcatga acgggggggta cgccctgatg 1200 tgcatcggga gtgtgataag agcgtggggag gtggaacgtg gggtgtatct gtacaacttg 1260	cgccgagto	a togtotto	caa cottagaaac	ggaggcaatq	tacacgggga acaagagttc	1020					
gggaggggg tggctagcgt acgcagggcg gagaatctag aagaggtgtg caggtttgta 1140 gtgggaggta cetegeagag gegagtttg gggtgcatga aegggggggta egeeetgatg 1200 tgeateggga gtgtgataag agegtgggag gtggaaegtg gggtgtatet gtaeaaettg 1260	gcgccaggc	gt ttatcgto	- ggg cagcctcgac	gccaacaatg	aggcgtacgt tatcgtggac	1080					
gtgggaggta cctcgcagag gcgagttttg gggtgcatga acgggggggta cgccctgatg 1200 tgcatcggga gtgtgataag agcgtgggag gtggaacgtg gggtgtatct gtacaacttg 1260	gggaggggg	g tggctage	cgt acgcagggcg	gagaatctag	aagaggtgtg caggtttgta	1140					
tgcatcggga gtgtgataag agcgtgggag gtggaacgtg gggtgtatct gtacaacttg 1260	gtgggaggt	a cetegeac	gag gcgagttttg	gggtgcatga	acgggggggta cgccctgatg	1200					
	tgcatcggg	ja gtgtgata	aag agcgtgggag	gtggaacgtg	gggtgtatct gtacaacttg	1260					

agggaaagaa cgttagggga tctggttgcc atggtggcag atgatagata cgtggcagca 1320

tgca	acaç	gtg a	acaco	cacga	at to	cactt	gtg	g gao	tttç	1999 1999	ccca	aataa	a			136	8
<210> SEQ ID NO 7 <211> LENGTH: 455 <212> TYPE: PRT <213> ORGANISM: Vitis vinifera																	
<400)> SI	EQUEI	ICE :	7													
Met 1	Ser	Ser	Ser	Ser 5	Ser	Ser	Ser	Ser	Ser 10	Ser	Ser	Ser	Ser	Ser 15	Gln		
Asp	Gly	Glu	Val 20	Gly	Gly	Gly	Gly	Gly 25	Gly	Gly	Gly	Asp	Phe 30	Glu	Gly		
Pro	Ser	Ser 35	Ser	Arg	Arg	Arg	Ser 40	Gly	Asn	Gly	Val	Trp 45	Pro	Glu	Pro		
Phe	Val 50	Glu	Ala	Leu	Ala	Ser 55	Gln	Val	Ala	Ile	Asp 60	Ala	Ser	Arg	Ser		
