
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2015

EXTRACTING FLOW FEATURES USING BAG-OF-FEATURES AND EXTRACTING FLOW FEATURES USING BAG-OF-FEATURES AND

SUPERVISED LEARNING TECHNIQUES SUPERVISED LEARNING TECHNIQUES

Yifei Li
Michigan Technological University, yifli@mtu.edu

Copyright 2015 Yifei Li

Recommended Citation Recommended Citation
Li, Yifei, "EXTRACTING FLOW FEATURES USING BAG-OF-FEATURES AND SUPERVISED LEARNING
TECHNIQUES", Open Access Dissertation, Michigan Technological University, 2015.
https://digitalcommons.mtu.edu/etdr/26

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Graphics and Human Computer Interfaces Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.mtu.edu%2Fetdr%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

EXTRACTING FLOW FEATURES USING BAG-OF-FEATURES AND

SUPERVISED LEARNING TECHNIQUES

By

Yifei Li

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2015

© 2015 Yifei Li

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Science.

Department of Computer Science

Dissertation Co-advisor: Ching-Kuang Shene

Dissertation Co-advisor: Chaoli Wang

Committee Member: Song-Lin Yang

Committee Member: Scott A. Kuhl

Department Chair: Min Song

Contents

List of Figures . ix

List of Tables . xvii

Preface . xix

Acknowledgments . xxi

Abstract . xxiii

1 Introduction . 1

1.1 Terminology . 7

1.1.1 Vector Fields . 7

1.1.2 Flow . 8

1.1.3 Flow Fields . 9

1.1.4 Steady and Unsteady Flows 11

1.1.5 Streamlines . 11

1.1.6 Critical Points . 12

1.2 Motivation . 12

v

1.3 Contributions . 15

1.4 Dissertation Organization . 18

2 Related Work . 19

2.1 Streamline Similarity Measures . 20

2.2 Streamline Segmentation . 23

3 Streamline Similarity Analysis using Bag-of-Features 27

3.1 Overview . 27

3.2 Background . 28

3.2.1 Shannon Entropy . 29

3.2.2 Curvature and Torsion . 30

3.2.3 Bag-of-Features . 31

3.3 Spatially Sensitive Bag-of-Features 34

3.4 Streamline Feature Selection . 39

3.4.1 Computing Curvature and Torsion in Vector Fields 39

3.4.2 Velocity Direction Entropy 42

3.4.3 Tortuosity . 43

3.5 Results and Discussion . 44

3.5.1 Configuration and Timing 45

3.5.2 Streamline Similarity Query 46

3.5.3 Streamline Clustering . 51

3.6 Conclusion . 56

vi

4 Extracting Flow Features via Supervised Streamline Segmenta-

tion . 59

4.1 Overview . 59

4.2 Supervised Learning and Support Vector Machine 61

4.2.1 Supervised Learning . 61

4.2.2 Support Vector Machine . 62

4.2.3 A Guide to libSVM . 65

4.3 Supervised Streamline Segmentation 66

4.3.1 Features vectors . 68

4.3.1.1 Velocity direction entropy and Tortuosity 69

4.3.1.2 Curvature and torsion histogram 70

4.3.1.3 Volume ratio of minimum bounding ellipsoids . . . 72

4.3.2 Training examples collection 74

4.3.2.1 Automatically picking streamlines for training . . . 76

4.3.2.2 Generating training examples 77

4.3.3 Training . 80

4.3.4 Segmentation and post-processing 84

4.4 Results and Discussion . 86

4.4.1 Flow feature extraction . 87

4.4.2 Feature selection . 96

4.4.3 Parameters . 97

vii

4.5 Comparison . 100

4.6 Conclusions . 110

5 DTEvisual: A Visualization System for Teaching Access Control

using Domain Type Enforcement . 113

5.1 Motivation . 114

5.2 Domain Type Enforcement . 115

5.3 System Overview . 119

5.3.1 User Interface . 120

5.3.2 Domain and Type Graphs 122

5.3.3 Graph Editing . 127

5.3.4 Queries . 128

5.4 Evaluation . 132

5.5 Future Work . 134

5.6 Conclusions . 135

6 Conclusions . 137

References . 141

viii

List of Figures

1.1 Aerodynamics analysis of a sports car. Image from simscale.com . . 2

1.2 Different flow visualization techniques. 3

(a) Glphy-based . 3

(b) Texture-based . 3

(c) Geometric-based . 3

1.3 The problem of visual clutter and occlusion. 5

(a) A vector field visualized using 500 streamlines 5

(b) The streamlines in the center of the vector field are invisible in

the left figure . 5

1.4 The shock wave of a supersonic jet flying over the Mojave Desert.

Image from the NASA website. 6

1.5 A 4 × 5 grid representing a 2D vector field: the velocity vectors (in

blue) are specified at grid vertices. 8

1.6 The order of features along a curve is important to similarity mea-

sures. 13

1.7 Some features may still be occluded after clustering. 14

ix

(a) A vector field visualized with 600 streamlines 14

(b) After clustering, some sprials still cannot be seen clearly . . . 14

3.1 Two different streamlines along with the symmetric matrices repre-

senting their spatially sensitive bag-of-features. 37

3.2 Tortuosity vs. velocity direction entropy: both curves have similar

velocity direction entropies because their tangent vectors almost point

in every direction in a 2D space. However, the red one looks more

complicated than the blue one and has a higher tortuosity value. . . 43

3.3 Query result comparison using the five critical points data set . . . 47

(a) Query streamline . 47

(b) SS-BoF . 47

(c) Lu’s similarity metric . 47

3.4 Query result comparison using the tornado data set 48

(a) Query streamline . 48

(b) SS-BoF . 48

(c) Lu’s similarity metric . 48

3.5 Query result comparison using the supernova data set 49

(a) Query streamline . 49

(b) SS-BoF . 49

(c) Lu’s similarity metric . 49

3.6 Query result comparison using the car flow data set 49

x

(a) Query streamline . 49

(b) SS-BoF . 49

(c) Lu’s similarity metric . 49

3.7 Query result comparison using the crayfish data set 49

(a) Query streamline . 49

(b) SS-BoF . 49

(c) Lu’s similarity metric . 49

3.8 Query result comparison using the solar plume data set 50

(a) Query streamline . 50

(b) SS-BoF . 50

(c) Lu’s similarity metric . 50

3.9 Query result comparison using the computer room data set 50

(a) Query streamline . 50

(b) SS-BoF . 50

(c) Lu’s similarity metric . 50

3.10 Clustering results for solar plume data set using SS-BoF (top) and the

measure based on Lu et al. [54] (bottom). 53

3.11 Clustering results for tornado data set using SS-BoF. 55

3.12 Clustering results for tornado data set using Lu et al. [54]. 55

xi

4.1 Given an input pool of streamlines (left), each streamline is segmented

using a learned classifier (Section 4.2) for segmentation points (mid-

dle, the red point is the segmentation point found by our algorithm).

Partial streamline features specified by users will be clustered based

on their similarities (right). 60

4.2 The supervised streamline segmentation framework 67

4.3 Importance of neighborhood size: the blue point may be considered as

a segmentation point if the two neighboring segments with green end

points are compared but not if a larger neighborhood size is considered

(marked by red points). 69

4.4 The blue and the brown ellipsoids are the minimum volume ellipsoids

bounding the streamline segments on two sides of the red point. The

minimum volume bounding ellipsoid for the whole streamline is shown

as white ellipsoids. 74

4.5 Streamline clusters and their representatives: the input streamlines of

the tornado data set are shown in (a). After applying affinity propa-

gation, six clusters ((b)-(g)) are obtained and cluster representatives

are shown in green. 77

4.6 A streamline with 147 points is simplified with different Fréchet error

ε (points left after simplification are shown in red): (a) ε = 0.5, 25

points left (b) ε = 1.0, 18 points left (c) ε = 1.5, 15 points left. . . 80

xii

4.7 Remove redundant negative examples until the classification perfor-

mance cannot be improved. 82

4.8 Remove redundant segmentation points: (a) nearby points (in red) are

detected as segmentation points by our trained classifier. (b) only one

segmentation point is left after post-processing. 85

4.9 Five streamlines of the tornado data set were manually segmented (t1-

t5) to train the classifier. Seven (s1-s7) clusters of streamline segments

were generated. 89

4.10 Seven streamlines of the five critical points data set were manually seg-

mented (t1-t5) to train the classifier. Eight (s1-s8) clusters of streamline

segments were generated. 91

4.11 Fourteen streamlines of the solar plume data set (t1-t8) were manually

segmented for training. 92

4.12 Five (s1-s5) clusters of streamline segments of the solar plume data

set are shown. Notice how the interesting features such as spirals and

turbulent features are successfully extracted. 94

4.13 A comparison on streamline segmentation between [54] (left column)

and the method in this dissertation (right column). The streamlines

in row (a) and (b) are from the tornado data set, and those in rows (c)

and (d) from the solar plume data set. The segmentation points are

highlighted in red. 103

xiii

4.14 A comparison on streamline segmentation between [89] (left column)

and the method in this dissertation (right column). The streamlines

in row (a) and (b) are from the tornado data set, and those in rows (c)

and (d) from the solar plume data set. The segmentation points are

highlighted in red. 105

4.15 The features extracted by FlowString [84] for tornado data set. . . . 108

4.16 The features extracted by FlowString [84] for solar plume data set. 109

5.1 Main User Interface . 121

5.2 DTEvisual System Toolbar . 121

5.3 Domain graphs . 123

5.4 Type graphs . 123

5.5 Toggle the display of edges in the general graph 124

5.6 First click on the type node ‘readable t’ highlights the node and its

adjacent edges and nodes. 125

5.7 Second click on the type node ‘readable t’ highlights the part not

highlighted in Figure 5.6. 125

5.8 Third click on the type node ‘readable t’ brings the rendering back

to normal. 126

5.9 Context Menu of Type Node . 128

5.10 DTEvisual Query Window . 130

5.11 Determine the type of ‘/usr/bin/lp’, which is ‘binaries t’ 131

xiv

5.12 Find the domains that have executable permissions (x) on

‘binaries t’ . 131

xv

List of Tables

3.1 The timing results of seven flow data sets for feature and spatially

sensitive bag-of-features computation. 45

4.1 The three flow data sets. The timing results are in seconds. 88

4.2 Segmentation results without post-processing using the classifiers

trained with different types of feature vectors G1 = {M1,M2,M3,M4},

G2 = {M1,M2,M3} and G3 = {M4}, where M1, M2, M3, and M4 are

velocity direction entropy ratio, tortuosity ratio, curvature and torsion

histogram difference, and minimum bounding ellipsoid volume ratio,

respectively. 98

4.3 AUCs and training times (in seconds) for the classifiers trained using

different combinations of neighborhood sizes. The training was con-

ducted on 36 positive and 298 negative training examples generated

from the tornado data set. 101

xvii

Preface

This dissertation is original, published, independent work by the author, Yifei Li.

xix

Acknowledgments

First of all, I would like to thank my advisor Dr. Shene and my co-advisor Dr. Wang

for their guidance. Dr. Shene gave me tons of useful tips for writing a good paper in

English, and Dr. Wang introduced me to the field of flow visualization.

Second, I would like to thank graduate school for giving me extensions to finish my

degree.

Third, I would like to thank the Computer Science department at Michigan Tech for

providing me financial support during my seven years PhD study. In my last year at

Michigan Tech, the department also helped me find graduate assistance-ship from IT

department. This financial support was very important to me and my family.

Finally, I want to thank my family for their continuous support and understanding

during my PhD study. I would not be able to finish my degree without them.

xxi

Abstract

Measuring the similarity between two streamlines is fundamental to many important

flow data analysis and visualization tasks such as feature detection, pattern querying

and streamline clustering. This dissertation presents a novel streamline similarity

measure inspired by the bag-of-features concept from computer vision. Different from

other streamline similarity measures, the proposed one considers both the distribution

of and the distances among features along a streamline. The proposed measure is

tested in two common tasks in vector field exploration: streamline similarity query

and streamline clustering. Compared with a recent streamline similarity measure,

the proposed measure allows users to see the interesting features more clearly in a

complicated vector field.

In addition to focusing on similar streamlines through streamline similarity query

or clustering, users sometimes want to group and see similar features from different

streamlines. For example, it is useful to find all the spirals contained in different

streamlines and present them to users. To this end, this dissertation proposes to

segment each streamline into different features. This problem has not been studied

extensively in flow visualization. For instance, many flow feature extraction tech-

niques segment streamline based on simple heuristics such as accumulative curvature

xxiii

or arc length, and, as a result, the segments they found usually do not directly corre-

spond to complete flow features. This dissertation proposes a machine learning-based

streamline segmentation algorithm to segment each streamline into distinct features.

It is shown that the proposed method can locate interesting features (e.g., a spiral

in a streamline) more accurately than some other flow feature extraction methods.

Since streamlines are space curves, the proposed method also serves as a general curve

segmentation method and may be applied in other fields such as computer vision.

Besides flow visualization, a pedagogical visualization tool DTEvisual for teaching

access control is also discussed in this dissertation. Domain Type Enforcement (DTE)

is a powerful abstraction for teaching students about modern models of access control

in operating systems. With DTEvisual, students have an environment for visualizing

a DTE-based policy using graphs, visually modifying the policy, and animating the

common DTE queries in real time. A user study of DTEvisual suggests that the tool

is helpful for students to understand DTE.

xxiv

Chapter 1

Introduction

Most fluids (e.g., air or water) are transparent, and their flow patterns are invisible.

Flow visualization is the art of making flow patterns visible. It has been a central

topic in scientific visualization for more than two decades. A flow represents the

movement of a set of points in a fluid over time. Given the trajectory of any point

in the flow, the velocity of the point at any time is simply a tangent vector to the

trajectory. The velocity vectors of all the points in the flow at a given time consist of

a vector (velocity) field. Conversely, given a velocity field where the velocity vectors

change continuously, a flow can also be constructed (Section 1.1). If a flow induces

a vector field or if a vector field produces a flow, people often use the words “vector

field” and “flow field” interchangeably, and use vector (resp., flow) field to emphasize

the nature and properties of the vectors (resp., flow). Vector fields are commonly seen

1

in many scientific, engineering and medical disciplines. For example, Figure 1.1 shows

a vector field representing the air flow around a sports car, where the arrows indicate

the direction of flow. The speed of flow is color coded with red being the fastest and

blue being the slowest. Visualizing the air flow can help automobile designers spot

potential problems early in the design process.

Figure 1.1: Aerodynamics analysis of a sports car. Image from
simscale.com

The challenges for flow visualization include effectively visualizing both magnitudes

and directions of vector data. In the past, various flow visualization techniques have

been developed, which can be broadly categorized into glyph-based [66], texture-

based [45] and geometric-based [28, 58] approaches. Figure 1.2 illustrates how these

methods help to visualize a 2D vector field. Glyph-based approaches (Figure 1.2 (a))

simply renders an arrow for each vector to indicate the vector’s direction, and the

2

(a) Glphy-based (b) Texture-based

(c) Geometric-based

Figure 1.2: Different flow visualization techniques.

size of each arrow indicates the magnitude of the associated vector. Texture-based

approaches (Figure 1.2 (b)) compute a texture which provides a detailed view of a

vector field. Geometric-based approaches (Figure 1.2 (c)) use streamlines to depict a

vector field. A streamline is a curve which is tangent to the vector at every point it

passes in a vector field. In order to trace a streamline, imagine that a moving particle

is placed in a vector field. The trajectory of the moving particle can be determined

using the Runge-Kutta fourth-order method [35], which is a numerical method of

3

solving ordinary differential equations. This dissertation uses streamlines to visualize

vector fields due to its popularity.

Recently, the research on flow visualization has focused on the problem of extracting

flow features from a vector field. This problem becomes especially important when

hundreds or thousands of streamlines are used to depict a vector field. The reason

is that a large number of streamlines usually lead to visual clutter and occlusion,

which makes it impossible for users to see interesting flow features. For example,

in Figure 1.3 (a), a vector field representing a tornado event is visualized using 500

streamlines, which already looks cluttered. Figure 1.3 (b) shows the long spirals

in the center of the tornado, which are occluded by the surrounding streamlines.

Many techniques [68] based on physical or mathematical properties of flows have

been proposed to extract flow features in a vector field. However, as suggested by [68],

these methods may not work well for complex vector fields because the mathematical

formula for detecting features like vortices (i.e., flows rotating around some axis) may

not always hold.

Developing computer algorithms to automatically extract interesting features is a

challenging problem because there is no rigorous definition of features. Moreover,

different applications may look for different interesting features. For example, finding

vortices is important in climate modeling because they may indicate the presence

of a tornado. Figure 1.3 (b) illustrates an example of vortices. In aircraft design,

4

(a) A vector field visualized using 500
streamlines

(b) The streamlines in the center of the vec-
tor field are invisible in the left figure

Figure 1.3: The problem of visual clutter and occlusion.

shock waves (i.e., waves moving faster than sound) are important phenomena to

study because they can cause structural failure in aircraft. Figure 1.4 shows an

example of shock waves. These interesting features usually can be easily recognized

in flow visualization by human but not by computers. Many approaches have been

successfully developed in computer vision to define and extract features. This inspires

the author to apply those techniques to the problem of flow feature extraction.

This dissertation attempts to solve the problem of flow feature extraction by lever-

aging the techniques used in computer vision and pattern recognition. In computer

vision, users can specify what features they are interested in either by carefully de-

ciding the ingredients in a feature, or simply providing computers with some example

5

Figure 1.4: The shock wave of a supersonic jet flying over the Mojave
Desert. Image from the NASA website.

features. Both approaches are applied in this dissertation. The results are encourag-

ing, and it is worthwhile to experiment other computer vision related techniques in

the future for flow visualization.

In the remaining of this chapter, Section 1.1 introduces some basic terms in flow

visualization, Section 1.2 briefly discusses the motivation behind the work presented

later in this dissertation, Section 1.3 summarizes the contributions made by this

dissertation, and finally Section 1.4 gives an overview of the remaining chapters.

6

1.1 Terminology

This section defines the important concepts used throughout this dissertation. Sec-

tion 1.1.1 explains vector fields and how they are specified for flow visualization

applications. Section 1.1.2 gives the definition of a flow. Section 1.1.3 discusses the

relationship between vector fields and flows, and when vector fields can be considered

as flow fields. Section 1.1.4 defines steady and unsteady flows. Section 1.1.5 explains

what streamlines are and how they are generated. Finally, Section 1.1.6 gives the

definitions of different types of critical points.

1.1.1 Vector Fields

A function is of class Ck (or Ck continuous), where k > 0, if the derivatives

f ′, f ′′, . . . , f (k) exist and continuous. A C0 function is a continuous function. A

Ck vector field on U ⊆ En is a Ck mapping V : U → En from an open set U ⊆ En.

Intuitively, a vector field assigns an n-dimensional vector to each point in a region of

the n-dimensional Euclidean space.

In flow visualization, the open set U on which a vector field is defined is usually given

as a 2D or 3D grid which consists of unit squares or cubes. The vector field assigns

7

vectors to the vertices of the grid. Figure 1.5 shows an example of a vector field which

is represented as a 4 × 5 grid. The blue arrows at the grid vertices indicate velocity

vectors.

