
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2015 

Decomposing the blocks of a Steiner triple system of order 4v-3 Decomposing the blocks of a Steiner triple system of order 4v-3 

into partial parallel classes of size v-1 into partial parallel classes of size v-1 

Leah C. Tollefson 
Michigan Technological University, lctollef@mtu.edu 

Copyright 2015 Leah C. Tollefson 

Recommended Citation Recommended Citation 
Tollefson, Leah C., "Decomposing the blocks of a Steiner triple system of order 4v-3 into partial parallel 
classes of size v-1", Open Access Master's Report, Michigan Technological University, 2015. 
https://digitalcommons.mtu.edu/etdr/54 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Discrete Mathematics and Combinatorics Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151508767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.mtu.edu%2Fetdr%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages


DECOMPOSING THE BLOCKS OF A STEINER TRIPLE SYSTEM OF ORDER

4v − 3 INTO PARTIAL PARALLEL CLASSES OF SIZE v − 1

By

Leah C. Tollefson

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mathematical Sciences

MICHIGAN TECHNOLOGICAL UNIVERSITY

2015

© 2015 Leah C. Tollefson





This report has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Mathematical Sciences.

Department of Mathematical Sciences

Report Advisor: Dr. Melissa S. Keranen

Committee Member: Dr. Donald L. Kreher

Committee Member: Dr. Timothy C. Havens

Department Chair: Dr. Mark S. Gockenbach





Dedication

To my mom and dad,

both of whom have unequivocally supported me every step of the way.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Known Results and Methods . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 MOLS and RGDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 KT Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Main Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Case 1: v ≡ 9 mod 12 . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Case 2: v ≡ 3 mod 12 . . . . . . . . . . . . . . . . . . . . . . 29

3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 35

vii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



List of Figures

1.1 The 7 blocks of an STS(7) . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The 4 parallel classes and 12 blocks of a KTS(9) . . . . . . . . . . . 3

1.3 A 3−RGDD of type 43 . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 A Kirkman frame of type 24 . . . . . . . . . . . . . . . . . . . . . . 6

1.5 A Kirkman frame of type 44 . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A Latin square of order 4 . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 2 MOLS(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 An OA(4, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 A TD(4, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 A KT(15; 273343) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 A KT(21; 41056) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 A 3−RGDD(53) parallel class on an inflated frame parallel class from

a 3−frame of type 44 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Type III PPCs from an STS(81) . . . . . . . . . . . . . . . . . . . . 29

2.9 A 3−RGDD(73) parallel class on an inflated frame parallel class from

a 3−frame of type 24 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



2.10 Type III PPCs from an STS(57) . . . . . . . . . . . . . . . . . . . . 34

A.1 A KT(27; 2136777) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



Acknowledgments

My gratitude must be expressed for my advisor, Missy Keranen. Her guidance and

support was paramount to my success. I would also like to thank my committee

members: Don Kreher for his graph theory classes and advice with this research and

Tim Havens for going out on a limb and agreeing to be on my committee. A big

thank you to Dalibor Froncek for all of the help with my undergraduate research, for

encouraging me to pursue graduate studies, and finally for entrusting me to the care

of his son when I visited Bratislava. All of my office mates over the past two years also

deserve praise for not only listening to my ceaseless stories, but also seeming to enjoy

them: Ellen Kamischke, Fiona Yang, Elaheh Gorgin, and Teresa Woods. Thanks are

also due to all of my friends here on campus and in the Keweenaw - we have had

many an adventure and I am so glad to have met you all. To my friends afar, I thank

you all for always knowing how to keep my spirits high. Finally, I give thanks to my

mom, dad, Maddie, Ingrid, Jackson, and Ella for the unconditional love. Tusen takk

for alt dere har gjort for meg.

xi





Abstract

In this report we present a summary and our new results on finding partial parallel

classes of uniform size of Steiner triple systems, STS(v). We show several results

for STS(4v − 3), where v ≡ 3 mod 12 and v ≡ 9 mod 12. In Chapter 1 we provide

background knowledge and introduce the problem. In Chapter 2 we discuss some

important known results to the problem, introduce the needed ingredients, and ex-

plain the methodology of the construction. Finally, in Chapter 3, we conclude with

a summary and discuss possibilities for future work.
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Chapter 1

Background and Introduction

1.1 Background

The study of combinatorial designs has been motivated by many applications over

time, including but not limited to experimental design, statistical applications, cryp-

tography, and software engineering. In this report, we focus our scope of study to a

particular type of design, the Steiner triple system. We will define a Steiner triple

system in a moment, but first let us introduce the notation and terminology for a

t−design. A t−(v, k, λ) design is a pair (V,B) where V is a v-element set of points

and B is composed of k-element subsets of X called blocks, wherein every t-element

subset is found in exactly λ blocks. A Steiner triple system is a 2−(v, 3, 1) design.
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There are b = v(v−1)
6

blocks and each point of V appears in r = v−1
2

blocks. We will

denote such a triple system as STS(v). A Steiner triple system of order 7 is given in

Figure 1.1.

{1, 4, 3}, {3, 5, 7}, {1, 5, 2}, {1, 6, 7}, {2, 3, 6}, {2, 4, 7}, {4, 5, 6}

Figure 1.1: The 7 blocks of an STS(7)

Reverend T.P. Kirkman proved the necessary and sufficient conditions for the exis-

tence of a Steiner triple system in 1847 [11].

Theorem 1.1. [11] A Steiner triple system of order v exists if and only if v ≡

1, 3 mod 6.

The purpose of this report is to introduce a new method for decomposing the blocks

of a certain type of Steiner triple system into partial parallel classes (PPCs) of a given

size. We therefore now define a partial parallel class. A parallel class of an STS(v) is

a set of disjoint blocks that partition the point-set, V . Steiner triple systems that are

partitionable into parallel classes are called Kirkman triple systems, denoted KTS(v).

As each point appears in r blocks, there are r parallel classes, each of size v
3
. An

example can be found in Figure 1.2.

