
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2016

SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS

FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS

PARALLEL COMPUTING PLATFORMS PARALLEL COMPUTING PLATFORMS

Lengfei Han
Michigan Technological University, lengfeih@mtu.edu

Copyright 2016 Lengfei Han

Recommended Citation Recommended Citation
Han, Lengfei, "SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR ENERGY-EFFICIENT
TERAFLOP HETEROGENEOUS PARALLEL COMPUTING PLATFORMS", Open Access Dissertation,
Michigan Technological University, 2016.
https://digitalcommons.mtu.edu/etdr/86

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Electronic Devices and Semiconductor Manufacturing Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=digitalcommons.mtu.edu%2Fetdr%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages

SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR

ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS PARALLEL

COMPUTING PLATFORMS

By

Lengfei Han

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2016

© 2016 Lengfei Han

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Engineering.

Department of Electrical and Computer Engineering

Dissertation Advisor: Dr. Zhuo Feng

Committee Member: Dr. Kuilin Zhang

Committee Member: Dr. Zhenlin Wang

Committee Member: Dr. Zhengfu Xu

Department Chair: Dr. Daniel R. Fuhrmann

Dedication

To my parents, wife and son

Contents

List of Figures . xi

List of Tables . xiii

Preface . xv

Acknowledgments . xvii

Abstract . xix

1 Introduction . 1

1.1 Post-layout RF Circuits Harmonic Balance Analysis 3

1.2 Reliability and Yield Analysis of Small Circuit 5

1.3 Overview of Chapters . 7

2 Scalable Harmonic Balance Analysis of Post-Layout RF Circuits

Leveraging Heterogeneous Platform 9

2.1 Background and Overview . 9

2.1.1 Review of Harmonic Balance Analysis 10

2.1.2 Graph-based Preconditioning Approaches 13

2.1.2.1 Graph Sparsification Problems 13

2.1.2.2 Ultra-sparsifier Support Graph Preconditioners . . 14

2.1.3 Overview of Proposed Support-Circuit Preconditioning Ap-

proach . 16

2.2 Support-circuit Preconditioner for HB Analysis 18

vii

2.2.1 Sparsification of Representative Laplacian Matrices 19

2.2.1.1 Extraction of Representative Laplacian Matrices . 19

2.2.1.2 Sparsification of Representative Laplacian Matrices 21

2.2.2 Sparsification Pattern Extraction 22

2.2.3 HB Jacobian Preconditioner Construction 24

2.2.4 Case Study: Double-balanced Gilbert Mixer Sparsification . 25

2.3 Parallel Block Sparse Matrix Direct Solver 27

2.3.1 LU Data Dependency Analysis 28

2.3.2 “Fake” Dependencies in LU Factorization 29

2.3.3 Parallel LU Task Scheduling 31

2.3.4 Test Matrix Factorization 31

2.3.5 The Sparse Block LU Algorithm 32

2.4 Transient Analysis Guided Sparsification 33

2.4.1 HB Simulation Runtime Profiling 34

2.4.2 Runtime Performance Modeling 36

2.4.2.1 CPU Only Platform Performance Model 38

2.4.2.2 CPU-GPU Platform Performance Model 38

2.4.3 Nearly-optimal Sparsification Scheme 40

2.5 The Scalable HB Analysis Algorithm 42

2.6 Experiment Result . 45

2.6.1 Experimental Setup . 45

2.6.2 Experimental Results . 46

2.6.3 Scalability . 49

3 Massively Repeated Small Circuit Simulation on GPU 51

3.1 Background and Overview . 51

3.1.1 Nonlinear Circuit Simulation Approaches 51

3.1.2 Massively Parallel GPU Computing 52

3.1.3 Overview of our approach 53

viii

3.2 Device Evaluation and Stamping on GPU 55

3.2.1 Device Evaluation on GPU 55

3.2.2 Jacobian Matrix Data Format and Stamping on GPU 58

3.2.2.1 Dense Jacobian Matrix and Stamping 58

3.2.2.2 GPU Sparse Jacobian Matrix and Stamping 59

3.2.3 RHS and Excitation Sources 61

3.3 Matrix Solver on GPU . 62

3.3.1 GPU-based Levelized LU Factorization 63

3.3.2 Circuits Clustering . 64

3.4 GPU Optimization . 66

3.4.1 Data Allocation and Access Optimization 66

3.4.2 Thread Organization . 67

3.4.3 Jacobian Matrix Format Determination 69

3.5 Algorithm Flow for TinySPICE . 69

3.5.1 CPU and GPU Cooperation 69

3.5.1.1 CPU Setup Phase 70

3.5.1.2 GPU setup and analysis phase 71

3.5.2 NR Iteration algorithm on GPU 71

3.5.3 DC Simulation Flow . 72

3.5.4 Transient Simulation Flow 73

3.6 Experiment Result . 75

3.6.1 Experimental Setup . 75

3.6.2 Experimental Results . 76

3.6.2.1 Accuracy of Parametric 3D LUT 76

3.6.2.2 Runtime Results 79

4 Conclusion and Future Work . 83

4.1 Conclusion of the dissertation . 83

4.2 Future Work . 84

ix

References . 87

A Letters of Permission . 95

A.1 Permission Letters for Chapter 2 95

A.2 Permission Letter for Chapter 3 . 98

x

List of Figures

2.1 From sparsification of MNA matrix to sparsification of HB Jacobian

matrix problems . 16

2.2 Circuit MNA matrices decomposed into Laplacian and complement

matrices . 20

2.3 MNA matrix sparsification pattern 24

2.4 HB Jacobian matrix construction 25

2.5 An RF mixer design (left) and the circuit network (right) corresponding

to its Laplacian matrix . 26

2.6 MOSFET model . 27

2.7 Sparsification of the Laplacian graph of an RF mixer circuit 27

2.8 Upper matrix factor and its DDG 30

2.9 Lower matrix factor and its improved DDG 30

2.10 Runtime profiling for solving two sparsified graphs 35

2.11 HB simulation runtime with different sparsity 35

2.12 TR simulation runtime vs. HB simulation runtime 38

2.13 Performance-guided sparsification scheme 41

2.14 HB analysis runtime vs. the input power for an RF mixer circuit . . 47

2.15 Convergence rate/time comparisons of SCPHB and ILU algorithms 48

2.16 Waveform result comparison between direct solution method and pro-

posed iterative method . 49

2.17 Results on runtime scalability . 50

2.18 Results on memory scalability . 50

xi

3.1 TinySPICE: massively parallel SPICE simulation program on GPUs 54

3.2 Vector for storing 3D LUTs. 57

3.3 MOSFET stamping location map for dense and sparse matrix format.

. 61

3.4 Vectors for storing excitation sources on GPU. 62

3.5 Levelized LU factorization task list. 63

3.6 GPU data structure for the LU factorization task list. 64

3.7 Circuit clustering. 65

3.8 The solution vector data access pattern on GPU. 67

3.9 The algorithm flow of TinySPICE. 68

3.10 The DC simulation flow of TinySPICE. 73

3.11 TR simulation algorithm flow. 74

3.12 The I-V characteristics obtained by parametric 3D LUT and Bsim4

model evaluations. Circles denote the LUT evaluation results. . . . 77

3.13 Scatter plot of the DC simulation results for SRAM circuits obtained

by TinySPICE and the original Bsim4 SPICE simulator. 78

3.14 Comparison of DC Simulation Runtime 79

3.15 Comparison of Transient Simulation Runtime 80

3.16 Memory usage (shared memory + registers) vs. speedups 81

xii

List of Tables

2.1 Experimental circuit descriptions 44

2.2 Results of runtime and memory cost. 45

3.1 Experimental setup of test cases. 76

3.2 DC Simulation Runtime Results of TinySPICE with Dense Format 78

3.3 Transient Simulation Runtime Results of TinySPICE with Dense For-

mat . 78

3.4 DC simulation runtime results of TinySPICE with sparse format. . 81

3.5 Transient Simulation Runtime results of TinySPICE with sparse for-

mat . 81

xiii

Preface

This dissertation presents my research work in pursuing the PhD degree in Computer

Engineering at Michigan Technological University. This dissertation includes previ-

ously published articles in Chapter 2 and Chapter 3. All the research works descried

herein were conducted under the supervision of my advisor Professor Zhuo Feng.

Chapter 2 contains two articles published in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems and 52nd Design Automation Conference.

As the first author of both papers, with the guidance of my advisor, I completed

most parts of algorithm design, implementation, and analysis. Xueqian Zhao, as

the second author of the paper published in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, implemented the ultra-sparsifier generation

algorithm. The two papers themselves were completed by me and my advisor.

Part of Chapter 3 was published in 50th Design Automation Conference. As the first

author, with the guidance of my advisor, I proposed the algorithm and completed its

implementation. Xueqian Zhao, as the second author, provided invaluable revision

advice of the paper. This article was completed by me and my advisor.

xv

Acknowledgments

First and foremost, I would like to thank my advisor Professor Zhuo Feng for his sup-

port and guidance throughout my stay at Michigan Tech. Professor Feng introduced

me to most of the topics presented in this dissertation. Without his continued sup-

port, skillful guidance, and insightful advice, most ideas presented in this dissertation

would have not materialized. I am also grateful for his encouragement and patience

through the ups and downs of my PhD research years.

I would like to thank all my dissertation committee members, Professor Zhenlin Wang,

Professor Zhengfu Xu and Professor Kuilin Zhang for their time and invaluable advice

during the dissertation process. Thanks to Professor Shiyan Hu for serving on my

qualifying examination and proposal committee.

I also want to thank my friends at Michigan Tech, Xueqian Zhao, Caoyang Jiang,

Jia Wang, Bojun Ma, Yonghe Guo, Liang Ma, Lin Liu and Yuchen Zhou for their

help and supports. Countless discussions with Xueqian Zhao on graph sparsification

technology were very helpful to insight me how to apply this new technology to the

harmonic balance analysis projects. Caoyang Jiang is always energetic and passionate

on discussing the GPU programming techniques.

Finally, and most importantly, I would like to thank my family. Without their un-

conditioned love and support, it is impossible for me to get this far. My parents

are always standing behind me with unending encouragement and support. My wife,

Hao Meng, spent lots of time taking care of our family, even when she had her own

research work to do. I give my greatest gratitude to her.

xvii

Abstract

Integrated circuit technology has gone through several decades of aggressive scal-

ing. It is increasingly challenging to analyze growing design complexity. Post-layout

SPICE simulation can be computationally prohibitive due to the huge amount of

parasitic elements, which can easily boost the computation and memory cost. As

the decrease in device size, the circuits become more vulnerable to process variations.

Designers need to statistically simulate the probability that a circuit does not meet

the performance metric, which requires millions times of simulations to capture rare

failure events.

Recent, multiprocessors with heterogeneous architecture have emerged as mainstream

computing platforms. The heterogeneous computing platform can achieve high-

throughput energy efficient computing. However, the application of such platform

is not trivial and needs to reinvent existing algorithms to fully utilize the comput-

ing resources. This dissertation presents several new algorithms to address those

aforementioned two significant and challenging issues on the heterogeneous platform.

Harmonic Balance (HB) analysis is essential for efficient verification of large post-

layout RF and microwave integrated circuits (ICs). However, existing methods either

suffer from excessively long simulation time and prohibitively large memory consump-

tion or exhibit poor stability. This dissertation introduces a novel transient-simulation

guided graph sparsification technique, as well as an efficient runtime performance

modeling approach tailored for heterogeneous manycore CPU-GPU computing sys-

tem to build nearly-optimal subgraph preconditioners that can lead to minimum HB

simulation runtime. Additionally, we propose a novel heterogeneous parallel sparse

block matrix algorithm by taking advantages of the structure of HB Jacobian matrices

as well as GPU’s streaming multiprocessors to achieve optimal workload balancing

xix

during the preconditioning phase of HB analysis. We also show how the proposed

preconditioned iterative algorithm can efficiently adapt to heterogeneous computing

systems with different CPU and GPU computing capabilities. Extensive experimen-

tal results show that our HB solver can achieve up to 20X speedups and 5X memory

reduction when compared with the state-of-the-art direct solver highly optimized for

twelve-core CPUs.

In nowadays variation-aware IC designs, cell characterizations and SRAM memory

yield analysis require many thousands or even millions of repeated SPICE simulations

for relatively small nonlinear circuits. In this dissertation, for the first time, we present

a massively parallel SPICE simulator on GPU, TinySPICE, for efficiently analyzing

small nonlinear circuits. TinySPICE integrates a highly-optimized shared-memory

based matrix solver and fast parametric three-dimensional (3D) LUTs based device

evaluation method. A novel circuit clustering method is also proposed to improve

the stability and efficiency of the matrix solver. Compared with CPU-based SPICE

simulator, TinySPICE achieves up to 264X speedups for parametric SRAM yield

analysis without loss of accuracy.

xx

Chapter 1

Introduction

As relentless technology scaling reaches into the sub-16nm regime, integrated circuit

(IC) designers are facing phenomenal growth of design complexity: present-day mul-

ticore/manycore microprocessors integrate billions of transistors into a single chip,

while emerging three-dimensional ICs (3D-ICs)[1, 2] integrate multiple active layers

in the vertical direction. Key VLSI subsystems such as embedded memory arrays and

analog and mixed-signal systems may reach an unprecedented complexity of hundreds

of millions of circuit components (nodes), making their modeling, analysis and verifi-

cation tasks prohibitively expensive and even intractable. It is not rare to experience

analog and RF circuit simulations that take a few days or weeks to finish.

Although there has been tremendous evolution in shifting traditional sequential Elec-

tronic Design Automation (EDA) tools into their parallel implementations for modern

multicore computers in the past decade [3, 4, 5, 6, 7, 8, 9, 10, 11], the future multi-

core computing will apparently be hindered by the dramatically-increased chip power

consumption and slowly-improved heat sinking capability. As a result, present-day

computer architects and research community are forced to seek alternative paradigms

1

to sustain ever-increasing performance. The industry realized the only viable solution

was to replace some of the large yet power-inefficient general purpose processors by as

many as possible slimmers but much more energy-efficient co-processors on the same

chip[12], building so-called heterogeneous computing platforms. Recent multipro-

cessors with such heterogeneous architectures have emerged as mainstream comput-

ing platforms, which typically integrate a variety of processing elements of different

computing performance, programming flexibility and energy efficiency characteristics.

Heterogeneous computing platforms, such as IBM/Sony Cell architectures, personal

computers (PCs) with multicore CPUs and manycore GPUs, and the latest low-power

heterogeneous microprocessors (e.g. APU from AMD[13], Larrabee from Intel[14],

Tegra from Nvidia[15]), can theoretically achieve unprecedented high performance

and high energy efficiency simultaneously. With such heterogeneous computing ar-

chitectures, VLSI CAD developers will face tremendous opportunities to revolutionize

EDA industry, thereby targeting much greater performance and energy efficiency.

The goal of this work is to investigate and develop scalable IC modeling, simulation,

and verification methods for emerging heterogeneous parallel architectures by rein-

venting CAD algorithms/data structures and exploiting powerful hardware-specific

computing performance/energy modeling and optimization approaches. A coherent

set of VLSI CAD problems will be targeted and investigated in this dissertation as

followings:

† Scalable post-layout RF circuits harmonic balance analysis

† Reliability and yield analysis of small circuit

† Hardware-specific performance modeling for heterogeneous computing architec-

tures

2

1.1 Post-layout RF Circuits Harmonic Balance

Analysis

The rapid growth of demand for high-performance wireless systems has increased

the need for more efficient, accurate, and robust simulation method for RF circuits.

Harmonic balance method is the typical choice for steady state analysis, which can

captures the spectral response directly. Traditional HB methods require solving very

large yet non-sparse Jacobian matrices, which can take excessively long simulation

time and consume a large amount of memory resources when using direct solution

methods [16]. As a result, some of existing industrial HB simulators separate the

nonlinear and linear parts of the circuit such that the computational cost can be

effectively reduced. Unfortunately, such splitting methods assume that the coupling

effects between the linear and nonlinear circuit components are relatively weak, and

therefore may not be suitable for dealing with large post-layout RF and microwave

circuits that involve a lot of parasitics.

To achieve greater computing efficiency than the traditional direct solution methods,

several preconditioned Krylov-subspace iterative methods have been investigated and

developed in recent years [16, 17, 18, 19]. However, developing high-quality pre-

conditioners for HB analysis has been a very challenging task, since the convergence

property of the preconditioned iterative methods for HB analysis strongly depends on

the effectiveness of the underlying preconditioners, especially when using the Krylov-

subspace iterative methods, such as the GMRES algorithm [20]. For instance, al-

though prior preconditioning methods have shown promising results for trading off

the computational efficiency and preconditioning effectiveness, they can be inevitably

facing with a variety of limitations and difficulties when handling large and strongly

3

nonlinear post-layout RF and microwave circuits: the block-diagonal averaging pre-

conditioners are easy to compute but only limited to handle weakly nonlinear systems

[21]; the hierarchical HB preconditioner proposed in [18] is more effective than the

block-diagonal preconditioner and also suitable for parallel computing, but can lead

to poor performance or divergence when handling strongly-nonlinear RF ICs since the

frequency domain decomposition scheme will introduce large errors during the pre-

conditioning step; another finite-difference Jacobian preconditioner can easily deal

with strongly nonlinear systems, but will not work for more than one tones in HB

analysis, as discussed in [16]; in a most recent work [16], a sparse block direct solver

is developed for solving the Jacobian matrices of HB, but it will consume much more

computational resources than iterative methods and cannot scale well with large RF

circuit designs. As a result, there is not a preconditioning method that can work

robustly for a wide variety of RF and microwave circuits analysis problems, and at

the same time be computationally efficient (scalable to large problems sizes). Con-

sequently, it is very desirable to develop efficient yet robust solvers to facilitate fast

HB analysis for addressing the challenges in future large-scale RF and microwave IC

design and verification procedures.

In this dissertation, recent graph sparsification and support-circuit preconditioning

techniques [22, 23, 24, 25] are exploited for developing scalable Jacobian matrix solvers

on Heterogeneous platform that can tackle large-scale strongly nonlinear post-layout

HB analysis problems. Our approach starts with sparsifying the HB Jacobian ma-

trix with the performance guided sparsification model. We show that the resultant

sparsified Jacobian matrix can be used as a robust yet efficient preconditioner in

HB analysis. Subsequently, the proposed parallel sparse block solver can solve the

preconditioned system rapidly to accelerate the preconditioned Krylov-subspace it-

erative solving process. Our experimental results show that when compared with

the state-of-the-art direct solution method [16], the proposed HB solver can more

efficiently handle moderate to strong nonlinearities during the HB analysis of large

4

RF circuits, achieving up to 20X speedups and 5X memory reductions. The main

technical contributions of this work have been summarized as follows.

1. Proposed a circuit-oriented support-circuit preconditioning approach that can

scale almost linearly with large-scale strongly nonlinear post-layout RF circuit.

2. Proposed a GPU-friendly sparse block matrix solver for fast solving the precon-

ditioner matrix.

3. Proposed a transient-analysis guided hardware-specific graph sparsification

scheme to help automatically compute nearly-optimal preconditioners.

