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Abstract 
The Variable Infiltration Capacity (VIC) land surface hydrology model was 

calibrated and verified for prediction of naturalized flows into the Highland Lakes system 

in central Texas. Using seasonal climate forecasts downscaled to daily precipitation, 

maximum and minimum temperatures, and wind speeds, the VIC model was run to 

generate ensemble inflow hindcasts for two seasons – March through June and July 

through October – corresponding to the period of 1960 through 2010. A diagnosis of the 

seasonal hindcast results determined that inflows are not as heavily influenced by the 

physical soil moisture state as expected, and that variability in statistical precipitation 

downscaling can combine with hydrologic model errors to degrade the skill in streamflow 

forecasts. Recommendations are made for future work to improve forecast skill. 
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Chapter 1. Introduction 
1.1. An Overview of Drought 

 Drought is a growing concern across the United States and the world, especially 

in regions susceptible to variable weather patterns and climates (Hallack-Alegria and 

Watkins 2005; Seager et al. 2015; Trnka et al. 2003). A standard definition of drought is 

a lack of precipitation in a region, extending for a season or longer time period, which 

impairs the ability to meeting water demands (Wilhite 1992b). In practice, defining 

drought is not simple (Dracup et al. 1980b; McKee et al. 1993; Wilhite and Glantz 1985), 

as drought is defined differently according to the sectors and regions it affects. There are 

four categories to describe drought type, including meteorological, hydrological, 

agricultural, and socioeconomic (Mozny et al. 2012; Tabari et al. 2013; Wilhite and 

Glantz 1985). Meteorological drought is associated with the lack of precipitation when 

compared to the norm for a geographic region. Climatic variations and atmospheric 

circulation patterns, including wind patterns, sea surface temperatures, and oceanic 

oscillation events like the El Niño Southern Oscillation (ENSO), North Atlantic 

Oscillation (NAO), and Pacific Decadal Oscillation (PDO), often contribute to the 

initiation and termination of droughts.  Hydrological drought represents the effects of a 

lack of rainfall on surface waters and managed waters, causing lower water levels in 

rivers and reservoirs, for example (Nalbantis and Tsakiris 2009; Ryu et al. 2014; Tabari 

et al. 2013; Wilhite 1992b). A river basin is considered to be in hydrological drought 

when the stream discharge is measured below a discharge threshold for a period of time. 

However, the time period and discharge threshold varies between basins and is subject to 
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the water managers of the basin to define (Wilhite and Glantz 1985). Agricultural drought 

examines the lack of water in the form of increased evapotranspiration and soil-water 

deficits, which can affect crop yield. Lastly, socioeconomic drought examines the supply 

and demand of resources affected during drought, such as energy, crops, food stuffs, and 

water supply. The main focus of the study in this thesis is on hydrological drought. 

Drought is also difficult to define based on its prolonged onset from variable 

environmental conditions. Drought is never due to one variable or a single event; rather, 

it occurs from a combination of factors, often working together to sustain dry conditions 

for days, months, or even years. With lack of rainfall leading to a gradual decrease in soil 

moisture, river flow, reservoir storage, and other factors (dependent on geographic area), 

the time when a drought is said to begin and end is unclear. This also makes the 

forecasting of drought initiation and termination difficult. More recently, the term “flash 

drought” has been used to describe the sudden onset of drought when meteorological 

conditions result in high temperatures and low soil moisture in a matter of weeks to a 

season (Senay et al. 2008). Studies of flash drought onset are now being conducted in 

river basins worldwide (Mozny et al. 2012; Senay et al. 2008). 

Drought management is necessary to minimize consequences on the 

environmental, social, and economic sectors of an affected region. Environmentally, 

droughts stress aquatic life and terrestrial vegetation, often through the depletion of river 

flows and soil moisture. Socially, droughts increase the risk to public health, including a 

greater threat of wildfires and low flow water contamination, and the unequal distribution 

of impacts and relief. Economically, there are often direct losses to the food and 

agriculture industries when crops are stressed. Further, water suppliers must make supply 
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cuts to customers when reservoir levels decline, and governments need to pay for drought 

relief programs. Over the years, these consequences have led to single droughts causing 

over tens of billions of dollars in damages. Ryu et al. (2014) report that the Texas drought 

of 2011 resulted in the costliest drought in the state, with an estimated $7.6 billion dollars 

in economic losses. Therefore, water managers need to develop watershed management 

plans to define how to overcome these possible consequences. Use of forecast models 

(Hallack-Alegria and Watkins 2005; Sharma and Panu 2012; Tabari et al. 2013), modeled 

drought indicators (e.g., Heim 2002; Liang et al. 1994; McKee et al. 1993; Palmer 1965), 

economic analyses (Cai et al. 2015), and State and Federal mitigation plans (Wilhite 

1997; Wilhite et al. 2000) are all current practices of water managers and researchers to 

aid in minimizing negative drought impacts. 

1.2. Seasonal Drought Forecasting 
Modeling techniques are often useful tools for water managers for decision-

making purposes, especially when predicting and planning for drought impacts. Seasonal 

forecasting is one method of predicting droughts. Models can predict watershed changes 

in future seasons for the onset of imminent drought conditions. 

A number of studies have utilized models to assess the effects of drought and 

climate anomalies on watersheds across the globe. Some of these models measure 

drought based off of Land Surface Models (LSMs), others incorporate General 

Circulation Models (GCMs), and yet others use drought indices. These different models 

have been used for simulating past or future drought conditions (e.g., Luo and Wood 

2007; Ryu et al. 2014; Sheffield and Wood 2007; Shukla et al. 2011; Tabari et al. 2013), 
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and simulating streamflows in river basins with climate forecasts (Sinha and 

Sankarasubramanian 2013). For example, Shukla et al. (2011) utilized an LSM to 

develop a drought management system in the State of Washington, which utilized 

seasonal hindcasting to predict the occurrence and end of drought conditions of four 

historical droughts. They found using an LSM for seasonal forecasting (or hindcasting) is 

applicable for aggregated geographic areas, whereas drought indices are only applicable 

to coarse spatial resolutions for predefined national climate regions. Sheffield and Wood 

(2007) also compared the results from an LSM as compared to drought indices, and 

discovered the LSM gave more accurate predictions of actual drought conditions than the 

Palmer Drought Severity Index (PDSI) for cooler regions as well as for shorter time 

scales (i.e., seasons) for major droughts. 

GCMs are also widely used in drought modeling studies, and have been 

previously used to predict water balance and economic changes from climate anomalies 

(Cai et al. 2015; Sheffield et al. 2009; Sheffield and Wood 2008). Specifically, Cai et al. 

(2015) utilized a GCM and RCM (Regional Climate Model) for the Republican River 

basin to create a decision-support framework for water managers, and coupled the 

forecasts with simulation-optimization model for economic profits and costs of 

implementing drought mitigation techniques. The study is a good example of pairing the 

use of a GCM with an economic-based decision support tool. 

GCMs and LSMs can also be used for assessing seasonal streamflows in river 

basins, which can be useful for predicting effects of drought and/or climate change on 

river systems. GCMs were used in seasonal streamflow studies on the Nile River basin 

(Beyene et al. 2009), the Aidoghmoush River basin in Iran (Ashofteh et al. 2013), and the 
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Vermilion River basin in Illinois (Tavakoli and De Smedt 2012) for predicting changes in 

river systems over multiple climate scenarios. Sinha and Sankarasubramanian (2013) also 

utilized an LSM coupled with an atmospheric GCM to generate skillful monthly 

probabilistic forecasts of streamflow and soil moisture in the Apalachicola River basin in 

Florida. The study presented herein focuses on utilizing a physically-based LSM for 

modeling skillful probabilistic seasonal streamflows for the purpose of season-ahead 

drought forecasting. 

1.3. Problem and Research Motivation 
A severe hydrologic drought afflicted central Texas from 2008 through 2015. 

Preliminary data for 2014 reveal that this drought has caused the Lower Colorado River 

basin to experience its driest conditions on record, making this the worst drought in the 

basin’s history from a water supply perspective (Lower Colorado River Authority 

(LCRA) 2015a). The drought, in addition to the typically high variability of precipitation 

and streamflow in the region, has stressed Texas water managers to appropriately allocate 

water to municipalities. One such water management authority is the Lower Colorado 

River Authority (LCRA) in Austin, Texas. The LCRA manages six reservoirs 

(collectively known as the Highland Lakes) along the Lower Colorado River, providing 

water to 1.1 million residents in central Texas, hydropower within 55 counties, water for 

rice farming, and freshwater flows into Matagorda Bay. The two main reservoirs the 

LCRA manages for water supply are Lake Buchanan and Lake Travis. Combined storage 

in these two reservoirs reached a near record low of 32 percent of total capacity on 

September 19, 2013. In order to secure water for high priority municipal and domestic 
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use, the LCRA curtailed water supply from the Highland Lakes to most interruptible 

customers (e.g. rice farmers) annually from 2012 through the first half of 2015. Despite 

flooding in May 2015, the LCRA was still affected by the drought at the time of this 

research, with the combined storage volume at 71 percent of total capacity as of October 

14, 2015.  

There are concerns that Texas may be entering a new climate “norm” (Heo et al. 

2015; Smith 2015). Since 2008, the LCRA has observed six of the ten lowest inflows on 

record, with the lowest occurring in 2011, the third lowest in 2013, and the second lowest 

in 2014 (see Table 1.1). Following the floods of 2015, the river quickly returned to low-

flow conditions. The LCRA will consider the drought in the Highland Lakes to be over 

when both Lakes Buchanan and Travis are filled to 100 percent of capacity. In order for 

the lakes to fill, dry soils must become saturated (or partially saturated) long enough to 

sustain substantial flows into the lakes. 

Table 1.1. Highland Lake’s 10 Lowest Annual Inflows (1940-2014) 

Rank Year 
Occurred 

Annual Total 
Inflow (acre-feet) 

1 2011 127,802 
2 2014 207,626 
3 2013 215,138 
4 2008 284,462 
5 2006 285,229 
6 1963 392,589 
7 2012 393,163 
8 1983 433,312 
9 1999 448,162 
10 2009 499,732 
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The LCRA is interested in reevaluating operations, policies, and water 

management strategies due to increasing concerns of climate variability. Previously, the 

LCRA had not included climate forecasts within water management plans or operations 

due to large variation in seasonal and annual streamflows, as well as the absence of 

observable watershed variables (e.g. snowpack). However, with increasingly constrained 

operations, non-stationarity in climate, and the availability of advanced forecasting 

technologies, the LCRA is seeking to update its Water Management Plan with seasonal 

predictive forecasts to support decision making on how to best allocate water to its 

customers. The LCRA is interested in expanding a previously developed hydroclimatic 

forecast model.  

1.4. Research Hypothesis and Objectives 
The overall collaborative research project tests the hypothesis that seasonal 

forecasts using a physically-based hydrologic model for the Lower Colorado River basin 

will give the LCRA increased confidence in making water allocation decisions with 

longer lead times (for example, extending from one month to three- or six- month 

forecasts). The objective of the research presented herein is to diagnose the skill of 

seasonal inflow forecasts through the use of the Variable Infiltration Capacity (VIC) and 

river routing models. The development, calibration, verification, and analysis of these 

models as a physically-based watershed model for the LCRA is the primary scope of this 

thesis. This objective is to be met by incorporating statistical climate forecasts with 

physical watershed components (such as previously observed meteorological data, and 

soil moisture components); calibrating the model based on historical runoff estimates; 
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and running the model with (historical) forecast inputs to generate season-ahead 

hindcasts. These hindcasts are then compared to observed inflows. 

This thesis presents the work of developing the physically-based watershed model 

for the LCRA and diagnosing the initial model forecasts. Following this introductory 

chapter, Chapter 2 describes the context for water management by the LCRA and the 

characteristics of the Lower Colorado River. Background on the VIC model is also 

presented. Chapter 3 describes the set-up of the VIC and routing models specific to the 

Lower Colorado River watershed, and Chapter 4 describes the calibration and verification 

procedure. Chapter 5 presents the results of the first sets of hindcasts generated by the 

VIC model and an assessment of these results. Finally, Chapter 6 presents the 

conclusions from this study as well as the future work to be completed in order to utilize 

the VIC model in the LCRA’s decision making and operating procedures. 
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Chapter 2. Background 
2.1. Lower Colorado River Authority 

The Lower Colorado River Authority (LCRA) was formed through the LCRA 

Act, passed by the Texas Legislature in 1934, as a conservation and reclamation district 

to serve the surrounding counties of the Lower Colorado River (LCRA 2010). Today, the 

LCRA serves 80 counties in four markets: 

1. Water management, which includes flood management, hydroelectric power, 

water quality, and the control and proper allocation of the waters within the 

Lower Colorado River watershed for urban and agricultural use; 

2. Electrical energy, which provides communities with electrical power, 

transmission, and energy services; 

3. Conservation, including conservation programs for water scarcity, agriculture, 

and ecological benefits; and 

4. Lands, which includes managing parks and recreation. 

Figure 2.1 outlines LCRA’s water service area in central Texas. The LCRA 

manages water along the Lower Colorado River from the City of San Saba to the Gulf of 

Mexico. The watershed extent is approximately 18,300 square miles, with the water 

service management area extending to 22,447 square miles. 
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Figure 2.1. The Lower Colorado River Basin of Central Texas, managed by the LCRA. 

The watershed spans an area of 18,300 square miles. (Figure by author). 
 

In order to manage flooding along the Colorado River, as well as manage water 

conservation in periods of drought, the LCRA developed a series of dams to form six 

lakes in the upper portion of the watershed known as the Highland Lakes system. Moving 

downstream, these lakes include Lake Buchanan, Inks, Lyndon B. Johnson (LBJ), Marble 

Falls, Travis, and Austin. Lakes Inks, LBJ, Marble Falls, and Austin are used for 

generating hydroelectric power and providing recreation, while Lakes Buchanan and 

Travis are the two primary reservoirs to collect and store water for water supply (LCRA 

2015b). Since the four other lakes are kept at near constant levels for hydropower and 
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recreational purposes, only Lakes Buchanan and Travis are of interest for this study, with 

the research evaluating the change in water storage volumes in the reservoirs during 

times of drought. 