Figure 1.5: A 4× 5 grid representing a 2D vector field: the velocity
vectors (in blue) are specified at grid vertices.

1.1.2 Flow

A flow represents the movement of a set of points in a fluid over time. Formally, a

flow on an open set U is a mapping φ : U × R→ U which satisfies the following two

equations:

φ(x, 0) = x

φ(φ(x, t), s) = φ(x, s+ t)

8

where x ∈ U and s, t ∈ R.

For each point x ∈ U , its position at time t is φ(x, t) and its “initial” location is

φ(x, 0) = x. The set of points {φ(x, t) : t ∈ R} is referred to as the orbit of x ∈ U

under the map φ. This set of points describes the trajectory of the movement of x

over time. The second equation φ(φ(x, t), s) = φ(x, s+t) indicates that a point x ∈ U

whose location is φ(x, t) at time t moves to φ(φ(x, t), s) after an additional time s,

and the new location is φ(x, t + s). A flow φ is fully determined by the union of all

its orbits.

1.1.3 Flow Fields

In flow visualization, people often use the words “vector fields” and “flow fields”

interchangeably. In order to do so, it is required that either a flow can induce a vector

field or a vector field can produce a flow. The remaining of this section explains the

conditions that need to be met for a flow to induce a vector field and for a vector

field to produce a flow.

A C1 flow φ : U × R → U defined on an open set U induces a C0 vector field. The

trajectory of any point x in this flow can be represented by the function φx(t) = φ(x, t)

with the time variable t. Since φ is C1, the derivative of d(φx(t))
dt

∣∣∣
t=0

exists and is

continuous, which is the velocity vector at point φx(0) for time t = 0. Therefore, a

9

vector field V (x) = φ̇x(0) is obtained, which assigns the velocity vector at time t = 0

to every point x ∈ U . This vector field V is C0 (i.e., continuous) because the flow φ

is C1. It is also referred to as the velocity field of the flow φ at time t = 0. Note that

if the flow φ is not C1, it may not be possible to construct a vector field from it.

Conversely, a C0 vector field can produce a flow φ so that the given vector field is

the induced velocity field of φ. As mentioned earlier, a flow is the union of the orbit

of every point in the flow. Given the velocity field V : U → En of the unknown flow

and an arbitrary point x in the flow, the orbit of x is a curve C : R → U with an

initial point C(0) = x. The tangent vector at C(t) is given by V (C(t)). Therefore, to

find the orbit C(t) of point x, the following first order ordinary differential equation

needs to be solved:

Ċ(t) = V (C(t))

C(0) = x

(1.1)

Since the vector field V is C0, the above equation has a unique solution C(t) according

to the existence and uniqueness of ordinary differential equation. The corresponding

flow can be defined as φ(x, t) = Cx(t) after the orbit for every point x is obtained.

This flow is C1 because it has continuous derivatives along each orbit as guaranteed

by the C0 velocity field V . Note that if the velocity field V is not C0, it may not be

possible to construct a flow so that V is the induced velocity field of the flow.

Based on the above discussion, the words “vector field” and “flow field” can be used

10

interchangeably if a C1 flow on an open set induces a C0 vector field on that set, or a

C0 vector field produces a C1 flow so that the vector field is the velocity field of the

flow. People use vector (resp., flow) field to emphasize the nature and properties of

the vectors (resp., flow).

1.1.4 Steady and Unsteady Flows

A steady flow is a flow in which the properties assigned to any point are independent

of the time parameter. Because this dissertation only focuses on the velocity at each

point, a flow is steady if the vector assigned to any point does not vary over t. A flow

that is not steady is an unsteady flow.

1.1.5 Streamlines

Given a point x ∈ U in a flow φ : U × R→ U , its orbit φx(t) is also called a stream-

line in flow visualization. As mentioned above, a streamline with an initial position

φx(0) = x can be found by solving the ordinary differential equation (Equation (1.1)).

Due to the uniqueness of the solution, no two streamlines in a flow can cross each

other at any given time t.

11

1.1.6 Critical Points

A critical point in a vector field is a point whose associated vector is zero. A critical

point may be a source (where vectors emanate from a point), sink (where vectors

converge into a point), saddle (where vectors repel each other at a point), or spiral

(where vectors revolve around a point).

1.2 Motivation

Measuring the similarity between two streamlines is a fundamental task in flow visu-

alization. For example, streamline clustering [80, 94, 95] relies on similarity measures

to group streamlines with similar shapes together. For vector fields visualized by a

large number of streamlines, streamline clustering has the potential to alleviate vi-

sual clutter and occlusion because it allows users to focus on one group of similar

streamlines at a time without being interfered by other streamlines.

Distribution-based streamline similarity measures are popular nowadays. They de-

scribe a streamline using some feature distribution (e.g., histograms of curvature),

and measure the similarity between two streamlines as the distance between their

distributions. Since a streamline’s feature distribution is not affected by its distance

12

to other streamlines, distribution-based methods are independent of the relative po-

sitions of two streamlines. One problem with distribution-based similarity measures

is that it does not consider the distances among different features along a stream-

line. This may cause two dissimilar streamlines to be considered as similar because

of their similar distributions of features. This is illustrated in Figure 1.6. Although

the two curves look differently, the curve in (a) is actually made from reshuffling dif-

ferent parts of the curve in (b). This dissertation addresses this issue by proposing a

(a) (b)

Figure 1.6: The order of features along a curve is important to similarity
measures.

streamline descriptor which encodes the relative positions of different features along

a streamline.

Sometimes streamline clustering still fails to show the detailed flow features to users.

For example, users may be more interested in seeing the part of a streamline in

the vicinity of a critical point, but that part may still be occluded after streamline

clustering. Figure 1.7 (a) shows a vector field visualized with 600 streamlines, and

Figure 1.7 (b) shows a cluster after the streamlines are clustered. In this cluster, some

spirals (in red circle) still cannot be seen clearly. One way to overcome this issue is

13

(a) A vector field visualized with 600 streamlines

(b) After clustering, some sprials still cannot be seen clearly

Figure 1.7: Some features may still be occluded after clustering.

to segment every streamline such that different features on each can be separated.

These different features can then be clustered based on shape similarity such that

each type of feature can be viewed individually. This is a challenging task because it

is very hard to clearly define what a feature is. In computer vision, this type of task is

usually handled through machine learning, where users tell the system what features

they are looking for in the hope that computers can find similar features in other

scenarios. Machine learning is also used in this dissertation to solve the streamline

segmentation problem.

14

1.3 Contributions

This dissertation studies two fundamental problems in flow visualization: streamline

similarity measure and streamline segmentation. Effective flow visualization relies

on the solutions to these two problems in order to detect and query interesting flow

features. Since flow visualization is widely used in many engineering disciplines for

analyzing complex vector fields, the contributions made by this dissertation may be

applied to help solve various engineering problems. For example, in order to assess

the risk of aneurysm rupture [6, 20], patient-specific hemodynamic data is usually

visualized with a dense set of streamlines [63]. A clustering algorithm can use the

proposed streamline similarity measure to cluster the blood flow into different pat-

terns, which will help the diagnostics. Another application is in ocean prediction [34],

where detecting flow features such as vortices is essential for effective prediction of

the ocean environment. Due to the vastness of ocean, it is important to concentrate

measurements in the regions where one can observe important physical features. The

proposed streamline segmentation technique may be applied to find vortices in the

visualization of ocean flow.

Streamline similarity measure and streamline segmentation are two important tasks

in flow feature extraction. Feature extraction answers the question of what should be

visualized in a vector field. A good flow feature extraction method requires solving

15

a few subtasks. First of all, features should be properly described before they can

be extracted. After extraction, how to present the extracted features is another

problem. One possible way is to cluster the extracted features based on similarity.

This in turn introduces the problem of streamline similarity measure because most

clustering algorithms require calculating the similarity between two input objects.

The contribution of this dissertation lies in the design of a few novel solutions to

the above problems. These solutions are inspired by some widely used ideas from

computer vision and pattern recognition. This dissertation makes some early attempts

to apply those ideas to flow visualization. In summary, the contributions made by

this dissertation include:

• Describing a streamline (or any part of it) in such a way that not only the

distribution of features on the streamline but also their relative order along

the streamline are considered. The similarity between two streamlines can be

computed as the distance between their corresponding descriptors. Unlike the

distanced-based similarity measures, the proposed streamline similarity measure

is independent of the relative positions and orientations of streamlines. Com-

pared with other distribution-based methods, it encodes the relative positions

of different features in a streamline’s feature description, and does not require

any step to partition a streamline first (Section 2.1). By leveraging GPUs, it

can be computed much faster than existing methods. These properties make it

16

able to more accurately filter out in real time flow features not interesting to

users.

• Leveraging machine learning to segment a streamline so that distinct features

on it can be separated. The proposed method gives users a fine level of con-

trol on the type of features that can be extracted. Therefore, it can further

reduces visual clutter and occlusion compared with streamline clustering. This

is the early attempt of applying machine learning to flow feature extraction.

The successful application may encourage more future research on how to use

machine learning to assist flow visualization. The proposed method may also

be applied to the curve segmentation problem in computer vision. In computer

vision, the segmentation of the silhouette of a 2D shape can be used to describe

the features of the 2D shape [93].

• Proposing a new heuristic which can help determine whether to separate two

features or not in the above segmentation process. Experiments showed that

this heuristic improves the final segmentation results. This heuristic may also

be combined with other properties to improve similarity measures between two

streamlines.

17

1.4 Dissertation Organization

In the following, Chapter 3 introduces a streamline similarity measure leveraging

bag-of-features technique. Chapter 4 provides a detailed description of a flow feature

extraction method based on supervised machine learning. Chapter 5 presents a minor

research focus, which is developing a pedagogical visualization tool for teaching access

control in operating systems.

18

Chapter 2

Related Work

This chapter reviews the related work on streamline similarity measure and streamline

segmentation. The following is the organization of this chapter. Section 2.1 reviews

two major types of streamline similarity measure: distanced-based and distribution-

based measures, and then compares the proposed similarity measure with some ex-

isting ones. Section 2.2 discusses a few existing streamline segmentation algorithms

which are fundamental to feature extraction, and points out the advantages of the

supervised streamline segmentation algorithm.

19

2.1 Streamline Similarity Measures

Distanced-based Similarity Measures. These streamline similarity measures are

defined in terms of the distance between two streamlines Xi and Xj, which are given

as two polygonal curves with N vertices pk(1≤k≤N) and M vertices pl(1≤l≤M) each.

For example, the closest point distance [59] dc is the closest distance between any two

points from Xi and Xj:

dc(Xi, Xj) = min
pk∈Xi, pl∈Xj

‖pk − pl‖

where ‖.‖ is the Euclidean distance.

The mean of closest point distances [25] dµ is the average of d̃µ(Xi, Xj) and d̃µ(Xj, Xi),

where d̃µ(Xi, Xj) (resp., d̃µ(Xj, Xi)) is the mean of the distances between each point

pk (resp., pl) on Xi (resp., Xj) to its closest point on Xj (resp., Xi):

dµ(Xi, Xj) =
1

2

(
d̃µ(Xi, Xj) + d̃µ(Xj, Xi)

)
,

where d̃µ(Xi, Xj) =
1

N

∑
pk∈Xi

(
min
pl∈Xj

‖pk − pl‖
)

The Hausdorff distance [59] dH is the maximum between d̃H(Xi, Xj) and d̃H(Xj, Xi),

where d̃H(Xi, Xj) (resp., d̃H(Xj, Xi)) is the maximum of all the distances between pk

20

(resp., pl) on Xi (resp., Xj) to its closest point on Xj (resp., Xi):

dH(Xi, Xj) = max(d̃H(Xi, Xj), d̃H(Xj, Xi)),

where d̃H(Xi, Xj) = max
pk∈Xi

(
min
pl∈Xj

‖pk − pl‖
)

Distribution-based Similarity Measures. The most significant issue of distance-

based similarity measures is that similar streamlines far away from each other will

not be considered as similar. In order to overcome this problem, similarity mea-

sures proposed recently usually view each streamline as a distribution of features.

The similarity between two streamlines is computed as the distance between their

corresponding distributions. For instance, McLoughlin et al. [57] computed for each

streamline a histogram where each bin of the histogram is the sum of curvature, tor-

sion and tortuosity values of all the points falling into that bin. Then they performed

similarity comparisons using χ2 on those histograms. Lu et al. [54] proposed to take

into account the order of features along a streamline in addition to the distribution

of features. They first segmented each streamline and computed a histogram of cur-

vature, torsion and curl for each segment. Each streamline is then represented by a

set of histograms. The distance between two streamlines is computed by minimiz-

ing the distance between two sets of histograms. More specifically, assume that two

streamlines X and Y have N and M segments, respectively. These two streamlines

can be represented by their corresponding sets of histograms HX = (x1, x2, . . . , xN)

21

and HY = (y1, y2, . . . , yM), where xi (resp., yj) is a histogram for the i-th (resp., j-th)

segment of streamline X (resp., Y). The similarity between streamlines X and Y

is computed by finding a mapping V between HX and HY which can minimize the

sum of distances between each pair of histograms in the mapping. This mapping

V is obtained using an algorithm called dynamic time warping (DTW). DTW [60]

is a method which calculates an optimal match between two given sequences (e.g.,

sequences of histograms) such that the dissimilarity between the two sequences can

be minimized. Suppose the mapping found by DTW is V = (v1, v2, . . . , vL), where

vl(1≤l≤L) = (nl,ml) ∈ [1, N] × [1,M]. The mapping V has L pairs of histograms

between HX and HY . The distance between HX and HY is calculated as follows:

Dist(HX , HY) = min
V

(
L∑
l=0

d(xnl
, yml

)

)
(2.1)

where d(xnl
, yml

) is the L1-distance between two histograms.

Proposed Solution. This dissertation proposes a novel distribution-based similarity

measure which addresses the shortcomings of the method by Lu et al. [54]. First of

all, their method requires segmentation as a preprocessing step, and the results of

the segmentation will affect the final similarity measure. The purpose of this step

is to make sure the order of features along a streamline is considered in the final

similarity measure. This requires users to set two parameters to determine when the

segmentation should stop: either when the current segment is too short or cannot

22

be separated into two dissimilar enough segments. Both of these two parameters are

not intuitive for users. Second, as shown by Equation (2.1), their method requires a

way of measuring the similarity between two segments before obtaining the similarity

measure between two streamlines.

To overcome these shortcomings, this dissertation proposes to describe a streamline

in such a way that not only the distribution of features but also the distance between

different features along a streamline are considered. In other words, the distance

among features is automatically encoded in the descriptor for a streamline. The

similarity between two streamlines is measured through the L1-distance between their

corresponding descriptors (i.e., vectors). Compared with the similarity measure by

Lu et al. [54], it is less computationally expensive because (1) no segmentation is

required, and (2) the similarity measure is a straightforward computation of the

distance between vectors. Comparison results also show that the proposed similarity

measure performs better in streamline query and clustering applications.

2.2 Streamline Segmentation

Streamline segmentation is often used as an important step in flow feature extraction.

For instance, Section 2.1 already mentions that Lu et al. [54] performed streamline

segmentation such that a 1D histogram can be computed for each segment and then

23

used during streamline similarity comparison. Wang et al. [89] partitioned a stream-

line into the so-called minimal segments first, and the final segmentation is obtained

after merging the minimal segments based on two thresholds: total curvature and

average binormal direction. The segments in the final segmentation are considered as

flow features. Both of these methods locate segmentation points by checking whether

the two sides of a point correspond to different features. They use multiple criteria

to measure the similarity between the two sides of a potential segmentation point.

However, the problem of how to combine different criteria is a challenging task. Dif-

ferent criteria may not play equally important roles in determining the segmentation,

and the importance of each criterion may change depending on the scenarios.

Tao et al. [84] segmented a streamline such that the accumulated curvature of each

segment does not exceed a certain threshold. A number of short segments will be

generated, and each one of them is assigned a character. Frequent text patterns

are extracted and treated as flow features. One disadvantage of this method is that

the final extracted features depend on two parameters used for finding frequent text

patterns in a collection of strings.

The problem of curve segmentation has also been studied in the computer vision com-

munity. Computer vision applications usually focus on how to segment a curve into

a combination of representations such as lines, elliptical and superelliptical arcs [70].

In flow visualization, since users are usually interested in flow features corresponding

24

to more complicated curves such as spirals, the curve segmentation techniques used

in computer vision are not suitable.

Proposed Solution. This dissertation proposes to use machine learning to solve the

problems of previous streamline segmentation methods. The proposed method also

uses multiple criteria to determine the similarity between the two sides of a potential

segmentation point. Instead of requiring users to adjust the values of different criteria

individually for segmentation, the proposed method constructs a non-trivial decision

function of these criteria which determines whether a point is a segmentation point or

not. The resulting segments correspond to desired features, and no further filtering

is required. Another advantage of using machine learning is that it gives users the

flexibility of segmenting similar streamlines differently for different applications.

The proposed streamline segmentation works as follows: (1) users will be asked to

specify what types of features they are interested in by segmenting a few example

streamlines; and (2) machine learning is leveraged to segment other streamlines so

that user-desired features can be extracted. Comparison results show that the pro-

posed method outperforms several other methods, which encourages future research

on applying machine learning to flow feature extraction.

25

Chapter 3

Streamline Similarity Analysis

using Bag-of-Features

3.1 Overview

Visual clutter is a major issue when a large number of streamlines are rendered to

depict a vector field. Due to visual clutter, it is difficult for users to explore the

underlying features. Clustering the streamlines based on their shape similarities is

an effective way to address this problem. However, designing a metric to evaluate

streamline similarity is a challenging task. Inspired by the idea of bag-of-features

widely used in computer vision, the following method of evaluating the similarity

27

between two streamlines is presented. First, feature descriptors are computed at each

point along a streamline for all the streamlines. Second, quantization is carried out

to obtain a compact representation of the descriptor space which consists of all the

feature descriptors computed in the first step. Third, spatially sensitive bag-of-features

is constructed for each streamline based on the quantization results from the second

step. Finally, the similarity between two streamlines is calculated as the weighted

Manhattan distance between their corresponding spatially sensitive bag-of-features.

Compared with previous streamline similarity metrics, this metric (1) is invariant

to rotation and translation, and (2) takes into consideration the spatial relationship

among different feature descriptors. In practice, this metric makes it possible to find

out the streamlines which are more visually similar to a query streamline. The utility

of this approach is demonstrated by two common tasks in flow field exploration:

streamline similarity query and streamline clustering. This work has been published

in IS&T/SPIE Conference on Visualization and Data Analysis 2014 [48].

3.2 Background

This section first introduces Shannon entropy (Section 3.2.1), and then explains cur-

vature and torsion (Section 3.2.2). These important concepts will also be used in the

next chapter. At last, the concept behind bag-of-features model (Section 3.2.3) is

discussed.

28

3.2.1 Shannon Entropy

Entropy [26] is a measure of the uncertainty of a random variable. Let X be a discrete

random variable with alphabet χ and probability mass function p(x) = Pr{X =

x}, x ∈ χ. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈χ

p(x) log p(x) (3.1)

The log is to the base 2 and entropy is expressed in bits. For example, the entropy

of a fair coin toss is 1 bit. The convention 0 log 0 = 0 is used, which is easily justified

by continuity since x log x → 0 as x → 0. If the base of the logarithm is e, the

entropy is measured in natural unit of information (nat). This dissertation uses base

2 logarithms only, and hence all the entropies will be measured in bits.