1.2 Reliability and Yield Analysis of Small Circuit

Reliability and yield analysis of embedded SRAM memory modules are critical

to designs of modern microprocessors, 3D-ICs, and mixed-signal SOCs. However,

nanoscale SRAM designs are significantly challenged by prohibitively high compu-

tation cost due to the extremely large number of repeated SPICE simulations con-

sidering parametric variations [26, 27, 28, 29, 30]. Additionally, current variation-

aware design methodologies require extremely fast cell/driver characterization capa-

bility capturing important process, voltage supply, and temperature (PVT) variations

[31, 32], which also demands for much more powerful simulation methodologies. For

instance, SRAM readability, writability and stability analysis considering threshold

voltage (Vth), effective channel length (Leff) and power supply variations require tens

of millions of repeated SPICE simulations for a given design, while variation-aware

cell modeling and characterizations also involve constructing look-up tables (LUTs)

for capturing all fast/slow corners that require running many thousands of SPICE

simulations [31, 32, 33].

5

Although there have been works that target accelerating SPICE simulations by per-

forming device evaluations on GPU’s hundreds of streaming processors and sparse

matrix solves on CPU [34], only a small fraction of the computations can be ac-

celerated on GPU, while the overall simulation performance is still limited by the

relatively low communication bandwidth and large latency between the CPU and

GPU. As a result, only 2X speedups have been obtained when compared with the

CPU-based SPICE simulator [34]. Since sparse matrices derived from general non-

linear circuits are typically large scale and asymmetric, no sparse matrix algorithm

have been efficiently accelerated on GPU due to a large amount of memory accesses

and complicated algorithm flow. Consequently, accelerating the entire computations

involved in general-purpose SPICE simulations on GPU remains impractical consid-

ering present-day GPU computing limitations. However, there is still a strong need

to consider accelerating application-specific SPICE simulations on GPU for achieving

much higher computing performance.

In this work, we present a massively parallel SPICE simulator on GPU, TinySPICE,

which accelerates the entire SPICE simulation computations on GPU without in-

troducing excessive CPU-GPU data communications and device memory accesses.

TinySPICE can analyze small nonlinear circuits in GPU’s shared memory and thus

gains unprecedentedly high computational throughput. The proposed series of highly-

optimized shared-memory based sparse matrix construction and solution techniques

allow TinySPICE be able to handle much larger circuits while still being able to

achieve orders of magnitude speedup over traditional CPU-based SPICE-like simula-

tion engines. We develop novel GPU-friendly data structures and efficient algorithm

flow for every kernel function of the SPICE algorithm that includes device evalua-

tions, matrix construction, linear system solving and Newton-Raphson (NR) itera-

tions. TinySPICE is capable of solving thousands of small circuit simulation problems

in GPU’s shared memory concurrently, and achieves unprecedented high-performance

massively parallel SPICE simulations on GPU. Compared with CPU-based SPICE

6

simulators, TinySPICE achieves up to 264X speedups for a variety of circuit anal-

ysis problems without loss of accuracy. Key contributions of this work have been

summarized as follows:

1. We propose a massively parallel SPICE simulation engine which is able to per-

form DC and TR analysis entirely on GPU.

2. We propose a series of shared-memory based matrix storage format and ma-

trix solution method to guarantee the simulator can utilize the GPU hardware

resources in the most efficient way for different size of circuit designs.

3. We propose a novel circuits clustering/classification procedure that will allow to

simulate circuits with similar statistical properties (performance) on the same

streaming multiprocessor (SM) of each GPU, which can effectively minimize the

rounding errors and GPU thread divergences during the sparse matrix factor-

ization procedure.

4. We also present a series practical techniques for optimizing GPU’s memory

usage considering GPU-specific data structures and access patterns to achieve

optimal computing throughput.

1.3 Overview of Chapters

This dissertation consists of four chapters. Chapter 1 presents the introduction of the

two major problems addressed in this dissertation and the summary of our contribu-

tions. Chapter 2 presents the new harmonic balance solver which integrates a novel

circuit-oriented preconditioner and parallel sparse block matrix solver. In Chapter 3,

the proposed new massively parallel small circuit simulator on GPU is described in

7

details. The dissertation concludes with Chapter 4, which summarizes the work and

discuss directions for future research.

8

Chapter 2

Scalable Harmonic Balance

Analysis of Post-Layout RF

Circuits Leveraging Heterogeneous

Platform1

2.1 Background and Overview

We first review the basics of harmonic balance (HB) method for steady-state simu-

lations of RF circuits. Then, we provide a brief introduction to graph sparsification

theory and its applications in developing scalable preconditioned iterative matrix

solvers.

1 The material contained in this chapter was previously published in “IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems” ©2015 IEEE and “Proceedings of
ACM/IEEE Design Automation Conference (DAC)” ©2015 IEEE. See Appendix A.1 for copies
of the copyright permission from IEEE.

9

2.1.1 Review of Harmonic Balance Analysis

Compared to time-domain analysis that can be obtained by performing transient (TR)

circuit simulations, steady-state simulations of RF and microwave circuits typically

require HB analysis [16, 17, 18, 19, 21, 35] that can naturally handle frequency-domain

data such as S-parameters of linear networks. The basic theory of HB method is

introduced as follows. Consider a non-autonomous circuit analysis problem described

by the following equation:

∫ t

−∞

y (t− s) x (s) ds+
dq (x (t))

dt
+ f (x (t)) + b (t) = 0, (2.1)

where x (t) ∈ ℜn represents a set of state variables, n is the number of unknowns,

y is the matrix-valued impulse response function of frequency-domain linear circuit

components (such as S-parameter models), q(•) denotes a function for the nonlinear

charge and flux, f(•) represents the static (memoryless) nonlinearities, and b rep-

resents the time-dependent excitations that are assumed to be periodic with a time

period T . The circuit steady-state response x(t), and functions q(•) as well as f(•)

will be periodic with period T . By writing the above equation in frequency domain

and applying Newton-Raphson (NR) method, it can be shown that the linearized

system in frequency domain becomes:

Y X + ΩΓCΓ−1X + ΓGΓ−1X −B = 0, (2.2)

where X and B denote the Fourier-coefficient vector of x(t) and b(t) respectively, Ω is

a diagonal matrix denoting the frequency domain differentiation operator, Γ and Γ−1

are the fast Fourier transform(FFT) and inverse FFT(IFFT) matrices, while C and

G are block diagonal matrices with block diagonals representing the linearizations of

q(•) and f(•) at h time-domain sampled points that can be described as follows for

10

i = 1, ..., h, respectively:

C = diag
{

ci = δq/δx|x=x(ti)

}

; (2.3)

G = diag
{

gi = δf/δx|x=x(ti)

}

. (2.4)

When the double-sided FFT/IFFT are used, a total number of h = 2k+1 harmonics

are included to represent each signal, where k is the number of positive frequencies

being considered.

In each NR step, a linearized system is solved with a Jacobian matrix of (2.2):

Jhb = Y + ΩΓCΓ−1 + ΓGΓ−1. (2.5)

The most time-consuming step in HB analysis is the one for solving the large yet

non-sparse Jacobian matrix Jhb shown in (2.5). It can be shown that the dense blocks

in Jhb are mainly due to the block-circulant matrices ΓCΓ−1 and ΓGΓ−1 [21]. For

instance, the block-circulant matrix ΓGΓ−1 can be expressed as:

Γ

g1
. . .

gh

Γ−1 =

G1 G2 · · · Gh

Gh G1
. . .

...
...

. G2

G2 · · · Gh G1

= circulant(G1, · · · , Gh).

(2.6)

As a result, directly solving such a Jacobian matrix using LU-based direct solution

method can be very runtime and memory costly due to the very dense matrix structure

and a large number of fill-ins introduced during the factorization procedure. Consider

a recent state-of-the-art HB simulator developed in [16]. It has been shown that HB

analysis of a post-layout RF circuit (LNA+mixer+filter) with 44K nodes and 20

11

harmonics will result in a Jacobian matrix with more than 1.8 million unknowns

that would require around 100 hours and more than 15GB memory when using LU-

based direct solution method. On the other hand, the runtime and memory costs

for another smaller test case (with half problem size) are 10X less than the previous

case, indicating a rather poor algorithm scalability.

To avoid the direct factorization of large and dense Jacobian matrices in HB anal-

ysis, iterative methods can be applied to dramatically improve the computing effi-

ciency. Krylov-subspace iterative methods, such as GMRES method [20], are partic-

ularly suitable for such problems since only the matrix-vector operations are needed

throughout the solution procedures. It has been shown that for HB analysis, the

matrix-vector product:

JX = Y X + ΩΓCΓ−1X + ΓGΓ−1X (2.7)

can be computed very efficiently, without explicitly forming the real Jacobian matrix.

Unfortunately, iterative methods, such as Krylov-subspace iterative methods in par-

ticular, may suffer from slow convergence or even divergence issues unless robust

preconditioners are adopted. However, finding efficient yet robust preconditioners for

tackling general HB simulation tasks remains an open problem. A good introduction

of existing preconditioning methods for HB analysis of RF circuits can be found in

[16].

12

2.1.2 Graph-based Preconditioning Approaches

Recently, a series of support-graph based preconditioning techniques has been intro-

duced to solve circuit simulation problems. For instance, a support-graph precondi-

tioned solver was presented in [22] for solving linear circuit networks, and support-

circuit preconditioning techniques for nonlinear transistor-level circuit simulations

were proposed in [23, 24], which have been shown to achieve nearly-linear runtime

and memory efficiency. In this section, the related background and techniques will

be described in details.

2.1.2.1 Graph Sparsification Problems

General linear circuit analysis problems can be converted into equivalent graph prob-

lems [36]. For instance, a linear resistive network can be represented by a weighted,

undirected graph G = (V,E,w), where V is a set of vertices, E is a set of edges, and

w is a weight function that assigns a positive weight to every edge. The Laplacian

matrix A of a weighted graph is defined as follows:

A(s, d) =

−w(s, d) if (s, d) ∈ E

sum(s) if (s = d)

0 if otherwise

(2.8)

where sum(s) =
∑

(s,v)∈E w(s, v) denotes the sum of the incident weights of vertex s.

From (2.8), we can observe that Laplacian matrix is a symmetric matrix with non-

positive off-diagonals and zero row sums, which can be considered as an admittance

matrix in circuit theory. For a vector x ∈ ℜV , the Laplacian quadratic form of G is

13

defined to be:

xTAx =
∑

(s,d)∈E

ws,d(x (s)− x (d))2. (2.9)

It can be seen that Laplacian matrix A provides a measure of the smoothness of x over

the edges in G [37], since the more x changes over an edge, the larger the quadratic

form becomes.

Graph sparsification is a very important technique that has been playing significant

roles in designing nowadays efficient graph algorithms [37, 38, 39, 40, 41]. Given a

graph G = (V,E), a graph sparsifier (a.k.a support graph) G′ is a sparse subgraph

of G that can approximate G in some measures such as the pairwise distance, cut

values or the graph Laplacian. The goal of graph sparsification is to approximate

a given graph G by G′ on the same set of vertices such that G′ can be used as a

proxy for G in numerical computations without introducing too much error. A good

sparsifier should have very few edges that will immediately result in significantly

reduced computation and storage cost. More details of this technique can be found

in recent research papers [39, 40, 41].

2.1.2.2 Ultra-sparsifier Support Graph Preconditioners

Support-graph preconditioning is to first construct a graph G according to a given

graph Laplacian matrix A, and then extract the support graph G′ of G that can be

further used to build a preconditioner P for iterative solvers such as conjugate gradi-

ent (CG) or GMRES solvers. In practice, for a given graph a maximum or low-stretch

spanning tree can be constructed and used as its support graph, which has been pro-

posed in the past for solving linear systems with symmetric and diagonally-dominant

(SDD) matrices in nearly-linear time [37, 42, 43, 44]. Support-graph preconditioning

seeks to compute the preconditioner P such that the generalized eigenvalues and the

14

condition number of the matrix pencil (A,P) are bounded [45]. If both A and P

are symmetric positive definite (SPD) matrices, the convergence of classic Krylov-

subspace iterative methods depends on the condition number κ(A,P) computed by:

κ(A,P) = λmax(A,P)/λmin(A,P), (2.10)

where λ(A,P) denotes the generalized eigenvalues. A stronger theoretical result on

convergence can be derived as follows. Define the support of (A,P), denoted by

σ(A,P), as follows [42, 45]:

σ(A,P) = min{τ ∈ R|xT (τP − A)x ≥ 0 for all x ∈ R
n}. (2.11)

Subsequently, if one can split A and P into A = A1 + A2 + ... + Am and P =

P1 + P2 + ... + Pm such that all τPi − Ai are SPD matrices, one can show that the

generalized eigenvalue of (A,P) is bounded by τ .

Compared to the original graph, the support graph has fewer edges. Since the span-

ning tree of a graph that includes n vertices and m (m ≥ n) edges retains only n− 1

edges, the power dissipated on the support graph is much smaller than the one on the

original system. If a support-graph preconditioner preserves not only the eigenvalues

but also the power dissipation of the original system, it can be more effective than

the previous spanning-tree support graph preconditioner [38] in reducing the number

of iterations when using Krylov-subspace iterative methods. Consequently, a much

better support graph can be formed by selectively adding extra links to the spanning-

tree support graph, which is also known as the ultra-sparsifier support graph[38].

When using ultra-sparsifier support graphs as preconditioners for iterative solvers,

it is important to trade off the effectiveness and efficiency by carefully choosing the

extra edges to be added to the spanning tree.

15

MNA Matrix

HB Jacobian Matrix

Fill-ins during LU

Block Fill-ins during LU

MNA Matrix

HB Jacobian Matrix

Fill-ins during LU

Block Fill-ins during LU

Before Graph Sparsification After Graph Sparsification

Figure 2.1: From sparsification of MNA matrix to sparsification of HB
Jacobian matrix problems

2.1.3 Overview of Proposed Support-Circuit Precondition-

ing Approach

In this work, the graph sparsification and support graph theories will be exploited to

develop scalable Jacobian matrix solvers for strongly nonlinear post-layout HB anal-

ysis. Although direct solution methods for solving the HB Jacobian matrix Jhb can

handle strongly nonlinear problems, the fast-growing cost for solving the Jhb matrix

in HB analysis due to the block matrix fill-ins during the block LU factorization pro-

cess will make such methods computationally prohibitive [16], as shown in Fig. 2.1.

In our approach, the original RF circuit is first sparsified into a support circuit (a

sparsified circuit that can well approximate the original circuit) graph that has much

16

fewer edges and maintains a tree-like structure, such that the number of fill-ins dur-

ing LU factorization procedures can be dramatically reduced. Such a support circuit2

can be subsequently used as a preconditioner to facilitate fast HB analysis, thereby

significantly improving the runtime and memory efficiency. Although the proposed

support-circuit preconditioning process will also introduce some block fill-ins dur-

ing LU factorization, the number of new blocks will increase almost linearly with

the problem sizes owing to the tree-like circuit structure, while the original circuit

topology will typically result in exponentially increased block fill-ins. As a result,

the proposed support-circuit preconditioning approach will allow to analyze much

larger RF and microwave circuits than ever before, and still maintain a decent con-

vergence rate during Krylov-subspace iterations in the presence of moderate to strong

nonlinearities.

In this dissertation, we present a novel graph sparsification approach for generating

preconditioners that can effectively and efficiently facilitate HB simulations of strongly

nonlinear post-layout RF circuits. In the proposed method, the system MNA matrix

of each sampled time point that can be obtained from the gi and ci matrices in (2.3)

and (2.4), will be first decomposed into a Laplacian (AL) matrix (with stamped equiv-

alent resistors and capacitors) and a complement (AC) matrix (with other stamped

components, such as inductors, transconductances and voltage sources, etc), as shown

in Fig. 2.2. Throughout this work, we define the network derived from the Lapla-

cian matrix as the Laplacian network, and the network derived from the complement

matrix as the complement network. Subsequently, a representative Laplacian matrix

is obtained by scaling and averaging all the sampled Laplacian matrices, which can

be subsequently sparsified into a sparsified representative Laplacian matrix by con-

structing an ultra-sparsifier support graph based on its Laplacian network. In the

next step, the sparsification pattern of the system MNA matrices can be obtained

2Support-circuit preconditioner is first introduced in [23] and has been extended to iteratively solve
general SPICE-accurate simulation problems in [24].

17

by combining the sparsified representative Laplacian matrix with the complement

matrix. Next, FFT and IFFT algorithms are applied to compute the sparsified HB

Jacobian matrix in frequency domain that can be leveraged as a robust and efficient

HB preconditioner in the following Krylov-subspace iterative procedures.

It should be noted that during the iterative solution procedure, the HB Jacobian

matrices need not be constructed explicitly. Instead, only the matrix-vector multi-

plications are computed at each iteration, which is more computational and memory

efficient than the original HB methods that typically express the full Jacobian matrix

explicitly. Although the matrix factors L and U of the support-circuit preconditioner

have to be formed explicitly, the proposed graph (circuit) sparsification technique can

greatly reduce the memory and runtime consumption. The sparsified preconditioner

matrix is usually much sparser than the original HB Jacobian matrix, and it thus can

be more quickly solved using existing direct solution methods, such as the block LU

solver proposed in [16], leading to nearly-linear runtime and memory efficiency.

2.2 Support-circuit Preconditioner for HB Analy-

sis

This section describes the detailed procedures for computing the proposed support-

circuit preconditioner for HB analysis.

18

2.2.1 Sparsification of Representative Laplacian Matrices

2.2.1.1 Extraction of Representative Laplacian Matrices

It is hoped that by examining spatiotemporal MNA matrix patterns obtained through

transient circuit analysis, more meaningful support-circuit preconditioners can be

generated for HB analysis based on graph sparsification techniques. To this end,

we propose a simple method for extracting the representative Laplacian matrix by

examining time-domain sampled MNA system matrices.

To extract the desired support circuit from the original RF circuit scheme, the equiv-

alent resistors and capacitors of each NR iteration (during TR analysis) are first

stamped into the Laplacian matrix AL while the rest components are stamped into

the complement matrix AC for each sampled time point, as shown in Fig. 2.2. To

properly preserve the impact of energy-storage components, a fixed time-step size

which is determined by the largest harmonic in HB analysis can be adopted for com-

puting the system MNA matrix. For example, the equivalent conductance C/∆t for

a capacitor with a value of C will be stamped into the Laplacian matrix AL dur-

ing transient analysis, where ∆t is the time step size corresponding to the highest

frequency harmonic component. The above stamping strategy can assure that the

proposed support-circuit preconditioner will not miss the edges presenting critical

energy-storage elements.

It should also be noted that for different sampled time points, although the entry

values of the system MNA matrices obtained from nonlinear device evaluations can

be quite different, the corresponding entry locations (patterns) remain the same. As

a result, the Laplacian matrices that include the resistors and capacitors derived from

19

M1

L1

R1L2
C2

C1

R2

RF Circuit

Linearized Circuit at t1

Linearized Circuit at th

.
.
.

