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Abstract 
 
Urban sprawl research generally fits into one or more of four realms including 
definitions, causes, components, and consequences.  Although research on 
consequences continues to thrive, research on components is in its adolescence, 
primarily due a lack of consensus on definition.  Recent studies such as Ewing et al. 
2014 have narrowed the list of sprawl metrics to about 20 within four factors including 
development density, land use mix, activity centering, and street accessibility. 
 
This main product of this research is a Sprawl Scorecard for small Michigan cities 
varying in size from Traverse City, nearly 50,000 people in the urban cluster, down to 
Saint Ignace, with only 2,500.  42 small cities are included in the study, with an even 
spread of cities across the state. 
 
One of the limitations with sprawl research is the focus on large cities.  There is good 
reason to study large cities.  Large cities affect more people, have more economic 
influence, and suffer recognizable consequences of sprawl (e.g., traffic congestion).  
However, large cities have more confounding variables at play than small cities making 
it difficult to narrow down the components.  Even assuming components could be 
measured well, large cities have more players making change difficult. 
 
In small cities, sprawl may not affect everyone’s lives in the same magnitude (e.g., 
Houghton’s “rush-minute”), but sprawl does exist and is noticeable.  Sprawl is easier to 
measure in small cities and if measured well, policy is much easier to change as there 
are many fewer players involved and less existing development. 
 
The Sprawl Scorecard provides insight to local and regional planners to mitigate sprawl 
in their regions.  This research also offers researchers several paths for future work in 
all four areas of sprawl research. 
 
Included with the development of the Sprawl Scorecard is original software written in 
Python using ArcGIS.  The first program generated Extended Urban Clusters, based on 
Extended Urban Areas developed by Wolman et al.  The second calculated 21 sprawl 
metric scores for each city and the third used principal components analysis to combine 
the metrics into four component scores and an overall Sprawl Score for each city. 
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Chapter 1: Introduction 
 
This chapter includes a brief introduction to the history of the sprawl debate (Section 
1.1), a discussion of the niche filled by this research (Section 1.2), the need for this 
research (Section 1.3), the specific research questions that were addressed (Section 1.4), 
and an outline of the dissertation (Section 1.5). 
 
1.1 Background 
 
In many planning meetings, urban sprawl is seen as the elephant in the room that no one 
wants to talk about.  This is in part because its definition is nebulous and in part because 
many deem it to be either unobjectionable or incorrigible.  Although most planners can 
intuitively distinguish sprawling development from more sustainable forms of 
development, there is a widespread inability to precisely define sprawl’s characteristics.  
Planners are faced with the dilemma of dealing with a dichotomous group of individuals 
who have ambiguous beliefs on sprawl.  Various groups argue whether sprawl is a 
problem, and whether it can be fixed if indeed it is a problem.  With vague definitions 
and no direct way to measure sprawl despite a wide array of research on the matter, 
neither side has a great argument nor are they willing to pursue compromises.  This fact 
has led to widespread haphazard planning in the United States which does little to 
satisfy parties on either side of the debate. 
 
Sprawl in a city is widely regarded as a very complex system that is much easier to 
qualitatively describe than to quantitatively model due to several convoluted and 
overlapping variables.  The growth of cities is extremely complex.  Because even a 
small change in an urban area might affect the entire area in many ways, there are too 
many variables to model the system perfectly.  Bruegmann concludes that “trying to 
understand the reciprocal relationships among city, suburb, and exurbs is like trying to 
focus the eye simultaneously on numerous objects ricocheting wildly around a confined 
space” [1]. 
 
1.2 Research Focus 
 
Generally research divides the dynamic system of sprawl into four major realms of 
investigation including definitions, causes, components, and consequences.  These 
realms as well as a working definition of sprawl are discussed in Chapter 2.  Although 
there is also significant work being done on solutions to sprawl including transit-
oriented development, infill development, open space preservation, and other urban 
planning techniques, these are not the focus of this research [2].  Instead, the thrust of 
this research is on the components realm of sprawl.  The major question addressed in 
this research is what metrics are best for quantifying sprawl?  To accomplish this, prior 
measures of sprawl were addressed, components of these measures were integrated, and 
a wide-ranging list of metrics were integrated in a comprehensive Sprawl Score. 
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Specifically, this study focused on determining appropriate measures to develop a 
Sprawl Score for 42 small pilot cities in Michigan.  Details on the methods used to 
develop this score are discussed in Chapters 4-7. 
 
The Sprawl Score contains component scores summarizing areas of concern including 
development density, land use mixing, activity centering, and street accessibility.  With 
these metrics, policy makers and planners will be able to look at specific changes that 
can be made for each component and how this will improve their Sprawl Score by 
pursuing specific development programs to mitigate sprawl.  Overall, both sides of the 
sprawl argument should have a better way to quantify their argument and this should 
lead to more compromises, and ultimately better planning and quality of life for citizens 
of these communities. 
 
1.3 Research Need 
 
Much of the research in the past 15 years has focused on the consequences of sprawl, 
but without an accepted sprawl measuring tool, much of this research suffers from 
either being too qualitative or using imprecise or incomplete metrics to measure 
consequences.  It is clear from prior research on sprawl components that there is a need 
to validate a standard measurement strategy for sprawl.  This study laid the groundwork 
for this effort by adapting the most comprehensive scoring mechanism to date for use in 
small cities [3,4]. 
 
The fundamental hypothesis for this study is that studying sprawl beginning at a smaller 
scale provides a more consistent and reliable way to measure sprawl.  Most research to 
date has addressed sprawl on a large scale using America's megalopolises like New 
York, Los Angeles, and Chicago, although results have been quite different.  
Conflicting rankings that place Los Angeles and Chicago as the least sprawling cities in 
some studies and the most sprawling in others indicate that there is little consistency in 
measuring sprawl at a large scale.  These conflicting measures only serve to broaden the 
belief that sprawl is either not a problem, or not a resolvable problem. 
 
Unlike a computer that is created following systematic logic, sprawl development 
mimics natural systems and thus is very complex.  Biologists would not be able to 
understand the human body without first understanding how single cell organisms 
function.  Similarly, why would engineers and planners try to understand sprawl in a 
megalopolis without first understanding how small cities and micropolitan areas 
function? 
 
It is easy to see why researchers studying sprawl have difficulty trying to measure 
sprawl when starting at a large scale.  There are so many competing variables that 
overly complex systems of a megalopolis, such as Los Angeles, could be seen in a 
different light depending on which factors are measured and at what scale they are 
measured. 
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Scale itself can be a huge differentiator in measuring sprawl.  Most groups citing New 
York as a prime example of a sustainable city often use only Manhattan for their study 
indicators [5], whereas those citing New York as a sprawling city often refer to the 
metropolitan statistical area or an even larger region [6]. 
 
For this study, the primary focus was on determining the causes of sprawl by 
researching the phenomenon at a smaller scale using extended urban clusters (EUCs).  
Urban clusters (UCs) are cities and surrounding areas with populations under 50,000 
people in a single core whose boundaries are defined by the United States Census 
Bureau [7].  EUCs include additional territory around the UC are derived and discussed 
in Chapter 5. 
 
This study included only Michigan cities (and their urban extents) with populations 
between 2,500 and 50,000 people.  Although cities over 50,000 certainly exhibit 
characteristics of sprawl, they often have too many confounding variables at play to 
precisely determine the fundamental measures of sprawl.  Cities with populations under 
2,500 may exhibit a few of the characteristics of sprawl being measured, but do not 
have enough population to be reliably analyzed. 
 
Several groups have determined a sprawl ranking for large American cities, however 
one gap in the literature is the lack of study of sprawl for small cities.  The following 
points summarize the motivation for using small urban areas for this research: 
 

 Past research results on large urban areas have been mixed and have not led 
to consensus. 

 Small urban areas do have noticeable sprawl which makes it easier to judge 
the relationship between measures and reality, improving metric validation 
and comparisons between cities. 

 Small urban areas provide a better mechanism for developing and measuring 
the critical components of sprawl as their variables are not as confounded as 
with larger urban areas. 

 Measures developed and validated for small urban areas should scale up well 
to large urban areas. 

 The likelihood that government and planning agencies responsible for 
development changes in small urban areas will be able to make systemic, 
impactful changes is much greater than in larger urban areas where there are 
many more organizations involved. 
 

In addition, the measures determined to be appropriate and effective for small urban 
areas should scale well to larger cities and ultimately provide a more reliable measure 
that will complement past research on large urban areas. 
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1.4 Research Questions  
 
The primary question addressed in this research is what metrics are best for quantifying 
sprawl?  A discussion of this question is developed in the literature review (Chapter 3). 
 
This study develops a method for measuring sprawl in small cities, using small cities in 
Michigan as a pilot group.  The research addressed prior measures of sprawl, integrated 
components of these measures, and incorporated a wide-ranging list of metrics that 
helped lead to a comprehensive Sprawl Score. 
 
Future research should branch from and build off this foundation by examining small 
cities across the United States and ultimately developing more precise measures for 
larger cities with the end goal of leading to a consensus in measuring sprawl.  A 
consensus would allow policy makers and planners to better understand sprawl and 
pursue more logical development programs. 
  
To answer the primary question, three additional questions were considered: 
 

1. What measures have been used consistently to measure sprawl? 
2. Does sprawl exist at small scales? 
3. How do various measures of sprawl compare for the pilot cities of this study? 

 
1.5 Dissertation Outline 
 
Chapters 2 through 3 are introductory chapters defining the problem and reviewing the 
literature.  Chapter 2 provides a background on urban sprawl along with a working 
definition of sprawl that was used throughout this report.  Chapter 3 is a literature 
review of sprawl metric research. 
 
Chapter 4 introduces pilot city selection and the tools used to analyze the datasets from 
various providers, including the US Census, to develop the Sprawl Score. 
 
Chapter 5, 6, and 7 are technical chapters where mapping in ArcGIS and programming 
in Python are used to develop tools leading to the Sprawl Score.  Chapter 5 reviews the 
selection of Extended Urban Clusters for the city scope, based on Extended Urban 
Areas developed by Wolman et al.  Chapter 6 describes the calculation of the 21 sprawl 
metric scores for each city.  Chapter 7 examines the use of principal components 
analysis to combine the 21 metrics into four component scores and an overall Sprawl 
Score for each city. 
 
Finally, Chapter 8 concludes that sprawl exists and is measureable for small cities, 
offers advice to local and regional planners to mitigate sprawl in their regions using the 
results of their Sprawl Scorecard, and offers researchers several paths to use this 
research for future work in all four areas of sprawl research. 
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Chapter 2: Background on Urban Sprawl 
 
One of the dilemmas with quantifying urban sprawl is that there are many definitions 
and lack of consensus as to what sprawl is, what causes it, or why it occurs.  As a result, 
it difficult to study sprawl.  For this reason, a working definition for this research was 
derived from the literature and defined at the end of this section to be used throughout 
this research.  A working definition is needed if a rating system is going to be useful.   
 
In the development of the working definition of sprawl (Section 2.5), a discussion of the 
realms of sprawl including the variety of definitions (Section 2.1), the causes (Section 
2.2), the components (Section 2.3), the consequences (Section 2.4) are summarized. 
 
2.1 Competing Definitions of Sprawl 
 
Sprawl, also referred to as urban sprawl (to denote the origin of the sprawl) and 
suburban sprawl (to denote the location of the sprawl) has many definitions.  A 
sampling of the leading ones include: 
 

Urban sprawl is a form of spatial development, characterized by low densities, 
scattered and discontinuous “leapfrog” expansion, and segregation of land uses, 
encouraging the massive use of private vehicles and strip-malls; this form of 
development is found mainly in open, rural lands on the edge of metropolitan 
areas [8]. 
 
Sprawl (n.) is a pattern of land use in a[n] Urbanized Area that exhibits low 
levels of some combination of eight distinct dimensions: density, continuity, 
concentration, clustering, centrality, nuclearity, mixed uses, and proximity [9]. 
 
Sprawl can be defined as a pattern of urban and metropolitan growth that 
reflects low-density, automobile-dependent, exclusionary new development on 
the fringe of settled areas often surrounding a deteriorating city [10]. 
 
Sprawl is “low-density, scattered, urban development without systematic large-
scale or regional land-use planning” [1]. 

 
In order to define sprawl, it is important to define its alternative, the traditional 
neighborhood, as well as another option, rural development. 
 
A traditional neighborhood exists in an urban area [11].  Dwellings are relatively close 
to each other, daily destinations (work, school, shopping, civic) are walkable, public 
transit and walking dominate, and the street network is connective. 
 
Rural development includes agricultural land and houses on larger, generally forested 
lots.  Rural development is offered few, if any, municipal services by townships or 
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counties as compared to suburban development.  Although rural living is a good option 
for many people, sprawl discussions generally focus on living in either an urban or 
suburban area.  Minimal development in rural areas is generally considered 
inconsequential to sprawl, although over-developing rural areas into suburban areas is 
the fundamental nature of sprawl-development. 
 
2.2 Causes of Sprawl 
 
The cause of sprawl can be debated due to “chicken and egg” like arguments of whether 
certain conditions cause or are the result of sprawl.  Regardless of this debate, the root 
cause of sprawl is and must be the short-term economic incentive for sprawl to exist, 
otherwise it would not exist.  This simply means that it was perceived to be either less 
expensive or more desirable to build on undeveloped land further from the city center 
than on developed land closer to the city center. 
 
Some argue that there is a demand for sprawl [12].  This demand stemmed from the 
onset of the automobile which spurred the growth of a highway network to support 
automobile transportation.  There was certainly a huge demand, and a largely positive 
stigma, to move to the suburbs in the middle of the 20th century right after World War 
II.  In fact, it was, and in many cases still is, the American dream.  This dream 
continued throughout the 20th century as the automobile became to the primary mode of 
transportation. 
 
Some early researchers were discussing sprawl well before the advent of what we call 
sprawl today, when streetcars were causing a change from what had been the traditional 
development pattern for centuries [13].  Research expanded in the late 1980s and much 
of the substantial research in sprawl began in the mid-1990s. 
 
Towards the end of the 20th century and into the 21st, more people, especially 
millennials, are demanding more walkable living [14].  This transformation is helping 
mitigate the demand for sprawl and is making it easier for sprawl opponents to make 
inroads in urban planning, however there is still demand for development resulting in 
sprawl as defined in this study. 
 
Although sprawl is initiated due to the demand for sprawl, what facilitates the existence 
of sprawl?  Sprawl is continuously enabled by many factors including population 
growth (e.g., immigration and baby boomers), lack of coordinated regional planning, 
and transportation infrastructure spending which subsidizes the costs of building on 
otherwise undeveloped land. 
 
The fundamental element of determining sprawl is choice.  Where a person, business, or 
group chooses to live based on benefits in the short term affects urban development 
patterns in the long term.  The problem is that with each choice, the next choice 
becomes progressively skewed in the same direction in somewhat of a vicious cycle, 
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sprawl begets more sprawl.  Decades of small choices have established sprawl in 
America and it is much harder to remove than to expand. 
 
Many have claimed that affluence and personal preference make sprawl inevitable [1], 
but Lewyn argues that when one compares Europe and the United States, this theory of 
inevitability breaks down. 
 

(1) Europe is far less automobile dependent than the United States; and (2) to the 
limited extent that Europe has sprawled, European governments' pro-sprawl 
public policies may be partially to blame.  It logically follows that the 
Inevitability Theory is simply wrong—sprawl can be, and in fact has been, 
limited in the affluent societies of Western Europe [15]. 

 
2.3 Components of Sprawl 
 
The component that almost all researchers agree on that measures sprawl is low density 
development, which amounts to the unnecessary overconsumption of land.  However 
low density is not the only component of sprawl and this is where views diverge.  A 
literature review on sprawl is presented in Chapter 3 and common themes emerge. 
 
Some of these common themes include dispersed land uses (homes, schools, jobs, 
shopping, civic institutions, and recreation) [16] and poor street accessibility including 
lack of a connected street network and suburban inventions such as cul-de-sacs. 
 
Squires summarizes many of the components of sprawl used in current research and 
these are discussed in much more detail in Chapter 3: 
 

Among the traits of metropolitan growth frequently associated with sprawl are 
unlimited outward extension of development; low-density housing and 
commercial development; leapfrog development, “edge cities” and more 
recently “edgeless cities;” fragmentation of land use planning among multiple 
municipalities; reliance on private automobiles for transportation; large fiscal 
disparities among municipalities; segregation of types of land use; race and 
class-based exclusionary housing and employment; congestion and 
environmental damage; and a declining sense of community among area 
residents [10]. 
 

2.4 Consequences of Sprawl 
 
Some now argue that the short-term benefits of sprawl were mostly perceived, not real, 
and that the negative consequences of sprawl far outweigh its benefits [17-20].  There 
are still some groups that benefit economically, but the externalities are generally much 
more dire than the gains for that group.  The main problem is that most of the benefits 
of sprawl are short-term and most of the consequences are long term. 
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It is well known in economics and business that the short-term is of primary 
importance.  This is not because people are willfully negligent of the long term, but 
because it is 1) easier to understand as well as quantify short-term gains and losses and 
2) long-term costs are generally broader in scope (societal/environmental) than short-
term gains which are more at an individual level.  What this means is that most people 
will recognize a short-term benefit easier than they would recognize long-term cost.  As 
an example, sprawl may offer less expensive land so a person can build a bigger house 
and have a bigger yard as compared to what they could get for the same amount at the 
city center.  However this decision is rarely coupled with the fact that the person’s 
increased transportation requirements will result in increased stress and pollution which 
could reduce the length of their life.  This is how sprawl-living, by many people’s and 
company’s standards, is more desirable than urban living. 
 