The entropy of X can also be interpreted as the expected value of the random variable

log 1
p(x)

. Therefore, it can also be written as:

H(X) =
∑
x∈χ

p(x) log
1

p(x)
(3.2)

Since 0 ≤ p(x) ≤ 1 implies that log 1
p(x)
≥ 0, entropy H(X) is always non-negative.

29

3.2.2 Curvature and Torsion

Intuitively, curvature [69] is a measure of how ‘curved’ a curve is. Let γ(t) : R→ R3

be a regular (i.e., everywhere differentiable) curve in R3. Then, its curvature is

κ =
‖γ̇ × γ̈‖
‖γ̇‖3

(3.3)

where γ̇ and γ̈ are the first and second derivatives. The center of curvature at a point

γ(t) is the point q such that a circle centered at q which meets the curve at γ(t) have

the same tangent and curvature as the curve has there.

While a plane curve is essentially determined by its curvature, this is no longer true for

space curves. For example, a circle of radius of one in the xy-plane and a circular helix

γ(θ) = (1
2

cos θ, 1
2

sin θ, 1
2
θ) both have curvature one everywhere, but it is obviously

impossible to change one curve into another by any combinations of rotations or

translations. Only rotations and translations are performed because curvature is

invariant to these two types of transformations, and the two curves have the same

curvature everywhere. Torsion is introduced to measure how sharply a curve is

twisting out of the plane of curvature. The plane of curvature at a point on a curve

is a plane determined by the tangent and the center of curvature at that point. The

30

torsion for a regular curve γ(t) is given by

τ =
(γ̇ × γ̈) ·

...
γ

‖γ̇ × γ̈‖2
(3.4)

where
...
γ is the third-order derivative.

It can be proved that the curvature and torsion of a curve together determine the

curve up to a rigid motion [69].

3.2.3 Bag-of-Features

The bag-of-features method is widely used in various computer vision tasks such as

image classification and object detection [64]. The name comes from the bag-of-

words representation used in textual information retrieval. With bag-of-words, one

represents a document as a normalized histogram of word counts. Commonly, one

counts all the words from a dictionary that appear in the document. This dictionary

may exclude certain non-informative words such as articles (like “the”), and it may

have a single term to represent a set of synonyms. The term vector that represents

the document is a sparse vector where each element is a term in the dictionary and

the value of that element is the number of times the term appears in the document

divided by the total number of dictionary words in the document (and thus, it is

also a normalized histogram over the terms). The term vector is the bag-of-words

31

document representation – called a “bag” because all ordering of the words in the

document have been lost.

The bag-of-features image representation is analogous. More specifically, the following

steps are performed to obtain such a representation for an image:

• Feature point detection. The main goal of feature point detection is to find

points or regions in an image that carry significant information. There are dif-

ferent approaches to detect feature points/regions in an image. For example,

scale-invariant feature transform (SIFT) [51] is an algorithm in computer vision

to detect and describe local features in images. SIFT detects feature points by

looking for local maxima of the discrete Laplacian at different scales. Another

example is Maximum Stable Extremal Region (MSER) [43], which is a com-

puter vision algorithm for detecting regions in an image that differ in intensity

compared to surrounding regions. More specifically, it finds intensity level sets

in the image which exhibit the smallest variation of area when traversing the

level-set graph. Finally, it is also possible to select all the points in the image

as the set of feature points.

• Feature descriptor computation. Each feature point needs to be described

by a feature descriptor. A feature descriptor is simply a vector which contains

the local image information in the neighborhood of the feature point. For

example, SIFT computes a 128-dimensional feature descriptor constructed as

32

local histograms of image gradient orientations around a feature point. After

this step, the feature points detected in the previous step can be represented by

their corresponding feature descriptors.

• Feature descriptor quantization. Since the number of feature points is

usually large, to reduce the representation size for an image, only a set of rep-

resentative feature descriptors is used to represent an image. To achieve this,

vector quantization is carried out in the descriptor space which consists of all

the feature descriptors obtained in the previous step. The result of vector

quantization is called a vocabulary, which is a set of representative feature de-

scriptors in the descriptor space. These representative feature descriptors are

called ‘words’. More specifically, the set of n feature descriptors {f1, f2, . . . , fn}

can be replaced by a vocabulary P which only contains V representative fea-

ture descriptors {p1, p2, . . . , pV }, where n is equal to the number of detected

feature points and V ≤ n. After quantization, each feature descriptor fi can be

replaced by the word pj from the vocabulary such that the distance between fi

and pj is less than that between fi and pk for all k 6= j. One commonly used

distance measure is the Euclidean distance.

• Bag-of-features construction. Bag-of-features representation can be con-

structed as follows: for each word, count the number of feature descriptors

which are represented by this word. In other words, a histogram which counts

the frequency of appearance of each word is constructed. In this histogram,

33

since each bin corresponds to a word, the number of bins in this histogram is

equal to the size of the vocabulary.

3.3 Spatially Sensitive Bag-of-Features

Since streamlines are usually sparse in features compared with images, every point

on a streamline is considered as a feature point. The feature descriptor for each point

is a vector consisting of all the features described in Section 3.4. Given all the fea-

ture descriptors, the first step is to quantize the descriptor space in order to obtain

a vocabulary. A vocabulary P = {p1, p2, · · · , pV } of size V is a set of representa-

tive vectors in the descriptor space. The dimension of each vector is the number

of features computed at each point on a streamline. For example, the dimension of

each representative vector is two if only curvature and torsion are computed at each

point. The quantization can be done using the efficient k-means algorithm by Ka-

nungo et al. [41], and the size of the vocabulary can be set empirically. Note that

increasing the size of vocabulary does not necessarily improve streamline similarity

comparison results because there may be many duplicates in the vocabulary due to

the small number of features (Section 3.4) used. Compared with 2D images, it is

much more difficult to find a large number of independent features for streamlines.

In the following experiment, the size of vocabulary is set to 16.

34

Given a vocabulary, a feature distribution for a streamline point x is the following

V × 1 vector:

θ(x) = (θ1(x), θ2(x), · · · , θV (x))T (3.5)

where θi(x) = 1 and i is the index of the word in the vocabulary which best describes

the features at point x, and θj(x) = 0 for j 6= i. To obtain the bag-of-features

for a streamline X, the feature distributions is simply summed up over the entire

streamline:

BoF(X) =
∑
x∈X

θ(x) (3.6)

where x is a point on the streamlineX. In other words, a streamline is now represented

by BoF(X) which is a histogram of words, and hence common techniques which

evaluate histogram similarity can be used to measure the similarity between two

streamlines.

However, the above definition of bag-of-features only considers the distribution of

words in the vocabulary and loses the spatial relationship among them. Take text

search as an example, in a document about “matrix decomposition”, the words “ma-

trix” and “decomposition” are frequent. However, a document about the movie Ma-

trix and a document about decomposition of organic matter will also contain these

words. This will lead to similar word statistics and, consequently, similar bag-of-

features. In order to overcome this issue, text search engines commonly use vocabu-

laries not only of single words but also of combinations of words or expressions. For

35

instance, the expression “matrix decomposition” will be frequently found in a linear

algebra textbook, but unlikely in a document about the movie Matrix.

In the case of streamlines, two visually dissimilar streamlines may have many similar

words because of the small size of vocabulary. Therefore, the two streamlines may be

considered similar because the distance between their bag-of-features is small. This

issue is addressed by considering the contributions of all the possible pairs of words

(i.e., expressions) from the vocabulary. As mentioned above, a feature descriptor is

computed for each point on a streamline, and the feature descriptor can be represented

by a certain word from the vocabulary. If two points are spatially close to each other

on a streamline, the expression consisting of their words has a large contribution.

More formally, the spatially sensitive bag-of-features for a streamline X is defined as

follows:

SS-BoF(X) =
∑
x∈X

∑
y∈X∧y 6=x

θ(x)θT (y)
1

d(x, y)/l
(3.7)

where l is the total length of a streamline and d(x, y) is the arc-length between two

points x and y on that streamline. Notice that θ(x) is a V × 1 column vector as ex-

plained above, so θ(x)θT (y) is a V ×V matrix. Since the vector only has one non-zero

element equal to one, the elements of the matrix θ(x)θT (y) also only has one non-zero

element equal to one. The non-zero matrix element at row i and column j indicates

an expression consisting of the i-th and j-th words from the vocabulary. The resulting

spatially sensitive bag-of-features is a V × V symmetric matrix which represents the

36

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

10

20

30

40

50

60

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

10

20

30

40

50

60

(a) (b)

Figure 3.1: Two different streamlines along with the symmetric matrices
representing their spatially sensitive bag-of-features.

contributions of different expressions. It is symmetric because θ(x)θT (y) = θ(y)θT (x)

and d(x, y) = d(y, x). To make it easier to evaluate the distance between such two

matrices, the symmetric matrix is turned into a V (V+1)
2

dimension vector by only

considering its upper triangular part. Notice that l
d(x,y)

instead of just d(x, y) is used

as the denominator in order to offset scaling effects. Otherwise, a scaled version of a

streamline will have a very different spatially sensitive bag-of-features than the origi-

nal streamline since the values in the matrix will also be scaled. Figure 3.1 shows two

streamlines along with the symmetric matrices representing their spatially sensitive

bag-of-features. As it can be seen, the two symmetric matrices indeed look different

for the two streamlines of dissimilar shapes.

When it comes to compare the bag-of-features representation of two streamlines, it

is noticed that not all words are equally important for the purpose of comparison.

In text retrieval, it is common to assign different weights to words according to

their statistical importance. Down-weighting common words like prepositions and

37

articles increase the performance of text search engines. Similarly, down-weighting

the contribution of the common expressions is also an effective technique which has

been successfully used in object retrieval in video [82] and three-dimensional shape

retrieval [16]. Similarly, inverse document frequency of expression i is defined as the

logarithm of the inverse fraction of streamlines in a flow field in which this expression

appears:

wi = log

(
D∑D

j=1 δ(fi(Xj) > 0)

)
(3.8)

where D is the total number of streamlines, δ an indicator function, and fi(Xj) counts

the number of occurrences of expression i in streamline j. The indicator function

δ evaluates to one if fi(Xj) > 0, otherwise to zero. The smaller wi is, the more

common the expression i is in all the streamlines, and so it is less likely to be able to

discriminate between streamlines.

Finally, the weighted Manhattan distance is used to measure the similarity between

two streamlines X and Y :

d(X, Y) =

V (V+1)/2∑
i=1

wi|SS-BoF(X)i − SS-Bof(Y)i| (3.9)

Again, because spatially sensitive bag-of-features is a symmetric matrix, only the

upper triangular part of the matrix (a total of V (V+1)
2

matrix elements) are used

to compute the distance. wi is the weighting coefficient explained in the previous

paragraph.

38

3.4 Streamline Feature Selection

Spatially sensitive bag-of-features makes it possible to consider a combination of suit-

able feature metrics. Since the goal is to find out streamlines with similar shapes, the

first two metrics considered are curvature and torsion. According to the fundamental

theory of curves [69], any regular curve has its shape completely determined by its

curvature and torsion up to a rigid transformation. Section 3.4.1 gives details on

how curvature and torsion are computed on streamlines. Curvature and torsion are

examples of local geometric properties. Experiments show that similarity comparison

results can be improved by considering the other two global geometric properties:

velocity direction entropy (Section 3.4.2) and tortuosity (Section 3.4.3).

3.4.1 Computing Curvature and Torsion in Vector Fields

Instead of directly computing the curvature and torsion at a point on a streamline,

they are first calculated at the grid vertices (Chapter 1) in a vector field, and then

the tri-linear interpolation can be applied to compute them at other points in the

vector field.

Equation 3.3 and Equation 3.4 are used to compute curvature and torsion at grid

39

vertices. These two equations require the second-order and third-order derivatives

to be calculated first (first-order derivatives are velocities which are already known).

Numerical methods such as central difference approximation can be used to approxi-

mate these derivatives. The central difference approximation can be derived as follows

using Taylor approximation:

γ(x+ h) = γ(x) + γ̇(x)h+
1

2
γ̈(x)h2 +

1

6

...
γ (x)h3

γ(x− h) = γ(x)− γ̇(x)h+
1

2
γ̈(x)h2 − 1

6

...
γ (x)h3

γ̇(x) ≈ γ(x+ h)− γ(x− h)

2h

For a vector field, because the velocity at time t (i.e., γ(t)) is only available as input

at the grid vertices and the grid are all unit squares/cubes, h is set to 1. Therefore,

the second and third order derivatives at grid vertices can be approximated using the

central difference method as follows:

γ̈(x) =
γ̇(x+ 1)− γ̇(x− 1)

2
...
γ (x) =

γ̈(x+ 1)− γ̈(x− 1)

2

(3.10)

Once the curvature and torsion at each grid vertex is known, the tri-linear interpo-

lation can be applied to compute the curvature and torsion at an arbitrary point

(x, y, z) in a vector field. The tri-linear interpolation works by first locating the unit

cube in the grid which contains the point (x, y, z). Then it applies the linear interpo-

lation first along the x direction, then the y direction, and finally the z direction in

40

the unit cube.

Let (x0, y0, z0) and (x1, y1, z1) be the two diagonally positioned corners of the unit

cube such that x0 < x1, y0 < y1 and z0 < z1. The curvatures at the corners of

the unit cube are κ(x0,y0,z0), κ(x1,y0,z0), κ(x0,y1,z0), κ(x1,y1,z0), κ(x0,y0,z1), κ(x1,y0,z1), κ(x0,y1,z1)

and κ(x1,y1,z1). The differences xd, yd and zd between each of x, y, z and the smallest

coordinate (x0, y0, z0) are:

xd =
x− x0
x1 − x0

yd =
y − y0
y1 − y0

zd =
z − z0
z1 − z0

(3.11)

First interpolate along x-axis, which gives:

c00 = κ(x0,y0,z0)(1− xd) + κ(x1,y0,z0)xd

c10 = κ(x0,y1,z0)(1− xd) + κ(x1,y1,z0)xd

c01 = κ(x0,y0,z1)(1− xd) + κ(x1,y0,z1)xd

c11 = κ(x0,y1,z1)(1− xd) + κ(x1,y1,z1)xd

(3.12)

Then interpolate the above values along the y-axis:

c0 = c00(1− yd) + c10yd

c1 = c01(1− yd) + c11yd

(3.13)

41

Finally the curvature at point (x, y, z) is obtained by interpolating the above values

along the z-axis:

κ(x,y,z) = c0(1− zd) + c1zd (3.14)

Torsion at an arbitrary point is computed in a similar way.

3.4.2 Velocity Direction Entropy

Xu et al. [92] showed that information theory can be applied to effectively capture

important flow features in a vector field. Instead of measuring the velocity direction

entropy for regions in a vector field [92], for each point on a streamline, the entropy of a

small neighborhood around that point is computed. Intuitively, the more complicated

the neighborhood is, the higher its velocity direction entropy value is. To do so, the

3D vector space needs to be quantized into a certain number of bins, count how

many velocity vectors fall into each bin, and compute the entropy by its definition 3.1

(Page 29). For example, for a straight streamline, its velocity direction entropy

is zero since all the velocity vectors fall into the same bin. To quantize the 3D

vector space, a sphere partition algorithm [46] is leveraged and the number of bins

is chosen empirically to be 50. It is found that increasing the number of bins is not

always a good idea because it will make a relatively simple-looking streamline have a

big velocity direction entropy because vectors pointing in similar directions fall into

42

different bins.

3.4.3 Tortuosity

Tortuosity was first proposed by McLoughlin et al. [57], and it has a low computation

cost. Tortuosity measures the degree of deviation from a straight line for a curve. It is

calculated as the ratio of the length of curve to the straight line distance between the

curve’s start and end points. For example, a straight line has the lowest tortuosity

value of one, and the tortuosity of a half circle with radius r is π
2

= πr
2r

. Similar to

velocity direction entropy, it is also a measure of streamline complexity. However,

this metric is able to distinguish two dissimilar segments which have similar velocity

direction entropy values (Figure 3.2).

Figure 3.2: Tortuosity vs. velocity direction entropy: both curves have
similar velocity direction entropies because their tangent vectors almost
point in every direction in a 2D space. However, the red one looks more

complicated than the blue one and has a higher tortuosity value.

To compute the tortuosity at point x on a streamline, the following formula is used:

T (x) =
α(x)

‖p(x)− p(0)‖
(3.15)

43

where α(x) is arc-length between the point and the streamline’s start point, and p(x)

(resp., p(0)) is the coordinates of point x (resp., the start point). The arc-length

α(x) is calculated by the sum of the lengths of all the straight line segments between

the start point and the point x. These straight line segments are determined by the

consecutive points (generated by Runge-Kutta method mentioned on Page 3) from

the streamline’s start point till the point x.

3.5 Results and Discussion

The purpose of this section is to demonstrate the utility of the spatially sensitive bag-

of-features in two common flow field exploration tasks: streamline similarity query

and streamline clustering. The experiment uses a total of seven flow data sets listed

in Table 3.1. The five critical points data set is a synthesized flow field consisting of

two spirals, two saddles and one source. The tornado data set is from a simulation

of a tornado event. The supernova data set is from a simulation of the explosion of

stars. The car flow data set is from the simulation of the air flow around a car. The

crayfish data set is from a simulation of the heat flow around a cooking crayfish. The

solar plume data set is from a simulation of down-flowing solar plumes for studying

the heat, momentum and magnetic field of the sun. Finally, the computer room data

set is from a simulation of air flows inside a computer room.

44

Table 3.1
The timing results of seven flow data sets for feature and spatially sensitive

bag-of-features computation.

average feature SS-BoF
initial # points evaluation evaluation

data set dimension # lines per line time time

five critical pts 51× 51× 51 500 60 0.372s 0.245s
tornado 64× 64× 64 500 300 0.833s 0.785s
supernova 100× 100× 100 500 106 0.553s 0.323s
car flow 368× 234× 60 500 338 0.846s 0.711s
crayfish 322× 162× 119 800 354 1.327s 1.422s
solar plume 126× 126× 512 600 492 1.674s 1.799s
computer room 417× 345× 60 800 227 1.28s 1.076s

3.5.1 Configuration and Timing

A hybrid CPU-GPU solution is used for computation with the following hardware con-

figuration: Intel Core i7 quad-core CPU running at 3.20GHz, 24GB main memory

and an nVidia GeForce GTX 580 graphics card. Streamline tracing and feature cal-

culation are performed on the GPU using CUDA. The input velocity field was loaded

into the texture memory on GPU such that velocity derivatives can be computed effi-

ciently. The spatially sensitive bag-of-features for all the streamlines are computed in

parallel using OpenMP. As it can be seen from Table 3.1, the pre-processing including

feature and SS-BoF evaluation is finished very quickly even for large data sets such

as solar plume and computer room.