Ile 65	Gly	Arg	Leu	Ala	Ala 70	Ala	Pro	Ala	Leu	Ala 75	Asn	Val	Phe	Gln	Val 80		
CAa	Ser	Thr	Trp	Arg 85	Ala	Val	Ser	Arg	Ser 90	Asp	Leu	Leu	Trp	Arg 95	Asn		
Leu	Суз	Arg	Arg 100	Ile	Trp	Gly	Arg	Ala 105	Arg	Arg	Leu	His	Asp 110	Thr	Trp		
Arg	Glu	Glu 115	Phe	Ile	Tyr	Arg	His 120	Arg	Thr	Ala	Met	Asn 125	Phe	Arg	Asn		
Arg	Arg 130	Tyr	Asn	Tyr	Thr	Thr 135	Leu	Asp	Phe	Asp	Pro 140	Ala	Tyr	Val	Ser		
Ser 145	Gly	Thr	Ala	Thr	Ala 150	Leu	Ser	Суз	Arg	Cys 155	Leu	Ala	Leu	Ser	Asp 160		
Phe	His	Leu	Ala	Val 165	Gly	Phe	Glu	Asp	Gly 170	Thr	Val	Arg	Leu	Phe 175	Asp		
Leu	Ala	Thr	Arg 180	Leu	His	Val	Ser	Thr 185	Cys	Leu	Pro	His	His 190	Asn	Val		
Leu	Met	Gly 195	Pro	Phe	Ser	Arg	Ala 200	Val	Ser	Gly	Ile	Ile 205	Leu	Ser	Arg		
Ala	Arg 210	Leu	Val	Phe	Ala	Ser 215	Leu	His	Gly	Asp	Val 220	Asn	Val	Ala	Ala		
Leu 225	Asp	Ile	Val	Ala	Pro 230	Leu	Aab	Pro	Val	Ile 235	Pro	Thr	Arg	His	Gly 240		
Ala	Ser	Asp	Gly	Ala 245	Leu	Val	Asp	Phe	Ala 250	Gly	Суз	Ser	Arg	Trp 255	Trp		
Val	Gly	Leu	Tyr 260	Ala	Gly	Ala	Pro	Gly 265	Gln	Ala	Phe	Arg	Ile 270	Trp	Asp		
Gly	Glu	Thr 275	Glu	Glu	Leu	Val	Phe 280	Val	Gly	Gly	Thr	Leu 285	Thr	Asp	Pro		
Glu	Ala 290	Val	Met	Gly	Trp	His 295	Met	Phe	Thr	Glu	Leu 300	Ala	Asp	Phe	Val		
Gly 305	Arg	Val	Arg	Val	Thr 310	Ser	Gln	Glu	Ser	Ala 315	Val	Ala	Сув	Thr	Ser 320		
Arg	Arg	Val	Ile	Val 325	Phe	Asn	Leu	Arg	Asn 330	Gly	Gly	Asn	Val	His 335	Gly		
Glu	Gln	Glu	Phe 340	Ala	Pro	Gly	Phe	Ile 345	Val	Gly	Ser	Leu	Asp 350	Ala	Asn		
Asn	Glu	Ala 355	Tyr	Val	Ile	Val	Asp 360	Gly	Arg	Gly	Val	Ala 365	Ser	Val	Arg		

