
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2015 

DEVELOPMENT OF THE INTELLIGENT GRAPHS FOR EVERYDAY DEVELOPMENT OF THE INTELLIGENT GRAPHS FOR EVERYDAY 

RISKY DECISIONS TUTOR RISKY DECISIONS TUTOR 

Margo Woller-Carter 
Michigan Technological University, mwoller@mtu.edu 

Copyright 2015 Margo Woller-Carter 

Recommended Citation Recommended Citation 
Woller-Carter, Margo, "DEVELOPMENT OF THE INTELLIGENT GRAPHS FOR EVERYDAY RISKY DECISIONS 
TUTOR", Open Access Dissertation, Michigan Technological University, 2015. 
https://digitalcommons.mtu.edu/etdr/59 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Other Psychology Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151508772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/415?utm_source=digitalcommons.mtu.edu%2Fetdr%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

DEVELOPMENT OF THE INTELLIGENT GRAPHS FOR EVERYDAY 

RISKY DECISIONS TUTOR 

By 

Margo M. Woller-Carter 

 

 

A DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

In Applied Cognitive Science and Human Factors 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2015 

© 2015 Margo M. Woller-Carter 



  



This dissertation has been approved in partial fulfillment of the requirements for the 

Degree of DOCTOR OF PHILOSOPHY in Applied Cognitive Science and Human 

Factors.  

 

Department of Cognitive and Learning Sciences 

  

 Dissertation Co-Advisor: Edward T. Cokely 

 Dissertation Co-Advisor: Rocio Garcia-Retamero 

  Committee Member: Scott Kuhl 

 Committee Member: Robert Pastel 

 Committee Member: Kelly Steelman 

 Department Chair:   Susan Amato-Henderson



  



 

 

 

 

 

 

 

To my mom 

  



  



DEVELOPMENT OF THE GERD TUTOR  vii 

Table of Contents 

Abstract .............................................................................................................................. ix 

Chapter 1: Introduction ....................................................................................................... 1 

Graph Comprehension .................................................................................................... 2 

Measuring Graph Literacy. ......................................................................................... 6 

Benefits of Understanding Graphs. ............................................................................. 8 

Improving Graph Comprehension .................................................................................. 9 

Intelligent Tutors. ...................................................................................................... 12 

Current Research ........................................................................................................... 15 

Chapter 2: Methods and Results ....................................................................................... 16 

Phase 1: Individual Differences and Task Difficulty .................................................... 17 

Study 1: SelectionGL. ............................................................................................... 17 

Study 2: LyingGL. .................................................................................................... 25 

Study 3: DesignGL and Task Difficulty. .................................................................. 30 

Phase 2: iGERD Effectiveness and User Experience Testing ...................................... 40 

Implementation Structure .......................................................................................... 40 

Hypotheses. ............................................................................................................... 45 



viii DEVELOPMENT OF THE GERD TUTOR 

Design and participants. ............................................................................................ 47 

Materials. .................................................................................................................. 47 

Procedure. ................................................................................................................. 50 

Results and Discussion. ............................................................................................ 51 

Chapter 3: Discussion ....................................................................................................... 57 

References ......................................................................................................................... 61 

Appendix A: Item Analysis of Study 3 ............................................................................. 73 

Appendix B: Bootstrap Analysis of Phase 2 ..................................................................... 81 

 

  



DEVELOPMENT OF THE GERD TUTOR  ix 

Abstract 

Simple graphical visual aids have now been shown to be among the most 

effective means of quickly improving people’s ability to evaluate and understand risks 

(i.e., risk literacy), particularly for diverse and vulnerable groups (e.g., older adults, less 

educated, less numerate, minority and immigrant samples). Although well-developed 

theory and standards for user-friendly graph design exist, guidelines are often violated by 

designers faced with constraints like conflicts of interest (e.g., persuasion and marketing 

vs. informed decision making). Even when information is presented in well-designed 

graphs, many people struggle with appropriate data interpretation. Can basic 

computerized graph literacy training improve essential graph and risk evaluation skills?  

To begin to answer this question, I conducted three studies that developed and validated 

psychometric tests of three component graph literacy skills, namely (1) graph type 

knowledge, (2) selecting appropriate graphs, and (3) knowledge of graph distortions. I 

then developed a computerized graph literacy training platform and conducted a mixed-

factorial experiment investigating a wide-range of training effects. Results indicate that 

even in a sample of tech savvy college students one hour of basic computerized training 

can dramatically improve graph literacy (Cohen’s d = 1.10). Results also provide some of 

the first evidence that graph literacy training can improve general decision making skills 

that involve spatial or visualization-relevant processing, such as resistance to sunk costs, 

framing effects, and class-inclusion illusions. Discussion focuses on practical and 

theoretical implications, including usability modeling that should inform continuing 

development of the RiskLiteracy.org Decision Making Skills Training Program. 
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Chapter 1: Introduction 

In our modern and complex world, informed decision-making often requires the 

ability to evaluate and understand risk—i.e., risk literacy (Cokely, Galesic, Schulz, 

Ghazal, & Garcia-Retamero, 2012; Gigerenzer, 2012). Unfortunately, recent estimates 

suggest that nearly 35% of Americans are unable to understand the information about risk 

they encounter on a regular basis (Galesic & Garcia-Retamero, 2011). Graphs are simple 

yet powerful technologies that are widely utilized for risk communication and promotion 

of informed decision making around the world (Galesic, Garcia-Retamero, & Gigerenzer, 

2009; Garcia-Retamero & Cokely, 2013, 2014a, 2014b; Garcia-Retamero & Galesic, 

2013; Larkin & Simon, 1987; Okan, Garcia-Retamero, Cokely, & Maldonado, 2015; 

Pinker, 1990; Spiegelhalter, Pearson, & Short, 2011).  But even if “A picture is worth a 

thousand words” (Brisbane, 1911), well-designed graphs only tend to improve decision 

making specifically when they clarify complex data structures by depicting relations in 

bars, lines, pies, icon arrays, and decision trees (Larkin & Simon, 1987; Mt-Isa et al., 

2013; Pinker, 1990; Spiegelhalter et al., 2011). After all, not all graphs are created 

equally. Failures to follow well-established graph design standards can complicate and 

bias informed decision-making (Larkin & Simon, 1987; Okan, Woller-Carter, Garcia-

Retamero, & Cokely, 2013; Woller-Carter, Okan, Cokely, & Garcia-Retamero, 2012). 

People also differ in their ability to understand graphs (i.e., graph literacy) meaning that 

some people still struggle even when presented with validated, well-designed graphs 

(Garcia-Retamero & Galesic, 2010; Garcia-Retamero, Okan, & Cokely, 2012). 
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The manifold major social, economic, and health consequences of lower levels of 

risk literacy and graph literacy are well documented (Cokely et al., 2012; Garcia-

Retamero & Cokely, 2012, 2015a, 2015b, Submitted; Garcia-Retamero, Cokely, & 

Galesic, 2013; Garcia-Retamero & Galesic, 2013; Ghazal, Cokely, & Garcia-Retamero, 

2014; Peters, 2012; Reyna, Nelson, Han, & Dieckmann, 2009). For example, people who 

are less graph literate are much more likely to choose to pay higher prices for less 

effective products (Woller-Carter et al., 2012), they are much more likely to choose less 

effective treatment options and to fail to comply with their treatment regiments (Okan et 

al., 2013; Woller-Carter et al., 2012), and they also much more likely to recommend 

ineffective or even potentially deadly public policies (Nelson, Hesse, & Croyle, 2009; 

Okan et al., 2013). While not all graphs depict information related to decision making 

and risk, essential graph literacy sub-skills like reading points on a graph, comparing 

between points, and predicting trends with data presented in graphs (Galesic & Garcia-

Retamero, 2011) are common tasks that make graph literacy a topic of great theoretical 

and practical interest to the risk communication and behavioral health and finance 

communities (Garcia-Retamero & Cokely, Submitted; Garcia-Retamero & Galesic, 2013; 

Lipkus & Hollands, 1999; McCarley et al., 2015). How can we help people more 

efficiently learn to evaluate and understand graphs and risks?   

Graph Comprehension 

 Graphs are a relatively new type of technology used for information 

representation. Historical scholarship traces the earliest precursors of modern graphs to 

systems used during the 10th century for depicting planets’ paths over time and to the 
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emergence of longitude differences for depicting differences between two cities that 

became more common in the 17th century.  However, it wasn’t until the 18th century when 

the first modern abstract graphs were created and used for depicting and expressing data 

(Friendly, 2008; Tufte, 2001). Modern scholarship on the psychological mechanisms is 

extensive (see Shah and Hoeffner, 2002) although much of the essential context is 

reflected by two of the most influential theories of graph comprehension and associated 

research. Consider for example the highly influential theory of graph comprehension by 

Pinker (1990). Pinker’s (1990) theory describes the basic visual information processes 

required to encode graphs and the cognitive processes required to convert the basic visual 

information into a meaningful description of (1) the graph and (2) information relations 

among within the graph.  

Carpenter and Shah (1998) built on Pinker’s (1990) theory of graph 

comprehension, comparing two theoretical models of graph comprehension. The first 

model, the pattern-recognition model, accords with the processes proposed by Pinker 

(1990), including (1) encoding the visual pattern, (2) translating the visual pattern into the 

conceptual/quantitative relationship, and (3) identifying the referents from the 

conceptual/quantitative relationships.  The pattern-recognition model predicts that most 

of the cognitive processing takes place in step 1 during encoding of the visual pattern, 

which is then followed by the less cognitively taxing processes in steps 2 and 3. The 

second model, the integrative model, assumes the same three processes as the pattern-

recognition model, but predicts an iterative cycle instead of ordered steps. Rather than 

processing the whole display at once in the encoding step, visual “chunks” are recognized 
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and encoded. The “chunks” are then interpreted and added to the current cognitive 

representation of the display. The visual “chunks” become more complex with each cycle 

until a full, precise and detailed cognitive representation of the display is stored in 

memory. 

In a competitive analysis of the two graph comprehension models, Carpenter and 

Shah (1998) conducted an experiment using data from eye-tracking and verbal protocol 

analysis. Participants were asked to describe line graphs that varied in complexity, in the 

form of additional lines in the graph. The pattern-recognition model’s a priori account 

predicted a small amount of time and gazes on the axes and labels, with the majority of 

the time and gaze focused on the pattern of the graph.  Additionally, the model predicted 

that increased complexity would only affect the amount of time and gaze on the pattern 

but not the axes or labels, with few notable exceptions (e.g., the additional labels 

requiring minimal additional time and gazes to be encoded). In contrast, the integrative 

model predicted that a greater portion of time and gaze should occur on the axes and 

labels as compared to that on the pattern. The integrative model further predicted that as 

complexity increased so too should the time and gazes spent on the pattern, axes and 

labels. Analyses revealed that data largely supported the integrative model, which better 

predicted the amount of both time and gazes spent on the axes and labels compared to the 

pattern, and the increase in time and gazes with increased complexity. 

A second experiment was also by conducted by Carpenter and Shah (1998) to 

further investigate the interpretation process at work in graph comprehension. The 

integrative model predicted a monotonic relationship between gazes and the number of 
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distinct functions presented in the graph. Instead of asking participant to describe the 

graph, the researchers read the title of the graph and asked participants a question about a 

relationship in the graph. The time and gazes by area of interest were again consistent 

with the integrative model. A more precise mathematical model of the gaze pattern was 

derived from the data. The mathematical model first scans each of the areas of interest 

once to get an overview of the graph. Then a single function is identified in the pattern, 

which is followed by one of three, 1) describe the change in the x-axis, including 

direction, scale, units and/or referent, 2) describe the change in the y-axis, including 

direction, scale, units and/or referent, and 3) describe the change in the z-labels, including 

direction, scale, units and/or referent.  