Ray-Chaudhuri and Wilson proved in 1971 the necessary and sufficient conditions for

the existence of a KTS(v).

2



1 2 3
4 5 6
7 8 9

1 4 7
2 5 8
3 6 9

1 5 9
2 6 7
3 4 8

1 6 8
2 4 9
3 5 7

Figure 1.2: The 4 parallel classes and 12 blocks of a KTS(9)

Theorem 1.2. [13] A Kirkman triple system of order v exists if and only if v ≡

3 mod 6.

Our method requires a few more types of combinatorial designs. We give the defi-

nitions for these now, but we will use them in subsequent chapters. We introduce

a design called a group divisible design, denoted GDD. A GDD is a triple (V,G,B),

where V is a point-set of order v and the following properties hold:

• G partitions V into nonempty subsets called groups.

• A group, G ∈ G and a block, B ∈ B, share at most one point.

• Every pair of points from distinct groups is found in precisely one block.

A k−GDD is a GDD whose blocks are of size k and has the property that each pair

of distinct elements appear in precisely one block. We concern ourselves with the

case in which k = 3, denoted 3−GDD, and the groups are of uniform size. To denote

a 3−GDD where there are u groups of size g we write 3−GDD(gu). A resolvable

group divisible design is a GDD whose blocks can be partitioned into parallel classes.

3



Similarly, we denote an RGDD with blocks of size 3 and has u groups of size g as a

3−RGDD(gu). We give an example of a 3−RGDD of type 43 in Figure 1.3. Bose,

Parker, and Shrikhande proved the existence of these designs in all but a few cases.

Theorem 1.3. [3],[2] A resolvable group divisible design of order g3 with blocks of

size 3 exists if and only if g 6= 2, 6.

Figure 1.3: A 3−RGDD of type 43

We will also require the use of Kirkman frames. You can intuitively consider a

Kirkman frame as a Kirkman triple system with “holes,” but we include a formal

definition below. A Kirkman frame of order v is a set of partial parallel classes, P of

the point-set V , such that:

• Each P ∈ P is a partition of V \G, where G ∈ G and G partitions the point-set

into groups.

4



• The unordered pairs in the blocks of P come from different holes of G, where

each pair occurs exactly once.

In 1985 Stinson gave us a proof of existence for uniform frames, where g = |G| and u

is the number of groups. [15]

Theorem 1.4. [15] There exists a Kirkman frame of type gu if and only if g is even,

u ≥ 4, and g(u− 1) ≡ 0 mod 3.

We will denote a Kirkman frame of this type as a KF(gu).

It is important for us to know some of the finer details of a Kirkman frame, such

as how many parallel classes there are and how many times each group is missed.

Stinson also proved this for us.

Theorem 1.5. [15] If P is a G−frame then for any G ∈ G there are 1
2
|G| partial

parallel classes in P which partition V \G.

In the construction that will be discussed in Chapter 2, we need Kirkman frames of

type 24 and 44. In Figures 1.4 and 1.5 you will find such frames, respectively. Notice

that in the KF(24) each group is missed once and in the KF(44) each group is missed

twice.

5



Figure 1.4: A Kirkman frame of type 24

1.2 Introduction

Now that we have the set the stage with the basic designs that are needed to produce

many of the known results, we may talk about the work that has already been done

on the problem. Colbourn, Horsley and Wang [6] were interested in determining all

possible color types of triple systems. Before we introduce the notion of color types,

we must talk about partial Steiner triple systems. A partial Steiner triple system is

a pair (V,B) where V is a v-element set and B is a set of triples on V such that

|B ∩B′| ≤ 1 for |B ∈ B|, |B′ ∈ B|, and B 6= B′. The number of triples in a PSTS(v)

cannot exceed µ(v) = bv
3
bv−1

2
cc − ε, where ε = 1 if v ≡ 5 mod 6 and ε = 0 otherwise.

Indeed, a block coloring of a PSTS(v) in c colors is a mapping χ : B 7→ {1, . . . , c}

so that every color class χ−1(i), i ∈ {1, . . . , c}, is a partial parallel class. The color

type of a block coloring of a PSTS(v) in c colors is the sequence (m1,m2, . . . ,mc)

such that mi is the size of the color class for all i = 1, . . . , c. We use exponential

notation throughout the paper; color type w1
u1 , w2

u2 , . . . , ws
us tells us that ui of the

6



Figure 1.5: A Kirkman frame of type 44

parallel classes are of size wi for i = 1, . . . , s. Thus, we have the basis of our problem.

Colbourn et al. conjectured the following:

Conjecture 1.1. [6] Let v ≥ 14. Let (m1, . . . ,mc) satisfy
∑c

i=1mi ≤ µ(v) and

mi ≤ bv3c for 1 ≤ i ≤ c. Then there exists a PSTS(v) that admits a block coloring of

color type (m1, . . . ,mc).

7



There seem to be many potential applications to solving this problem. The decompo-

sition of the blocks of Steiner triple systems into partial parallel classes of a uniform

size could possibly be used for tournament scheduling in which three opponents play

at once or if each pair in each triple plays each other in one round. Then the partial

parallel classes represent rounds of play in the tournament. Another possible applica-

tion could be experiments where the study is conducted in rounds, or partial parallel

classes, and each pair of conditions needs to be tested together. It also seems likely

that there would be implications in error-correcting codes and possibly other areas of

computing as well. In Chapter 2 we will discuss what results are known about this

conjecture as well as discuss some important methods.

8



Chapter 2

Known Results and Methods

In this chapter we discuss the methods used for smaller cases and previous results.

Colbourn et al. [6] proved their conjecture for v ≤ 32, which not only gives a solution

for many different Steiner triple systems, but also provides us with a few “base”

colorings that we use to find some of our own colorings that are needed for v > 32.

2.1 Known Results

The next few results, while obvious, still provide solutions to some of the general

cases for finding PPCs of uniform size. We denote a Steiner triple system of order v

that can be partitioned into partial parallel classes of size m by STSm(v).