-continued

Arg Ala Glu Asn Leu G 370	lu Glu Val Cys Arg Phe Val Val Gly Gly Thr 375 380
Ser Gln Arg Arg Val Lo 385 3:	eu Gly Cys Met Asn Gly Gly Tyr Ala Leu Met 90 395 400
Cys Ile Gly Ser Val I 405	le Arg Ala Trp Glu Val Glu Arg Gly Val Tyr 410 415
Leu Tyr Asn Leu Arg G 420	u Arg Thr Leu Gly Asp Leu Val Ala Met Val 425 430
Ala Asp Asp Arg Tyr Va	al Ala Ala Cys Asn Ser Asp Thr Thr Ile His
435 Leu Trp Asp Phe Gly A	440 445 .la Gln
450	455
<210> SEQ ID NO 8 <211> LENGTH: 5197 <212> TYPE: DNA <213> ORGANISM: Popla:	r hybrid
<400> SEQUENCE: 8	
acatgtatag cgtatcaata	. tacgcgtata tacatggaaa gactctaaat cgcaaatata 60
tatagagaga gagaggtgga	ggagteteee ttgggaeeet eacattgegt etttatetag 120
acctttttgt ccttgtttct	ttgtagccca tattttcctt tttttcatag cttcgctcct 180
tatatattgt ttattaatta	atgtetteet cetecteete etcateatea tetageagtg 240
gcaatggcaa tggcagcggt	ggtggtaatt acggtgcaag aagagccggt gagtacgaag 300
ggccatcaag gtctcgtcca	agagccatta acgaggtttg gcctgagcct tttctggaag 360
ctcttgctgc ccaagtcgcc	attgatgett etegeettgt eggeeggetg gtegeggeae 420
aggcacttgc caatgtattt	caggtaaatg tattetettg agaeteacga tggttttaat 480
cttactctgt gtatgcataa	gaagtggagg ccattttgtc tgtcgcatca atgggtttgt 540
cttgttgaga tgtgttagct	gttttgagag gtaattatge taateagtta geageegggt 600
aggetgagag gtaggegeaa	Layaalagag teactates coateceggig galatggiae 660
aatgatgtta tgaactcot	, taatttata tacaaatata aattotaada otottotatt - 720
tttatttcaa tqqaaactqa	agaaatgetg acacagggta acaqcaqett qqqttqqatq 840
tatacaagca tccaaggaga	. aaccatacct ttggaaggaa ctgcttttta atgggtccat 900
ttctaactaa atttatgtcc	cttttggatg tagcagtttc atcttggcaa tttttagttg 960
cttcatcttt tgaatgctcc	taaagaaaat atccattttt ggaccccgtt tcatatcttg 1020
cggaaaagga ctcttttggt	tttgaatttc tctttccctt tcctggcatg attttatttt
agetetataa teeettgeet	ttttgactca actttcttac cttgctaaaa gatccattga 1140
aataactttt ctaatgctaa	aatgtggata gagacgtttg aaacctactt ttaactcggc 1200
taatactttt agacttctgc	ccagattcaa tttttcggga gcaacatttt ctttttgctg 1260
tggaaacaac catctccgct	tggtttttag gtaaagccaa atttggggga ttgacttgtt 1320
tatgacagtg aatcgaacat	tctagggttt tgttcaaact gaatttctca atcaaacaaa 1380
accaaaatct tggtgatttt	atacgaggag cagcagtete cattaatage aaagagettt 1440
gagaaagttc tcatcattac	atggtccaat gtagctcggg gatgggctga tttagatgga 1500
taggagctat gaagtgattg	ttttactatt tttatatcaa acaatttagg cttctgtttt 1560
ggcaattaag aaggatatct	cacaaattga ccagtcttgt gggatcagtc aatagtcagc 1620