Lake Buchanan is formed by Buchanan Dam. Construction of the dam began in 

1931, and was completed in 1938. The dam is 145.5 feet high and 10,988 feet long, with 

a discharge capacity of 347,300 cubic feet per second (cfs) through the use of floodgates 

and turbines. The dam is used primarily for hydropower and water supply. Lake 

Buchanan can hold 875,588 acre-feet of water with a surface area of 22,017 acres when 

full (LCRA 2015c). Lake Travis is formed by Mansfield Dam, which was constructed 

between 1937 and 1942. The dam is 278 feet tall and 7,089 feet long, and has floodgates 

and turbines to supply a total discharge capacity of 133,400 cfs. Mansfield Dam was 

created for the primary purposes of water storage and supply, hydropower, and flood 

management. When at full capacity, the lake has a surface area of 19,297 acres and a 

volume of 1,134,956 acre-feet of water (LCRA 2015d). 

Generally, the volumes of Lakes Buchanan and Travis are combined to represent 

the total available water supply. The two lakes can hold a total volume of 2,010,544 acre-

feet of water. During the region’s Drought of Record, which lasted between 1947 and 

1957, the total water supply volume dropped to a record low of 621,221 acre-feet, 

equaling 31 percent of capacity, on September 9, 1952. In comparison, the drought 

beginning in 2008 dropped the water supply volume to the second lowest on record, at 

637,123 acre-feet, or 32 percent of capacity, on September 19, 2013. Although the lakes 

never dropped further than the storage observed during the Drought of Record, the 
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drought beginning in 2008 is considered the worst hydrologic drought in history for the 

Lower Colorado River basin, as explained in section 1.3. 

The LCRA allocates water from Lakes Buchanan and Travis via firm and 

interruptible water contracts. The LCRA has long-term, firm water contracts for 

municipal and industrial clients, and interruptible water contracts for agriculture. Firm 

water contracts are typically multi-year and guarantee municipalities, cities, and 

industries water rights and diversions in the case of a repetition of the Drought of Record. 

Interruptible water contracts, in contrast, are shorter contracts (about 1 year) with the 

agreement to allow the LCRA to interrupt or curtail the water supply as needed on a pro 

rata basis to protect the firm contracts during a repetition of the Drought of Record. If 

there is a period worse than the Drought of Record, then the LCRA will need to curtail 

water supply from firm customers, also on a pro rata basis, so that all firms will suffer 

equally during the drought period. The LCRA must also consider the competition of 

water demands between clients, maintain critical freshwater flows into Matagorda Bay to 

preserve ecological integrity, as well as adhere to the supremacy of the State of Texas 

regarding water resources allocation (LCRA 2010). 

The LCRA adheres to its contracts and policies stipulated in its Water 

Management Plan. The Water Management Plan details the legal authority of the actions 

of the LCRA within the State of Texas, describes management policies for the interests of 

stakeholders, and details the actions of water conservation efforts and drought 

contingency plans to balance the multiple competing water demands on the Colorado 

River (LCRA 2010). The research conducted for this study includes the preliminary 
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testing of probabilistic drought forecasting techniques for potential incorporation in the 

LCRA’s Water Management Plan.  

2.2. Watershed Characteristics 
There are seven basins which contribute flows into the Highland Lakes (see 

Figure 2.2). All flows from the Pecan Bayou basin and the Lake Buchanan basin 

contribute inflows into Lake Buchanan. These flows, along with flows from the Lake 

LBJ basin and the Lake Travis basin, all contribute to inflows into Lake Travis. The 

Pecan Bayou and Lake Buchanan basins have changed from former prairie land, and now 

the vegetation cover is dominated by shrub/scrub in this arid portion of the basin. The 

main land use in the Pecan Bayou basin is oil production, while the Lake Buchanan basin 

supports wheat agriculture in the Central Texas Plateau. South of these basins are the 

Lake LBJ basin and the Lake Travis basin, which drain into Lake Travis. Both of these 

basins lie in the Central Texas Plateau with a hilly savannah primarily used for cattle 

farming. Perennial streams flow into Lake Travis from these basins. The central portion 

of the Lower Colorado River watershed is unique, as urban sprawl has increased 

urbanized land cover near the City of Austin over many years. In the less urbanized areas, 

distinct grassland and prairie vegetation are present from the more humid climate and 

Blackland Prairie. The Lower and Matagorda basins contain pasture, hay, and cultivated 

crops for agriculture, as well as evergreen forests in the Texas hill country (LCRA 2006). 
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Figure 2.2. LCRA Managed Sub-basins in the Lower Colorado River Watershed. (Figure 

by author). 

 

The Lower Colorado River basins consist of varying bedrock types. In the upper 

portion of the river basin (defined here as above Lake Travis), shale and mudstone 

dominate the Pecan Bayou and Lake Buchanan basins (Stoeser et al. 2005; United States 

Geological Survey (USGS) 2005). This northern area of the Lower Colorado River 

watershed also contains shallow, rocky soils with large granite and limestone outcrops 

and steep slopes (LCRA 2010). The Lake LBJ and Lake Travis basins consist of a mix of 

ambiphole schist, dolomite, granite, and sandstone in the central area, and limestone in 

the east (Stoeser et al. 2005; USGS 2005). Below Lake Travis, the Lower Colorado River 
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flows through shale and outcrop in the Texas hill country, until the bedrock changes at 

the Balcones Fault in Austin, Texas. Here, the soils change to that of sand, clay, and shale 

in the Blackland Prairie and coastal plains, where the watershed narrows as the river 

flows into Matagorda Bay (LCRA 2010). The large variability in soil consistency and 

depth across the basin largely influences the total volume of runoff and inflows into the 

reservoirs, especially from rainstorms over small areas. The deep, porous soils will easily 

lose soil moisture in times of little precipitation, making it hard to sustain river flows in 

tributaries to replenish the lakes during periods of drought. 

The central Texas region has experienced five major droughts since 1947 until 

2015. Central Texas droughts are often influenced by the varying climates the region 

experiences. The Lower Colorado River watershed is arid in the far western portions of 

the State and humid near the Gulf of Mexico. The annual precipitation follows a general 

trend of increasing from the west to the east. From precipitation data collected between 

1981 through 2010 and compiled using the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM: Daly et al. 2008; Daly et al. 1994), the average 

annual precipitation is 21 inches per year in the far western portion of the watershed. 

Near the Gulf, this number increases up to 52 inches per year. This increase is partly 

because the region receives more moisture from the tropics, and also because tropical 

storms and hurricanes, which make landfall off of the coast of the Gulf of Mexico, can 

increase precipitation amounts significantly. In the Highland Lakes system, Lakes Travis 

and Buchanan are located within the Texas Hill Country. Lake Travis receives about 30 

to 31 inches of precipitation per year, whereas Lake Buchanan receives about 28 to 29 

inches per year. Due to the geographic location of Texas, the watershed does not receive 
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much snow. Therefore, snow accumulation and snow melt are not key components in the 

water budget for the watershed, and are typically not included in Texas watershed 

models. Despite these average precipitation values listed above, precipitation is extremely 

variable within central Texas. The mixing of arid and humid climates can produce severe 

storms over small geographic areas, resulting in large amounts of precipitation and high 

flows observed in a small portion of the watershed. Soils can also dry quickly, and 

streamflows recede during hot, dry summers. 

2.3. Ensemble Streamflow Prediction 
Ensemble Streamflow Prediction (ESP) is a forecasting procedure to generate 

probabilistic streamflow forecasts. The procedure was developed for prediction of short-

term and seasonal streamflows based on climate data and watershed characteristics using 

statistical evaluations (Day 1985; Smith et al. 1992; Twedt et al. 1977; Wood and 

Schaake 2008). The procedure utilizes hydrologic and hydraulic models with variables 

representing the watershed’s conditions at the time of forecast, including (recent) 

precipitation, evaporation, soil moisture, snow, and observed streamflow, among others. 

ESP forecasting also presumes past observed meteorological conditions present possible 

future meteorological conditions. The hydrologic or hydraulic model utilizing ESP 

assesses these watershed conditions to statistically generate a time-series of probabilistic 

forecasts of streamflow for the specified time-series window for a given time step. The 

ESP procedure can also be applied to generate “hindcasts,” based on historical 

meteorology and observed watershed conditions, to verify the model’s accuracy; if there 

are no biases or errors in the models, then streamflow variables produced by the ESP 
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hindcasts should match the historically observed conditions for the watershed (Day 

1985). Figure 2.3 describes the overall process of ESP. 

 

 

 

 

 

 

 

 

 

Figure 2.3. Procedure of ESP in Hydrologic Modeling. Adapted from Figure 3 in Day 
(1985). 

 

Utilizing ESP can be an important tool in streamflow forecasting methods and 

reservoir management. Hamlet and Lettenmaier (1999) used ESP along with six climate 

models simulating ENSO and PDO effects on the Columbia River Basin in the Pacific 

Northwest. Results discovered linkages between climate patterns and annual flow 

patterns to generate skillful forecasts, which can be used for appropriate reservoir 

management for when streamflows are likely high versus low due to climate patterns. 

Faber and Stedinger (2001) incorporated ESP in Sampling Stochastic Dynamic 

Programming (SSDP) for the purposes of optimized reservoir management. The ESP was 

found to estimate appropriate seasonal inflows as well as incorporate the most current 

watershed conditions when assessing reservoir management operations. Specifically 

Historical or 
Forecast Time 

Series 

Optional: 
GCM Inputs 

Hydrologic 
Model/LSM 

Initial 
Watershed 
Conditions/ 

State 

Historical or 
Forecast 

Hydrograph 



 

18 

related to drought, managers can analyze the predictions of critically low streamflows in 

river and reservoir systems to determine if contingency measures or actions need to be 

implemented (Day 1985). 

2.4. Variable Infiltration Capacity (VIC) and Routing 
Models 
The Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model 

which spatially simulates water and energy balances over a gridded land surface (Liang et 

al. 1994). The model incorporates soil and vegetation heterogeneity in the land surface 

using a soil-vegetation-atmosphere transfer scheme, or SVATS. VIC can either be 

coupled with a GCM to generate long-term forecasts or hydrologic projections, or it can 

be coupled with a numerical weather prediction (NWP) model to generate short-term 

hydrologic forecasts (Liang et al. 1994). Using meteorological forcings from GCMs or 

NWP models (e.g., precipitation, temperature, wind speed) and physical watershed 

components (e.g., soils, land cover, topography), VIC calculates water and energy fluxes 

at a designated time step for each grid cell. Specific details on VIC methodology and 

calculations are described in Liang et al. (1994). The primary water balance processes 

computed in VIC are displayed in Figure 2.4. 
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Figure 2.4. VIC Water Balance Representation with Three Soil Layers. 

 

VIC couples with a separate routing model, which takes the generated VIC fluxes 

for each grid cell and routes the predicted runoff through the watershed of interest. The 

model routes runoff through each grid cell to accumulate runoff through the grid network. 

This accumulation calculates an impulse response function (unit hydrograph) for the 

basin. The impulse response function relates increased river flows to direct runoff in the 

watershed as attributed from VIC water balance output (Lohmann et al. 1996). In order to 

route the runoff and baseflow, the model solves the linearized Saint Venant equation 

while maintaining continuity. 
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VIC is a versatile hydrologic model which has been used in multiple studies as an 

LSM or utilizing a GCM. Utilizing VIC output to predict streamflow, Lohmann et al. 

(1998b) and Nijssen et al. (1997) validated results generated from the routing model with 

that of observed streamflow. Lohmann et al. (1998b) accurately predicted runoff to the 

Weser River in Germany, but also discovered knowledge of the relationships between the 

VIC input parameters is needed when applying VIC and the routing model to ungauged 

basins. Nijssen et al. (1997)  also accurately measured streamflow in the Delaware and 

Columbia Rivers in the Northeast United States, but found results are also dependent on 

infiltration and subsurface processes. Other studies have used VIC to address physical 

watershed components and water budgets under changing climates (Abdulla et al. 1996; 

Andreadis and Lettenmaier 2006; Beyene et al. 2009; Stamm et al. 1994), as well as for 

generating seasonal streamflow forecasts in river basins (Acharya et al. 2012; Hamlet and 

Lettenmaier 1999; Qiao et al. 2014; Wood and Lettenmaier 2006; Wood and Schaake 

2008). VIC has also been used specifically for predicting drought conditions. VIC was 

utilized in the drought studies conducted by Luo and Wood (2007), Ryu et al. (2014), 

Sheffield and Wood (2007), and Shukla et al. (2011), which are described in Chapter 1. 

More information regarding VIC and the routing model can be found at 

http://vic.readthedocs.org/en/master/.VIC and the routing model are open source, and the 

most updated versions are available for download at https://github.com/UW-Hydro/VIC. 

A description of how to run VIC and the routing model is provided in Appendix A. 

http://vic.readthedocs.org/en/master/
https://github.com/UW-Hydro/VIC
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2.5. Previous Work for the LCRA 
Previously, the LCRA’s water management has included more deterministic 

rather than probabilistic analyses. To help aid the LCRA in probabilistic estimations and 

better manage firm and interruptible water supply contracts, Watkins et al. (2000) 

developed a stochastic optimization model to maximize revenues in water supply 

contracts and recreation in periods of streamflow uncertainty or drought. Kracman et al. 

(2006) further expanded this model to include maximization of revenues in the 

agriculture and hydropower sectors.  The LCRA is seeking to incorporate climate and 

streamflow forecasts with management decisions. Due to high streamflow variability in 

central Texas, more recent models have been developed for the LCRA to incorporate 

probabilistic streamflow forecasting into their water management strategies. Wei and 

Watkins (2011) generated probabilistic streamflow forecasts through the use of a 

seasonal statistical forecast model incorporating climatic and oceanic processes.  