9



Theorem 2.1. [6] If v ≡ 3 mod 6, then there exists an STS v
3
(v).

Theorem 2.2. [6] If v = 6t+ 1 and v /∈ {7, 13}, then there exists an STSt(v).

It is obvious that v− 1 ≤ m ≤ b4v−3
3
c and that while v− 1 may not reach the bound,

it is a relatively large number when considering the possible sizes of partial parallel

classes for a given STS(v). We are motivated by this particular case because of the

following result.

Theorem 2.3. [6] Suppose m1|m and there exists an STS(v) that can be partitioned

into partial parallel classes of size m. Then there exists an STS(v) that can be parti-

tioned into partial parallel classes of size m1.

Thus, by finding a solution for m = v−1 we also find a solution for all of the divisors

of v−1. A partial Steiner triple system whose triples can be partitioned into s partial

parallel classes of size m is called a signal set, denoted SS(v, s,m). That is to say, an

SS(v, s,m) is a PSTS(v) that admits a color type ms. An SS(v, s,m) where s = bµ(v)
m
c

is a Kirkman signal set, KSS(v,m). Colbourn et al. [7] proved the following in 2010:

Theorem 2.4. [7] A KSS(v, bv
3
c) exists for all positive integers, v, such that v /∈

{6, 7, 12}.

However, we have limited results when looking at m < bv
3
c, as we often are. It was

shown by Schönheim [14] that a PSTS(v) with µ(v) triples exist for all v ≥ 0, which

10



we call a maximum partial Steiner triple system, herein denoted MPT(v). Colbourn

et al. [7] have the following results on partitioning the blocks of maximum partial

Steiner triple systems.

Theorem 2.5. [7] For each sufficiently large integer v, there exists an MPT(v) that

admits color type (m1,m2, . . . ,mt) for each list of positive integers m1,m2, . . . ,mt

with m1,m2, . . . ,mt ≤ 1
3
(v − (9v)2/3) +O(v1/3) and m1 +m2 + . . .+m(t) = µ(v).

This result will in fact cover some of the cases that our construction covers, but the

theorem only begins to cover triple systems where 4v − 3 ≥ 1560 and even then

partial parallel classes of v − 1 may not be attainable by this bound. We provide a

construction that will cover a number of the cases that do not meet the conditions

of this asymptotic result. First we will discuss some of the results found for partial

parallel classes of size m = 2 and m = 4.

Theorem 2.6. [10] The blocks of an STS(v) can be decomposed into color type 2
b
2 if

and only if 2|b and v 6= 9.

This result tells us that we are able to decompose an STS(v) into partial parallel

classes of size two. Hodaj [9] developed a method for this particular decomposition

and was able to extend the idea to decompositions of STS(v)s into partial parallel

classes of size four. We will give some of these results now.

Theorem 2.7. [9] If 2|b, then there exists an STS2(v) that admits color type 2
b
2 .

11



Proof. This result follows immediately from Theorem 2.6. For the construction, please

refer to Hodaj [9].

Theorem 2.8. [9] If 4|b, then there exists an STS4(v) that admits color type 4
b
4 .

Now that we have discussed what is already known about the problem we may con-

tinue our discussion to other needed ingredients we use to construct our decomposition

of an STS(4v − 3) into partial parallel classes of size v − 1.

2.2 MOLS and RGDDs

Before we dive into the methodology that is used to partition the blocks of a Steiner

triple system into partial parallel classes, we need to introduce a few more concepts

needed for our decomposition. A Latin square is an n × n array such that each

symbol from a set of n symbols occurs precisely once in each row and column. Two

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Figure 2.1: A Latin square of order 4

Latin squares L and L′, both of order n, are orthogonal if L(a, b) = L(c, d) and

L′(a, b) = L′(c, d) implies a = c and b = d. Latin squares, L1, . . . , Lm, are mutually

12



orthogonal, denoted MOLS, if for every 1 ≤ i < j ≤ m, Li and Lj are orthogonal.

In Figure 2.2 you will find an example of two mutually orthogonal Latin squares of

order 3. Related to MOLS and important for our construction are orthogonal arrays.

L1=
1 2 3
3 1 2
2 3 1

L2=
1 2 3
2 3 1
3 1 2

Figure 2.2: 2 MOLS(3)

An orthogonal array of order n and size k is a k by n2 array A, with entries from

an n−element set S, such that every ordered pair is in any pair of distinct rows.

We denote such an array by OA(k, n). The following example is an orthogonal array

that has been constructed using the two MOLS(3) found in Figure 2.2. The first

column tells us where we are getting the information to place in our orthogonal array.

Equivalent to MOLS are a type of design, which we will need, called transversal

Row 1 1 1 2 2 2 3 3 3
Column 1 2 3 1 2 3 1 2 3

L1 1 2 3 3 1 2 2 3 1
L2 1 2 3 2 3 1 3 1 2

Figure 2.3: An OA(4, 3)

designs. A transversal design, herein denoted TD(k, n), with k groups of size n is a

triple (X,B,G) such that the following are true:

• X is a set of kn points.

13



• B is collection of k-element subsets called blocks.

• G is a partition of X into k subsets of size n called groups.

• Any group and any block share exactly one point.

• Every pair of points from distinct groups is found in only one block.

In the following figure you will find an example of a transversal design, which was

constructed from our OA(4, 3).

1

G1

(row)

2

3

1

G2

(column)

2

3

1

G3

(L1)

2

3

1

G4

(L2)

2

3

Figure 2.4: A TD(4, 3)

We say the blocks are transverse to the groups because they contain exactly one point

from each group. In fact, a transversal design is also a k−GDD of order nk, which

we have seen before. Now we relate all of these structures to one another.

Theorem 2.9. [3] The following structures are all equivalent:

• k − 2 MOLS(n)

• OA(k, n)

14



• TD(k, n)

A resolvable transversal design with k groups of size n is a TD(k, n) whose blocks

can be partitioned into parallel classes. We will denote a resolvable TD(k, n) by

RTD(k, n). The following result is well known.