L1

R1L2
C2

C1

Cgd

Cgs gds
Cgs

gmVgs

R2

1 2
3

4

5

L1

R1L2
C2

C1

Cgd

Cgs gds
Cgs

gmVgs

R2

1 2
3

4

5

.
.
.

Figure 2.2: Circuit MNA matrices decomposed into Laplacian and com-
plement matrices

nonlinear device linearizations are time-varying during NR iterations. Since the am-

plitudes of matrix entries sampled at different time points can be quite different from

each other, directly averaging these Laplacian matrices may not effectively reflect the

influence of some important circuit components. To retain the relatively important

circuit components, the sampled Laplacian matrices will be normalized as follows: for

each sampled Laplacian matrix obtained at a time point, all the matrix entries are

scaled by a common factor such that the largest elements of these Laplacian matrices

are always the same. As a result, by averaging these normalized Laplacian matri-

ces, we can obtain a representative Laplacian matrix that can truthfully mimic the

average circuit behaviors during transient simulations. Take the rds of transistor com-

panion model as an example, as shown in Fig 2.6. At different sampled time points

the resistance of rds will be quite different. By normalizing and averaging rds of all

the sampled time points, the new edge weight can reflect the relative importance of

20

this resistor under all the harmonics.

2.2.1.2 Sparsification of Representative Laplacian Matrices

As described in Section 2.1.2.2, ultra-sparsifier preconditioner can better approximate

the original system than spanning-tree preconditioner by adding extra edges to the

spanning-tree support graph. However, adding excessive edges to the spanning tree

may result in a rather dense graph and thus it can lead to dramatically increased

computation cost when using the ultra sparsifier as a preconditioner. In order to find

the most important extra edges, the conductivity of the original graph and the degree

of each vertex will be analyzed using a weighted degree metric. For a graph Laplacian

matrix AL, the weighted degree wd(v) of a vertex v ∈ AL is defined as[46]:

wd(v) =
wt(v)

maxu∈S(v)w(u, v)
, (2.12)

where wt(v) denotes the total weight (conductance) incident to the vertex v, S(v)

represents the set of edges connected with v, and w(u, v) is the weight of the edge

that connects vertex u and vertex v.

In this work, we propose an effective method to determine the edges to be added to

the spanning tree as shown in Algorithm 1. In the algorithm, we define α(v) to be

the matching factor of node weighted degree:

α(v) =
w̃d(v)

wd(v)
, (2.13)

where w̃d(v) is the weighted degree of vertex v in the support graph. We also de-

fine αth as the threshold of the weighted degree matching factor, which can be used

to effectively control the approximation quality of the ultra-sparsifier graph. For a

21

weighted graph, the lower bound of αth can be computed by setting w̃d(v) = 1 and

wd(v) = wdmax, where wdmax denotes the maximum weighted degree of the original

graph. Consequently, it can be shown that αth will always fall within the range:

1

wdmax

< αth ≤ 1. (2.14)

When αth is set to be close to 1
wdmax

, the ultra-sparsifier support graph will shrink

to a spanning tree; on the other hand, when αth = 1, no sparsification is performed,

which will result in the original graph.

Algorithm 1 Ultra-Sparsifier Generation Algorithm

Input: Laplacian matrix AL ∈ ℜn×n of the representative Laplacian network.
Output: Laplacian matrix BL ∈ ℜn×n of the ultra sparsifier.

1: for node v ∈ AL do

2: Compute the weighted degree wd(v) with (2.12).
3: end for

4: Obtain the sorted the node list swd ∈ ℜn in descending order according to the wd of
each node.

5: Arbitrarily pick one starting node and compute the maximum spanning tree support
graph of graph AL.

6: for k = 0 to n− 1 do

7: Get node from the sorted node list v = swd(k)
8: Compute the latest weighted degree w̃d(v) with (2.12) and the matching factor α(v)

with (2.13).
9: while α(v) < αth do

10: Restore a single previously removed edge that has the largest weight.
11: Update the weighted degree w̃d(v) with (2.12).
12: end while

13: end for

14: Return the Laplacian matrix BL of the final ultra-sparsifier.

2.2.2 Sparsification Pattern Extraction

After the graph sparsification algorithm (Algorithm 1) is applied to compute the spar-

sified representative Laplacian matrix by finding the ultra-sparsifier support graph

22

according to its Laplacian matrix, the support-circuit preconditioner can be sub-

sequently constructed by exploiting the sparsification pattern of the representative

MNA matrix. The procedures for finding the sparsification pattern of the representa-

tive MNA matrix have been illustrated in Fig. 2.2 and Fig. 2.3, while detailed steps

are described as follows:

1. After performing circuit linearizations at different time points (Section 2.1.1),

the Laplacian matrices that only include the equivalent resistors and capacitors

are extracted from the system MNA matrices, as shown in Fig. 2.2;

2. The representative Laplacian matrix is created by normalizing and averaging

the Laplacian matrices sampled at multiple time points, as described in Section

2.2.1;

3. The representative Laplacian matrix is converted to an undirected graph for

which an ultra-sparsifier support graph is created using Algorithm 1. Next, the

ultra sparsifier is converted to its matrix form that is defined as the sparsified

representative Laplacian matrix, as illustrated in Fig. 2.3;

4. Finally, the complement matrix is combined with the sparsified representative

Laplacian matrix to create the final sparsification pattern matrix, as illustrated

in Fig. 2.3.

Once the sparsification pattern matrix is obtained, it can be adopted to sparsify the

HB Jacobian matrix: if one entry in the sparsification pattern matrix is removed, the

corresponding block matrix (2.6) in the HB Jacobian matrix will also be eliminated.

We will show that this sparsification pattern matrix can very efficiently and effectively

facilitate the sparsification of large HB Jacobian matrices.

23

Representative

Laplacian Matrix
Original Weighted Graph Ultra Sparsifier

Sparsified
Representative

Laplacian Matrix
Complement MatrixSparsification

pattern Matrix

3

1

4

5

2

3

1

4

5

2

Figure 2.3: MNA matrix sparsification pattern

2.2.3 HB Jacobian Preconditioner Construction

As discussed in Section 2.1.1, the dense blocks in HB Jacobian matrix Jhb are mainly

due to the block-circulant matrices similar to (2.6). It has been shown that by re-

ordering the unknowns, the HB Jacobian matrix Jhb can be converted to an equivalent

sparse block matrix that maintains the same sparsity as the MNA matrix for TR anal-

ysis [16], as illustrated in Fig. 2.4. For example, if there are three harmonics in the

HB analysis, the HB Jacobian matrix can be obtained by replacing every entry in the

time-domain system MNA matrix with a 3 by 3 circulant-matrix block. Similarly,

it is not difficult to construct the sparsified HB Jacobian matrix when the sparsi-

fication pattern is obtained through the previous procedures. For instance, we can

compute the circulant-matrix block by applying FFT to the entries of the sparsified

24

time-domain sampled MNA matrices, as described in (2.6).

Support circuit preconditionerPermuted matrixt i diti

Permutation FFT

Sparsified MNA matrix

Figure 2.4: HB Jacobian matrix construction

We want to emphasize that the proposed HB preconditioner matrix can be more

efficiently factorized than the original HB Jacobian matrix, since only a small number

of block fill-ins will be created during the block LU matrix factorization procedures.

In this work, similar to the block LU solver developed in [16], we have developed

a block LU solver (descried in section 2.3) for factorizing the HB Jacobian matrix

preconditioner. Due to the tree-like structure of the sparsified RF circuit, the HB

Jacobian preconditioner matrix can be solved in nearly linear time. Since the proposed

preconditioning method shares the advantages of prior direct solution methods [16],

it can be efficiently and reliably applied to handle strong nonlinearities in HB analysis

of RF circuits.

2.2.4 Case Study: Double-balanced Gilbert Mixer Sparsifi-

cation

RF mixers serve as key elements in superheterodyne transceivers for wireless systems,

but they are also the primary sources of nonlinear distortions. Most mixer designs

(Fig. 2.5) are following the principle that a large local oscillator (LO) driven by an

RF signal can modulate the incoming RF signal into an intermediate frequency (IF)

25

signal.

[21]

[2]

[1] [8]

[16]

[25] [27]

[20] [7]

[15]

[13] [14]

[11] [18]

[22][17]

[4] [6]

M2M1

R7

M5

L1

L0

C0

Vlo+
M3 M4

M6

R1

R3

R8

L2

R10

L3
C1

R2

Vrf+ R5 VrfR6

VloR4

VDD

[1] [8]

[21] [16]

[25] [27]

[20] [7]

[15]

[26]

[13] [14]

[11] [18]

[22][17]

[4] [6]

[2]

Figure 2.5: An RF mixer design (left) and the circuit network (right)
corresponding to its Laplacian matrix

In this section, we demonstrate a case study to show how an RF circuit can be

sparsified into a sparser support circuit for preconditioned HB analysis. First, the

equivalent resistors and capacitors of the linearized RF circuit need to be extracted for

forming the Laplacian matrix AL. Consider a linearized MOSFET circuit in Fig. 2.6

that shows equivalent resistors and capacitors, such as Cgd, Cgs, and rds as well as

two controlled current sources. By keeping only the non-grounded equivalent resistors

and capacitors of the linearized mixer circuit, a Laplacian network can be obtained,

as shown in Fig. 2.5. Like other SPICE simulation algorithms, each inductor will

be treated similarly to voltage sources, in that it cannot be modeled using an I-V

style Ohmic relationship, and requires an extra current variable when building the

MNA matrix. As a result, all the stamped elements related to inductors will be

kept in the complement network. The devices connected to ground, such as C1 and

R10 in Fig. 2.5, will only introduce diagonal entries in the MNA matrix. It is also

obvious that these devices will not introduce any entry to the Laplacian matrix.

26

Next, the Laplacian network can be converted into a weighted, undirected graph,

and subsequently, an ultra-sparsifier graph can be created by following the steps in

Algorithm 1.

rds
gmVgs gnVbs

D

S

G

B

Cgd

CgsG

B

S

D

Figure 2.6: MOSFET model

2

4 6

8 11

13 14

1 18

1621 17 22

25 27

2

4 6

8 11

13 14

1 18

1621 17 22

25 27

2

4 6

8 11

13 14

1 18

1621 17 22

25 27

Laplacian network

graph

Maximum

spanning tree
Ultra sparsifier

Figure 2.7: Sparsification of the Laplacian graph of an RF mixer circuit

2.3 Parallel Block Sparse Matrix Direct Solver

When using preconditioned Krylov-subspace iterative methods for HB analysis, such

as the GMRES method [20], the Jacobian preconditioner matrix needs to be factor-

ized once during each NR iteration. Therefore, the efficiency of the preconditioner

factorization is critical to the overall performance of HB analysis. Inspired by the

method proposed in [16, 47], we propose a parallel block sparse matrix direct solver,

which can efficiently factorize the HB Jacobian preconditioner matrix on heteroge-

neous CPU-GPU computing platforms or CPU only platforms. Although only two

27

basic block matrix operations exist in the sparse block LU factorization procedure:

block matrix multiplication and division, optimal acceleration of block LU solver on

heterogeneous CPU-GPU computing platforms may not be trivial, since the optimal

workload balancing and task assignments will not only depend the hardware spe-

cific properties of a given heterogeneous computing platform (e.g. the availability

of streaming multiprocessors, the size of on-chip shared memory and registers, I/O

bandwidth and latency, etc), but also the algorithm specific properties, such as the

data dependencies during the sparse block LU factorization procedure.

2.3.1 LU Data Dependency Analysis

Algorithm 2 LU factorization PJQ = LU

Input: J ∈ ℜn×n

Output: L,U ∈ ℜn×n,Q ∈ ℜn,P ∈ ℜn

1: Q = AMD(J) {column reordering to reduce fill-ins}
2: L = In
3: for k = 1 to n do

4: x = LTS(L,J(:, k))
5: P = PartP ivoting(x) {partial pivoting}
6: U(1 : k, k) = x(1 : k)
7: L(k : n, k) = x(k : n)/U(k, k)
8: end for

Algorithm 3 LTS: Lower triangular system solver Lx = b

Input: L ∈ ℜn×n, b ∈ ℜn

Output: x ∈ ℜn

1: θ = {i | bi 6= 0}
2: χ = ReachableGL

(θ) {nonzero location of x, χ = {i | xi 6= 0} }
3: x = b
4: for j ∈ χ do

5: x(j + 1 : n) = x(j + 1 : n)− L(j + 1 : n, j)x(j)
6: end for

First,we review a classical LU factorization algorithm as shown in Algorithm 2 and

28

3. This left-looking LU factorization algorithm [48] includes two phases: a symbolic

analysis phase and a numerical analysis phase. During the symbolic analysis phase,

the columns of the matrix will be reordered to reduce fill-ins during the factorization.

There are several ordering approaches available, such as the Approximate Minimum

Ordering(AMD)[49],and COLAMD[50] ordering schemes. During the numerical anal-

ysis phase, the L and U factors will be calculated with partial pivoting to reorder the

rows to avoid very small diagonal elements. The core of the numerical analysis phase

is the Gilbert/Peiels factorization algorithm[51],which is to solve a lower triangular

system Lx = b repeatedly.

It is usually difficult to parallelize sparse LU factorization procedures due to the

complicated data dependencies and imbalanced workloads. From line 4 of Algorithm 2

and Algorithm 3, we can observe that the column k depends on column j, when

U(j, k) 6= 0. Because of the high data dependency between different columns, the

appropriate timing order of the computation in LU factorization must be guaranteed.

According to the above dependency relationship, we can derive the data dependency

graph (DDG) from the U factor matrix, as shown in Fig. 2.8 where each node

represents a column and each arrow denotes a dependency between two columns.

2.3.2 “Fake” Dependencies in LU Factorization

However, the dependencies between columns derived from the U factor matrix do not

always introduce matrix operations. From line 5 of Algorithm 3, we can observe that

if there is no nonzero entry in the non-diagonal positions of column j in the L factor

matrix, the matrix multiplication operation can be skipped. We take the dependency

between column 7 and column 4 as an example to illustrate this situation: from

the L factor matrix, as shown in Fig. 2.9, we can observe that there is no nonzero

29

entry except for the diagonal entry in column 4. As a result, there will be no matrix

multiplication operations introduced by the dependency between line 7 and line 4. We

call such a data dependency a “fake” dependency. These “fake” dependencies can be

quickly identified by checking the nonzero entries of the L factor matrix. For instance,

the dotted lines with arrows in Fig 2.8 are all “fake” dependencies. Apparently, by

eliminating these “fake” dependencies, we can obtain a much balancer workload for

each level, as shown in Fig. 2.9.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

0

2 1 0 6

4 5 3

7

8

9

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 2.8: Upper matrix factor and its DDG

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

0

2 1 0 6

4 5 37

89

Level 0

Level 1

Level 2

Figure 2.9: Lower matrix factor and its improved DDG

From the above discussion, it is clear that in order to get the DDG, we need to

know the nonzero-entry locations of L and U factors. Fortunately, by factorizing the

sparsified representative MNA matrix (a.k.a test matrix) obtained from RF circuit

transient analysis [25], the nonzero entries of L and U factor matrices can be precisely

30

predicted before performing the actual block sparse LU factorization.

2.3.3 Parallel LU Task Scheduling

Once the LU DDG is obtained, it can be further partitioned into multiple levels.

Columns at the same level are independent and can be therefore computed concur-

rently using parallel processors (streaming multiprocessors). It should be noted that

if a column depends on several other columns, the matrix operations must be exe-

cuted in a strict order starting from the left most column. After getting the levelized

dependency graph, the final LU factorization task list can be generated from the

top level to the bottom level. For each task level, a batch of matrix multiplications

and matrix divisions will be performed as described in Algorithm 2 and 3. For each

task level, there are two task lists related to matrix multiplications and matrix di-

vision respectively, and the computation order of the two task lists are also strictly

enforced: the division task list has to wait for the completion of multiplication tasks.

For CPU only platform, the high-performance BLAS[52] library can efficiently per-

form above operations with multiple threads. And for GPU platform, the highly

efficient cuBLAS library [53] is able to take full advantage of the high computational

capability of modern GPUs.

2.3.4 Test Matrix Factorization

As described in Section 2.3.1, a symbolic analysis procedure needs to be performed

to find the nonzero entry locations of U factor matrix. It is hard to obtain good

performance for this complicated process on GPU platform. Inspired by [16], we

extract the nonzero entry locations by factorizing the test matrix.

31

Before performing block LU factorization on the preconditioner matrix, we first ex-

amine the sparsified representative MNA matrix (test matrix) obtained from TR

analysis. Since the HB preconditioner matrix has the same block entry pattern as

the sparsified representative MNA matrix, each entry in the test matrix will corre-

spond to a block entry in the HB Jacobian preconditioner matrix. Consequently, by

factorizing this test matrix, the possible fill-in locations and computations during the

following BLU factorizations can be precisely predicted.

Besides the nonzero entry locations, we can also obtain the row and column permu-

tation vectors during the factorization of test matrix. As a result, we can simply

apply these vector to the Jacobian matrix before the factorization and avoid the rich

branching pivoting procedure on GPU.

2.3.5 The Sparse Block LU Algorithm

In this subsection, we will extend the above classical LU algorithm to develop our

sparse block LU algorithms (Algorithm 4 for factorizing the HB Jacobian precondi-

tioner matrix efficiently. The key idea of our block LU algorithm is to exploit the

results of the previous test matrix LU factorization. After factorizing the test ma-

trix, the column (Q) and row (P) permutation vectors will be obtained respectively,

which can be readily leveraged to factorize the HB Jacobian matrix. By replacing

the element-wise multiplications and divisions with matrix-wise multiplication and

divisions, the HB preconditioner matrix can be factorized very efficiently. Since each

block entry of the HB preconditioner matrix is a dense matrix, the matrix-wise mul-

tiplications and divisions can be performed using aggressively optimized BLAS and

cuBLAS implementations for the target architecture.

32

Algorithm 4 Parallel Block LU Factorization Algorithm
Input: Block sparse matrix, nonzero-entry locations of L and U factor matrices, permuta-
tion vectors
Output: L and U factor matrices

1: Perform pivoting to the block sparse matrix according to pivoting vector
2: Create the column dependency graph according to L and U nonzero-entry locations
3: Generate the matrix multiplication and division task list for each level of the dependency

graph
4: Allocate memory for L and U factor matrices
5: Distribute the block sparse matrix to L and U memory buffer
6: For GPU: Transfer the L and U factor matrices to GPU
7: for Each level do
8: Calculate matrix multiplications concurrently by BLAS or cuBLAS.
9: Calculate matrix divisions concurrently by BLAS or cuBLAS.

10: end for

11: For GPU: Transfer the L and U factor matrix results back to CPU

2.4 Transient Analysis Guided Sparsification

The key to obtaining the optimal computing performance for HB analysis using the

proposed support-circuit preconditioning algorithm is to find the optimal graph spar-

sification strategy for generating the support-circuit preconditioners. To this end,

efficient yet accurate runtime performance models will be developed in this work for

assessing the performance of each graph sparsification configuration, which can be

subsequently leveraged to facilitate runtime performance optimization that can even-

tually identify the optimal graph sparsification strategy as well as the corresponding

support-circuit preconditioner for minimizing HB runtime for a given computing plat-

form.