In another study, CH2M HILL was contracted to create a model to evaluate future 

climate change impacts. CH2M HILL utilized VIC to provide a way to physically model 

the basin response with eight climate scenarios from GCMs. The model developed by 

CH2M HILL predicts long range inflows; results indicate inflows to Lake Travis are 

likely to decrease through 2050, and will continue to decrease through 2080 (CH2M 

HILL 2008).  

The research in this thesis extends the VIC model produced by CH2M HILL 

(2008), which used VIC version 4.0.7, for seasonal, short-term probabilistic streamflow 

forecasting using a physically-based watershed modeling approach. As compared to the 

previous statistical models developed for the LCRA, VIC is beneficial in that it can 
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account for spatial variability of rainfall across the watershed, it can assimilate soil 

moisture through its variable infiltration curve and water balance calculations, and it can 

be updated for changes in land use and land cover conditions. 
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Chapter 3. Model Set Up 
3.1. VIC and Routing Model Input Files 

Many input files to VIC and the routing model were adjusted appropriately to 

make the model physically-based to the Lower Colorado River basin. VIC version 4.1.2.k 

was used in this study (updated from version 4.0.7), as it was the most updated version of 

the model available at the start of this study. The VIC model uses a global parameter file 

to describe overall model parameters and methods, and to define the names and 

directories of all necessary data inputs. To define the physical characteristics of the 

watershed, single files representing a soil, a vegetation, and snow (elevation) bands are 

used as inputs, with each grid cell of the model consisting of a separate line in the file. To 

incorporate meteorological data, VIC reads in individual meteorological forcing files for 

each grid cell. These meteorological forcing files give meteorological data on a daily time 

step, and is the only input using a time dimension. Although VIC is capable, snow 

balances are not incorporated into the LCRA’s analysis due to negligible snow amounts 

in the region; however, a snow bands input file is included to represent the land surface 

elevation. Also, water storage balances of lakes are not incorporated because only the 

unregulated monthly inflows into Lakes Buchanan and Travis are of interest. 

VIC analyzes all input parameters and data to simulate the components of a water 

and energy balance; these fluxes are written to output flux files, which are then fed into 

the routing model. Although different versions of the routing model have been developed 

outside of the University of Washington, Rout1.0 (Lohmann et al. 1996) is the only 

validated version of the routing model, and therefore is the version being implemented in 
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this study. The current versions of VIC and the routing model are posted at 

http://vic.readthedocs.org/en/master/Development/CurrentVersion/. 

Routing model input files represent the flow routing network across the gridded 

basin; a fraction file and flow direction file assign specific values for each grid cell, while 

in this study the flow velocity, flow diffusion, and xmask parameters are assumed 

constant across the watershed. These constant values are used to create unit hydrographs 

routed to each station, which can be used as inputs in future routing models (called uh_s 

files). The VIC and routing model inputs are based on those from the climate change 

study conducted by CH2M HILL (2008), and were updated to appropriately model the 

Lower Colorado River basin using physically-based, observed datasets in streamflow 

forecasting.  

Descriptions of each input file for the VIC model and routing model are presented 

in Tables 3.1 and 3.2, respectively. All input files required to run the model are provided 

in the “01Model” folder in the supplemental materials. 

  

http://vic.readthedocs.org/en/master/Development/CurrentVersion/
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Table 3.1. VIC Model Input Files 

Name Description Format Database 

Global 
Parameter File 

Describes the hydrologic 
methods and 
names/directories of other 
input files. 

Text File Prepared by user. 

Meteorological 
Forcing Files 

Historical time series of 
precipitation (mm/d), 
maximum temperature (°C), 
minimum temperature (°C), 
and wind speed (m/s). Each 
grid cell is provided a full 
time series. 

American 
Standard 
Code for 
Information 
Interchange 
(ASCII) File 

Livneh et al. (2013) 

Snow 
Bands/Elevation 
Parameter File 

Defines snow (elevation) 
bands per grid cell for 
separate simulation, instead 
of modeling grid cells as 
flat terrain. A value of 6 
snow bands is defined per 
grid cell. 

ASCII File North American 
Land Data 
Assimilation System 
(NLDAS) (Mitchell 
2004) 

Soil Parameter 
File 

Defines an identification 
number, geographic 
information, and soil 
moisture conditions for 
each grid cell. 

ASCII File State Soil 
Geographic 
(STATSGO) 
database (United 
States Deapartment 
of Agriculture 
(USDA) 1991) 

Initial State File Describes the calculated 
soil moisture, water and 
energy conditions of the 
watershed state at a specific 
time period during a VIC 
simulation. 

ASCII File Output by VIC 
(optional) 

Vegetation 
Library File* 

Describes land cover and 
vegetation types. 

ASCII File NLDAS 

Vegetation 
Parameter File 

Describes number of 
vegetation types and 
fractional areas covering 
each grid cell. 

ASCII File NLDAS 

*Files were unmodified from CH2M HILL (2008) model. 
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Table 3.2. Routing Model Input Files 

Name Description Format Database 

Fraction File Describes the fraction of 
each grid cell which 
produces runoff into the 
basin. 

ASCII File Prepared by user. 

Flow 
Direction File 

Assigns a flow direction 
value for each grid cell 
creating the flow network 
through the basin. 

ASCII File Prepared by user. 

Flow Velocity 
File* 

Describes the velocity 
parameter for river routing 
calculations per grid cell. 

ASCII File A constant value of 
2 (m/s) is used. 

Flow 
Diffusion 
File* 

Describes the flow diffusion 
parameter for river routing 
calculations per grid cell. 

ASCII File A constant value of 
800 (m2/s) is used. 

Xmask File* Describes the size of the grid 
cell. 

ASCII File A constant value of 
12,500 (m) is used. 

Station 
Location File 

Describes to which stations 
in the basin to route flows. 

ASCII File Prepared by user. 

UH File* Describes the grid impulse 
response function (unit 
hydrograph). 

ASCII File Prepared by user. 

Runoff Time 
Series Files 

Flux files outputted from 
VIC describing water and 
energy balances. 

ASCII File Prepared by VIC. 

uh_s File 
(optional) 

Describes routed flows to 
each station based on 
watershed velocity and flow 
diffusion. 

ASCII File Output by Rout1.0 

*Files were unmodified from CH2M HILL (2008) model. 

3.2. Data Compilation and Processing 

3.2.1. Data Collection 
Meteorological forcings data used are from the gridded meteorological dataset of 

the South Central (Gulf) basin compiled by Maurer et al. (2002). This dataset represents 

watershed states and fluxes for the conterminous United States from 1949 through 2000 
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(later extended to 2010) at a 1/8° scale. These data have been used extensively in 

hydroclimatic models, including hydrologic simulations of watershed state and energy 

balances and drought predictions (Andreadis and Lettenmaier 2006; Sheffield et al. 

2004a). This dataset, prepared by Maurer et al. (2002), includes daily precipitation and 

temperature data taken from Cooperative Observer (Co-op) stations belonging to the 

National Climatic Data Center (NCDC), which were processed on a gridded basis using 

the synergraphic mapping system (SYMAP) algorithm (Shepard 1984). Then, Maurer et 

al. (2002) scaled the precipitation according to PRISM (Daly et al. 1994; Daly et al. 

1997) for a 1961 to 1990 climate model. Wind speed was processed using linear 

interpolation from the National Centers for Environmental Prediction/National Center for 

Atmospheric Research (NCEP/NCAR) reanalysis on an approximately 1.9°-sized grid 

(Kalnay et al. 1996). Then, Livneh et al. (2013) expanded the meteorological forcings 

dataset by Maurer et al. (2002) to range from 1915 through 2011 at a finer spatial 

resolution of a 1/16° grid. Livneh et al. (2013) processed the updated forcings using the 

same techniques as Maurer et al. (2002). Specifics in slight processing modifications for 

certain components are explained in detail in Livneh et al. (2013). Because the 

meteorological dataset developed by Livneh et al. (2013) is an updated version of the 

dataset developed by Maurer et al. (2002), and includes a longer period of record, the 

forcings dataset by Livneh et al. (2013) was chosen for this study. The files are processed 

as ASCII files and aggregated to a 1/8° resolution. This process is described in Appendix 

B. These forcings are publically available for download from the U.S. Bureau of 

Reclamation at ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/OBS/livneh2014.1_16deg/. 

ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/OBS/livneh2014.1_16deg/
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The meteorological forcings to be used by VIC to generate seasonal forecasts are 

generated using a forecast model developed at the University of Wisconsin Madison. 

More details in regards to their formation specific to this study are described in section 

5.1. 

3.2.2. Soil Depth Processing 
In order to better represent spatial variability in soil characteristics across the 

Lower Colorado River basin, and to improve initial model performance (section 4.1), the 

State Soil Geographic (STATSGO) database was chosen to model soil depth. This 

database describes the soil texture for multiple soil layers across the conterminous United 

States at a 1:125,000 scale (USDA 1991). The finer resolution Soil Survey Geographic 

(SSURGO) data from the National Cooperative Soil Survey were also considered for use, 

but a large portion of data in the southern portion of the Lower Colorado River basin was 

not available. The STATSGO database, though a broader scale than SSURGO, was 

deemed appropriate for physically modeling the 18,300 square mile size of the Lower 

Colorado River basin. Data from the STATSGO database were collected from the Soil 

Information for Environmental Modeling and Ecosystem Management download center 

at Pennsylvania State University’s Center for Soil Informatics (Pennsylvania State 

University 1998). 

VIC represents the soil depth of each grid cell as three separate layers. Analysis of 

the NLDAS dataset for soil depth used in the CH2M HILL (2008) study revealed soil 

depth in each layer across the watershed did not vary much spatially. In the NLDAS 

dataset, the first soil layer ranges from 0.1 to 0.2 meters thickness; the second soil layer 



 

29 

ranges from 0.3 to 0.5 meters thickness, and the third soil layer is consistently 1 meter 

thick for all grid cells. This lack of variability in terms of total soil depth variability is 

revealed in Figure 3.1. 

 
Figure 3.1. Total Average Soil Depth of the Lower Colorado River Basin using the 

NLDAS Database. (Figure by author). 

 

In order to allow for spatial variability of soil thickness and layers across the 

watershed, the soil depths from STATSGO were compared. STATSGO is set up on a 

hierarchical scale where an identification code identifies separate soil polygons, called 

map units. The identification code for each map unit (MUID) is related to multiple 

sequence numbers which refer to the distribution of soil types and associated soil layers 
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across the map unit. The depth of each soil layer, as well as the soil textures, are then 

referenced by sequence number (USDA 1991). Soil layers ranged between three and six 

layers. Because the VIC soil input file is limited to three soil layers, the STATSGO data 

were processed into three soil layers using spatial averaging methods. First, sequence 

numbers with more than three soil layers were combined into three layers based on 

texture. Then, the average soil depths of these three layers were computed by taking the 

difference in the high and low soil depth elevation over the number of different unique 

sequence numbers. Soil layer breaks were reevaluated so that the depth of the first soil 

layer is never greater than the depth of the second soil layer, as required for VIC to run 

properly. The detailed procedure explaining how all identification numbers were 

separated into three soil layers is listed in Appendix C. Since the average depth of each 

soil layer was calculated per sequence number in each map unit, map units were 

intersected on the 1/8° grid extent of the Lower Colorado River basin in order to compute 

spatially weighted averages of soil depth for each layer per grid cell. 

Figure 3.2 shows the results of the STATSGO total soil layer depth variability 

across the Lower Colorado River watershed. Comparing this map to Figure 3.1, it is 

evident that the STATSGO dataset represents more spatial variability in soils across the 

basin than does the NLDAS dataset.  
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Figure 3.2. Total Average Soil Depth in the Lower Colorado River Basin using the 

STATSGO Database. (Figure by author). 

 

3.2.3. VIC Model Set Up 
The VIC model has multiple options for computing water and energy balances, 

which are defined in the global parameter file. The methods are unchanged from the 

CH2M HILL (2008) study: the ARNO method (Franchini and Pacciani 1991) is chosen 

for computing baseflow in the water balance, and calculations of frozen soils, snow 

analyses, turbulent fluxes, and lake simulations are disabled.  
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To analyze the Lower Colorado River basin on a 1/8° spatial resolution, 

Geographic Information System (GIS) attribute data were used to determine which grid 

cell coordinates encompass the lower basin extent. A 1/8° grid of Texas was overlain on 

the Hydrologic Unit Code 8 (HUC 8) watersheds of the basin using ESRI® ArcMap GIS 

software. Clipping around O.H. Ivie reservoir (managed independently by the Upper 

Colorado River Authority), the HUC 8 sub-basins included in the Lower Colorado River 

extent include Austin/Travis Lakes, Brady, Buchanan/LBJ, East Matagorda Bay, Jim 

Ned, Llano, Lower Colorado, Lower Colorado/Cummins, Middle Colorado, North Llano, 

Pecan Bayou, Pedernales, San Bernard, San Saba, and South Llano sub-basins. Placing 

the grid on these sub-basins resulted in a total of 399 grid cells encompassing the Lower 

Colorado River basin, of which 397 have associated meteorological forcings in the South 

Central (Gulf) region. The two missing files are for two grid cells located on the western 

border of the Lower Colorado River basin. The area of the watershed these cells 

contribute is less than 4.061 km2 area, and therefore this small area does not have a large 

impact on the river flows and were left out of this study. A map of the grid cell 

coordinates of the Lower Colorado River basin is given in Appendix D. 

The soil parameter file, vegetation parameter file, and snow band/elevation 

parameter file from CH2M HILL (2008) included grid cells in the upper basin of the 

Colorado River watershed, above O.H. Ivie reservoir. Since water flow into O.H. Ivie 

reservoir is consumed in the Upper Colorado River basin, it is assumed all area above this 

reservoir is noncontributing to the Lower Colorado River basin managed by the LCRA. 

Therefore, the soil parameter file, vegetation parameter file, and snow band/elevation 

parameter file were edited to only contain the grid cells in the Lower Colorado River 
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basin extent portrayed in Figure 2.1. This was done through bash shell LINUX programs 

listing the 397 grid cells of the lower basin and extracting the related data for these cells 

from the original file. All of the LINUX scripts used in this process are included in the 

“02External_Scripts” folder in the supplemental materials. 