Results from these and other validation studies suggest that the integrative model 

of graph comprehension can provide a useful framework for the examination of 

individual differences in graph skills.  Because the integrative model focuses on specific 

cognitive operations and their relations to specific aspects of the visual stimuli, it 

provides reasonable starting points for examining potential individual differences in skills 

related to (1) production deficiencies—i.e., failures to use appropriate strategies as 

compared to (2) utilization deficiencies—i.e., failures to benefit from typically effective 

strategies. For example, a production deficiency could be failing to strategically evaluate 

and consider the units of the axes when reading a graph (e.g., not encoding that an axis in 

is depicted in a logarithmic scale). In contrast, utilization deficiencies would result when 

participants did strategically consider the axes yet still did not use the information therein 

for some reason (e.g., didn’t understand how to interpret the logarithmic scale). In these 
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ways and others, the cognitive approach to investigation of graph comprehension can 

provide insights into the sources, causes, and typical processes that give rise to individual 

differences in graph interpretation and comprehension. 

Measuring Graph Literacy. 

 Within the cognitive and behavioral sciences, the most common way to measure 

graph literacy is with a psychometric performance instrument, namely the graph literacy 

scale (Galesic & Garcia-Retamero, 2011). The graph literacy scale is commonly used to 

measure graph skills assessed across three sub-skills, including reading points on a graph, 

comparing between points, and predicting trends with data presented in graphs (Galesic 

& Garcia-Retamero, 2011). The development of the graph literacy scale took place via an 

iterated test development and validation process. In a first study, researchers began with 

60 German students and 60 German older adults who completed 42 items requiring the 

use of data presented in a graph, with additional individual difference measures used to 

assess convergent and discriminant validity (i.e., the degree to which the scale correlated 

with other similar scores and the degree to which the score dissociated from theoretically 

unrelated skills). The 42 items were all presented in the medical domain, and covered the 

four most widely used graph types, i.e. line, bar, pie, and icon arrays, as well as  a range 

of complexity.  

 The 42-item measure required an average of 21 minutes to complete with a mean 

score of 34 out of 42 correct, and good internal consistency and reliability metrics (i.e., a 

Cronbach’s α of .85). Psychometric optimization procedures based on these results 

identified 13 items that were selected for the final version of the measure based on five 
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criteria, namely: 1) the item had a percent correct less than 90; 2) the item-total 

correlation was at least 0.3 discriminability; 3) correlation with the existing graph literacy 

measure was at least 0.3; 4) the item covered the three graph abilities (read, compare, and 

predict trends) and covered the four commonly used graph types (line, bar, pie, and icon 

arrays); and  5) the measure had to take less than 10 minutes to complete. 

 The next phase of test development involved assessments on probabilistic national 

samples of the United States (492 participants) and Germany (495 participants). The 13-

item measure was completed along with additional individual difference measures, 

including numeracy, and two graph performance tasks with two conditions (i.e., no 

graphs and graphs by the sample). The 13-item measure took between 9 and 10 minutes 

to complete with an average of 10.1 minutes for the United States sample and 9.2 minutes 

for the German sample. A reliability analysis provided additional evidence of internal 

consistency (i.e., α =.79 for the United States sample and α =.74 for the German sample).  

 Participant performance on the graph tasks were analyzed by creating four ability 

groups; high numeracy – high graph literacy, high numeracy – low graph literacy, low 

numeracy – high graph literacy, and low numeracy – low graph literacy. Graphs were 

found to be most helpful for participants in the low numeracy – high graph literacy group 

as compared to the low numeracy – low graph literacy group. This trend was also present 

in the high numeracy groups and has since been observed dozens of times across a wide 

variety of samples (e.g., surgeons, immigrants, at-risk young adults, etc.). 
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Benefits of Understanding Graphs. 

A recent review of the use of visual aids to communicate health risks (Garcia-

Retamero & Cokely, 2013) documents profound social, health, and economic benefits of 

visual aids that are mediated by improved comprehension of risks, in diverse samples 

including patients and doctors. While most people benefit in one form or another (e.g., 

increased confidence, improved user experience), the greatest benefits in terms of risk 

comprehension are often seen among people with low levels of practical mathematical 

skills—i.e., numeracy—particularly when those people also have moderate-to-high levels 

of graph literacy (Ellis, Cokely, Ghazal, & Garcia-Retamero, 2014; Garcia-Retamero et 

al., 2013; Garcia-Retamero & Galesic, 2010; Garcia-Retamero, Wicki, Cokely, & 

Hanson, 2014; Okan, Garcia-Retamero, Cokely, & Maldonado, 2012; Petrova, Garcia-

Retamero, & Cokely, 2015). Unfortunately, even the most graph literate people can still 

be tricked by poorly designed graphs and graphs that are intentionally designed to distort 

and manipulate understanding and decision making (Okan et al., 2013; Woller-Carter et 

al., 2012). Note, however, that individuals who lack a basic understanding of graph 

literacy are not aided as much by graphs as those with a least a modest understanding of 

graphs (Garcia-Retamero & Galesic, 2010; Okan et al., 2012). And although guidelines 

exist to design graphs (Gillan, Wickens, Hollands, & Carswell, 1998; Jarvenpaa & 

Dickson, 1988; Kosslyn, 2006; Toth, 2006) currently there is no means to enforce the use 

of graph design guidelines and in fact guidelines are often violated by graph designers 

(Cooper, Schriger, Wallace, Mikulich, & Wilkes, 2003). 
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Improving Graph Comprehension 

 If the burden of designing easy to understand graphs cannot be practically met by 

graph designers, then one potential means of inoculating users against biased graphs is to 

increase the graph users’ ability to understand graphs—i.e., improve their graph literacy. 

Currently, there are only a few easily accessible options for adults looking to improve 

their graph comprehension skills, as most online materials focus on graph skills in 

children. Short of reading Kosslyn’s Graph Design for the Eye and Mind (2006) or 

Huff’s How to Lie with Statistics (1952), my extensive review of the literature and a 

deliberative multi-year search for materials (including a visiting fellowship with one of 

the leading cognitive tutoring groups) indicates that the best currently available tutors are: 

1) Carnegie Learning’s MATHia (2011) , 2) MindTools.com’s Charts and Graphs (2007) 

reading, and 3) SmartGraphs’ Graph Literacy course (2011). While ambitious and 

generally well executed, these training systems vary in difficulty, content, mode of 

training, and scope of skills covered, and there is good reason to think they are not ideal 

for most adult learners who have limited time and resources. 

 Consider the options offered by the Carnegie Learning group that includes graph 

skills in a few specific modules of their program MATHia (2011). MATHia is an 

intelligent tutor designed to be used in concert with class lectures for middle and high 

school students. The MATHia modules dealing with graphs cover creating bar graphs and 

histograms, as well as, reading and comparing points in graphs. The training is text and 

task based. The text gives students a basic understanding of the material, which is then 

applied in the tasks. The tasks are adaptive in nature, such that objective and subject 
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difficulty levels of one’s training are tracked along with skill mastery. Specifically, once 

a skill is mastered, the student no longer completes the task focusing on the skill. If a 

student struggles with the task, easier or even sub-tasks processes are then presented, 

along with appropriate feedback about success and failure.  Some versions also include 

metacognitive scaffolding (e.g., helping students think about thinking during learning).   

 While the graph skills that are covered in MATHia are efficiently trained, there 

are a few downsides to MATHia that likely make it less ideal for adult learns and those 

interested in risk literacy applications. For example, MATHia was designed for middle 

and high school students making most of the task content irrelevant or uninteresting for 

many adults. Additionally, MATHia only covers a few graph skills, and only a handful of 

graph types. MATHia is also a “for purchase” training. For full use of MATHia by a 

school, access to MATHia, textbooks, and course syllabi must be purchased through the 

Carnegie Learning group. Researchers may access the content for program for research 

purposes by requesting a free trial and login; however, once access to MATHia is 

granted, finding the modules with the graph content requires a surprising amount of time, 

as graph skills are taught as a part of other courses and are rarely the focus of a course.  

Further complicating one’s search for appropriate modules, the graph modules tend to be 

filed under statistics and data analysis rather than data visualization. Generally, this 

system may give the impression of graph literacy related content that is more academic 

than everyday users require or desire. 

 MindTools.com also offer a training resource, namely one reading titled Charts 

and Graphs (Hallett & MindTools.com, 2007). The course covers choosing the correct 
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graph type based on the data and goals of the user, along with the basics of x- and y-axes. 

The graphs covered in the training include line graphs, bar graphs, pie charts, and Venn 

diagrams. The content is purely text based, however, and does not include tasks to test 

skills or to provide interactive feedback. Nevertheless, the graph selection 

recommendations do follow most of the HFES guidelines (Gillan et al., 1998) and cover 

all but two of the common graph types. 

 The third option, Smart Graphs, has five courses available online. One course 

specifically focuses on Graph Literacy (Staudt et al., 2011). The Graph Literacy course is 

comprised of six modules: 1) Equivalent Graphs, 2) Interpolation, 3) Independent and 

Dependent Variables, 4) Graphs Tell a Story, 5) Hurricane Katrina, and 6) Growing Up. 

The first three models cover basic graph skills, while the last three give applied examples 

for using graphs. The content is not adaptive, but it is text and task based, allowing 

knowledge to be tested while direct connections to everyday applications are made clear. 

However, the content was designed for children making the tasks and applications 

content less relevant and likely less motivating for adults who are interested in training 

decision-making skills and risk literacy. 

 Taken together the currently available online tools mainly focus on children’s 

graph skills, with the exception of MindTools.com reading. While the MindTools.com 

reading accords with the HFES graph guidelines (i.e., how to select the correct graph for 

your data), there are no tasks that allow self-testing for the content has to been learned.  

Moreover, it is unclear whether the graph literacy knowledge and learning will transfer to 

content not included in the text. I suspect that after completing any of the currently 
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available tools, most users would still not have a broad and representative coverage of the 

skills needed to improve graph literacy in such a way that it would also support risk 

literacy (e.g., unlikely to transfer to other tasks in support of superior decision making 

and risk evaluation). Completing the content of all three tools also requires four to six 

hours, depending on the users’ previous knowledge and graph skills. In summary, there is 

currently no online tool available that covers all the graph skills needed to improve graph 

comprehension quickly, adaptively, and in a way that would likely be satisfying to 

diverse adults.  

Intelligent Tutors. 

 Theoretically, intelligent tutors are more efficient learning support systems (e.g., 

instructional systems) because they embody key lessons of cognitive and learning 

sciences in interactive computer programs that adapt to the needs and capabilities of users 

in real time.  VanLehn (2006), one of the leading authorities in the field describes a 

general framework and common language of intelligent tutoring systems (e.g., terms that 

are used widely in the intelligent tutor community and act as a common language 

between developers). The task domain refers to the knowledge and skills being taught. 

The tasks in a tutor are multi-step activities that can be rearranged depending on the tutor 

and student needs. A step is a user interface interaction executed to complete the task. 

The facts, rules, and principles of the domain presented by the tutor are knowledge 

components. When the student applies a knowledge component to a task a learning event 

has occurred. Any action by the student that is inconstant with the instruction is labeled 

as incorrect. The two key components of an intelligent tutor are an outer loop, which 
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controls task selection and presentation, and an inner loop, which gives feedback and 

hints, while tracking skill acquisition. Systems without an inner loop are not considered 

intelligent tutors.  