Even if there still is much demand for sprawl (either induced, perceived, or actual), the 
fact remains that sprawl is not sustainable.  Although one could argue that growth of 
any kind is unsustainable (and they would be correct), it is interesting to note how much 
more unsustainable sprawl really is than alternatives such as high-density mixed-use 
design.  The sustainability triangle (environment, society, economy), shown in Figure 
2.1, is one which has been popularized in recent literature, and is the model can be used 
to look at the adverse effects of sprawl [21]. 
 
The foundational leg of the sustainability triangle is the environment.  Without an 
environment, society could not exist and neither could the economic function of this 
society.  Sprawl creates tremendous overconsumption of both land and resources in that 
more space is being used for less activities.  Land which had been used previously for 
agriculture is now being converted to developed land.  Traditional cities required one or 
two square miles of land with densities in the thousands of people per square mile.  
Each sprawl development can easily take up the same or greater land area for instead 
only hundreds of people.  It is also important to note how much additional raw material 
is required to build these residential developments.  The only research on positive 
environmental effects shows that environmental costs, such as pollution and wildlife 
habitat encroachment, are declining, but these arguments are generally myopic and do 
not consider entire metro areas [22]. 
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Figure 2.1: Sustainability triangle 

 
The next leg of the sustainability triangle is society.  A large problem that sprawl has 
caused is social reclusion due to lack of face-to-face social interaction.  In a traditional 
city, it was very difficult and undesirable to go throughout the day without talking to 
tens of people, maybe even a hundred of them.  In suburban life, one may see the same 
number of people, but there is not much value in talking to them.  People in suburbia 
live in neighborhoods where many of them do not even know who their neighbors are 
nor do they care to.  This social reclusion causes many other adverse societal effects. 
 
One other broad social problem is increased stress.  Because commutes are long and 
slow, people are not as sociable, and pressure to consume is high, most people act at a 
higher stress level in a sprawl environment.  The speed at which people complete things 
is outstripping the quality of the things that they complete. 
 
The third leg of the triangle, economy, is also important if a society is to be sustainable 
and healthy.  Productivity is one of the most important drivers of the economy.  The 
problem is that productivity is indirectly correlated to length of commute, stress, and 
many of the things that sprawl is predicated on.  That is to say that as people become 
more stressed, they become less productive, and therefore the economy suffers. [23] 
 
Sprawl has enabled population growth and in turn, population growth has enabled more 
sprawl [24].  The population of the United States has more than doubled since the 
advent of sprawl in the 1940s, and there are few signs of this declining any time soon 
due to continued immigration.  The most unfortunate part about this statistic is that 
many city populations, especially in the Northeast, are declining, yet the overall 
population is soaring due to suburban growth. 
 
Many of the benefits and consequences of sprawl are listed on the following page.  
These are broken down into the three components of the sustainability triangle, 
environmental, social, and economic.  Although the list is not comprehensive, it 
provides good context to understand the impact of sprawl. 
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Economic Benefits of Sprawl [25] 
 Decreased expense for land acquisition 
 Increased short-term profits for corporations 
 Increased decision-making ability (left open to the free market) 

 
Economic Consequences of Sprawl [26,27] 

 Increased costs to municipalities due to businesses externalizing costs (e.g., tax 
breaks, infrastructure, public transportation) 

 Increased property taxes to residents to cover costs 
 Decreased viability of city centers 

 
Social Benefits of Sprawl [22] 

 Decreased crime rates in sprawl 
 Increased amount of land for residents versus urban dwellings 
 Decreased noise and air pollution in the sprawl 

 
Social Consequences of Sprawl transportation requirements 

 Increased (generally automobile dependence) [28-31] 
 Increased racial / ethnic disparity [10] 
 Increased gap between classes [10,32] 
 Decreased socialization / citizenship [33] 
 Decreased physical activity leading to increased obesity [34-45] 
 Increased traffic and pedestrian fatalities [46] 
 Increased emergency response times [47] 

 
Environmental Benefits of Sprawl [22] 

 No substantial benefits 
 
Environmental Consequences of Sprawl 

 Increased consumption of land [16,48,49] 
 Increased air pollution in city centers [50-52] 
 Increased water consumption [53] 
 Increased energy consumption [54] 
 Decreased wildlife habitat and fragmentation / damaged ecosystems [48,49] 
 Increased number of wasted resources and overconsumption [16] 
 Decreased overall sustainability [55] 

 
To close the discussion on consequences of sprawl and better understand how the 
consequences are interrelated, consider the following example. 
 
A big-box supercenter selling department store items and groceries is built two miles 
from the downtown of a city.  This allows for market efficiencies leading to increased 
convenience for consumers, reduced direct prices to consumers, and higher corporate 
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profits.  But are these benefits worth the costs?  The supercenter is built on the site of a 
former wetland, decreasing wildlife habitat and biodiversity.  The store’s target market 
includes all people living in the city.  Over the course of 10 years, a downtown clothing 
shop, variety store, pharmacy, grocer, and electronics store (to name a few) all shut 
down leaving the only option for shopping for such items two miles away from 
downtown.  This increases the need for people to use personal vehicles to commute to 
the shopping destination.  There are also now five vacant buildings in downtown, which 
makes for a less viable downtown and can lead to further business closures, decreased 
tourism, and more crime, to name a few.  All of the former employees of the closed 
business who had ample salary and benefits are now forced to commute further to work 
for less income or take up a new profession.  Traffic congestion and travel time is 
increased as a result of more traffic to the area and increased number of traffic lights.  
Then the business decides that their big box is not a big enough box.  They shut down 
the old location and move another two miles out from the center of the city.  This leads 
to a whole slew of additional consequences.  And this is just the tip of the iceberg as far 
as consequences of this type of scenario which has occurred and is continuing to occur 
across the United States and increasingly in other developed and developing nations. 
 
2.5 A Working Definition of Sprawl 
 
Causes and consequences of sprawl certainly help to understand sprawl, but a definition 
of sprawl should primarily focus on what sprawl is (the components).  Therefore, the 
following definition is proposed: 
 

Sprawl is low-density developed land on the fringes of an urban area that 
includes dispersed land uses and gaps of open space.  It is characterized by 
residential subdivisions, strip malls including many big box stores, and a 
large private vehicle traffic to pedestrian traffic ratio, all flanked by small 
swaths of nonfunctional open space. 

 
Although sprawl can be measured independently of a core, it is important to link sprawl 
with the corresponding development at the urban core.  Therefore an urban area’s 
Sprawl Score, as developed in this study, reflects the quantity of sprawl as it is related 
to the quantity and quality of urban development within the central business district.  
What this means is that even if two urban areas have an identical amount of sprawl, if 
one of them has a much greater amount of downtown health it will score better than the 
one with lesser downtown health.  Downtown health refers to few vacant buildings, 
many pedestrians present, clean streets, and a high level of safety. 
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Chapter 3: Literature Review of Sprawl Metrics 
 
Land development and growth has been a topic of urban geography research since the 
early 1900s, however more recently interest in sprawl has become quite 
multidisciplinary.  Several researchers have attempted to tackle the incredibly complex 
system of sprawl across various fields including planning, public policy, geography, 
sociology, economics, and civil engineering.  As presented in Chapter 2, the four major 
realms of research on sprawl are definitions, causes, components, and consequences.  
Although these are all intertwined, the focus of this study is regarding the measurement 
of sprawl using metrics.  Although much progress has been made on developing and 
enhancing metrics to measure components of sprawl in the past 15 years, no consensus 
has been achieved. 
 
Many researchers have identified ways to measure sprawl in an urban area, and have 
explained many of the characteristics that play a role in this phenomenon.  For instance, 
population density is consistently included in sprawl measurement systems and there is 
a consensus among authors that low density is a factor in sprawl.  Although population 
density is widely believed to be a necessary item in sprawl analysis, it is not sufficient 
to measure sprawl. 
 
Studies such as Galster et al. (2001) and Ewing et al. (2002) laid the foundation for 
studying sprawl using metrics tied to the fundamental components of sprawl [9,56].  
More recent studies have begun to selectively evaluate these measures and have 
attempted to come to a consensus means of measuring sprawl, however no consensus 
has been achieved.  Ewing et al.’s updated 2014 study has the potential to begin 
building consensus, thus this work became the primary source for this research [3]. 
 
This literature review of the research of sprawl metrics focused on three major aspects: 
 

 Inability to consistently rank sprawl for large cities (Section 3.1) 
 Variety of metrics used (Section 3.2) 
 Using remote sensing to define urban areas and measure sprawl (Section 3.3) 

 
Additional considerations are outlined in Section 3.4 and a summary of metrics and the 
list of chosen metrics are presented in Section 3.5. 
 
3.1 Inability to Consistently Rank Sprawl for Large Cities 
 
There have been several studies to comprehensively rank sprawl in large cities in the 
United States, with widely different results.  Four of the major foundational studies are 
summarized in Table 3.1.  This table shows the best five cities and the worst five cities 
in each study.  Also, six standard cities are used to show how each measure widely 
varies with respect which cities are most and least sprawled.  These are standardized 
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using each study’s final weighted average to a ranking from 0 to 100, with 0 indicating 
considerable sprawl and 100 being less sprawl. 
 

Table 3.1: Comparison of city rankings among four foundational studies 

 
As can be seen from these rankings, New York tends to be rated as a low-sprawl 
metropolitan area and Atlanta tends to be rated as a high-sprawl metropolitan area.  Los 
Angeles, Chicago, Dallas, and Portland however tend to vary across the board.  It 
should be noted that all of these studies focus on large cities with populations exceeding 
50,000 people. 
 
Both Ewing et al. and Galster et al. strived to summarize the research of the 1990s to 
derive a comprehensive sprawl scoring mechanism.  Ewing et al.’s approach was to 
utilize many metrics to derive component scores in a few key areas whereas Galster et 
al.’s approach was to determine eight distinct areas with one metric each. 
 

Study Ewing et al. [56] Galster et al. [9] USA Today [6] Kahn [57] 

Year 2002 2001 2001 2001 

# of Metrics 22 12 2 1 

Categories of 
Metrics Used 

Density (7) 
Mix (6) 

Centers (6) 
Streets (3) 

Density 
Continuity 

Concentration 
Clustering 
Centrality 
Nuclearity 

Mixed Uses 
Proximity 

Centering - Current 
Centering - Temporal 

Employment 
Decentralization 

New York 100 100 79 94 

Chicago 65 7 73 25 

Los Angeles 54 41 80 27 

Atlanta 27 0 18 24 

Dallas 39 21 61 34 

Portland 68 N/A 52 100 

Least Sprawl 

New York, NY 
Jersey City, NJ 
Providence, RI 
San Francisco, CA 
Honolulu, HI 

New York, NY 
Philadelphia, PA 
Chicago, IL 
Boston, MA 
Los Angeles, CA 

Laredo, TX 
Lincoln, NE 
Colorado Springs, CO 
Anchorage, AK 
Fargo, ND 

Portland, OR 
New York, NY 
Anaheim, CA 
Denver, CO 
Milwaukee, WI 

Most Sprawl 

Riverside, CA 
Piedmont Triad, NC 
Raleigh, NC 
Atlanta, GA 
Greenville, SC 

Atlanta, GA 
Miami, FL 
Detroit, MI 
Denver, CO 
Dallas, TX 

Ocala, FL 
San Luis Obispo, CA 
Johnstown, PA 
Charlottesville, VA 
Sumter, SC 

Detroit, MI 
Tampa, FL 
Oakland, CA 
Atlanta, GA 
Chicago, IL 
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As not many sprawl scores had been released at the time, the USA Today score received 
a fair amount of press even though only two metrics based on the same category, 
centering, were used to develop the score [6].  Kahn’s score offered even less breadth as 
it was derived purely based on one metric, the degree of employment decentralization in 
a metro area [57].  The Ewing et al. and Galster et al. studies by far the most 
comprehensive of the era. 
 
Lopez also developed a sprawl index using a similar strategy to the USA Today 
methodology [58].  Lopez’s metric dealt with percentage of people living in low density 
versus high density census tracts.  The interesting portion of this study was that his 
index was defined for 4 different decennial census years (1970-2000), which allows 
comparing cities “growth” of sprawl, or “second order” sprawl growth.  Atlanta 
increased 20 percentage points from 1970 to 1980, but stayed relatively stable to 2000.  
Portland showed a decrease of seven percentage points from 1980 to 2000, perhaps 
giving credence to the argument that their urban growth boundaries have at least been 
metering sprawl [59]. 
 
It should be noted that many of these rankings were developed over 15 years ago.  More 
recent studies have realized these discrepancies and tried to focus on developing better 
metrics as opposed to rankings.  Most current studies that do use specific geographic 
boundaries do so using only a few case study cities.  The one exception is Ewing et al.’s 
updated 21 metric sprawl score, and this is discussed in Section 3.2 and used in the 
research [3]. 
 
3.2 Variety of Metrics Used 
 
Seeing an emerging body of research and a necessity for identifying the components of 
sprawl, the Transportation Research Board (TRB) commissioned a major study.  
Through their Transit Cooperative Research Program (TCRP), they released a report 
entitled “The Costs of Sprawl - Revisited” summarizing research on sprawl to date in 
1998 [60].  Since then, researchers have been striving to get a grip on which metrics 
best measure sprawl.  The TCRP report outlined the following 10 defining 
characteristics of Sprawl: 
 

 Low density 
 Unlimited outward extension 
 Land uses spatially segregated 
 Leapfrog development 
 No central ownership on planning 
 Transport dominance by motor vehicles 
 Highly fragmented land-use governance 
 Great variance in local fiscal capacity 
 Widespread commercial strip development 
 Reliance on filtering for low-income housing 



15 
 

This report spurred the two most rigorous early studies which developed metrics to rate 
sprawl in the United States, as discussed in the prior section, which were Galster et al. 
and Ewing et al. [9,56].  Since then, many groups have continued to investigate these 
and other measures.  Table 3.2 summarizes the characteristics used in the most 
prominent research over the past 15 years, organized by date of publication.  Table 3.3 
lists a description of each measure synthesized from definitions in the sources using the 
measures. 
 

Table 3.2: Metrics used to measure sprawl in previous research 

Source [61] [57] [6] [9] [56] [62] [63] [64] [65] [66] [67] [3] 
Totals 

Year 98 01 01 01 02 06 07 07 07 10 13 14 
Density X  X X X X X X X X X X 11 
Accessibility X X  X X X    X X X 8 
Centrality    X X X  X X X X X 8 
Continuity    X  X X X X X   6 
Porosity X   X  X X X X X   6 
Mixed Use    X X X    X X X 6 
Historical 
Change X  X    X  X    4 

Complexity      X  X     2 
Impervious 
Surface      X   X    2 

Clustering    X         1 
Nuclearity    X         1 
Total 
Metrics 4 1 2 12 22 17 9 7 25 6 18 4 Avg. 

10.6 
 

Table 3.3: Definitions of metrics used to measure sprawl in previous research 
Metric Definition 
Density Population per unit area (can also be density of a specific function) 
Accessibility  Proximity to services as well as accessibility via the transportation network 
Centrality Proximity of services to the core / CBD 
Continuity Uniformity of density gradient and no leapfrog development or scattering 
Porosity Ratio of open space to urban area 
Land Use Mix Diversity in land uses / proximity of housing to other land uses 
Historical Change Historical data used to compare growth patterns 
Complexity Irregularity of urban area’s patch shape 
Impervious Surfaces Amount of impervious surface in urban area 
Clustering Clustering within small units scattered throughout the urban area 
Nuclearity Mononuclear versus multinuclear development 

 



16 
 

Ewing et al.’s study sponsored by Smart Growth America involved one of the most 
rigorous metrics of its time [56].  Prior studies had focused on one or only a few 
metrics, whereas this study focused on 22.  The 22 were grouped into categories of 
density, land use mix, degree of centering, and street accessibility with most of the data 
coming from the US Census Bureau, the Census Transportation Planning Package 
(CTPP), a previous study by Glaeser et al. on zip code business patterns [68], and the 
American Housing Survey (AHS).  The list of metrics used in this study are shown in 
Table 3.4.  One of the main findings from this study was not the sprawl score for the 
areas, but the quality and quantity of the metrics used to operationalize sprawl.  Many 
of these metrics are improved and updated in Ewing et al.’s 2014 study which was used 
as a basis for the study [3]. 
 

Table 3.4: 22 Metrics across four dimensions used by Ewing et al. [4] 

Density 

Population density 
Percentage  living at low suburban density 
Percentage living at transit-supportive urban density  
Estimated density at center of CBD 
Population density of urban lands 
Average lot size for single family dwellings 
Weighted density of all population centers in  a metro 

Land Use Mix 

Percentage with businesses/civic areas within block of home 
Percentage with shopping within 1 mile 
Percentage with public elementary school within 1 mile 
Job-resident balance 
Population-serving job-resident balance 
Population-serving job mix 

Centering 

Variation of population density across census tracts 
Density gradient 
Percentage less than 3 miles from CBD 
Percentage less than 10 miles from CBD 
Population relating to centers within same MSA 
Ratio of density of centers within same MSA to related center 

Street Accessibility 
Average block length in urbanized portion of metro 
Average block size in square miles 
Percentage of small blocks 

 
Galster et al.’s study was the second of the two rigorous sprawl measurement studies 
done at the turn of the century [9].  Rather than focusing on the measurement of many 
cities, it concentrated on developing and defining metrics which could be used to 
measure sprawl, as shown in Table 3.5 below.  A significant element of this study was 
the scale of metropolitan area used.  The researchers decided to use Urbanized Areas 
(UZAs) as opposed to the larger Metropolitan Statistical Areas (MSAs) used by most 
other studies.  Critics of this research, as well as more recent research by some of these 
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authors, noted that UAs did not include a lot of the suburban and exurban territory 
which is generally considered to be related to sprawl of the metro area.  Wolman et al. 
(including Galster) would refine their geographic unit by creating Extended Urban 
Areas (EUAs) which is modified and used in this study [69]. 
 