3.2.4. Routing Model Set Up 
Adjustments to the routing model consisted of editing the input files to route 

flows only to the Lake Buchanan and Lake Travis stations (CRBU and CRTR, 

respectively) in the Lower Colorado River basin. Since the flow direction file and 

fraction file from the CH2M HILL (2008) study incorporated data for the grid cells of the 

upper portion of the basin, the fraction and flow direction files were revised to represent 

only the lower basin in the routing procedure for this study. The flow direction 

determines which grid cells are routed to each station. Flow direction is a raster input, 

based on the numerical scheme as depicted in Figure 3.3.  

 

 
 

 

 

 

 

Figure 3.3. Flow Direction Scheme. The numeric designation determines the direction the 
flow will be routed from a cell. 
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If the middle square is the cell of interest to be routed, then that cell is assigned a 

value from 1 through 8, corresponding to the directions as shown in the grid. For 

instance, if the cell is labelled with the number 1, then the flow is to be routed to the cell 

directly north; if 2, then the flow is to be routed to the northeast; if 3, then the flow is to 

be routed to the east, and so on. For any grid cell that borders the lower basin boundary 

but is outside of the basin, the flow direction was changed to route flows away from the 

basin. It was verified that no grid cells outside of the basin would route extra flows into 

the basin. For those grid cells in the upper basin (above O.H. Ivie reservoir), a flow 

direction value of -1 was assigned to represent a “NO DATA” value. 

The input file representing the fractional area of each grid cell was also revised to 

ensure the proper area is routed through the lower basin. In the original file from CH2M 

HILL (2008), there was a “NO DATA” value assigned as -9999. However, when this was 

run through the routing model, this NO DATA value was read as a contributing fractional 

value and would miscalculate the routed flows. Therefore, all “NO DATA” values were 

changed to -1 outside of the basin boundary, and any grid cell with noncontributing flow 

within the lower basin was assigned a value of 0. 

After the flow direction and fraction files were adjusted to appropriately route 

flows through the lower basin, the stations file was adjusted to include only station 

locations for CRBU and CRTR, in order to only route flows through the Lake Buchanan 

and Lake Travis basins, respectively. The updates provided to the flow direction and 

station files resulted in 118 active grid cells which route to CRBU and 223 active grid 

cells which route to CRTR, meaning there are 105 cells downstream of the CRBU basin 
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which route into CRTR. The characteristics of these two basins were used to calibrate the 

VIC model, as described in Chapter 4. 
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Chapter 4. Calibration and Verification 
4.1. Evaluating Model Performance 

The VIC model performance was assessed using several statistics, including 

Pearson correlation (r) and coefficient of determination (r2), Nash-Sutcliffe Efficiency 

(NSE), and the percent bias. These statistics were calculated to evaluate the initial VIC 

model (CH2M HILL 2008) during both the calibration/verification stage and for the 

hindcasting results presented in Chapter 5. 

The Pearson correlation coefficient (r) measures the association of two data sets 

assuming a linear relationship. The Pearson coefficient of determination (r2) is simply the 

square of the correlation coefficient, providing the same measure. The Pearson 

correlation coefficient is calculated as: 

  r  = 
∑ �Q0,i - Q0

�����(Qpred,i - Qpred
������)n

i=1

�∑ �Q0,i - Q0
�����

2
n
i=1 ∑ �Qpred,i - Qpred

�������
2

n
i=1

 (4.1) 

where n = the total number of forecast streamflow observation pairs, Q0,i is the observed 

streamflow in time period i, Q0
���� is the mean of the observed streamflow, Qpred,i is the 

predicted streamflow in time period i, and Qpred
������ is the mean of the predicted streamflow. 

 The Nash-Sutcliffe efficiency (NSE) is based on the ratio of the sum of squared 

errors of the predicted streamflow to the variance in the observed streamflow. In the case 

where the NSE is less than zero, the average streamflow would be a better predictor than 

the modeled streamflow. Using the same notation as above, NSE is calculated as: 
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 NSE = 1 - 
∑ �Q0,i - Q0

�����
2

n
i=1

∑ �Q0,i - Qpred
�������

2
n
i=1

 (4.2) 

Lastly, the percent bias is calculated as the difference between the predicted and 

observed streamflow according to the formula: 

 Bias (%) = 
∑Qpred,i -∑Q0,i

∑Q0,i
*100 (4.3) 

To evaluate initial model performance, the model obtained from LCRA (CH2M 

HILL 2008) was run using the clipped watershed extent (representing only the sub-basins 

contributing to Lakes Buchanan and Travis) on the original NLDAS soil and vegetation 

input files and parameters. The performance statistics are calculated for the total 

unregulated inflows into both lakes, as presented in Table 4.1. 

The low NSE values and large (negative) bias in Table 4.1 reflect consistently low 

flow predictions through the time period relative to the historically unregulated, observed 

flows documented by the LCRA. Also, it is noted that there are lower correlations during 

the periods of 1940 through 1960. The NLDAS vegetation file uses the University of 

Maryland’s vegetation classification, modeling vegetative cover from 1981 to 1994 

(NASA 2015a). It is possible that the model poorly simulates prior years due to changing 

land cover.  
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Table 4.1. VIC Model Performance by Decade: Initial Model with NLDAS Soil File 

Decade r2 r NSE Bias 
(%) 

1940 0.391 0.625 -0.278 -73.6 
1950 0.379 0.616 0.182 -71.1 
1960 0.671 0.819 0.029 -69.4 
1970 0.493 0.702 0.132 -67.5 
1980 0.680 0.825 0.134 -65.8 
1990 0.692 0.832 0.359 -64.9 

2000-2011 0.779 0.882 0.381 -60.4 
1940-2011 0.534 0.731 0.201 -67.5 

 

The soil parameter file was updated using the STATSGO database (as detailed in 

section 3.2.2), and a new run of the initial model was performed, with results given in 

Table 4.2. 

 

Table 4.2. VIC Model Performance by Decade: Initial Model with STATSGO Soil File 

Decade r2 r NSE Bias 
(%) 

1940 0.335 0.578 0.263 -27.1 
1950 0.621 0.788 0.603 -41.8 
1960 0.638 0.799 0.628 -0.325 
1970 0.759 0.871 0.714 11.8 
1980 0.778 0.882 0.708 13.4 
1990 0.828 0.910 0.795 5.05 

2000-2011 0.757 0.870 0.666 62.9 
1940-2011 0.679 0.824 0.654 -0.758 

 

4.2. Calibration Parameters 
There are many parameters used within the VIC and routing models, but a small 

set of parameters are recommended for calibration. This is because the spatial variability 
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of some parameters cannot be well represented using satellite or geological observations, 

and others are not physically-based but are just used in mathematical operations to define 

the soil infiltration capacity curve (University of Washington 2015). Further, determining 

which parameters to calibrate depends on the particular study; parameters can be 

calibrated according to soil, snow, or canopy calculations. Since central Texas receives 

minimal snow and does not have large canopy vegetation, the VIC model in this study is 

calibrated by optimizing soil parameters. The main soil parameters which have the 

greatest influence on the hydrograph, and therefore are suggested for calibration (Gao et 

al. 2010; Liang et al. 1994; Nijssen et al. 1997), are as follows: 

1. binfilt: describes the available infiltration capacity over the grid cell. This 

parameter defines the shape of the Variable Infiltration Capacity curve. 

2. Ds: represents the fraction of Dsmax where non-linear baseflow is 

observed. 

3. Dsmax (mm/d): represents the maximum baseflow from the bottommost soil 

layer in the model. 

4. Ws: represents the maximum soil moisture fraction where non-linear 

baseflow is observed in the bottommost soil layer in the model. 

5. Soil Depth (m) (all three layers): represents the thickness of three soil 

layers. With thicker soil layers, more water is stored within the soil matrix 

and is available for evapotranspiration. 

The parameters binfilt and Ws define shapes of mathematical curves in the model, 

whereas Ds, Dsmax, and soil depth are based on physical watershed characteristics. Ds and 

Dsmax are adjusted according to soil characteristics such as soil moisture and saturated 
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hydraulic conductivity, and soil depth is adjusted according to spatial variability of soil 

layers across the watershed (Gao et al. 2010; Liang et al. 1994). 

There are also many parameters in the routing model which could be calibrated, 

but for studies on a monthly time scale, calibration of the routing model is generally not 

necessary (University of Washington 2015). Some routing inputs, such as flow direction 

and fractional contribution of runoff from each grid cell, can be obtained from GIS 

analysis using a Digital Elevation Model (DEM); other physical parameters such as 

velocity or flow diffusion can be measured in situ, but also can be set to typical values 

when modeling on a monthly or larger time step (University of Washington 2015). 

Calibration for analyses on shorter than a monthly time scale is described in Lohmann et 

al. (1996), Lohmann et al. (1998a), and Lohmann et al. (1998b). 

4.3. Sensitivity-based Radio Tuning Calibration Tool 
Calibration of the initial VIC model was completed in order to match the 

simulated streamflow to the observed streamflow, as estimated by LCRA. Studies have 

calibrated the VIC model using the Multi-Objective Complex Evolution (MOCOM-UA) 

method (Yapo et al. 1998) and the multisite cascading calibration (MSCC) method (Xue 

et al. 2015). Calibration for the LCRA study was done by adjusting the seven parameters 

described above through a Sensitivity-based Radio Tuning Calibration tool (SRTC) (CHI 

Support 2015). This tool, which was adapted from the hydrologic modeling program 

PCSWMM (PC Stormwater Management Model) for use in this study, allows the 

manipulation of model parameters according to a user-defined percentage change. This 

change, either a percent increase or a percent decrease from the original value, is bounded 
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according to user-defined upper and lower bounds for each parameter. When a parameter 

is adjusted, the SRTC linearly interpolates between simulation results based on the 

parameter’s extreme value according to the equation: 

  Ycalib=��max(Wi,0) *�Yi,max-Yinit�+ min(Wi,0) *�Yinit-Yi,min��
i

 (4.4) 

where Ycalib is the new calibrated streamflow value, i is the parameter of interest to be 

calibrated, Wi is the weighted scale value ranging from -1 to 1 for parameter i, Yi,max is the 

maximum value of parameter i, Yi,min is the minimum value of parameter i, and Yinit is the 

initial value of parameter i. 

However, streamflow is not truly a linear function of the parameters in the VIC 

and routing models. Therefore, a verification run of VIC and the routing model must be 

performed in order to assess whether the SRTC estimation is accurate. Also, this 

calibration method finds the best calibrated parameters at a particular station, when this 

may not be accurate across the entire watershed. 

4.4. Model Calibration and Verification 
This study is focused on predicting the naturalized, unregulated flows into the 

Highland Lakes, specifically into Lakes Buchanan and Travis. Since the LCRA has 

records of inflows into both lakes dating back to 1940, these records are used to calibrate 

the VIC model based on 1) inflows into Lake Buchanan and 2) the incremental flows 

below Lake Buchanan and into Lake Travis. In Chapter 5, only forecasts of combined 

inflows into both lakes will be evaluated. 

Xue et al. (2015) found that calibration improvements are made by calibrating to 

multiple basins, instead of calibrating to only the watershed outlet. From this reasoning, 
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the SRTC tool was applied to two separate basins: one to calibrate the model for the Lake 

Buchanan sub-basin (routing flows to the CRBU station), and another to calibrate the 

model below Lake Buchanan but above Lake Travis, found by taking the difference of 

the inflows routed to Lake Buchanan and to Lake Travis (routing flows between the 

CRTR and CRBU stations, referred to as CRTR-CRBU). As noted, the Lake Buchanan 

sub-basin consists of 118 grid cells, and the Lake Travis sub-basin (which includes the 

Lake Buchanan sub-basin) consists of 223 grid cells, resulting in the incremental sub-

basin below Lake Buchanan and above Lake Travis containing 105 grid cells. Calibrating 

the two sub-basins separately should improve the overall calibration by incorporating 

more degrees of freedom.  

To aid in the adjustment of the seven soil parameters selected for calibration 

(including three soil layer depths), Gao et al. (2010) list bounds for each parameter. The 

parameter binfilt ranges from greater than 0 to approximately 0.4; the parameter Dsmax is 

based on hydraulic conductivity, and typically ranges from greater than 0 to 

approximately 30 mm/day; soil depth of each layer typically ranges from 0.1 to 1.5 

meters; and Ws and Ds are fractions ranging from 0 to 1. In order to define the 

extremities for the SRTC for each parameter, the original gridded values associated with 

each parameter were multiplied by certain percentage increases and decreases until the 

bounds for each variable were reached. However, for binfilt, a cap of 0.5 was placed on the 

values if the percentage increase would surpass a value of 0.5. This allowed for a greater 

increase in binfilt values per grid cell. The extreme ranges for each parameter were 

determined to be: 
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1. binfilt: increase by 700% with a cap of 0.5 for any original values which 

would surpass 0.5; decrease by 99.99%. 

2. Ds: increase by 19,900%; decrease by 99.5%. 

3. Dsmax: increase by 200%; decrease by 100%. 

4. Ws: increase by 4.17%; decrease by 47%. 

5. Soil Depth (all three layers): increase by 100%; decrease by 100%, with 

the constraint that soil layer 1 is always less than soil layer 2. 

For each parameter, the upper and lower extremes were placed as the bounds of a 

Microsoft Excel® slider bar ranging from 0 to 100, where 50 represents the original 

parameter’s value, and therefore no change. In turn, these slider values are scaled with 

weights used in Equation (4.4) according to a range from -1 to 1, with -1 referring to a 

slider value of 0; 0 referring to a slider value of 50; and 1 referring to a slider value of 

100. A description of the process in scaling the bounds to the slider values is discussed in 

Appendix E. This process was required due to limited flexibility in the range of slider 

values in Microsoft Excel®. 