33

2.4.1 HB Simulation Runtime Profiling

The total runtime of a complete NR iteration during HB analysis can be estimated

as follows:

TNR = TLU(αth) +N(αth) · TGMRES(αth), (2.15)

where TLU is HB preconditioner matrix factorization time, TGMRES is the runtime for

one GMRES iteration and N denotes the total number of GMRES iterations during

one NR iteration step, which are all functions of the preconditioner sparsity controlled

by αth. As illustrated in Fig. 2.10, a sparser ultra-sparsifier support graph will result

in smaller preconditioner factorization time TLU , but much more iterations can be

expected due to the worse approximation of the original graph. On the other hand,

a denser support graph will result in greater cost in factorizing the HB Jacobian

preconditioner matrix that can dominate the overall simulation time. Therefore,

to achieve the optimal runtime performance of HB simulation using the proposed

iterative solver, the optimal sparsity (αth) of the preconditioner matrix needs to be

determined efficiently.

Consider an example shown in Fig. 2.11 which illustrates the plot of total HB run-

time as well as LU factorization and preconditioned GMRES iteration runtimes by

sweeping αth on different computing platform. It is observed that the best αth is near

the crossing point (marked in the red square) of plots of “LU runtime” that equals

to TLU(αth) and “Resolve runtime” that equals to N(αth) · TGMRES(αth). To the left

of the crossing point, the preconditioner is quite sparse, which leads to smaller LU

factorization runtime, and as a result, the GMRES resolve runtime dominates HB

simulation time. On the other hand, to the right of the crossing point, the LU fac-

torization runtime increases dramatically when the preconditioner is getting denser.

As a result, the LU factorization will dominate the overall simulation runtime.

34

LUT

GMRESTN

Dense graph

LUT

GMRESTN

Sparse graph

6,65,64,63,62,61,6

6,55,53,52,51,5

6,44,43,42,41,4

6,35,34,33,31,3

6,25,24,22,21,2

6,15,14,13,12,11,1

aaaaaa

aaaaa

aaaaa

aaaaa

aaaaa

aaaaaa21

3

45

6

21

3

45

6

6,65,62,6

6,55,5

4,43,42,4

4,33,3

6,24,22,21,2

2,11,1

aaa

aa

aaa

aa

aaaa

aa

Figure 2.10: Runtime profiling for solving two sparsified graphs

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 1st NR runtime on CPU-GPU platform

Matching factor threshold

R
u

n
ti
m

e
 (

m
s
)

LU runtime

Total runtime

Resolve runtime

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
x 10

5 1st NR runtime on CPU platform

Matching factor threshold

R
u

n
ti
m

e
 (

m
s
)

LU runtime

Total runtime

Resolve runtime

Sparsification parameter Sparsification parameter

Figure 2.11: HB simulation runtime with different sparsity

It should be noted that for different computing platforms with various settings of

CPUs and GPUs, the best graph sparsification configuration can be quite different.

For instance, for CPU-dominated computing platforms (strong CPUs+weak GPUs),

due to limited computational capability, a sparser preconditioner has to be used to

reduce the LU factorization cost on CPU, whereas for GPU-dominated platforms

(weak CPUs+strong GPUs) the LU factorization time may be greatly reduced due

35

to significantly higher computing capability of GPUs, and therefore denser support

graphs should be adopted for achieving a faster convergence.

2.4.2 Runtime Performance Modeling

To identify the best possible graph sparsification strategy for generating the support-

circuit preconditioner that can minimize the overall HB simulation time, we propose a

systematic approach to automatically and robustly find nearly-optimal matching fac-

tor threshold αth of weighted degree by using a transient analysis-guided performance

modeling approach. By encapsulating hardware specific properties of a given com-

puting system into this simple yet effective runtime performance model, the runtime

performance of support-circuit preconditioned HB simulation can be quickly esti-

mated, while the nearly-optimal graph sparsification configuration (matching factor

threshold αth) can be subsequently identified.

Although the matrix dimension of the TR analysis is much smaller than the matrix

dimension in HB analysis, since TR analysis has the same Jacobian matrix structure

as the HB analysis, it can be used as a good surrogate for estimating the efficiency of

the HB preconditioner when the same representative sparse matrix pattern is used.

As a result, TR analysis runtime can effectively reflect the efficiency of the corre-

sponding HB preconditioner. For instance, if the GMRES iteration number is large

during TR analysis, it indicates that the preconditioner may not be accurate enough,

and therefore additional edges should be included into the sparsified graph. We want

to emphasize that the TR analysis does not need to reach the steady state for perfor-

mance modeling purpose. Instead, we just need to perform a few steps of TR analysis

to proximately estimate the quality of the HB preconditioner based on the conver-

gence behavior. Although the resultant HB preconditioner may not be the optimal

36

one during the entire HB analysis procedure, it should be able to provide a reasonably

good initial preconditioner that can be improved later based on the actual numbers

of GMRES iterations during the following HB analysis steps (e.g. NR iterations).

Fig.2.11 indicate that we can build a quadratic runtime performance model for pre-

dicting HB simulation runtime simulation runtime under different αth values:

THB = aα2
th + bαth + c, (2.16)

where THB represents the predicted overall runtime of HB simulation and a, b, and c

are the coefficients of the quadratic function. In our approach, N different matching

factor thresholds, αth,i for i = 1, ..., N , are uniformly chosen within the range (2.13)

described in Section 2.2.1.2. First the HB simulation runtime of each sample matching

factor thresholds will be estimated by running few steps of TR simulation. Then

coefficients of the quadratic function can be calculated by using curve fitting method

based on the predicted HB simulation runtime. Subsequently, the identification of

the optimal αth for HB analysis can be efficiently performed based on the above

runtime performance model. It needs to be noted that the estimate HB simulation

runtime does not need to be accurate. It is sufficient to find the extreme value if

the estimate HB simulation runtime is proportional to real HB simulation runtime.

Since running TR analysis is much faster than running full HB simulations for RF

circuits, the cost of building the proposed performance model can be negligible. It

should be noted that this novel HB runtime performance modeling approach allows to

automatically and robustly compute the nearly-optimal sparsified circuit networks for

preconditioning purpose, while previous manually tuned sparsification algorithm in

[25] may require excessive effort in finding a relatively good preconditioner. At last,

we want to emphasize that the performance model of different types of platforms

can be quite different due to the different operating platform between TR and HB

analysis.

37

2.4.2.1 CPU Only Platform Performance Model

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

50

60

R
u

n
ti
m

e
(m

s
)

Mixer 1st NR matching factor threshold sweep

Matching factor threshold
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2
x 10

4

R
u

n
ti
m

e
(m

s
)

TR runtime

HB runtime

Figure 2.12: TR simulation runtime vs. HB simulation runtime

For CPU only platform, TR and HB analysis are both performed on CPU with same

factorization and iterative solve algorithms. As a result, TR simulation runtime

results under different αth values correlate well with the corresponding HB simulation

runtime results, as shown in Fig. 2.12. The above observation suggests building

the quadratic performance model under the guidance of TR analysis results directly.

Subsequently, the identification of the optimal αth for HB analysis can be efficiently

performed based on the above runtime performance model.

2.4.2.2 CPU-GPU Platform Performance Model

Unlike the CPU only platform, the runtime performance model for GPU-based sparse

block LU factorization cannot be directly obtained by only performing incomplete

38

Algorithm 5 CPU-GPU runtime performance modeling for HB analysis
Input: maximum weighted degree (wdmax) of the representative Laplacian matrix graph
Output: Best matching factor threshold αth

1: Generate N different matching factor thresholds αth,i, i ∈ (1, . . . , N) uniformly within
the range [1

wdmax
, . . . , 1];

2: for αth,i, i = 1 to N do

3: Perform M steps transient simulations with GMRES iterative solver and record the
GMRES resolve runtime cost TTRGMRES during the transient simulation;

4: Generate sparsification pattern with αth and sparsify the MNA matrix at each sample
time point;

5: Factorize the representative MNA matrix to obtain the nonzero entry locations of L
and U factor matrices;

6: Create DDG according to nonzero entry locations of L and U ;
7: Create the parallel levelized LU task list LUlistj , j ∈ (1, . . . ,K) for GPU computing

from the DDG, where k is the total levels of the LU task list;
8: Load the pre-obtained computing platform specific runtime performance lookup table;

9: for LUlistj , j = 1 to K do

10: THBLUgpu = THBLUgpu + lookup(hj , bj), where THBLUgpu is the predicted HB
preconditioner LU factorization runtime on GPU, hj denotes the harmonic number
and bj represents batch number of the matrix operation;

11: end for

12: THBGMRES = TTRGMRES ∗ h, where THBGMRES represents the predicted HB
GMRES resolve time cost, h denotes the total harmonic number.

13: THB[i] = THBLUgpu+THBGMRES , where THB[i] denotes the overall HB analysis
runtime with αth,i ;

14: end for

15: Quadratic performance model generation using curve fitting method.
16: Return the αth with the minimal HB total runtime.

transient simulations on CPU. The reason is that the sparse block LU factorization

on GPU is operated for HB Jacobian matrix in a parallel manner, whereas the LU

factorization in transient simulation on CPU deals with the time-domain MNA ma-

trix directly. Fortunately, the CPU-based preconditioned GMRES iterations of the

HB analysis and transient simulation use the same matrix sparsity pattern but dif-

ferent matrix sizes. Hence, we can predict the preconditioned GMRES iteration time

precisely according to the incomplete transient simulation results (preconditioned

GMRES iteration time for MNA matrices), as shown in line 12 of Algorithm 5. To

predict the sparse block LU factorization runtime on GPU, we propose to build 2D

39

lookup tables (LUTs) for predicting the runtime performance of batched matrix multi-

plications and divisions. The block size and the number of batched matrix operations

are the inputs parameters of the 2D LUTs. As a result, once the parallel LU fac-

torization tasks have been assigned, the GPU-based LU factorization runtime can

be easily predicted using the above LUTs for each LU factorization task level. The

LUTs only need to be built once for a given CPU-GPU computing platform, and

can be utilized for subsequent HB simulation tasks. In the last, the performance

model of GPU-based sparse block LU factorization is combined with the performance

model for solving the HB Jacobian matrix using preconditioned GMRES iterations to

create the total runtime performance model that can be further used to identify the

optimal αth value for running support-circuit preconditioned HB analysis on a given

CPU-GPU heterogeneous computing platform.

2.4.3 Nearly-optimal Sparsification Scheme

Since the linearized models of nonlinear devices may change drastically during NR

iterations, the sparsified circuit networks may also change accordingly, which may

require an on-the-fly update of the preconditioner. In this work, we propose to apply

the quadratic runtime performance modeling/optimization procedures only when the

previous NR iteration runtime has changed dramatically. On the other hand, when

the runtime of the latest NR iteration does not change much, the previous sparsified

network topology will be reused with updated element values. Fig. 2.13 illustrates

the proposed sparsification scheme during an NR iteration of HB simulation, where

THB(k) denotes the kth NR iteration runtime and β denotes the threshold value of the

changing rate for NR iteration runtime. Since the runtime performance models can

be efficiently generated on-the-fly for finding the near optimal αth, high robustness

and efficiency of HB simulation using the proposed adaptive preconditioning approach

40

can be always achieved.

Get into k th

NR iteration

)2(

)2()1(

kT

kTkT

HB

HBHB

Performance

modeling

Generate

sparsification

pattern

Sparsify MNA

matrices

Generate HB

preconditioner

GMRES solver

Reuse previous

Sparsification

pattern

Yes NO

NR

th

Figure 2.13: Performance-guided sparsification scheme

We want to emphasize that when the circuit becomes nonlinear device dominant,

the proposed preconditioner will be very similar to the original HB Jacobian matrix.

As a result, the proposed method will work like a direct solver. As the increase of

parasitic components of the post-layout circuits, the proposed preconditioner will be

much sparser than the original HB Jacobian matrix, and the proposed method will

work as an iterative solver. The automatic and smooth switching between the direct

41

solver (no sparsification) and iterative solver (multiple sparsification levels) allows

the proposed method to reliably and efficiently obtain the steady state solution for

different RF circuits.

2.5 The Scalable HB Analysis Algorithm

Algorithm 6 The SCPHB method
Input: RF circuit netlist.
Output: Solution.

1: Set up the solver;
2: while performing a Newton-Raphson iteration do

3: Evaluate devices and compute the linearized circuit system matrices at each sample
time points;

4: Create the Laplacian and complement matrices at each sample time point;
5: if Previous HB NR iteration runtime change drastically then

6: Update the sparsification pattern:
7: a) Create the representative Laplacian matrix P by scaling and averaging all the

Laplacian matrices;
8: b) Create the performance model function THB = f(αth);
9: c) Compute the optimal matching factor threshold αth;

10: d) Extract the ultra-sparsifier support graph from the representative Laplacian
matrix P ;

11: e) Build the sparsified representative Laplacian matrix Pusg;
12: f) Form the sparsification pattern by combining the sparsified representative

Laplacian matrix with the complement matrix;
13: else

14: Reuse the previous sparsification pattern;
15: end if

16: Sparsify the HB Jacobian matrix;
17: Construct and factorize the Jacobian preconditioner matrix;
18: Perform preconditioned GMRES iterations;
19: Update the solution vector and transform the solution from frequency domain to time

domain using IFFT;
20: Check NR convergence: if converged, stop the NR iteration; otherwise, go to the next

NR iteration.
21: end while

22: Return the final steady-state solution.

42

The algorithm flow of the proposed support-circuit preconditioned HB (SCPHB)

method is summarized in Algorithm 6, while the complexity of the proposed algo-

rithm is discussed as follows. Benefited from the iterative solution method, we only

need to explicitly construct the factor matrices L and U of the preconditioner. Since

the ultra-sparsifier preconditioner maintains a tree-like structure, the memory and

computational cost due to the fill-ins introduced during the block LU factorization

procedure will scale almost linearly with the problem size. Therefore, the memory

cost can be estimated by:

(nnzlsg + nnzusg)h
2

where nnzlsg and nnzusg denote the nonzeros in the L and U factors of the HB

Jacobian preconditioner, while h denotes the number of harmonics for HB analysis.

It is obvious that the proposed method has better memory efficiency than the direct

solution method whose memory consumption is given by [16]:

(nnzl + nnzu)h2

where nnzl and nnzu are the nonzeros in L and U factors. Since the proposed spar-

sification technique can greatly reduce the number of edges/elements of the original

circuit network, (nnzl + nnzu) should be much greater than (nnzlsg + nnzusg) due

to the dramatically reduced fill-ins during the block LU factorization procedure.

The computation complexity of the block LU solver[16] is

O((nnzlβsg + nnzuβ
sg)h

3)

where β > 1 but it is usually very close to 1.

We assume the preconditioned GMRES method converges in m iterations, then the

43

Table 2.1

Experimental circuit descriptions

CKT Name Node Harmonic Unknown

1
Mixer 302

49 14798
2 81 24462
3 99 29898

4
LNA+Mixer 344

45 15480
5 75 25800
6 105 36120

7
Mixer 1988

49 97412
8 63 125244
9 99 196812

complexity of HB matrix-vector products is

O(m(nnzc+ nnzg)hlog(h))

where nnzc and nnzg are the numbers of nonzeros in C and G respectively.

The complexity for triangle solves during GMRES iteration canbe estimated to be

O(m(nnzlβsg + nnzuβ
sg)h

2). The complexity of applying the proposed preconditioner

in m GMRES iterations is O(m2nh). Therefore the total runtime complexity in-

cluding the preconditioner factorization time, preconditioner triangle solve time, and

matrix-vector multiplication time can be estimated as:

O((nnzlβsg + nnzuβ
sg)h

3)

+O(m(nnzlβsg + nnzuβ
sg)h

2)

+O(m(nnzc+ nnzg)hlog(h))

+O(m2nh).

Based on the above analysis of runtime and memory cost using the proposed method,

it is obvious that our approach will lead to much better computational efficiency than

the prior direct solution method [16], especially when the number of harmonics during

HB analysis is large.

44

Table 2.2

Results of runtime and memory cost.

CKT
Direct CPU Direct GPU SCPHB CPU SCPHB GPU

time(s)mem (G)time(s)mem (G)speeduptime(s)speedupmemr time(s)speedupmemr

1 482.3 0.24 72.5 0.2 6.7X 157.7 3.1X 2X 67.9 7.1X 2X

2 522.2 0.65 183.5 0.53 2.8X 169.2 3.1X 2.2X 127.2 4.1X 2.03X

3 3338.9 0.98 318.1 0.8 10.5X 1030.9 3.2X 2.1X 297.8 11.2X 1.95X

4 159.5 0.25 34.5 0.21 4.6X 77.5 2.1X 1.9X 36.9 4.3X 1.75X

5 551.3 0.69 96.8 0.58 5.7X 247.4 2.2X 1.9X 93.4 5.9X 1.8X

6 1409.5 1.35 201.4 1.13 7X 577 2.4X 1.92X 223.9 6.3X 1.79X

7 9316.5 2.9 890.1 2.62 10.5X 1261.8 7.4X 4X 626.7 14.9X 1.89X

8 8685.9 4.8 1267.1 4.3 6.9X 812.2 10.7X 4.4X 794 10.9X 1.26X

9 57420 11.9 N/A N/A N/A 8791 6.5X 4.25X 2716.5 21X N/A

2.6 Experiment Result

2.6.1 Experimental Setup

We have tested several widely used RF circuits using the proposed support-circuit

preconditioned HB method. All the test circuits are post-layout RF circuits that in-

clude various levels of parasitic elements. To demonstrate the advantages of our pro-

posed method, the direct solution method [16] and support-circuit preconditioned HB

method are evaluated both on the CPU-only platform and CPU-GPU heterogeneous

platform. The detailed descriptions of the test cases are summarized in Table 2.1,

where “Harmonic” denotes the total number of harmonics, and “Unknown” stands

for the problem size. All experiments have been performed on RHEL 6.6 64-bit with

2.66GHz 12-core CPU and 48GB DRAM memory. The GPU device is Tesla C2075

with 5GB device memory.

45

2.6.2 Experimental Results

First, we would like to demonstrate the runtime efficiency of the proposed parallel

sparse block LU solver as shown in Table 2.2. In this result table, all the speedup

results are compared with multithreading (8 threads) parallel direct solution method.

In Table 2.2, “mem” denotes the memory consumption and “memr” represents the

memory reduction. The “memr” of “SCPHB CPU” method is compared with the

CPU-based direct method “Direct CPU”, and the “memr” of “SCPHB GPU” method

is compared with the GPU-based direct method “Direct GPU”. From Table 2.2, we

can observe that with the increase in the problem size, the runtime cost of direct

solution method on CPU increase dramatically, which reveals poor scalability of the

algorithm. Table 2.2 also shows that the direct method with our GPU-based block

matrix solver (“Direct GPU”) can run up to 10.5X times faster than multithreading

direct method on CPUs. However, for the very large problem size (the last test

case), “Direct GPU” method cannot be used due to the insufficient GPU memory

resources. The results of SCPHB method on CPUs (“SCPHB CPU”) demonstrate

very satisfactory runtime and memory efficiencies, showing up to 11X speedup and

4.4X memory reduction, which are benefited from the proposed Jacobian matrix

sparsification method. The proposed “SCPHB GPU” method benefits from both the

sparsification and the high computational capability of GPU platform, and achieves

up to 21X speedup comparing with “Direct CPU” method and up to 2X memory

reduction comparing with “Direct GPU” methods.