Theorem 2.10. [3] If there exists a TD(k, n), then there exists an RTD(k − 1, n).

Considering our example for the TD(4, 3), we can find the three parallel classes of the

RTD(3, 3), equivalently a 3−RGDD(33), by taking as each parallel class the blocks

that intersect G1 in point 1, G1 in point 2, and G1 in point 3, but not including the

points of G1. As we are only interested in 3−RGDDs, we can consider RTD(3, n)s.

What we ultimately want is to be able to take one block from each of the parallel

classes determined by the RTD(3, n) to form a new parallel class. The following three

results tell us when this happens.

Theorem 2.11. [12] If there exists an OA(k + 1, n), then there is an OA(k, n) with

n constant columns.

Corollary 2.1. If 3 MOLS(n) exist, then there exists an OA(5, n) and thus an

OA(4, n) with n constant columns.

Proof. This result arises directly from Theorem 2.9 and Corollary 2.1.

15



Lemma 2.1. If there exists an OA(4, n) with n constant columns, then there is a

3−RGDD(n3) with parallel classes P1, P2, . . . , Pn with the property that there is a set

of blocks B1 ∈ P1, B2 ∈ P2, . . . , Bn ∈ Pn such that {B1, B2, . . . , Bn} partition the

point-set.

Proof. Suppose an OA(4, n) with n constant columns exists. Then by Theo-

rem 2.9 a 3−RGDD(n3) exists. We denote the parallel classes Pi, where Pi =

{Bj|Bj intersects G1 in point i}. Then because the OA(4, n) has n constant columns,

there exists a B1 ∈ P1, B2 ∈ P2, . . . , Bn ∈ Pn such that {B1, B2, . . . , Bn} partition the

point-set.

We require 3 MOLS(v−1
4

) or 3 MOLS(v−1
2

) in the case when v ≡ 9 mod 12 and the

case when v ≡ 3 mod 12, respectively. Thankfully Colbourn and Dinitz [5] managed

to develop a package in Maple that tells us what is known about the existence for

MOLS of order v.

Lemma 2.2. [5] It is known that 3 MOLS(v) exist for all v, v 6∈ {2, 3, 6, 10}.

We conclude our discussion on TDs, MOLS, and OAs with the following theorem:

Theorem 2.12. If n 6∈ {2, 3, 6, 10}, then there exists a 3−RGDD(n3) with parallel

classes P1, P2, . . . , Pn with the property that there is a set of blocks B1 ∈ P1, B2 ∈

P2, . . . , Bn ∈ Pn such that {B1, B2, . . . , Bn} partition the point-set.

16



Proof. If n 6∈ {2, 3, 6, 10}, by Lemma 2.2 there exists at least 3 MOLS(n). Thus by

Corollary 2.1, there exists an OA(4, n) with n constant columns. Finally, by Lemma

2.1, there exists a 3−RGDD(n3) with the desired property.

2.3 KT Designs

The work that Colbourn et al. [6] have done not only provides some solutions to the

problem, as previously mentioned, but also provides some additional ingredients that

are needed for our construction. In this section we discuss and expand upon their

construction.

Theorem 2.13. [6] Suppose a color type T ′ can be obtained by applying the following

iterations:

• Take an entry y in the sequence and replace it with an entry a such that a ≤ y.

• Take an entry y in the sequence and replace it with two entries a and b such

that a+ b = y.

• Take two entries y and z such that y ≤ z ≤ 2y and replace them with three

entries, a,b, and c such that a+ b+ c = y + z, a ≤ y, b ≤ z, (a, b, c) 6= (2, 2, 2)

and either 2y < 2a+ b or a = b = c = 2y/3 = 2z/3.

17



Then if (V,B) is a PSTS that admits color type T , there is a PSTS(V,B′) with

B′ ⊆ B that admits color type T ′.

You can think of color types as partial parallel classes of given sizes, not necessarily

uniform. This is an important result because it tells us that if there is a certain base

coloring of a triple system, then we can obtain a different coloring by breaking up

the base coloring into different pieces by following the method described in Theorem

2.13. We use this theorem to break down our base coloring into smaller pieces to

construct what we are referring to as KT designs.

A Steiner triple system of order v that admits a block coloring of color type

cm1
1 cm2

2 · · · cmn
n is called a KT(v; cm1

1 cm2
2 · · · cmn

n ) if it has the property that there is

a point that appears in each of the m1 partial parallel classes of size c1. An example

of a KT(15; 273343) is given in Figure 2.5, where the colored blocks represent the

decomposition of the blocks into color type 27. Notice that each partial parallel class

of size 2 contains the point ∞ and that the remainder of the blocks in each parallel

class form a decomposition of the blocks into color types 33 and 43. Similarly, an

example of a KT(21; 41056) is given in Figure 2.6, where the colored blocks represent

the decomposition of the blocks into color type 410. Notice that each partial parallel

class of size 4 contains the point ∞ and that the remainder of the blocks in each

parallel class form a decomposition of the blocks into color type 56.
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∞
PC1

∞
PC2

∞
PC3

∞
PC4

∞
PC5

∞
PC6

∞
PC7

Figure 2.5: A KT(15; 273343)

As Colbourn et al. [6] only have results for base color types for triple systems of order

v, where v ≤ 32, we have found a recursive construction that helps us find KTs.

2.4 Main Lemmas

In this section we develop the constructions for an STS(4v − 3) whose blocks can

be partitioned into partial parallel classes of size v − 1. We begin by giving some

recursive constructions for KT(v)s, a necessary ingredient for our decomposition.

Lemma 2.3. Suppose v ≡ 9 mod 12. If there exists a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8), then
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∞
PC1

∞
PC2

∞
PC3

∞
PC4

∞
PC5

∞
PC6

∞
PC7

∞
PC8

∞
PC9

∞
PC10

Figure 2.6: A KT(21; 41056)

there exists a KT(4v − 3; 42(v−1)(v − 1)
8v−30

3 ).