Table 3.5: 12 Metrics across 8 dimensions used by Galster et al. [9] 
Density Number of housing units/employees in UA per square mile 
Continuity Proportion of developed grids in UA to undeveloped 

Concentration 
Proportion of very high density grids to all grids 
Variation of housing unit density among grids 
Share of units needed to shift to achieve uniform distribution across UA 

Clustering Degree of clustering within quarters of one-mile grids 

Centrality 
Average distance of a land use from the CBD 
Accumulation of land use as distance from CBD increases 

Nuclearity 
Number of nodes in a UA  
Ratio of housing units/employees in largest nucleus to all nuclei 

Mixed Use Average density of a particular land use in another land use’s area 
Proximity Degree to which a land use or pair of land uses are close to each other across UA 

 
The USA Today and Sierra Club studies were examples of many of the less 
sophisticated studies linking sprawl mostly to density [6,61].  Although most research 
on sprawl will list density as a key factor, recent studies have realized this is only one of 
many factors.  The one interesting measure that the USA Today study considered was 
historical change of density from 1990 to 2000, as historical growth patterns certainly 
do play a significant role in measuring sprawl.  The Sierra Club study used many 
subjective measures indetified by a group of committee members. 
 
Kahn’s study was primarily focused on a theorized consequence of sprawl, the 
black/white housing consumption gap [57].  However, Kahn did use a unique measure 
of sprawl to determine a sprawl ranking at the beginning of his study.  He used location 
of employment facilities in the metropolitan area as his sole measure of sprawl.  The 
critical radius was 10 miles; if all businesses were located within this radius, a city 
would receive the lowest sprawl rating whereas if all business were located outside the 
radius, the city would get the highest sprawl rating.  The limitation of this metric is that 
city populations should allow for a changing critical radius instead of an arbitrary 
constant radius.  One of the main contributions of this study was a procedure to 
systematically define the central business district (CBD) of a city. 
 
Lowry and Lowry statistically compared 18 metrics across four categories using three 
scales of defining the urban area of a city using Salt Lake City as a case study [67].  An 
interesting piece of their research was the use of three distinct zones in a city, classified 
as pre-suburban, suburban, and late-suburban.  After comparing their 18 metrics at the 
three different scales, the authors concluded that 13 of these metrics were found to best 
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quantify urban form: median single family residential lot size, housing density, average 
household size, mean distance to commercial zones, mean distance to K-12 schools, 
street connectivity, median perimeter of blocks, dendritic street pattern, median length 
of cul-de-sacs, land use contiguity, land use richness, population percentage working 
outside the city, and renter–owner balance. 
 
In two papers in Ecological Indicators, Jaeger et al. discussed a thirteen point suitability 
criteria for sprawl measurements testing four potential sprawl measures used in other 
research [70,71].  In addition to the contribution of selection criteria, the first paper 
stated an important conclusion: 
 

For urban sprawl, the ideal case would be that one indicator quantifies the 
degree of urban sprawl, while a set of additional indicators measure relevant 
causes, consequences, and attributes of urban sprawl. 
 

Zito and Salvo as well as Schwarz took a transportation-centric approach to sprawl 
using European cities as their case study [72,73].  Zito and Salvo looked at 32 indicators 
across eight macro-categories surrounding transportation and planning aspects of the 
design of the city.  Their eight macro-categories were planning, public transportation, 
transportation demand management, economics, private transportation, externalities, 
energy consumption, and co-benefits.  Although some of their metrics are related to 
consequences of sprawl, many of the unique metrics used could be good component 
indicators as well.  In addition Schwarz offers a comprehensive table of 27 common 
metrics that have been used in several related studies [73]. 
 
3.3 Using Remote Sensing to Define Urban Areas and Measure Sprawl 
 
Recently researchers have used remote sensing strategies to aid in defining boundaries 
for urban areas as well as for landscape-based metrics to measure sprawl.  With the 
increase in the quantity and quality of imagery, this approach is gaining prominence. 
 
Huang et al.’s research explored cities across the world using some unique measures of 
sprawl as well as a novel method of determining the scale area to be studied [64].  
Satellite imagery was used to determine the area of study for each city, with the major 
limitation being availability of data and cloud cover causing a limited selection of cities 
to be chosen.  The main contribution from this work was the definition of the urban 
areas using remote sensing strategies instead of population and housing data. 
 
In Sutton’s research, nighttime imagery was used to determine the extent of an urban 
area to use in sprawl measurement [74].  He used two thresholds yielding 244 and 300 
areas in the United States, of which many aligned with urban areas.  The study did show 
a wider variation in population in his estimated urban areas versus actual urban area 
populations.  One benefit of this study is that areas are better adjusted for scale, making 
for better comparisons between large and small urban areas. 
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Ji et al. used images during fast-growing vegetation periods in Kansas City to first 
determine a boundary area for the metropolitan region and then to look at temporal 
expansion of the built area for the region [75].  Included in their research was a 
discussion of patch identification.  Patches, groupings of pixels of the same land cover 
classification, are used throughout the majority of remote sensing sprawl research as 
these are defined by land use patterns within the region and are agreed to play multiple 
roles in sprawl [64]. 
 
Wilson et al. devised a complex algorithm to land cover data to create urban growth 
maps [76].  The group determined five distinct urban growth patterns in their 
Northeastern United States study area: infill, expansion, isolated, linear branch, and 
clustered branch.  These findings are significant because these five distinct patterns of 
growth resemble varied levels of sprawl development. 
 
Herold et al. provided a discussion about the importance of using the highest resolution 
land cover data available when measure characteristics of sprawl [77].  They also 
discussed the importance of using a robust collection of metrics in order to fully 
characterize sprawl in the study area. 
 
Bhatta et al. summarized the development of landscape metrics and concluded that 
although there were many landscape-based metrics developed in the past few years, the 
concept still needs refinement [78].  They also add to the case that, in general, there will 
be higher demand for sprawl metric development in the future. 
 
Even Ewing et al., in their recent study, have incorporated one element of remote 
sensing.  Land use data developed from remote sensing are used to determine the 
percentage of population in urban lands [3]. 
 
3.4 Other Considerations 
 
This section presents other research considerations related to the measurement of 
sprawl.  Among these are walkability / livability (Section 3.4.1), environmental impacts 
(Section 3.4.2), basic psychology (Section 3.4.3), and empirical studies (Section 3.4.4) 
 
3.4.1 Walkability / Livability 
 
Two recent topics that certainly pertain to level of sprawl in a city are walkability and 
livability.  Recent studies have developed a user-friendly website to determine the Walk 
Score of an area [79].  Walk Score can be utilized for a variety of metrics, specifically 
centrality and land use mix.  Walk Score releases rankings for Walk Score, Transit 
Score, Bike Score, and City and Neighborhood Rankings.  Walk Score is such an 
integral factor in measuring elements of sprawl that Ewing et al. included the weighted 
average Walk Score as one of their metrics [4]. 
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Along similar lines, groups such as the Economist Intelligence Unit [80], the Mercer 
Quality of Living Survey [81], and AARP, formerly the American Association of 
Retired Persons [82], rank cities as most “livable.”  These studies are of particular 
interest because of the fact that many of their indicators will overlap with sprawl 
indicators.  The Mercer survey alone uses 39 indicators.  By studying these links in 
more detail, metric viability can be assessed and potential conclusions can be marketed 
more appropriately to planning groups and municipalities. 
 
3.4.2 Environmental Impacts 
 
Studies on environmental impacts may also prove useful in the sprawl discussion.  
Particularly when a change in land cover strategy occurs for measuring environmental 
impacts, these measures will begin to overlap with the sprawl discussion [83].  Research 
at Michigan Tech has shown locally how Houghton has changed ecologically in tandem 
with urban sprawl [84].  Figure 3.1 below, reproduced from the report, shows the 
changing landscape of the area in Houghton that has been most wrought by ecological 
destruction and low-density, sprawl-related development over the past forty years.  This 
report helps lead into the analysis of the Sprawl Score when looking at Houghton as a 
case study to draw parallels between metrics on environment and sprawl. 
 

   
Figure 3.1: Changing land use patterns of Houghton, MI over past forty years [84] 
Courtesy of the Alex Mayer, Michigan Technological University, Houghton, Michigan. 

See Appendix A for copyright permission form (signatures redacted for privacy) 
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3.4.3 Basic Psychology 
 
An important aspect in developing the Sprawl Score was identifying the right objectives 
and metrics to assess the situation accurately and consistently for each city.  From the 
prior research discussed earlier, there have been hundreds of metrics used ranging from 
statistical measurements of census data to social/psychological studies to remote 
sensing of imagery.  One goal in this study was to determine which metrics were the 
most appropriate to calculate the Sprawl Score. 
 
Before metrics are developed, it is important to take a step back and look at the bigger 
picture.  What attributes of an urban area make it more versus less sprawled?  To 
answer this question, a step away from urban planning to basic psychology needs to be 
taken.  Consider what people do in their daily lives and what a city is used for.  From 
Maslow’s hierarchy of needs, human needs can be broken down to physiological, 
safety, love, esteem, and self-actualization [85].  Among the main physiological needs, 
humans need access to shelter, food, and water, which can be simplified to housing and 
grocery stores in modern society.  For safety and security, humans need government 
and civic services as well as employment.  The higher order needs of love, esteem, and 
self-actualization begin to bring in requirements of recreation which can take the form 
of parks, athletic venues, airports, and other services one would expect to find in an 
urban area.  All of these items require some mode of transportation which necessitates a 
transportation network to be developed to get between venues, whether it be walking, 
taking public transit, or taking a personal vehicle. 
 
In summary, the typical components of any urban area are residential dwellings, 
commercial/industrial facilities, civic/cultural sites, shopping retailers, and 
transportation networks.  In a traditional urban area, the CBD housed all of these sites in 
a mixed use environment.  With the advent of faster transportation methods, these 
services have been able to separate and spread out while the direct costs of time and 
income have not been affected.  This is the fundamental underpinning of sprawl and 
must be inherent in any properly calculated sprawl score.  Categories that directly 
coincide with this trend include density, land use mix, and accessibility, all of which are 
used to calculate the Sprawl Score. 
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3.4.4 Empirical Studies 
 
Over the past 10 years, the author has traveled by automobile through every county and 
most county seats in the continental United States by vehicle.  While empirically 
observing downtown and suburb interaction in large and small cities, several patterns 
emerged: 
 

 It was often faster to drive through downtown than to drive through the 
suburban areas surrounding downtown 

 Downtowns all seemed regional and somewhat unique 
 Suburbs all looked and felt identical no matter the region 
 Architecture in downtowns was inspired as suburban architecture was mainly 

functional 
 Many downtowns were necrotic (e.g., many closed storefronts, no pedestrians) 

even though their suburbs were bustling, whereas there were few to no examples 
of the opposite 

 Older bypasses were filled with storefronts and traffic signals and new bypasses 
around them were also beginning to fill up with storefronts and traffic lights 

 Older big-box stores closer to downtown sat vacant as newer, bigger big-box 
stores (most of the time, the same companies) were built further from the 
downtown 

 Downtowns that had been improved by bringing in more stores and making 
them more walkable were filled with people and were enjoyable places to be 

 Not just large cities have sprawl; small cities have sprawl too and in many cases 
the effects seem more damning on small cities 
 

Over the course of these travels, the author has postulated many potential metrics to 
measure sprawl which are summarized in Table 3.6 [86].  These are summarized in six 
dimensions including density, land use mix, centering, transportation / accessibility, 
historical relationships, and other, uncategorized metrics.  Many of these overlap with 
the current research, but many are unique and although they were not used in this study, 
the gamut of different measures is useful to consider for future work. 
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Table 3.6: 38 Metrics across six dimensions hypothesized by author 

Density 

Density of CBD 
Ratio of density of CBD to density of EUC 
Ratio of area of CBD to area of EUC 
Net residential density 
Net commercial density 
Ratio of living in EUC to working in EUC 
Ratio of living in CBD to working in CBD 
Ratio of number of dwellings in CBD to EUC 
Average block size 

Land Use Mix 

Percentages of buildings condemned in CBD 
Percentages of buildings in use in CBD 
Ratio of new businesses starting in CBD versus outlying areas 
Footprint of big box stores outside CBD 
Footprint of retail stores inside/outside CBD 
Number of locally owned business versus chains 

Centering 
Distance from courthouse, city hall, schools, etc. to center of CBD 
Distance from population center to center of CBD 

Transportation / 
Accessibility 

AADT of main street in CBD 
AADT of suburban arterials 
Commuteshed 
Commuteshed per capita 
Average commute times 
Transit usage statistics 
Vehicle miles travelled in all city (CBD and suburbs) 
Vehicle ownership statistics 
Walkability score of CBD 
Walkability of other key areas 
Bikeability statistics 
Bypass routes and effects 
Number of cul-de-sacs 

Historical Relationships 
Shape of city / changes over time 
Historic values and trends 
Suburbs with no center and large pop increase in recent history 

Other Metrics 

Happiness 
Livability 
Building height versus population 
Neighborhood completeness [87] 
Ratio of jobs to population 
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3.5 Summary of Sprawl Metrics and Metric Selection 
 
After reviewing the literature, it is clear that although there is no consensus on a sprawl 
scoring mechanism, there are a variety of metrics that have been used.  This being the 
case, the research presented in Ewing et al.’s 2014 report on sprawl was used as a 
primary reference for this project.  Their 2002 research was already one of the top 
measurements of sprawl components and with the integration of elements such as land 
use from remote sensing and the Walk Score, the study has the best chance to gain 
consensus over the next 10 years.  These metrics are listed in Table 3.7. 
 

Table 3.7: 21 Metrics across four dimensions used by Ewing et al. (2014) [4] 

Development Density 

Population density 
Employment density 
Percentage of the population living at suburban densities 
Percentage of the population living at urban densities 
Net population density of urban lands 
Estimated density at the center of the metro area 
Population density of CBD 
Employment density of CBD 

Land Use Mix 
Job / population balance 
Degree of job mixing 
Walk Score 

Activity Centering 

Coefficient of variation in block population densities 
Coefficient of variation in block employment densities 
Density gradient moving outward from the CBD 
Percentage of population in the CBD 
Percentage of employment in the CBD 

Street Accessibility 

Percentage of small urban blocks 
Average block size 
Average block length 
Intersection density 
Percentage of 4-or-more-way intersection 
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Chapter 4: Study Methodology and Tools 
 
Research has been conducted in five phases: the selection of cities to study, the decision 
on where to draw the line around the city for analyzing sprawl, the selection and 
calculation of sprawl metrics, the calculation and analysis of the Sprawl Score, and the 
recommendation of future work.  Each of these is elements is outlined below. 
 

1. 42 Pilot cities were selected from among the chosen scale range (2,500 to 
50,000) of small cities in Michigan.  These were selected to narrow the study 
and select common groups for analysis.  This process is detailed in Section 4.1. 
 

2. Extended Urban Clusters (EUCs) were created to achieve the ideal geographic 
scope of the research area for pilot cities.  The process is outlined in Section 4.2 
and the algorithm to create the EUCs is the focus of Chapter 5. 

 
3. Twenty-one sprawl metrics were calculated for each EUC in the study 

determined by using Ewing et al.’s 2014 approach [3].  The reason for selecting 
Ewing et al.’s approach is outlined in Chapter 3 and the algorithm to calculate 
the 21 metrics is outlined in Section 4.3 and is the focus of Chapter 6. 

 
4. The Sprawl Score for the 42 pilot cities was calculated using the chosen metrics.  

The algorithm is introduced in Section 4.3 and the full algorithm and results are 
the focus of Chapter 7. 

 
5. Conclusions were drawn and suggestions for future work were made.  These are 

discussed in Chapter 8. 
 
Several datasets and tools were used in this study.  The most important dataset was the 
United States Census Bureau’s block data and demographic data from the 2010 census 
[88].  Other datasets used are described in Chapters 5, 6, and 7. 
 
The main tool used in the research was ArcGIS, a Geographical Information System 
(GIS) package produced by ESRI [89].  To develop the algorithms created in Chapters 
5, 6, and 7, Python was used to create scripts, which are computer programs that run a 
sequence of commands [90].  Python is an open source programming language which is 
compatible with ArcGIS and includes the ability to call ArcToolbox applications. 
 
4.1 Pilot City Selection Methodology 
 
As sprawl is a consequence of moving away from a centralized city, pilot cities must be 
selected from a group of cities.  What constitutes a city’s extent is well described by the 
United States Census Bureau’s definition of urban areas [91].  By this definition, an 
urban area is any area with a central core with a total area population of 2,500 or 
greater.  Urban areas (UAs) are sub-classified into two sub groups: urban areas with a 
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population of at least 50,000 are classified as urbanized areas (UZAs) and the rest of the 
areas (between 2,500 and 50,000) are classified as urban clusters (UCs).  Pilot cities 
were selected from among Michigan’s 116 urban areas as defined and for this study, 
only urban clusters were used which decreased the number of possible cities for 
inclusion to 95. 
 