45

3.5.2 Streamline Similarity Query

Due to the large number of streamlines that are displayed, visual cluttering and occlu-

sion become a challenge for flow field exploration. In order to overcome this problem,

users can pick a streamline of interest and request to display streamlines similar to

the query streamline. When a query streamline is picked, the similarity between that

streamline and each of the remaining streamlines is calculated. After that, users can

adjust the number of similar streamlines to be displayed. Since the spatially sen-

sitive bag-of-features for each streamline is precomputed, the query can be done in

real time. The streamline similarity query results are compared using two similarity

metrics: one is the spatially sensitive bag-of-features explained in Section 3.3, and

the other one is the similarity metric proposed by Lu et al. [54]. Readers can refer

to Section 2.1 (Page 20) on the details of their similarity metric. For the purpose of

fair comparison, two similarity metrics are computed using the same set of features

described in Section 3.4. Lu et al. determined the number of bins in the 1D feature

histogram of each streamline segment using Scott’s choice [78]. However, in the fol-

lowing experiment, the number of bins of the feature histogram is set to be the same

as the size of the vocabulary used in spatially sensitive bag-of-features so that the

two methods can be compared using the same representative feature descriptors.

Figures 3.3 to 3.9 illustrate the comparison between the two methods. In these

46

figures, the left column shows the query streamlines, the middle column shows the

results using spatially sensitive bag-of-features (SS-BoF), and the right column shows

the results obtained using the method by Lu et al. [54]. Notice that only the 20%

most similar streamlines are displayed. Overall, SS-BoF has a better performance

in the sense that the streamlines in the query results look more similar to the query

streamline.

For the five critical point data set in Figure 3.3, the query streamline looks like a

straight line. For both similarity measures, the streamlines similar to the query are

found at the two corners of the bounding box . However, some spiral streamlines

appear in the query results using Lu’s similarity metric, which do not look like the

query streamline.

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.3: Query result comparison using the five critical points data set

For the tornado data set in Figure 3.4, it is obvious that similar streamlines found

using SS-BoF make more sense. The query streamline has an elongated spiral, which

47

also appears in most of the streamlines found using SS-BoF; however, in the query

results found using Lu’s similarity metric, there are many streamlines that instead

have shorter spirals shown in the red circle.

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.4: Query result comparison using the tornado data set

For the following three data sets in Figures 3.5 to 3.7: supernova, car flow and crayfish,

it is hard to say which similarity metric works better because the streamlines found

by both metrics look similar enough to the query streamline. The reason for the

fact that some straight streamlines show up as similar streamlines in the car flow

data set in Figure 3.6 is that there does not exist a sufficient number of streamlines

similar to the query streamline given the current threshold on the percentage of

similar streamlines to display. Similarly, in the crayfish example in Figure 3.7, some

streamlines considered similar to the query have parts that are close to straight lines,

even though the query streamline does not contain any straight part. Again this is

because there are not enough streamlines in the crayfish data set which look close

enough to the query.

48

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.5: Query result comparison using the supernova data set

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.6: Query result comparison using the car flow data set

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.7: Query result comparison using the crayfish data set

For the plume data set in Figure 3.8, the query streamline has a big ‘U’ shape in

it. Many of the similar streamlines found using SS-BoF also have the ‘U’ shape.

However, using Lu’s similarity metric gives some streamlines with a small hook (in

49

red circles) in the results. Therefore, the query results using SS-BoF look better on

the plume data set.

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.8: Query result comparison using the solar plume data set

Finally, for the crayfish data set in Figure 3.9, the two similarity metrics lead to very

similar query results. Again, the difference is too small to determine which metric is

better.

(a) Query streamline (b) SS-BoF (c) Lu’s similarity metric

Figure 3.9: Query result comparison using the computer room data set

50

3.5.3 Streamline Clustering

Streamline clustering is an effective way of visualizing a large number of streamlines

by grouping together the streamlines with similar shapes. A key step in common

clustering algorithms is to compute the similarity between two elements. Better

similarity metric will lead to better clustering results. The following experiment will

apply affinity propagation to the same set of streamlines twice, each time with a

different similarity metric, so that clustering results can be compared subjectively to

determine which similarity metric is better.

The experiment uses affinity propagation [32] as the clustering algorithm. Affinity

propagation is a clustering algorithm which can automatically determine the best

number of clusters by message passing. The number of clusters is affected by the

value of preference. Low preferences leads to a small number of clusters, whereas high

preferences lead to a large number of clusters. The input to the affinity propagation

algorithm is a symmetric similarity matrix where each matrix element at (i, j) is the

similarity between data points i and j. In the following experiment, two similarity

matrices are computed for the purpose of comparison, first based on SS-BoF and then

Lu’s similarity metric.

The experiment is performed using the solar plume (from real simulation) and the

51

tornado (computer synthesized) data sets. The results are illustrated in Figures 3.10

to 3.12. Ideally, the numbers of generated clusters should be kept the same for fair

comparison; however, since affinity propagation does not allow users to specify the

number of clusters, best efforts are made to make the number of clusters as close as

possible by adjusting the value of preferences mentioned in the previous paragraph.

For the plume data set in Figure 3.10, five clusters are generated when SS-BoF is used

as the similarity metric, whereas only four clusters are produced using Lu’s similarity

metric. It can be seen that streamlines with different shapes are better separated with

the use of SS-BoF. For example, the streamlines in the red cluster (top row) do not

look like the streamlines in any other cluster, and thus consist of a separate cluster;

however, these streamlines are merged into the blue cluster (bottom row) using Lu’s

similarity metric. Moreover, both the yellow and the blue clusters (bottom row)

contain similar streamlines because they all have a big ‘U’ shape, so these similar

streamlines are better to be in the same cluster. Notice how the clustering using SS-

BoF successfully groups these streamlines into the purple cluster (top row). Finally,

the blue cluster (bottom row) contains some streamlines with a small hook (in the

center of the vector field) which do not look like the remaining streamlines in the

same cluster. These streamlines appear in the yellow cluster (top row) using SS-BoF,

and they do look similar to the rest of the streamlines in the same cluster.

For the tornado data set in Figures 3.11 and 3.12, it is obvious that the streamlines

52

Figure 3.10: Clustering results for solar plume data set using SS-BoF
(top) and the measure based on Lu et al. [54] (bottom).

53

looking very different appear in the same cluster when Lu’s similarity metric is em-

ployed by the clustering algorithm. For example, in the red cluster in Figure 3.12,

there are some streamlines at the top of the bounding box which do not look like spi-

rals. Also, the yellow cluster in Figure 3.12 has both long and short spirals. However,

this is not the case when SS-BoF is used. Notice that in Figure 3.11, the longer spirals

appear in the red and blue clusters, whereas the shorter spirals are in the yellow and

black clusters.

There does exist a problem with SS-BoF. In the purple cluster in Figure 3.11, there is

a long spiral which does not look like the remaining streamlines in the same cluster.

When this long spiral is compared with the streamlines in both the red and the blue

clusters in Figure 3.11, it does not look like them either because (1) it does not have

the flat part at its bottom, and (2) the top part of the streamline (circled in green)

is twisting up very fast, which implies large torsion and small curvature; however,

this is not the case for the spirals in the red or the blue cluster in Figure 3.11. The

clustering algorithm fails to make a separate cluster for this single streamline because

the distance between its SS-BoF and the SS-BoF of the other streamlines in the same

cluster is not large enough. This suggests that the current features (Section 3.4) may

not be sufficient to describe the difference.

54

Figure 3.11: Clustering results for tornado data set using SS-BoF.

Figure 3.12: Clustering results for tornado data set using Lu et al. [54].

55

3.6 Conclusion

This chapter presents a novel method of measuring streamline similarity based on

spatially sensitive bag-of-features. Each streamline is represented by its own spa-

tially sensitive bag-of-features, which encodes the statistical distribution of different

features on the streamline and the spatial relationship among the features. Only

four types of features are considered currently: curvature, torsion, tortuosity and ve-

locity direction entropy; however, other features can be incorporated easily into the

computation of spatially sensitive bag-of-features by just adding them into the fea-

ture descriptors. The weighted Manhattan distance is used to measure the distance

between two spatially sensitive bag-of-features representations.

Although this approach works reasonably well as demonstrated in Section 3.5, two

things deserve further study:

• Search for new features to add into spatially sensitive bag-of-features. Stream-

lines have far less features than images. For images, besides SIFT and MSER

mentioned in Section 3.2.3, researchers have designed many other image fea-

tures [88] for various computer vision tasks. Since streamlines are essentially

space curves, it is challenging to find out other features independent from cur-

vature and torsion which can also describe a curve’s shape characteristics well.

56

In other words, the new features should be able to characterize the shape of a

streamline globally since curvature and torsion are already the local features.

• Design better distance measure for evaluating the difference between two spa-

tially sensitive bag-of-features (Section 3.3). Weighted Manhattan distance may

not work well sometimes as shown in Section 3.5.3. An interesting direction is

to study how to leverage machine learning to obtain a better distance measure.

One possible way to do this is through the machine learning based ranking algo-

rithm. Learning to rank [50] has been widely used in information retrieval tasks

such as web search: given a query, the list of documents ranked in decreasing

order of relevance is returned. In order to learn such a ranking function, the

training data should be provided by users and contain the following: a set of

query streamlines, and, for each query streamline, a set of similar streamlines

along with the labels denoting the level of similarity to the query. Note that

users can also include a set of dissimilar streamlines in the training data. With

such a ranking function, the result of streamline query can be shown based on

the level of similarity.

57

Chapter 4

Extracting Flow Features via

Supervised Streamline

Segmentation

4.1 Overview

The previous chapter presents two ways (i.e., streamline query and clustering) of re-

ducing visual clutter for the vector field visualized with a large amount of streamlines.

Sometimes, however, those two methods may not be enough because the interesting

features which correspond to partial streamlines (i.e., a part of a streamline) may still

59

be occluded after clustering. This chapter discusses an approach which allows par-

tial streamlines to be extracted, and these partial streamlines are grouped by shape

similarity for feature exploration. Each group of partial streamline corresponds to

some feature which users are interested to see. Since there is no rigorous definition of

features, users will be asked to provide some examples of the features specific to their

applications. This can be done by manually segmenting a few representative stream-

lines into segments corresponding to different features. The remaining streamlines

from the same vector field will be segmented based on those user-defined features

in the hope that the features will also be extracted if they exist in the remaining

streamlines. This whole process is called supervised streamline segmentation because

supervised learning is applied to achieve the goal. Figure 4.1 illustrates the process

of extracting user-defined flow features.

Figure 4.1: Given an input pool of streamlines (left), each streamline is
segmented using a learned classifier (Section 4.2) for segmentation points
(middle, the red point is the segmentation point found by our algorithm).

Partial streamline features specified by users will be clustered based on
their similarities (right).

60

In the following, Section 4.2 introduces some background on supervised learning and

explains the details of support vector machine. Section 4.3 explains in detail how

supervised streamline segmentation is performed. Section 4.4 discusses the results of

applying this technique to different flow data sets and parameter selection. Section 4.5

compares this technique with other state-of-the-art feature extraction methods. Fi-

nally, Section 4.6 has the conclusions and discusses some future work. This work has

been published by the international journal of Computers & Graphics [49].

4.2 Supervised Learning and Support Vector Ma-

chine

4.2.1 Supervised Learning

Supervised learning is a machine learning task of inferring a function from labeled

training data. The training data consists of a set of training examples. In supervised

learning, each example is a pair consisting of an input object (typically a vector

consisting of different features of the object) and a desired output value. A supervised

learning algorithm analyzes the training data and produces an inferred function, which

can be used for mapping new input object to an output value. Training refers to the

process during which the precise form of the inferred function is determined. If the

61

possible output values consist of a set of discrete values, the mapping process is

called classification. So classification is the problem of identifying which category a

new input object belongs, on the basis of training examples. If there are only two

possible output values, the classification is called binary classification. An example

of binary classification would be assigning a given email into spam or non-spam class.

An algorithm which implements classification is called a classifier. For a binary

classification problem, positive examples are pairs (x, y) where x (boldface indicates

vectors) is an input object and y is the correct categorization of x, and negative

examples are pairs of (x, y) where y is an incorrect categorization of x. Training

error is the fraction of training examples a classifier misclassifies. The ability to

categorize correctly unseen input objects is known as generalization.

4.2.2 Support Vector Machine

A support vector machine (SVM) [76] is a supervised learning model. In the case of

binary classification, an SVM constructs a hyperplane which can be used for classifi-

cation. If a hyperplane can be found to completely separate positive examples from

negative examples, the training examples are called linearly separable. To determine

the label of a new input object, an SVM simply needs to figure out which side of the

hyperplane the input objects falls onto. It can be proved that there exists a unique

optimal hyperplane, distinguished by the maximum margin of separation between any

62

training point and the hyperplane. The margin is the distance of the closest point

to the hyperplane. The points closest to the hyperplane are called support vectors.

More formally, for linearly separable training examples, an SVM learns a linear model

of the form y(x) = wTx + b for binary classification problems, where wT and b are

the normal and the intercept of a hyperplane, and wTx is the inner product between

wT and x. The corresponding decision function is f(x) = sgn(wTx + b), where sgn()

outputs 1 if x is above or on the hyperplane and -1 if x is below the hyperplane.

To construct the optimal hyperplane separating m training examples, the following

optimization problem needs to be solved [76]:

minimize
b∈R

τ(w) =
1

2
‖w‖2

subject to yi(wTxi + b) ≥ 1 for all i = 1, . . . ,m

(4.1)

where (xi, yi) represents the i-th training example.

The above optimization problem is usually solved by its dual problem [76]:

maximize
α∈Rm

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjy
iyj〈xi,xj〉

subject to αi ≥ 0 for all i = 1, . . . ,m and
m∑
i=1

αiy
i = 0

(4.2)

63

For non-linearly separable training examples, a straightforward approach is to trans-

form them into some high dimensional space where the training examples become

linearly separable. However, in order to save computation cost, a kernel function is

applied to each pair of training examples, which is equivalent to explicitly transform-

ing the training examples into a high dimensional space and then computing the inner

product between the transformed training examples. The decision function now takes

the form:

f(x) = sgn

(
m∑
i=1

yiαik(x,xi) + b

)
(4.3)

where k(x,xi) is a kernel function. Specifically, given a mapping ψ which maps the

training examples into a high dimensional space, its corresponding kernel function is

k(x, z) = ψ(x)Tψ(z). A commonly-used kernel function is the radial basis function

(RBF) exp(−‖x− z‖2/2σ2), where σ is a free parameter controlled by users.

In practice, a separating hyperplane may not exist if a high noise level in the training

data causes a large overlap of the classes. To allow for the possibility of examples

violating Equation 4.1, the slack variables εi ≥ 0 for all i = 1, . . . ,m are introduced

in order to relax the constraints to

yi(wTxi + b) ≥ 1− εi for all i = 1, . . . ,m (4.4)

Note that if εi ≥ 1, it means the training example xi is misclassified.

64

A classifier that generalizes well is then found by controlling both the classifier ca-

pability (via ‖w‖) and the sum of slack variables
∑

i εi. The goal now becomes

minimizing the following objective function:

τ(w, ε) =
1

2
‖w‖2 + C

m∑
i=1

εi (4.5)

subjects to the constraint (Equation 4.4), where the constant C > 0 determines

the trade-off between maximizing classifier’s ability of generalization and minimizing

training error.

4.2.3 A Guide to libSVM

libSVM [2] is a popular library for support vector machine. It suggests that cross-

validation and grid-search should be done in order to get a classifier with a reasonably

good generalization capability. In v-fold cross-validation, the training set is first

divided into v subsets of equal size. Sequentially one subset is tested using the

classifier trained on the remaining v − 1 subsets. Thus, each instance of the whole

training set is predicted once so the cross-validation accuracy is the percentage of the

data which are correctly classified.

If RBF kernel and slack variables are used, there are two free parameters which users

can adjust: C and σ. It is not known beforehand which C and σ are best for a

65

given problem. Therefore, libSVM recommends a grid-search on them using cross

validation. The goal is to identify a good (C, σ) so that the classifier can accurately

classify unseen objects. Grid-search tries exponentially growing sequences of C and σ

to identity good parameters for a given problem. For example, C = {2−5, 2−3, . . . , 215}

and σ = {2−15, 2−13, . . . , 23}.

4.3 Supervised Streamline Segmentation

A user-guided streamline segmentation framework is illustrated in Figure 4.2. For

each data set, users are required to manually segment only a small number of stream-

lines in order to define what flow features they want to extract from the flow field. The

user-picked segmentation points along a streamline will be used to generate positive

training examples, whereas the remaining ones are used to generate negative training

examples. Multiscale feature vectors are computed for each positive and negative

example, and fed into an SVM to obtain a binary classier. Finally, the classifier is

used to determine the segmentation points for all the streamlines in the data set. A

post-processing step is required for grouping nearby segmentation points detected by

the classifier. The training process (the dashed line in Figure 4.2) can be repeated if

users are not satisfied with the segmentation results.

66

vector field

trace streamlines

cluster streamlines

simplify streamlines

users provide

training examples

via manual

segmentation

train SVM

classifier

segmentaion &

post-processing

re-train

Figure 4.2: The supervised streamline segmentation framework

There are two subtle issues to solve during the training process. First, only repre-

sentative streamlines should be presented to users for manual segmentation because

this will save users the work of segmenting similar streamlines. Therefore, streamline

clustering is performed to automatically select representative streamlines for users.

Second, since a streamline is usually traced using a small time step (Chapter 1), the

points on a streamline are very close to each other. If all of the points are visual-

ized at the same time, it will be too cluttered and hard for users to pick individual

points as segmentation points. This is the reason why streamline simplification is per-

formed. Later in this section, another benefit of streamline simplification for training

will also be explained. In the following, Section 4.3.1 discusses the features used for

supervised learning, Section 4.3.2 explains how training examples are collected, Sec-

tion 4.3.3 gives the details of the training process, and finally Section 4.3.4 introduces

the segmentation algorithm and post-processing step.

67

4.3.1 Features vectors

In machine learning, an input object is usually represented by a feature vector which

is an n-dimensional vector of numerical features, so an important task is to determine

which features should be used. Since the goal is to obtain a classifier which decides

whether a point is a segmentation point, the chosen features should be able to cap-

ture the important characteristics of a segmentation point. Intuitively, because the

streamline segments on both sides of a segmentation point should “look” differently,

a feature vector should include the metrics which evaluate the similarity between two

neighboring segments. Note that the neighborhood size plays an important role in

the similarity comparison, which is illustrated in Figure 4.3. In this figure, assume

the goal is to determine whether the blue point is a segmentation point. The answer

seems to be affirmative if the two neighboring segments with green end points are

compared because one of them is straight and the other is wavy. However, if the

neighborhood size is made larger such that the two segments with red end points are

compared, the answer may become less affirmative. Because it is not known what

features are contained in a streamline, it is nearly impossible to choose an appropriate

neighborhood size in advance, and hence different neighborhood sizes are considered.

The same feature will be computed based on these different neighborhood sizes, and

the resulting feature vectors are called multiscale feature vectors. More specifically,

the similarity between the two segments around a point whose lengths are within

68

5%, 10%, 15% and 20% of the total number of points on a streamline are compared.

Notice that a fixed number of streamline points for neighborhood size is not preferred

because different streamlines in the same flow field may have very different numbers

of points.

Figure 4.3: Importance of neighborhood size: the blue point may be
considered as a segmentation point if the two neighboring segments with
green end points are compared but not if a larger neighborhood size is

considered (marked by red points).