continued

				-001011	Iueu	
atgtgcaacg	ccaaaagtac	atggagccca	atgctggtgc	ctggtttcat	aaattgatgt	1680
cacttcagag	atagggtctt	ctcttcgctc	aagccagagg	cagtcagtcg	gtgactcaac	1740
ttttattcct	tgttatatcc	tgtgtttta	ctacctccat	tttcatttct	atcactgtct	1800
tetttegtte	ctctagtttt	agcacagtaa	atttcgtatc	tcctcgttgg	attctgaacc	1860
tttcatgaaa	aacacttgtt	caatggcttt	agctttgtgt	aactttcaag	tcctggagac	1920
ctcgagggat	tgttctagtg	agtaaccaaa	tctcttgtaa	aatgtatatg	atccaaactc	1980
aaacgggctt	ttgtaaagct	tgtacctagg	aaagattcta	atttatagat	ctactatcat	2040
aactgccaat	aacttggcag	taagaatggt	caaagaatta	attaattatt	atcaaaactg	2100
gaaggagtaa	attatttaaa	tcttaaaaaa	acaagggagg	aagttagaat	tcattgattg	2160
aaaggggggg	gggggatatg	atgtagggta	tgtgggaagt	agaagttagg	gggacaatcg	2220
aagaaaaagg	tagtcggaga	agatatggat	tcgcttcttt	taacgagaca	agcetttgge	2280
caactctttc	ttggtaatga	gagagagaga	gagagagaga	gagagagatg	ggaaagcacg	2340
cttcgagtta	taatcctttt	taacagtaaa	tctaactcca	tcttttatcc	ttgtaataaa	2400
aatctcattc	tgacacacac	aacacatgtg	tgtgtgtgtc	gtgtgtgtgt	gtctcttggc	2460
atgcggtggc	ctttcttctt	cttattttga	attatgtctt	gaaacctccc	atgtttgatt	2520
catttctgta	tagcgtttgt	ggtggtgtaa	actctctgct	agcgtctgtc	cttcagtgtt	2580
ctcaaagtaa	tttccctccc	tgctcaacca	caactaatgg	ttctttgacc	cgaagatttt	2640
gteteteeet	gcccgattgc	atttagattt	cgccattgta	ctttgctgta	ccttatcctg	2700
tatggcatag	aggatgaatg	aataagagta	attataataa	aaagttaaag	tttataataa	2760
caataaagag	agagaggggt	cgctttctcc	tgatagtagt	aggatactgt	tgatgtggtt	2820
taccacagca	tgtctaggct	agaagacaag	tetgttetge	tttgaaaaga	aacactttat	2880
gtgagagctc	tgactggttc	tgacgcatgg	aacccattaa	aataacatgt	ctttctcttt	2940
tctctaacca	ccctctacta	cageteteta	gtccctagtc	tctcttgcct	gctatttcct	3000
gtctggcatc	ggcatgtatg	aattgggcac	cagcttcaag	ccttctcaca	attaaaagct	3060
taaatgcgca	tgctttcaag	tgcctcggca	tactgacgtt	ttcccacact	ctatgtgatc	3120
agcatttgta	gatgacactg	acacgttttg	ctggatcggt	tcttggagtt	gtttaatcat	3180
ttaaaatgcc	ggcctcttta	gcttggttgg	tggtctttgt	tttttcacaa	tattattatt	3240
attattaaga	tgacccatgc	attgatatat	atatatatat	atatatatat	atatatat	3300
atatatatat	atatatatat	atatatatat	atgttatgaa	acccatttaa	attatggttt	3360
tttaagacat	taattattaa	tcaattttgt	gaggtcacgt	ctttcatcat	caccttcttg	3420
tttttgttgc	atccatggtg	atcttcgtat	tcttgcctta	gctggtgcct	ggtccattat	3480
ataatggcat	cccatagtta	tgtaaattta	cttttcatgt	ggagtagttt	aaaaataaaa	3540
atcaatggcg	tctcatagat	ctccatctat	gaacattaat	tagttttctt	ctactgtggt	3600
tccgtataat	ccctacccac	cagctaacga	agccttaaac	atggtgcttc	tgctgaatca	3660
ctgaaccgta	actagcaact	tgctctagct	agcttcgcat	aagttcaaat	gatggaataa	3720
aaaaaatta	tggctgaaag	tttcattaca	tgtatcttct	gctagctgtt	gttgcatgat	3780
gcaattgcta	cgtgtgcatg	catagccgtc	gtctctgtat	ttatctttt	atgctttaca	3840
tggtgtccac	tttgtttcag	gtgtgttcaa	cgtggcgagc	agtctcgcgt	tcggatcctc	3900
tttggcaccg	tctcactcgc	ggtatctggg	gccgcaccaa	ccttttccat	gacacttggc	3960
gagaggagta	tatctaccgc	caccaaacgg	cccaaaactt	ccgatccgga	agagctgtcc	4020