 There are four methods for selecting tasks for the students of varying 

complexities. The least complex outer loop structure presents a list of tasks to the student, 

and the student then selects the tasks to complete. This is a common structure for online 

homework tasked assigned from instructors in different sections of the same class. 

Increasing the complexity of the outer loop can lead to training with a set order for all 

students. For example, the training might have some text to read followed by a video and 

comprehension quiz, before the student completes five guided tasks. The guided tasks are 

then followed by five unguided tasks before the completion of a unit test. The order of 

the material and the tasks are the same for all students and require similar amounts of 

time for all students. The tutor can also use a mastery learning outer loop structure, which 

requires that the student master the knowledge components of the unit prior to moving on 

to a new unit. Thus, the knowledge components must be labeled and traced by the tutor 

and a mastery level needs to be set by the developer and achieved by the student to move 

forward. The knowledge components are then monitored in the inner loop and feed to the 

outer loop. The most complex outer loop structure is referred to as macro-adaptation. To 

function, the tutor must know the knowledge components for each task and keep a 

running estimate of the current state of the knowledge components for all the tasks. Tasks 

are selected for presentation based on the amount of overlap between the mastered 

knowledge components and the knowledge components of the uncompleted tasks.  
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 In order for marcoadaptation to work correctly between tasks and sessions, 

information about the student must be stored on a server. This information is commonly 

referred to as a student model, and often contains information in attribute-value pairs. 

The information in the student model can be as simple as a set task list or include 

information like GPA, standardized test scores, major, learning style in addition to task 

completion performance, number of hints requested, time to complete tasks, and number 

of failed attempts. This information can then be used to suggest targeted tasks for the 

student to improve specific skills or direct the learning modality of lessons. 

 The outer loop can also control the mode for the tasks. Some systems have a 

guided mode so that each step is demonstrated and explained to the student along with 

hints of next step.  Essentially, hints are given to guide the student to the next step that is 

needed in order to complete the task. In contrast, the student led mode gives hints only 

when the student requests them. In most cases, the mode is selected based on the 

knowledge component mastery and number of tasks completed. 

 The inner loop tracks knowledge components at the level of the steps completed 

by the student and the knowledge components associated with each step. The inner loop 

also controls the timing, type, and amount of feedback the student is given, while 

completing the steps of the task. Feedback can vary from immediate feedback for each 

step to feedback only after submitting a task. The timing, amount, and type of hints given 

to the student are also controlled by the inner loop. A common practice in tutoring 

systems is to give hints to lead the student to the correct next step through multiple levels 

of hints ending in a bottom-out hint (i.e., telling the student what to enter and where). The 
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tracking of knowledge components, feedback, and hints are the essential elements that set 

intelligent tutoring systems apart from other tutoring systems (VanLehn, 2006). The 

design of user experience elements, content (or learning goals), and style features are 

primarily what differentiates intelligent tutoring systems from one another.  

Current Research 

 This project is part of the NSF funded RiskLiteracy.org Decision Making Skills 

Training Program (SES-1253263).  The current project was completed in two phases. The 

goal of Phase 1 was to develop and validate new psychometrically optimized individual 

difference assessment technologies (i.e., simple tests) for three key categories of 

component graph literacy skills. Assessment of these skills is required for higher fidelity 

modeling and measurement of skill levels, which in turn allows the tutor to determine 

task difficulty and student needs. Phase 2 was an experiment designed to test the 

effectiveness of the new tutor compared to an existing tutor, and to examine and map 

theoretically interesting questions about the benefits of different learning systems (e.g., 

does graph literacy training help people make better risky decisions more generally) and 

the benefits of more friendly user experiences (e.g., to what extent does efficiency 

promote learning success across different levels of skill). 
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Chapter 2: Methods and Results 

 Phase 1 includes 3 independent studies. The goal of the first study was to develop 

a short individual difference measure of one’s ability to select or identify the most 

appropriate type of graph for presenting various data and information—i.e., graph type 

selection skill (SelectionGL). The study included existing individual difference for 

convergent and discriminate validity (see Study 1 Materials section for more details). The 

second study developed a short individual difference measure tentatively called “lying 

with graphs literacy” (LyingGL for short). The study included the same existing 

measures as Study 1 and the SelectionGL scale developed in Study 1. The final study 

used the existing measures from the previous studies, as well as the SelectionGL and 

LyingGL respectively in order to develop psychometric profiles of various graph and data 

tasks (i.e., building quantitative models of how hard and how unique different specific 

problems or test items are). In addition, a short measure of graph design skills 

(DesignGL) was developed. 

The aim of phase one was to develop three additional individual differences 

measures specific to graph design and model task difficulty via psychometric indices of 

difficulty by discriminability. The new individual difference measures and the task 

difficulty ratings informed the design of the iGERD Tutor, which was tested in phase two 

of the research. 
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Phase 1: Individual Differences and Task Difficulty 

 The purpose of the Phase 1 studies was to create individual difference measures 

of key skills needed to design and comprehend graphs, SelectionGL and LyingGL. 

Additionally, these measures, and measures of graph literacy and numeracy, were then 

used to determine task difficulty. All of the studies in Phase 1 were conducted using 

Unipark surveys completed by diverse paid web panel participants recruited via 

Amazon’s Mechanical Turk service. All participants in Phase 1 were paid for their 

participation based on a flat rate fee yoked to the average required to complete the 

surveys (e.g., about $1.00). 

Study 1: SelectionGL.  

 SelectionGL is required for the iGERD tutor. The assessment of SelectionGL also 

informed quantitative structural models of more general construct of graph literacy (e.g., 

data reduction model like factor analysis or multivariable modeling in a general linear 

regression framework). 

Participants. Data were collected from 257 participants. A final sample of 217 

participants was used for analysis after 40 participants (15.6%) with incomplete data 

were removed. The mean age was 38 with a range of 18 to 85. The sample was 

comprised of 60.8% females, 38.2% males, and 0.9% of participants who preferred not to 

indicate their sex. Most (88%) participants had some college education or better, with 

only 12% of participants reporting less education; four participants with some high 

school and 22 had a high school diploma or equivalent. Most (65%) of the participants 
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were currently employed with 54% being in less than a management position. The mean 

annual household income range was between $35,000 and $49,999. 

Materials. Four existing individual difference measures were included for 

convergent and discriminate validity. (1) The subjective numeracy scale, developed by 

Fagerlin and colleges (2007), is an 8-item scale that asks participants to rate their skills 

working with numeric information and their preferences for risk information in words or 

a numeric format. (2) The subjective graph literacy scale, developed by Garcia-Retamero, 

Cokely, Ghazal, and Hanson (2014), is a 5-item scale that asks participants to rate their 

skills working with different graph types, as well as, reading and comparing points in a 

graph. (3) The Berlin Numeracy Test is an adaptive, objective measure of numeracy, 

one’s ability to understand and use statistical information (Cokely et al., 2012; Cokely, 

Ghazal, Galesic, Garcia-Retamero, & Schulz, 2013; Cokely, Ghazal, & Garcia-Retamero, 

2014), requiring participants to complete either 2 or 3 items to assess their numeracy. (4) 

The Graph Literacy Scale, developed by Galesic and Garcia-Retamero (2011), contains 

13 items that require participants to read points in a graph, compare points in a graph, and 

project data in a graph in to the future.  

 The two subjective measures do not require participants to use their skills to 

complete tasks. In contrast, the objective measures of numeracy and graph literacy are 

measures of performance on tasks. The subjective measures are moderately correlated 

with their objective counterpart. Participants completed the subjective numeracy scale 

(Fagerlin et al., 2007), subjective graph literacy scale (Garcia-Retamero, Cokely, et al., 

2014), Berlin Numeracy Test (Cokely et al., 2012), Graph Literacy scale (Galesic & 
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Garcia-Retamero, 2011) with 4 additional difficult questions, and 20 SelectionGL tasks. 

The SelectionGL tasks were presented in a random order and the answer options were 

randomized between questions. Demographic information was also collected. All new 

items are presented in Supplemental File A. 

Procedure. Participants accessed the survey that was programmed in Unipark. 

The online program instructed them to read the informed consent form and to agree to 

participation prior to completing the survey (note all studies were approved by MTUs 

IRB—M0650). The participants completed the measure in the order specified above. 

After completing all measures, the participants read a debriefing statement and then were 

given the code required to receive payment for their participation. 

Data analysis. All items were scored according to the procedures of the articles in 

which the scales were developed. The SelectionGL items were scored for correctness and 

a total score was calculated as the total number of items correct. Bivariate correlations 

were conducted to investigate the relations between the existing cognitive ability 

measures and the SelectionGL scale. To investigate the relations found with the bivariate 

correlations in more detail, linear hierarchical multiple regressions were conducted based 

on a priori theoretical assumptions, with SelectionGL score as the dependent variable. 

Step 1 of the regression entered numeracy and graph literacy as predictors, and Step 2 

added subjective numeracy and subjective graph literacy, yielding a significant predictive 

model of SelectionGL in terms of numeracy, general graph literacy, and subjective graph 

literacy.  
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 In order to represent the difficulty of the SelectionGL, the frequency correct was 

calculated for each item. After determining the difficulty of the items, bivariate 

correlations between each item and the total SelectionGL score were used to determine 

the discrimination of each item (i.e., modified classical test theory psychometric item 

analysis). Items with correlation coefficients greater than or equal to .300 were assumed 

to be above the cut score for minimum discriminability between skill levels. Cronbach’s 

α was also calculated for the full scale. Analyses resulted in a four unique short form 

solutions (i.e., potential tests) for the brief SelectionGL. All short forms offered roughly 

interval differences in difficulty level across the full range of difficulty (e.g., the 

difference in difficulty from item 1 to 2 was about the same change in overall difficulty 

from item 3 to 4, and so on). Correlations to the existing cognitive ability scales and the 

four forms were compared to the full scale. Regressions were also used to determine 

which of the short forms best recovered or predicted performance across all items. 

Cronbach’s α was also calculated for each of the short forms. 

Results. The descriptive statistics and maximum score for each measure are 

displayed in Table 2.1. Higher values mean higher ability/preference on all scales. The 

scores on the graph literacy scale are higher than in past research due in part to the 

addition of four extra questions. Bivariate correlations were used to examine relations 

that might exist between scores on various cognitive ability measures. All measures 

showed the expected positive manifold associated with domain general cognitive 

abilities, with the exception of SelectionGL and subjective graph literacy (see Table 2.2 

for correlation coefficients). Additionally, the correlation patterns of the existing 
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measures were consistent with those observed in past research (Garcia-Retamero, Cokely, 

et al., 2014; Woller-Carter et al., 2012). 

Table 2.1  

Descriptive Statistics for Cognitive Ability Measures’ Scores in Study 1 

Measure Mean (SD) Median Maximum 

Numeracy 2.21 (1.05) 2.00 4 

Graph Literacy  13.24 (2.72) 14.00 17 

Subjective Numeracy 4.36 (0.90) 4.5 6 

 Cognitive Abilities 4.12 (1.21) 4.25 6 

 Preference 4.61 (0.97) 4.75 6 

Subjective Graph 
Literacy 4.23 (1.08) 4.2 6 

SelectionGL 9.29 (3.21) 9.00 20 

Note. SD = Standard Deviation 

Table 2.2 

Bivariate Correlation Coefficients between Measures in Study 1 

 Numeracy Graph  
Literacy 

Subjective  
Numeracy 

Subjective  
Graph Literacy 

SelectionGL .29** .44** .15* .10+ 

Numeracy  .38** .16* .22** 

Graph Literacy   .25** .20** 

Subjective 
Numeracy    .62** 

* p < .05. ** p < .01. + p = .15 
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 A Cronbach’s α of .59 was derived for the SelectionGL scale, a remarkably high 

coefficient given the number of graph types included and short length of the test. 