Although all 95 of these cities are the proper size range for the study group, some of 
these cities are not ideal for various reasons.  First, economic and cultural influence of 
the city must be considered.  For instance, Goodrich is essentially a bedroom 
community for people working in Flint, Detroit, and the Detroit suburbs.  Including 
Goodrich in this study would not align with the study’s mission of focusing on small 
communities that are not widely influenced by large metropolitan areas.  Thus, the next 
elimination criteria used was to remove UCs within a county that contains a nontrivial 
amount of a UA, which reduced the total prospective cities to 65. 
 
Next, UCs were eliminated if they contained territory from multiple states.  Statewide 
legislation and incentive programs have a lot to do with sprawl development patterns, so 
these hybrid UCs were removed to reduce this factor from convoluting the pilot city’s 
Sprawl Score results.  This criteria removed three more cities, all in the Upper Peninsula 
of Michigan, from the pool reducing the number eligible to 62. 
 
Along similar lines to metropolitan area influence is county influence.  Counties are 
utilized by most groups as boundaries of their general area.  The county seat is 
generally, but not always, the most influential city of a county.  As such, the number of 
UCs per county in this study was reduced to one.  Although other UCs in the county 
may be involved with sprawl of the main UC in the county, this is considered as another 
variable in the conclusions of the study rather than an elimination criteria for all UCs in 
such a county. 
 
To pick one UC per county, if the UC containing the county seat had either the largest 
population or population density, implying it has the greatest influence in the county, it 
was chosen.  If there was a UC in a county with no seat present, or no seat that had the 
largest population or population density, the UC with the largest population density was 
chosen.  This reduction resulted in the final group of 42 cities in the pilot group. 
 
Table 4.1 lists all 42 cities in the pilot group.  This table lists cities by classification, 
which is used in the final Sprawl Score calculation to compare only cities of a similar 
size and regional influence.  The table also lists the county and prosperity region [92]. 
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Table 4.1: List of 42 pilot cities in Michigan for this study 

Classification EUC Name Primary   
County 

Prosperity 
Region 

Population 
(2010) 

Area 
(mi2) 

Population 
Density 

Mid-Size 
Regional 

(25,000-49,999)   
4 

Traverse City Grand Traverse Northwest 47109 43.62 1079.9 
Adrian Lenawee Southeast 44823 24.02 1865.8 
Mount Pleasant Isabella East Central 37447 16.63 2252.2 
Marquette Marquette Central UP 26946 15.68 1718.9 

Small Regional   
(10,000-24,999)   

14 

Owosso Shiawassee East 22426 11.25 1993.3 
Escanaba Delta Central UP 20850 17.94 1162.0 
Alma Gratiot East Central 16924 7.43 2276.7 
Coldwater Branch Southwest 16876 11.52 1464.5 
Houghton Houghton Western UP 15452 8.46 1826.8 
Ionia Ionia West 14409 7.15 2015.4 
Alpena Alpena Northeast 14258 9.46 1506.9 
Big Rapids Mecosta West Central 14241 9.32 1528.5 
Lapeer Lapeer East 13424 10.16 1321.0 
Sault Sainte Marie Chippewa Eastern UP 13114 5.90 2223.4 
Sturgis Saint Joseph Southwest 13040 9.56 1364.6 
Cadillac Wexford Northwest 11690 8.74 1337.6 
Hillsdale Hillsdale Southeast 11646 7.52 1548.2 
Ludington Mason West Central 10710 8.43 1269.8 

Large 
Subregional   
(5,000-9,999)     

7 

Greenville Montcalm West 9743 6.17 1580.0 
Manistee Manistee Northwest 9606 7.56 1270.0 
Houghton Lake Roscommon Northeast 8300 8.90 932.2 
Gaylord Otsego Northeast 8298 10.21 813.1 
Petoskey Emmet Northwest 8210 5.97 1375.2 
Hastings Barry West 7713 4.69 1644.9 
Caro Tuscola East 5113 3.53 1449.6 

Mid-Size 
Subregional 
(2,500-4,999)     

17 

Cheboygan Cheboygan Northeast 4517 3.48 1297.3 
Fremont Newaygo West Central 4496 3.15 1427.0 
East Tawas Iosco Northeast 4372 3.15 1388.1 
Charlevoix Charlevoix Northwest 4179 4.53 922.8 
Grayling Crawford Northeast 3858 4.13 933.7 
Harrison Clare East Central 3589 3.21 1116.4 
Bad Axe Huron East 3490 2.49 1399.5 
Manistique Schoolcraft Central UP 3482 3.46 1005.1 
Newberry Luce Eastern UP 3225 1.49 2165.3 
Iron River Iron Western UP 3208 2.03 1578.8 
Munising Alger Central UP 2972 3.28 905.4 
Gladwin Gladwin East Central 2934 2.72 1080.5 
Sandusky Sanilac East 2775 1.77 1568.2 
Kalkaska Kalkaska Northwest 2668 2.35 1135.5 
Rogers City Presque Isle Northeast 2560 1.40 1824.3 
Hart Oceana West Central 2556 1.98 1289.4 
Saint Ignace Mackinac Eastern UP 2531 2.13 1186.9 
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Figure 4.1 shows the location of the pilot cities in the study.  The chosen pilot cities are 
distributed geographically with cities included from all regions except South Central 
(Lansing) and Metro Detroit. 
 

Figure 4.1: Map of Michigan pilot cities by population and region 
 
4.2 City Scope Selection 
 
When one is asked where they are from, a person will generally give a different answer 
depending on who they are responding to and the person’s perception of the other’s 
knowledge of their home area.  For example, consider a person from the west central 
portion of rural Blendon Township in Michigan.  To people from other parts of their 
township, this individual may state they are from Borculo, a small unincorporated 
community on the western edge of the township.  To those from Holland, they may 
state that they are from Zeeland.  To those in Michigan, but not in their county, they 
might say they are from Holland.  To those living in another region of the United States, 
they may claim to be from Grand Rapids.  Finally, to those from another country, they 
might simply claim to be from Michigan, or perhaps even just the Midwest of the 
United States. 
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The important point in the previous scenario is that cities have spheres of influence well 
beyond their boundaries.  So the appropriate question for all sprawl studies is how far 
this influence matters pertaining to sprawl and measurement thereof.  This is a standard 
Goldilocks syndrome in that some geographical units are too large to define areas for 
spawl and some are too small.   
 
Arguably the most important aspect about measuring any social or environmental trend 
is identifying a definitive geographical region as the study area.  If an area is chosen 
haphazardly, then the results, no matter how statistically significant, will be 
meaningless at best and misrepresentative at worst.  The most severe example of 
misrepresentation through geographic boundary selection is the gerrymandering that 
occurs when deciding on boundaries of electoral districts.  Even when the intent is not 
malicious, the results may lead to misinterpretation. 
 
The possible choices of geographical regions were many and generally based on 
political boundaries.  The array of geographical areas are presented in Section 4.2.1, 
followed by an analysis of these areas in Section 4.2.2, concluding with the selection of 
a geographic area for this research in Section 4.2.3. 
 
4.2.1 Range of Geographical Areas Defining a Cities Scope 
 
There are many geographical areas defined by the US Census covering the entirety of 
the United States with no gaps.  Each is shown in Figure 4.2 below and are outlined in 
brief from smallest area to largest area [93]. 
 
The Census defines blocks to be the basis for all tabulated data at all other geographic 
levels.  Blocks are bounded by visible features.  In a downtown, blocks are bounded by 
each street in the downtown grid.  In suburban and rural regions, nonvisible features 
such as property lines and political boundaries are used.  Block groups are collections of 
blocks containing between 600 and 3000 people.  Tracts are larger collections of block 
groups containing between 1200 and 8000 people.  Both are designed with much input 
from local governments. 
 
Administrative units are defined by each state to separate the state into logical sub-units 
for many purposes.  Counties are the largest sub-state administrative region and vary in 
area from small city size to the size of a small state.  Although some counties have one 
administrative center (generally the county seat), many counties have a few centers of 
population, especially in the more populated regions of the United States.  Below the 
county level are county subdivisions, which include civil divisions such as townships, 
towns, cities, and villages.  Cities may further be subdivided into units such as wards or 
boroughs.  Other units exist that are similar in size to county subdivisions including 
traffic analysis zone, voting districts, census-designated places, and unincorporated 
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places.  Above the county-level are legislative districts, school districts, zip code 
tabulation areas, and urban growth areas.   
 

Figure 4.2: Standard hierarchy of census geographic entities 
 
The Census Bureau defines urban areas, ranging from sub-county to multi-county in 
size, which include a central core city and the surrounding area around that city that is 
deemed to be economically tied to the city.  The short definition, as outlined on the 
Census’ website is [91]: 
 

An urban area will comprise a densely settled core of census tracts and/or census 
blocks that meet minimum population density requirements, along with adjacent 
territory containing non-residential urban land uses as well as territory with low 
population density included to link outlying densely settled territory with the 
densely settled core.  To qualify as an urban area, the territory identified 
according to criteria must encompass at least 2,500 people, at least 1,500 of 
which reside outside institutional group quarters.  The Census Bureau identifies 
two types of urban areas: 
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Urbanized Areas (UZAs) of 50,000 or more people; 
Urban Clusters (UCs) of at least 2,500 and less than 50,000 people. 

 
The United States Office of Management and Budget (OMB) defines larger units called 
metropolitan areas.  The smallest level of these are called Core Based Statistical Areas 
(CBSAs) which include Metropolitan Statistical Areas (MSAs) and Micropolitan 
Statistical Areas (μSAs).  Although the center cities are chosen using similar criteria as 
UAs, CBSAs are created with the county being the smallest unit, resulting in small 
μSAs encompassing only one county to large MSAs encompassing five or more 
counties.  Larger units still are Combined Statistical Areas (CSAs) which are groupings 
of adjacent MSAs and μSAs. 
 
The largest units below the state level were defined by the United States Bureau of 
Economic Analysis (BEA) in 2004, called Component Economic Areas (CEAs) and 
Economic Areas (EAs).  EAs, the larger of the two, are comprised of 20+ counties that 
are considered to be economically tied to the central city more so than any other city.  
These units were discontinued in 2014. 
 
As can be seen in this brief outline, many units could be used to define a geographical 
area, from very small (block level) to very large (EA level).  Although one could choose 
any in this group as the area of study for sprawl measurement, most have chosen 
between the CBSA and the UA.  
 
4.2.2 Analysis of Potential Geographies 
 
To illustrate the various geographical units found in Table 4.1, a map for Grand Rapids, 
Michigan is shown in Figure 4.3.  The extent at which these different areas extend from 
a city is vast, ranging from the just the city core to over a 50 mile radius around the city.  
Although there is significant reason to believe, and certainly the Bureau of Economic 
Analysis would have agreed when they developed Economic Areas [94], that economic 
ties certainly can extend this far from a city’s core, it is clear from the other cities 
shown on the map that there are certainly other large urban centers in these areas that 
convolute the sprawl discussion.  Indeed even the metropolitan area for Grand Rapids 
includes parts of the Holland and Muskegon UAs as well as 8 UCs. 
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Figure 4.3: Geographic units and their various ranges for Grand Rapids, Michigan 
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The geographic areas are compared and reasons for elimination (from largest unit to 
smallest unit) are presented in Table 4.2.  From this table, it can be seen why most 
researchers use either MSAs or UAs as their unit of measure for sprawl. 
 
 

Table 4.2: Geographic areas in consideration for this study 
Geographic Area # in MI Explanation for Elimination  

State 1 Too many regionally important cities and 
many rural expanses between centers 

Economic Area (EA) 8 Too many regionally important cities and 
many rural expanses between centers 

Component Economic Areas (CEAs) 15 Some include too many regionally important 
cities with own characteristics 

Combined Statistical Areas (CSAs) 7 Only focus on large cities and their suburbs 

Metropolitan / Micropolitan Statistical 
Areas (MSA / μSAs) 15/20 

μSAs are not a bad choice for core cities, but 
focus more on political boundaries at their 
limits rather than sociological boundaries 

Urbanized Areas / Clusters (UZAs / UCs) 21/95 

UCs are not a bad choice as they are 
established along economic/transportation 
boundaries, but some relevant external tracts 
are missing 

Counties 83 Counties are political boundaries, which do 
not tie directly to socioeconomic boundaries 

Census Subdivisions 
(Cities/Townships/CCDs) 1533 

Many townships are socioeconomically tied 
to bordering or nearby cities; cities usually 
sprawl beyond their borders 

Municipalities 
(Cities/Townships/Villages) 1789 

Many townships and villages are 
socioeconomically tied to bordering or nearby 
cities 

Census Tracts 2767 Many census tracts compose a city 
Census Block Groups 8157 Many block groups compose in a city 
Census Blocks 329610 Many blocks compose a city 

 
Although most studies have utilized Core Based Statistical Areas, or more specifically 
the Metropolitan Statistical Areas (MSAs), these tend to outstrip areas of study for 
sprawl as some include multiple cores and most of these areas include rural regions that 
have little primary economic connection with the urban core being studied.  These 
studies should not be criticized too much for using these geographical areas, as many 
data are available at this scope and thus would be a logical choice when trying to study 
many different regions.  However, the Census actually has data available at many 
different geographies down to the block level, so one can actually focus down to that 
level of granularity to setup the geographical areas. 
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In contrast, some studies have used urban areas, specifically urbanized areas (UAs).  
These are smaller regions that cut out rural territory surrounding the core and often 
under-bound areas of study for sprawl.  This leaves out many suburban development 
areas at the urban fringe and thus disregard some of the most fundamental locations 
where sprawl is very likely to occur. 
 
4.2.3 Selection of the Appropriate Geography 
 
For the reasons discussed in the previous section, Wolman et al. developed a scope 
metric in their important paper entitled “The fundamental challenge in measuring 
sprawl: Which land should be considered?” [69].  In their paper, two main reasons are 
cited for their skepticism towards many studies of sprawl.  First, study areas are general 
either over or under-bounded.  Although it could be argued from an idealist perspective 
that indeed no area will ever be perfectly bounded for a given region, let alone as a 
definition for a multi-area study, areas will certainly be more appropriate if chosen 
using rigor over mere convenience.  Second, it is argued that most study areas do not 
eliminate land unavailable for development, which causes a distortion in density 
calculations and a bias between regions. 
 
Although urban clusters are a good choice, Wolman et al.’s research into Extended 
Urban Areas (EUAs) seemed to be most appropriate.  From this paper, the author’s 
states the definition for EUAs, as outlined in Section 5.1.1. 
 
This definition was expanded in this research for urban clusters to form Extended Urban 
Clusters (EUCs) using a modified strategy of the extension of UAs to EUAs which 
involves the use of Rural-Urban Continuum Codes (RUCCs) [95]. 
 
The first course of action in creating EUC boundaries was to create an example map for 
one of the pilot cities using ArcGIS [89].  The Houghton EUC was used as the sample 
EUC and is shown in Figure 4.4, which includes municipal, UC, and the original 
potential EUC boundaries superimposed on a satellite image of the area.  The satellite 
imagery is sourced from ESRI’s World Imagery dataset [96].  This rudimentary test 
algorithm was enhanced and after much mathematical analysis a satisfactory study 
scope methodology was developed that can be consistently applied across all pilot 
cities. 
 
These geographic units (EUCs), based primarily on housing density and commuting 
patterns, formed the foundation for the study areas.  The US Census Bureau has defined 
a very carefully reasoned standard with criteria for urban area boundary creation, and 
similar care will be put into developing these boundaries for this study [97].   
 
After this step was completed, parameters for EUCs were refined and a test case was 
used for five cities chosen from different size categories and regions in the pilot group.  
These test cases were refined until satisfactory EUCs were achieved.  At this point, the 
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method will be employed as an algorithm written in Python using ArcGIS to define 
EUC boundaries for all pilot cities.  The final algorithm is outlined in Chapter 5. 

 

 
Figure 4.4: Graphic example of preliminary Houghton EUC 

 
4.3 Metric and Sprawl Score Calculation 
 
As discussed in Section 3.5, 21 metrics were selected and used to calculate an overall 
Sprawl Score.  Data requirements for each metric were identified in Ewing et al.’s paper 
[3], but several other smaller datasets were needed to calculate all 21 metrics.  Once all 
data sources were obtained, sample data analysis was completed on a small scale for the 
Houghton EUC to verify algorithms and operation.  After this testing phase, the full 
algorithm for calculating each metric was developed and a Python script was written 
with two smaller support scripts.  Details are discussed in Chapter 6. 
 
Once the metrics were calculated for all 42 pilot cities, the metrics were evaluated both 
qualitatively and quantitatively using the statistical method called Principal 
Components Analysis (PCA) similar to that presented in Ewing et al. and Cutsinger et 
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al. [3,97,98].  Both groups used this method to reduce redundancy and hone in on 
fundamental metrics. 
 
Using PCA, the metrics were summarized and an overall Sprawl Score was calculated 
for each of the 42 pilot cities.  After these were calculated, an analysis was done on the 
rankings and conclusions were drawn from the overall rankings and component scores.  
The findings are discussed in Chapter 8. 
 
Although this project focused on this primary group of metrics, it is recommended that 
this group be further analyzed to select a secondary group.  This should be a cyclic 
process which will allow these groups to be analyzed and pared down until a 
fundamental grouping is determined.  The goal of this would be to reduce the number of 
metrics to simplify the modeling of the sprawl system.  A simpler system will make the 
measure more transparent and more usable.  That being said, a sufficient amount of 
variables should be used to make sure that the model is robust and effective. 
 