Proof. We begin by taking four copies of our KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8), say KT1, KT2,

KT3, and KT4 on G1, G2, G3, and G4 respectively, such that they intersect in exactly

one point, say∞. We therefore have 4(v−1) + 1 = 4v−3 points. Then on each copy

we have a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8). This covers all of the pairs within each group, but it

does not cover the transverse pairs, so we do not yet have an STS(v). A KF((v−1)4)

20



exists [15] because as v ≡ 9 mod 12, then v−1 is even and 3(v−1) ≡ 0 mod 3. Then on

G1\{∞}, G2\{∞}, G3\{∞}, and G4\{∞}, place a KF((v−1)4). As we have covered

all of the transverse pairs in addition to all of the pairs within each group, we have

an STS(4v− 3). We also have a KT because ∞ appears exactly once in all of partial

parallel classes of size 4. Now we need to show that we can obtain a KT with the

desired color type. Each partial parallel class of size 4 is disjoint, excepting ∞, as we

wanted. There are 4 · v−1
2

= 2(v−1) of them, which gives us the desired number. The

blocks from the partial parallel classes of size v−1
4

in KTi and KTj are vertex disjoint.

To construct partial parallel classes of size v − 1, let Pi,j be the i-th parallel class of

size v−1
4

in KTj, i = 1, 2, . . . , 2v
3
− 8, j = 1, 2, 3, 4. Then for each i = 1, 2, . . . , 2v

3
− 8,

(Pi,1 ∪ Pi,2 ∪ Pi,3 ∪ Pi,4) is a parallel class of size v − 1. The KF((v − 1)4) that was

placed on G1 \ {∞}, G2 \ {∞}, G3 \ {∞}, and G4 \ {∞} has 2(v− 1) partial parallel

classes of size v − 1. Therefore we have 2v−24
3

+ 2(v − 1) = 2v−24
3

+ 6v−6
3

= 8v−30
3

partial parallel classes of size v − 1. Thus a KT(4v − 3; 42(v−1)(v − 1)
8v−30

3 ) has been

constructed.

Lemma 2.4. Suppose v ≡ 3 mod 12. If there exists a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ),

then there exists a KT(4v − 9; 22v−5(v − 3)
4v−15

3 (v − 2)
4v−15

3 ).

Proof. We begin by taking four copies of a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ), say KT1,

KT2, KT3, and KT4 on G1, G2, G3, and G4 respectively, such that they intersect in

exactly one block, say {∞, a, b}. Thus |G1∪G2∪G3∪G4| = 4(v−3)+3 = 4v−9 and
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on each copy KTi, i = 1, 2, 3, 4, we have a KT(2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ). This covers all

of the pairs within each group, but it does not cover the transverse pairs, so we do not

yet have an STS(v). A KF((v−3)4) exists [15] because as v ≡ 3 mod 12, then v−1 is

even and 3(v−1) ≡ 0 mod 3. Then on G1 \{∞}, G2 \{∞}, G3 \{∞}, and G4 \{∞},

place a KF((v− 3)4). As we have covered all of the transverse pairs in addition to all

of the pairs within each group, we have an STS(4v − 9). We do not yet have a KT,

because the triple {∞, a, b} appears in all of the partial parallel classes of size 2. This

triple can appear in at most 1 partial parallel class of size 2, so we remove it from

three of the KTs, say KT2, KT3, and KT4, to form three partial parallel class of size

1. Now that we have a KT, we need to show that we get a KT with the desired color

type. Each partial parallel class of size 2 is now disjoint from all of the others. We

have v−1
2

+ 3(v−3
2

) = v−1
2

+ 3v−9
2

= 2v − 5 partial parallel classes of size 2. Now break

the v−6
3

PPCs of size v+1
4

on each group into v−6
3

PPCs of size 1 and v−6
3

PPCs of size

v−3
4

. Then, as the KF((v − 3)4) misses each group v−3
2

times, we pair each v−6
3

color

types of 11 on each group with v−6
3

frame parallel classes of size v − 3 for a total of

4(v−6
3

) = 4v−24
3

PPCs of size v− 2. This leaves v+3
6

frame parallel classes of size v− 3

that miss each group. We still have three 11 colorings on G2, G3, and G4. Pairing

each of these with one frame parallel class of size v− 3, where the appropriate group

is missed, gives us a total of 4v−15
3

PPCs of size v − 2. This also leaves v+3
6

frame

parallel classes of size v − 3 that miss G1 and v−3
6

frame parallel classes of size v − 3

that miss G2, G3, and G4, respectively. What remains is to count the PPCs of size
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v − 3. We have 3(v−3
6

) + v+3
6

PPCs of size v − 3 from the frame parallel classes. The

blocks from the partial parallel classes of size v−3 in KTi and KTj are vertex disjoint.

As we want partial parallel classes of size v − 3, we take the union of the blocks of

partial parallel class i in KT1, KT2, KT3, and KT4 for i = 1, 2, . . . , 2(v−3)
6

. This yields

4v−15
3

PPCs of size v − 3. Thus we have a KT(4v − 9; 22v−5(v − 3)
4v−15

3 (v − 2)
4v−15

3 ),

as desired.

Theorem 2.14. There exists a KT(21; 41056), a KT(15; 273343),

and a KT(27; 2136777).

Proof. The given KTs were found by hand and can be seen in Figure 2.6, Figure 2.5

and Figure A.1, respectively.

Next we turn to the problem of partitioning the b blocks of an STS(4v − 3), where

v ≡ 3 mod 6 into partial parallel classes of size v − 1.

2.4.1 Case 1: v ≡ 9 mod 12

Lemma 2.5. Suppose v ≡ 9 mod 12. If there exists a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8), then

there is an STS(4v − 3) whose blocks can be partitioned into PPCs of size v − 1.