It can be also observed that when the node number of the circuit is relatively small,

the GPU-accelerated LU factorization contributes most of the speedups. When the

node number of post-layout RF circuit is large, the contributions of sparsification

start to be more notable. It also needs to be noted that the proposed transient-

analysis guided graph sparsification framework will only introduce negligible runtime

46

overhead. For example, we observed only less than 1% runtime overhead during all

the HB simulations shown in this section.

80

90

100
BD preconditioner

SCPHB

60

70

80

R
u
n

30

40

50

n
tim
e
(s)

10

20

30

0

Input power(dBm)

Figure 2.14: HB analysis runtime vs. the input power for an RF mixer
circuit

Fig. 2.14 shows the comparison of the simulation runtime between the proposed

support-circuit preconditioner and the BD preconditioner for an LNA+mixer with

two tones of equal power applied to the input. We observe that in low input-power

region (RF circuit exhibits weakly nonlinear behaviors), BD preconditioning method

is faster than the proposed support-circuit preconditioning method. Since for weakly

nonlinear circuits, there are almost no large off-diagonal entries in the block circulant

matrices of the HB Jacobian matrix, so the BD preconditioner matrix can well ap-

proximate the properties of the original HB Jacobian matrix. However, as the input

power increases (circuit system becomes strongly nonlinear), the simulation runtime

of the BD preconditioning method and the number of GMRES iterations for each NR

iteration will grow dramatically. On the other hand, the proposed support-circuit

preconditioning method always results in the similar numbers of GMRES iterations

47

and achieves desirable nearly-linear runtime and memory efficiency even for these

strongly nonlinear RF circuits.

0 2 4 6 8 10 12 14

x 10
5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (ms)

R
e

s
id

u
a

l
n

o
rm

s

ILU

SCPHB
Total GMRES iteration number:

N
ILU

 = 1164 N
SCPHB

 = 87

Figure 2.15: Convergence rate/time comparisons of SCPHB and ILU al-
gorithms

Fig. 2.15 compares the performance between our SCPHB solver and the Incomplete

LU factorization (ILU) preconditioned GMRES iterative solver, for test case CKT 6,

by showing the runtime and numbers of GMRES iterations for the first few Newton-

Raphson steps. The ILU preconditioner is built from PETSc [54] with ILU factoriza-

tion level set to be 5. When the ILU levels are set to be 0−4, the ILU-preconditioned

GMRES solver cannot converge for the first NR step. From the figure, we observe that

the proposed SCPHB method can converge much faster than the ILU-preconditioned

method with much smaller iteration number and total runtime.

In the last, we would like to demonstrate the accuracy of the proposed support-

circuit preconditioning method. Fig. 2.16 illustrates the voltage waveforms of double

48

Figure 2.16: Waveform result comparison between direct solution method
and proposed iterative method

balanced mixer circuit showing that the results of our proposed support-circuit pre-

conditioning method can accurately match the one obtained by the direct method.

Although other preconditioning methods can also achieve the same level of accuracy,

our method can usually converge much faster as observed in our experimental results.

2.6.3 Scalability

In this section, we would like to demonstrate the scalability of our proposed method.

Fig. 2.17 illustrates the total HB simulation runtime results of various problem sizes

(unknowns). Fig. 2.18 shows the peak memory consumptions of different problem

sizes. It is obvious that the proposed SCPHB method has much better scalability

than direct solution method. In Fig. 2.17, with the increase in the problem size, the

runtime cost of direct solution method grows much faster than the proposed method.

49

0

5000

10000

15000

20000

25000

7550 49700 131550 188300

R
u
n
ti
m
e
(s
)

Unknowns

Direct SCPHB

3.1X

10X

23X

21X

Figure 2.17: Results on runtime scalability

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

7550 49700 131550 188300

M
e
m
o
ry
co
st
(G
B
)

Unknowns

Direct SCPHB

2X

4X

5.6X

5.8X

Figure 2.18: Results on memory scalability

We observe 3X to 20X speedups and memory cost reductions from 2X to 5.8X from

Fig. 2.17 and Fig. 2.18.

50

Chapter 3

Massively Repeated Small Circuit

Simulation on GPU 1

3.1 Background and Overview

3.1.1 Nonlinear Circuit Simulation Approaches

General nonlinear electronic circuit simulation techniques rely on Newton-Raphson

(NR) method to solve the following nonlinear differential equations [36]:

f (x (t)) +
d

dt
q (x (t)) + u (t) = 0, (3.1)

1 The material contained in this chapter was previously published in “Proceedings of ACM/IEEE
Design Automation Conference (DAC)” ©2013 ACM. See Appendix A.2 for a copy of the copyright
permission from ACM.

51

where f(·) and q(·) denote the static and dynamic nonlinearities, x(t) is a vector

including nodal voltages as well as branch currents, and u(t) is the input excitation

vector. Sophisticated numerical methods can be used to solve the above nonlinear

differential equations by first linearizing the nonlinear circuit system at a given solu-

tion point, and subsequently solving the corresponding linear matrix problems. For

instance, after linearizing the system, conductance matrix G
(

xk
)

= δf

δx

∣

∣

xk and capac-

itance matrix C
(

xk
)

= δq

δx

∣

∣

xk can be easily obtained which are typically asymmetric

matrices. The dominant computational cost for solving small circuit problems is

mainly due to the nonlinear device evaluations, while for much larger circuits solving

the asymmetric Jacobian matrices using direct solution method can be much more

expensive due to the exponentially increased runtime and memory cost.

3.1.2 Massively Parallel GPU Computing

Recent Fermi GPU from Nvidia has increased the number of streaming processors

(SPs) in each streaming multi-processor (SM) from 8 to 32, boosting the total num-

ber of streaming processors to 512[55]. According to CUDA programming model [56],

32 threads are formed into a warp, and will execute the same instruction every four

clock cycles, resulting in a very light overhead (one instruction issuing is followed by

32 thread executions). When a kernel function is launched on GPU, the task (data)

is further divided into many thread blocks (1D, 2D or 3D) based on the problem size

and available on-chip hardware resources. Each thread block may include multiple

warps of threads. Subsequently, each SM will work on a few thread (data) blocks with

its eight SPs. The new GPU model also supports high performance double-precision

computing and concurrent kernel executions. Up to 16 kernels can be launched con-

currently on the 16 SMs for Fermi GPUs, while in previous GPU architectures only

one kernel can be launched at the same time on GPU, which allows for more flexible

52

and efficient GPU computing.

GPU’s on-chip memory (shared memory and registers) is very fast, but the available

on-chip memory resource can be quite limited, whereas the off-chip device memory

(global memory) is sufficiently large but can be much slower than on-chip memories.

Additionally, coalesced GPU global memory accesses are important since random

memory accesses are typically much slower. The device memory bandwidth can be

up to 100Gb/s if accessed in a coalesced pattern but may also reduce to 10X lower

if accessed in a random manner [56]. If a random memory access is needed, texture

memory on GPU (like the L1 and L2 caches for CPU) should be used, though a good

memory access pattern is still desired such that threads of a warp can access the

neighboring memory locations.

GPU’s hardware and software properties impose the following challenges when de-

signing streaming data parallel computing algorithms: (1) the dependencies among

different tasks (data) should be minimized or avoided; (2) excessive global data shar-

ing and shared memory (register) bank conflicts should be eliminated; (3) the arith-

metic intensity that is defined as the number of floating point operations per data

reading/writing should be maximized; and (4) the algorithm control flow should be

simplified.

3.1.3 Overview of our approach

TinySPICE is an SPICE-accurate nonlinear circuit simulator that leverages CPU

and GPU for fast repeated small circuit analysis. To leverage the powers of GPU

streaming processors (SP) for data parallel computing, we propose a novel GPU

massively parallelized algorithm with GPU friendly data structures to accelerate the

53

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word
N2

word bitbitbitbitbitbitbit bit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_bbit_b

wordwordwordwordwordwordword

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word
N2N2N2N2

A

P1P1 P2P2
N4

P1 P2

N2N2AAAA

wordword P1P1P1bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

N3N3

A_bA_b

N3N3

A_bA_bA_bA_bA_bA_b

N3N3N3N3

N3N1 N3N3N3

AA

N4N4N4

N1N1

N2N2N2N2N2N2N2N2AAAAAAAAN2N2N2N2
P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

AA

P2P2P2P2P2P2
N4N4

N1N1

N2N1N1N2AAAAN1N1N1N1N1N1N1N2N2
P1P1
A_bA_b
P1P1
A_bA_b
P1P1

AN1N1N1N1

P2

N3N3

N4

A_bA_bA_b

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

1i 2i

2v1v

3i

+ +

--

kgs

dsk

m
v

i
g

¶

¶
=

kds

dsk

ds
v

i
G

¶

¶
=

1,1 1,4 1,5

2,2 2,3 2,6

3,2 3,3 3,8

4,1 4,4

5,1 5,5 5,7

6,2 6,6 6,8

7,5 7,7

8,3 8,6 8,8

a a a

a a a

a a a

a a

a a a

a a a

a a

a a a

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

Shared

Memory

Shared

Memory SPSPSPSPSPSP

SP

SPSPSPSPSPSP

SP

MeMeMeMeMeMeMeMeMeMeMe SPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP SPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP
SPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSP SP

SP SP

SP SP

SPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP
SPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSP SP

SP SP

SP SP

MeMeMeMeMeMeMeMeMeMeMeMeMeMeMemomomomoryryryryryry

Shared

Memory

SPSPSPSPSPSPSPSP

SPSP

MeMeMeMeMeMeMeMeMeMeMeMeMeMemomomomoryryryryryry

Shared

Memory SPSPSPSPSPSP

SP

SPSPSPSPSPSP

SP

MeMeMeMe SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP SPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP
SPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSP SP

SP SP

SP SP

SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP SP SP
SPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SPSPSPSPSPSPSPSPSPSPSPSPSP SP

SP SP

SP SP

MeMeMeMeMeMeMeMeMeMeMeMeMeMeMeMeMemomomomoryryryryryry

Shared

Memory

SPSPSPSPSPSPSPSPSPSPSP

SPSP

MeMeMeMeMeMeMeMeMeMeMeMeMeMeMemomomomoryryryryryry

Shared

Memory SPSPSP

SP

SPSPSP

SP

ShSharareded

MeMeMeMe

ShSharareded

MeMeMeMeMe SPSPSPSP SP SP SP

SPSP SP SPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSP SP

SP SP

SP SP

SPSPSPSP SP SP

SPSP SP SP

SP SP

SP SP

MeMeMeMeMeMeMeMeMeMeMeMeMeMeMeMeMeMemomomomomoryryry

Shared

Memory

SPSPSPSPSPSPSPSPSP

SPSPSPSPSP

MeMeMeMeMeMeMeMeMeMeMeMemomomoryryry

Shared

Memory

CKT Schematic Model Evaluation Matrix Stamping/Solve
C

o
n

verg
ed

? Return

Newton Raphson Iterations

GPU Streaming Multiprocessors Massively Parallel SPICE Simulations in GPU Shared Memory

Figure 3.1: TinySPICE: massively parallel SPICE simulation program on
GPUs

repeated small nonlinear circuit simulations. For different test circuits, the data

format (dense or sparse) will be chosen automatically to optimally utilize the GPU

hardware resources.

It is important to note that by running each circuit simulation using one GPU thread,

it allows hundreds or thousands of independent simulations executed on GPU simul-

taneously. Moreover, since limited memory is required for each circuit simulation,

the data related to simulation of a single circuit can be entirely stored in GPU’s

shared memory, as illustrated in Fig. 3.1. By using shared memory and coalesced

global memory access, the carefully designed algorithm can achieve extremely high

computing throughout. As a result, our TinySPICE can run in a much faster way on

GPUs than conventional SPICE simulators, especially for massively repeated Monte

Carlo small circuit simulations.

In order to handle relatively large circuit,we propose a series of novel GPU-friendly

data structures and memory access strategies for setting up (updating) sparse MNA

matrices, as well as a data-parallel sparse matrix solution algorithm flow for solving

hundreds of sparse MNA matrices concurrently to significantly boost the comput-

ing performance of massively parallel SPICE circuit simulations. In order to reduce

computation rounding error during LU factorizations and to avoid GPU threads di-

vergence during NR iterations, a novel circuits clustering procedure is introduced to

classify circuits to several groups and extract the common pivoting patterns and data

54

dependency graphs of LU factorizations for each group.

3.2 Device Evaluation and Stamping on GPU

3.2.1 Device Evaluation on GPU

As introduced in Section 3.1.1, during SPICE simulation, all the devices need to be

evaluated to find the relationship between current and voltage in every NR iteration.

So, the efficiency of device evaluation is critical to the SPICE simulation, especially

for the small circuit designs.

The elements of linear devices such as resistors, capacitors and inductors are with

constant values, the corresponding system matrix entries will not change throughout

the entire simulation. Consequently, they can be pre-evaluated and stored in a linear

system matrix, which can be subsequently combined with the matrix generated from

nonlinear devices evaluations.

For nonlinear devices, such as transistors. The traditional BSIM4 model-based eval-

uations involve many complex device-oriented formulas, which make the nonlinear

devices evaluation computational and runtime inefficient.In order to more effectively

parallelize the device evaluations on GPU during circuit simulations, a 3D LUT mod-

eling method is adopted in this work.

In order to meet requirements for both accuracy and runtime efficiency, the para-

metric 3D LUT models will be constructed for evaluating transistors during circuit

simulations. LUT-based evaluation of a smooth function derived from the truncated

Taylor expansion can be formulated as follows:

55

Tn (x) = f (c) +
d

∑

k=1

f (k) (c)

k!
(x− c)k (3.2)

where f (c) denotes the evaluation function and f (k) (c) denotes the k-th order deriva-

tives at reference point c, x is the evaluation point, and d is the degree of the Taylor

polynomial. The approximated evaluation can be carried out by looking up a pre-

calculated LUT for coefficients associated with (x− c)k. For the second order Taylor

polynomial expansion, which means d = 2, we can get the second order parametric

3D LUTs evaluation function:

LUT = LUTbase + LUTVth
·∆Vth + LUTLeff

·∆Leff

+LUTVth2
·∆V 2

th + LUTLeff2
·∆L2

eff

+∆Vth ·∆Leff · LUTVthLeff

(3.3)

where LUTbase represents the base LUT generated based on the transistor nominal

parameters. LUTVth
and LUTLeff

are the first order coefficient LUTs for transistor

threshold voltage and effective channel length respectively. Similarly LUTVth2
and

LUTLeff2
are the second order coefficient LUTs. LUTVthLeff

is the coefficient LUT

derived from the partial derivative of Vth and Leff . In order to reduce the complexity,

this cross term is ignored in our implementation. ∆Vth and ∆Leff mean the variation

of the threshold voltage and effective channel length. So the base LUT and two

coefficient LUTs compose the whole parametric 3D LUTs of a transistor. The number

and order of coefficient LUT can be adjusted according to the number of critical

input parameters and accuracy requirement. However it is not always necessary

to introduce the higher order LUTs for each parameter. The proposed TinySPICE

only apply second order LUTs to those parameter whose variation greater than a

56

Gmat…

3D LUT

MOSFET 1 … n

Gmatvth… GmatLeff…… … …

MOSFET 1 … n MOSFET 1 … n

Figure 3.2: Vector for storing 3D LUTs.

threshold. Benefited from the coefficient LUTs that can capture the variations of

transistor parameters, we do not need to update the LUTs at every NR iteration. In

other words, only one-time data transferring of the parametric transistor LUTs from

CPU to GPU is required, which can significantly reduce the overhead of CPU-GPU

communication.

The proposed TinySPICE first parses standard SPICE-like circuit netlist, and eval-

uates the BSIM4 transistor models to build parametric 3D LUTs for all nonlinear

transistors. When building the parametric 3D LUTs, we use the ∆Vth,∆Leff , Vds,

Vgs and Vbs as the input variables, where Vds, Vgs and Vbs denote the terminal volt-

ages of MOSFET devices. To get coefficient LUTs, LUTVth
, LUTVLeff

,LUTVth2

and LUTVLeff2
are also calculated after generating the LUTbase. The parametric 3D

LUTs outputs include all the required elements for stamping the conductance and

capacitance matrices obtained from linearizing (3.1) during the simulations, such as

conductance, capacitance, currents and charges. Output elements can be obtained

based on the input voltages of the transistor terminals.

After extracting all the data required by these parametric 3D LUTs using thousands

of BSIM4 model evaluations, we store all the data in a long vector to allow GPU’s

coalesced device memory accesses, as shown in Fig. 3.2. Considering the huge amount

of data (more than forty elements) computed in one transistor evaluation, we store

the data in such a way that good data locality can be well preserved to ensure GPU’s

efficient texture memory accesses during LUTs’ trilinear data interpolations using

neighboring eight points.

57

Since device evaluations using 3D LUTs are based on eight-point trilinear data in-

terpolations, device evaluated by LUTs requires much less computation time than

the BSIM4 model evaluations that involve very complex device-based formulas. Con-

sequently, even the LUT-based method can achieve a faster device evaluation when

running on CPU. We observe that for most digital circuit modeling and analysis

applications, the accuracy level obtained using LUT-based SPICE simulator (with

first-order parametric LUTs) is very satisfactory, though for analog circuits the con-

vergence may become more difficult.

It needs to be noted that generating LUTs from BSIM4 transistor models is difficult

to realize on GPU. Therefore, LUTs need to be created on CPU and then transferred

to GPU at the very beginning of the simulation. Moreover, traditional LUT model

suffers from several limitations. For instance, the direct LUT is generated based on

nominal transistor parameters. However, due to the impact of process variations,

transistor parameters such as effective channel length Leff and threshold voltage Vth

may deviate significantly from their nominal values. As a result, direct LUT needs

to be updated frequently on CPU according to varying transistor parameters that

could lead to communications of high frequency. It is also known that frequent data

transfer between CPU and GPU can result in large latency and less runtime efficiency

due to the limited bandwidth of the PCI bus.

3.2.2 Jacobian Matrix Data Format and Stamping on GPU

3.2.2.1 Dense Jacobian Matrix and Stamping

Dense matrix format supports easy direct access to its elements. By using dense ma-

trix format, the matrix solver algorithm can factorize the matrix in a straightforward

58

way without considering the fill-ins during the factorization. This simple algorithm

flow is very suitable for GPU’s single-instruction-multiple-thread (SIMT) architec-

ture. The disadvantage of dense matrix format is the extravagant computation cost

and memory consumption introduced by storing and processing the zero elements.

Since the memory consumption of very small circuit analysis is typically very low,

those extra costs will not be significant.