These metrics should also be applied to a study of causes and effects to gauge 
effectiveness.  Future work opportunities based on the methodologies and algorithms 
developed in this research are discussed further in Chapter 8. 
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Chapter 5: Extended Urban Clusters 
 
As discussed in Section 4.2, the geographical area used to calculate sprawl metrics has a 
direct effect on the quality of the metrics.  The area chosen determines which parts of 
the region get counted towards the metric’s score and serves as the area of influence for 
the community.  The data sources and specific data used from the sources depends upon 
the unit of geographical area chosen. 
 
Several researchers have used either Urban Areas (UAs) or Metropolitan Statistical 
Areas (MSAs) as units of geographical area.  An appropriate area for this study was a 
hybrid of the two called the Extended Urban Cluster (EUC).   
 
This chapter discusses the development of the EUCs which are used to determine the 
data for developing the metrics for the Sprawl Score.  In many ways, this algorithm is 
the most important in the study.  If a poor bounding size is chosen for the city, many 
metrics could be quite skewed resulting in an inaccurate set of Sprawl Scores.  For this 
reason, considerable work was put into the creation of these EUCs. 
 
The Chapter begins with a discussion of the development of the algorithm to build the 
EUC which is the geographic unit used in this study (Section 5.1).   
 
Because of the complexity of the EUC, there is also a discussion of the algorithm used 
to create the geography.  This is done at a high level in this section (Section 5.2), with 
an appropriate audience including geographers, planners, and other professionals with 
limited or no computer programming experience. 
 
A low level discussion for advanced GIS users with programming experience is 
included in Appendix B along with the full Python script file.  These explanations exist 
in order to leave no ambiguity in how the algorithms are developed so that researchers 
can use the algorithms and extend them to other regions as they deem appropriate. 
 
To close the chapter, there is a discussion of the EUCs created for the pilot cities in this 
study (Section 5.3). 
 
5.1 Development of the EUC Algorithm 
This section will be a guide through the development of the structure of the EUC 
algorithm including understanding the algorithm for Extended Urban Areas (EUA) 
creation (Section 5.1.1) and the conversion to an EUC Algorithm (Section 5.1.2). 
 
5.1.1 Extended Urban Areas 
 
Wolman et al. developed EUAs to deal with the Goldilocks syndrome at hand between 
MSAs and UAs.  EUAs seek to include land area in a consistent, logical fashion to 
better characterize the sphere of influence of the primary UA.  As opposed to adding on 
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a common radius around UAs, EUAs systematically add on populated grids which have 
commuting ties to the urban core.  The definition of a EUA is: 
 

The Extended Urban Area (EUA) consists of the Census Bureau-defined 
urbanized area, modified to follow census tract boundaries, as well as additional 
“outlying” one mile square grid cells that contain 60 or more dwelling units 
(identified using data at the census block level) and are located in [a] census 
tract from which at least 30 percent of the workers commute to the urbanized 
area. [69] 

 
The general algorithm for the process outlined above is shown in Figure 5.1. 
 
 

START

FOR
All Urban Areas

ADD
All Blocks that intersect the UA to current EUC

WHILE
Blocks Being Added

ADD
All outlying one-mile square cells except:

All cells that have under 60 dwellings
All cells  that have less than 30 percent of workers commuting to UA

APPEND
UA to UA shapefile

STOP

 
Figure 5.1: Basic flowchart for EUA shapefile Creation 

 
5.1.1 Extending the EUA Algorithm to Extended Urban Clusters 
 
The concept of EUAs works well for what it was designed for, extending urbanized 
areas to include all land that is tied to the core of a city without including rural areas 
beyond the fringes.  However, since this research is focused on smaller urban area from 
2,500 to 50,000 people, this concept cannot be translated directly as UAs are only 
defined for cities with populations of more than 50,000. 
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The focus cities for this study fall within the range of Census-defined urban clusters 
(UCs).  These are extended in a similar procedure as UAs into elements defined here as 
Extended Urban Clusters (EUCs).  For each urban cluster, the following steps are 
followed: 

 all block groups (excluding water-only block groups) unique to the UC 
that contain no more than five times the area of the UC are selected 

 outlying blocks unique to the UC which have at least 60 dwellings per 
square mile and 30 percent of workers commuting to the UC are selected 

 Donuts holes, which are gaps in the EUC that are completely surrounded 
by the EUC, are filled in throughout such that the EUC is one continuous 
polygon 

 
The basic algorithm for creating EUCs is shown in Figure 5.2.   
 
5.2 Python Script – EUC_Creator.py 
 
As this algorithm is complex, manual creation of even the 42 pilot cities would be time 
consuming and repetitive.  For this reason, and for the sake of extending this algorithm 
in the future, a script was developed so that any EUC can be created following the same 
algorithm. 
 
The benefits of a script include 

 reduction of creation time and repetition 
 elimination of human error in processing all of the complex selections 
 consistent application of the algorithm 
 ease of change to the algorithm 
 ease of expansion to a broader study area 

 
The script to create the EUCs was created using Python.  An overview of the script’s 
basic operation, intended for all audiences, is included in the following subsections.  A 
detailed analysis of the script as well as the full Python script is included in Appendix 
B.  The Python file is also included in Appendix H, the enclosed digital versatile disc 
(DVD) that is included in the media pocket on the inside back cover of this dissertation. 
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Figure 5.2: Basic flowchart for EUC shapefile creation 

 
 

START

FOR
All Urban Areas

ADD
All BGs that intersect the urban area  to current EUC except:

All BGs that have no land area
All BGs that have area greater than 10x the UA

||All BGs that are within a different UAC||
||All BGs that are within a different EUC||

ADD
Donut BGs to current EUC

ADD
All Blocks that intersect the UA to current EUC

WHILE
Blocks Being Added

ADD
All bordering blocks to EUC except:

All blocks that have no land area or dwellings
All blocks that have under 60 dwellings per sq. mi.

||All blocks that have at least 30 percent of workers commuting to UAC||
||All blocks that are within a different UAC||
||All blocks that are within a different EUC||

ADD
Donut blocks to current EUC

APPEND
EUC to EUC shapefile

STOP
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5.2.1 Files needed for EUC_Creator.py 
 
In order to create the Extended Urban Cluster map, five files are needed.  These are 
listed in Table 5.1.  All files are standard files that are freely available to the public and 
updated with the decennial census.  These files are all from the 2010 census year. 
 

Table 5.1: Files needed to run EUC_Creator.py Python script 

 
The only file manipulations that are needed prior to the execution of the script include 
appending the population, housing, and density columns to the blocks file as well as 
appending UAC population counts to the UAC file.  Other than these, the EUC creator 
script will run without any prior modification. 
 
5.2.2 Overview of EUC_Creator.py 
 
The Python script is relatively basic in its operation, although several support operations 
need to be completed for many of the basic steps which makes syntax and operation 
hard to follow.  Although programmers will be able to follow with written comments 
throughout the script, those with only a basic knowledge of ArcGIS will benefit from 
the broader overview provided in this section. 
 
The flowchart for the main operation of the script is shown in Figure 5.3.  This script 
will actually create both Extended Urban Areas and Extended Urban Clusters using the 
modified version of the EUA algorithm developed by Wolman et al.  The Wolman et al. 
approach for EUAs and the modified approach for EUCs used in this research are 
compared in Table 5.2. 
 
 
 
 
 
 
 
 
 

File Name File Scope Filename File Developer 

Block Groups State tl_2010_26_bg10.shp US Census Bureau 
Blocks State tl_2010_26_tabblock10.shp US Census Bureau 
Blocks  State tabblock2010_26_pophu.shp US Census Bureau 
Urban Areas (UACs) National tl_2010_us_uac10.shp US Census Bureau 

Rural-Urban Commuting 
Area (RUCA) Codes  National ruca_2010.xlsx US Dept. of Agriculture 

*Pre-joined with population and housing counts 
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Table 5.2: Comparison of Wolman et al.’s EUA and Riehl’s EUC algorithms 
Extended Urban Area (EUA) – Wolman et al. Extended Urban Cluster (EUC) – Riehl 
Census Bureau defined Urbanized Area Census Bureau defined Urbanized Area/Cluster 
Modified to follow census tract boundaries Modified to follow census block group boundaries 

Adds additional “outlying” one-mile square grid 
cells that 

 Contain 60 or more dwelling units 
 Are located in census tracts from which 

at least 30 percent of workers commute 
to urbanized area 

Adds additional “outlying” blocks that 
 Contain 60 or more dwellings per square 

mile 
 Are located in census tracts from which at 

least 30 percent of workers commute to 
urbanized area/cluster 

 
As seen in Table 5.2, the algorithms are very similar.  The EUC algorithm is meant to 
mimic the EUA algorithm when possible, and remain as close as possible to the EUA 
algorithm.  More advanced functions of the algorithm address some minor flaws in the 
EUA algorithm.  The EUC algorithm will be explained at a high level for non-
programmers in the following sections. 
 
5.2.2.1 Selection of UA area and Overlapping Block Groups 
 
The EUC algorithm runs for each Urban Area in Michigan, including all urbanized 
areas and clusters, even those not included in the list of 42 pilot cities in this study.  
This was done in order to eliminate overlap between EUCs as well as to help 
troubleshoot and verify the algorithm to eliminate all minor flaws in the creation of the 
EUCs.  For the purpose of this report, all of the elements created by this script will be 
referred to as EUCs, even though extensions of urbanized areas are also included in the 
file. 
 
For each urban area, block groups are selected which intersect the urban area to create a 
base set for the EUC.  In order to eliminate water-only block groups which have no (or 
more correctly very little) potential for human expansion, block groups with no land 
area are removed from this set. 
 
In less populated areas of Michigan, for example most of the Upper Peninsula, block 
groups tend to get very large.  On original runs of the algorithm, cities such as 
Manistique had boundaries extending up to Munising simply because of a small overlap 
of the UC and a block group that extends from Lake Michigan to Lake Superior.  To 
eliminate this problem, block groups greater than five times the size of the original UA 
were eliminated from the EUC at this stage.  Theoretically they might be added in block 
by block at a later stage in the program based on a high enough population, but this has 
a very small probability being the block group is large due to low population.  To derive 
5 as the size limit, many trial iterations of different cutoff sizes between 1 and 20 times 
resulted in the selection of five as a good standard with the most reasonable results. 
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Next, all block groups that were within another UA or EUC were eliminated to remove 
overlap potential.  Because the loop runs from the largest UA population to the smallest, 
larger cities get precedence over block group inclusion, which is the most reasonable 
option as overlap does not make sense.  The elimination of blocks in this manner 
involves two more loops, one through each of the UAs and one through each of the 
completed EUCs.  These algorithms are shown in Figures 5.3 and 5.4, respectively. 
 
In order to remove block groups that overlap with another UA, a loop through each UA 
is executed.  As long as the UA is not the same as the current one being used to create 
the EUC, all intersecting block groups are removed from the current EUC.  This process 
is shown in Figure 5.3. 
   

FOR
All Urban Areas

IF
UAC is different 

from current

REMOVE
All BGs that intersect the other urban area from current EUC

All BGs or blocks  that are within a different UAC

CONTINUE

TRUE

FALSE

 
Figure 5.3: Flowchart for UAC overlapping block group / block removal 

 
Similarly, as long as an EUC exists, a loop is run through each EUC and all intersecting 
block groups are removed from the current EUC.  This process is shown in Figure 5.4. 
 
Through many trials with the software, another flaw was determined in that block 
groups were often selected as part of the EUC that fully surrounded other block groups 
that were not selected.  To eliminate this problem, a process is run to add in these so-
called “donut” block groups to the EUC to form a continuous polygon.  This process is 
explained in more detail in Appendix B. 
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The final process before selecting outlying block groups was to add in blocks from 
block groups that were eliminated due to a size constraint.  To do this, all blocks that 
intersect the original UA that were not yet selected were then added into the EUC.  
Because blocks are the fundamental building block of UAs, this results in full coverage 
of the UA. 
 
 

IF
Not first loop

FOR
All other EUCs

REMOVE
All BGs that intersect the other EUC from current EUC

All BGs or blocks that are within a different EUC

CONTINUE

TRUE

FALSE

 
Figure 5.4: Flowchart for EUC overlapping block group / block removal 

 
5.2.2.2 Selection of Outlying Blocks 
 
Once the initial boundaries of the EUC are identified, outlying blocks of significance 
must be added to finalize the boundaries of the EUC.  To do this, a loop is run in order 
to add bordering blocks until no more bordering blocks meet the addition criteria. 
 
With each run through this loop, all bordering blocks are selected for potential addition 
to the EUC.  All of these blocks are then processed to determine if they are fit for 
addition.  First, blocks with no land area or dwellings are removed from the selection.  
This is followed by removal of blocks that have under 60 dwellings per square mile. 
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Next, all blocks that do not have at least 30 percent of workers commuting to the EUC 
must be removed.  To determine this value, the Rural-Urban Commuting Area (RUCA) 
Codes, maintained by the US Department of Agriculture, are used [99,100].  RUCA 
codes are calculated for each census tract in the country.  These codes define the 
number of commuters between a census tract and the city center.  Primary and 
secondary codes are set up with secondary codes offering the level of granularity 
needed in this study.  The codes are shown in Table 5.3 below.  These codes are used in 
urban planning and traffic engineering to study flows of people and traffic. 
 

Table 5.3: Table of RUCA codes [99] 

Primary RUCA Codes Secondary RUCA Codes 

1 Metropolitan area core: primary flow 
within an urbanized area (UZA) 

1.0 No additional code 

1.1 Secondary flow 30% to 50% to a larger UA 

2 Metropolitan area high commuting: 
primary flow 30% or more to a UZA 

2.0 No additional code 

2.1 Secondary flow 30% to 50% to a larger UA 

3 Metropolitan area low commuting: 
primary flow 10% to 30% to a UZA 3.0 No additional code 

4 
Micropolitan area core: primary flow 
within an Urban Cluster of 10,000 to 
49,999 (large UC) 

4.0 No additional code 

4.1 Secondary flow 30% to 50% to a UA 

5 Micropolitan high commuting: primary 
flow 30% or more to a large UC 

5.0 No additional code 

5.1 Secondary flow 30% to 50% to a UA 

6 Micropolitan low commuting: primary 
flow 10% to 30% to a large UC 6.0 No additional code 

7 
Small town core: primary flow within 
an Urban Cluster of 2,500 to 9,999 
(small UC) 

7.0 No additional code 

7.1 Secondary flow 30% to 50% to a UA 

7.2 Secondary flow 30% to 50% to a large UC 

8 Small town high commuting: primary 
flow 30% or more to a small UC 

8.0 No additional code 

8.1 Secondary flow 30% to 50% to a UA 

8.2 Secondary flow 30% to 50% to a large UC 

9 Small town low commuting: primary 
flow 10% to 30% to a small UC 9.0 No additional code 

10 Rural areas: primary flow to a tract 
outside a UZA or UC 

10.0 No additional code 

10.1 Secondary flow 30% to 50% to a UA 

10.2 Secondary flow 30% to 50% to a large UC 

10.3 Secondary flow 30% to 50% to a small UC 

99 Not coded: Census tract has zero population and no rural-urban identifier information 
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Depending on which type of UAC is the basis for the current EUC, certain codes are 
deemed acceptable based on whether or not at least 30% or more of commuters in the 
block in question commute to the UAC.  Although UACs include only two types, urban 
areas and urban clusters, RUCA codes include three types, urbanized areas (>50,000 
population), large urban clusters (10,000 – 50,000 population), and small urban clusters 
(<10,000 population).  The following codes were selected as acceptable for each of 
these three types: 
 

 Urbanized Areas: 1.0, 1.1, 2.0, 2.1, 4.1, 5.1, 7.1, 8.1, 10.1 
 Large Urban Clusters: 4.0, 5.0, 7.2, 8.2, 10.2 
 Small Urban Clusters: 7.0, 8.0, 10.3 

 
Note that “acceptable” means that a tract with the listed code is allowed for inclusion 
into the EUC whereas other codes are not allowed.  These codes are considered 
acceptable because they mean that at least 30% of commuters commute to the UAC in 
question. 
 
This portion of the algorithm requires additional steps as shown in Figure 5.5.  This 
algorithm is discussed in more detail in Appendix B. 
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All blocks that have at least 30 percent of 
workers commuting to UAC

FOR
All selected blocks

FOR
All tracts in RUCA table

IF
RUCA Tract = Block’s Tract

FOR
All acceptable RUCA codes

IF
RUCA Code = Acceptable Code

RUCA Flag = 1

TRUE

TRUE

FALSE

FALSE

CONTINUE

SELECT
Acceptable RUCA Codes for current UAC

IF
RUCA Flag = 0

REMOVE
Block from current EUC

TRUE

FALSE

 
Figure 5.5: Flowchart for removal of blocks with under 30% commuters to UAC 
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5.3 Final EUC Boundaries 
 
After executing EUC_Creator.py, as described in Section 5.2, a final EUC boundary file 
was created.  The file created includes all 116 UACs that have land in the state of 
Michigan.  The EUCs are shown in Figure 5.6. 
 

 
Figure 5.6: Map of 116 EUCs in Michigan (created by EUC_Creator.py) 

 
A simple selection of the 42 pilot cities created the final pilot city EUC file.  This file is 
used in Chapter 6 to develop the sprawl score for these EUCs.  The final map of 42 pilot 
EUCs is shown in Figure 5.7. 
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Figure 5.7: Map of 42 pilot EUCs in Michigan 
 
As an example to compare the resulting EUCs to original estimates, the Houghton EUC, 
as shown in Figure 5.8, was compared to Figure 4.4.  The Houghton comparison is 
necessary as the original attempt at rough EUC areas prior to algorithm creation were 
done using Houghton.  The satellite imagery in Figure 5.8 is sourced from ESRI’s 
World Imagery dataset [96] 
 
What is interesting is that the EUC Attempt 1 polygon with the dotted Redridge 
addition, outlined in light blue on the figure, is very similar to the final EUC polygon.  
Perhaps the most striking difference is the exclusion of South Range and Painesdale in 
the final EUC, as well as some of the land area of the Houghton County Memorial 
Airport. 
 