Multiple regression modeling revealed that Numeracy (β = .15, p = .03) and graph 

literacy (β = .39, p < .001) were each unique and robust predictors of SelectionGL 

performance (R2 = .22, p < .001). Subjective numeracy (β = .06, p = .45) and subjective 

graph literacy (β = -.05, p = .53) were not unique predictors of SelectionGL in the full 

model, after controlling for numeracy and general graph literacy. Results suggest that 

SelectionGL is reasonably well represented as primarily reflecting skills that are linked to 

essential processes in general graph literacy, along with some unique contributions from 

numeracy that theoretically may reflect differences in underlying metacognitive and 

general problem solving skills (e.g., Cokely et al., 2012; Ghazal et al., 2014). 

 Item analysis of the SelectionGL items focused on the difficulty and 

discriminability of each item. The item difficulty was determined by the percent of 

participants correctly answering the item; while discriminability was determined using 

bivariate correlations between the score on each item with the total score (item-total 

correlations; see Table 2.3 for the item analysis statistics). Item 8 was the only item on 

which participants performed below chance (20%). The majority, about 37%, thought a 

bar graph should be used instead of an icon array. However, to make a bar graph, 

additional operations would be required to convert the numbers given into percentages, 

which in turn has implications for the reference class/denominator (i.e., obscuring it) that 

are required to make informed decisions from the data. Four items were unrelated to the 
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total score (4, 7, 10, & 17). Three of the items, which failed to correlate were bar graph 

items (4, 7, & 10), and the forth item was a line graph item (17). 

 The performance of four different short forms of the SelectionGL scale were 

compared to the full SelectionGL scale (see Table 2.4). Short form A had the second 

highest Cronbach’s α (.43), but did not have a bar graph item. Short form B included a 

bar graph item but removed an item with greater discrimination resulting in the lowest R2 

of the short forms. Short form C included six items (3, 6, 8, 12, 16, and 19) making it the 

longest of the short forms.  Short form D excluded the hardest item (8) resulting in a 

limited range of difficulty. Short form C was selected based on the overall superiority of 

its psychometric for the final short form (e.g., it had the best Cronbach’s α and R2 of the 

short forms covering the full range of difficulty, without any sacrifice to overall 

predictive or convergent validity). 
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Table 2.3 

Percent of Correct Responses and the Item-Total Bivariate Correlation Coefficients for 

the SelectionGL Scale 

Item Graph  Correct Total   Item Graph  Correct Total 
1 IA 24.9 .33** 

 
11 P 50.7 .37** 

2 IA 35 .44** 
 

12a,b,c,d P 60.8 .48** 
3a,c,d IA 30.9 .42** 

 
13 P 66.8 .49** 

4 B 29 -0.07 
 

14 P 48.8 .27** 
5 L 61.8 .39** 

 
15 L 71 .45** 

6b,c,d B 54.4 .31** 
 

16a,b,c,d L 72.4 .42** 
7 B 49.3 0.06 

 
17 L 31.3 0.08 

8a,b,c IA 15.7 .20** 
 

18 DT 45.6 .44** 
9 DT 52.1 .48** 

 
19a,b,c,d DT 43.8 .49** 

10 B 36.9 -0.02   20 DT 48.4 .57** 
Note. IA = Icon Array. B = Bar Graph. L = Line Graph. DT = Decision Tree. P = Pie 
chart/graph. Item-total correlation coefficients indicated in bold are discriminating items. 
Superscript letters indicate which of the short forms the item was included. Italic items 
are included on the final short form. 
** p < .01 

Table 2.4 

Comparison of SelectionGL Short Forms verses the Full Scale 

Form α R2 Numeracy Graph 
Literacy 

Subjective 
Numeracy 

Subjective 
Graph Literacy 

Full .59 .22** .15 .39** .06 -.05 
A .43 .12** .03 .33** .07 -.04 
B .38 .11** .07 .30** .10 .02 
C .42 .12** .05 .32** .09 .002 
D .44 .13** .08 .32** .10 .01 

Note. α = Cronbach’s α. Standardized β’s are presented for each of the cognitive abilities 
scales. Short form C, indicated in bold, was selected as the final short form. 
** p < .01 
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Study 2: LyingGL. 

 A measure of LyingGL is required for the IGERD tutor. The measure will be used 

to determine the users’ entry into the LyingGL module and task difficulty within the 

module. 

Participants. Data were collected from 376 participants. A final sample of 299 

participants was used for analysis after 20.5% of participants with incomplete data were 

removed. The mean age was 37 with a range of 19 to 75. The sample was comprised of 

58.5% females, 39.8% males, and 0.7% of participants preferred not to indicate their sex. 

Most (89.3%) participants had some college education or better, with only 10.7% of 

participants reporting less education; one participant with no schooling completed, two 

participants with some high school, and 30 with a high school diploma or equivalent. 

Most (79.3%) of the participants were currently employed with 53.2% being in less than 

a management position. The mean annual household income range was between $35,000 

and $49,999. 

Materials. The materials from study 1 were again used with the following 

modification. SelectionGL short form C was used. Following the SelectionGL tasks, the 

LyingGL tasks were added. The LyingGL tasks are presented in Supplemental File B. 

Procedure. The same procedure was used as in Study 1. 

Data analysis. The same data analyses were conducted on the data from Study 2 

as the data from Study 1 with the following exceptions. The LyingGL items were scored 

for correctness and a total score was calculated. LyingGL was the dependent and 
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SelectionGL was entered in Step 1 of the regressions. Only two short forms of the 

LyingGL scale were compared. Cronbach’s α was also calculated for the SelectionGL 

scale to test the scale’s reliability.  

Results. The descriptive statistics and maximum score for each measure are 

displayed in Table 2.5. Scores on the pre-existing cognitive ability measures were similar 

to Study 1. The SelectionGL short form measure had a mean of 2.77, a standard deviation 

of 1.41, and a median of 3.00 in Study 1, which is also similar to the current scores. 

Bivariate correlations were used to determine if relationships exist between scores 

on the cognitive ability measure. All measures are correlated with each other (see Table 

2.6 for correlation coefficients). Additionally, the correlation patterns of the existing 

measures are consistent with Study 1; however, the correlations are stronger than Study 

1. 

A Cronbach’s α of .52 was calculated for the LyingGL. Numeracy (β = .15, p = 

.008), graph literacy (β = .23, p < .001), and SelectionGL (β = .20, p < .001) predicted 

LyingGL performance (R2 = .19, p < .001). Subjective numeracy (β = .11, p = .11) and 

subjective graph literacy (β = .00, p = .995) were not statistically significant predictors of 

LyingGL performance. 
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Table 2.5  

Descriptive Statistics for Cognitive Ability Measures’ Scores in Study 2 

Measure Mean (SD) Median Maximum 

Numeracy 2.16 (1.10) 2.00 4 

Graph Literacy  13.30 (2.68) 14.00 17 

Subjective Numeracy 4.41 (0.91) 4.5 6 

 Cognitive Abilities 4.25 (1.15) 4.25 6 

 Preference 4.59 (1.00) 4.75 6 

Subjective Graph 
Literacy 4.25 (1.09) 4.4 6 

SelectionGL 2.60 (1.37) 3.00 6 

LyingGL 5.30 (2.70) 5.00 19 

Note. SD = Standard Deviation 

 Item analysis of the LyingGL items used the same process as Study 1 (see Table 

2.7 for the item analysis statistics). Many of the items showed near chance performance 

and were removed from further consideration (see Table 2.7). Items with performance 

close to chance also failed to provide adequate psychometric sensitivity and were 

excluded from the short form models. 

  



28 DEVELOPMENT OF THE GERD TUTOR 

Table 2.6 

Bivariate Correlation Coefficients between Measures in Study 2 

 SelectionGL Numeracy Graph 
Literacy 

Subjective 
Numeracy 

Subjective 
Graph Literacy 

LyingGL .37** .30** .41** .28** .20** 

SelectionGL  .27** .39** .19** .24** 

Numeracy   .43** .30** .26** 

Graph 
Literacy    .37** .28** 

Subjective 
Numeracy     .61** 

** p < .01.  

The performance of two short forms of the LyingGL scale was compared to the 

LyingGL scale (see Table 2.8). Short form A fell short of the full-scale performance, 

while short form B surpassed the performance of the full scale due to the elimination of 

poor items (i.e., better interval scaling of underlying psychometric skill models). Due to 

its superior performance short form B was selected as the final short form, although it is 

worth noting that there was some evidence of a limited range of difficulty for the items. 

Therefore, to increase the range of difficulty one new item was added to Study 3 and can 

be found in Supplemental File C. 

  



DEVELOPMENT OF THE GERD TUTOR  29 

Table 2.7 

Percent of Correct Responses and the Item-Total Bivariate Correlation Coefficients for 

the LyingGL Scale 

Item Lie Correct Chance Total         Item Lie Correct Chance Total 
1b II 39.1 25 .40**  10 X 15.7 14 .20** 
2 II 10.7 14 .32**  11b X 27.1 14 .43** 
3 X 14.0 14 .21**  12 R 21.7 25 .26** 
4a,b Y 34.1 25 .43**  13 TA 6.4 14 .34** 
5 TA 23.1 14 .23**  14 GT 29.8 14 .26** 
6b Y 29.1 14 .47**  15a,b II 40.5 25 .43** 
7a,b Y 54.2 25 .42**  16a GT 53.8 14 .39** 
8a,b X 26.8 14 .45**  17 II 37.5 25 .27** 
9 X 11.7 14 .01       

Note. II = Irrelevant Information. X = X-Axis Scale/Labels. Y = Y-Axis Scale/Labels. 
TA = Truncated Axis. R = Reverse Ordered Axis. GT = Graph Type. Item-total 
correlation coefficients indicated in bold are discriminating items. Superscript letters 
indicate which of the short forms the item was included. Italic items are included on the 
final short form. 
** p < .01 

Table 2.8 

Comparison of LyingGL Short Forms verses the Full Scale 

Form α R2 Numeracy Graph 
Literacy SelectionGL Subjective 

Numeracy 

Subjective 
Graph 
Literacy 

Full .52 .19** .15** .23** .20** .11 .00 
A .36 .17** .19* .21** .15^ .05 .02 
B .56 .22** .17** .30** .19** .08 .03 

Note. α = Cronbach’s α. Standardized β’s are presented for each of the cognitive abilities 
scales. Short form B, indicated in bold, was selected as the final short form. 
* p ≤ .05, ** p ≤ .01, ^ p = .058 
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  The Cronbach’s α for the SelectionGL measure was .44 in Study 2, compared to 

.42 in Study 1. The similar Cronbach’s α’s gives some indication of the reliability of this 

measure across samples. 

 Study 3: DesignGL and Task Difficulty. 

 The development of the iGERD tutor required a large pool of possible tasks. In 

order to determine where in the training a task should be presented, the task difficulty had 

to be determined.  

Participants. Data were collected from 1045 participants. A final sample of 862 

participants was used for analysis after 17.5% of participants with incomplete data were 

removed. The mean age was 37 with a range of 18 to 75. The sample was comprised of 

59.7% females, 39.2% males, and 1% of participants preferred not to indicate their sex. 

Most (89.1%) participants had some college education or better, with only 10.9% of 

participants reporting less education; one participant with no schooling completed, one 

participant with nursery school to eighth grade completed, 11 participants with some high 

school, and 81 with a high school diploma or equivalent. Most (63.8%) of the participants 

were currently employed with 36.1% being in less than a management position. The 

mean annual household income range was between $35,000 and $49,999. 