The following metrics for comparing neighboring segments are used: (1) velocity

direction entropy ratio, (2) tortuosity ratio, (3) curvature and torsion histogram dif-

ference, and (4) volume ratio of minimum bounding ellipsoids. In the following, each

of these metrics will be explained in detail.

4.3.1.1 Velocity direction entropy and Tortuosity

Similar to Section 3.4.2, the entropy for a streamline segment is used as an indicator

of its complexity. After the velocity direction entropy is computed for each of the two

neighboring segments around a point, the ratio of the smaller entropy value to the

larger one is calculated, and incorporated into that point’s feature vector. Intuitively,

the smaller the ratio is, the more likely that point is a segmentation point.

69

The ratio of tortuosities (Section 3.4.3) of two neighboring segments is also included

in a feature vector. The tortuosity ratio is computed in the same way as velocity

direction entropy ratio, thus making the ratio between zero and one.

4.3.1.2 Curvature and torsion histogram

Section 3.4.1 introduces a way of computing curvature and torsion: first compute

them at grid points and then use the tri-linear interpolation to find their values at

an arbitrary point. Using this way, the ranges of curvature/torsion values of different

vector fields are usually different because the ranges of the magnitudes of the input

velocities are varied. If the training examples are collected from different vector fields,

a potential problem for SVM may arise since the best accuracy of SVM is achieved if

the same components across different training examples are in the same range [2].

Therefore, the way of computing discrete curvature and torsion as described in [12]

is adopted. Using this method, it is guaranteed that the range of curvature (resp.,

torsion) will be [0, π) (resp., (−π, π]) . This method starts by defining an orthonormal

frame Xi, Yi, Zi at each streamline point pi+1:

Xi = ai, Yi =
ai+1 − (ai+1 · ai)ai
‖ai+1 − (ai+1 · ai)ai‖

, Zi = Xi × Yi

where ai is the vector from pi to pi+1 and pi are the points along a streamline.

70

The discrete curvature κi at each point pi and the discrete torsion τi for each segment

pipi+1 are given by the following formulas:

κi = cos−1(Xi ·Xi−1),

τi =

cos−1(Zi−1 · Zi) if Zi−1 · ai+1 ≥ 0

− cos−1(Zi−1 · Zi) if Zi−1 · ai+1 ≤ 0

In order to obtain a histogram describing the shape characteristics of a streamline,

curvature and torsion histograms are first computed, and the two histograms are

concatenated into a single 1D histogram similar to [54]. The number of bins are

empirically set to 20 for curvature histograms and 40 for torsion histograms because

the discrete curvature and torsion have different ranges. By doing this, each bin

corresponds to 180 ◦/20 = 9 ◦. This granularity is enough for the purpose of similarity

comparison because even though the numbers of bins are increased to 80 and 160 for

curvature and torsion histograms respectively, no noticeable difference is observed

regarding the clustering results later (Section 4.3.2.1). Finally, the 1D histogram is

normalized to make it scale-invariant.

The distance between two 1D histograms is measured using the earth mover’s distance

(EMD) [72], which is a measure of the distance between two probability distributions.

Intuitively, given two distributions, one can be seen as a mass of earth properly

spread in space, the other as a collection of holes in that same space. Then, the EMD

71

measures the least amount of work needed to fill the holes with earth. Computing the

EMD is based on a solution to the well-known transportation problem [36]. Suppose

that several suppliers, each with a given amount of goods, are required to supply

several consumers, each with a given limited capacity. For each supplier-consumer

pair, the cost of transporting a single unit of goods is given. The transportation

problem is then to find a least-expensive flow of goods from the suppliers to the

consumers that satisfies the consumers’ demand. As Lu et al. [54] pointed out, the

EMD distance can be approximated by the L1-distance between two 1D cumulative

histograms to reduce computation cost:

d(P,Q) =
n∑
i=1

|Pcdf (i)−Qcdf (i)|

where Pcdf and Qcdf are the cumulative distribution functions of the two normalized

histograms, and n is the number of bins in each histogram.

4.3.1.3 Volume ratio of minimum bounding ellipsoids

For a point p on a streamline and its two neighboring segments s1 and s2, consider

the following three minimum bounding ellipsoids: Es1∪s2 , Es1 and Es2 . The ellipsoids

enclose, respectively, all the points which belong to s1 ∪ s2, s1, and s2. For p to be a

segmentation point, it is observed that the following ratio should be small (e.g., less

72

than 1.0):

V (Es1) + V (Es2)

V (Es1∪s2)
(4.6)

where V measures the volume of an ellipsoid.

For example, in Figure 4.4 (a), let p be the red point and s1 (left) and s2 (right) be

its neighboring segments. Since s1 is close to a straight line, its bounding ellipsoid

has a volume close to zero. However, the bounding ellipsoid for s1 ∪ s2 is much larger

than that for s1, thus making the above ratio small. So intuitively, this heuristic can

help separate two neighboring segments with significant complexity difference. For

streamlines which do not have distinct features, this ratio can be larger (e.g., close

to 1.0). For example, the ratio is always 1.0 no matter where we separate a straight

line, assuming that 0
0

= 1.0. Another example is a helix which can be considered as a

complete feature by itself. No matter where we segment the helix, the resulting ratio

will always be close to 1.0. This heuristic is also a good indicator for separating 3D

features when there is an abrupt change in torsion even though those features have

similar complexity. Take Figure 4.4 (b) for an example. The streamline has a lower

part which swirls almost in the same plane, and an upper part which looks like a

helix. Again, the bounding ellipsoid for the lower part degenerates into an ellipse,

thus having a volume of zero. The bounding ellipsoid for the whole streamline is

much larger than the one only enclosing the upper part. Section 4.4.2 will discuss in

detail the impact of this heuristic on the classifier performance and final segmentation

73

results.

(a) (b)

Figure 4.4: The blue and the brown ellipsoids are the minimum volume
ellipsoids bounding the streamline segments on two sides of the red point.

The minimum volume bounding ellipsoid for the whole streamline is shown
as white ellipsoids.

The algorithm proposed by Kumar et al. [44] is used to compute minimum volume

bounding ellipsoids. At first sight, principle component analysis (PCA) [40] seems

to be a good way of computing approximate bounding ellipsoids. However, some

experiments showed that PCA does not perform as well as Kumar’s method. There

are other bounding shapes such as cubes or spheres, but ellipsoids can bound a

streamline more compactly than other shapes.

4.3.2 Training examples collection

In order to obtain a classifier which determines whether a point is a segmentation point

or not, training examples which include both segmentation and non-segmentation

74

points need to be collected. Each of these training examples consists of a feature

vector computed based on the features mentioned in the previous section and a label

indicating whether it is a segmentation point. Since users need to provide the training

examples through manual segmentation, the question of how to reduce their work and

to obtain an accurate classifier at the same time needs to be addressed.

There are two tasks involved during training examples collection: (1) choose stream-

lines for manual segmentation, and (2) pick the segmentation points on a streamline.

For the first task, it would be difficult for users to do because they may not be able

to pick any streamline they want due to occlusion, and even though they could, they

have to keep track of the streamlines they have manually segmented to avoid segment-

ing similar streamlines. For the second task, it is better to only have users specify

the segmentation points (i.e., positive examples) but not non-segmentation points

(i.e., negative examples) to reduce their workload. Another issue during segmenta-

tion point picking is that, due to the small time step used in tracing streamlines, the

points on a streamline are usually too close to be easily picked individually.

To address the above issues, some representative streamlines are automatically picked

out for users to segment (Section 4.3.2.1), and streamlines are simplified (Sec-

tion 4.3.2.2) such that users can pick individual points easily. Users only need to

pick segmentation points as positive examples, and the remaining points will be used

as negative examples.

75

4.3.2.1 Automatically picking streamlines for training

The streamlines are clustered based on their similarity such that users only need

to choose the streamlines for manual segmentation from the cluster representatives.

In order to make the clustering fully automatic without users having to specify the

number of clusters, affinity propagation [32] is used for clustering (Section 3.5.3).

Affinity propagation requires the distances of different streamline pairs as input. To

compute the distance between two streamlines, the 1D histogram (Section 4.3.1.2)

is constructed for each streamline such that the distance can be computed as an

approximate EMD distance (Section 4.3.1.2) between the two histograms. Notice

that the similarity values used as input to affinity propagation should be the negative

of the approximate EMD as required by affinity propagation. Figure 4.5 shows an

example of the clustering results of the tornado data set (Section 4.4.1), where six

clusters ((b)-(g)) are generated. The cluster representatives are shown in green.

Note that it is not necessary to achieve the “best” clustering results in this step

because users are allowed to provide more training examples and re-train the seg-

mentation point classifier later.

76

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.5: Streamline clusters and their representatives: the input
streamlines of the tornado data set are shown in (a). After applying
affinity propagation, six clusters ((b)-(g)) are obtained and cluster

representatives are shown in green.

4.3.2.2 Generating training examples

Given a streamline, users need to pick the points where they want to segment it.

For each segmentation point, the velocity direction entropy ratio, tortuosity ratio,

histogram difference, and volume ratio of minimum bounding ellipsoids using different

neighborhood sizes (Section 4.3.1) are computed, and these values consist of the

feature vector for the positive example. For points not picked by users, they are

considered as non-segmentation points. The same features will be computed for each

non-segmentation point and used as the feature vector for the negative example.

Instead of presenting all the points on a streamline to users, a curve simplification

77

algorithm [3] is applied to reduce the number of candidates for them to choose seg-

mentation points from. There are a couple of reasons for doing curve simplification:

• Make it easy to collect training examples. A large number of points are gen-

erated during streamline tracing in order for streamlines to have better visual

quality, which makes it difficult for users to pick individual points because the

points are too close to each other.

• Reduce noisy and redundant training examples. Redundant training examples

are generated when nearby points are chosen as segmentation points because

these points have similar feature vectors. Ambiguity could happen during the

training phase if a nearby point of a segmentation point is chosen to be a non-

segmentation point.

• Reduce computation cost. With fewer points on a streamline, fewer points need

to be tested for segmentation points. Also the cost of training will be reduced

since there will be less training examples.

A popular curve simplification algorithm [3] approximates a polygonal curve P under

the Fréchet error by another polygonal curve P ′ whose vertices are a subset of the

vertices of P . Intuitively, the Fréchet distance between two curves is the minimum

length of a leash required to connect a dog and its owner, constrained on two separate

paths, as they walk without backtracking along their respective curves from one

78

endpoint to the other. More formally, a parameterized curve in Rd can be represented

as a continuous function f : [0, 1] → Rd. A monotonic reparameterization α is a

continuous non-decreasing function α : [0, 1] → [0, 1] with α(0) = 0 and α(1) = 1.

Given two curves f, g : [0, 1]→ Rd, the Fréchet distance δF (f, g) is defined as

δF (f, g) = inf
α,β

(max
t∈[0,1]

d(f(α(t)), g(β(t))) (4.7)

where inf stands for the greatest lower bound, d(x, y) denotes the Euclidean distance

between points x and y, and α and β range over all monotonic reparameterizations.

Figure 4.6 compares the simplification results using different Fréchet errors, which are

measured by the Fréchet distance between the original curve and its simplified one.

Originally, the streamline has 147 points. After simplification, 25/18/15 points are

left if Fréchet error is set to 0.5/1.0/1.5. In this dissertation, the default Fréchet error

is chosen to be 1.0 based on the following two reasons. First, this value is conservative

enough (i.e., no over-simplification) such that all the candidate segmentation points

are in the simplified streamlines. Second, reducing its value will result in more points

after simplification, which in turn generates more redundant negative training exam-

ples because the points used as negative training examples may be very close to each

other. The next section will discuss how negative training examples are generated.

The Fréchet error can also be made adjustable in case the default value does not work

well for users.

79

(b) = 1.0(a) = 0.5 (c) = 1.5

Figure 4.6: A streamline with 147 points is simplified with different
Fréchet error ε (points left after simplification are shown in red): (a)

ε = 0.5, 25 points left (b) ε = 1.0, 18 points left (c) ε = 1.5, 15 points left.

Since determining where to segment a streamline is often not a clear-cut decision,

users are allowed to specify an interval on a streamline such that any point in that

interval could be a segmentation point. In other words, users may pick a few nearby

points to indicate where segmentation occurs. This also helps alleviate the problem

of highly imbalanced training examples (Section 4.3.3) since more positive examples

are generated.

4.3.3 Training

Once all the training examples are collected, the library libSVM [21] can be leveraged

to train a classifier for detecting segmentation points. However, there still exists a

big challenge: highly imbalanced training examples. In other words, there exists far

more negative examples than positive ones. This is caused by the fact that only a

80

few points on a streamline are segmentation points while the remaining ones are all

non-segmentation points. libSVM will generate a classifier with a high false negative

rate if applied directly to such training data.

To address the above issue, the method described in [83] is used. The method incre-

mentally removes redundant negative examples until the classification performance

cannot be improved. Figure 4.7 illustrates this process. In each iteration i, an SVM

classifier with RBF kernel is obtained from the training examples Tr(i). If the clas-

sification performance of the SVM decreases compared with that from the previous

iteration, the SVM with RBF kernel from the previous iteration is considered as the

final classifier. Nonlinear SVMs (i.e., SVMs with non-linear kernels) are used because

they outperform linear ones on all the training data used in this dissertation. This

suggests that the training data are not linearly separable. If the classification perfor-

mance of the SVM classifier with RBF kernel improves in iteration i, a linear SVM

is trained on Tr(i), and the negative support vectors obtained from the training are

removed from Tr(i) to form the new training examples Tr(i + 1). The linear SVM

is chosen over nonlinear SVMs because the training time can be reduced. Notice

that the goal here is to remove redundant even noisy negative examples instead of

achieving the best training accuracy, some experiments showed that the linear SVM

serves this purpose well.

81

Figure 4.7: Remove redundant negative examples until the classification
performance cannot be improved.

For highly imbalanced data, it is not a good idea to measure classification perfor-

mance by the ratio of the number of correctly classified examples to the total number

of examples. For example, assume that there are three positive examples and 97

negative examples and a classifier which classifies all the examples as negative. Al-

though the classification accuracy is 97%, it is apparently not a good classifier. To

address this issue, the receiver operating characteristics (ROC) curve [29] is intro-

duced, which focuses on the relative tradeoffs between benefits (true positives) and

costs (false positives) instead of just the number of correctly classified examples. A

binary classifier usually yields a probability which is a numerical value that repre-

sents the degree to which an instance is a member of a class. The decision is then

82

made through thresholding: if the probability is above the threshold, the classifier

outputs a positive answer, else a negative one. Each threshold value corresponds to

a pair of true positive and false positive values. A ROC curve is the curve with the

threshold value on the x-axis and the corresponding output from the classifier on the

y-axis. To make it easier to compare classifiers, ROC performance can be reduced

to a single scalar value representing the expected performance. A common method

is to calculate the area under the ROC curve, abbreviated AUC. The value of AUC

is always between 0 and 1. Any realistic classifier should have an AUC greater than

0.5.

A method described in [83] can be used to handle highly imbalanced training data

for training SVM classifiers. Its pseudo-code is given in Algorithm 1. Initially,

aggregation is initialized to only contain positive training examples (Line 2). Then

the algorithm repeats the following steps until classifier performance cannot be im-

proved: (1) train a linear SVM on the input examples which initially is the highly

imbalanced training data (Line 5); (2) remove the negative support vectors found

by the linear SVM from examples and replace the negative examples in aggregation

with them (Lines 6-7); (3) train an SVM classifier using RBF kernel (Section 4.2.2)

on aggregation and check if performance is improved (Lines 8-13).

83

Algorithm 1 Classifier training procedure

1: procedure TrainSegPointClassifer(examples)
2: aggregation ← all the positive training examples
3: bestAUC ← 0
4: while true do
5: linearModel ← LinearSVM(examples)
6: aggregation.nSV← linearModel.nSV
7: examples .Erase(linearModel.nSV)
8: segPointClassifier ←RBFSVM(aggregation)
9: auc ←ComputeAUC(segPointClassifer)

10: if auc ≤ bestAUC then
11: break
12: else
13: bestAUC ← auc

4.3.4 Segmentation and post-processing

Streamline segmentation is straightforward once the above classifier is obtained. For

each streamline, each point on the simplified streamline is tested for whether being

a segmentation point. It is possible that several nearby points are all classified as

segmentation points (Figure 4.8 (a)). Therefore, those nearby points need to be

grouped and one of them will be picked as a segmentation point.

The goal is to group segmentation points which are close to each other in terms of

arclength. In order to achieve this grouping, half of the mean of all the segments’

lengths is used as threshold TS and the segmentation points between which the ar-

clength is less than TS are grouped together. The same strategy was also adopted by

[4] to group salient points of a 3D mesh.

84

(a) (b)

Figure 4.8: Remove redundant segmentation points: (a) nearby points (in
red) are detected as segmentation points by our trained classifier. (b) only

one segmentation point is left after post-processing.

Formally, assume that S = {si : 1 ≤ i ≤ NS} is the set of segmentation points found

for a streamline, then the threshold TS is defined as:

TS =

∑NS−1
i=1

∑NS

j=i+1 α(si, sj)

NS(NS − 1)

where NS is the total number of segmentation points found by the classifier and

α(si, sj) measures the arclength between segmentation points si and sj.

A group C of segmentation points is defined as:

C = {si ∈ S : ∀sj ∈ S, α(si, sj) ≤ TS}

The final segmentation point within each group is the one which has the smallest

85

ratio of minimum bounding ellipsoids. In other words, for each segmentation point

si in a group, we compute the minimum bounding ellipsoids (Section 4.3.1.3) of its

left segment spsi, its right segment sisn, and both its left and right segments. The

segmentation point in this group is the one which gives the smallest ratio as computed

by Equation 4.6. The point sp (resp., sn) is an arbitrary point from the previous (resp.,

next) group along the streamline. Since points in the same group are close to each

other, picking an arbitrary point will hardly affect the final segmentation. Figure 4.8

(b) shows an example result of our grouping algorithm: only one point (the red point

in (b)) is picked as the segmentation point from all its nearby segmentation points

(the red points in (a)).

4.4 Results and Discussion

This section first discusses the results of applying the above method to a few data

sets (Section 4.4.1). Next, Section 4.4.2 shows that the chosen features (Section 4.3.1)

serve as good indicators for segmentation points, and especially the volume ratio of

minimum bounding ellipsoids greatly improves the final results. Finally, Section 4.4.3

discusses how the parameters affect segmentation results.

The experiment was performed on a laptop with an Intel Core i5-3360M CPU running

at 2.8GHz, 8GB main memory and an AMD FirePro M2000 graphics card. Only a

86

single CPU thread is used for all the computations.

4.4.1 Flow feature extraction

To evaluate the performance of the above streamline segmentation algorithm, the

resulting segments are clustered based on their similarities. The similarity between

two segments is measured using the method introduced in Section 4.3.1.2, and then

affinity propagation is applied to obtain the clusters. Three steady flow data sets

(Table 4.1) are used in our experiment. The tornado data set is procedurally generated

by software. The five critical points data set is a synthesized flow field consisting of

two spirals, two saddles, and one source. Finally, the solar plume data set is from

a simulation of down-flowing solar plumes for studying the heat, momentum and

magnetic field of the sun. For each data set, the pool of streamlines used during the

training stage and the one used for segmentation were traced separately in order to

test the generalization ability of the trained classifier. In the following, the streamlines

used for training and the streamline segment clusters will be shown for each data set.