Some would argue that South Range should be included in the EUC as there is near 
continuous development between downtown Houghton and South Range along the M-
26 corridor.  This could a topic for future discussion of EUC boundaries. 
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An adjustment to the algorithm was necessary as there will be with many cities 
especially in Lower Michigan where interference between EUCs is an issue.  For 
instance, the Houghton EUC is adjacent to the Laurium EUC to the north. 
Other than these small issues, the area is quite inclusive of the commute-shed and 
overall expanse of the city.  Although some might argue this area is too large, at least it 
is nowhere near as large as the Houghton Micropolitan Statistical Area which includes 
all of Houghton and Keweenaw Counties. 
 
The problem with any area selection is that all areas are subjective, but as long as an 
area is close to what most people would consider the urban area plus important outlying 
areas, the algorithm is a success.  Considerable effort went into developing this 
algorithm and eliminating inconsistencies.  That being said, future work should focus 
first on an update to this algorithm to improve EUC selection. 
 

 
Figure 5.8: Graphic example of Houghton EUC, including final Houghton EUC 
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Chapter 6: Sprawl Metric Assessment 
 
Following the extensive review of literature, as described in Chapter 3, it was decided to 
use the 21 metrics from Part 3 of Ewing et al.’s updated paper measuring urban sprawl 
for large metropolitan areas [3]. 
 
Section 6.1 outlines the benefits of using these metrics and describes each metric in 
such detail that anyone should be able to understand how each metric is derived.  
Understanding this is important, because it plays into not only how the score is 
calculated, but how the score is interpreted. 
 
Section 6.2 discusses the main python script in terms that should be understandable to 
those with limited programming experience.  Section 6.3 describes support scripts 
needed to complete metric calculation. 
 
As this script was not as complex as the EUC creator script, there is no programmer-
specific information other than that information included in the comments of the 
program. 
 
The full program for the main EUC metrics script is included in Appendix C. The 
support script programs are included for the CBD polygon creator in Appendix D and 
for the Walk Score value locator in Appendix E.  The three Python files are also 
included in Appendix H, the enclosed DVD that is included in the media pocket on the 
inside back cover of this dissertation. 
 
6.1 Selected Metrics 
 
Using Ewing et al.’s 2014 metrics as primary metrics is beneficial for several reasons.  
First, these metrics are updated based on research from 2002 to 2014 by comparing 
many of the metrics discussed in Chapter 3 of this dissertation and selecting the optimal 
set.  Second, although these metrics have been used on large cities, this research is the 
first to utilize these metrics in small cities.  This offers a way to compare metrics at 
different scales and is a good starting point to reduce and identify the most important 
metrics. 
 
A variety of these metrics were used on various city boundaries by Ewing et al., 
including counties, UAs, and MSAs.  The MSA metrics were chosen because they are 
the most diverse metrics.  Some of the metrics were modified slightly to account for the 
difference in size between MSAs and EUCs as well as the difference between larger and 
smaller cities. 
 
Table 6.1 reviews the list of 21 metrics used in this study divided into 4 factor 
categories: development density, land use mix, activity centering, and street 
accessibility.  Each of the metrics used will be discussed by factor category in Sections 
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6.1.1-6.1.4 below.  This discussion includes an overview of the category and a detailed 
discussion for each metric including the algorithm used to calculate the metric.  Once 
all metric algorithms were determined and all data were collected, a python script 
(EUC_Metrics.py) was created to process all of the metrics for all EUCs (Section 6.2). 
 

Table 6.1: Table of 21 metrics used in Sprawl Score calculation 
Factor 
Category Metric Short Name 

Development 
Density 

Population density EWpopden 
Employment density EWempden 
Percentage of the population living at suburban densities EWlt1500 
Percentage of the population living at urban densities EWgt12500 
Net population density of urban lands EWurbden 
Estimated density at the center of the metro area EWdgcent 
Population density of CBD EWpopdcen 
Employment density of CBD EWempdcen 

Land Use 
Mix 

Job / population balance EWjobpop 
Degree of job mixing EWjobmix 
Walk Score EWwalkscor 

Activity 
Centering 

Coefficient of variation in block population densities EWvarpop 
Coefficient of variation in block employment densities EWvaremp 
Density gradient moving outward from the CBD EWdgrad 
Percentage of population in the CBD EWpopcen 
Percentage of employment in the CBD EWempcen 

Street 
Accessibility 

Percentage of small urban blocks EWsmlblk 
Average block size EWavgblksz 
Average block length EWavgblkln 
Intersection density EWintden 
Percentage of 4-or-more-way intersection EW4way 

 
6.1.1 Development Density Metrics 
 
Since most definitions of sprawl include development density it is necessary to include 
density in the Sprawl Score.  Of major interest is density of population (residential) and 
density of employment (commercial).  The problem is that overall density within the 
region only somewhat characterizes the development in the region.  Density in the 
central business district (CBD) can vary when compared to the overall regional density, 
so it must also be included.  These ideas help make up eight metrics which combine to 
measure development density for the EUC.  Each is discussed below. 
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6.1.1.1 Population density 
 
Description: Overall population density measures the overall amount of persons per 
unit area across the entire EUC. 
Units: persons per square mile 
 
Relationship: Higher values equate to less sprawl 
Datasets Used: 

Census 2010 block data including demographic data (for populations and areas) 
 
Algorithm: The populations and areas for all census blocks in the EUC were added 
together and the total population was divided by the total area. 
 
Differences between this and Ewing et al. metric: Blocks were used instead of tracts.  
Also, all blocks were used, as opposed to cutting out blocks with very low populations 
or areas. 
 
6.1.1.2 Employment density 
 
Description: Overall employment density measures the overall amount of jobs per unit 
area across the entire EUC. 
 
Units: jobs per square mile 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for areas) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) [101] 

 
Algorithm: First, the job data from the LED LODES7 WAC 2010 data file for total 
number of primary jobs in the block was merged with the block file.  Then the job totals 
and areas for all census blocks in the EUC were added together and the total number of 
jobs was divided by the total area. 
 
Differences between this and Ewing et al. metric: Blocks were used instead of tracts.  
Also, all blocks were used, as opposed to cutting out blocks with very low populations 
or areas. 
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6.1.1.3 Percentage of the population living at suburban densities 
 
Description: This metric essentially is measuring how many p are living in sprawling 
parts of the EUC.  To do this, the percentage of persons living at population densities 
less than 1,500 people per square mile is used.  Higher population density is more 
compact.  One downside to this metric is that it does not eliminate rural living from the 
calculation.  Another downside is that results are not normalized by overall population 
in the EUC. 
 
Units: percentage (number of blocks at low density over total number of blocks) 
 
Relationship: Higher values equate to more sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for populations and areas) 
 
Algorithm: The population of each census block in the EUC was divided by the block’s 
area to calculate the population density of each block.  The block was counted if its 
density was below 1,500 people per square mile.  After processing this count for all 
blocks in the EUC, this count was divided by the total number of blocks in the EUC. 
 
Differences between this and Ewing et al. metric: Blocks were used instead of tracts.  
Also, all blocks were used, as opposed to cutting out blocks with very low populations 
or areas. 
 
6.1.1.4 Percentage of the population living at urban densities 
 
Description: This metric essentially is measuring how many people are living in 
compact parts of the EUC.  To do this, the percentage of people living at population 
densities greater than 12,500 people per square mile is used.  One downside to this 
metric is that results are not normalized by overall population in the EUC.  In some 
smaller communities that do not have enough population to build up, these densities are 
not very common. 
 
Units: percentage (number of blocks at high density over total number of blocks) 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for populations and areas) 
 
Algorithm: The population of each census block in the EUC was divided by the block’s 
area to calculate the population density of each block.  The block was counted if its 
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density was above 12,500 people per square mile.  After processing this count for all 
blocks in the EUC, this count was divided by the total number of blocks in the EUC. 
 
Differences between this and Ewing et al. metric: Blocks were used instead of tracts.  
Also, all blocks were used, as opposed to cutting out blocks with very low populations 
or areas. 
 
6.1.1.5 Net amount of urban lands 
 
Description: This metric gives the percentage of area in the EUC that is developed land.  
This includes classes 21-24 of the NLCD dataset (Developed, Open Space; Developed, 
Low Intensity; Developed, Medium Intensity; and Developed, High Intensity). 
 
Units: percentage (amount of urban land over total land) 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for populations and areas) 
National Land Cover Database (NLCD) 2011 [102] 

 
Algorithm: The majority of this algorithm is completed before the metric script is 
executed, and this algorithm is discussed in Section 6.2.1.  Essentially, the NLCD 
dataset had all urban lands selected and summed.  This total was then divided by the 
total land in the EUC to give a percentage of urban lands.   
 
Differences between this and Ewing et al. metric: Note that this metric is not consistent 
with Ewing et al.’s metric because this is a percentage of urban lands instead of a 
population density of urban lands.  The algorithm should be updated to sum the 
populations over the urban areas selected and this total should be divided by the total of 
urban lands.  This would be a slightly more normalized metric across different sized 
regions.  It is unknown which categories of land Ewing et al. used for urban land, but it 
is reasonable to believe the same categories were used. 
 
6.1.1.6 Estimated density at the center of the metro area 
 
Description: This metric is an estimate of the density at the center of the EUC based 
upon how quickly the population exponentially diminishes from the center of the EUC’s 
CBD outward.  This metric and the density gradient (discussed in Section 6.1.3.3) work 
in tandem.  The equation coefficients are calculated using population density of each 
block and distance of the center of each block to the center of the EUC’s CBD. 
 
Units: persons per square mile 
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Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

CBD Points (created manually by the author) 
Census 2010 block data including demographic data (for populations, areas,  

latitudes, and longitudes) 
 
Algorithm: First, a CBD points file must be generated with points denoting the center of 
the CBD of the primary city in the EUC.  A discussion of this file’s creation is included 
in Section 6.3.1.  The first step in the algorithm was to calculate the difference in 
latitude and longitude between the CBD’s center point and each block’s center point 
(using the Census’ internal point, which is the geographical center except for special 
cases where the point would fall outside the block’s boundaries in which case the point 
inside the block closest to the center point is chosen [103]).  Because these distances are 
around a geoid (the Earth) and not linear, the Haversine formula, recommended by the 
US Census Bureau to calculate short distances equations, was used to calculate each 
distance [104]: 
 ݀ = 2 ή ܴ ή tanିଵ ቌඨsinଶ ߶ௗ2 + cos ߶௕ ή cos ߶௘ ή sinଶ ௗ2ߣ  ቍ 

 
   where  d is the distance between block and EUC’s CBD center points, in mi., 

R is the radius of the Earth, in m., 
    ߶ௗ = ߶௕ െ ߶௘ , 
    ߶௕ is the latitude of the block center point, in decimal degrees, ߶௘ is the latitude of the EUC’s CBD center point, in decimal degrees, ߣௗ = ௕ߣ െ  , ௘ߣ
 ௘ is the longitude of the EUC’s CBD center point, in decimal degreesߣ ,௕ is the longitude of the block center point, in decimal degreesߣ    

 
The population density for each block was also stored.  After all distances and densities 
were calculated and stored, a polynomial fitting function was used to derive the 
coefficients of the following exponential function using the natural log of each variable: 
ܦ  = ைܦ ή ݁ି௕ήௗ 
 

where  D is the density of the block in persons per sq. mi., 
DO is the estimated density at the EUC center in persons per sq. mi., 

    b is estimated density gradient moving outward from CBD, in mi-1, 
    d is the distance between block and EUC’s CBD center points, in mi. 
 
The value of DO is the metric.  The value of b is used as a centering metric, discussed in 
Section 6.1.3.3.  
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Differences between this and Ewing et al. metric: Blocks were used instead of tracts.  
CBD center points were manually calculated to determine more accurate locations.  It is 
unknown how Ewing et al. calculated distances between points, but they likely used a 
similar method and even if not, these relatively short distances will have little error. 
 
6.1.1.7 Population Density of CBD 
 
Description: This metric is the weighted average population density of the primary 
CBD in the EUC.  This is essentially the average population density of all blocks within 
the CBD area, except each density is weighted by the blocks influence within the EUC, 
as discussed in the algorithm below. 
 
Units: persons per square mile 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

CBD Polygons (created using the program describe in 6.3.2) 
Census 2010 block data including demographic data (for populations and areas) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) 

 
Algorithm: First, a CBD polygon file must be generated for all EUC’s primary cities.  A 
discussion of this file’s creation is included in Section 6.3.2.  Each block in the CBD 
area had its population weighted by multiplying it by the sum of its population and 
employment then dividing it by the sum of the population and employment for the 
entire EUC.  This resulted in a population weighted by the block’s influence within the 
EUC.  The weighted populations were then summed along with the areas for each block 
in the CBD and the total weighted population was divided by the total area resulting in a 
weighted population density. 
 
Differences between this and Ewing et al. metric: There was some difference in how 
CBDs were created, which is discussed in detail in Section 6.3.2.  Also, Ewing et al.’s 
metric included other employment sub-centers besides the CBD.  These were not used 
in this study because smaller urban areas have fewer or no sub-centers and more 
importantly sub-centers can be considered sprawl in their own right and this study is 
designed to eliminate these from skewing results. 
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6.1.1.8 Employment Density of CBD 
 
Description: This metric is the weighted average employment density of the primary 
CBD in the EUC.  This is essentially the average employment density of all blocks 
within the CBD area, except each density is weighted by the blocks influence within the 
EUC, as discussed in the algorithm below. 
 
Units: jobs per square mile 
 
Relationship: Higher values equate to less sprawl 
Datasets Used: 

CBD Polygons (created using the program describe in 6.3.2) 
Census 2010 block data including demographic data (for populations and areas) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) 

 
Algorithm: First, a CBD polygon file must be generated for all EUC’s primary cities.  A 
discussion of this file’s creation is included in Section 6.3.2.  Each block in the CBD 
area had its number of jobs weighted by multiplying it by the sum of its population and 
employment then dividing it by the sum of the population and employment for the 
entire EUC.  This resulted in a job total weighted by the block’s influence within the 
EUC.  The weighted employments were then summed along with the areas for each 
block in the CBD and the total weighted employment was divided by the total area 
resulting in a weighted employment density. 
 
Differences between this and Ewing et al. metric: There was some difference in how 
CBDs were created, which is discussed in detail in Section 6.3.2.  Also, Ewing et al.’s 
metric included other employment sub-centers besides the CBD.  These were not used 
in this study because smaller urban areas have fewer or no sub-centers and more 
importantly sub-centers can be considered sprawl in their own right and this study is 
designed to eliminate these from skewing results. 
 
6.1.2 Land Use Mix Metrics 
 
One of the tenants of sprawl development beyond merely low density is the separation 
of land use types from each other.  Although this was originally done to eliminate the 
pesky commercial and industrial problems from everyday life, this type of development 
forces auto dependence and wastes time for users of the systems.  One of the major 
mixing ideas is mixing residences with businesses.  Also of interest is the mixing of 
different job types.  Lastly there are many other factors in land use mixing including 
mixing all types of commercial, civic, and recreational opportunities within walking 
distance of residences.  Walk Score was developed using many metrics of its own to 
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assess walkability for residences.  These three areas make up the metrics which 
combine to measure land use mix for the EUC.  Each of these three is discussed below. 
 
6.1.2.1 Job / population balance 
 
Description: This metric looks at the number of jobs as they are spread out with 
population across the EUC.  If the ratio of jobs to persons in a block is the same as the 
EUC’s ratio, this is considered to be a better balance.  If only jobs or persons exist in a 
block, this is considered to be worse balance. 
 
Units: unitless 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for populations) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) 

 
Algorithm: To calculate job-population balance, the jobs in a block compared to the 
average jobs in the EUC were compared and then weighted by the job population total 
in the block to the job population total in the EUC.  This is summarized by the 
following equation which was used for the calculation, from Ewing et al.: 
ܾ݌݆  = ෍ ቆ1 െ ௜ܬ| െ ܲܬ ή ௜ܲ|ܬ௜ + ܲܬ ή ௜ܲ ή ௜ܬ + ௜்ܲܬ + ்ܲቇ௡

௜ୀ଴  

 
where  jpb is job / population balance, 

i is the current census block entry, 
 n is the total number of census blocks, 
 Ji is the number of jobs in the census block, 
 Pi is the number of persons in the census block, 
 JP is the jobs per person total in the EUC, 
 JT is the total number of jobs in the EUC, 
 PT is the total number of persons in the EUC 

 
Blocks with population densities under 100 were not included in this total. 
 
Differences between this and Ewing et al. metric: The main differences between the two 
metrics is that this study used census blocks instead of census tracts and instead of using 
1-mile rings to narrow block groups, blocks were used in their entirety. 
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6.1.2.2 Degree of Job Mixing 
 
Description: This metric looks at the number of different types of jobs as they are 
mixed across the EUC.  If the number of jobs in each sector is the same for a block, this 
is considered to be a better mixing.  If only jobs in a single sector exist in a block, this is 
considered to be worse mixing as there is not diversity in job types. 
 