Proof. We start with a 3−frame of type 44, found in Figure 1.5. On each block of
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the chosen 3−frame, we inflate the points to size v−1
4

. Thus we let the point-set of

the desired STS(4v − 3) consist of the v − 1 vertices in each group, G1, G2, G3, and

G4, along with the point ∞. On each inflated block of each frame parallel class, we

place a 3−RGDD((v−1
4

)3). Then every transverse pair is in exactly one transverse

triple. The only pairs that have not been covered are the ones that lie within a group

and pairs that contain ∞. Upon each group include the point ∞ and place upon

it a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8), which exists by assumption. In this way, we have now

constructed a set of triples in which every pair has been covered exactly once. Thus

we have an STS(4v−3). Note that the number blocks, b, found in such an STS(4v−3)

is as follows

b =
(4v − 3)(4v − 4)

3 · 2
=

(4v − 3)(2v − 2)

3
.

Because v ≡ 9 mod 12, it follows that 3 divides 4v − 3 and hence v − 1 also divides

b. Therefore, if we can construct an STS(4v − 3) that can be resolved into partial

parallel classes of size v − 1, there will be

b

v − 1
=

2(4v − 3)

3

such parallel classes. The key ingredient to construct our partial parallel classes of

the STS(4v−3) is the existence of a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8). We now begin the process

of constructing our partial parallel classes of size v−1 from the STS(4v−3). We will

construct our partial parallel classes of size v − 1 in three ways, which we denote as
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types.

Type I:

For j = 1, 2, 3, 4, let FPCj denote a frame parallel class that misses group Gj.

For j = 5, 6, 7, 8 let FPCj denote a frame parallel class that misses group Gj−4.

For i = 1, 2, . . . , v−1
4

, let PCi denote a parallel class in the 3−RGDD((v−1
4

)3).

Then let Pi,j be the set of blocks from PCi on the inflated blocks of FPCj.

Take one block from each PCi, i = 1, 2, . . . , v−1
4

on each FPCj, j = 1, 2, . . . , 8.

However, each FPCj has four disjoint blocks, so we are removing a total of four

blocks from Pi,j. By Theorem 2.1, we may choose the v−1
4

blocks from PCi to

be disjoint. Let Bi,j be the four blocks removed from Pi,j. Then

v−1
4⋃
i=1

Bi,j is a

partial parallel class of size v− 1 for each j, j = 1, 2, . . . , 8. Thus we get a total

of 8 PPCs of size v − 1.

Type II:

For i = 1, . . . , v−1
4

and j = 1, . . . , 8, Pi,j consists of a set of v−5 blocks, because

four were removed. By assumption, there exists a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8), which

we placed upon G1, G2, G3 and G4.

Thus we may take the union of the blocks in Pi,j for j = 1, . . . , 4 with a partial

parallel class of size 4 from Gj and in Pi,j for j = 5, . . . , 8 with a partial parallel

class of size 4 from Gj−4 to form PPCs of size v − 1. Because each group is

missed twice by the KF(44), we get a total of 8(v−1
4

) PPCs of size v − 1. We
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are also guaranteed that ∞ appears exactly once in each of the partial parallel

classes of this type.

Type III:

Lastly, we will cover what was left on each of the missed groups of the frame

parallel class. We were able to place a KT(v; 4
v−1
2 (v−1

4
)
2v
3
−8) on each group,

including ∞. We have used all of the blocks from each group of size 4, but we

have 2v
3
− 8 PPCs of size v−1

4
left on each group. Let Mi,j be the i−th parallel

class of size v−1
4

in KTj, i = 1, . . . 2v
3
−8, j = 1, . . . , 4. Then (Mi,1∪Mi,2∪Mi,3∪

Mi,4) is a partial parallel class of size v− 1. Therefore we get a total of (2v
3
− 8)

PPCs of size v − 1.

The objective was to get 2(4v−3)
3

PPCs of size v−1. From Type I we get 8, from Type

II we get 2(v − 1) and from Type III we get 2v
3
− 8 partial parallel classes and thus

we have 2(4v−3)
3

PPCs of size v − 1, as desired.

We provide an example to illustrate the proof.

Example 2.1. Consider the case when we have an STS(81) =STS(4 · 21− 3). Then

v = 21 ≡ 3 mod 6 and our objective is to partition the blocks into PPCs of size 20.

The needed ingredients are an inflated KF(44), a 3−RGDD(53) and a KT(21; 41056).

We inflate the points in the frame to size 20/4 = 5 and upon each inflated block of the

frame we place an RGDD(53). On each group, including∞, we place a KT(21; 41056).
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Thus, we have covered all of the transverse pairs and all of the pairs within each group,

including ∞, so we have an STS(81). In Figure 2.7 you will find an example of an

inflated frame parallel class with a parallel class of the 3−RGDD(53) placed upon it.

Because 81 ≡ 3 mod 6 we actually have a Kirkman triple system and by Theorem 2.1

we know that the KTS(81) admits a coloring of type 2740. However, our objective is

find a coloring of type 2054. We will partition the blocks of the KTS(81) into PPCs

three different ways, as we did in Lemma 2.5:

Type I:

These partial parallel classes are formed by removing blocks from the RGDD.

This produces 8 PPCs of size 20.

Type II:

These partial parallel classes are formed by taking the blocks of the RGDD in

addition to the replaced blocks from the KT. This produces 40 PPCs of size 20.

Type III:

The remaining partial parallel classes are formed based on what is left upon

each group. Consider if we join them as found in Figure 2.8. This produces 6

PPCs of size 20.
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Figure 2.7: A 3−RGDD(53) parallel class on an inflated frame parallel
class from a 3−frame of type 44
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G1 G2 G3 G4

5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5

Figure 2.8: Type III PPCs from an STS(81)

Therefore, we have a total of 54 PPCs of size 20.

2.4.2 Case 2: v ≡ 3 mod 12

Lemma 2.6. Suppose v ≡ 3 mod 12. If there exists a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ),

then there exists an STS(4v − 3) whose blocks can be partitioned into PPCs of size

v − 1.

Proof. The proof for the case when v ≡ 3 mod 12 is very similar to the previous case,

with only a few noted differences. We begin with a 3−frame of type 24, found in

Figure 1.4. On each block of the chosen 3−frame, we inflate the points to size v−1
2

.