The calibration parameters were then adjusted in the SRTC to improve the results 

of the initial model (using the clipped watershed extent and the STATSGO database, 

Table 4.2). Gao et al. (2010) recommended the NSE and the relative error be used as the 

objective functions for calibration through a trial and error tuning process until the 

modeled flows match satisfactorily with the observed flows. In this study, maximizing 

NSE was selected as the objective function, and an optimization was performed with the 

slider bar values as the variables (changing cells in Microsoft Excel®). The Generalized 

Reduced Gradient (GRG) Nonlinear method (Lasdon et al. 1978) was used, with a 
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convergence value of 0.0001, central derivatives, a population size of 100, and utilizing a 

multi-start technique. Constraints limited the change in the variable according to the 0 to 

100 scale on the slider bar. Each optimization was completed with all parameters started 

at 50 (no change), 0 (all minimum), and 100 (all maximum) to add variability in the 

multi-start technique. The results of the SRTC tool were then verified by making the 

appropriate percentage changes to the variables in the soil parameter file and re-running 

the VIC model and the routing model. For simplicity in scaling, the maximization of each 

parameter suggested by the SRTC was rounded to the nearest 0.5 slider value. 

The NSE was maximized for the two basins using the SRTC tool to calibrate the 

period of January 1, 1960 through December 31, 1989. The results of the entire 

calibration process are given in Appendix E. In addition to NSE, the coefficient of 

determination (r2), correlation coefficient (r), and the percent bias were calculated. The 

calibrated soil parameters were then applied to the appropriate grid cells relating to 

CRBU and CRTR-CRBU. The calibrated grid cells for each basin were combined into 

one soil file and ran through VIC for a verification. Verification results were computed 

for the entire time window of January 1, 1940 through December 31, 2011, as well as for 

January 1, 1960 through December 31, 2011 for comparison. This process was done in 

order to calibrate the model for a small time period and then to verify over a larger time 

period. 

The initial VIC simulation as well as the verifications were run with a two year 

spin-up period from January 1, 1938 through December 31, 1939. Since VIC simulations 

have a low bias compared to the observed values, a percentile matching bias correction is 

applied to the verification output (see Appendix F for more information on the bias 
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correction procedure). Final calibration and verification results (following bias 

correction) are summarized in Table 4.3. 

 

Table 4.3. VIC Calibration (1960-1989) and Verification (1940-1959, 1990-2011) 
Results by Decade, along with changes in performance metrics compared to Table 4.2. 

Decade r2 r NSE Bias 
(%) Δr2 ΔNSE ΔBias 

(%) 
1940 0.508 0.712 0.475 -19.5 0.173 0.134 0.212 
1950 0.680 0.824 0.650 -27.2 0.059 0.036 0.047 
1960 0.708 0.841 0.683 0.429 0.070 0.042 0.055 
1970 0.757 0.870 0.653 -3.40 -0.002 -0.001 -0.061 
1980 0.807 0.898 0.775 8.06 0.029 0.016 0.067 
1990 0.882 0.939 0.871 5.43 0.054 0.029 0.076 

2000-2011 0.781 0.884 0.680 32.2 0.024 0.014 0.014 
1940-2011 0.724 0.851 0.707 -0.758 0.045 0.027 0.053 
1960-2011 0.799 0.894 0.759 8.734    

 

In comparison to Table 4.2, the majority of the performance metrics improved for 

most decades. For the entire time period of 1940 through 2011, each statistic increased 

from the original model using the STATSGO database. It is noted that the values of r2, r, 

and NSE are the lowest for the decades 1940 and 1950. This is possibly due to changes in 

land use and land cover that occurred during the middle of the 20th century (see section 

2.2 for specific land uses per sub-basin in the Lower Colorado River watershed). The 

NLDAS vegetation dataset from the University of Maryland describes land cover 

changes from 1981 to 1994, and so the land cover in the VIC model does not accurately 

predict watershed fluxes and runoff in the watershed 30 to 40 years prior. Statistics are 

improved between 1960 and 2011, with r2 values above 0.708 (with r above 0.841), and 

NSE values all above 0.653 in each decade. 
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Focusing on the latter verification period of 1960 through 2011, the r2 and NSE 

values increased overall, with r2 increasing by 0.075 and NSE increasing by 0.052 when 

comparing the 1940 through 2011 verification with the 1960 through 2011 verification. 

The percent bias increased compared to the overall time period because bias correction 

was applied from 1940 through 2011 (where the percent bias is close to zero). Applying 

the bias correction procedure for 1960 through 2011 did not improve results significantly, 

and therefore the bias correction for the entire time period was kept.  

Even though it is expected that calibration would increase r2 and NSE for every 

decade over both verification periods, the fact that there are some declines in the statistics 

when compared to Table 4.2 (as evident for the r2 statistic during the 1970 decade) is not 

surprising. The SRTC tool was used to calibrate the model for the entire 30-year period 

of 1960 to 1989. Also, the SRTC assumes linear interactions between the variables. 

These decreases are expected to be a result from model error in how the calibrated 

parameters interact non-linearly with each other after their calibrated adjustments were 

performed. 

 

 

  



 

47 

Chapter 5. Hindcast Results and Discussion 
5.1. Hindcast Generation 

After calibration and verification, the VIC model was run with climate ensemble 

hindcasts, developed at the University of Wisconsin Madison, to generate ensemble 

streamflow hindcasts of seasonal inflows to Lakes Buchanan and Travis. The LCRA has 

observational inflow data for Lakes Buchanan and Travis dating back to 1940 and 

extending until 2011, but the VIC meteorological forcings files are limited to 2010. 

Therefore, the VIC global parameter file was set to simulate forecasts from 1940 through 

2010. Before starting the forecast (hindcast) run, a two year spin-up of historical forcings 

data was implemented, starting the model simulation at January 1938 to ensure accurate 

modeling of the seasons starting in March 1940. Then, the VIC model was run from 1940 

through 2010 on a seasonal basis, analyzing the seasons March, April, May, June 

(MAMJ); July, August, September, October (JASO); and November, December, January, 

February (NDJF) separately for each year. After the forecasts and historical flows were 

routed, the forecast output was compared on a seasonal basis against the observed LCRA 

flows. In this study, an ensemble of four climate forecasts were input to VIC for each 

season. A fifth model run used the historical meteorological forcings to simulate the 

actual conditions to compare against the four forecasts. The model was developed so this 

historical run saves a “state” file, which includes the values of all physical watershed 

components and water balance fluxes according to the historical data at the last day of the 

modeled season. This state file was then defined in the global parameter file to be used to 

start the simulations for the next four-month season. The fluxes (which contain runoff 
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and baseflow) from each forecast and historical run were then routed to station CRTR 

using the routing model on a daily time step, with results aggregated to monthly seasonal 

time steps. Appendix G presents a flowchart on how this process is implemented. 

Climate forecasts for the Lower Colorado River basin were produced at the 

University of Wisconsin Madison. Historical precipitation, maximum and minimum 

temperature, and wind speed data were taken from the PRISM climatology data set (Daly 

et al. 1997) for the Texas Climate Division 6 (Edwards Plateau) spatial extent. These data 

were then spatially and seasonally aggregated and averaged to match the Lower Colorado 

River basin extent. Model hindcasts of seasonal precipitation and temperature 

(corresponding to the aggregated PRISM data) were generated using a statistical forecast 

model developed at the University of Wisconsin Madison, utilizing the procedure 

developed by Zimmerman and Block (2015). Using a nearest neighbor approach, ten 

“analog” years were selected representing the historical years with seasonal precipitation 

and temperature data matching closest to the forecast values. Finally, individual months 

were randomly sampled from the set of analog years for the MAMJ and JASO seasons to 

generate seasonal hindcasts over the time period of 1960 through 2010 (with the ability to 

go back as far as 1915). Currently, climate forecasts are not generated for the NDJF 

because this season has the least streamflow variability. A list of the closest analog years 

for MAMJ from 1960 through 2010 is given in Appendix H. 

Results are presented for mean ensemble hindcasts for 152 individual seasons, 

from MAMJ 1960 through JASO 2010, using four hindcasts. The meteorological forcings 

for the four hindcasts as well as the script used to loop the hindcasts through the three 

seasons are included in the “01Model” folder in the supplemental materials. 
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5.2. Hindcast Results and Analysis 
In order to compare each hindcast to the historical predicted flows from VIC as 

well as the LCRA’s observed inflows to Lake Travis, the mean of the four monthly 

ensemble hindcasts is evaluated for each month, and a percentile-matching bias 

correction procedure is applied. Because the hindcast forcings were generated on a 

seasonal basis and the model is for seasonal streamflow forecasting, the ensemble 

monthly mean hindcast flows are also analyzed by season. The ensemble mean hindcasts 

averages are sorted according to each season, where total seasonal flows are calculated 

and analyzed. The NDJF season is not reported in this section, because this season sees 

less variability in streamflow, and hydrologic persistence serves as a skillful predictor. 

A comparison of the full time series of monthly ensemble mean hindcasts to the 

LCRA observed inflows is given in Figure 5.1. It is evident that the hindcasts have a low 

bias in comparison to the peak observed inflows; though, it is expected that an ensemble 

mean will not accurately capture the extreme high or low values. A scatterplot of these 

flows, showing the variance between the monthly hindcasts and the monthly LCRA 

observed flows, is given in Figure 5.2, with statistics presented in Table 5.1. 
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Figure 5.1. Comparison of Ensemble Mean Hindcasts (MAMJ and JASO) to the LCRA 
Observed Inflows to Lake Travis, March 1960 through October 2010. Ensemble mean 

hindcasts are bias corrected. Created by author. 
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Figure 5.2. Scatterplot of the Ensemble Mean Hindcasts (MAMJ and JASO) versus the 
LCRA Observed Inflows to Lake Travis, March 1960 to October 2010. Ensemble mean 

hindcasts are bias corrected. Created by author. 

 

Figures 5.3 and 5.4 show the distribution of seasonal ensemble mean hindcasts 

compared to the LCRA’s total seasonal observed inflows for the seasons MAMJ and 

JASO, respectively. Statistics for these comparisons are also presented in Table 5.1. 
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Figure 5.3. MAMJ Ensemble Mean Hindcasts and LCRA Observed Inflows to Lake 
Travis, 1960-2010. Ensemble mean hindcasts are bias corrected. Created by author. 

 
Figure 5.4. JASO Ensemble Mean Hindcasts and LCRA Observed Inflows to Lake 
Travis, 1960-2010. Ensemble mean hindcasts are bias corrected. Created by author. 
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Table 5.1. Seasonal Statistics of Ensemble Mean Hindcasts compared to LCRA Observed 
Inflows to Lake Travis from 1960 to 2010. 

Season r2 r NSE 
MAMJ 0.030 0.174 -0.381 
JASO 0.032 0.178 -0.236 

Overall 0.025 0.158 -0.489 
 

Besides comparing the four ensemble mean hindcasts to the LCRA observed 

inflows, it is important to assess the variability between the seasonal ensemble mean 

hindcasts and historical simulated flows. The simulated inflows calculated using the 

historical forcings from Livneh et al. (2013) during calibration and verification are 

compared to the ensemble mean hindcasts. Figure 5.5 presents the overall time series of 

the average monthly hindcast flows compared to the historical simulated flows, with 

Figure 5.6 showing a scatterplot to represent the variance. Figures 5.7 and 5.8 present the 

overall time series and seasonal comparisons of the ensemble mean hindcasts to the 

historical simulated flows, with associated statistics given in Figure 5.2. 
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Figure 5.5. Comparison of Ensemble Mean Hindcasts to the Historical Simulation 

(MAMJ AND JASO) of Inflows to Lake Travis, March 1960 through October 2010. Both 
ensemble mean hindcasts and historical simulations are bias corrected. Created by author. 

 
Figure 5.6. Scatterplot of the Ensemble Mean Hindcasts (MAMJ and JASO) versus the 

Historical Simulation of Inflows to Lake Travis, March 1960 through October 2010. Both 
ensemble mean hindcasts and historical simulations are bias corrected. Created by author. 
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Figure 5.7. MAMJ Ensemble Mean Hindcasts versus Historical Simulation of inflows to 
Lake Travis, 1960-2010. Both ensemble mean hindcasts and historical simulations are 

bias corrected. Created by author. 

 

 
Figure 5.8. JASO Ensemble Mean Hindcasts versus Historical Simulation of inflows to 
Lake Travis, 1960-2010. Both ensemble mean hindcasts and historical simulations are 

bias corrected. Created by author. 
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Table 5.2. Seasonal Statistics of Ensemble Mean Hindcasts compared to Historical 
Simulation of Inflows to Lake Travis. 

Season r2 r NSE 
MAMJ 0.032 0.180 -0.241 
JASO 0.010 0.101 -0.267 

Overall 0.034 0.184 -1.23 
 

5.3. Diagnosis of Forecast Skill 
Results for the MAMJ and JASO seasons evaluated from 1960 to 2010 indicate 

virtually no skill in the season-ahead inflow hindcasts, despite significant skill in the 

precipitation hindcasts (r2 > 0.5 for the MAMJ and JASO seasons) and reasonably good 

calibration and verification statistics for the VIC model (see Chapter 4). Comparing 

monthly VIC output to the LCRA observed inflows into Lake Travis over the entire time 

period using the hindcasts, r2 = 0.799 and NSE = 0.759. These statistics were computed 

using a continuous run and analyzed by decade; when the calibrated model was run using 

the seasonal procedure, r2 = 0.827 for the MAMJ season and r2 = 0.763 for the JASO 

season when compared to the LCRA observed inflows (graphics are given in Appendix 

E). However, when the ensemble mean hindcasts are compared to the LCRA observed 

inflows, r2 decreases to 0.030 for the MAMJ season and to 0.174 for the JASO season. 

The NSE also decreases to -0.381 and -0.236 for the MAMJ and JASO seasons, 

respectively (see Table 5.1). 

The study conducted by Sinha and Sankarasubramanian (2013) is similar to this 

research in that the skill of seasonal forecasts is calculated from ensemble mean forecast 

simulations from VIC for the Apalachicola River in Chattaoochee, Florida. Results from 

forecasts with times from 1 to 6 months reveal correlations and accuracy fluctuate over 
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increasing lead times, and results have very low correlation and accuracy in August, 

despite very high correlations during the verification period. Since Sinha and 

Sankarasubramanian (2013) also found low skill and correlation in seasonal ensemble 

predictive forecasts after a proper calibration, the results of low forecast skill in this study 

are not as striking. However, it is still important to diagnose the cause of the low skill. 