Units: unitless 
 
Relationship: Higher values equate to less sprawl 
 
 
 
 
Datasets Used: 

Census 2010 block data including demographic data (for populations) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs and jobs by sector) 

 
Algorithm: Degree of job mixing was calculated using an entropy formula as put forth 
by Ewing et al. Number of jobs in each sector are weighted by the natural log of jobs in 
the sector over the natural log of the number of sectors as well as by the job population 
total in the block to the job population total in the EUC.  The degree of job mixing for 
each sector is added and the result is the overall degree of job mixing for the EUC.  The 
five sectors used in the calculation were retail, entertainment, health services, education, 
and personal services which includes finance, real estate, and information, tech, hotel, 
food, and other services.  All of these jobs values were gathered from the LEHD 
LODES7 WAC 2010 dataset.  The equation for one sector is shown below: 
 ݉ = ෍ ൬ܬௌ ή ln ௌlnܬ ݆ ή ௜ܬ + ௜்ܲܬ + ்ܲ൰௡

௜ୀ଴  

 
where  m is degree of job mixing for the current sector, 

i is the current census block entry, 
 n is the total number of census blocks, 
 JS is the number of jobs in the sector, 
 j is the number of sectors, 
 Ji is the number of jobs in the census block, 
 Pi is the number of persons in the census block, 
 JT is the total number of jobs in the EUC, 
 PT is the total number of persons in the EUC 
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Differences between this and Ewing et al. metric: The main differences between the two 
metrics is that this study used census blocks instead of census tracts and instead of using 
1-mile rings to narrow block groups, blocks were used in their entirety. 
 
6.1.2.3 Walk Score 
 
Description: The Walk Score is a proprietary calculation that measures foot access to 
various services [79].  The algorithm weights services differently and also weights them 
by distance, with closer services increasing the Walk Score.  The Walk Score alone is a 
powerful measure, and certainly correlates with compact development.  It should be 
noted that the Walk Score measures ability to walk, not the percentage of walkers. 
 
Units: undefined (Walk Score ranges from 0 to 100) 
 
Relationship: Higher values equate to less sprawl 
Datasets Used 

Census 2010 block data including demographic data (for populations) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) 

Walk Score Inc., Walk Scores [79] 
 
Algorithm: First, the Walk Score for every block center point must be gathered.  The 
Walk Score script (outlined in Section 6.3.3) was used to acquire Walk Scores for each 
block in the EUC.  Each Walk Score value vas then weighted by the sum of the block’s 
population and jobs versus the sum of the EUC’s population and jobs. 
 
Differences between this and Ewing et al. metric: Other than the fact that the data in this 
study was acquired using a script versus buying the data, the only difference is that 
blocks were used instead of tracts and block groups. 
 
6.1.3 Activity Centering Metrics 
 
Often confused with density and/or land use mix, activity centering looks at how well 
various activities are arranged in communities.  High density can be achieved in the 
sprawl; think of the exurban (i.e., outlying suburban development area) community of 
Levittown, NY.  Land use mixing is concerned with how well land uses are integrated 
throughout a community, but even a community with a good mix of uses might not have 
the density to sustain compact ideals such as walkability.  Centrality is not concerned 
with land use mixes nor density, merely that the people (and/or the jobs) that exist are 
located nearer to each other and nearer to the CBD, no matter how dense or mixed this 
CBD might be. 
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The standard deviation of densities (population or employment) measures the scatter in 
density values around the mean.  If these densities are more scattered, this will generally 
mean that there is more centering.  Density gradient is a similar measure, but provides 
some added insight to centrality.  A purer measure of centrality is to look at the 
percentage of people or jobs inside the CBD as compared to the total in the EUC.  
These areas make up the five metrics which combine to measure activity centering for 
the EUC.  Each of these five is discussed below. 
 
6.1.3.1 Coefficient of variation in block population densities 
 
Description: This metric is the standard deviation of population density scaled by the 
average population density of blocks. 
 
Units: persons per square mile 
 
Relationship: Higher values equate to less sprawl 
Datasets Used: 

Census 2010 block data including demographic data (for populations and areas) 
 
Algorithm: The standard deviation of population densities for all blocks within the EUC 
is found and divided by the mean of population densities for all blocks within the EUC. 
  
Differences between this and Ewing et al. metric: Blocks were used instead of tracts. 
 
6.1.3.2 Coefficient of variation in block employment densities 
 
Description: This metric is the standard deviation of employment density scaled by the 
average employment density of blocks. 
 
Units: jobs per square mile 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for areas) 
Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  

Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) 

 
Algorithm: The standard deviation of employment densities for all blocks within the 
EUC is found and divided by the mean of employment densities for all blocks within 
the EUC. 
 
Differences between this and Ewing et al. metric: Blocks were used instead of tracts. 
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6.1.3.3 Density gradient moving outward from the CBD 
 
Description: This metric is an estimate of the density gradient moving outward from the 
CBD based upon how quickly the population exponentially diminishes from the center 
of the EUC’s CBD outward.  This metric and the estimated central density (discussed in 
Section 6.1.1.6) work in tandem.  The equation coefficients are calculated using 
population density of each block and distance of the center of each block to the center 
of the EUC’s CBD. 
 
Units: The inverse of miles 
 
Relationship: Higher values equate to more sprawl 
 
Datasets Used: 

CBD Points (created manually by the author) 
Census 2010 block data including demographic data (for populations, areas,  

latitudes, and longitudes) 
 
Algorithm: First, a CBD points file must be generated with points denoting the center of 
the CBD of the primary city in the EUC.  A discussion of this file’s creation is included 
in Section 6.3.1.  The first step in the algorithm was to calculate the difference in 
latitude and longitude between the CBD’s center point and each block’s center point 
(using the Census’ internal point, which is the geographical center except for special 
cases where the point would fall outside the block’s boundaries in which case the point 
inside the block closest to the center point is chosen [103]).  Because these distances are 
around a geoid (the Earth) and not linear, the Haversine formula, recommended by the 
US Census Bureau to calculate short distances equations, was used to calculate each 
distance [104]: 
 ݀ = 2 ή ܴ ή tanିଵ ቌඨsinଶ ߶ௗ2 + cos ߶௕ ή cos ߶௘ ή sinଶ ௗ2ߣ  ቍ 

 
   where  d is the distance between block and EUC’s CBD center points, in mi., 

R is the radius of the Earth, in m., 
    ߶ௗ = ߶௕ െ ߶௘ , 
    ߶௕ is the latitude of the block center point, in decimal degrees, ߶௘ is the latitude of the EUC’s CBD center point, in decimal degrees, ߣௗ = ௕ߣ െ  , ௘ߣ
 ௘ is the longitude of the EUC’s CBD center point, in decimal degreesߣ ,௕ is the longitude of the block center point, in decimal degreesߣ    

 
The population density for each block was also stored.  After all distances and densities 
were calculated and stored, a polynomial fitting function was used to derive the 
coefficients of the following exponential function using the natural log of each variable: 
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ܦ  = ைܦ ή ݁ି௕ήௗ 
 

where  D is the density of the block in persons per sq. mi., 
DO is the estimated density at the EUC center in persons per sq. mi., 

    b is estimated density gradient moving outward from CBD, in mi-1, 
    d is the distance between block and EUC’s CBD center points, in mi. 
 
The value of b is the metric.  The value of DO is used as a density metric, discussed in 
Section 6.1.1.6.  
 
Differences between this and Ewing et al. metric: Blocks were used instead of tracts.  
CBD center points were manually calculated to determine more accurate locations.  It is 
unknown how Ewing et al. calculated distances between points, but they likely used a 
similar method and even if not, these relatively short distances will have little error. 
 
6.1.3.4 Percentage of population in the CBD 
 
Description: This metric is the ratio of the sum of population of the EUC’s CBD to the 
sum of the population of the whole EUC. 
 
Units: percentage (sum of population of CBD over sum of the population of EUC) 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for populations) 
 
Algorithm: First, a CBD polygon file must be generated for all EUC’s primary cities.  A 
discussion of this file’s creation is included in Section 6.3.2.  The population of each 
block in the EUC’s CBD was then added together.  The populations of each block in the 
EUC were also summed.  The CBD sum was divided by the EUC sum and multiplied 
by 100 to calculate the percentage of population in the CBD. 
 
Differences between this and Ewing et al. metric: There was some difference in how 
CBDs were created, which is discussed in detail in Section 6.3.2.  Also, Ewing et al.’s 
metric included other employment sub-centers besides the CBD.  These were not used 
in this study because smaller urban areas have fewer or no sub-centers and more 
importantly sub-centers can be considered sprawl in their own right and this study is 
designed to eliminate these from skewing results. 
 
6.1.3.5 Percentage of employment in the CBD 
 
Description: This metric is the ratio of the sum of jobs of the EUC’s CBD to the sum of 
the jobs of the whole EUC. 
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Units: percentage (sum of employment of CBD over sum of the employment of EUC) 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Longitudinal Employer Household Dynamics (LEHD) Origin-Destination  
Employment Statistics version 7 (LODES7) Workplace Area 
Characteristics (WAC) 2010 (for jobs) 

 
Algorithm: First, a CBD polygon file must be generated for all EUC’s primary cities.  A 
discussion of this file’s creation is included in Section 6.3.2.  The number of jobs in 
each block in the EUC’s CBD were then added together.  The number of jobs in each 
block in the EUC were also summed.  The CBD sum was divided by the EUC sum and 
multiplied by 100 to calculate the percentage of employment in the CBD. 
Differences between this and Ewing et al. metric: There was some difference in how 
CBDs were created, which is discussed in detail in Section 6.3.2.  Also, Ewing et al.’s 
metric included other employment sub-centers besides the CBD.  These were not used 
in this study because smaller urban areas have fewer or no sub-centers and more 
importantly sub-centers can be considered sprawl in their own right and this study is 
designed to eliminate these from skewing results. 
 
6.1.4 Street Accessibility Metrics 
 
The final group of metrics used to calculate the Sprawl Score deal with the 
transportation network.  The other three factors focused only on people and places, but 
the only way to connect these things is with a transportation network.  There are two 
main ways to get at this relationship.  First is to look at the block layout of the EUC.  
Blocks are defined by the census bureau based on the space between roads, so naturally 
they would help in defining street accessibility.  Smaller blocks, and shorter blocks 
general mean more connectivity and more compactness.  The second way to assess 
street connectivity is with street data, looking primarily at the layout of intersections 
and lack of things like cul-de-sacs.  These areas make up the five metrics which 
combine to measure street accessibility for the EUC.  Each of these five is discussed 
below. 

 
6.1.4.1 Percentage of small urban blocks 
 
Description: This metric gives the percentage of blocks in the EUC that are less than 
one hundredth of a square mile, which most urban blocks are.  Blocks with an area 
greater than 1 square mile were excluded from this percentage. 
 
Units: percentage (number of small blocks over total number of blocks) 
 
Relationship: Higher values equate to less sprawl 
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Datasets Used 

Census 2010 block data including demographic data (for areas and block counts) 
 
Algorithm: The areas of each block were checked to see if they were less than 0.01 
miles.  In this case, they were added to the count of small blocks.  Each block area was 
also checked to see if it was less than or equal to one mile, and in this case they were 
added to the count of normal blocks.  After the completion of both summing operations, 
the number of small blocks in the EUC was divided by the number or normal blocks in 
thee EUC and multiplied by 100 to give the percentage of small blocks in the EUC. 
 
Differences between this and Ewing et al. metric: N/A 
 
6.1.4.2 Average block size 
 
Description: This metric gives the average size of blocks in the EUC and is a measure 
of total area of blocks in the EUC divided by the number of blocks.  Blocks with an area 
greater than 1 square mile were excluded from this calculation. 
 
Units: square miles per block 
 
Relationship: Higher values equate to more sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for areas and block counts) 
 
Algorithm: The areas of each block were checked to see if they were less than or equal 
to one mile, and in this case they were added to the count of normal blocks and their 
areas were summed.  After the completion of both summing operations, the area of 
normal blocks in the EUC was divided by the number or normal blocks in thee EUC to 
give the average block size in the EUC. 
 
Differences between this and Ewing et al. metric: N/A 
 
6.1.4.3 Average block length 
 
Description: This metric gives the average length of a block in the EUC and is a 
measure of total road length divided by number of road segments in the EUC. 
 
Units: miles 
 
Relationship: Higher values equate to more sprawl 
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Datasets Used: 
Census 2010 block data including demographic data (for clipping regions) 
Statewide All Roads Layer, Michigan Geographic Framework,  

version 2014a [105] 
 
Algorithm: The Michigan roads dataset is broken up into segments.  Each segment of 
road is the edge of one block in the EUC.  Therefore, all that is needed for this 
algorithm is to sum up the lengths of all of the roads in the EUC and also count the 
number of segments.  Dividing the sum of segment lengths by number of segments 
gives the average block length. 
 
Differences between this and Ewing et al. metric: This metric uses the Michigan roads 
dataset from the Michigan Geographic Framework as opposed to the one defined by the 
Census Bureau.  This was done as the Michigan dataset already broke roads into 
segments based on blocks, making the calculation more convenient.  Also, road lengths 
were taken across the entire EUC and not just the urbanized portion of the region, 
although Ewing et al. considered UAs, which are not too dissimilar to EUCS. 
 
6.1.4.4 Intersection Density 
 
Description: This metric gives the total number of intersections per square mile in the 
urban/suburban portion of the EUC.  Only blocks with population densities of at least 
50 persons per square mile were considered. 
 
Units: intersections per square mile 
 
Relationship: Higher values equate to less sprawl 
 
Datasets Used: 

Census 2010 block data including demographic data (for clipping region,  
populations, and areas) 

University of Utah Metropolitan Research Center (MRC) Intersection 
Dataset [106] (for intersection counts) 

 
Algorithm: This algorithm was significantly simplified by acquiring the intersections 
data file for all EUCs thanks to University of Utah’s Metropolitan Research Center.  
This algorithm is described in Section 6.3.1.  The intersection file includes points for 
every intersection in the EUC.  First, all blocks with population densities over 50 
(urban/suburban densities) within the EUC are selected from the block file.  Then, all 
intersections within the selected blocks are selected.  The total number of intersections 
are then counted and divided by the total land area of the high density blocks in the 
EUC to solve for intersection density. 
 



68 
 

Differences between this and Ewing et al. metric: Rural blocks were excluded rather 
than tracts, and only blocks with less than 50 people per square mile as opposed to 100 
people per square mile were excluded. 
 
6.1.4.5 Percentage of 4-or-more-way intersection 
 
Description: This metric gives the percentage of 4-or-more-way intersections in the 
EUC compared to the total number of intersections in the EUC.  Intersections with more 
than three entries offer more accessibility and choice in direction. 
 
Units: percentage (number of 4-or-more-way intersections over total number of 
intersections) 
 
Relationship: Higher values equate to less sprawl 
Datasets Used: 

Census 2010 block data including demographic data (for clipping region) 
University of Utah Metropolitan Research Center (MRC) Intersection Dataset  

(for intersection counts) 
 
Algorithm: This algorithm was significantly simplified by acquiring the intersections 
data file for all EUCs thanks to University of Utah’s Metropolitan Research Center.  
This algorithm is described in Section 6.3.1.  The intersection file includes points for 
every intersection in the EUC, each of which had an attribute giving the number of 
directions entering the intersection.  First, all intersections within the EUC were 
selected and the total number of intersections was counted.  From this set of 
intersections, those with a count of intersections of 4 or more were selected and 
counted.  The number of 4-or-more-way intersections was divided by the total number 
of intersections and multiplied by 100 to give the percentage of 4-or-more-way 
intersections. 
 
First, all blocks with population densities over 50 (urban/suburban densities) within the 
EUC are selected from the block file.  Then, all intersections within the selected blocks 
are selected.  The total number of intersections are then counted and divided by the total 
land area of the blocks in the EUC to solve for intersection density. 
 
Differences between this and Ewing et al. metric: N/A 
 
6.2 Python Script: EUC_Metrics.py 
 
Although many of the algorithms for calculating the 21 metrics are relatively simply to 
determine, some are more complex and when grouped together this can be large 
undertaking if done manually.  For this reason, a script was created which processed the 
datasets as needed.  Various support scripts were also used, and these are discussed in 
Section 6.3. 
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The benefits of a script include 

 reduction of calculation time and repetition 
 elimination of human error in processing all of the complex selections 
 consistent application of the algorithm 
 ease of change to the algorithm 
 ease of expansion to a broader study area 

 
The script to calculate the metrics for the EUCs was created with Python, which is the 
primary programming software used with ArcGIS.  The full script is included in 
Appendix C.  An overview of the script’s operation is included in the following 
subsections. 
 
6.2.1 Files needed for EUC_Metrics.py 
 
The main file needed to run the metric calculator script is the EUC shapefile created by 
the EUC Creator program (described in Chapter 5).  This script also currently requires 
some additional preprocessing, which is described in Section 6.3.1. 
 
Beyond this file preparation, the script requires a seven additional files to operate (eight 
total).  These are listed in Table 6.2. 
 

Table 6.2: Files needed to run EUC_Metrics.py Python script 
File Name File Scope Filename File Developer Vintage 
Extended Urban 
Clusters* State EUC_All.shp Riehl 2010 

Blocks* State tl_2010_26_tabblock10.shp US Census Bureau 2010 

Central Business 
District Points State CBD_Points.shp Riehl 2014 

Central Business 
District Polygons State CBD_polygons_all.shp Riehl# 2015 

National Land 
Cover Database National nlcd_2011.img MRLC Consortium 2011 

NLCD Processed 
Table^ State NLCD_table.dbf Riehl 2011 

Statewide All 
Roads Layer State allroads_miv14a.shp MI DTMB MGF 2014 

Intersection Points~ EUC intersections_MI_EUC.shp Utah MRC 2006 
*Some pre-joining required.  See Section 6.3.1 for details 
#Main script was written by Riehl for this project.  Two CBDs were appended from Hamidi [107] 
^File created using techniques described in Section 6.3.1 
~File is national, but file that was used was pre-clipped to the Michigan EUC boundaries. See 
Section 6.3.1 for more details 
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Some files are standard files that are freely available to the public and updated with the 
decennial census and others are created using methods discussed in Section 6.3.  The 
only proprietary file is the intersection file.  It is recommended that an intersection 
algorithm be developed as this is the only proprietary dataset needed to develop the 
Sprawl Score. 
 