Thus we let the point-set of the desired STS(4v − 3) consist of the v − 1 vertices

in each group, G1, G2, G3, and G4, along with the point ∞. On each inflated block

of each frame parallel class, we place a 3−RGDD((v−1
2

)3). Then every transverse

pair is in exactly one transverse triple. The only pairs that have not been covered
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are the ones that lie within a group and pairs that contain ∞. Upon each group

include the point ∞ and place upon it a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ), which exists

by assumption. In this way, we have now constructed a set of triples in which every

pair has been covered exactly once. Thus we have an STS(4v − 3). Note that the

number blocks, b, found in such an STS(4v − 3) is as follows

b =
(4v − 3)(4v − 4)

3 · 2
=

(4v − 3)(2v − 2)

3
.

Because v ≡ 3 mod 12 it follows that 3 divides 4v − 3 and hence v − 1 also divides

b. Therefore, if we can construct an STS(4v − 3) that can be resolved into partial

parallel classes of size v − 1 there will be

b =
2(4v − 3)

3
· (v − 1)

such partial parallel classes. The key ingredient to construct our partial parallel

classes is the existence of a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ). We now begin the process

of constructing our partial parallel classes of size v−1 from the STS(4v−3). We will

construct our partial parallel classes of size v − 1 in three ways, which we denote as

types.

Type I:

For j = 1, . . . , 4, let FPCj denote a frame parallel class that misses group Gj.
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For i = 1, . . . , v−1
2

denote a parallel class in the 3−RGDD((v−1
2

)3). Then let Pi,j

be the set of blocks from PCi on the inflated blocks of FPCj. For j = 1, . . . , 4

take one block from each PCi, for i = 1, . . . , v−1
2

. However, FPCj has four

disjoint blocks, so we are removing a total of four blocks from Pi,j. By Theorem

2.1, we may choose the v−1
2

blocks from PCi to be disjoint. Let Bi,j be the four

blocks removed from Pi,j. Then

v−1
2⋃
i=1

Bi,j is a partial parallel class of size v − 1

for each j, j = 1, . . . , 4. Thus we get a total of 4 PPCs of size v − 1.

Type II:

For i = 1, . . . , v−1
2

and j = 1, . . . , 4, Pi,j consists of a set of v−5 blocks, because

four were removed. By assumption, there exists a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ).

Thus we may take the union of the blocks in Pi,j for j = 1, . . . , 4 with a partial

parallel class of size 4 from Gj to form PPCs of size v − 1. Because each group

is missed once by the KF(44), we get a total of 4(v−1
2

) PPCs of size v − 1. We

are also guaranteed that ∞ appears exactly once in each of the partial parallel

classes of this type.

Type III:

Lastly, we will cover what was left on each of the missed groups of the frame

parallel class. We were able to place a KT(v; 2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 ) on each

group, including ∞. We have used all of the blocks from each group of size 2,

but we have a partial Steiner triple system of color type (v−3
4

)
v−6
3 (v+1

4
)
v−6
3 left on

each group. Let Mi,j be the i−th parallel class of size v−3
4

in KTj, i = 1, . . . v−6
3

,
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j = 1, . . . , 4. Let Ni,j be the i−th parallel class of size v+1
4

in KTj, i = 1, . . . v−6
3

,

j = 1, . . . , 4. Because 2(v−3
4

) + 2(v+1
4

) = v − 1, then (Mi,1 ∪Mi,2 ∪Ni,3 ∪Ni,4)

is a partial parallel class of size v − 1 and (Ni,1 ∪Ni,2 ∪Mi,3 ∪Mi,4) is a partial

parallel class of size v−1. Therefore we get a total of 2(v−6
3

) PPCs of size v−1.

The objective was to get 2(4v−3)
3

PPCs of size v−1. From Type I we get 4, from Type

II we get 2(v − 1), and from Type III we get 2(v−6
3

) partial parallel classes and thus

we have 2(4v−3)
3

PPCs of size v − 1, as desired.

Again, we will illustrate this construction with the use of an example.

Example 2.2. We consider the case when we have an STS(57) =STS(4 · 15 − 3).

Then v = 15 ≡ 3 mod 6 and our objective is to partition the blocks into PPCs

of size 14. The needed ingredients are an inflated KF(24), a 3−RGDD(73), and a

KT(15; 273343). We inflate the points in the frame to size 14/2 = 7 and upon each

inflated block of the frame we place an RGDD(73). On each group, including ∞, we

place a KT(15; 273343). Thus, we have covered all of the transverse pairs and all of

the pairs within each group, including ∞, so we have an STS(57). In Figure 2.9 you

will find an example of an inflated frame parallel class with a parallel class of the

3−RGDD(73) placed upon it. Because 57 ≡ 3 mod 6 we actually have a Kirkman

triple system and by Theorem 2.1 we know that the KTS(57) admits a coloring of

type 1928. However, our objective is find a coloring of type 1438. We will partition

the blocks of the KTS(57) into PPCs three different ways, as we did in Lemma 2.6:
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Figure 2.9: A 3−RGDD(73) parallel class on an inflated frame parallel
class from a 3−frame of type 24

Type I:

These partial parallel classes are formed by removing blocks from the RGDD.

This produces 4 PPCs of size 14.

Type II:

These partial parallel classes are formed by taking the blocks of the RGDD in

addition to the replaced blocks from the KT. This produces 28 PPCs of size 14.

Type III:
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The remaining partial parallel classes are formed based on what is left upon

each group. Consider if we join them as found in Figure 2.10. This produces 6

PPCs of size 14.

G1 G2 G3 G4

3 3 4 4
3 3 4 4
3 3 4 4
4 4 3 3
4 4 3 3
4 4 3 3

Figure 2.10: Type III PPCs from an STS(57)

Therefore, we have a total of 38 PPCs of size 14.
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Chapter 3

Conclusion and Future Work

The objective of this research was to expand upon what is known on how to partition

the blocks of Steiner triple systems into partial parallel classes of uniform size. We

were motivated by past results and the methodology developed by Hodaj [9]. In

summary, we have constructed a method for an infinite class of Steiner triple systems

of order 4v− 3 that can be decomposed into PPCs of order v− 1 when v ≡ 3 mod 6.