_

				-contin	nuea	
atttcgctct	ccactttgat	ccagctgatg	tggatgaccc	caacgaccct	gatgctctaa	4080
tatgccgctg	tctcgctttc	tccgatcgct	accttgcatg	cggttttgct	gacggcgctg	4140
tccgcctctt	tgatctcacc	acgcgccttc	atgcacgcac	tttccgccct	gaacaccatg	4200
accgcctggg	caggttctct	cgtgcggtct	cgggcatcgt	catcacggcc	acacgcttgg	4260
tgtttgccac	gttagatggt	gatatccacg	tggcggcggt	aaatagcaat	gccaatccac	4320
ggagggcccg	cttaggtgag	gtgttgaacg	acggggcatt	agtggacttc	acgggccgtg	4380
ggcgatggtg	ggtgggccta	tacgctgggc	ttccgggccg	ggcctatcgt	gtctgggatg	4440
gtaacaccga	agaacctctc	tttgaaggcg	gggcgttgac	tgacccagag	gctgtgttgg	4500
gttggcacac	gttgacagaa	gtgactgagt	ttgtgggccg	agtcagggtc	acgagtcagg	4560
aatcggtcgt	ggcatgcacg	agttcgagac	ttgttattt	tgatttgggg	gaccttgggg	4620
ctgtactaag	ggaggaggac	tacactaaca	ggagaggcat	cttggtgggt	tccttcgacg	4680
tatgcaatga	ggcgtatgtg	attgtagatg	gcagggggaa	tgctagcgtg	cgcagggcgg	4740
acacctcgga	ggagatgtgt	ggctttaccg	tgaggcctcc	aagggggagtg	cttgggtgca	4800
tgaatggtgg	gtacgtgcta	acgtgcgcgg	gtggtgtagt	aagggtatgg	cagatagagc	4860
agcctggtcg	ccaagagtat	ttgtatagct	tcagggagag	gataggcgag	gtaaacgctc	4920
tcgttgcaga	tgagaggcac	gtggcagcag	catcaagtga	cacgaatata	cacctgtggg	4980
attttggggc	acagtaggtg	gagggcacgg	ggggtggggg	tagggttagg	gttaggcgac	5040
ctgacctaga	aagggaaata	gacctaagct	aagatggagg	ggggatggtg	acaagagggg	5100
atgtaggctc	tcggtagggt	ttagatttag	ttttagcacg	aggaacctga	tatctttgac	5160
ttgtatgaaa	gtagcttgtg	atttttgata	tggagag			5197
				35	i	

What is claimed is:

1. An isolated polynucleotide comprising: a contiguous coding sequence encoding a polypeptide having at least 95% identity with SEQ ID NO:2, or the complement thereof, or the 40 reverse complement thereof.

2. A vector comprising the polynucleotide of claim 1.

3. A polynucleotide construct comprising a promoter operably linked to the polynucleotide of claim 1.

4. The construct of claim 3, wherein the promoter com-45 prises a constitutive promoter.

5. A plant cell comprising the construct of claim 3.

6. A plant comprising the plant cell of claim 5.

7. The plant of claim $\mathbf{6}$, wherein the plant exhibits increased expression of the polypeptide, relative to a control plant lack-50 ing the construct.

8. The plant of claim 6, wherein the plant exhibits increased growth.

9. The plant of claim 6, wherein the increased growth includes at least one of increased leaf area, increased leaf length, increased leaf width, increased plant height, increased leaf number, increased branch length, and increased stem diameter, relative to a control plant lacking the construct.

10. The plant of claim 6, wherein the plant comprises leaves having an average length at least 20% greater that the 60 average length of leaves of a control plant lacking the construct.

11. The plant of claim 6, wherein the plant has reduced fertility relative to a control plant lacking the construct.

12. The plant of claim 6, wherein the plant is sterile.

13. The plant of claim 6, wherein the plant is a tree.

14. The tree of claim 13, wherein the tree is a poplar, aspen, pine, eucalyptus or sweetgum tree.

15. An isolated polypeptide comprising a sequence having at least 95% identity with SEQ ID NO: 2.

- 16. A method of producing a transgenic plant comprising: (a) introducing into a plant cell a polynucleotide encoding a polypeptide comprising an amino acid sequence having at least 95% identity with SEQ ID. NO 2; and
- (b) regenerating the transformed cell to produce a transgenic plant.

17. The method of claim 16, wherein the polypeptide has activity that promotes cell division.

18. The method of claim 16, wherein the plant exhibits increased growth.

19. The method of claim 16, wherein the plant has reduced fertility relative to a control plant.

20. The method of claim 16, wherein the plant is a tree.

21. The method of claim 20, wherein the tree is a poplar, aspen, pine, eucalyptus or sweetgum tree.

- 22. A transgenic plant produced by the method of claim 16.
- 23. A method of producing a transgenic plant comprising:
- (a) introducing into a plant cell a polynucleotide having at least 95% identity to the reverse complement of SEQ ID. NO: 1 and operably linked to a promoter; and
- (b) regenerating the transformed cell to produce a transgenic plant.

24. The method of claim 23, wherein the plant exhibits decreased growth, sterility, or a combination thereof.

> słc sk