Materials. The materials from Study 2 were used with the following modification. 

LyingGL short form B was used. One additional easy item was added to the LyingGL 

scale (see Supplemental File C). A number sense scale (Siegler & Opfer, 2003) was also 

added between the Berlin Numeracy Test and the Graph Literacy Scale. The number 
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sense scale requires participants to estimate where a number falls on a number line 

between 0 and 1000 (see Supplemental File A for all items and scoring instructions). 

Following the LyingGL scale, the graph design tasks were added. The graph design tasks 

are presented in Supplemental File C. 

Procedure. The same procedure as Study 1 and 2 was used for Study 3 with the 

following exceptions. Due to the large number of items needed for the iGERD, and the 

time constraints of Amazon Mechanical Turks, each participant was randomly assigned 

to complete 10 or 11 graph design items. Each item was completed by approximately 100 

participants. 

Data analysis. All items were scored according to the procedures outlined in 

Study 1 and 2. Graph design items were scored out of a possible two points for each item, 

one point for selecting the correct graph type and one point for selecting the correctly 

designed graph. A total graph design score was computed by summing the scores on the 

individual items, then dividing the sum by the total possible for the block and multiplying 

by 100. The DesignGL scores have a possible range from 0 to 100 as a result of the 

scoring procedure. In order to determine if there were any differences between the 

blocks, ANOVAs were conducted. 

 Bivariate correlations were used to investigate relationships between graph design 

scores and the existing cognitive ability measures. To investigate the relations found with 

the bivariate correlations in more detail, linear regressions were conducted, with graph 

design score as the dependent. Step 1 of the regression entered numeracy, number sense, 
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graph literacy, SelectionGL, and LyingGL scores as predictors and Step 2 added 

subjective numeracy and subjective graph literacy. Cronbach’s α’s was also calculated 

for the SelectionGL and LyingGL measures. 

 In order to determine the difficulty of the graph design items, the percent correct 

was calculated for each item. After determining the difficulty of the items, bivariate 

correlations between each item and the total graph design score were used to determine 

the discrimination of each item. Items with correlation coefficients greater than or equal 

to .300 were said to discriminate between skill levels. Cronbach’s α was also calculated 

for the full scale. 

 After the overall item analysis on the graph design items was completed using the 

same method as in Study 1 and 2. In addition, data were analyzed using the R (R Core 

Team, 2014) ltm package (Rizopoulos, 2006) to complete a comprehensive item analysis.  

Results. The descriptive statistics and maximum score for each measure are 

displayed in Table 2.9. Scores on the pre-existing cognitive ability measures were similar 

to Study 1 and 2.  

 A one-way ANOVA was used to determine if scores were different between 

blocks. Only one measure, DesignGL, for Block 7 was different from the other scores, F 

(7, 850) = 3.31, p = .002. A Bonferoni post-hoc test revealed Block 7 was statistically 

different from Blocks 1, 2, 4, 5, and 8.  

 Bivariate correlations were used to determine if relationships exist between scores 

on the cognitive ability measure. All measures are correlated with each other (see Table 
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2.10 for correlation coefficients). Additionally, the correlation patterns of the existing 

measures are consistent with Study 1 and 2. 

Numeracy (β = .12, p < .001), graph literacy (β = .22, p < .001), SelectionGL (β = 

.29, p < .001), LyingGL (β = .13, p < .001), and number sense (β = -.10, p = .001) 

predicted DesignGL performance (R2 = .36, p < .001). Subjective numeracy (β = .001, p 

= .98) and subjective graph literacy (β = .04, p = .31) were not statistically significant 

predictors of DesignGL performance. 

Numeracy (β = .12, p < .001), graph literacy (β = .22, p < .001), SelectionGL (β = 

.29, p < .001), LyingGL (β = .13, p < .001), and number sense (β = -.10, p = .001) 

predicted DesignGL performance (R2 = .36, p < .001). Subjective numeracy (β = .001, p 

= .98) and subjective graph literacy (β = .04, p = .31) were not statistically significant 

predictors of DesignGL performance. 

Numeracy (β = .12, p < .001), graph literacy (β = .22, p < .001), SelectionGL (β = 

.29, p < .001), LyingGL (β = .13, p < .001), and number sense (β = -.10, p = .001) 

predicted DesignGL performance (R2 = .36, p < .001). Subjective numeracy (β = .001, p 

= .98) and subjective graph literacy (β = .04, p = .31) were not statistically significant 

predictors of DesignGL performance. 
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Table 2.9  

Descriptive Statistics for Cognitive Ability Measures’ Scores in Study 3 

Measure Mean (SD) Median Maximum 

Numeracy 2.18 (1.09) 2.00 4 

Graph Literacy  13.06 (2.74) 14.00 17 

Subjective Numeracy 4.34 (0.91) 4.5 6 

 Cognitive Abilities 4.13 (1.14) 4.25 6 

 Preference 4.55 (0.98) 4.75 6 

Subjective Graph 
Literacy 4.14 (1.09) 4.2 6 

SelectionGL 2.69 (1.36) 3.00 6 

LyingGL 3.12 (1.87) 3.00 9 

DesignGL 36.01 (15.42) 35.00 100 

Number Sense 535.76 (600.08) 390.50 0 

Note. SD = Standard Deviation 
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Table 2.10 

Bivariate Correlation Coefficients between Measures in Study 3 

 LyingGL SelectionGL Num. Graph 
Lit. 

Sub. 
Num. 

Sub. 
Graph 
Lit. 

Number 
Sense 

DesignGL .34** .47** .34** .34** .23** .23** -.30** 

LyingGL  .30** .29** .35** .23** .27** -.14** 

SelectionGL   .25** .39** .19** .20** -.24** 

Numeracy    .40** .28** .22** -.20** 

Graph 
Literacy     .34** .29** -.40** 

Subjective 
Numeracy      .59** -.16** 

Subjective 
Graph Lit.       -.11** 

** p < .01.  

 Numeracy (β = .12, p < .001), graph literacy (β = .22, p < .001), SelectionGL (β = 

.29, p < .001), LyingGL (β = .13, p < .001), and number sense (β = -.10, p = .001) 

predicted DesignGL performance (R2 = .36, p < .001). Subjective numeracy (β = .001, p 

= .98) and subjective graph literacy (β = .04, p = .31) were not statistically significant 

predictors of DesignGL performance. 

 Item analysis was conducted using classical testing theory and item response 

theory with a two parameter model, difficulty and discriminability to determine a task 

order for the SelectionGL and DesignGL tasks as well as select items for the DesignGL 

measure. See Appendix A for item analysis tables. Twenty tasks were selected for both 
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the SelectionGL and DesignGL trainings. Tasks were selected and arranged in increasing 

difficulty based on the item analysis results. Tables 2.11 and 2.12 display the task orders 

and difficulty measures for the SelectionGL and DesignGL tasks respectively. 

 The DesignGL measure included 9 items selected based on their difficulty and 

discriminability. Items over 0.30 were considered to have acceptable discriminability to 

be included in the measure. 
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Table 2.11 

SelectionGL Task Order and Difficulty 

Order 
Number Task Number Graph Type Difficulty 

1 63 Decision Tree 0.99 

2 36 Pie 0.89 

3 34 Line 0.85 

4 32 Line 0.78 

5 29 Line 0.75 

6 60 Decision Tree 0.70 

7 58 Line 0.64 

8 85 Bar 0.60 

9 10 Bar 0.54 

10 13 Bar 0.50 

11 8 Pie 0.49 

12 83 Bar 0.46 

13 59 Icon Array 0.42 

14 4 Icon Array 0.40 

15 73 Icon Array 0.39 

16 75 Icon Array 0.38 

17 53 Pie 0.32 

18 47 Pie 0.29 

19 80 Decision Tree 0.15 

20 20 Decision Tree 0.14 

Note. Difficulty is equivalent to the percent of the sample responding correctly to the 
item. 
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Table 2.12 

DesignGL Task Order and Difficulty 

Order 
Number Task Number Graph Type Difficulty 

1 48 Pie 0.50 

2 45 Pie 0.44 

3 15 Line 0.39 

4 66 Line 0.37 

5 46 Pie 0.30 

6 12 Bar 0.27 

7 3 Icon Array 0.26 

8 14 Bar 0.20 

9 11 Bar 0.23 

10 74 Icon Array 0.17 

11 69 Pie 0.18 

12 54 Decision Tree 0.14 

13 33 Line 0.14 

14 25 Line 0.12 

15 72 Icon Array 0.08 

16 77 Decision Tree 0.06 

17 81 Bar 0.06 

18 18 Bar 0.09 

19 22 Icon Array 0.04 

20 55 Decision Tree 0.02 

Note. Difficulty is equivalent to the percent of the sample responding correctly to the 
item. 
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Table 2.13 

DesignGL Items’ Difficulty and Discriminability 

Task 
Number Graph Type CTT Discriminability CTT Difficulty IRT 

Difficulty 

7 Line 0.42 0.00 0.13 

19 Line 0.33 0.31 0.31 

28 Line 0.35 0.12 0.04 

32 Line 0.33 0.07 0.04 

42 Pie 0.49 0.61 0.73 

43 Pie 0.46 0.73 1.00 

50 Pie 0.48 0.50 0.49 

59 Icon Array 0.49 0.20 0.19 

76 Decision Tree 0.40 0.02 0.01 

Note. CTT = classical testing theory; IRT = item response theory. CTT difficulty and IRT 
difficulty are equivalent to the percent of the sample responding correctly to the item. 
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Phase 2: iGERD Effectiveness and User Experience Testing 

In Phase 2, I integrated the newly developed test items along with the test models 

to the effectiveness of the Intelligent Graphs for Everyday Risky Decisions (iGERD) 

Tutor verses an existing tutor. The longer term goal for the iGERD tutor will be to offer it 

as a freely available outreach program at RiskLiteracy.org, allowing users to learn how to 

use graphs for the risky decisions they face daily (e.g., as part of college courses in 

cognitive science, e-health or e-finance, risk communication, statistics, decision science, 

etc.). The tutor will be hosted and managed via a Learning Management System (LMS) 

on a dedicated server that will be established at a later date. The tutor will be structured to 

include one student model module and (at least) two general training modules.  

Implementation Structure 

LMS. Moodle (Dougiamas, 1999) will be used as the LMS for iGERD and act as 

the implementation platform. Moodle was selected because it is a free open-source LMS 

and is compatible with the intelligent tutor components. Moodle will present the modules 

to the user and track their progress through iGERD.  

 Intelligent Tutor. The intelligent tutor tasks were developed using the program 

Cognitive Tutor Authoring Tools (CTAT; Aleven, McLaren, Sewall, & Koedinger, 2009; 

Koedinger, Aleven, & McLaren, 2009). CTAT requires the developer to create a graphic 

user interface (GUI) in either Java or Flash before creating the individual tasks. The 

iGERD GUI’s were developed in Flash using the CTAT specific components included in 

the CTAT package. Each training module has a GUI designed to support the tasks within 
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the module. The CTAT components of the GUI’s are controlled by a CTAT behavior 

graph, which can be either programmed using production rules or example tracing. In the 

interest of efficiency, the iGERD tutor uses example tracing for both modules.  