However, there are gaps within this infinite class, due to the recursive construction

of the KTs.

Recall that Colbourn et al. [6] had results for 4v− 3 ≤ 32 and for 4v− 3 ≥ 1560, but

partial parallel classes of size m = v − 1 is not necessarily attainable at the bound.

So our results, partial though they may be, do cover some new cases.
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Our results can be summarized as follows: We have decomposed the blocks of an

STS(4v − 3) into partial parallel classes of size v − 1 for 4v − 3 = 57, 81, 105.

However, as a result of the recursive construction of KT (15; 273343), we can find

a KT(51; 22512151315) and thus we can find a decomposition of the blocks of an

STS(201) into PPCs of size 50. Similarly, as we have a KT(21; 41056), we can find

a KT(81; 4402046) and thus a decomposition of the blocks of an STS(321) into PPCs

of size 80. Likewise, as we have a KT(27; 2136777), we can find a KT(99; 24924312531)

and thus a decomposition of the blocks of an STS(393) into PPCs of size 98.

By continuing in this way, we can use the KTs to find some decompositions of STSs

that do not fall within the bounds of Colbourn et al. [6].

As our results still leave parts of the problem open, it would be immensely useful

to prove the following conjectures, as this will cover the gaps that we have in our

STS(4v − 3)s.

Conjecture 3.1. If v ≡ 9 mod 12, then there exists a KT(v) that admits color type

4
v−1
2 (v−1

4
)
2v
3
−8.

Conjecture 3.2. If v ≡ 3 mod 12, then there exists a KT(v) that admits color type

2
v−1
2 (v−3

4
)
v−6
3 (v+1

4
)
v−6
3 .

By finding these special KTs, you have the missing ingredient that is needed to put

on each of the missed groups of the frame.
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There are a few other avenues that could be explored to eliminate the gaps of con-

structions. We started with the requirement of v ≡ 3 mod 6 so that we were able

to place a Kirkman triple system on every group and therefore had blocks that were

already resolved into parallel classes. However, now that we have come up with a

base coloring for our KT(v)s when v ≡ 3 mod 12 that is “uneven,” so to speak, it

gives hope that there may be a base coloring for KT(v)s, even when v 6≡ 3 mod 6. It

may also be possible to use similar, yet different, ingredients for new constructions.

One could investigate using 3−frames with different numbers and sizes of groups, for

example.

As can be seen, the problem is interesting to study and has a lot of open areas for

creative solutions.
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Appendix A

The blocks of the KT(27; 2137767) can be found in Figure A.1.
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• 13 PPCs of size 2. Notice that the point 00 appears in each of these PPCs:

{{00, 10, 20}, {02, 12, 22}}, {{00, 18, 27}, {01, 10, 28}}, {{00, 01, 02}, {10, 11, 12}},
{{00, 11, 22}, {01, 12, 23}}, {{00, 17, 25}, {01, 18, 26}}, {{00, 05, 07}, {01, 03, 08}},
{{00, 12, 24}, {01, 13, 25}}, {{00, 16, 23}, {01, 17, 24}}, {{00, 03, 06}, {01, 04, 07}},
{{00, 13, 26}, {01, 14, 27}}, {{00, 15, 21}, {01, 16, 22}}, {{00, 04, 08}, {01, 05, 06}},
{{00, 14, 28}, {01, 15, 20}}

• 7 PPCs of size 6:

{{01, 11, 21}, {04, 15, 26}, {12, 14, 16}, {02, 05, 08}, {06, 10, 23}, {20, 24, 28}},
{{03, 13, 23}, {04, 14, 24}, {05, 15, 25}, {06, 16, 26}, {07, 17, 27}, {08, 18, 28}},
{{02, 13, 24}, {03, 14, 25}, {05, 16, 27}, {06, 17, 28}, {07, 18, 20}, {08, 10, 21}},
{{02, 04, 06}, {10, 15, 17}, {11, 13, 18}, {20, 25, 27}, {21, 23, 28}, {22, 24, 26}},
{{10, 13, 16}, {11, 14, 17}, {12, 15, 18}, {20, 23, 26}, {21, 24, 27}, {22, 25, 28}},
{{02, 15, 28}, {03, 16, 20}, {04, 17, 21}, {05, 18, 22}, {07, 11, 24}, {08, 12, 25}},
{{02, 03, 07}, {10, 14, 18}, {11, 15, 16}, {12, 13, 17}, {21, 25, 26}, {22, 23, 27}}

• 7 PPCs of size 7:

{{02, 11, 20}, {03, 12, 21}, {04, 13, 22}, {05, 14, 23},
{06, 15, 24}, {07, 16, 25}, {08, 17, 26}},
{{03, 04, 05}, {06, 07, 08}, {13, 14, 15}, {16, 17, 18},
{20, 21, 22}, {23, 24, 25}, {26, 27, 28}},
{{02, 10, 27}, {03, 11, 28}, {04, 12, 20}, {05, 13, 21},
{06, 14, 22}, {07, 15, 23}, {08, 16, 24}},
{{02, 14, 26}, {03, 15, 27}, {04, 16, 28}, {05, 17, 20},
{06, 18, 21}, {07, 10, 22}, {08, 11, 23}},
{{02, 18, 25}, {03, 10, 26}, {04, 11, 27}, {05, 12, 28},
{06, 13, 20}, {07, 14, 21}, {08, 15, 22}},
{{02, 17, 23}, {03, 18, 24}, {04, 10, 25}, {05, 11, 26},
{06, 12, 27}, {07, 13, 28}, {08, 14, 20}},
{{02, 16, 21}, {03, 17, 22}, {04, 18, 23}, {05, 10, 24},
{06, 11, 25}, {07, 12, 26}, {08, 13, 27}}

Figure A.1: A KT(27; 2136777)
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