The user-picked segmentation points are highlighted in purple, which are used as

positive training examples. The remaining points in red are used as negative training

examples. The segmentation was performed on the streamlines which were traced

separately from the training streamlines

87

Table 4.1
The three flow data sets. The timing results are in seconds.

data set dimension training

lines # seg.
lines

#
pos/neg
examples

training
time

AUC

tornado 64× 64× 64 30 5 22/157 3.54 0.99

five critical pts 51× 51× 51 60 7 10/52 3.80 0.90

solar plume 126× 126× 512 80 14 70/414 59.01 0.97

data set segmentation

lines simplification time segmentation time
tornado 150 1.99 35.76
five critical pts 150 0.60 2.74
solar plume 200 5.18 59.32

Case Study 1 – Tornado Data Set (Figure 4.9). Five (t1-t5) out of 30 traced

streamlines were manually segmented. These five streamlines are the cluster repre-

sentatives after clustering all the 30 streamlines. Note that users can specify a few

nearby points as possible segmentation points (e.g., t2). Streamline t4 was not seg-

mented because it does not contain any interesting feature (e.g., spirals) which we

would like to extract. The clustering results (s1-s7) show that user-defined features

were extracted successfully. For example, the segments in cluster s1 correspond to the

bottom swirl in t1 whose points have a torsion close to zero. The segments in cluster

s2 look very similar to the one from t5 which has an inflection point. However, notice

that a few streamlines from the cluster s7 failed to be segmented as desired (circled

in purple).

88

t1 t2 t3

t4
t5

s1 s2

s4 s5 s6 s7

input s3

Figure 4.9: Five streamlines of the tornado data set were manually
segmented (t1-t5) to train the classifier. Seven (s1-s7) clusters of streamline

segments were generated.

Case Study 2 – Five Critical Points Data Set (Figure 4.10). Seven (t1 - t7) out of

60 traced streamlines were manually segmented. A total of eight clusters (s1-s8) were

89

generated after segmenting each streamline and clustering the resulting segments.

Two swirls (s4 and s5) which are contained in the original data set but occluded by

other surrounding streamlines are successfully extracted. They were put into two

different clusters because of their shape difference. The source is also revealed (s3

and s6). The segmentation took less time (Table 4.1) for this data set because each

streamline has a smaller number of points compared with other data sets.

Case Study 3 – Solar Plume Data Set (Figure 4.11 and 4.12). Some streamlines

from this data set are even more difficult to determine the “best” segmentation.

So the 14 streamlines were segmented in a way such that interesting features were

extracted. After segmentation and clustering, a total of 13 clusters are generated and

shown in Figure 4.12. It can be seen from Figure 4.12 that the features specified

during manual segmentation were successfully extracted. For instance, the features

similar to the spirals specified by users in t1 and t4 appear in clusters s1, s12 and

s13. Furthermore, the clusters s1, s2 and s3 contains the features similar to the letter

“J” shape as shown in t9, t10 and t11. The fact that some spirals appear in cluster

s1 reveals a limitation of our similarity measure. As seen from Figure 4.12, these

spirals were successfully separated from the remaining streamlines, which suggests

that the segmentation algorithm works well. Although segments in clusters s7 to

s11 are perceptually similar, they are unfortunately separated into different clusters

because of the similarity measure and clustering algorithm. The same happened for

clusters s12 and s13. However, this is not the problem of the segmentation algorithm.

90

t1 t2 t3 t4

t5 t6 t7

input s1 s2

s3 s4 s5

s6 s7 s8

Figure 4.10: Seven streamlines of the five critical points data set were
manually segmented (t1-t5) to train the classifier. Eight (s1-s8) clusters of

streamline segments were generated.

91

t5 t6 t7 t8

t1

t2
t4

t3

Figure 4.11: Fourteen streamlines of the solar plume data set (t1-t8) were
manually segmented for training.

92

t9 t10 t11 t12 t13 t14

Figure 4.11 (cont.): Fourteen streamlines of the solar plume data set
(t9-t14) were manually segmented for training.

93

input s1

s2

s4

s5
s3

Figure 4.12: Five (s1-s5) clusters of streamline segments of the solar
plume data set are shown. Notice how the interesting features such as

spirals and turbulent features are successfully extracted.

94

s3

s9

s12 s13

s6 s7

s8

s10

s11

Figure 4.12 (cont.): Streamline segment clusters s6-s13 of the solar plume
data set.

95

4.4.2 Feature selection

This section aims at showing that the metrics currently incorporated into feature

vectors are relevant, and in particular, the volume ratio of minimum enclosing ellip-

soids greatly improves the classifier performance. Denote the four metrics velocity

direction entropy ratio, tortuosity ratio, curvature and torsion histogram difference,

and minimum bounding ellipsoid volume ratio by M1, M2, M3, and M4, respectively.

Also let G1 = {M1,M2,M3,M4}, G2 = {M1,M2,M3} and G3 = {M4}. Comparing

the segmentation results using G1 and G2 will show the contribution of M4 because

their only difference is whether M4 is used, and comparing the segmentation results

using G1 and G3 will show that using M4 alone is not enough. For each data set, three

different sets of training examples were generated using G1, G2, and G3, and hence

three classifiers were trained. Applying the three different classifiers to the same set

of streamlines (without post-processing) will generate the segmentation results for

comparison.

As Table 4.2 shows, classifiers trained using G1 generally give the best segmenta-

tion results because it generates the least number of redundant segmentation points.

A segmentation point is redundant if it appears in a region on a streamline where

segmentation should not occur from a human’s point of view. The redundant seg-

mentation points are enclosed in black circles. In the first row of Table 4.2, a few

96

redundant segmentation points appear at the top of the streamline when G2 and G3

are used; in the second row, the redundant segmentation points appear in the middle;

in the third row, the redundant points appear on the spiral. The table also shows that

using G1 requires the least amount of training time. By comparing columns G1 and

G2, it can be seen that segmentation results are greatly improved when the volume

ratio of minimum enclosing ellipsoids is incorporated into feature vectors. However,

using it alone (G3) does not give satisfactory segmentation results and also requires

a much longer training time.

4.4.3 Parameters

There are two parameters that can affect the final segmentation results: (1) the

number of different neighborhood sizes used during multiscale feature computation

(Section 4.3.1), and (2) the distance threshold used to group nearby segmentation

points (Section 4.3.4). Because the second parameter is computed based on the

segmentation points already found by a classifier, users should not be allowed to

adjust its value. The impact of the first parameter on the classifier performance in

terms of AUC and training time will be discussed in the following.

The tornado data set is used in this experiment. In the beginning of the experiment,

36 positive and 298 negative examples are collected. A sequence of increasingly

97

Table 4.2
Segmentation results without post-processing using the classifiers trained

with different types of feature vectors G1 = {M1,M2,M3,M4},
G2 = {M1,M2,M3} and G3 = {M4}, where M1, M2, M3, and M4 are
velocity direction entropy ratio, tortuosity ratio, curvature and torsion
histogram difference, and minimum bounding ellipsoid volume ratio,

respectively.

G1 G2 G3

data set pos/neg examples training time (in seconds)

tornado 28/195 G1 : 6.59, G2 : 8.23, G3 : 30.69

crayfish 25/314 G1: 20.22, G2: 43.32, G3: 259.44

larger neighborhood sizes is considered: 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,

45%, 50% of the total streamline points. The neighborhood sizes are increased by

5% because (1) at most 500 points are generated in tracing a streamline, and (2) a

98

streamline segment consisting of 500×5% = 25 points is usually too tiny to be visually

considered as a standalone segment. To determine the best range of neighborhood

sizes to be used in multiscale feature vector computation, the following experiment is

done: starting from each neighborhood size, n consecutive neighborhoods up to 50%

of the total number of streamline points will be used. For example, if the smallest

neighborhood size is 5% and n = 4, it means that the neighborhoods whose sizes

are 5%, 10%, 15% and 20% of total streamline points will be used for computing

feature vectors. Table 4.3 lists the statistics of AUC and training time for different

neighborhood combinations.

Table 4.3 shows that using only one or two neighborhood sizes (e.g., columns 1 and

2) can generally give a high AUC value but with a long training time. We found

that the long training time was due to the fact that libSVM [21] took a long time

to converge and in many cases it even reported the maximum number of iterations

was reached. Moreover, the segmentation results were very bad when only one or

two neighborhood sizes were used. This suggests that high AUC values in these cases

were due to over-fitting, so the classifiers did not generalize well.

As more neighborhoods were considered, the value of AUC generally increased, so did

the training time (e.g., rows 5% and 10%). The training time generally increased by a

few seconds. The segmentation results obtained by setting the starting neighborhood

size to 5% and using 10 consecutive neighborhoods indeed were very good. However,

99

segmentation itself took a much longer time because more computation is required.

The values in Table 4.3 also suggest that the starting neighborhood size should not

be set too large because the AUC values from the row 20% and below are generally

not as good as that from the rows above.

Similar findings were also obtained for other data sets. Therefore, the following neigh-

borhood sizes, {5%, 10%, 15%, 20%}, are empirically chosen for computing multiscale

feature vectors in order to get a balance between good classifier performance and

short segmentation time.

4.5 Comparison

This section first compares the supervised streamline segmentation method with the

other two segmentation algorithms [54, 89], and then compares the flow features

extracted by the segmentation algorithm in this dissertation and that by Tao et

al. [84].

Lu et al. [54] proposed an iterative top-down segmentation algorithm. Their algorithm

recursively segments a streamline into two most dissimilar segments until either the

dissimilarity is below a certain threshold ts or the number of points contained in

current segment is less than tl. Their algorithm is implemented using the EMD

100

T
a
b
le

4
.3

A
U

C
s

an
d

tr
ai

n
in

g
ti

m
es

(i
n

se
co

n
d

s)
fo

r
th

e
cl

as
si

fi
er

s
tr

a
in

ed
u

si
n

g
d

iff
er

en
t

co
m

b
in

at
io

n
s

of
n

ei
gh

b
or

h
o
o
d

si
ze

s.
T

h
e

tr
ai

n
in

g
w

a
s

co
n

d
u

ct
ed

on
36

p
os

it
iv

e
an

d
29

8
n

eg
at

iv
e

tr
ai

n
in

g
ex

am
p

le
s

ge
n

er
at

ed
fr

o
m

th
e

to
rn

ad
o

d
at

a
se

t.

st
ar

ti
n
g

n
ei

gh
.

si
ze

A
U

C
/t

ra
in

in
g

ti
m

e
w

h
en

1-
10

co
n
se

cu
ti

ve
n
ei

gh
b

or
h
o
o
d
s

ar
e

u
se

d
in

m
u
lt

is
ca

le
fe

at
u
re

co
m

p
u
ta

ti
on

1
2

3
4

5
6

7
8

9
10

5%
0.

95
/4

6.
0

0.
99

/3
0.

1
0.

93
/8

.7
0.

92
/8

.7
0.

94
/1

2.
2

0.
97

/1
2.

1
0.

97
/5

.8
0.

97
/5

.6
0.

96
/5

.1
1.

0/
8.

1

10
%

1.
0/

69
.4

0.
98

/2
8.

9
0.

97
/1

0.
8

0.
97

/6
.3

0.
98

/8
.5

0.
96

/8
.5

1.
0/

11
.8

1.
0/

10
.5

1.
0/

15
.1

15
%

1.
0/

83
.1

0.
97

/3
6.

6
0.

92
/7

.1
0.

94
/8

.6
0.

99
/1

0.
9

0.
97

/1
1.

9
0.

94
/1

3.
8

0.
98

/1
2.

4

20
%

0.
99

/1
71

.3
0.

96
/4

1.
6

0.
92

/1
8.

8
0.

90
/2

3.
6

0.
93

/1
7.

3
0.

90
/1

6.
6

0.
91

/1
4.

0

25
%

0.
98

/1
62

.0
0.

95
9/

63
.5

0.
95

8/
49

.8
0.

94
/4

7.
8

1.
0/

63
.1

0.
96

/3
9.

4

30
%

0.
98

/9
5.

6
0.

93
/4

4.
9

0.
91

/2
8.

1
0.

92
/9

8.
1

0.
88

/6
4.

8

35
%

0.
90

/4
9.

9
0.

90
9/

23
.3

0.
92

/2
9.

2
0.

91
/3

4.
6

40
%

1.
0/

16
0.

2
0.

90
/3

4.
1

0.
93

/6
4.

0

45
%

0.
91

/3
4.

5
0.

95
/5

8.
9

50
%

1.
0/

93
.2

101

distance between the two curvature and torsion histograms (Section 4.3.1.2) as the

dissimilarity measure.

The major issue of their approach is that parameters ts and tl are not intuitive for

users to adjust manually, which is illustrated by Figure 4.13 (leftmost column). The

streamlines in rows (a) and (b) are from the tornado data set, and that in rows (c)

and (d) are from the solar plume data set. Setting tl and ts to 50 and 1.0 resulted in

over-segmentation for the streamlines in rows (a) and (b). Increasing tl to 100 avoided

generating a small segment for the streamline in row (a), but also left the streamline

in row (b) not segmented at all. The over-segmentation problem for the streamline

in row (c) cannot be solved easily by increasing tl. By carefully adjusting the value of

ts from 0.95 to 1.0, the part which looks like a spiral was separated out successfully.

However, the U-shape at the bottom failed to be in its own segment. As seen in

the rightmost column, the method in this dissertation does not suffer from these

problems. Finally, it is hard to say which segmentation is better for the streamline

in row (d) because the extra segmentation point from Lu’s method occurred in a

turbulent region. Both segmentations look acceptable. In conclusion, this approach

is not good for general streamline segmentation but for the cases where a streamline

needs to be divided into segments for further processing such as [54].

The streamline segmentation algorithm by Wang et al. [89] is a bottom-up approach.

A streamline is first split into minimal segments which are bounded by points of

102

(a)

(b)

(c)

(d)

Figure 4.13: A comparison on streamline segmentation between [54] (left
column) and the method in this dissertation (right column). The

streamlines in row (a) and (b) are from the tornado data set, and those in
rows (c) and (d) from the solar plume data set. The segmentation points

are highlighted in red.

absolute local curvature minima. The minimal segments are then merged based on a

two-phase compatibility test. First, two neighboring segments are mergeable if they

have similar average orientations, i.e., if the angle between the two segments’ average

binormal directions is less than tα. Second, a segment with a low total curvature

less than tκ is merged with its two neighboring segments. The merging algorithm

iteratively processes segments based on a priority queue that is ordered by the total

103

segment curvature. To implement this algorithm, the binormal direction of a segment

between two consecutive points is measured as the cross product of the velocity vectors

at those points.

Wang et al. [89] claimed that their segmentation algorithm meets the following three

requirements: (1) a segmentation should be feature preserving in that important

features should be preserved, (2) a segment should be distinct enough to describe

a complete feature, and (3) streamlines describing similar flow features should be

segmented consistently. However, it is found that their algorithm cannot guarantee

to meet these requirements. For example, their algorithm produced over-segmentation

for the streamline in row (a) because some minimal segments have a relatively large

total curvature. After changing the value of tκ from 1.0 to 1.8, the problem was

alleviated but the final segmentation still does not look natural. The segmentation

result in row (b) looks acceptable. The streamline in row (c) was also over-segmented

with tκ = 1.4, however, increasing its value to 1.5 failed to preserve the spiral feature.

Finally, the over-segmentation of the streamline in row (d) cannot be easily solved due

to the turbulent nature of the enlarged area: the neighboring minimal segments have

very different average binormal directions and also a large total curvature. Therefore,

this approach may work well for flow fields which do not have many turbulent regions

(as illustrated in [89]), but it is not a good choice to segment turbulent streamlines.

104

(a)

(b)

(c)

(d)

Figure 4.14: A comparison on streamline segmentation between [89] (left
column) and the method in this dissertation (right column). The

streamlines in row (a) and (b) are from the tornado data set, and those in
rows (c) and (d) from the solar plume data set. The segmentation points

are highlighted in red.

The remaining of this section compares the method in this dissertation with Flow-

String ([84]) on flow feature extraction. Tao et al. [84] represented each streamline as

a string and the substrings which appear frequently are considered as interesting flow

features. Two parameters, minimum length and minimum frequency, can be adjusted

by users to search for frequent substrings. The FlowString library is available at [1],

105

and is used in the following comparison.

Figures 4.15 and 4.16 show the features extracted by FlowString for tornado and

solar plume data sets, respectively. For each of the two data sets, the same set of

streamlines was traced as the input used in the previous case studies (Section 4.4.1). It

can be seen that FlowString has the following shortcomings compared to our method:

• FlowString may return many similarly-looking patterns. For example, three

types of features (corresponding to three different substrings) out of 19 are

shown in Figure 4.15 (a)-(c), which look similar to each other. The features

were extracted with minimum frequency and minimum length set to 100 and 3

respectively. For the tornado data set, the features found by the method in this

dissertation were clustered into 7 distinguishable groups (Figure 4.9).

• Users need to adjust the value of minimum frequency (minimum length) to

search for the desired features. For instance, the features in Figure 4.15 (e)-(f)

were only available when the value of minimum frequency was decreased from

100 to 50 . For the solar plume data set, only two types of features (Figure 4.16

(a)-(b)) were extracted when minimum frequency and minimum length were

set to 100 and 4 respectively. The spiral features in Figure 4.16 (d)-(f) did

not appear unless the minimum frequency was set to a small value of 10. In

contrast, since the method in this dissertation already segments each streamline

into different features, the final segment clusters usually include all the desired

106

features.

• The features matched by FlowString often correspond to incomplete features.

This problem is clearly illustrated in Figure 4.15 (d)-(e), where partial spiral

features were extracted (e.g., the spiral in the red circle). The same problem

also occurs for the spirals extracted in Figure 4.16 (c)-(f). However, the method

in this dissertation is able to find more complete features (Figure 4.9 and 4.12).

The advantage of FlowString over the method in this dissertation is that it is fully

automatic (no user intervention is required) and it does not require computing as

many features as our method, although it requires registration computation for each

pair of segments.

Finally, there is a limitation of the streamline segmentation method discussed in this

dissertation: a classifier trained on one data set cannot be applied to another data

set which has very different streamlines. In order to get a classifier which can work

across multiple data sets, a central database may be required to store all the training

examples similar to [85], and incremental training should be performed.

107

min_freq = 100, min_len = 3

min_freq = 50, min_len = 3

(a) (b) (c)

(d) (e) (f)

Figure 4.15: The features extracted by FlowString [84] for tornado data
set.

108

min_freq = 100, min_len = 4

min_freq = 10, min_len = 3

(a) (b)

(c)

(d) (e)

(f)

min_freq = 10, min_len = 3

min_freq = 10, min_len = 3

Figure 4.16: The features extracted by FlowString [84] for solar plume
data set.

109

4.6 Conclusions

This chapter presents a novel streamline segmentation algorithm based on supervised

machine learning. It is an early attempt of applying supervised machine learning to

flow feature extraction. This chapter also discusses an effective heuristic for streamline

segmentation: the volume ratio of minimum enclosing ellipsoids.