Three reasons are proposed for the lack of skill in the inflow hindcasts, 

investigated herein. First, the use of meteorological data for the Texas Climate Division 

6, rather than the Lower Colorado River basin area draining to Lake Travis (CRTR), may 

introduce some variability in the climate forecasts. Second, the downscaling method, 

which selects analogs based on a nearest neighbors approach, can add variability and 

degrade forecast skill. Third, soil moisture may not be strongly correlated with observed 

flows, and the soil moisture “state” may not influence streamflow on a seasonal 

timescale. In addition to these potential errors, hydrologic model error will also 

contribute to low skill in season-ahead inflow forecasts. 

The low skill in the ensemble mean hindcasts was diagnosed. First, annual 

precipitation values corresponding to the Texas Climate Division 6 and the Lower 

Colorado River basin (draining into Lake Travis) were compared. Since the PRISM data 

used to generate the hindcasts were not readily available from the University of 

Wisconsin Madison for this analysis, precipitation data were obtained from the National 

Centers for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis dataset (Kalnay et al. 1996). Meteorological data for the Texas 

Climate Division 6 extent were taken from coordinates (30.0 to 32.5° N, 97.5 to 102.5° 

W); this is the same area used to obtain precipitation and temperature data from PRISM 
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for the hindcasts. Precipitation data were also taken from a smaller area, (30.0625 to 

32.3125° N, 97.9375 to 100.5625° W), representing the Lake Travis drainage basin. For 

the MAMJ season, the average areal precipitation was 255.8 mm over the Texas Climate 

Division 6 area and 324.3 mm over the Lower Colorado River basin, for the years 1948 

to 2011. In comparison, the average areal precipitation from the PRISM dataset used in 

the hindcasts is 234.6 mm. The similar average areal precipitation values between the 

PRISM and NCEP/NCAR data sets from (30.0 to 32.5° N, 97.5 to 102.5° W) indicates 

that the PRISM dataset (used to generate the precipitation hindcasts) was taken from the 

Texas Climate Division 6 area. When comparing the PRISM dataset over the Climate 

Division 6 area to the precipitation data over the Lake Travis drainage area from 

NCEP/NCAR, there is a 27.7% difference in the average areal precipitation values. 

Despite the difference in the average areal precipitation between the two areas, the 

correlation of precipitation between the two areas is very high, at r2 = 0.955, indicating 

that this is not a primary reason for low forecast skill. However, the precipitation 

hindcasts (using PRISM data over the Texas Climate Division 6) have significantly lower 

correlation to the observed NCEP precipitation over the LCRA managed area, which 

perhaps indicates that the precipitation forecast model is not very robust. These results 

are given in Table 5.3.  
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Table 5.3. Coefficient of Determination (r2) Matrix of Precipitation data and Hindcasts 
for the season MAMJ, 1948-2010.  

 Hindcast 
Model 

NCEP 
(Climate 

Division 6) 

NCEP 
(CRTR) 

NCEP (Climate Division 6) 0.366   
NCEP (CRTR) 0.347 0.955  

PRISM 0.547 0.675 0.619 
 

 

Next, the correlation between precipitation and streamflow data was examined, to 

determine whether or not a different precipitation data set should be used to generate the 

forecasts. The PRISM precipitation data used in the hindcasts (historical precipitation 

data) correlates strongly with the historically observed inflows to Lake Travis, at r2 = 

0.599 (this is shown in Table 5.4). In turn, the hindcast model, which predicts a season-

ahead, predicts the actual PRISM precipitation data at r2 = 0.547 (Table 5.3). The 

variability in both sets is additive when the precipitation hindcast model directly predicts 

streamflow, resulting in a lower coefficient of determination, at r2 = 0.298. This error 

propagation could be one reason for the degradation of streamflow forecasts, as 

uncertainties associated with variables interact. Correlations between each precipitation 

dataset and the observed inflows are given in Table 5.4. The observed inflows correlate 

best to the Texas Climate Division 6 area with the PRISM data at r2 = 0.599, supporting 

that these data are appropriate for use in the forecast model. 
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Table 5.4. Coefficient of Determination (r2) of the Precipitation and Hindcasts to the 
Observed Inflows to Lake Travis for the season MAMJ, 1948-2010 

 Observed 
Inflows 

NCEP (Climate Division 6) 0.538 
NCEP (CRTR) 0.516 

PRISM 0.599 
Hindcasts 0.298 

 

 

The second diagnostic analysis examined how the hindcast generation 

technique—specifically the downscaling method—affects streamflow predictions. 

Following the nearest-neighbor sampling procedure (Zimmerman and Block 2015), 

NCEP/NCAR precipitation data were randomly selected for each month from the analog 

years corresponding to each MAMJ hindcast. Over the Texas Climate Division 6 extent, 

the downscaled precipitation correlates to the actual NCEP/NCAR precipitation data at r2 

= 0.420, while for the Lake Travis basin, r2 = 0.399. When comparing the downscaled 

precipitation forecasts to the observed inflows, r2 = 0.202 for precipitation data from the 

Texas Climate Division 6 area, and r2 = 0.147 for precipitation data from the LCRA 

managed area. In comparison to the correlation of the actual PRISM data to the observed 

inflows (r2 = 0.599), the downscaling process appears to degrade the forecast skill. 

Lastly, the relative influence of soil moisture on streamflow was analyzed. One 

hypothesis of this study is that observed soil moisture combined with seasonal 

precipitation forecasts would improve streamflow predictions over either variable alone. 

For this reason, the VIC model saves the watershed “state” at the end of each season to 

use in the next seasonal forecast. Soil moisture input is from the NLDAS dataset. Soil 
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moisture data over a depth from 0 to 100 centimeters were analyzed over the Lower 

Colorado River basin (30.0 to 32.5° N, -97.5 to 102.5° W) for the period 1979 to 2010.  

For the seasons MAMJ and JASO, the correlation between soil moisture and the 

concurrent observed inflows is r2 = 0.229. In addition, soil moisture has a high 

autocorrelation with a one month lag, at r2 = 0.764, indicating that it may be useful as a 

predictor variable.  However, this autocorrelation drops rapidly after four months to r2 = 

0.085. This reveals soil moisture at the end of the previous season is not a good predictor 

for the next season. Soil moisture also does not correlate well to observed inflows lagged 

at one month (r2 = 0.061), indicating the watershed soil moisture state does not highly 

influence the next month’s streamflow. These statistics are represented in Figure 5.9. 

The relationship between streamflow and soil moisture appears to be non-linear. 

The amount of soil moisture required for saturation is dependent on soil texture and 

thickness, and the volume of streamflow is dependent on the volume of runoff produced. 

Soils exhibit a threshold in saturation which dictates the initiation of different forms of 

overland flow. The volume of runoff varies from soil response and type of overland flow 

processes, precipitation intensity and volume, among other external factors. These factors 

support the non-linear response observed in Figure 5.9. Quadratic and power regressions 

were also computed to support this non-linear response. The r2 statistic increased to r2 = 

0.342 using a quadratic regression and to r2 = 0.455 using a power regression. However, 

as seen in Figures 5.10 and 5.11, these regressions still cannot accurately simulate the 

high flows in the non-linear interaction between streamflow and soil moisture. 
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Figure 5.9. Relationships between Soil Moisture and LCRA Observed Inflows with and 
without a Time Lag for the MAMJ and JASO seasons, 1979-2010. Created by author. 
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Figure 5.10. Quadratic Regression of Soil Moisture and LCRA Observed Inflows for the 

MAMJ and JASO seasons, 1979-2010. Created by author. 

 

Figure 5.11. Power Regression of Soil Moisture and LCRA Observed Inflows for the 
MAMJ and JASO seasons, 1979-2010. Created by author. 

R² = 0.3424

0

5000

10000

15000

20000

25000

30000

275 295 315 335 355 375 395 415

LC
RA

 O
bs

er
ve

d 
In

flo
w

 (c
fs

)

Soil Moisture 0-100cm (kg/m2)

R² = 0.4549

0

5000

10000

15000

20000

25000

30000

275 295 315 335 355 375 395 415

LC
RA

 O
bs

er
ve

d 
In

flo
w

 (c
fs

)

Soil Moisture 0-100cm (kg/m2)



 

64 

In conclusion, the precipitation data used in the forecast model are found to be 

accurate, but the downscaling process should be revised in order to produce more skillful 

streamflow forecasts. Also, using the soil moisture “state” prior to a season has been 

found to not be as influential as expected. Improved soil moisture data, including in situ 

soil moisture measurements and high-resolution satellite-based observations, which can 

better represent variability in soil moisture, may also help in the seasonal prediction of 

streamflow. 
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Chapter 6. Conclusions and Future Work 
6.1. Conclusions 

This study developed a calibrated, physically-based watershed model for the 

Lower Colorado River basin for the purpose of season-ahead forecasting for the LCRA. 

This model couples the VIC land surface hydrology model with an associated routing 

model to route streamflow through the Lake Buchanan and Lake Travis sub-watersheds 

in the Lower Colorado River basin on a 1/8° grid. The model is physically-based through 

the incorporation of elevation bands and vegetation cover using the NLDAS data sets, 

and three soil layer depths representing spatial variability using the STATSGO database. 

The model uses forecasted meteorological forcings in order to calculate water and energy 

balances in the watershed. 

The model has been calibrated by adjusting seven soil parameters for individual 

grid cells in the Lake Buchanan basin and the sub-basin below Lake Buchanan and above 

Lake Travis. The calibration was completed over the time period 1960 to 1989, and the 

model was then verified over the entire time period of 1940 to 2010. Verification results 

were analyzed by decade, revealing r2 values ranging from 0.708 in the 1960s to 0.882 in 

the 1990s. The NSE for these decades ranged between 0.655 in the 1970s and to 0.872 in 

the 1990s. 

The overall objective of the research was to calibrate and diagnose seasonal 

hindcasts using this developed watershed model. This study tested the meteorological 

inputs associated with four preliminarily created hindcasts, in order to assess the accuracy 

of the VIC and routing model in matching predicted inflows to observed inflows between 
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1940 and 2010. The four generated hindcasts tested in this study revealed poorly 

correlated (and therefore, not skilled) forecasts, resulting in poor correlations of seasonal 

r2 and NSE values for the MAMJ and JASO seasons when compared to the LCRA 

observed inflows, as well as when compared to the predicted inflows from historical 

meteorological data. Diagnosis of the unskilled forecasts determined that precipitation 

inputs highly correlate to the observed inflows, but the downscaling technique degrades 

the forecasts significantly. Also, the soil moisture “state” is found to not be as influential 

producing the season-ahead streamflow as originally expected. However, the physically-

based VIC model was developed appropriately for the LCRA management extent to 

generate forecasts as determined in the verification stage, and is now available for future 

use as the study progresses in order to develop skillful forecasts once appropriate 

meteorological forcings are generated. 

6.2. Future Work 
There are several steps to be completed in order to generate more skillful seasonal 

forecasts for the LCRA. The next focus is to improve the precipitation forecasts over the 

Lower Colorado River basin. The meteorological data, which serves as the basis for the 

forecasts, should correspond to the basin above Lake Travis rather than the Texas 

Climate Division 6 applied to the Lower Colorado River basin to more accurately 

represent the average areal precipitation driving inflows to the reservoirs. The 

downscaling procedure for developing daily gridded inputs to the VIC model needs to be 

analyzed in more detail and possibly improved. Finally, the forecast ensemble will be 

increased in size to better represent the uncertainty in climate forecasts. The physically-
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based hydrologic forecasts will be combined with statistical climate forecasts generated 

at Columbia University, linking GCMs with the physical watershed components to create 

a hydroclimatic forecasting model. 

Additional work is needed to incorporate soil moisture measurements in the VIC 

model. In situ soil moisture measurements conducted by the Michigan Tech Research 

Institute (MTRI) have been collected from soil moisture gauges and remote sensing 

observations. These data can be assimilated in the VIC model to represent physical soil 

moisture in the state file at the beginning of each forecast period. 

The ultimate goal of this work is to allow the LCRA to incorporate seasonal 

forecasts in future water management plans. The hydroclimatic forecast model will 

combine with the stochastic optimization model at the University of Wisconsin Madison 

in order to develop future outcomes and impacts, and will allow the LCRA to revise 

operating rules. The model will be run for short-term and seasonal forecasting to be 

incorporated into the LCRA’s decision support system (DSS) to define drought triggers, 

identify potential future curtailment, assist in irrigation scheduling, and maintain 

environmental flows. 

The final model, when coupled with the DSS, will help to identify and mitigate 

against risk associated with a poor forecast. Risks and benefits for individual stakeholders 

will be evaluated if a drought trigger is forecasted, as operation decisions may need to be 

shifted. The LCRA can use the climate forecasts to determine if equitable allocation of 

risks and benefits between stakeholders is necessary. 
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Appendix A. Steps to Run VIC and Routing 
Models 
The latest versions of the source code for VIC and the routing model are available 

for download on the University of Washington VIC github webpage at 

https://github.com/UW-Hydro/VIC. All previous archived versions of VIC are also 

available. VIC and the routing model have been developed for use in a LINUX/UNIX 

environment and can be run either using a LINUX operating system, or using Cygwin as 

a LINUX emulator on a Windows operating system. The models have not been tested 

using Cygwin, and it is recommended to run VIC and the routing model in a LINUX 

environment. VIC and the routing model can run in a Bash or C shell in the LINUX 

terminal. 

After downloading the source code, VIC must be compiled with the GNU 

Compiler Collection (GCC) compiler using the “make” command. Changing directories 

to the source code, typing “make” will compile VIC using its Makefile and form the 

vicNl.exe executable file. The same procedure is done for the routing model using the 

GFortran compiler for the routing source code to form the rout.exe executable file. 