It should be noted that, in order to obtain stamping locations of nonlinear elements

in the system matrix, it is necessary to store the terminal indices of each nonlinear

device. In this work, we propose to store terminal indices of all transistors in a long

index-mapping vector, as shown in left side of Fig. 3.3. In the Mos map vector,

“Idx” stands for the corresponding LUT storage index of a transistor. “P/N” is a

flag indicating PMOS or NMOS. “d,g,s,b” represent the index of each transistor’s

terminal in the system matrix respectively. With such information, device evaluation

results from LUTs can be directly written into the system matrix as well as the right

hand side vector (RHS).

3.2.2.2 GPU Sparse Jacobian Matrix and Stamping

Dense matrix data format can be a good choice for very small circuit simulations,

since the entries of dense matrix can be accessed according to the index information

in a rather straightforward manner. However, with the increasing circuit size, dense

matrix format may result in rapidly growing memory and computation cost, though

typical circuit MNA matrices are rather sparse, even after being factorized by direct

matrix solvers [48], which motivates us to consider sparse matrix data format and

solution techniques to dramatically improve the scalability of GPU-based SPICE

simulators.

59

To this end, the proposed TinySPICE simulation engine leverages the Compressed

Sparse Column (CSC) sparse matrix format for storing the nonzero entries of the

Jacobian matrix during a SPICE simulation. The CSC sparse matrix stores all nec-

essary data into three one-dimensional vectors including the column pointers, row

indices, and entry values. To enable the CSC matrix format in TinySPICE, novel

matrix stamping and LU solution steps on GPU will be introduced in the following

sections.

Since linear devices such as resistors, capacitors, and inductors have constant values,

their corresponding entries in the Jacobian matrix just need to be stamped once on

CPU. However, nonlinear device evaluation results need to be updated and stamped

into the Jacobian matrix during every NR iteration. Fig. 3.3 demonstrates the stamp-

ing procedure of a transistor, where the “O” represents the stamping entry for the

transistor and “X” denotes stamping entries for other devices. Unlike the dense ma-

trix format, the CSC sparse matrix format does not allow efficient access to the entry

locations given the information of terminal indices. For instance, in order to obtain

the nonlinear device stamping locations, it is necessary to traverse all the row indices

for a specific column. To avoid the above frequently repeated and costly traversal

procedure during device stamping procedures, we propose to store the entry indices

of a value array in a mapping vector that includes all necessary MOSFET stamping

locations, as shown in Fig. 3.3. With this mapping vector, GPU threads can directly

read/write the corresponding nonlinear device evaluation results from/to the CSC

sparse matrix.

It should be noted that when a transistor terminal connects to ground (reference)

node, the related evaluation result does not need to be stamped into the Jacobian

matrix using traditional MNA matrix stamping method. However, in order to avoid

branching instructions executed by GPU’s SPs for checking the grounded connections,

these terminals are always treated as regular nodes connected to ground through a

60

g [2]

d[4]

s[5]

b[5]

[n] node index

X

O X O O

X

O O O

X O O O

X

X

X

X

X X X

Mos_map_dense

Idx P/N d g s b

Mos_map_sparse

Idx P/N d g s b

dd gg ss bb dg ds

db gd gs gb sd sg

sb bd bg bs

Figure 3.3: MOSFET stamping location map for dense and sparse matrix
format.

zero voltage source.

3.2.3 RHS and Excitation Sources

The voltage and current excitation source values will also be extracted and stored in

memory before the simulation start on GPU. The source with constant value will be

stamped into RHS vector directly. The time-varying excitation source will be stored

in vectors shown in Fig.3.4.

In V S map vector, node a and node b denote regular terminal nodes’ indices. In

modified nodal analysis (MNA) [36], each voltage source requires including a Pseudo

node into the index-mapping vector for representing the current flowing through the

device.

V S step vectors including all the values of time-varying voltage and current sources at

each time step of transient simulations. V S step will be then combined with constant

excitation vector to form the final RHS vectors.

61

V_t1 V_t2 … VS_step

Voltage Source 1 Voltage Source n

... V_tn

PWL Node a … VS_map

Voltage Source 1 Voltage Source n

Node b
Pseudo

Node P

Figure 3.4: Vectors for storing excitation sources on GPU.

3.3 Matrix Solver on GPU

As mentioned in Section 3.2.2.1, with dense Jacobian matrix the classical direct LU

solver can be easily implemented on GPU such as Doolittle algorithm[57]. Without

considering fill-ins during LU factorization, the solver is able to avoid the GPU threads

branch divergence.

For relatively large circuits, directly solving the sparse MNA matrices using LU algo-

rithm can still be a very costly procedure during SPICE simulations. Existing work

on GPU-based sparse matrix solver research mainly focuses on developing parallel LU

factorization algorithms for solving a single large sparse matrix system using many

GPU threads [47]. On the other hand, the proposed TinySPICE aims to utilize each

single GPU thread to work on a circuit simulation task, so that many sparse Jaco-

bian matrices can be factorized by thousands of GPU threads concurrently. To this

end, we proposed a massively parallel sparse matrix solver that is enabled by a novel

GPU-friendly LU algorithm flow, allowing to avoid GPU thread divergence effects

that are normally unavoidable for prior GPU-based LU solution techniques.

62

Data dependency graph

…Level 0

Level n

result

…

…

…

÷J(x1,y1)

L(x1,y1)

U(y1,y1) ÷J(x2,y2)

L(x2,y2)

U(y2,y2) ÷J(xn,yn)

L(xn,yn)

U(yn,yn)

×L(x11,y11)

L(x11,y12)

U(y11,y12) ×L(x1n,y1n)

U(x1n,ynn)

U(y1n,ynn)

÷L(xm1,ym1)

L(xm1,ym1)

U(ym1,ym1) ÷L(xmn,ymn)

L(xmn,ymn)

U(ymn,ymn)

(x,x) is the entry location

0 1 3

2

4

Level0

Level1

Level 2

LU task list

Figure 3.5: Levelized LU factorization task list.

3.3.1 GPU-based Levelized LU Factorization

In Chaper2 Section 2.3, a block sparse matrix LU solver on GPU is proposed to

solve the huge harmonic balance analysis Jacobian matrix. Although the statistical

simulation problem is quite smaller than the HB Jacobian matrix, the only difference

between these two matrices in the structure is the matrix entry data structure. For HB

Jacobian matrix, the entry is a dense matrix block. However for statistical simulation

problem, the entry is just a scalar. As a result, we can use the similar LU algorithm

by replacing the matrix multiplication and division operations with scalar operations

shown in Fig.3.5.

Fig. 3.6 demonstrates the GPU data structure for storing the LU factorization task

list, where “Level count” represents task level index in the DDG. For each task level,

63

Level count

Level 0

Level n

l u r type

Task unit

Div count TU1 … TUn

Mul count Div count TU1 … TUnTU1 … TUn

…

Figure 3.6: GPU data structure for the LU factorization task list.

there are two task lists related to multiplication and division operations respectively.

“Div count” and “Mul count” denote the division and multiplication task numbers

in the current task level. “TUx” represents a specific task unit “x”, which includes

the location information of the elements that involve computations. “l”, “u” and “r”

are the element indices in the value array of the CSC format sparse matrix, while

“Type” indicates whether it is an “L” or “U” matrix factor. By keeping the value

indices of the elements instead of the original coordination information, the traversal

procedures for locating the value index can be avoided when running on GPU. We

want to emphasize that for each task level, the computation order of the two task

lists are also strictly enforced. For example, the division tasks have to wait for the

completions of multiplication tasks.

3.3.2 Circuits Clustering

From the LU algorithm analysis in Section 2.3 of Chaper2, it is clear that the compu-

tation sequence required by the LU algorithm is depending on the pivoting pattern

and the nonzero locations indicated by L and U matrix factors. In statistical SPICE

circuit simulations, all simulation tasks will result in exactly the same nonzero en-

try locations for all system Jacobian matrices. The main differences are due to the

stamping elements associated with nonlinear devices influenced by different input pa-

rameter variations. As a result, for circuits with dramatically different parameter

64

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

Digital Circuit & Blocks
with Parameter Variations

C
lu
ste
rin
g

Circuits Clustering

…

Newton Raphson (NR) Iterations

kgs

dsk

m
v

i
g

kds

dsk

ds
v

i
G

Model Evaluations via
Parametric 3D LUTs

Sparse MNA Matrix
Stamping/Solve

C
o

n
verg

ed
? Return

Results6,64,6

5,51,4

6,44,4

3,32,3

3,22,2

4,11,1

aa

aa

aa

aa

aa

aa

Group 1

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word
bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

GPU

Newton Raphson (NR) Iterations

kgs

dsk

m
v

i
g

kds

dsk

ds
v

i
G

Model Evaluations via
Parametric 3D LUTs

Sparse MNA Matrix
Stamping/Solve

C
o

n
verg

ed
? Return

Results6,64,6

5,51,4

6,44,4

3,32,3

3,22,2

4,11,1

aa

aa

aa

aa

aa

aa

Group K

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word
bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

GPU

Figure 3.7: Circuit clustering.

variation settings, it is very likely that the required pivoting patterns and nonzero

entry locations during LU factorizations are quite different. In this case, if same piv-

oting patterns and nonzero locations are used during LU factorizations, it may result

in large rounding errors or even simulation failures (e.g. divergent NR iterations)

when solving the corresponding dramatically different linearized systems.

In order to assure the robustness of the proposed sparse LU solver for massively

parallel statistical SPICE simulations, we introduce a simple yet effective circuit clus-

tering procedure that will group similar circuits together before performing statistical

SPICE simulations, as shown in Fig. 3.7. The proposed circuit clustering procedure

has also been described in Algorithm 7. The classical k −means method is adopted

in this proposed work for classifying the circuits with different variation parameters,

such as effective channel length (Leff), threshold voltage (Vth), and supply voltage

(VDD and VSS). As a result of this circuit clustering procedure, within each circuit

group, the operation regions of nonlinear devices (transistors) should be quite simi-

lar, and the linearized system matrices will also be very close to each other, which

allows the common pivoting pattern obtained from the centroid parameter vector to

be suitably applied for robust and accurate LU factorizations during large number of

statistical SPICE simulations within the same group.

65

Algorithm 7 TinySPICE Circuits Clustering Algorithm

1: Obtain the set of data describing parameter variations.
2: Cluster the parameter variations into K groups.
3: for i = 1 → k parameter groups do
4: 1. Get the centroid parameter vector P [i].
5: 2. Generate the Jacobian matrix J [i] based on P [i].
6: 3. Factorize J [i] using LU algorithm.
7: 4. Obtain the pivoting vector Piv[i] and the nonzero entry pattern Nnz[i] of L and

U matrix factors.
8: 5. Create the LU factorization task list LUTask[i] for parameter group i.
9: end for

3.4 GPU Optimization

3.4.1 Data Allocation and Access Optimization

CUDA devices have several types of memories that exhibit different data access la-

tencies and bandwidths which may greatly influence the GPU kernel execution per-

formance. To more efficiently handle relatively large circuits using GPU’s on-chip

memory resources, a series of GPU-friendly data structures, as well as memory al-

locations and accesses have been carefully designed and optimized for TinySPICE.

We summarized the proposed GPU memory allocation strategy for TinySPICE as

follows.

† Texture memory: The parametric 3D LUTs are read-only for all the GPU

threads, so it is preferred to store them in GPU’s read-only texture memory

to reduce the memory data access latency.

† Shared memory: The initial RHS vectors, linear system matrices, index-

mapping vectors for transistor and voltage sources, pivoting vectors and GPU

LU task list are shared among all GPU threads, so they are stored in GPU’s

66

X1 0 X2 0 Xn 0 X1 n X2 n Xn n X

X[0] X[n]

X1.0 X2.0 … Xn.0 X1.n X2.n … Xn.n…

T1 T2 Tn

X

…

Figure 3.8: The solution vector data access pattern on GPU.

shared memory.

† Global memory: The device parameter vector, value array of the Jacobian ma-

trix (sparse matrix format), RHS vector and solution vector need to occupy a

large amount of memory for both read and write operations, so they are stored

in GPU’s global memory and carefully allocated for coalesced memory accesses

during the simulations.

In order to obtain the best parallel GPU computing performance, coalesced device

memory (global memory) accesses should be satisfied for all GPU threads. Take

the solution vector as an example, to enable coalesced device memory accesses, we

organize the memory storage of solution vectors in such a way, that for total n circuits,

the memory spaces of all the n solution vectors are continuous, as shown in Fig. 3.8,

where Tk denotes the k-th GPU thread, and xi.m denotes them-th element of solution

vector of circuit i. This GPU-friendly data storage obviously allows for efficient

coalesced global memory accesses, which can significantly reduce the GPU device

memory access overhead.

3.4.2 Thread Organization

Since each GPU’s streaming multiprocessor (SM) has very limited memory resources,

the number of circuits to be analyzed at the same time should be carefully determined

based on the circuit sizes and on-chip memory usage (e.g. Nvidia GeForce GTX480

67

TinySPICE

Parse Netlist

Setup 3D LUT

For Nonlinear

Device

Excitation &

MOS Terminal

Map Index

Setup Matrix for

Linear Circuit

GPU LUT

@Texture Mem.

G Matrix & RHS

@Shared Mem.

Map Index

@Shared Mem.

CPU Setup

GPU Setup

GPU Analysis

…

Return

Get Latest

Solution

Reset G Matrix

& Update RHS

Transistor

Evaluation

Nonlinear

Stamp

LU Solve

Conv.

Check

Circuit Clustering

Pivoting & LU

@Shared Mem.

Return

Get Latest

Solution

Reset G Matrix

& Update RHS

Transistor

Evaluation

Nonlinear

Stamp

LU Solve

Conv.

Check

Figure 3.9: The algorithm flow of TinySPICE.

GPU has 15 Multiprocessors, 48k shared memory and 32k registers per SM). The

limited memory can impact the number of GPU threads running on each SM. To

achieve the best simulation performance, TinySPICE first finds out the optimal thread

block sizes and grid sizes by evaluating simple memory-cost functions (for computing

the maximum number of circuits that can be analyzed in one SM). Then the proper

thread organization and assignment can be determined, and final simulation code

can be compiled for a given circuit design. It is worth noting that different circuit

analysis problems may result in different GPU thread settings, and therefore different

speedups compared to CPU-based SPICE simulations.

68

3.4.3 Jacobian Matrix Format Determination

As described in Section 3.2, for different circuit size, TinySPICE will adopt different

data format for the system matrix. For various circuit design, the memory and

computation requirement can be quite different. And different GPU device also has

different memory and computation capability (e.g. GTX480 GPU has 480 CUDA

cores and 1.5GB device memory, Tesla C2075 has 448 CUDA cores and 6GB device

memory). As a result, the best matrix format for different test cases and GPU devices

can be quite different. To achieve the best simulation performance, TinySPICE choose

the matrix format by examining the sparsity and dimension of the system matrix. If

the system matrix itself is very dense, the dense matrix format is preferred to take

the advantage of easy data access and simple solver algorithm. On the contrary, if

the system matrix is very sparse and has large dimension, sparse matrix format is a

better choice, which can reduce the computation and memory cost significantly. If

system matrix is very sparse but has very small dimension, dense matrix format still

would be preferred to avoid the complex algorithm flow of the sparse matrix solver.

3.5 Algorithm Flow for TinySPICE

3.5.1 CPU and GPU Cooperation

The complete procedures of TinySPICE simulator can be summarized into three

major phases: CPU setup phase, GPU setup phase, and GPU analysis phase, as

illustrated in Fig. 3.9, where G denotes the system matrix, and RHS stands for right

hand side vector.

69

3.5.1.1 CPU Setup Phase

The main task of the CPU setup phase is to prepare GPU-friendly data structures

for SPICE simulations on GPU.We conclude the CPU setup phase for TinySPICE as

follows:

† Build parametric 3D LUTs for all transistors according to a user-defined ac-

curacy level. A suitable discretization step size can be selected based on the

circuit design information and specific simulation requirements. More accurate

LUTs typically require larger memory space and characterization time. The

parametric 3D LUTs are stored in a long 1D vector (as shown in Fig. 3.2) that

will be transferred to GPU’s device memory for one time before the simulation

starts.

† Create the 1D terminal index-mapping vectors Mos map to store the node

indices for all nonlinear devices, as shown in Fig. 3.3. Mos map is used to

help stamp nonlinear devices into the system matrices that only needs to be

constructed and transferred to GPU for one time.

† Create the linear system matrices by stamping all linear devices. The linear sys-

tem matrices will also be stored in a 1D vector and sent to GPU memory. Once

GPU kernel functions are launched, linear system matrices will be loaded to

GPU’s shared memory at the initial step and will be combined with the nonlin-

ear device evaluation matrices to form the final system matrices for subsequent

NR iterations.

† Create the V S map vectors including information for all excitation sources such

as voltage and current sources.

† Create the V S step vectors including all the values of time-varying voltage and

70

current sources at each time step of transient simulations.

† Classify the test circuits to several groups and obtain the pivoting vector and

LU factorization task schedule for each group.

3.5.1.2 GPU setup and analysis phase

The main task of the GPU setup phase is to prepare proper simulation environment

for the subsequent circuit analysis on GPU, which includes device memory allocations,

and data transmission from host (CPU) to device (GPU). The SPICE simulation will

be performed in GPU analysis phase which will be described in the following sections.

3.5.2 NR Iteration algorithm on GPU

The NR algorithm flow of TinySPICE is summarized in Algorithm 8. At the begin-

ning of each NR iteration, TinySPICE evaluates all of nonlinear devices (linearize

the system) using LUT-based trilinear interpolations according to the latest solution

results. After the device evaluations, the computed elements of nonlinear devices are

stamped into nonlinear system matrices based on the terminal indices stored in the

index-mapping vectors. RHS vectors also need to be updated based on the latest solu-

tion results. After building the nonlinear system matrices and RHS vectors, the final

system matrices can be created by combining the nonlinear system matrices with the

linear devices matrices that have been built from the very beginning. Subsequently,

GPU-based LU decomposition algorithm is applied to factorize the system matrices.

It should be noted that, in order to reduce GPU thread divergence considering GPU’s

single-instruction-multiple-thread (SIMT) scheme, the convergence condition is not

71

Algorithm 8 Newton-Raphson (NR) Iteration Algorithm Flow on GPU

Allocate system matrix and RHS in registers for each GPU thread.
Load linear system matrix, RHS vectors, index-mapping vectors from GPU’s texture
memory to shared memory.
for i = 1 → n NR iterations do

1. Reset system matrix and RHS vector by loading initial data from shared memory.
2. Evaluate nonlinear devices.
3. Stamp system matrix and compute the RHS vector.
4. Factorize system matrix of k-th circuit and solve for the solution vector Xk.
5. Apply a damping factor for the solution ∆Xk if needed.

end for

if NR does not converge then

Perform another n iterations of steps 1-5.
end if

Return solution if NR converged. Otherwise return an error flag.

checked at every NR step. Instead, we check the convergence after several NR steps.

Although this method will result in an overhead of NR steps, it may efficiently reduce

the divergence issue of GPU threads.