The supervised streamline segmentation algorithm first automatically picks a few

representative streamlines for users to segment. The user input is then turned into

feature vectors, which in turn are trained to obtain a classifier for segmentation points.

Streamline segmentation then becomes a process of segmentation point testing via

the classifier. Finally, a post-processing step is applied to remove redundant nearby

segmentation points found by the classifier.

The results are encouraging, and the following items may be considered for future

work:

• Identify more effective metrics besides the ones mentioned in Section 4.3.1 and

incorporate them into feature vectors. It would be interesting to work with

experts from human perception or cognitive science to find out the rules which

human use to segment streamlines, or 3D curves in general.

110

• Apply this approach to time-dependent data. Segmenting pathlines and clus-

tering similar pathline segments would allow us to better understand features

in unsteady vector fields.

• Generate a hierarchy of coarse-to-fine segmentations for each streamline. Our

current approach only generates a single segmentation. However, human tend

to segment a geometric object in a hierarchical manner (e.g., hierarchical mesh

segmentation [79]), where finer details are extracted deeper down in the hierar-

chy.

• Improve computation speed. All the experiments were done using a single CPU

thread. We would like to leverage CUDA/OpenCL for real-time streamline

segmentation.

The implementation details are available at http://www.nd.edu/~cwang11/

streamline-segmentation.html

111

http://www.nd.edu/~cwang11/streamline-segmentation.html
http://www.nd.edu/~cwang11/streamline-segmentation.html

Chapter 5

DTEvisual: A Visualization

System for Teaching Access

Control using Domain Type

Enforcement

The field of visualization includes many research areas, and flow field visualization

is just one of them. Examples of other areas in visualization are information visual-

ization [42] and education visualization [61]. DTEvisual is an education visualization

tool developed for teaching access control in an elective senior-level operating system

course.

113

This chapter first explains the motivation behind developing DTEvisual in Section 5.1.

It then gives a detailed description of Domain Type Enforcement in Section 5.2. The

architecture of DTEvisual and its main functions are presented in Section 5.3. It

is followed by the evaluation of DTEvisual in Section 5.4. Future work to extend

DTEvisual is discussed in Section 5.5. Finally, the conclusions are made in Section 5.6.

5.1 Motivation

Access control systems have become significantly more sophisticated in order to meet

modern security requirements. An example is SELinux [5, 55, 56], a version of Linux

developed by the National Security Agency. SELinux supports non-traditional mod-

els of access control, including Type Enforcement [13], Multilevel Security [8, 10],

and Rolebased Access Control [74]. These modern systems are very complex. A

strict Type Enforcement access control policy on a Linux system can contain tens of

thousands of lines [55]. As another example, Windows attaches access control lists to

objects. Windows access control lists now comprise up to 30 different privileges for

operations on about 15 different kinds of objects [33]. It is important for educators

to prepare students to deal with the complexity of these modern systems.

Domain Type Enforcement (DTE) [7] is an access control model widely used on

Linux systems. Via DTE, a user essentially groups active entities (e.g., processes) into

114

domains; groups passive entities (e.g., files) into types; and specifies the kind of access

each domain has to objects of a given type. A DTE policy is expressed in Domain

Type Enforcement Language (DTEL). DTE has several characteristics that make it

useful for education in access control [18]. First, DTE facilitates graphical expression

of policies. Second, it allows representation of policies that conform to other access

control models. DTE exposes students to a process-oriented paradigm for access

control, drawing them into the application of the principle of least privilege naturally.

It allows the policy designer to balance policy complexity against application of the

principle of least privilege. Finally, it supports relatively concise expression of an

access control policy via DTEL. DTEvisual was developed to make access control

education using Domain Type Enforcement (DTE) more practical. It has been used

within an elective senior-level operating system course. The feedback shows that this

tool is very useful for classroom presentations, homework assignments, and self-study.

This work has been published in the Journal of Computing Sciences in Colleges [47].

5.2 Domain Type Enforcement

Domain Type Enforcement views an operating system as a collection of processes and

a collection of files. An attribute called domain is associated with each process, and

another attribute called type is associated with each file. Domain is used to group a

set of processes together which have the same access rights to certain domains and

115

certain types of files. DTE Language (DTEL) is a high-level symbolic language for

expressing DTE specifications in a human-friendly form. DTEL provides four pri-

mary statements for expressing a DTE specification: the type statement, the domain

statement, the initial domain statement, and the assign statement.

A DTEL type statement declares one or more types to be part of a DTE spec-

ification; other DTEL statements may refer only to types declared with the type

statement. For example, the following type statement declares two types readable t

and writable t:

type readable_t , writable_t;

A DTEL domain statement defines three components:

1. entry point programs, identified by the path name, that are bound to the domain

and must be invoked in order to enter the domain.

2. permissible modes of access, when executing in the domain, to the files of spec-

ified types. There are five possible modes of access: ‘c’, ‘r’, ‘w’, ‘x’ and ‘d’.

Mode ‘c’ is for creating files. Modes ‘rwx’ are borrowed from the normal UNIX

modes. UNIX uses ‘x’ mode for directory traversal; DTEL distinguishes be-

tween execute and traverse access using a new mode, ‘d’, that applies only to

directories.

116

3. permissible modes of access, when executing in the domain, to the processes

in other specified domains. DTEL provides two access rights for creating new

processes. If a domain A has exec access rights to another domain B, a process

in A may create a process in B by executing one of B’s entry point programs

and requesting that the program run in B. If a domain A has auto access rights

to another domain B, a process in A automatically creates a process in B when

it does a normal exec() system call of an entry point program of B.

Each domain statement is a list of tuples where each tuple either contains a UNIX

path or a collection of access modes (designated by “->”) to a collection of type

or domain names. Following is an example of domain statements. To enter the

domain daemon d, the program /sbin/init needs to be executed. The processes

in this domain can read and traverse all the files/directories whose type are either

generic t, readable t, or writable t, and they can create and write the files with

a type writable t. The processes in daemon d are allowed to create a process in

login d when they execute login d’s entry point program:

domain daemon_d = (/sbin/init),

(dr ->generic_t ,readable_t),

(cdrw ->writable_t),

(auto ->login_d);

117

The initial domain statement specifies the domain of the first process executed by

an operating system. In the following example, the first process will run in domain

daemon d:

initial_domain = daemon_d;

The assign statement is used to associate a type with a path P and is optionally

recursive; recursive statements apply to all paths having P as a prefix. If a file is

renamed, its assignment statement is changed to reflect the file’s new location. DTEL

provides a feature to force type assignments to be static which locks the type of a

file to be the same as what is specified in the DTE specification. Each assignment

statement starts with the keyword assign. The keyword is then followed by either a

flag “-r” indicating recursive assignment, or a flag “-s” indicating static assignment,

or both of them. Following is an example of assignment statements. All the files

under /etc and its subdirectories are assigned a type readable t. All the files under

/dte and its subdirectories are given a type dte t, and their type will not be changed.

assign -r readable_t /etc;

assign -r -s dte_t /dte;

118

5.3 System Overview

DTEvisual aims at making the daunting task of writing complex DTE specification

much easier for beginners. The visualization and interaction features of this system

will facilitate the learning process. The main features of DTEvisual are the following:

• Users can design and edit a specification visually and then save the resulting

policy.

• DTEvisual allows users to display a specification using two types of graphs: the

general graph and the type graph (Section 5.3.2).

• Users can use DTEvisual to carry out queries about a specific policy.

The user loads a DTE specification given in either DTEL (*.dte) or visualization

descriptions (*.dtevis). When a DTE specification in DTEL is loaded, DTEvisual

uses a graph layout algorithm [27] to determine the positions of domain and type

nodes in the corresponding general and type graphs. The user can visually modify

the generated graphs and save the results to a dtevis file which records both the DTE

specification and the layout of the graphs. Next time, the same DTE specification

can be loaded through the dtevis file without worrying about how the general and

type graphs should be displayed.

119

5.3.1 User Interface

Figure 5.1 shows the main user interface of DTEvisual, which contains the menus,

toolbar, and visualization area. DTEvisual provides separate File, Edit, View, Practice,

Settings and Help menus, as well as a toolbar. The File, Edit and View menus are used

to access functionality related to loading/saving, editing and viewing specifications.

The Settings menu is for enabling the query animation function and setting animation

intervals (Section 5.3.4). The Practice menu allows students to access a test for

evaluating student learning.

Commonly used operations are classified into the following five groups in the toolbar

(Figure 5.2):

1. Group A has I/O-related icons (e.g., importing and exporting a file).

2. Group B has buttons for changing editing modes in a general graph (Sec-

tion 5.3.2). The buttons from left to right are for: (1) moving nodes in a

graph, (2) highlighting part of a graph, (3) adding domain nodes, (4) adding

type nodes, (5) adding auto access between two domain nodes, (6) adding exec

access between two domain nodes, and (7) adding permissible accesses from a

domain node to a type node.

120

Figure 5.1: Main User Interface

Figure 5.2: DTEvisual System Toolbar

3. Group C contains shortcuts to different functions for policy analysis (e.g., open-

ing the query window).

4. Group D contains icons for the user to zoom in and out and enter/exit the

full-screen.

121

5. Group E has two icons for controlling query animation.

5.3.2 Domain and Type Graphs

DTEvisual provides two modes of visualization of a DTE specification: the general

graph and the type graph. The user can switch between these two graphs by clicking

the buttons (in green box) in Group C in Figure 5.2.

The general graph depicts domains, types, transitions between domains, and access

of domains to a given type. In Figure 5.3, ellipses and rectangles denote domain

nodes and type nodes, respectively. Thick solid and dashed directed edges between

domains are ‘auto’ and ‘exec’ transitions, respectively, and edge labels are entry

points. Domain and type nodes are connected with undirected edges, and each edge

label indicates the permission of a domain has on a type.

The type graph shows file types. In Figure 5.4, it is displayed with a radial tree [86].

Directories and files at the same level are placed on a dotted circle with static types

shown in double circles, and a trailing slash is used to differentiate between files and

directories.

Since a general graph may become cluttered when the number of nodes increases,

DTEvisual allows the user to choose whether to display the edges between domain

122

Figure 5.3: Domain graphs

Figure 5.4: Type graphs

123

nodes or between domain and type nodes, as illustrated by the View menu in Fig-

ure 5.5.

Figure 5.5: Toggle the display of edges in the general graph

Another way of reducing visual clutter is to allow the user to highlight part of a

general graph. Figures 5.6 to 5.8 demonstrate this feature. Figure 5.6 shows that the

first time the user clicks a type node ‘readable t’, the selected item and its adjacent

edges and nodes are highlighted while the rest is grayed out. Figure 5.7 shows that

the second click on the same item does the opposite: only the rest of the general graph

is highlighted. Finally, Figure 5.8 shows that the third click brings the rendering back

to normal mode.

124

Figure 5.6: First click on the type node ‘readable t’ highlights the node
and its adjacent edges and nodes.

Figure 5.7: Second click on the type node ‘readable t’ highlights the
part not highlighted in Figure 5.6.

125

Figure 5.8: Third click on the type node ‘readable t’ brings the
rendering back to normal.

126

5.3.3 Graph Editing

The user can add domain nodes, type nodes, or edges between them in a general

graph. A domain (or type) node is added by clicking at the desired position and a

nonempty but unique name is required for the new node. Dragging from a node to

the other adds an edge; however, no edge will be added if the user attempts to add an

invalid type or duplicate an edge. An appropriate label must be added to each newly

created edge. For example, the label of a domain-type edge should indicate valid

permissions that only contain characters ‘c’, ‘r’, ‘x’, ‘w’ and ‘d’. The context menu of

a node/edge permits the user to delete or change the name of that node/edge. Once

a node is deleted, all adjacent edges are also deleted.

DTEvisual allows the user to modify a type assignment statement and the modifica-

tions will be immediately reflected in the type graph. For a type graph, the user may

change the name, type or flag of a node, delete a type, and assign the type to a child

node. All operations are accessed from a nodes context menu (Figure 5.9). DTEvisual

performs various checks to ensure no semantic errors are introduced when the user

edits a type graph. When the type of a node is changed, DTEvisual checks each of its

children to ensure if there is any child which inherits the nodes type, and those who

are affected will receive the new type. The user may create a new type in the process

of changing types, and a node representing the new type will be automatically added

127

Figure 5.9: Context Menu of Type Node

to the general graph. A node inherits its parents type when its type is deleted. If the

inherited type is different from its original one, it is treated as if the nodes type has

been changed. The ability of adding the ‘-s’ flag (Section 5.2) to a node is disabled if

there exists a node among its children which has a different type, and the ability of

removing ‘-r’ flag (Section 5.2) is disabled for those nodes with children (i.e., direc-

tories) because directories differ from files by the existence of the ‘-r’ flag. The same

principle is used when the user adds a child to a node: the child and its parent have

the same type if its parent has the -s flag set on, and no child can be added to any

node without the -r flag.

5.3.4 Queries

DTEvisual can perform the following queries:

128

1. What is the type of a file?

2. What files can be accessed by a process?

3. What files can be accessed by a process in a certain mode?

4. From which domains a file can be executed?

5. What domains can a file access with a specified permission?

6. Are there files without any type assigned?

7. Are there files which cannot be accessed with a certain permission?

In order to run a query, the user must first bring up the query window (Figure 5.10)

either by right-clicking in the empty visualization area or referring to View menu.

After all the required inputs for a query have been given, the query is executed by

hitting the Run button and the results appear in the Query Output.

DTEvisual is able to show a real-time animation of how the answer to a query is found.

The search for the answer to a query usually can be broken into a few individual

steps. Information related to each of these steps is visualized during the animation.

For example, the animation of the query “From which domains the file ‘/usr/bin/lp’

can be executed” is shown in Figures 5.11 and 5.12 because it takes two steps to answer

this query. In the first step (Figure 5.11), the type of ‘/usr/bin/lp’ is found with

the corresponding type node ‘binaries t’ highlighted in red. In the second step

129

Query Output

Figure 5.10: DTEvisual Query Window

(Figure 5.12), all the domains which have executable permissions on ‘binaries t’

are highlighted in green, and the permissible access modes from these domains to the

type node are shown in blue. The user can enable/disable or change the speed of

this real-time animation in the Settings menu. During the animation, the user can

pause/resume the animation. It is also possible to re-run a query quickly by double-

clicking the query line (a line which contains “[query x]”) in the query output box

(Figure 5.10).

130

Figure 5.11: Determine the type of ‘/usr/bin/lp’, which is ‘binaries t’

Figure 5.12: Find the domains that have executable permissions (x) on
‘binaries t’

131

5.4 Evaluation

DTEvisual was used in a senior-level operating systems elective CS4411. Students

in this course have already taken courses in systems programming and concurrent

computing. The course had an enrollment of ten. This course covers scheduling,

deadlock, memory management and virtual memory, file systems, and operating sys-

tem security. Topics in access control included the Bell-LaPadula model, DTE, and

Role-based access control (in this order). The Bell-LaPadula model [8] is often used

for enforcing access control in government and military applications. It describes a

set of access control rules which use security labels on files and clearances on users.

With Role-based access control (RBAC) [74], users are assigned particular roles, and

through those role assignments acquire the computer permissions to perform partic-

ular functions.

DTEvisual was used to present examples of DTE policies graphically. This was espe-

cially useful for modifying policies during classroom discussions. Students also used

the system to complete homework problems. With a tool that simplifies presentation,

the professor was able to leverage DTE for several lessons in access control. DTEvisual

was used to present a DTE example policy that restricts user processes from writ-

ing to the system binaries. This motivated a discussion on trade-offs between policy

complexity and application of the principle of least privilege. The initial example was

132

modified to confine a specific binary to a specific set of files. This further illustrated

operation of a DTE specification. This example was also used to demonstrate the

inadequacy of UNIX discretionary controls to achieve this same confinement. The

expression of a Bell-LaPadula model was then explored using DTE. In addition to

other problems, students were given an assignment to depict (with paper and pencil)

an RBAC policy that was expressed in DTEL, and to modify that DTEL policy to

extend the given RBAC policy. This helped them to understand the use of a hierar-

chy for expressing permissions (since there is no inheritance in DTE) and, at a higher

level, how different models are suited to different access control problems.

At the end of the course, a survey was conducted to get the students’ feedback on

DTEvisual. Since the class had only 10 students, a very small sample, no advanced

statistical analysis was attempted. The comments received were uniformly positive

about (1) the usefulness of the general graph and type graph for understanding a

policy (mean 4.5 and standard deviation 0.58), (2) the utility of the tool for finding

mistakes in a DTE policy (mean 4.0 and standard deviation 0.82), (3) the use of DTE

to increase understanding of the balance between the principle of least privilege and

policy complexity (mean 4.5 and standard deviation 0.58), and (4) the use of DTE to

better understand the RBAC and Bell-LaPadula models (average 4.0 and standard

deviation 0.82). Students also gave high marks to representation and layout of various

graphs, and the uses of font sizes, labels, and colors with averages no less than 4.25

and standard deviations between 0.5 and 0.58.

133

5.5 Future Work

The experience shows that DTEvisual has the potential to be developed into a full

blown visualization and pedagogical environment for learning and teaching access

control. DTEvisual may be extended in several ways. First, DTEvisual is a quick

prototype implemented in Python with some tools such as Qt. As a result, its ef-

ficiency can be improved by using a programming language such as C++. Second,

to support large and realistic access control systems, new features must be added to

address issues created by the large number of nodes and edges in the general and

type graphs. The plan is to use a Focus+Context technique so that the user is able

to see the objects of primary interest in full detail while maintaining an overview of

all surrounding information. Third, the query system can be redesigned to have an

open structure so that an instructor is able to add new and remove existing queries.

Fourth, DTEvisual can be extended to become a programming+visualization environ-

ment [19]. The class libraries can be used to intercept requests to the access control

system in order to indicate what would be the response on a system that applied the

DTE policy. These class libraries will at the same time provide information to the

visualization system. In this way, the user is not only able to visualize DTE related

activities in real time and receive feedback from the visualization system, but also

use the system to debug code and policies.

134

5.6 Conclusions

DTEvisual provides a system that makes teaching access control using DTE more

practical. It facilitates graphical depiction, construction, and modification of a DTEL

policy. It has an interactive graphical exploration mode that can isolate selected

portions of a depicted policy. Finally, a query subsystem allows precise determination

of the set of files that can be accessed by a specified process. This tool has been useful

for classroom presentations, homework assignments, and self-study. Better education

on modern access control systems should encourage more widespread adoption of

sophisticated approaches and have a significant impact on system security for the

systems ultimately managed by these students. The system and example policies are

available for download from http://www.cs.mtu.edu/~jmayo/dtevisual/.

135

http://www.cs.mtu.edu/~jmayo/dtevisual/

Chapter 6

Conclusions

This dissertation focuses on the topic of feature extraction in flow visualization. Ex-

tracting flow features provide a viable solution for reducing visual clutter an occlusion

in a vector field. In summary, this dissertation makes the following contributions:

• Proposes a novel method of measuring streamline similarity inspired by bag-

of-features, and shows the utility of this method by applying it to streamline

query and clustering. The proposed similarity measure between two streamlines

is independent of their relative positions and orientations, and takes into account

the distances among features on each streamline. It generally performs better

at finding out similar streamlines than some existing methods; however, it is

not perfect as illustrated in Section 3.5.3 since some streamlines which look

137

similar from a human perspective may appear in different clusters. Therefore,

the proposed method may be improved in the following ways: (1) searching for

features to more effectively describe the shape of a streamline, and (2) leveraging

supervised machine learning to obtain a better distance measure.