In order to run VIC, the proper watershed files must be generated and/or 

downloaded. The watershed of interest must be delineated and placed on a grid scale. The 

files required for use in VIC include meteorological forcing files for each grid cell of 

interest, a soil parameter file to provide soil characteristics per grid cell, a vegetation 

library file to describe land cover types, and a vegetation parameter file to describe the 

land cover per grid cell. Optional input files include a watershed state file (which is 

generated by VIC) to save the state of the water balance at a point in time in order to 

https://github.com/UW-Hydro/VIC
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restart an analysis at the specified time; an elevation band file to simulate land surface 

elevations across grid cells; and lake and wetland parameter files for surface water 

analyses. The directory path names to these files are declared in the global parameter file. 

The global parameter file also tells VIC the years to simulate, the years that are included 

in the forcings files, and the output directory name of the generated flux files for each 

grid cell. Other options, including calculation methods, can be edited in the global 

parameter file. Descriptions of how to delineate the watershed and how to generate the 

parameter files are given on the VIC documentation website at 

http://vic.readthedocs.org/en/master/Documentation/Inputs/.  

After the parameter files are generated and the appropriate time frame of analysis 

is chosen, the VIC model is ready to be run. Changing directories in the terminal to the 

directory consisting of the vicNl.exe executable, the VIC model is run by typing “vicNl -

g <input_global_parameter_file>,” where <input_global_parameter_file> is the name of 

the global parameter file to be used for the simulation. The VIC model will run and 

compute flux files for each grid cell in the output directory defined in the global 

parameter file. VIC will print any errors to the standard output and abort. VIC may also 

list warnings in the standard output, but will continue to run. Output can be viewed in a 

text editor. 

Appropriate input files must also be generated for the routing model. The routing 

model runs using an input file which gives directory paths to other required inputs. These 

include a fraction file, which describes the fraction of flows which contribute to the 

watershed; a flow direction file, which describes the direction water flows between 

adjacent grid cells; a flow velocity file to describe the velocity of routed flows per grid 

http://vic.readthedocs.org/en/master/Documentation/Inputs/
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cell; a flow diffusion file to assign diffusivity per grid cell; an x-mask file to describe the 

size of each cell (in meters); a station location file to describe sub-watershed outlets 

where flows are to be routed; and a unit hydrograph file to describe the impulse response 

function. The routing model requires the use of a flow direction file and a unit 

hydrograph file, but the other files are optional. For each category without an input file, a 

constant value must be assigned in the routing input file. The routing input file also 

describes the directory for the input flux files generated by VIC, the directory path for the 

routed output files, and the time frame which the flux files are to be routed. Descriptions 

of how to generate each input file can be found on the VIC documentation website at 

http://vic.readthedocs.org/en/master/Documentation/Routing/RoutingInput/.  

After creating the appropriate input files and changing directories to the 

“rout.exe” executable, the routing model is run using the command “route <routing input 

file>,” where <routing input file> is the name of the input file describing the directory 

names to the necessary input files. The routed flows per station will be written into 

separate files, named for each station listed in the station file, on both a per month and a 

per year basis in units of cubic feet per second (cfs) and millimeters of water over the 

basin. 

In order to run the seasonal hindcast model provided in the supplemental 

materials, open the “01Model” folder in the terminal, type “./code_final.sh”, and press 

“Enter”. This will provide output in the “outputrout.txt” file located in the directory, 

“01Model/route_code/rout_output/output.txt”. An already compiled executable of VIC 

and Rout1.0 are included. Full model components required for compilation can be 

downloaded at the VIC github webpage at https://github.com/UW-Hydro/VIC.  

http://vic.readthedocs.org/en/master/Documentation/Routing/RoutingInput/
https://github.com/UW-Hydro/VIC
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Appendix B. Grid Cell Aggregation 
Methods 
In order to use the Livneh et al. (2013) meteorological forcings files in the VIC 

model, the Livneh et al. (2013) forcings needed to be aggregated from a 1/16° scale to a 

1/8° scale. To determine the respective coordinates to download from the U.S. Bureau of 

Reclamation, the 1/8° coordinates of the Lower Colorado River basin had to be 

disaggregated into 1/16° coordinates for appropriate download links. This was done using 

the code “latlon.c” available in the VIC model’s post-processing tools. This script reads 

an input mask file to compute the corresponding coordinates of the active cells, and is 

included in “02External_Scripts” folder in the supplemental materials. The fraction file 

for the routing model was used as the mask file, and using “latlon.c” to output 

coordinates on a 1/16° grid, a list of the total basin’s grid coordinates was obtained. 

However, the active cells included the Upper Colorado River basin, and so a script was 

created to extract only the coordinates for the Lower Colorado River basin. Once the 

Lower Colorado River basin extent on a 1/16° grid was obtained, these coordinates were 

then extracted from the U.S. Bureau of Reclamation server. After the appropriate lower 

basin grid cells were downloaded, they needed to be aggregated to a 1/8° scale. This 

aggregation was completed using the “aggregate_metdata.c” function available under the 

VIC model’s post-processing tools. Some modifications had to be made to this file in 

order to aggregate the data appropriately, including adding the correct prefix and 

directory of the downloaded 1/16° files, aggregating from 5 decimal coordinates to 4 

decimal coordinates, and revising the code do an aggregation instead of a disaggregation. 

This revised file is included in the “02External_Scripts” folder in the supplemental 
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materials. Aggregation was completed by adding or subtracting 1/32° to the center 

coordinate of the 1/16° cell in order to aggregate to a 1/8° cell. This process is depicted in 

Figure B.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.1. Disaggregation of a 1/8° cell to four 1/16° cells by adding or subtracting 

1/32° to each coordinate. The signs would be opposite for an aggregation of four 1/16° 
cells to a 1/8° cell. 
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Appendix C. STATSGO Soil Layer 
Aggregation 
In order to aggregate the STATSGO soil layers into three soil layers, averaged 

across a 1/8° grid, the soil layers for each spatial polygon (identified as a map unit 

identification, or MUID) first needed to be separated into three layers. Many map units 

consisted of three soil layers per sequence number, but other map units consisted of soil 

layers ranging up to six layers. Afterwards, the difference between the high and low soil 

depth for each sequence number was computed. Finally, the average of this difference (to 

compute soil thickness) was computed across the map unit. The following guidelines 

were used in aggregating soil layers into three layers: 

1.  As often as possible, utilize the STATSGO defined soil layer breaks. 

2.  Define soil layers according to large changes in soil texture. 

3.  If there are four soil layers, combine the fourth layer with the third layer. 

If there are more than four soil layers, combine the layers with the closest 

soil textures into one layer. 

4.  If a sequence number reaches bedrock before another sequence number in 

the same map unit, the bedrock layer is considered to have a depth of 0 

inches for that sequence number. This way, when layer depths are 

averaged across sequence numbers, bedrock will not be included in the 

layer. 

5.  Average depth of the first soil layer must be less than the average depth of 

the second soil layer. In the case where the first and second soil layers 

could not be defined by texture, and the first soil layer depth is greater 
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than the second soil layer depth, then the average of the two layers was 

taken and applied to both layers (example: soil layer 1 = 22 in., soil layer 2 

= 11 in., then both soil layers would be given a value of 17 in.). 

A list of map units needing to be averaged into three soil layers is given in Table 

C.1. The table also describes which soil layers were aggregated according to the 

guidelines above to make three soil layers applicable to use in the VIC model. 

Spatially weighted averages of soil depth were then applied to the 1/8° grid of the 

Lower Colorado River watershed. This spatially weighted average was taken by 

multiplying the area of the grid cell by the average layer depth for each of the three soil 

layers. The grid cells along the border of the Lower Colorado River basin contribute 

fractional areas to the basin in terms of runoff. This technique assumes the soil layer 

variability over the map unit, averaged together into three soil layers, applies to the 

fraction of the grid cell, which could result in biased results in the spatial variability of 

soil depth for the border grid cells. 
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Table C.1. Aggregation of STATSGO Soil Layers to Three Soil Layers to use in VIC.  

MUID 
VIC 
Soil 

Layer 

STATSGO Soil Layers to 
form VIC Soil Layer 

TX061 
1 1 
2 2 
3 3 - 6 

TX070 
1 1 
2 2 
3 3 - 5 

TX087 
1 1 
2 2 
3 3 - 5 

TX089 
1 1 
2 2 
3 3 - 5 

TX095 
1 1 
2 2 - 3 
3 4 

TX105 
1 1 
2 2 
3 3 - 6 

TX119 

1 1 

2 2 - all but last component 
of 3 

3 Last component of 3 - 5 

TX121 
1 1 
2 2 - 3 
3 4 - 5 

TX137 
1 1 
2 2 
3 3 - 6 

TX144 
1 1 
2 2 
3 3 - 6 

TX153 

1 1 

2 All but last six components 
of 2 

3 Last six components of 2 - 
6 

TX155 1 1 
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2 2 - 3 
3 4 - 6 

TX161 

1 1 

2 2 - all but last four 
components of 3 

3 Last four components of 3 
- 5 

TX169 

1 
1, then depth averaged with 
Layer 2 so equals Layer 2 

depth 

2 
2 - 3, then depth averaged 

with Layer 2 so equals 
Layer 2 depth 

3 4 

TX187 
1 1 
2 2 
3 3 - 4 

TX188 
1 1 
2 2 
3 3 - 5 

TX192 
1 1 
2 2 
3 3 - 4 

TX210 
1 1 
2 2 
3 3 - 5 

TX214 
1 1 
2 2 - 3 
3 4 

TX227 
1 1 
2 2 
3 3 - 5 

TX252 
1 1 - 2 
2 3 
3 4 

TX253 

1 All but last three 
components of 1 

2 
Last three components of 1 

- all but last two 
components of 2 



 

83 

3 Last two components of 2 - 
3 

TX257 

1 1 

2 2 - all but last two 
components of 4 

3 Last two components of 4 - 
5 

TX273 
1 1 
2 2 
3 3 - 6 

TX295 
1 1 
2 2 
3 3 - 5 

TX301 

1 1 

2 2 - last two components of 
3 

3 Last two components of 3 - 
5 

TX309 
1 1 
2 2 
3 3 - 6 

TX310 
1 1 
2 2 - 3 
3 4 

TX318 
1 1 
2 2 - 3 
3 4 - 5 

TX329 
1 1 
2 2 - 3 
3 4 

TX360 
1 1 
2 2 
3 3 - 5 

TX362 
1 1 
2 2 
3 3 - 5 

TX371 

1 1 

2 All but last two 
components of 2 

3 Last two components of 2 - 
6 
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TX380 

1 All but last two 
components of 1 

2 Last two components of 1 - 
2 

3 3 - 4 

TX442 
1 1 
2 2 
3 3 - 6 

TX454 
1 1 
2 2 - 3 
3 4 - 5 

TX481 
1 1 - 2 
2 3 
3 4 - 5 

TX484 
1 1 
2 2 - 3 
3 4 

TX488 
1 1 
2 2 
3 3 - 5 

TX520 
1 1 
2 2 
3 3 - 5 

TX521 
1 1 
2 2 - 3 
3 4 - 6 

TX526 
1 1 
2 2 - 3 
3 4 

TX539 
1 1 
2 2 
3 3 - 4 

TX542 
1 1 
2 2 
3 3 - 6 

TX543 
1 1 - 2 
2 3 
3 4 - 5 

TX545 
1 1 
2 2 
3 3 - 6 
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TX546 
1 1 
2 2 
3 3 - 6 

TX553 
1 1 
2 2 - 3 
3 4 - 5 

TX555 
1 1 
2 2 
3 3 - 5 

TX565 

1 
1, then depth averaged with 
Layer 2 so equals Layer 2 

depth 

2 
2, then depth averaged with 
Layer 1 so equals Layer 1 

depth 
3 3 - 4 

TX592 
1 1 
2 2 
3 3 - 5 

TX598 
1 1 
2 2 
3 3 - 4 

TX609 
1 1 
2 2 
3 3 - 5 

TX615 
1 1 
2 2 - 3 
3 4 

TX617 
1 1 
2 2 - 3 
3 4 

TX626 
1 1 
2 2 - 3 
3 4 - 5 
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Appendix D. Grid Cell Coordinates 
 

 
Figure D.1.Grid Cell Coordinates of the Lower Colorado River Basin. Latitudinal 

coordinates are °N, and longitudinal coordinates are °E. (Figure by author). 
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The three grid cells with coordinates of (30.9375° N, -100.5625° E); (31.0625° N, 

 -100.4374° E); and (31.0625° N, -100.3125° E) are included in the lower basin 

watershed extent, but have flow direction values which do not contribute flows through 

the basin. These cells have meteorological forcings files, and are included in the soil 

parameter file, vegetation parameter file, snow band parameter file, fraction file, and flow 

direction file because they are included in the basin. 

In the extreme western boundary of the basin, the grid cell coordinates (30.4375° 

N, -100.5625° E) and (30.5635° N, -100.5625° E) are missing from the download of the 

South Central (Gulf) watershed region, but are included in the Lower Colorado River 

basin extent. Downloads of meteorological forcing files list these two grid cell 

coordinates in the Rio Grande watershed dataset. Since the areas of these two grid cells of 

the watershed are very small at 0.021 km2 for coordinate (30.4375° N, -100.5625° E) and 

4.015 km2 for coordinate (30.5625° N, -100.5625° E), it is assumed the streamflow 

contribution from these cells is negligible. This resulted in a total of 397 forcing files to 

be considered for the Lower Colorado River basin extent. 

The Livneh et al. (2013) forcings were lacking twenty 1/16° grid cells available 

for download, equivalent to five 1/8° grid cells after aggregation. These five grid cells 

were located on the southeastern edge of the basin, along the Gulf of Mexico, and 

therefore the routed water from these cells would not be considered in routing to stations 

CRBU and CRTR. Nearby 1/8° cells were used to estimate the missing grid cells. The 

nearby 1/8° cells were disaggregated using the “aggregate_metdata.c” script into four 

1/16° cells. These 1/16° cells were then used to estimate the missing grid cells from 

Livneh et al. (2013). Once the 1/16° cells were estimated, they were aggregated back to 
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the 1/8° extent. The list of missing grid cell coordinates and the grid cells assumed 

containing similar data for the missing cells are listed in Table D.1. 