3.5.3 DC Simulation Flow

The DC simulation algorithm flow of TinySPICE is demonstrated in Fig. 3.10. The

preprocess on GPU for dense matrix format(left side) and sparse matrix format (right

side) are quite different. In common, the parametric 3D LUT, index-mapping vector,

linear Jacobian matrix will be constructed no matter which matrix format is adopted.

For sparser matrix format, TinySPICE will first classify the test circuits to several

groups. Then pivoting vector and LU factorization task list will be generated for each

group.

In the GPU simulation step, for the beginning of each NR iteration, TinySPICE

will first evaluate all of nonlinear devices using LUT-based trilinear interpolations

according to the latest solution results. Next, the computed elements of nonlinear

72

Variation

parameters

Circuits clustering

to K groups

Preprocess

on CPU

Data transfer

CPU to GPU

GPU SPICE

simulation

Start

End

3D LUT

generation

Device stamping

Location extraction

Get centroid of

group i

Jacobian matrix

creation

LU factorization

Pivoting & result

nonzero pattern

LU task list

generation

i++

3D LUT

generation

Device stamping

Location extraction

Linear Device

stamping

Dense format

Sparse format

Figure 3.10: The DC simulation flow of TinySPICE.

devices are stamped into nonlinear system matrices based on the entry indices stored

in the index-mapping vectors, while the RHS vectors will also be updated based on

the latest solution results. Subsequently, the final system matrices will be created by

combining the nonlinear system matrices with the linear device matrices that have

already been built in advance, which is followed by LU factorization and solution

procedures for solving linear systems of equations.

3.5.4 Transient Simulation Flow

The proposed TR simulation algorithm flow of TinySPICE is shown in Fig. 3.11,

which first performs DC operating point simulations to get the initial circuit operating

73

DC simulation

GPU Kernel

Obtain next n steps

Time varying voltage

source values

TR simulation

GPU Kernel

Return TR result

of n steps

TR time up?

Start

End

N

Figure 3.11: TR simulation algorithm flow.

conditions. The results of DC simulations are kept in the global memory of GPU.

As introduced in Section 3.4.1, the time-varying voltage sources values are stored in

the shared memory. Since it is impractical to store the voltage values for all TR

simulation time steps in GPU’s shared memory, TinySPICE will keep only a small

number of steps (e.g. n = 10) of TR simulations during each GPU kernel launch. The

number of steps to be kept in the shared memory can be determined by examining

the available memory resources as well as circuit size. For instance, when choosing

a smaller n, the simulator can handle much larger circuits, while resulting greater

overhead due to the increased number of GPU kernel launches.

74

3.6 Experiment Result

3.6.1 Experimental Setup

In the experiments, several widely used digital circuits have been tested by

TinySPICE on GPU. To demonstrate the benefit of our GPU-based TinySPICE simu-

lator, traditional CPU-based SPICE simulation methods and TinySPICE on CPU are

implemented and evaluated. Detailed characteristics of test cases are summarized in

Table 3.1, where ”NL Num” denotes the number of nonlinear devices, ”Node Num”

represents the number of nodes in the circuit, ”Vs Num” represents the number of

independent voltage sources, and ”Unk Num” denotes the number of unknowns of

the nonlinear system. We set up both the first order and second order parametric 3D

LUTs in our experiments. Those LUTs have been tested using different resolutions.

Throughout the following experiments, we use a high LUT resolution to guarantee

that the final solution of TinySPICE is matching the SPICE solution. Under the

high resolution, the direct and first order LUTs totally cost 27MB memory for a sin-

gle transistor, while using the second order LUTs will double the memory cost. It

should be also noted that, in the experimental results, the LUTs setup time is not

included. Averagely generating the direct and first order LUTs for a single transistor

costs 0.435s, while using second order LUTs will double the setup time cost. Compare

with the whole simulation runtime, the LUTs setup time is much smaller and it is a

one time cost. Furthermore, the LUTs generation process can be easily parallelized

to reduce the LUTs setup time. Since the accuracy level with first order parametric

LUTs is very satisfactory, all the following experiments use the first order LUTs to

reduce the memory and runtime cost. The SRAM array circuits are tested on RHEL

6.6 64-bit with 2.66GHz 12-core CPU, 48GB DRAM memory and Tesla C2075 GPU

75

Table 3.1

Experimental setup of test cases.

Circuit NL Num Node Num Vs Num Unk Num
6T-SRAM 6 8 5 12
D-Latch 8 9 5 13

D-Flip-Flop 16 12 5 16
Invertor-Chain 32 20 3 22

4:1 Mux 24 27 9 35
SRAM Array 1 60 36 15 50
SRAM Array 2 120 65 25 89
SRAM Array 3 180 95 35 129
SRAM Array 4 240 125 45 169

with 5GB device memory. The experiments of rest circuits have been performed

on Ubuntu8.04 64-bit with 2.66GHz quad-core CPU, 6GB DRAM memory, and one

Nvidia GeForce GTX480 GPU with 1.5GB device memory.

3.6.2 Experimental Results

3.6.2.1 Accuracy of Parametric 3D LUT

The circuit for the static random access memory (SRAM) cell is simulated to show the

accuracy of parametric 3D LUTs. For each test, we sweep the input from 0 to V DD.

At each sweep point, 1000 ∆Vth and ∆Leff are generated randomly and separately for

each transistor following a normal distribution. For the normal distribution, param-

eter nominal values are chosen as the mean value, and the 10% of the nominal values

are set to be the standard deviation σ. 1000 circuit DC simulations are carried out

at each sweep point. CPU-based simulator using BSIM4 model evaluations generates

the reference results, and will be compared with TinySPICE simulators implemented

for CPU and GPU computing platforms.

76

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2

0

2

4

6

8

10

12

14

16
x 10

−5

Drain to source voltage Vds[v]

D
ra

in
 c

u
rr

e
n

t
Id

s
[A

]

vgs=0.3

vgs=0.7

vgs=1.0

vgs=0.3

vgs=0.7

vgs=1.0

Figure 3.12: The I-V characteristics obtained by parametric 3D LUT and
Bsim4 model evaluations. Circles denote the LUT evaluation results.

Fig. 3.12 shows the I-V characteristics simulation result of NMOS transistor. In the

figure, asterisks represent the I-V characteristics using Bsim4 model evaluations, and

the circles represent the results obtained using parametric LUTs. As observed, the

results obtained from parametric LUTs model are very close to the results generated

using Bsim4 models. In our experiment, several different Vgs values are chosen, such

as 0.3,0.7,1.0, to show the accuracy.

Fig. 3.13 demonstrates the DC simulation results (for an internal node voltage) of

the parametric SRAM analysis. The solid line in red is the base line. The results

show that our TinySPICE simulator matches well with the original SPICE simulator,

and can capture the parametric variations accurately. The average relative error is

measured as 0.29%. The second order LUTs have also been tested for DC simulation.

The average relative error has dropped to 0.289%.

77

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

SPICE (V)

T
in

y
S

P
IC

E
 (

V
)

Figure 3.13: Scatter plot of the DC simulation results for SRAM circuits
obtained by TinySPICE and the original Bsim4 SPICE simulator.

Table 3.2

DC Simulation Runtime Results of TinySPICE with Dense Format

Circuit CPU BSIM4(s) CPU LUT(s) GPU LUT(s)
6T-SRAM 768.153 403.200 2.902(264X)
D-Latch 1212.979 527.155 5.727(211X)

D-Flip-Flop 2027.827 982.579 10.677(189X)
Invertor Chain 4377.600 1981.440 41.863(104X)

4:1 Mux 3686.400 1812.480 81.366(45X)

Table 3.3

Transient Simulation Runtime Results of TinySPICE with Dense Format

Circuit CPU BSIM4(s) CPU LUT(s) GPU LUT(s)
6T-SRAM 30720 7679.82 163.59(187X)
D-Latch 41472 10751.95 186.42(222X)

D-Flip-Flop 69120 18432.15 341.3(202X)
Invertor Chain 121344 41472 755.76(160X)

4:1 Mux 256512 33792.15 2658.3(96X)

78

0

1

2

3

4

5

6

7

8

9

cpu bsim4

cpu lut

gpu lut

Runtime

(log)

264 X
138 X

211 X
92X

189 X
92X

104 X
47 X 22 X

45 X

50X
32X

41 X
27 X

Figure 3.14: Comparison of DC Simulation Runtime

3.6.2.2 Runtime Results

First, we show the DC and transient simulation runtime results of our TinySPICE by

comparing them with the results obtained by CPU-based simulators. The runtime

results of all simulators are obtained by running 1, 536, 000 simulations of different

circuits with different excitations and circuit design parameters.

The runtime results by using dense matrix format are illustrated in Table 3.2 and 3.3,

where “CPU-LUT” denotes the runtime for LUT-based SPICE simulation on CPU,

“CPU BSIM4” denotes the runtime for SPICE simulation with BSIM4 models on

CPU, “GPU-LUT” denotes the runtime for proposed TinySPICE on GPU. Speedups

are calculated by comparing to the “CPU BSIM4”. We can observe that CPU-based

SPICE simulator using LUTs can achieve up to 2X speedups for DC simulations

and 7X speedups for transient simulations, compared to traditional SPICE simulator

“CPU BSIM4”. The reason is that the device evaluation cost for parametric 3D LUTs

interpolation is much cheaper than the evaluation of BSIM4 models. Moreover, com-

pared to CPU-based SPICE simulator using LUTs, when doing DC simulation using

79

0

1

2

3

4

5

6

cpu bsim4

cpu lut

gpu lut

Runtime

(log)

187 X

46X

222 X

57X

202X

53X

160 X

54 X 12 X

96 X 20 X
16 X

15 X
13 X

Figure 3.15: Comparison of Transient Simulation Runtime

TinySPICE on GPU, we can achieve up to 138X speedups. Thus, TinySPICE on

GPU runs 264X faster than traditional SPICE simulator. For transient simulations,

TinySPICE on GPU runs 222X faster than the traditional SPICE simulator(shown

in Fig. 3.15). It should be noted that, once the circuit problem size increases, the

memory consumption of each GPU thread will also increase. As a result, the total

number of GPU threads will decrease due to the limited GPU on-chip memory re-

sources, such as registers and shared memory. For instance, the “4:1 Mux” test case

has 35 unknown variables, and the speedups obtained by GPU is only 22X in DC

simulations,as illustrated in Fig. 3.14. This corresponds to a much lower simulation

performance on GPU than the result obtained from the “6T-SRAM” circuit that has

only 12 unknown variables. By using sparse matrix format, TinySPICE can handle

circuits including up to 240 transistors and get a 30X speedup.

Table 3.4 and 3.5 present the runtime results of TinySPICE with sparse matrix format.

By adopting the optimized share-memory based sparse matrix format and solver,

TinySPICE is able to handle circuits with up to 240 transistors and still get a 30X

80

Table 3.4

DC simulation runtime results of TinySPICE with sparse format.

Circuit CPU BSIM4(s) CPU LUT(s) GPU LUT(s) Speedup
SRAM Array 1 24835.5 20721 493.7 50.3X
SRAM Array 2 52402.5 43645.5 1005.2 52.1X
SRAM Array 3 80373 67201.5 2563.1 31.3X
SRAM Array 4 111069 94909.5 3420 32.4X

Table 3.5

Transient Simulation Runtime results of TinySPICE with sparse format

Circuit CPU BSIM4(s) CPU LUT(s) GPU LUT(s) Speedup
SRAM Array 1 155632 131608 7742 20.1X
SRAM Array 2 368853 333654 24266 15 X

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Speedup

Memory usage

(Log)

Figure 3.16: Memory usage (shared memory + registers) vs. speedups

speedup.

In the following, the relationship between the runtime speedups and GPU on-chip

memory consumption (shared memory and registers) will be analyzed. As illustrated

81

in Fig. 3.16, the blue curve denotes the memory usage for different circuits, and the

red curve denotes the speedups of GPU-based SPICE simulator using LUTs obtained

by comparing with CPU-based LUTs SPICE simulator. We observe that, when the

number of unknowns of a circuit increases linearly, the memory consumption will

dramatically increase for dense matrix format, which is due to the storage requirement

of the dense system matrix. By adopting sparse matrix format, the performance of

TinySPICE turn better for larger circuits. Obviously, for each GPU thread, the

dominant on-chip GPU memory is consumed by the system matrices. Since the total

memory available for each SM is limited, once more on-chip memory is consumed by

a single GPU thread, much fewer GPU threads can be assigned onto a GPU’s SM.

As a result, the GPU computing resources may not be fully utilized or there may

not exist enough active GPU threads, which in turn dramatically reduce the runtime

speedups.

82

Chapter 4

Conclusion and Future Work

4.1 Conclusion of the dissertation

This dissertation presents algorithms for scalable integrated circuit simulation on

heterogeneous parallel computing platforms. Two major circuit modeling and analysis

problems have been addressed:

1. A framework for accelerating the harmonic balance analysis on heterogeneous

CPU-GPU computing systems has been proposed. The proposed method allows

to adaptively balance the computational tasks of HB analysis between CPUs

and GPUs by optimally sparsifying the HB Jacobian matrix preconditioner.

By leveraging a novel transient-analysis guided graph sparsification approach,

nearly-optimal support-circuit preconditioners can be obtained. Extensive ex-

periment results show that our HB solver can achieve up to 20X speedups and

5X memory reduction when compared with the state-of-the-art parallel direct

solution method highly optimized for multicore CPUs.

83

2. A graphics processing unit(GPU) accelerated massively parallel SPICE-accurate

nonlinear circuit simulation engine has been proposed for efficient parametric

embedded memory and standard cell array analysis. By accelerating the entire

flow of SPICE simulation algorithm on GPU’s on-chip memory, such as shared

memory and registers, and employing parametric 3D LUTs, SRAM yield anal-

ysis and standard cell variation-aware characterization can be performed in a

much faster way than ever before. Compared with standard CPU-based SPICE

simulation engines, our extensive experimental results show that TinySPICE

simulation engine achieves up to 264X speedups for parametric SRAM simu-

lations, and more than 150X speedups for standard cell simulations, without

sacrificing solution accuracy. By introducing the GPU-friendly sparse matrix

data format and solution algorithms, TinySPICE is capable of dealing with

larger circuits with up to 240 transistors. Additionally, a novel statistical cir-

cuit clustering procedure is proposed to dramatically improve the robustness of

the proposed massively parallel sparse LU algorithm.

4.2 Future Work

There are several research directions to be pursued in the future to extend or improve

the work of this dissertation.

1. The sparse block solver can be improved. The proposed methods in this disser-

tation leverage cuBLAS for the matrix block multiplication and division batch

operations on GPU. Although cuBLAS can efficiently perform the batch opera-

tions, this general purpose library can not take advantage of unique properties

of circulant matrix. In fact, the multiplication and division of circulant matrix

can be performed by vector operation and shifting. As a result, an enormous

84

amount of multiplication and division operations can be saved, especially for

multi-tone strongly nonlinear circuits, which need to consider a large number

of harmonics during the simulation.

2. The HB ultra-sparsifier is based on the cutting based graph sparsification tech-

nology. The edge recovery process during the ultra-sparsifier construction is

not very efficient for some cases. It is possible to improve the preconditioner by

adopting the recent sampling based spectral sparsification technology. Spectral

graph sparsification can well preserve the spectrum of a matrix. This possi-

ble extension may generate much sparser and efficient preconditioner for HB

analysis.

3. The support graph method should be able to be applied to other areas. VLSI

simulation is not the only area which needs to solve the large matrix. For

example, the famous PageRank algorithm from Google needs to compute the

principle eigenvector of the Web graph adjacency matrix. By adopting the

support graph method plus iterative solver, it is possible to accelerate the whole

process.

85

References

[1] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, “3-D ICs: a novel chip de-

sign for improving deep-submicrometer interconnect performance and systems-

on-chip integration,” Proceedings of the IEEE, vol. 89, no. 5, pp. 602–633, 2001.

[2] W. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. Sule, M. Steer, and

P. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE

Design and Test of Computers, vol. 22, no. 6, pp. 498– 510, 2005.

[3] B. C. Catanzaro, K. Keutzer, and B.-Y. Su, “Parallelizing CAD: a timely research

agenda for EDA,” in Proceedings of the International Conference on Computer-

Aided Design (ICCAD), pp. 12–17, 2008.

[4] W. Dong, P. Li, and X. Ye, “Wavepipe: parallel transient simulation of analog

and digital circuits on multi-core shared-memory machines,” in Proceedings of

IEEE/ACM Design Automation Conference (DAC), pp. 238–243, 2008.

[5] F. Gong, H. Yu, and L. He, “PiCAP: A parallel and incremental capaci-

tance extraction considering stochastic process variation,” in Proceedings of the

IEEE/ACM Design Automation Conference (DAC), pp. 764 –769, Jul. 2009.

[6] Y. Lu, H. Zhou, L. Shang, and X. Zeng, “Multicore parallelization of min-cost

flow for cad applications,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 29, no. 10, pp. 1546–1557, 2010.

87

[7] Y. Lu, H. Zhou, L. Shang, and X. Zeng, “Multicore parallel min-cost flow algo-

rithm for cad applications,” in Proceedings of IEEE/ACM Design Automation

Conference (DAC), pp. 832–837, 2009.

[8] S. S. Sapatnekar, E. Haritan, K. Keutzer, A. Devgan, D. Kirkpatrick, S. Meier,

D. Pryor, and T. Spyrou, “Reinventing EDA with manycore processors,” in

Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 126–127,

2008.

[9] H. K. Thornquist, E. R. Keiter, R. J. Hoekstra, D. M. Day, and E. G. Boman,

“A parallel preconditioning strategy for efficient transistor-level circuit simula-

tion,” in Proceedings of the International Conference on Computer-Aided Design

(ICCAD), pp. 410–417, 2009.

[10] X. Ye, W. Dong, P. Li, and S. Nassif, “Maps: multi-algorithm parallel cir-

cuit simulation,” in Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 73–78, 2008.

[11] X. Ye, W. Dong, P. Li, and S. Nassif, “Hierarchical multialgorithm parallel

circuit simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 30, pp. 45 –58, Jan. 2011.

[12] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A

view of the parallel computing landscape,” Communications of the ACM, vol. 52,

pp. 56–67, October 2009.

[13] AMD Corporation, “AMD Fusion Family of APUs: Enabling a Supe-

rior, Immersive PC Experience,” AMD whitepaper, vol. [Online]. Available:

http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx, 2011.

88

[14] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-

ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and

P. Hanrahan, “Larrabee: a many-core x86 architecture for visual computing,” in

ACM SIGGRAPH, pp. 18:1–18:15, 2008.

[15] Nvidia Corporation, “Bringing High-End Graphics to Handheld Devices,” Nvidia

whitepaper, 2011.

[16] A. Mehrotra and A. Somani, “A robust and efficient harmonic balance (HB)

using direct solution of HB Jacobian,” in Proc. IEEE/ACM DAC, pp. 370–375,

2009.

[17] P. Li and L. T. Pillegi, “Efficient harmonic balance simulation using multi-level

frequency decomposition,” in Proc. IEEE/ACM ICCAD, pp. 677–682, 2004.