• Applies supervised machine learning to the problem of streamline segmenta-

tion. The purpose of streamline segmentation is to separate distinct features

along a streamline. Compared with some of the existing streamline segmenta-

tion methods which require users to adjust a few parameters for segmentation,

the proposed one learns a non-trivial decision function of different parameters,

and usually performs better at separating different features along a streamline.

This feature-based streamline segmentation is fundamental to many flow data

analysis tasks such as feature detection and pattern querying. It is also gen-

eral enough to be used in other fields such as computer vision, where curve

segmentation is used to extract features of 2D curves.

• Proposes an effective heuristic based on minimum volume bounding ellipsoids

which can be used to help determine whether segmentation on a streamline

should be taken or not. This heuristic improves streamline segmentation re-

sults. Other applications which require a streamline similarity measure may

also benefit from this heuristic. One disadvantage of this approach is its rel-

atively high computation cost due to the iterative optimization procedure for

finding out the minimum volume bounding ellipsoid of a streamline segment.

138

• Presents a software tool DTEvisual which can be used to make teaching access

control more effective. The tool has been useful for classroom presentation,

homework assignments, and self study. Currently, DTEvisual is not suitable for

visualizing very complicated DTE polices because the visualization will become

too cluttered to be useful for users.

In the future, it is interesting to see how machine learning can be leveraged to extend

the above works in flow visualization. First, learning to rank may be used to improve

the streamline similarity measure. The goal is to obtain a ranking function which can

decide the level of similarity between two streamlines based on training examples.

This type of ranking function has been widely used in information retrieval tasks

such as web search: given a query, the list of documents ranked in decreasing order of

relevance is returned. Second, experimenting different machine learning algorithms

for a given problem is a common practice to determine which algorithm suits the

problem best. Since only SVM has been tested for streamline segmentation, it is

interesting to check how other supervised machine learning algorithms perform for

this problem.

For DTEVisual, it is worthwhile to leverage existing techniques for the visualization

of large graphs to visualize a real world DTE policy. Such a DTE policy may be very

complicated and hence requires a large number nodes and edges in a general/type

graph to be visualized. Existing large graph visualization techniques allow users to

139

see the objects of primary interest in full detail while maintaining an overview of

all surrounding information. With such capability, DTEvisual may become a useful

tool for system administrators instead of just being a pedagogical tool. Efficiency

is currently an issue for DTEvisual because it was developed in Python. In order to

support visualizing large graphs, some critical parts of the system may need to be

written in C++.

140

References

[1] FlowString: Partial streamline matching. http://www3.nd.edu/~cwang11/

flowstring.html. Accessed: 2015-3-28.

[2] A practical guide to support vector classification. http://www.csie.ntu.edu.

tw/~cjlin/papers/guide/guide.pdf. Accessed: 2014-12-30.

[3] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang. Near-linear time

approximation algorithms for curve simplification. Algorithmica, 42(3-4):203–

219, 2005.

[4] A. Agathos, I. Pratikakis, S. Perantonis, and N. S. Sapidis. Protrusion-oriented

3D mesh segmentation. The Visual Computer, 26(1):63–81, 2010.

[5] N. S. Agency. Security enhanced linux. https://www.nsa.gov/research/

selinux/index.shtml. Accessed: 2015-03-30.

[6] L. Augsburger, P. Reymond, E. Fonck, Z. Kulcsar, M. Farhat, M. Ohta, N. Ster-

giopulos, and D. Rüfenacht. Methodologies to assess blood flow in cerebral

141

http://www3.nd.edu/~cwang11/flowstring.html
http://www3.nd.edu/~cwang11/flowstring.html
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.nsa.gov/research/selinux/index.shtml
https://www.nsa.gov/research/selinux/index.shtml

aneurysms: Current state of research and perspectives. Journal of Neurora-

diology, 36(5):270–277, 2009.

[7] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat.

Practical domain and type enforcement for unix. In Proceedings of the 1995

IEEE Symposium on Security and Privacy, pages 66–77, 1995.

[8] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-

tions. Technical Report MTR-2547, MITRE Corporation, Bedford, MA, 1973.

[9] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in

time series. In KDD Workshop, pages 359–370, 1994.

[10] K. J. Biba. Integrity considerations for secure computer systems. Technical

Report MTR-3153, MITRE Corporation, Bedford, MA, 1977.

[11] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[12] D. E. Blair and T. Konno. Discrete torsion and its application for a general-

ized van der Waerden’s theorem. Proceedings of the Japan Academy, Series A,

Mathematical Sciences, 87(10):209–214, 2011.

[13] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity

policies. In Proceedings of the 8th National Computer Security Conference, vol-

ume 18, 1985.

142

[14] A. Brambilla, R. Carnecky, R. Peikert, I. Viola, and H. Hauser. Illustrative flow

visualization: State of the art, trends and challenges. Eurographics State-of-the-

Art Reports, pages 75–94, 2012.

[15] M. L. Braunstein, D. D. Hoffman, and A. Saidpour. Parts of visual objects: An

experimental test of the minima rule. Perception, 18(6):817–826, 1989.

[16] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov. Shape

google: Geometric words and expressions for invariant shape retrieval. ACM

Transactions on Graphics, 30(1):1, 2011.

[17] R. Bujack, I. Hotz, G. Scheuermann, and E. Hitzer. Moment invariants for 2D

flow fields using normalization. In Proceedings of IEEE Pacific Visualization

Symposium, pages 41–48, 2014.

[18] S. Carr and J. Mayo. Teaching access control with domain type enforcement.

Journal of Computing Sciences in Colleges, 27(1):74–80, 2011.

[19] S. Carr, J. Mayo, and C.-K. Shene. Threadmentor: a pedagogical tool for multi-

threaded programming. Journal on Educational Resources in Computing, 3(1):1,

2003.

[20] J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and

C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rup-

ture by using patient-specific computational hemodynamics models. American

Journal of Neuroradiology, 26(10):2550–2559, 2005.

143

[21] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

[22] W. Chen, S. Zhang, S. Correia, and D. S. Ebert. Abstractive representation and

exploration of hierarchically clustered diffusion tensor fiber tracts. In Computer

Graphics Forum, pages 1071–1078, 2008.

[23] Y. Chen, J. D. Cohen, and J. H. Krolik. Similarity-guided streamline place-

ment with error evaluation. IEEE Transactions on Visualization and Computer

Graphics, 13(6):1448–1455, 2007.

[24] S. Cohen and L. Guibas. The earth mover’s distance under transformation sets.

In Proceedings of IEEE International Conference on Computer Vision, pages

1076–1083, 1999.

[25] I. Corouge, S. Gouttard, and G. Gerig. Towards a shape model of white matter

fiber bundles using diffusion tensor mri. In IEEE International Symposium on

Biomedical Imaging: Nano to Macro, pages 344–347, 2004.

[26] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley

& Sons, 2012.

[27] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.

ACM Transactions on Graphics, 15(4):301–331, 1996.

144

[28] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and C. Ware. Surface-

based flow visualization. Computers & Graphics, 36(8):974–990, 2012.

[29] T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters,

27(8):861–874, 2006.

[30] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Journal-

Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[31] B. J. Frey. Affinity propagation faq. http://www.psi.toronto.edu/

affinitypropagation/faq.html. Accessed: 2013-07-19.

[32] B. J. Frey and D. Dueck. Clustering by passing messages between data points.

Science, 315(5814):972–976, 2007.

[33] S. Govindavajhala and A. W. Appel. Windows access control demystified. Tech-

nical Report TR-744-06, Princeton university, Princeton, NJ, 2006.

[34] D. Guo. Automated feature extraction in oceanographic visualization. PhD thesis,

Massachusetts Institute of Technology, 2004.

[35] G. Hall and J. M. Watt. Modern numerical methods for ordinary differential

equations. Oxford University Press, 1976.

[36] F. Hitchock. The distribution of a product from several sources to numerous

locations. Journal of Mathematical Physics, 20:224–30, 1941.

145

http://www.psi.toronto.edu/affinitypropagation/faq.html
http://www.psi.toronto.edu/affinitypropagation/faq.html

[37] M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric statistical methods.

John Wiley & Sons, 2013.

[38] M. Isenburg and J. Snoeyink. Face fixer: Compressing polygon meshes with

properties. In Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, pages 263–270, 2000.

[39] R. Jianu, C. Demiralp, and D. H. Laidlaw. Exploring 3d dti fiber tracts with

linked 2d representations. IEEE Transactions on Visualization and Computer

Graphics, 15(6):1449–1456, 2009.

[40] I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2005.

[41] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and

A. Y. Wu. An efficient k-means clustering algorithm: Analysis and imple-

mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(7):881–892, 2002.

[42] D. Keim et al. Information visualization and visual data mining. Visualization

and Computer Graphics, IEEE Transactions on, 8(1):1–8, 2002.

[43] R. Kimmel, C. Zhang, A. M. Bronstein, and M. M. Bronstein. Are MSER

features really interesting? IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(11):2316–2320, 2011.

146

[44] P. Kumar and E. A. Yildirim. Minimum-volume enclosing ellipsoids and core

sets. Journal of Optimization Theory and Applications, 126(1):1–21, 2005.

[45] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf.

The state of the art in flow visualization: Dense and texture-based techniques.

Computer Graphics Forum, 23(2):203–221, 2004.

[46] P. Leopardi. A partition of the unit sphere into regions of equal area and small

diameter. Electronic Transactions on Numerical Analysis, 25(12):309–327.

[47] Y. Li, S. Carr, J. Mayo, C.-K. Shene, and C. Wang. Dtevisual: a visualization

system for teaching access control using domain type enforcement. Journal of

Computing Sciences in Colleges, 28(1):125–132, 2012.

[48] Y. Li, C. Wang, and C.-K. Shene. Streamline similarity analysis using bag-of-

features. In Proceedings of IS&T/SPIE Conference on Visualization and Data

Analysis, 2014.

[49] Y. Li, C. Wang, and C.-K. Shene. Extracting flow features via supervised stream-

line segmentation. Computers & Graphics, 52:79–92, 2015.

[50] T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends

in Information Retrieval, 3(3):225–331, 2009.

[51] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60(2):91–110, 2004.

147

[52] J. L. Lowther and C.-K. Shene. Rendering+ modeling+ animation+ postprocess-

ing= computer graphics. Journal of Computing Sciences in Colleges, 16(1):20–

28, 2000.

[53] J. L. Lowther and C.-K. Shene. Computing with geometry as an undergraduate

course: a three-year experience. In Proceedings of 32nd ACM SIGCSE Technical

Symposium, pages 119–123, 2001.

[54] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong. Exploring vector

fields with distribution-based streamline analysis. In Proceedings of IEEE Pacific

Visualization Symposium, pages 257–264, 2013.

[55] F. Mayer, D. Caplan, and K. MacMillan. SELinux by Example: Using Security

Enhanced Linux. Prentice Hall, 2007.

[56] B. McCarty. SELINUX: NSA’s Open Source Security Enhanced Linux. O’Reilly

& Associates, Inc, 2005.

[57] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters, and C. D.

Hansen. Similarity measures for enhancing interactive streamline seeding. IEEE

Transactions on Visualization and Computer Graphics, 19(8):1342–1353, 2013.

[58] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. Over two

decades of integration-based, geometric flow visualization. Computer Graphics

Forum, 29(6):1807–1829, 2010.

148

[59] B. Moberts, A. Vilanova, and J. J. van Wijk. Evaluation of fiber clustering

methods for diffusion tensor imaging. In IEEE Visualization, pages 65–72, 2005.

[60] M. Müller. Dynamic time warping. Information retrieval for music and motion,

pages 69–84, 2007.

[61] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen,

A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A. Velázquez-Iturbide.

Exploring the role of visualization and engagement in computer science educa-

tion. SIGCSE Bulletin, 35(2):131–152, 2002.

[62] B. Neperud, J. Lowther, and C.-K. Shene. Visualizing and animating the winged-

edge data structure. Computers & Graphics, 31(6):877–886, 2007.

[63] S. Oeltze, D. J. Lehmann, A. Kuhn, G. Janiga, H. Theisel, and B. Preim. Blood

flow clustering and applications invirtual stenting of intracranial aneurysms.

IEEE Transactions on Visualization and Computer Graphics, 20(5):686–701,

2014.

[64] S. O’Hara and B. A. Draper. Introduction to the bag of features paradigm for

image classification and retrieval. arXiv preprint arXiv:1101.3354, 2011.

[65] O. Pele and M. Werman. Fast and robust earth mover’s distances. In Proceedings

of IEEE International Conference on Computer Vision, pages 460–467, 2009.

149

[66] Z. Peng and R. S. Laramee. Higher dimensional vector field visualization: A

survey. In Proceedings of Theory and Practice of Computer Graphics, pages

149–163, 2009.

[67] L. Piegl and W. Tiller. Curve and Surface Basics. Springer, 1995.

[68] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state

of the art in flow visualisation: Feature extraction and tracking. In Computer

Graphics Forum, volume 22, pages 775–792, 2003.

[69] A. N. Pressley. Elementary Differential Geometry. Springer Science & Business

Media, 2010.

[70] P. L. Rosin and G. A. West. Nonparametric segmentation of curves into various

representations. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 17(12):1140–1153, 1995.

[71] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. Visu-

alization and Computer Graphics, IEEE Transactions on, 5(1):47–61, 1999.

[72] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric

for image retrieval. International Journal of Computer Vision, 40(2):99–121,

2000.

[73] T. Salzbrunn, H. Jänicke, T. Wischgoll, and G. Scheuermann. The state of the art

150

in flow visualization: Partition-based techniques. In Proceedings of Simulation

and Visualization Conference, pages 75–92, 2008.

[74] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.

[75] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M.-H. Bertram, C. Garth, W. Koll-

mann, B. Hamann, and H. Hagen. Moment invariants for the analysis of 2D flow

fields. IEEE Transactions on Visualization and Computer Graphics, 13(6):1743–

1750, 2007.

[76] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT press, 2001.

[77] T. Schultz. Feature extraction for dw-mri visualization: The state of the art and

beyond. Scientific Visualization: Interactions, Features, Metaphors, 2:322–345,

2011.

[78] D. W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610,

1979.

[79] A. Shamir. A survey on mesh segmentation techniques. Computer Graphics

Forum, 27(6):1539–1556, 2008.

[80] J. S. Shimony, A. Z. Snyder, N. Lori, and T. Conturo. Automated fuzzy clustering

151

of neuronal pathways in diffusion tensor tracking. In Proceedings of International

Society of Magnetic Resonance in Medicine, volume 10, 2002.

[81] P. Shirley, M. Ashikhmin, and S. Marschner. Fundamentals of Computer Graph-

ics. CRC Press, 2009.

[82] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object

matching in videos. In Proceedings of 9th IEEE International Conference on

Computer Vision, pages 1470–1477, 2003.

[83] Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser. SVMs mdeling for highly

imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, 39(1):281–288, 2009.

[84] J. Tao, C. Wang, and C.-K. Shene. FlowString: Partial streamline matching

using shape invariant similarity measure for exploratory flow visualization. In

Proceedings of IEEE Pacific Visualization Symposium, pages 9–16, 2014.

[85] J. Tao, C. Wang, C.-K. Shene, and R. A. Shaw. A vocabulary approach to partial

streamline matching and exploratory flow visualization. IEEE Transactions on

Visualization and Computer Graphics. Accepted.

[86] I. Tollis, P. Eades, G. Di Battista, and L. Tollis. Graph Drawing: Algorithms for

the Visualization of Graphs. Prentice Hall New York, 1998.

152

[87] C. Touma and C. Gotsman. Triangle mesh compression. In Proceedings of 1998

Graphics Interface, pages 26–34, 1998.

[88] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey.

Foundations and Trends in Computer Graphics and Vision, 3(3):177–280, 2008.

[89] Z. Wang, J. Martinez Esturo, H.-P. Seidel, and T. Weinkauf. Pattern search in

flows based on similarity of stream line segments. In Proceedings of International

Workshop on Vision, Modeling and Visualization, pages 23–30, 2014.

[90] J. Wei, C. Wang, H. Yu, and K.-L. Ma. A sketch-based interface for classify-

ing and visualizing vector fields. In Proceedings of IEEE Pacific Visualization

Symposium, pages 129–136, 2010.

[91] T. Weinkauf and H. Theisel. Curvature measures of 3D vector fields and their

applications. Journal of WSCG, 10:507–514, 2002.

[92] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic framework for

flow visualization. IEEE Transactions on Visualization and Computer Graphics,

16(6):1216–1224, 2010.

[93] M. Yang, K. Kpalma, and J. Ronsin. A survey of shape feature extraction

techniques. Pattern recognition, pages 43–90, 2008.

[94] H. Yu, C. Wang, C.-K. Shene, and J. H. Chen. Hierarchical streamline bundles.

153

IEEE Transactions on Visualization and Computer Graphics, 18(8):1353–1367,

2012.

[95] S. Zhang, S. Correia, and D. H. Laidlaw. Identifying white-matter fiber bundles

in dti data using an automated proximity-based fiber-clustering method. IEEE

Transactions on Visualization and Computer Graphics, 14(5):1044–1053, 2008.

154

	EXTRACTING FLOW FEATURES USING BAG-OF-FEATURES AND SUPERVISED LEARNING TECHNIQUES
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Abstract
	Introduction
	Terminology
	Vector Fields
	Flow
	Flow Fields
	Steady and Unsteady Flows
	Streamlines
	Critical Points

	Motivation
	Contributions
	Dissertation Organization

	Related Work
	Streamline Similarity Measures
	Streamline Segmentation

	Streamline Similarity Analysis using Bag-of-Features
	Overview
	Background
	Shannon Entropy
	Curvature and Torsion
	Bag-of-Features

	Spatially Sensitive Bag-of-Features
	Streamline Feature Selection
	Computing Curvature and Torsion in Vector Fields
	Velocity Direction Entropy
	Tortuosity

	Results and Discussion
	Configuration and Timing
	Streamline Similarity Query
	Streamline Clustering

	Conclusion

	Extracting Flow Features via Supervised Streamline Segmentation
	Overview
	Supervised Learning and Support Vector Machine
	Supervised Learning
	Support Vector Machine
	A Guide to libSVM

	Supervised Streamline Segmentation
	Features vectors
	Velocity direction entropy and Tortuosity
	Curvature and torsion histogram
	Volume ratio of minimum bounding ellipsoids

	Training examples collection
	Automatically picking streamlines for training
	Generating training examples

	Training
	Segmentation and post-processing

	Results and Discussion
	Flow feature extraction
	Feature selection
	Parameters

	Comparison
	Conclusions

	DTEvisual: A Visualization System for Teaching Access Control using Domain Type Enforcement
	Motivation
	Domain Type Enforcement
	System Overview
	User Interface
	Domain and Type Graphs
	Graph Editing
	Queries

	Evaluation
	Future Work
	Conclusions

	Conclusions
	References