 

Table D.1. Estimated Grid Cell Coordinates for Aggregation. Coordinates are listed as 
(°N, °E). 

Use To Estimate 

1/8° 1/16° 1/16° 1/8° 

28.8125, -95.5625 

28.84375, -95.59375 28.84375, -95.46875 

28.8125, -95.4375 
28.84375, -95.53125 28.84375, -95.40625 
28.78125, -95.59375 28.78125, -95.46875 
28.78125, -95.53125 28.78125, -95.40625 

28.8125, -95.6875 

28.84375, -95.71875 28.71875, -95.71875 

28.6875, -95.6875 
28.84375, -95.65625 28.71875, -95.65625 
28.78125, -95.71875 28.65625, -95.71875 
28.78125, -95.65625 28.65625, -95.65625 

28.8125, -95.8125 

28.84375, -95.84375 28.71875, -95.84375 

28.6875, -95.8125 
28.84375, -95.78125 28.71875, -95.78125 
28.78125, -95.84375 28.65625, -95.84375 
28.78125, -95.78125 28.65625, -95.78125 

28.8125, -95.9375 

28.84375, -95.96875 28.71875, -95.96875 

28.6875, -95.9375 
28.84375, -95.90625 28.71875, -95.90625 
28.78125, -95.96875 28.65625, -95.96875 
28.78125, -95.90625 28.65625, -95.90625 

28.6875, -96.0625 

28.71875, -96.09375 28.59375, -95.96875 

28.5625, -95.9375 
28.71875, -96.03125 28.59375, -95.90625 
28.65625, -96.09375 28.53125, -95.96875 
28.65625, -96.03125 28.53125, -95.90625 

 

 

  



 

89 

Appendix E. Complete Calibration Methods 
and Results 
To calibrate the VIC model, the soil parameters binfilt, Ds, Dsmax, Ws, and the three 

layers of soil depth were chosen for calibration (see section 4.2). First, the upper and 

lower bounds of each calibrated parameter were assessed following guidelines from the 

University of Washington (see section 4.4). In order to apply the SRTC calibration tool, 

the low and high bounds of each parameter needed to be scaled from 0 to 100. The low 

bound was assigned a value of 0; the initial value from the NLDAS dataset used in the 

study conducted by CH2M HILL (2008) was assigned a value of 50; and the upper bound 

was assigned a value of 100. Then, multipliers were calculated to represent the 

percentage of change from the initial parameter of 50 if the value were varied from 0 to 

100. The value of 50 is assigned a multiplier of 1, signifying that multiplying the initial 

value by 1 would result in no change for the parameter in the SRTC tool. The multipliers 

were calculated by assuming a linear relationship in the scaling from 0 to 50, and from 50 

to 100. The difference between the initial value and the extremity is taken and is divided 

into 50 parts for scaling. This represents the increase (or decrease) in the scaling factor 

for every one increase (or decrease) in the scale. 

For example, for the parameter of binfilt, the low bound is 0.5. The lowest value in 

the original soil input file from the NLDAS dataset (CH2M HILL 2008) is 0.96; 

therefore, in order to reach this low bound, the smallest allowable multiplier would be 

0.53, while maintaining multipliers to two decimal places for the extremes. 

Original value * Multiplier = Low Bound 

0.96 * 0.53 = 0.5088 
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Therefore, the multiplier of 0.53 would correspond to the value of 0 on a scale 

from 0 to 100. Since the value of 50 refers to a multiplier of 1, the difference between 

these multipliers can be divided into 50 equal intervals: 

Multiplier for value 50 - Multiplier for value 0
50

  = 
1 - 0.53

50
 = 0.0094 

Therefore, for every unit value added between 0 and 50, the multiplier increases by 

0.0094.  

Multiplier for Previous Value + Multiplier per Value = Multiplier for + 1 Unit Value 

Since the multiplier for a scale value of 0 is 0.53, the new multiplier for the scale value of 

1 is 0.5394. 

A similar technique was used for scaling between 0 and 100, but since the high 

bound is different than the low bound, the scaled multiplier for each unit increase 

between 50 and 100 is different than between 0 and 50. 

In order to convert the multiplier to a percent change, the multiplier was 

subtracted from (or added to) 1 and multiplied by 100 to determine the percent decrease 

(or increase). For example, for a reduction in the percent decrease of binfilt from a scale 

value of 50 (the original value) to a scale value of 1, the percent decrease is: 

(1 - 0.5394) * 100% = 46.06% 

The VIC model was run using a soil file where each individual parameter was 

decreased to the low bound as well as increased to the high bound to determine the 

minimum and maximum flows the parameter produces if all other parameters were left at 

their initial values from the CH2M HILL (2008) study. The calibrated values are then 

calculated according to equation (4.4). The weights in equation (4.4) range from -1 to 1, 
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where -1 refers to a scale value of 0, 0 refers to a scale value of 50, and 1 refers to a scale 

value of 100.  

The SRTC was applied twice, once to route flows to the CRBU station and again 

to route flows within the incremental sub-basin of CRTR-CRBU. A non-linear 

optimization algorithm was used to maximize the (approximated) NSE, subject to the 

constraints that the scale value for each parameter must range between 0 and 100 (see 

section 4.4). Although a multi-start technique was implemented, starting values of 0, 50, 

and 100 for all parameters were used to help ensure the global maximum NSE was found. 

The SRTC initially calibrated values for each parameter for the full time period; then, 

after verification, the SRTC was used for both sub-basins for the period 1960 through 

1989. Calibrated ranges of parameters for the entire Lower Colorado River basin are 

given in Table E.1. Flow comparisons to the LCRA observed inflows for the CRBU and 

CRTR-CRBU basins are provided in Figures E.1 and E.2, respectively. Verification 

results utilizing these calibrated estimates in VIC are presented in Table 4.3. 
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Table E.1. SRTC Calibration of Soil Parameters. 

Parameter Original Range 
Calibrated 

Range (1940-
2011) 

Calibrated 
Range (1960-

1989)* 
binfilt 0.01 – 0.50 0.01 – 0.50 0.01 – 0.50 
Ds 0.0001 – 0.0050 0.0001 – 0.1145 0.0001 – 0.6397 

Dsmax 10 (unvaried) 10 (unvaried) 6.9 – 10 
Ws 0.96 – 1 0.888 – 1 0.888 – 1 

Soil Layer 1 0.0101 – 0.5122 0.0101 – 0.5122 0.0101 – 0.5122 
Soil Layer 2 0.0423 – 1.082 0.0423 – 1.082 0.0423 – 1.082 
Soil Layer 3 0.0290 – 1.443 0.0290 – 1.244 0.0290 – 1.244 
*The ranges presented for the 1960-1989 calibration were computed using the 

verification of the 1940-2011 calibration, with the soil parameter ranges presented 
updated from the 1940-2011 calibrated ranges. 

 
 

 
Figure E.1. SRTC Calibrated Flows for a Verification Period of 1960-1989 for the CRBU 

basin. Created by author. 
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Figure E.2. SRTC Calibrated Flows for a Verification Period of 1960-1989 for the 

CRTR-CRBU basin. Created by author. 

 

Since the calibration procedure was analyzed by decade rather than season, a 

continuous run of the VIC model from 1960 through 2011 was completed. To support the 

model calibration, the historical data were also run through the calibrated model on a 

seasonal basis, with the watershed “state” saved before each season as done for the 

hindcasting procedure and compared to the LCRA observed inflows. High r2 values of 

0.827 and 0.764 for the MAMJ and JASO seasons, respectively, support the model is 

calibrated accurately. Scatterplots representing the seasonal historical data compared to 

the LCRA observed inflows are given in Figures E.3 and E.4. 
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Figure E.3. VIC Simulated Flows using Historical Data for the MAMJ Season, 1960-

2011. Created by author. 

 

 
Figure E.4. VIC Simulated Flows using Historical Data for the JASO Season, 1960-2011. 

Created by author. 
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Appendix F. Bias Correction Technique 
A percentile matching procedure was applied as a bias correction technique 

during the verification and hindcast modeling stages to eliminate bias in the simulated 

results. This technique is used frequently in hydroclimatic studies, and has been used 

with VIC forecast models (Wood and Lettenmaier 2006; Wood et al. 2002; Wood and 

Schaake 2008). In this study, the technique matched streamflow percentiles of hindcasts 

to LCRA observed inflows. First, a cumulative distribution function was created to 

calculate the percentile of the flow rank in relation to the simulated flow dataset. Then, 

the percentile was matched to the cumulative distribution function percentile of the 

LCRA’s observed inflows (or the historical simulated flows); this assumes the simulated 

and observed flows follow a normal distribution. The ensemble mean flows are then 

corrected to the percentile of the observed (or historical simulated) flows. Afterward, the 

percent bias for each decade (during the verification stage) or each season (during the 

hindcast stage) was calculated using equation (4.3). While the bias is significant in some 

decades, the bias correction procedure ensures that the overall bias (across the entire time 

series) is very close to zero. An example of the percentile matching across the cumulative 

distribution functions of the simulated flows and the observed flows for 1960 through 

2010 is presented in Figure F.1. 
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Figure F.1. Cumulative Distribution Function of Percentile Matching Bias Correction 
Procedure, showing a bias corrected flow for matching a percentile of 0.6. Created by 

author. 
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Appendix G. Hindcasting Procedure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.1. Seasonal Hindcast Procedure 
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Figure G.1 (continued). Seasonal Hindcast Procedure 
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Figure G.1 (continued). Seasonal Hindcast Procedure 
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Appendix H. Example of Analog Year 
Selection 

Table H.1. Analog Year Predictions for MAMJ. Generated by Brian Zimmerman, 
University of Wisconsin Madison. 

Year to be 
Modeled Analog Years 

1960 1966 1936 1931 1993 1980 1951 1921 1961 1930 1991 
1961 1951 1937 1962 1927 1980 1936 1931 1966 1924 1928 
1962 1961 1966 1989 1959 1991 1936 1973 1980 1921 1970 
1963 1961 1989 1991 1973 1970 1966 1980 1945 1924 1938 
1964 1944 1945 1954 1970 1955 1947 1952 1958 1985 1946 
1965 1965 1968 1986 1932 1975 1979 1949 1926 1940 1921 
1966 1966 1936 1961 1980 1989 1991 1993 1931 1921 1973 
1967 1921 1932 1959 1966 1993 1936 1979 1961 1989 1965 
1968 1940 1949 1968 1986 1982 1979 1926 1932 1965 1987 
1969 1989 1961 1991 1973 1970 1945 1954 1980 1938 1924 
1970 1970 1958 1945 1954 1973 1985 1929 1990 1991 1989 
1971 1978 1925 1962 1996 1928 1971 1927 1951 1937 1974 
1972 1959 1921 1932 1966 1936 1961 1993 1989 1979 1991 
1973 1961 1959 1989 1991 1973 1929 1970 1966 1990 1980 
1974 1996 1928 1978 1925 1974 1927 1971 1962 1948 1937 
1975 1979 1959 1932 1982 1969 1949 1986 1929 1968 1990 
1976 1962 1951 1963 1931 1927 1934 1978 1925 1928 1930 
1977 1977 1990 1985 1958 1929 1969 1995 1970 1959 1942 
1978 1931 1963 1930 1951 1993 1936 1966 1921 1980 1962 
1979 1966 1961 1991 1989 1980 1973 1936 1924 1970 1937 
1980 1966 1936 1993 1921 1931 1980 1961 1989 1991 1951 
1981 1959 1979 1969 1929 1932 1990 1982 1961 1989 1949 
1982 1958 1985 1990 1929 1977 1970 1944 1945 1973 1989 
1983 1939 1967 1933 1934 1943 1972 1950 1983 1960 1963 
1984 1971 1974 1996 1948 1984 1925 1953 1978 1964 1956 
1985 1991 1973 1989 1961 1970 1945 1980 1954 1938 1924 
1986 1959 1932 1979 1961 1989 1966 1921 1929 1991 1936 
1987 1982 1949 1940 1986 1968 1979 1932 1969 1987 1959 
1988 1947 1944 1946 1988 2003 1994 1955 1985 1958 1945 
1989 1985 1958 1990 1929 1944 1970 1947 1945 1954 2003 
1990 1958 1985 1990 1929 1970 1945 1944 1973 1954 1989 
1991 1938 1954 1924 1945 1952 1973 1970 1991 1980 1937 
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1992 1979 1932 1959 1986 1982 1921 1949 1965 1968 1961 
1993 1993 1930 1931 1921 1963 1936 1923 1966 1951 1950 
1994 1985 1958 1990 1929 1970 1944 1945 1977 1954 1973 
1995 1995 1977 1969 1981 1990 1922 1985 1958 1929 2009 
1996 1955 1952 1946 1948 1938 1944 1954 1988 1924 1945 
1997 1995 1969 1977 1922 1987 1982 1981 1935 1990 1949 
1998 1948 1974 1928 1996 1927 1978 1962 1925 1953 1971 
1999 2009 1942 1977 1985 1958 2003 1990 1995 1994 1929 
2000 2009 1942 2003 1994 1985 1958 1977 1947 1944 1990 
2001 1953 1964 1984 1998 1948 2005 1974 1988 1946 1955 
2002 2005 1988 1994 2003 1947 1998 1946 1944 1964 1942 
2003 1941 1981 2004 1922 1995 1935 1999 1977 1987 1969 
2004 2004 1999 2000 1941 1981 2009 1995 1977 1942 1922 
2005 2001 2002 2006 1998 2008 2005 2010 1994 2003 1988 
2006 1998 2005 1988 2002 1964 1994 1953 2006 1946 2003 
2007 2004 1941 1999 1981 2000 2007 1922 1995 2009 1935 
2008 2009 1999 2000 1942 2003 1994 2006 2002 1947 1985 
2009 2002 2006 2001 2005 1998 1994 2003 1942 2009 1988 
2010 1999 2009 2000 2004 1942 1977 1995 1981 2003 1985 
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