 Creating a behavior graph using example tracing requires the developer to work 

through the task until completion. After completing the most direct path to the solution, 

the developer can add alternative paths by either editing the behavior graph directly in 

CTAT or by choosing the point in the behavior graph where an alternative action is 

possible and then demonstrating the new action sequence. Once all the possible paths are 

demonstrated in CTAT, the developer can label action correctness and add skill labels 

and hints to the actions. The developer can also specify if an action should be graded or if 

a group of steps can be done in any order. When a user is completing a task using a 

CTAT tutor, CTAT compares the users’ input against what has been labeled as the 

correct action. The developer can create variables, formulas, and short computer code to 

make a demonstrated action adaptable to multiple tasks (e.g., a single task might present 

information about risks that need to be graphed in the context of baseball or health or 

shopping or savings statistics).  

Modules. There are two types of module in the iGERD, student model creation 

and training. This distinction is important as the student model creation module was not 

designed using CTAT. This decision is a reflection of the fact that the content structure 

for the student model creation module is survey-based rather than task-based. 

Student model creation. The student model creation module is comprised of 

existing and newly created, individual difference measures, and psychometrically 
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optimized based on the results of Study 3 (see the Materials sections for more details). 

The student model can be used to determine areas in which the student needs to improve 

in and direct where in the training the student should start. 

Training. The training modules, focused on two broad categories of skills that 

echo the skills assessed and modeled in Phase 1, including: 1) selecting the correct graph 

type for the data given specific user’s goals, and 2) creating easy to understand graphs 

based on data. Each training module is comprised of two sections. The first section gives 

users the content knowledge in a text based form and requires them to complete a 

comprehension quiz to move onto the next section. The second section will be the 

intelligent tutor tasks.  

For each training module users also completed a user experience (UX) evaluation 

of the training content, tasks, and GUI (see Phase 2 Materials for more details). This data 

was used to assess possible areas of improvement for future versions of the iGERD and 

other tutors developed in our laboratory.  Data was also used to build and tests structural 

cognitive process models that explain the various relations between emotion, usability, 

performance, workload, and learning (e.g., structural equation modeling or multifactorial 

modeling via the SPSS process macro). 

SelectionGL. The first training module is designed to train users on how to select 

the correct graph for specific types of data and goals. The users are given the basic rule of 

when to use each graph type and complete a comprehension quiz on the content. The 

users must complete the comprehension quiz with at least an 80 percent to move onto the 
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tasks. Users then complete a series of questions to help provide hints to the user 

determine about the correct graph type. The questions use a scaffolding structure in order 

for the users to practice the rules needed to determine what graph type to use for the data 

and goals. The early questions are based on the type of data, while later questions focus 

on the users’ goals. The final question of each task is to select the correct graph type. The 

idea behind using the scaffolding approach is to assist users in creating a cognitive model 

for the SelectionGL that is rule based (see Figure 1.2 for screenshot of a SelectionGL 

task). 

Graph design. The second training module focuses on designing easy to 

comprehend graphs. The text based design knowledge is taken from the graph design 

guidelines. Users need to complete the comprehension quiz with at least 80 percent to 

move on to the graph design tasks. The tasks require the user to select the correct graph 

type for the data and goals before moving onto designing the graph. Users answer a series 

of questions about the limits and ordering of the data.  Then given these data facts, users 

select the best graph from four options (see Figure 1.3 for a screenshot of a graph design 

task). All five types of graph problems were sampled in direct proportion to the results of 

psychometric modeling in experiment 3 of phase 1 (i.e., understanding some kinds of bar 

charts may entail the same skills involved in building some icon arrays—and so master of 

one would serve as an indicator of master of another, per psychometric model 

specifications). 
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Figure 2.1. Screenshot of a SelectionGL task in iGERD. 
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Figure 2.2. Screenshot of a graph design task in iGERD. 

Hypotheses. 

I conducted extensive and sophisticated statistical analyses to test a host of 

theoretical models and assumptions. Accordingly, below I present three hypotheses that 

represent the broad categories of analyses and assumptions I intend to tests and model.  

H1: More Graph Literacy Learning. H1a The iGERD tutor is better for 

developing graph comprehension than a control tutor. H1b The iGERD tutor is 

better for learning to avoid tricky/biased graphs than a control tutor. 

Theoretically these results follow from classical learning theory, encoding 

specificity, and identical elements theory (e.g., the trained skill should develop 

better across the entire skill range, when training is focused on essential skills). 
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H2: Improved Risk Literacy and Decision Making.  The iGERD tutor will be more 

likely to directly transfer into risk literacy related skills (e.g., improving numeracy 

and decision-making skill) than a control tutor. This result again follows from 

identical elements theory such that users may become better decision makers 

because they practice metacognitive skills and learn data representation, 

conceptualization and evaluation skills during graph literacy training. That is, 

those individuals who get good at thinking in terms of nested and other graphical 

representations, and those who also practice thinking about thinking during data 

graphing tasks are practicing the EXACT skills that are often needed to make 

good decisions (e.g., thinking about thinking and representing various complex 

data representations).  I predict that although users will never be told they are 

practicing good habits that can empower decision-making, they will be gaining 

problem solving and metacognitive skills. Therefore, I expect at least some 

transfer that goes beyond self-efficacy type boosts in motivation (e.g., motivation 

that comes from succeeding in learning, which should be equally represented in 

both control and iGERD training).  To my knowledge, this would be the first 

reported evidence of such an effect from training, although it would be consistent 

with hypotheses and theories suggested by other data (e.g., Cokely et al., 2012; 

Garcia-Retamero et al., 2013).   

H3: Better User Experience. The iGERD tutor will be rated at least as useful, 

likable, and interesting as the control tutor, although the iGERD tutor will be 
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rated as more relevant to everyday decisions such as treatment options, politics, 

and finances. 

Design and participants.  

A modified mixed-factorial between and within participant design was used. 

Participants completed the experiment online. The participants were randomly assigned 

to either the control condition, i.e., training with STEM Foundations (a study skills 

training), or to the experimental, i.e., Graph Skills training.  

 Data were collected from 108 participants using Michigan Technological 

University Introductory Psychology subject pool for participant recruitment and 

reimbursement. The participants received partial credit toward the completion of their 

research participation requirement as compensation for their participation in the study.  

Experimentation began in early April and ended in mid-August. Data from 17 

participants were excluded from analysis due to incomplete data, resulting in a control 

group of 39 participants and an experimental group of 52 participants. 

 Materials.  

Pre-test. The pre-test was comprised of six measures presented in Unipark. 

Participants completed the subjective numeracy scale (Fagerlin et al., 2007), the 

subjective graph literacy scale (Garcia-Retamero, Cokely, et al., 2014),  The Berlin 

Numeracy Test-Schwartz, a combination of numeracy tests validated for use with the 

general population of industrialized countries (i.e., BNT (Cokely et al., 2012) and 
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Schwartz et al., (1997) in the original forms, a number sense measure (Siegler & Opfer, 

2003), and the graph literacy scale (Galesic & Garcia-Retamero, 2011). 

 Post-test. The post-test was comprised of decision tasks and individual difference 

measures presented in Unipark. The decision tasks included graph decisions, for both 

well-designed and biased graphs, and risky decisions. Sixteen well-designed graph 

decision tasks were taken from Okan, Galesic, and Garcia-Retamero (2015). Only tasks 

for graphs without conflicts were included and 2 items were added for increased 

difficultly (see Supplemental File D for new items). All of the well-designed graphs were 

artificial materials. The biased graph decision tasks were taken from Okan et al. (2013). 

All the biased graphs were ecological coming from print and electronic media. Three 

different decision-making measures were included. (1) Berlin Numeracy Components 

Test (BNT-C), developed by Ghazal (2014) and colleagues, which is an optimized, brief, 

and comprehensive numeracy test that provides a rapid and robust assessment of one’s 

overall numeracy level as well as differences in one’s component numeracy sub-skills 

(i.e. operations, probability, geometry, and algebra). (2) Numeracy Understanding for 

Medical Information (NUMi), developed by Schapira et al. (2012), is a 20 item measure 

of basic health numeracy including graph literacy and statistical numeracy. (3) The 

Decision Making Skill (DMS) measure (Ghazal, 2014) includes 73 items that measures 

strategic decision-making performance, risky choice, confidence, and consistency bias. 

 In addition to the decision tasks, participants also completed twelve individual 

difference measures. Individual difference measure covered three areas. (1) Graph skills 

were measured using the subjective graph literacy scale (Garcia-Retamero, Cokely, et al., 
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2014), SelectionGL, LyingGL, and DesignGL. (2) Numeracy skills were measured using 

the subjective numeracy measure (Fagerlin et al., 2007), BNT version 2 (see 

Supplemental File D for BNT-2 items and scoring procedure), Schwartz form A (see 

Supplemental File D for Schwartz-A items and scoring procedure), and a number sense 

measure (Siegler & Opfer, 2003. (3) Personality measures were also included for 

convergent and discriminant validity. The personality measures included the Ten-Item 

Personality Inventory (TIPI; Gosling, Rentfrow, & Swann, 2003), a measure of cognitive 

impulsivity (i.e., the Cognitive Reflection Test (CRT; Frederick, 2005), a measure of 

one’s determined persistent or “grit” (Duckworth, Peterson, Matthews, & Kelly, 2007), 

and six-item decision making style scale assessing maximization tendencies (Nenkov, 

Morrin, Ward, Schwartz, & Hulland, 2008). 

 Trainings. The STEM Foundations tutor (Open Learning Initiative, 2013) trains 

communication and study skills and was used as the control tutor. It was selected as the 

control for many reasons. First, the data from the tutor is easy to access and store for 

analysis. Secondly, it is a free training and compatible with Moodle. Finally, the tutor 

does not train any decision-making skills, which could have confounded the results of the 

experiment.  

The iGERD and STEM modules were presented using Moodle. Participants were 

added to the system and enrolled in the course by the researcher. 

 User experience. At the end of each training module, the participants completed 

the user experience measures on the module they just completed. Four measures were 

used to access user experience. (1) An ease of use and evaluation of information 
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presented were developed specifically for the trainings based on the IBM Usability 

Standards (Lewis, 1995). Ten non-leading items were created with half being reverse 

ordered (see Supplemental File E for the ease of use and evaluation of information items 

and scoring procedure). (2) Graph learning scale developed using the IBM Usability 

Standards (Lewis, 1995), and assessed learning for each graph type (see Supplemental 

File E for the graph learning scale and scoring procedure). (3) The System Usability 

Scale (SUS) was developed by Brooke (1996), and includes 10 items that participants 

rate the ease of use of the system. The questions are generic and can be used with any 

system. (4) The NASA- Task Load Index (TLX) is a 6 item measure of task workload on 

six different dimensions, developed by Hart and Staveland (1988). 

Procedure.  

 Participants accessed the link to the trainings and used the login information 

provided to them when they signed-up to participate in the study. Participants were 

randomly assigned to one of the trainings by the researcher. Participants first read and 

indicated they had read, understood their rights, and agreed to participate in the study. 

Participants completed the pre-test prior to completing the training at their own pace. At 

the end of each training module, the participants completed user experience measures on 

the module they just completed. Information about how the training was completed (e.g., 

massed v. spaced, plus total time and intervals) was also collected. After completing all 

of the assigned training modules and user experience surveys, participants completed the 

post-test. 
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Results and Discussion. 

 Did training improve graph literacy? Generalizability of training effectiveness 

was first modeled using independent-samples t-tests to compare overall change in Graph 

Literacy (i.e., TrainingGL = SelectionGL plus DesignGL) by condition (i.e., experimental 

v. control groups).1 As predicted, the experimental group exhibited the large and 

significant TrainingGL improvement compared to the control group, t (90) = 5.74, p ≤ 

.001, d = 1.21. Next, I examined all pre-training variables for differences in skills that 

could complicate interpretation and parameterization of t test results. Pre-training graph 

literacy was found to be the only pre-training variable found to differ significantly 

between the groups, t (89) = 2.04, p = .044 (Cohan’s d = 0.43). Because of the observed 

difference in pre-training graph literacy, I modeled the relationship between TrainingGL 

and condition (training v. control) in a multiple regression, statistically controlling for 

and estimating any influence of pretest graph literacy scores.  As expected, the model 

indicated that the large differences TrainingGL associated with training remained 

relatively unchanged even when statistically controlling for differences in initial levels of 

graph literacy, t (89) = 5.23, p ≤ .001, d = 1.10).  