[18] W. Dong and P. Li, “Hierarchical harmonic-balance methods for frequency-

domain analog-circuit analysis,” IEEE Trans. Comput.-Aided Design Integr. Cir-

cuits Syst., vol. 26, no. 12, pp. 2089–2101, 2007.

[19] W. Dong and P. Li, “A parallel harmonic-balance approach to steady-state and

envelope-following simulation of driven and autonomous circuits,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 4, pp. 490–501, 2009.

[20] Y. Saad and M. Schultz, “GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3,

pp. 856–869, 1986.

[21] P. Feldmann and B. M. D. Long, “Efficient frequency domain analysis of large

nonlinear analog circuits,” in Proc. IEEE CICC, pp. 461–464, 1996.

[22] X. Zhao, J. Wang, Z. Feng, and S. Hu, “Power grid analysis with hierarchi-

cal support graphs,” in Proceedings of IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 543–547, 2011.

89

[23] X. Zhao and Z. Feng, “Towards efficient SPICE-accurate nonlinear circuit sim-

ulation with on-the-fly support-circuit preconditioners,” in Proc. IEEE/ACM

DAC, pp. 1119–1124, 2012.

[24] X. Zhao and Z. Feng, “GPSCP: a general-purpose support-circuit precondition-

ing approach to large-scale SPICE-accurate nonlinear circuit simulations,” in

Proc. IEEE/ACM ICCAD, pp. 429–435, 2012.

[25] L. Han, X. Zhao, and Z. Feng, “An efficient graph sparsification approach to

scalable harmonic balance (HB) analysis of strongly nonlinear RF circuits,” in

Proc. IEEE/ACM ICCAD, pp. 494–499, 2013.

[26] R. Kanj, R. V. Joshi, and S. R. Nassif, “Mixture importance sampling and its ap-

plication to the analysis of SRAM designs in the presence of rare failure events,”

in Proceedings of the IEEE/ACM Design Automation Conference (DAC), pp. 69–

72, 2006.

[27] K. Agarwal and S. R. Nassif, “Statistical analysis of SRAM cell stability,” in

Proceedings of the IEEE/ACM Design Automation Conference (DAC), pp. 57–

62, 2006.

[28] A. Bansal, R. N. Singh, R. Kanj, S. Mukhopadhyay, J. Lee, E. Acar, A. Singhee,

K. Kim, C. Chuang, S. R. Nassif, F. Heng, and K. K. Das, “Yield estimation of

SRAM circuits using ”Virtual SRAM Fab”,” in Proceedings of the International

Conference on Computer-Aided Design (ICCAD), pp. 631–636, 2009.

[29] J. Wang, S. Yaldiz, X., and L. T. Pileggi, “SRAM parametric failure analysis,” in

Proceedings of the IEEE/ACM Design Automation Conference (DAC), pp. 496–

501, 2009.

[30] J. Wang, A. Singhee, R. A. Rutenbar, and B. H. Calhoun, “Two Fast Meth-

ods for Estimating the Minimum Standby Supply Voltage for Large SRAMs,”

90

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 29, no. 12, pp. 1908–1920, 2010.

[31] C. Amin, C. Kashyap, N. Menezes, K. Killpack, and E. Chiprout, “A multi-port

current source model for multiple-input switching effects in cmos library cells,”

in Proceedings of the 43rd annual Design Automation Conference, pp. 247–252,

2006.

[32] P. Li, Z. Feng, and E. Acar, “Characterizing Multistage Nonlinear Drivers and

Variability for Accurate Timing and Noise Analysis,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 15, no. 11, pp. 1205–1214, 2007.

[33] N. Menezes and C. V. Kashyap and C. S. Amin, “A ”true” electrical cell model

for timing, noise, and power grid verification,” in DAC, pp. 462–467, 2008.

[34] K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry, “Fast circuit simulation on

graphics processing units,” in Proceedings of the 14th Asia South Pacific Design

Automation Conference, pp. 403–408, 2009.

[35] R. J. Gilmore and M. B. Steer, “Nonlinear circuit analysis using the method of

harmonic balance-a review of the art. part i. introductory concepts ,” Interna-

tional Journal on Microwave and Millimeter Wave Computer Aided Engineering,

vol. 1, no. 1, pp. 22–37, 1991.

[36] L. Pillage, R. Rohrer, and C. Visweswariah, Electronic circuit & system simula-

tion methods. McGraw-Hill, 1995.

[37] D. Spielman, “Algorithms, graph theory, and linear equations in laplacian ma-

trices,” in Proc. ICM, 2010.

[38] D. Spielman and S. Teng, “Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems,” in Proc. ACM STOC, pp. 81–

90, 2004.

91

[39] D. Spielman and N. Srivastava, “Graph sparsification by effective resistances,”

in Proc. ACM STOC, pp. 563–568, 2008.

[40] A. Kolla, Y. Makarychev, A. Saberi, and S. Teng, “Subgraph sparsification and

nearly optimal ultrasparsifiers,” in Proc. ACM STOC, pp. 57–66, 2010.

[41] W. Fung, R. Hariharan, N. Harvey, and D. Panigrahi, “A general framework for

graph sparsification,” in Proc. ACM STOC, pp. 71–80, 2011.

[42] E. Boman and B. Hendrickson, “Support theory for preconditioning,” SIAM J.

Matrix Anal. Appl., vol. 25, pp. 694–717, 2003.

[43] E. Boman, D. Chen, B. Hendrickson, and S. Toledo, “Maximum-weight-basis

preconditioners,” Numerical Linear Algebra and Applications, vol. 11, pp. 695–

721, 2004.

[44] E. Boman, B. Hendrickson, and S. Vavasis, “Solving elliptic finite element sys-

tems in near-linear time with support preconditioners,” SIAM J. Numer. Anal.,

vol. 46, no. 6, pp. 3264–3284, 2004.

[45] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, “Support-

graph preconditioners,” SIAM J. Matrix Anal. Appl., vol. 27, pp. 930–951, 2006.

[46] I. Koutis, G. Miller, A. Sinop, and D. Tolliver, “Combinatorial preconditioners

and multilevel solvers for problems in computer vision and image processing,”

tech. rep., CMU, 2009.

[47] L. Ren, X. Chen, Y. Wang, C. Zhang, and H. Yang, “Sparse lu factorization for

parallel circuit simulation on gpu,” in Proc. IEEE/ACM DAC, 2012.

[48] T. Davis and E. P. Natarajan, “Algorithm 907: KLU, a direct sparse solver for

circuit simulation problems,” ACM Trans. Math. Softw., vol. 37, pp. 36:1–36:17,

September 2010.

92

[49] P. Amestoy, Enseeiht-Irit, T. Davis, and I. Duff, “Algorithm 837: Amd, an

approximate minimum degree ordering algorithm,” ACM Trans. Math. Softw.,

vol. 30, no. 3, pp. 381–388, 2004.

[50] T. Davis, J. Gilbert, S. Larimore, and E. Ng, “Algorithm 836: Colamd, a column

approximate minimum degree ordering algorithm,” ACM Trans. Math. Softw.,

vol. 30, no. 3, pp. 377–380, 2004.

[51] J. Gilbert and T. Peierls, “Sparse partial pivoting in time proportional to arith-

metic operations,” SIAM J. Sci. Stat. Comput., vol. 9, no. 5, pp. 862–873, 1988.

[52] G. Kazushige and A. Robert, “High-performance implementation of the level-3

blas.,” 2008.

[53] Nvidia CUBLAS library user guide v5.5. [Online]. Avail-

able:http://docs.nvidia.com/cuda/cublas/index.html, 2013.

[54] PETSc: portable, extensible toolkit for scientific computation. [Online]. Avail-

able: http://www.mcs.anl.gov/petsc/index.html.

[55] Nvidia Corporation, Fermi compute architecture white paper. [Online]. Available:

http://www.nvidia.com/object/fermi architecture.html, 2010.

[56] Nvidia CUDA programming guide. [Online]. Available:

http://www.nvidia.com/object/cuda.html, 2007.

[57] R. Burden and J. Faires, Numerical Analysis,9th Edition. Brooks Cole, 2010.

[58] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D.

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK

Users’ Guide. Philadelphia, PA: Society for Industrial and Applied Mathematics,

third ed., 1999.

93

[59] L. Han, X. Zhao, and Z. Feng, “An Adaptive Graph Sparsification Approach

to Scalable Harmonic Balance Analysis of Strongly Nonlinear Post-Layout RF

Circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34,

no. 2, pp. 173–185, 2015.

[60] L. Han, X. Zhao, and Z. Feng, “TinySPICE: a parallel SPICE simulator on

GPU for massively repeated small circuit simulations,” in Proc. IEEE/ACM

DAC, pp. 89:1–89:8, 2013.

[61] L. Han and Z. Feng, “Transient-simulation guided graph sparsification approach

to scalable harmonic balance (HB) analysis of post-layout RF circuits leverag-

ing heterogeneous CPU-GPU computing systems,” in Proc. IEEE/ACM DAC,

pp. 185:1–185:6, 2015.

94

Appendix A

Letters of Permission

A.1 Permission Letters for Chapter 2

95

Title: An Adaptive Graph Sparsification

Approach to Scalable Harmonic

Balance Analysis of Strongly

Nonlinear Post-Layout RF Circuits

Author: Lengfei Han; Xueqian Zhao;

Zhuo Feng

Publication: Computer-Aided Design of

Integrated Circuits and Systems,

IEEE Transactions on

Publisher: IEEE

Date: Feb. 2015

Copyright © 2015, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,

however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an

IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)

users must give full credit to the original source (author, paper, publication) followed by the IEEE

copyright line © 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original

publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also

obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of

original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication

title, and month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your

thesis on-line.

3) In placing the thesis on the author's university website, please display the following message in a

prominent place on the website: In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s

products or services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating

new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a

License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.

Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

96

Title: Transient-simulation guided

graph sparsification approach to

scalable Harmonic Balance (HB)

analysis of post-layout RF

circuits leveraging

heterogeneous CPU-GPU

computing systems

Conference

Proceedings:

Design Automation Conference

(DAC), 2015 52nd

ACM/EDAC/IEEE

Author: Lengfei Han; Zhuo Feng

Publisher: IEEE

Date: 8-12 June 2015

Copyright © 2015, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,

however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an

IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)

users must give full credit to the original source (author, paper, publication) followed by the IEEE

copyright line © 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original

publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also

obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of

original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication

title, and month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your

thesis on-line.

3) In placing the thesis on the author's university website, please display the following message in a

prominent place on the website: In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s

products or services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating

new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a

License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.

Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

97

A.2 Permission Letter for Chapter 3

ACM CONFERENCE COPYRIGHT FORM AND AUDIO/VIDEO RELEASE

Title of the Work: TinySPICE: A Parallel SPICE Simulator on GPU for Massively Repeated Small Circuit Simulations

Publication and/or Conference Name: DAC '13: The 50th Annual Design Automation Conference 2013
Proceedings

Author/Presenter(s): Lengfei Han;xueqian zhao

Auxiliary Materials (provide filenames and a description of auxiliary content, if any, for display in the ACM
Digital Library. The description may be provided as a ReadMe file):

I. COPYRIGHT TRANSFER
Copyright to the Work and to any supplemental fi les integral to the Work which are
submitted with i t for review and publication such as an extended proof, a PowerPoint
outline, or appendices that may exceed a printed page limit, (including without
limitation, the right to publish the Work in whole or in part in any and all forms of
media, now or hereafter known) is hereby transferred to the ACM (for Government
work, to the extent t ransferable -see Part I. B. below) effective as of the date of this
agreement, on the understanding that the Work has been accepted for publicat ion by
ACM.
Employer / Author(s) Retained Rights. Each of the Employer/Author(s) retains the
following rights:

All other proprietary rights to the work such as patent; 1 .
The right to reuse any portion of the Work, without fee, in future works of the
Authors (or Authors Employers) own, including books, lectures and presentations
in all media, provided that the ACM citation, notice of the Copyright and the ACM
DOI are included (See Section 4 below). Requests made on behalf of others, however
(i.e. contributions to the work of other authors or other editors), usually require
payment of a fee;

2 .

The right to revise the work. (See Policy 2 . 4 Definitive Versions and Revisions);3 .

The right to post author-prepared versions of the Work covered by the ACM
copyright in a personal collection on their own home page, on a publicly
accessible server of their employer and in a repository legally mandated by the
agency funding the research on which the Work is based. Such posting is l imited
to noncommercial access and personal use by others , and must include the
following notice both embedded within the full text fi le and in the accompanying
citation display as well:
" ACM, (YEAR). This is the authors version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in PUBLICATION, {VOL#, ISS#, (DATE)}

http://doi.acm.org/10.1145/{nnnnnn.nnnnnn}".

(You may find the nnnnnn.nnnnnn number for your article DOIs on its citation
page in the ACM Digital Library.)

4 .

The right of an employer who originally owned the copyright to distribute definitive
copies of its author-employees Work within its organization. Posting these works for
access outside of the employers organization requires explicit permission from ACM.

5 .

Authors should understand that consistent with ACMs policy of encouraging
dissemination of information, each work published by ACM appears with the ACM
copyright and the following notice:

98

"Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee."

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner

(or authorized agent of the copyright owner(s)), with the exception of third party
materials detailed in section III below. I have obtained permission for any third-party
material included in the Work.

B. Declaration for Government Work. I am an employee of the National

Government of my country and my Government claims rights to this work, or i t is not
copyrightable (Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government?
Yes N o

Country:

II. PERMISSION FOR CONFERENCE TAPING AND DISTRIBUTION (Check A and, if
applicable, B)
A. Audio /Video Release

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device, streaming video or any other media format now or hereafter known.

I understand that my presentation will not be sold separately by i tself as a
stand-alone product without my direct consent. Accordingly, I give ACM the right to
use my image, voice, pronouncements, l ikeness, and my name, and any biographical
material submitted by me, in connection with the Conference and/or Publication,
whether used in excerpts or in full , for distribution described above and for any
associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

B. Auxiliary Materials, not integral to the Work

I hereby grant ACM permission to serve files named below containing my Auxiliary
Material from the ACM Digital Library. I hereby represent and warrant that my
Auxiliary Material contains no malicious code, virus, trojan horse or other software
rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software, and I hereby
agree to indemnify and hold harmless ACM from all liability, losses, damages,
penalties, claims, actions, costs and expenses (including reasonable legal expense)
arising from the use of such files.

99

arising from the use of such files.

I agree to the above Auxiliary Materials permission statement

III. Third Party Materials

In the event that any materials used in my presentation or Auxiliary Materials
contain the work of third-party individuals or organizations (including copyrighted
music or movie excerpts or anything not owned by me), I understand that i t is my
responsibi l i ty to secure any necessary permissions and/or l icenses for print and/or
digital publication, and cite or attach them below.

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

IV. Artistic Images
If your paper includes images that were created for any purpose other than this paper
and to which you or your employer claim copyright, you must complete Part IV and
be sure to include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have have any artistic images.

V. Liability Waivers & Indeminifcations

* Your Liability Waiver is conditional upon you agreeing to the terms set out below.

Because I retain certain rights in my work under the ACM Copyright Transfer
Agreement and under the ACM Permissions Release Form, such as patent and moral
rights, I therefore hereby agree not to assert any of my rights against ACM in
connection with ACM's use of my work as agreed to herein, and I further acknowledge
that ACM is under no obligation to exercise all of the rights I have granted.

I hereby agree to indemnify ACM and its agents and assigns against any and all losses
incurred in connection with any claim or proceedings asserting that I have violated a
prior agreement in presenting my work at an ACM event and/or in granting ACM
rights to publish my work.

I hereby agree to indemnify ACM and its agents and assigns against any and all losses
incurred in connection with any claim or proceeding assert ing plagiarism and/or
copyright infringement if the investigation carried out by ACM according to its
Plagiarism Policy (see: http://www.acm.org/publications/policies/plagiarism_policy)
determines that my work is the plagiarizing or infringing work. [Note, in accordance
with its policies, ACM generally defends its authors against charges of plagiarism and
will reasonably investigate others on behalf of the author who plagiarize a work
copyrighted and published by ACM.]

All permissions and releases granted by me herein shall be effective in perpetuity
and shall extend and apply to ACM and its agents and assigns.

All permissions and releases granted by me herein shall be effective in perpetuity
and extend and apply to ACM and its assigns, contractors, sublicensed distributors,

100

successors , and agents .

I agree to the above liability waiver

DATE: 0 3 / 0 8 / 2 0 1 3 sent to hanlengfei@gmail.com at 17:03:23

101

	SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS PARALLEL COMPUTING PLATFORMS
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Abstract
	Introduction
	Post-layout RF Circuits Harmonic Balance Analysis
	Reliability and Yield Analysis of Small Circuit
	Overview of Chapters

	Scalable Harmonic Balance Analysis of Post-Layout RF Circuits Leveraging Heterogeneous Platform
	Background and Overview
	Review of Harmonic Balance Analysis
	Graph-based Preconditioning Approaches
	Graph Sparsification Problems
	Ultra-sparsifier Support Graph Preconditioners

	Overview of Proposed Support-Circuit Preconditioning Approach

	Support-circuit Preconditioner for HB Analysis
	Sparsification of Representative Laplacian Matrices
	Extraction of Representative Laplacian Matrices
	Sparsification of Representative Laplacian Matrices

	Sparsification Pattern Extraction
	HB Jacobian Preconditioner Construction
	Case Study: Double-balanced Gilbert Mixer Sparsification

	Parallel Block Sparse Matrix Direct Solver
	LU Data Dependency Analysis
	``Fake" Dependencies in LU Factorization
	Parallel LU Task Scheduling
	Test Matrix Factorization
	The Sparse Block LU Algorithm

	Transient Analysis Guided Sparsification
	HB Simulation Runtime Profiling
	Runtime Performance Modeling
	CPU Only Platform Performance Model
	CPU-GPU Platform Performance Model

	Nearly-optimal Sparsification Scheme

	The Scalable HB Analysis Algorithm
	Experiment Result
	Experimental Setup
	Experimental Results
	Scalability

	Massively Repeated Small Circuit Simulation on GPU
	Background and Overview
	Nonlinear Circuit Simulation Approaches
	Massively Parallel GPU Computing
	Overview of our approach

	Device Evaluation and Stamping on GPU
	Device Evaluation on GPU
	Jacobian Matrix Data Format and Stamping on GPU
	Dense Jacobian Matrix and Stamping
	GPU Sparse Jacobian Matrix and Stamping

	RHS and Excitation Sources

	Matrix Solver on GPU
	GPU-based Levelized LU Factorization
	Circuits Clustering

	GPU Optimization
	Data Allocation and Access Optimization
	Thread Organization
	Jacobian Matrix Format Determination

	Algorithm Flow for TinySPICE
	CPU and GPU Cooperation
	CPU Setup Phase
	GPU setup and analysis phase

	NR Iteration algorithm on GPU
	DC Simulation Flow
	Transient Simulation Flow

	Experiment Result
	Experimental Setup
	Experimental Results
	Accuracy of Parametric 3D LUT
	Runtime Results

	Conclusion and Future Work
	Conclusion of the dissertation
	Future Work

	References
	Letters of Permission
	Permission Letters for Chapter 2
	Permission Letter for Chapter 3