 Did training improve general decision making skills? Given the modest sample 

size and thus modest statistical power, in the light of a priori assumptions based on pre 

                                                 
1 Both SelectionGL, t (89) = 5.74, p ≤ .001 and a Cohan’s d = 1.22, and DesignGL, t (89) = 2.91, p ≤ .001 

and a Cohan’s d = 0.62, were significantly higher for the experimental group compared to the control 

group. 
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and post analysis the decision-making tasks were split into two groups of skill tasks as 

follows: (1) “visualizable” decision tasks that could benefit from an understanding of 

graphs (e.g., spatially relevant and visualizable decision problems) and (2) “non-

visualizable” decisions tasks that should be unrelated to understanding of graphs (i.e., 

limited to no spatial or visualizable decision context). Specifically, the visualizable tasks 

included decision skills related to avoiding ratio bias (i.e., icon array), resisting framing 

effects (i.e., bar graphs), avoiding sunk cost (i.e., decision trees), as well as making 

decisions based on data presented in biased graphs (e.g., general graph literacy skills), 

and making decisions about how best to lie with graphs (e.g., metacognitive 

understanding of graph literacy).2 The non-visualizable tasks included intertemporal 

choice, confidence calibration, consistency of risk perception, applying (untrained) 

decision rules, exhibiting path independence, making ecological risky decisions based on 

data, and recognizing social norms. Variables were Z scored and integrated into an 

equally weighted composite overall score for (1) visualizable decisions and (2) non-

visualizable decisions. Simple regression modeling revealed a clear and robust effect of 

training on visualizable decision tasks (see next section for multiple regressions) that was 

absent in non-visualizable tasks. To refine estimates of training intervention effect sizes 

and distributions, I used a package in the statistical software language R to bootstrap 

                                                 
2 Reflecting the small sample size independent-samples t-tests of each decision task indicated only nominal 

and non-significant statistical trends (p ≥ 0.059). Bootstrapping results are presented in Appendix B an 

estimate an overall moderate average effect size for each of the various visualizable decision tasks at 

around the d = .4 level. 
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estimates of results with simulation of 10,000 resamples (with replacement) from the 

original data set for each of the visualizable and non-visualizable tasks. Means were 

calculated for the experimental and the control group for each resample and a difference 

between the scores was calculated for each resample. Figure 2.1 displays the observed 

large differences in density functions that obtained for each of the measures under 

bootstrapped estimation. A 95% confidence interval for each distribution is indicated by 

dashed lines. The raw estimated effect based only on the true sample difference between 

the group means is indicated by the solid line representing a good approximation of the 

population central tendency. 

a. Visualizable         b.   Non-Visualizable 

 

Figure 2.3. Bootstrapping Density Functions of Experimental Minus Control Means. 

Dashed line indicate the end points of the 95% confidence interval and the solid line 
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indicates the original mean difference. Robust effects are implied when confidence 

intervals do not contain zero.  

 How did user feel about their training experience?  Differences in user 

experience between the groups were investigated using independent-samples t-tests. The 

iGERD training had significantly higher scores on graph learning (t (85) = 4.31, p ≤ 

.001), NASA TLX performance (t (85) = 2.48, p = .015), and NASA TLX frustration (t 

(85) = 2.10, p = .039) than the control training. However, the control training outscored 

the iGERD on ease of use (t (85) = -3.82, p ≤ .001), SUS (t (85) = -3.95, p ≤ .001), and 

NASA TLX physical (t (85) = -2.40, p = .018). 

Table 2.14 

Hieratical Regression Statistics for Model Comparison 

 Non-Visualizable Score Visualizable Score 

Model & variables β R R2 ΔR2 F β R R2 ΔR2 F 

Model 1.           

 Group .054 .054 .003 .003 .265 .271** .271 .074 .074 7.07** 

Model 2.           

 Group .050 
.486 .236 .233 13.58*** 

.187 
.475 .225 .152 12.79*** 

 Graph Literacy .494*** .398*** 

Model 3.           

 Group .201 

.553 .306 .070 12.76*** 

.084 

.508 .258 .033 10.08***  Graph Literacy .349*** .299** 

 TrainingGL .350** .240* 

Note. * p ≤ .05, ** p ≤ .01, *** p ≤ .001 
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 In order to determine if the usability results affected performance on the 

visualizable tasks, a series of hierarchical linear regression models were conducted. Two 

sets of models were constructed. In both cases, the first model predicted decision task 

using only group. The next model added pre-training graph literacy as a control together 

with group. The full model added subjective measures of performance or ease of use 

measures to both pre-training graph literacy and group. Essentially, the full model 

allowed me to estimate the degree to which the usability measures mediated the relation 

between condition and decision-making, controlling for pre-training graph literacy 

scores. Table 2.15 contains the regression statistics for both subjective performance and 

ease of use scores. For the subjective performance measures, the full model failed show a 

reliable relationship between the subjective performance measures and decision task 

performance, F (2, 76) = 1.39, p = .255, R2
change = .028. Also, for the ease of use 

measures, the full model failed show a reliable relationship between the subjective 

performance measures and decision task performance, F (2, 76) = .745, p = .478, R2
change 

= .015. These models show the importance of performance over ease of use. However, 

once a system meets the performance requirements ease of use should be optimized to 

reduce frustration and increase user retention.  
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Table 2.15 

Hieratical Regression Statistics for Model Comparison 

 Subjective Performance Ease of Use 

Model & variables β R R2 ΔR2 F β R R2 ΔR2 F 

Model 1.           

 Group .278** .278 .077 .077 6.59** .278** .278 .077 .077 6.59** 

Model 2.           

 Group .202* 
.467 .218 .141 10.89*** 

.202* 
.467 .218 .141 10.89*** 

 Graph Literacy .383*** .383*** 

Model 3.           

 Group .293** 

.496 .246 .028 6.20*** 

.188 
. . . . 

 Graph Literacy .332** .357*** 

 Graph Learning -.141 N/A 
N/A N/A N/A N/A 

 NASA TLX Performance -.083 N/A 

 Ease of Use N/A 
N/A N/A N/A N/A 

-.206 
.483 .233 .015 5.78*** 

 SUS N/A .145 

Note. ** p ≤ .01, *** p ≤ .001 
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Chapter 3: Discussion 

 The current research created, refined, and tested an online training system, the 

iGERD tutor, for improving graph skills that are essential parts of effective decision-

making skill and risk literacy. Past research has shown risk literacy can be improved, 

sometimes dramatically, via presentation of graphical materials (Garcia-Retamero & 

Cokely, 2011). Improved graph comprehension skills are directly linked to overcoming 

and avoiding distorted and biased graphs (Woller-Carter et al., 2012). In turn, reducing 

the cost of unnecessary/ineffective treatments and screenings defrayed to the public. 

 This research shows that the iGERD tutor is currently the most efficient and 

effective training to improve decision making in adults. The training was effective for 

improving performance on visualizable tasks due to the identical elements in common 

between the training tasks and the decision making tasks (Holding, 1965; Thorndike & 

Woodworth, 1901; Yamnill & McLean, 2001). These elements may include new long-

term working memory structures that allow for more information to be stored and 

manipulated while completing the decision task as compared to participants who did not 

complete the iGERD training (Anderson, Reder, & Simon, 1996; Barton, Cokely, 

Galesic, Koehler, & Haas, 2009; Cokely & Kelley, 2009; Cokely, Kelley, & Gilchrist, 

2006; Cokely, Schooler, & Gigerenzer, 2010; Ericsson, 1985; Ericsson & Charness, 

1994; Ericsson & Delaney, 1999; Ericsson & Kintsch, 1995; Ericsson, Prietula, & 

Cokely, 2007; Gigerenzer & Edwards, 2003; Keller, Cokely, Katsikopoulos, & 

Wegwarth, 2010).  
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The exact elements and long-term working memory effects will require further 

empirical investigation to identify and understand. However, the iGERD training has a 

moderate improvement over the control training. This improvement may be the result of 

many things including long-term working memory changes, but the truth is that the 

iGERD does improve decision making more than the control training. 

 The approach used to develop the iGERD system should be implemented in the 

development of new trainings in order to accurately assess training effects of the system. 

1) Identify and validate the need for a new training. 2) Identify the skills to be trained. 3) 

Assess the skills prior to training, normally requiring the development of a new 

assessment tool. 4) Develop the training leveraging current technology and existing 

trainings. 5) Training the skills. 6) Compare training improvements to the current training 

standard. Currently businesses spend between $58.6 billion and $200 billion a year on 

employee training (Yamnill & McLean, 2001) however, few know the true effect of the 

training due to poor assessment. Most researchers miss the key step of skill assessment 

when developing new trainings, resulting in a system without a good indication of the 

training’s effectiveness. 

 The training developed here has implications beyond the improvement of graph 

comprehension skills, as the training also lead to improvements in decision making 

performance. While these results are currently limited by a small sample size, future 

research should focus on testing the effectiveness of iGERD in the general population, as 

well as, other well educated samples. The results are expected to hold true for other 

educated samples as the effect sizes are moderate. The training effects are expected to be 
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even greater for the general population as there are generally lower levels of numeracy 

and graph literacy compared to educated samples, allowing more room for improvement.  

In order to determine the longevity of the training effects, a longitudinal study 

will be required. The study would require that participants’ decision making skills be 

tested at points after completing the post-training assessment. Current training studies 

have shown other training effects to last as long as 12 weeks (Morewedge et al., 2015).  

 The usability testing of the iGERD has pointed to a few problems with the system 

that require improvement to increase the ease of use of the iGERD system. In addition, I 

served as the iGERD Help Desk and assisted users with IT issues. One of the biggest 

issues was system crashes, as a result of unexpected user interactions with the system. 

The first simple and cost-effective solution is to create a short tutorial video to 

accompany the trainings. The video would walk the user through the completion of a task 

not used in the training and point out potential pitfalls such as not needing to enter data in 

every field for every task, and hitting the done button to move to the next task. Other 

options would require the system to be rebuilt and launched on a different platform that 

allows for dynamic student interfaces. 

Future research should also implement an adaptive task structure to the iGERD 

system to improve user experience and reduce training time. In an adaptive system, users 

are not forced to complete tasks they already understand, making adaptive systems have 

higher user experience ratings than traditional systems. Higher user experience ratings 

also lead to higher completions rates and motivation levels compared to non-adaptive 

trainings. However, additional tasks will need to be tested and added to the iGERD 
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system to allow for users to progress at their own speed. This will require additional 

studies like Study 3 to be completed for additional tasks and training modules.  

 Conclusion. History suggests that many of the solutions to our most pressing 

social and economic challenges are technology and information driven. As science 

advances, will new technologies and bigger pools of risk data make decisions better or 

will they overwhelm decision makers?  In the current research I documented one 

potentially powerful means of improving people’s ability to navigate our complex and 

data drenched world. While I’m grateful and impressed by the current results, the 

theoretical and practical value of the current project shouldn’t outshine another important 

lesson.  Beyond the benefits of developing the specific iGERD system and contributing to 

the RiskLiteracy.org decision skills training program, the current project illustrates the 

timeliness, value and power of adaptive systems that bridge the psychological and 

technological. A user-friendly future requires user-friendly systems that can respond and 

provide appropriate feedback in real time.  Opportunities abound for those who dare to 

innovate and create adaptive systems using scientific approaches to measurement, 

assessment, and design of interactive cognitive systems. 
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Appendix A: Item Analysis of Study 3 

Table A.1 

SelectionGL Item Analysis Results 

Task 
Number Graph Type CTT Discriminability CTT Difficulty IRT Difficulty 

1 Icon Array 0.493 23.4 30.6 

2 Icon Array 0.496 17.1 1.2 

3 Icon Array 0.541 16 42.4 

4 Icon Array 0.4 25.2 40.0 

5 Icon Array 0.432 40.8 59.8 

6 Icon Array 0.396 21.1 25.8 

7 Line 0.398 43.2 23.9 

8 Pie 0.325 35.1 49.2 

9 Bar 0.21 33.6 39.3 

10 Bar 0.176 32.2 54.0 

11 Bar 0.342 30.5 53.9 

12 Bar 0.242 21 48.1 

13 Bar 0.286 42.1 50.1 

14 Bar 0.451 43.7 76.9 

15 Line 0.517 28.2 76.5 

16 Icon Array 0.261 19.1 33.5 

17 Decision Tree 0.601 38.3 39.2 

18 Bar 0.292 36.2 45.3 

19 Line 0.191 23.4 54.2 
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Task 
Number Graph Type CTT Discriminability CTT Difficulty IRT Difficulty 

20 Decision Tree 0.298 12.8 13.8 

21 Decision Tree 0.485 34.6 36.1 

22 Icon Array 0.222 13.7 17.9 

23 Icon Array 0.314 24 31.1 

24 Line 0.539 49 72.1 

25 Line 0.427 50 66.7 

26 Line 0.431 56.2 57.3 

27 Line 0.447 54.3 73.5 

28 Line 0.568 58.9 83.8 

29 Line 0.346 41.3 75.3 

30 Line 0.382 38.3 52.3 

31 Line 0.423 31.9 40.9 

32 Line 0.43 61.5 77.6 

33 Line 0.42 32.7 49.6 

34 Line 0.533 55.8 85.4 

35 Line 0.466 41.7 43.3 

36 Pie 0.497 42 89.1 

37 Pie 0.44 2.9 74.9 

38 Pie 0.572 21.3 87.7 

39 Pie 0.447 14 62.8 

40 Pie 0.368 38.3 86.2 

41 Pie 0.435 14.7 91.7 

42 Pie 0.558 17 88.4 

43 Pie 0.3 18.1 96.0 

44 Pie 0.369 40.4 73.4 
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Task 
Number Graph Type CTT Discriminability CTT Difficulty IRT Difficulty 

45 Pie 0.417 7.4 51.7 

46 Pie 0.553 31.8 69.5 

47 Pie 0.308 10.6 28.6 

48 Pie 0.417 17.5 66.9 

49 Pie 0.585 17.5 77.2 

50 Pie 0.578 9.5 61.0 

53 Pie 0.249 16.3 32.2 

54 Decision Tree 0.405 17.5 31.9 

55 Decision Tree 0.387 47.6 50.1 

56 Line 0.562 36.2 40.2 

57 Line 0.487 47.9 72.1 

58 Line 0.417 42.1 63.5 

59 Icon Array 0.264 21.9 42.1 

60 Decision Tree 0.601 54.4 69.8 

61 Decision Tree 0.526 36.2 52.7 

62 Decision Tree 0.529 61.5 68.3 

63 Decision Tree 0.728 36 99.4 

64 Decision Tree 0.453 39.8 41.7 

65 Line 0.396 21.5 50.5 

66 Line 0.384 28.7 69.5 

67 Bar 0.406 46.5 71.5 

68 Bar 0.142 29 41.0 

69 Pie 0.361 22.3 40.5 

70 Pie 0.286 15.2 51.9 
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Task 
Number Graph Type CTT Discriminability CTT Difficulty IRT Difficulty 

71 Icon Array 0.369 13.7 30.9 

72 Icon Array 0.376 26 39.9 

73 Icon Array 0.26 24.5 38.9 

74 Icon Array 0.417 10.7 33.5 

75 Icon Array 0.531 27.1 37.7 

76 Decision Tree 0.328 14.7 16.3 

77 Decision Tree 0.467 29.9 40.1 

78 Decision Tree 0.077 17 19.1 

79 Decision Tree 0.515 26.7 14.0 

80 Decision Tree 0.238 14.7 15.2 

81 Bar 0.273 42 48.1 

82 Bar 0.313 22.3 48.9 

83 Bar 0.289 40.4 45.6 

84 Bar 0.307 41.1 62.9 

85 Bar 0.446 51.5 60.4 

Note. CTT = Classical Testing Theory; IRT = Item Response Theory. Difficulty is 

equivalent to the percent of the sample responding correctly to the item. 
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Table A.2 

DesignGL Item Analysis Results 

Task 
Number Graph Type CTT 

Discriminability 
CTT 
Difficulty 

IRT 
Difficulty 

1 Icon Array 0.34 13.1 9.7 

2 Icon Array 0.264 12.4 9.9 

3 Icon Array 0.198 27.7 25.6 

4 Icon Array 0.469 14 7.2 

5 Icon Array 0.263 18.4 15.9 

6 Icon Array 0.444 7 1.7 

7 Line 0.419 0 13.3 

8 Pie 0.277 14 12.2 

9 Bar 0.273 5.6 5.6 

10 Bar 0.114 21 21.9 

11 Bar 0.091 23.2 23.0 

12 Bar 0.203 27.6 27.3 

13 Bar 0.071 7.9 7.9 

14 Bar 0.379 29.1 19.7 

15 Line 0.425 39.8 38.9 

16 Icon Array 0.087 14.9 14.7 

17 Decision 
Tree 0.06 5.6 3.9 

18 Bar 0.118 9.5 9.3 

19 Line 0.329 30.8 30.8 

20 Decision 
Tree 0.033 2.1 0.3 

21 Decision 
Tree -0.028 3.8 0.0 
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Task Number Graph Type CTT Discriminability CTT Difficulty IRT 
Difficulty 

22 Icon Array 0.055 4.2 4.1 

23 Icon Array -0.182 6.7 7.6 

24 Line 0.057 17.3 15.1 

25 Line 0.263 13.2 12.4 

26 Line 0 0 0.0 

27 Line 0.12 18.1 17.2 

28 Line 0.354 11.6 3.6 

29 Line 0.258 24.5 23.7 

30 Line 0.217 13.8 13.7 

31 Line 0.264 10.6 8.6 

32 Line 0.328 6.7 3.6 

33 Line -0.077 16.3 13.5 

34 Line 0.426 17.9 9.6 

35 Line 0.033 2.9 2.6 

36 Pie 0.342 37.1 34.0 

37 Pie 0.259 70.9 72.6 

38 Pie 0.354 57.4 62.2 

39 Pie 0.212 46.7 46.5 

40 Pie 0.23 45.7 44.9 

41 Pie 0.224 72.6 78.3 

42 Pie 0.487 60.6 72.8 

43 Pie 0.457 73.3 100.0 

44 Pie 0.334 29.8 29.3 

45 Pie 0.367 44.2 43.7 

46 Pie 0.17 31.8 30.3 
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Task Number Graph Type CTT 
Discriminability 

CTT 
Difficulty 

IRT 
Difficulty 

47 Pie 0.4 18.3 16.7 

48 Pie 0.29 50.3 49.6 

49 Pie 0.377 55.3 57.4 

50 Pie 0.483 49.5 49.5 

53 Pie 0.443 15.4 13.8 

54 Decision Tree 0.151 15.5 14.4 

55 Decision Tree 0.104 2.1 2.0 

56 Line 0.253 5.7 0.0 

57 Line 0.246 18.1 18.0 

58 Line 0.092 20.2 19.7 

59 Icon Array 0.492 20.2 19.4 

60 Decision Tree -0.212 2.6 1.5 

61 Decision Tree 0.15 15.2 14.2 

62 Decision Tree 0.179 1.9 0.5 

63 Decision Tree 0.31 26.3 24.6 

64 Decision Tree -0.065 3.9 1.2 

65 Line 0.397 29 25.0 

66 Line 0.149 36.4 36.6 

67 Bar 0.33 22.8 14.5 

68 Bar 0.192 12.1 12.1 

69 Pie 0.162 18.4 18.4 

70 Pie 0.299 36.2 36.6 

71 Icon Array 0.387 18.9 17.3 

72 Icon Array 0.273 14.4 8.2 
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Task 
Number Graph Type CTT 

Discriminability 
CTT 
Difficulty 

IRT 
Difficulty 

73 Icon Array 0.381 14.7 6.4 

74 Icon Array 0.382 23.3 17.0 

75 Icon Array 0.383 13.1 6.3 

76 Decision Tree 0.404 2.1 1.4 

77 Decision Tree 0.326 12.1 5.8 

78 Decision Tree -0.126 2.1 1.3 

79 Decision Tree 0 0 0.0 

80 Decision Tree -0.12 1.1 0.9 

81 Bar -0.064 6.3 6.2 

82 Bar 0.001 26.6 25.0 

83 Bar -0.055 5.8 3.8 

84 Bar 0.13 21.1 21.0 

85 Bar -0.231 6.8 6.5 

Note. CTT = Classical Testing Theory; IRT = Item Response Theory. Difficulty is 

equivalent to the percent of the sample responding correctly to the item. 



DEVELOPMENT OF THE GERD TUTOR  81 

Appendix B: Bootstrap Analysis of Phase 2 

 A bootstrapping analysis was conducted to determine if the marginally significant 

trends in performance score were likely the result of insufficient statistical power. 

Following procedures by Larget, (2014), R was used simulate 10,000 resamples, 

sampling with replacement from the original data set for each of the visualizable 

measures. Means were calculated for the experimental and the control group for each 

resample and a difference between the scores was calculated for each resample. Figure 

G.1 displays density functions for each of the measures. A 95% confidence interval was 

calculated for each distribution and is indicated by dashed lines. The original difference 

between the group means is indicated by the solid line. 

 As expected, given the observed marginally significant trends in the raw data all 

estimated confidence intervals included zero. However, density functions indicated that 

the overlap for biased graphs (0.039), ratio bias (0.006), and sunk cost (0.026) were less 

than 0.05 strongly suggesting that the observed differences are likely to be robust and 

significant when replicated with larger samples.  In contrast, LyingGL (0.389) and 

resistance to framing (0.209) fell below 0.4 suggesting these effects are not likely to be 

robust or reliable in other larger samples with similar sample characteristics.  It is an 

empirical question the degree to which all these effects may be robust when sampling 

members of the general population instead of relatively mathematically skilled, well-

educated Michigan Tech students.  Theoretically, given normal statistical issues and 

reduction of power that emerges when there is restriction of range, I speculate that real 

effects are underestimated in the current sample.  More research is needed to test this 
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assumption with more diverse and representative samples. Nevertheless, bootstrap 

simulations suggest that any observed improvement in one’s ability to lie with graphs 

following similar training protocols is likely to be trivial, if significant.  Theoretically, all 

other effects seem likely to approach one standard deviation (i.e., approach the aggregate 

overall effect size of Visualizable decision task). 
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A. Biased Graphs 
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B. Ratio Bias 
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C. Sunk Cost 
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D. Resistance to Framing 
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E. LyingGL 

 

Figure B.1. Bootstrapping Density Functions of Experimental Minus Control Means. 

Dashed line indicate the end points of the 95% confidence interval and the solid line 

indicates the original mean difference. 
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