6.2.2 Overview of EUC_Metrics.py 
 
The Python script is relatively basic in its operation, although many support operations 
need to be completed for many of the basic steps which makes the syntax and operation 
somewhat hard to follow.  Although programmers will be able to follow along with the 
generous commenting throughout the script, those with only a basic knowledge of 
ArcGIS will benefit from a broader overview, which is provided in this subsection. 
 
The basic flowchart for the main operation of the script is included in Figure 6.1.   
 

START

FOR
All EUCs

STOP

INITIALIZE
All metric fields in EUC

INITIALIZE
Values for all 21 metric calculations

FOR
All block in EUC

INITIALIZE
Values from block fields

CALCULATE
First steps for all 21 metrics

CALCULATE
Final steps for all 21 metrics

STORE
EUC metrics for current EUC

 
Figure 6.1: Basic flowchart for EUC metric calculation 

 
This script will actually calculate all metrics for all EUAs and EUCs, although only the 
42 pilot EUCs are needed for this study.  As stated previously, this program calculates 
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the 21 metrics developed by Ewing et al. in 2014.  The EUC metric calculation 
algorithm is explained at a high level for non-programmers in the sections below. 
 
The EUC metric calculation algorithm was run for each Urban Area in Michigan.  This 
was done to help troubleshoot and verify the algorithm to eliminate all minor flaws in 
the calculation of the metrics. 
 
Additional information for non-programmers is included in Appendix C. 
 
6.2.3 General Notes for Improving Algorithm 
 
It was found that this algorithm was satisfactory with only a few differences from 
Ewing et al.’s algorithms.  A few ideas were identified for extending this 
implementation to other problems.  These are listed by metric. 
 
 

 popden is not normalized, but it would be a better metric if it was 
 lt1500 and gt12500 are not normalized to population, but they should be to 

provide for a better comparison between cities 
 urbden is not the best metric as it should be changed to be population density 

per unit area of urban land, not an urban land percentage 
 dgcent, popdcen, empdcen, dgrad, popcen, empcen are all set to -1 for the 5 

EUCs that do not have their CBD in Michigan 
 avgblklng algorithm uses slightly different dataset and slightly different method 

from Ewing et al. 
 

6.3 Support Scripts 
 
In order for the metrics script to run correctly, several items needed to be completed 
before running the program.  First, the EUC and block files needed to be prepared, as 
discussed in Section 6.3.1.  Also, two support scripts were written, one to create CBD 
polygons (discussed in Section 6.3.2) and one to calculate Walk Scores (discussed in 
Section 6.3.3).  These last two support scripts should be useful programs for future 
applications. 
 
6.3.1 Preparation Work for EUC and Block Shapefiles 
 
Various preparation work was done and columns were merged into the EUC and block 
file.  These preparations are discussed in the following subsections. 
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6.3.1.1 Employment Data 
 
Employment data was gathered from the Longitudinal Employer Household Dynamics 
(LEHD) Origin-Destination Employment Statistics version 7 (LODES7) Workplace 
Area Characteristics (WAC) 2010 data file.  Specifically, the file used included all 
primary jobs located in each block, as opposed to all jobs which includes secondary 
jobs that are not an individual’s primary work responsibility.  Although there are 
various reasons a person may select a second job, the primary job is the one listed by 
each person as more prominent on the survey used to compile this data. 
 
This data file comes in the form of a CSV file, specifically 
mi_wac_S000_JT01_2010.csv was used.  The reason this file was not added to the 
block file programmatically is that not all blocks were included in this file.  
Specifically, blocks with no primary jobs were not included.  Rather than running a 
complex sorting join in the program, the columns listed below were merged from this 
file to the block file manually.  It is recommended that this join be added 
programmatically to the EUC metrics script. 
 

 C000 – All primary jobs in the block 
 CNS07 – Retail jobs 
 CNS09 – Information services jobs 
 CNS10 – Financial jobs 
 CNS11 – Real estate jobs 
 CNS12 – Technical service jobs 
 CNS15 – Education jobs 
 CNS16 – Health service jobs 
 CNS17 – Entertainment jobs 
 CNS18 – Hotel and food service jobs 
 CNS19 – Other service jobs 

 
EUC_Metrics.py brings in all of these fields and uses them in various calculations.  
C000 is used by many metrics, whereas the rest are used only by the degree of job 
mixing metric. 
 
6.3.1.2 Land Use / Land Cover Data 
 
Land cover data is needed for the urban density metric.  This data was downloaded from 
the Multi-Resolution Land Characteristics (MRLC) Consortium’s National Land Cover 
Database (NLCD) 2011 edition.  The NLCD dataset is a raster dataset that separates 
land coverage by category.  The categories needed for the urban density metrics were 
the four developed land categories, classes 21-24 (Developed, Open Space; Developed, 
Low Intensity; Developed, Medium Intensity; and Developed, High Intensity). 
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The zonal Spatial Analyst tool called TabulateArea was used in ArcGIS to tabulate all 
of the categories for each EUC.  Specifically, the command is uses the EUC file as the 
zone feature, the FID as the zone field, the NLCD file as the class file, the NLCD_2011 
field as the class field, NLCD_table.dbf as the output table, and 30 as the processing cell 
size. 
 
The output file then includes a column for each NLCD category with areas given for 
each EUC row.  The four columns of interest are added together and this column is 
added to the EUC file as Devel_Lnd. 
 
Note that this algorithm should be added to the EUC Metrics script and the algorithm 
should be updated to sum the populations over the urban areas as well.  This was not 
included in the version of the Sprawl Score, but should be included in an updated 
version. 
 
6.3.1.3 Central Business District Point File 
 
Central Business District center points are needed for two metrics: estimated density at 
the center of the metro area and density gradient moving outward from the CBD.  The 
points are also used for support to decide whether or not the CBD of an EUC is within 
the state of Michigan or not.  The five CBDs in UAs outside the state were not included 
in the final CBD point file. 
 
The CBD points file denotes the center of the CBD of the primary city in the EUC for 
each of the EUCs.  Originally, an algorithm was developed to select the points 
programmatically.  Such ideas as selecting a civic location (post office, courthouse, city 
hall, etc.) were postulated, but some of these offices have moved to non-central 
locations.  Even a weighted average of these locations was not sufficient.  Thus, the 117 
locations were manually determined using a combination of remote sensing, Google 
Street View [108], and the author’s judgment.   
 
6.3.1.4 Intersection Point File 
 
An intersection points file was also created that includes a point for every intersection in 
the state.  The only column of information that needs to be included in this file needs to 
be the count of entrances into this intersection.  This file is used for the intersection 
density and 4-or-more-way intersection percentage metrics. 
 
The file was obtained from the University of Utah’s Metropolitan Research Center 
(MRC).  It is recommended that this algorithm be programmed and stored as a separate 
support program for this software package.  The dataset used as a base for the algorithm 
is TomTom’s 2006 national road dataset which is included with ESRI’s ArcGIS install 
package.  An updated dataset should be used to attain more accurate metrics.  The 
algorithm is summarized below, from Ewing et al.’s description [3]: 
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 Filter out freeways, unpaved tracks, and other roadways that don't function as 

pedestrian routes using Census Feature Class Code (CFCC) values 
 Merge pairs of parallel centerline segments into single centerlines. 
 Trim / extend streets intersecting the original centerlines to the merged segments 
 Split each centerline at each intersection with side streets 
 Locate roundabout centroids and assign a count of four incoming streets 
 Delete endpoints of incoming streets into roundabouts 
 Generate point features at both endpoints of each street segment in the file 
 Delete points that are closer than 12m to each other 
 Count number of points coinciding at any location and store count for each point 
 Discard point counts of one or two from the file 

 
6.3.2 Python Script: CBD_Creator.py 
 
A Central Business District polygon file must be created in order to calculate four 
metrics: gross population density and employment density of the CBD in the EUC and 
percentage of the EUC’s population and employment in the CBD.  This algorithm was 
created as a separate program, and the program is currently in beta phase. 
 
Currently, the program calculates CBDs for many of the EUCs using an algorithm 
similar to that in Ewing et al.  However, many EUCs have CBDs with populations too 
small to be recognized by this algorithm.  Therefore, after the program is executed, two 
CBDs are appended from Ewing et al.’s CBD polygon file [107] and the remaining 
CBDs were added manually using a combination of remote sensing, Google Street 
View [108], and the author’s judgment. 
 
The program CBD_Creator.py is included in Appendix D.  The program requires the 
output file of EUC_Creator.py (the EUC shapefile), the CBD point shapefile, and the 
block shapefile in order to execute correctly.  The basic algorithm is included in Figure 
6.2.  Essentially, the algorithm uses the Clusters and Outlier Analysis (Anselin Local 
Morans I [109]) Spatial Statistics tool in ArcGIS to calculate z-values for each block.  
Significant z-values are selected to be part of the CBD polygon and polygons are 
ensured to not have donuts.  These CDBs are joined to create a CBD polygon shapefile. 
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START

FOR
All EUCs

STOP

DELETE
Temporary shapefiles and layers

RUN
Cluster an Outlier Analysis

SELECT
Blocks with Z > 1

APPEND
Adjacent blocks with Z <= -1 or >=0

IF
CBD in Michigan

APPEND
Donut blocks to CBD

APPEND
CBD to CBD Polygon shapefile

TRUE

FALSE

 
Figure 6.2: Basic flowchart for CBD polygon creation 

 
6.3.3 Python Script: WalkScore_Locator.py 
 
The Walk Score is used as one of the three land use mix metrics.  Acquiring Walk Score 
data can be accomplished by querying the Walk Score website with a location and 
receiving back a Walk Score.  As there were nearly 200,000 blocks that are part of the 
EUC areas that needed Walk Scores, a programmatic approach was required.  A script 
was created to query the website for the values. 
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This script uses the generic Walk Score hyperlink that accepts latitude/longitude inputs: 
 
 https://www.walkscore.com/score/loc/lat=LATNUM/lng=LONNUM 
   where LATNUM and LONNUM are latitude and longitude values in decimal degrees 
 
A flowchart for this step is presented in Figure 6.3 and the full script is included in 
Appendix E.  The algorithm is more complicated than the figure suggests, so it is 
recommended that programmers review the comments in the script to fully understand 
its functionality.  In basic terms, the program loops through block values querying the 
Walk Score website as shown above.  The website returns the source code and the 
source code is parsed to obtain the Walk Score value.  The Walk Scores are stored in a 
list and after all are found, they are written to a new file that includes the block’s 
geographical identification, the latitude, the longitude, and the Walk Score. 
 
This program should be executed before EUC_Metrics.py.  Note that it is useful to 
create a block file with only the blocks of interest being each call to the website takes 
roughly one second to complete, which means 100,000 blocks would take about a day 
to run. 
 

START

FOR
All Blocks

STOP

STORE
GeoID, Latitude, and Longitude

QUERY
WalkScore Website

PARSE
Source Code returned by website

STORE
Walk Score in list

FOR
All Rows in List

APPEND
Row to new CSV file

 
Figure 6.3: Basic flowchart for Walk Score locator program 
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Chapter 7: Sprawl Score 
 
After calculating the metrics for the pilot cities, the scores for each of the four factor 
categories were determined using principal components analysis (PCA).  These four 
factor categories (development density, land use mix, activity centering, and street 
accessibility) summarize the scores for the given community based on a weighted 
average of the metrics associated with each factor category.  The extraction of principal 
components is discussed in Section 7.1. 
 
Once Principal Components Analysis is completed, the four factor category scores are 
scaled to a system based upon a similar scale to an intelligence quotient (IQ) test, where 
a 100 is the average and the standard deviation is 25.  Thus a score of 75 would be a 
more sprawling community and a 125 would be a more compact community based on 
the given factor category.  These four scores, along with the 21 metric scores, can help a 
community narrow down their sprawl characteristics and better understand the level of 
sprawl in the community.  The scores are calculated as part of the Sprawl Score 
calculator Python program as discussed in Section 7.2, with the full script included in 
Appendix F.  The Python script file is also included in Appendix H, the enclosed DVD 
that is included in the media pocket on the inside back cover of this dissertation. 
 
Once all four factor category scores are calculated, their values are combined 
programmatically into a final Sprawl Score.  The final Sprawl Score for each 
community is scaled to the same extent as the four factor category scores.  This score 
provides an overall sprawl rating for the entire EUC.  The algorithm for the Sprawl 
Score is discussed in Section 7.2.  Section 7.3 lists the Sprawl Scores, factory category 
scores, and original metric scores for all 42 pilot cities.  Finally, Section 7.4 includes a 
discussion of the rankings and a sample community Sprawl Scorecard.  Sprawl 
Scorecards for all 42 pilot cities are included in Appendix G.  High Resolution 
scorecards are included in Appendix H. 
 
7.1 Principal Components Analysis of Metrics 
 
With 21 metrics, understanding how to correctly combine these into four summary 
scores is a challenge, especially due to the fact that there is certainly overlap in the 
variables.  Although a simple weighted average would arrive at a score, manually 
selecting weights is a biased approach.  Both factor analysis and principal components 
analysis are statistical algorithms used to simplify confounding datasets and cull out 
relevant summary values.  This is done by taking uncorrelated linear combinations of 
the variables to arrive at fewer, less confounded variables. 
 
The choice between factor analysis and principal components analysis depends on the 
datasets and the relationships between variables.  When merely looking to reduce the 
number of components for variables that are highly correlated, as many in this study 
are, principal components analysis is preferred.  Principal Components Analysis 
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explains the amount of variance in the variables, and for highly correlated variables, one 
principal component is usually all that is needed [110].  An added benefit is that Ewing 
et al. also used Principal Components Analysis for this step, so better comparisons can 
be made. 
 
The steps necessary to complete the principal components analysis and produce a score 
for each of the four factor categories is summarized in the following section. 
  
7.2 Python Script: EUC_Sprawl_Score.py 
 
A script was written to calculate the sprawl scores and is included in Appendix F.  This 
script is broken into three parts: data preparation, principal components analysis, and 
sprawl score calculation.  These steps are shown in the basic flowchart in Figure 7.1 
below and each is discussed in the following sections.  There are a few minor errors that 
should be fixed for the next implementation of the script, and these are pointed out in 
the script comments. 
 
The following sections are again written for non-programmers.  The most complicated 
part about this program is actually understanding the statistics followed by 
understanding how to use arrays in Python.  The statistics are discussed below, but the 
details of the Python programming are included in Appendix F. 
 
7.2.1 Data preparation for script 
 
After the EUC metrics script is executed, 21 raw metric scores are calculated for each 
EUC.  These values need to be preprocessed in order to run principal components 
analysis and determine a score for each of the four factor categories. 
 
It is important to note that PCA could be performed on the entire group of cities, just the 
42 pilot cities, or the pilot cities by category.  The approach to score pilot cities by 
category was chosen, even though error is increased at smaller sample sizes.  The 
fundamental theory behind this is that cities can most accurately be compared to cities 
of similar size, and that the error produced by comparing, for example, Detroit to Saint 
Ignace, would be much larger than the errors associated with small sample size. 
 
The main preprocessing step was to put all of the scores in each factor category into a 
large matrix which can be processed for PCA.  These steps are outlined in the script in 
Appendix F. 
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START

FOR
All Pilot Groups

STOP

INITIALIZE
All score  fields in EUC

STORE
Values for all 21 metrics in arrays

PERFORM
Principal Components Analysis

1. Correlation Coefficients
2. Eigenvalues/Eigenvectors

3. Weights Vectors
4. Means / SDs for Factors

5. Z-values for Metrics
6. Weighted Scores

7. Normalized Scores

STORE
EUC factors and Sprawl Score for current EUC

FOR
All EUCs

FOR
All Cities in Pilot Group

IF
City matches EUC

TRUE

FALSE
CALCULATE

Sprawl Score
1. Predicted Scores (using LLSR)

2. Standard Residuals
3. Normalized Sprawl Score

FOR
All EUCs

FOR
All Cities in Pilot Group

IF
City matches EUC

TRUE

FALSE

 
Figure 7.1: Basic flowchart for Sprawl Score calculator program 
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7.2.2 Principal Components Analysis Algorithm 
 
Once all metric values are stored by group in the matrix, PCA is performed.  Within 
each factor category, the following algorithm is used for PCA [111]: 
 

 Determine a correlation matrix for all metrics in the category 
 Calculate eigenvalues and eigenvectors for each factor category 
 Calculate a weights vector to weigh importance of metrics for principal 

component calculation 
 Calculate means and standard deviations for each factor category 
 Calculate standardized value (z-value) for each metric in each factor category 
 Calculate weighted score for each metric and sum for each factor category 
 Normalize weighted average score for final factor category score for each of 

four factor categories 
 
By performing the PCA, the metrics in each factor category is condensed into one 
overall value.  Due to the statistical methods involved in PCA, the metric scores are not 
equally weighted in the calculation of their respective factor category score or the 
overall Sprawl Score.  The exact weightings are calculated programmatically in the 
Sprawl Score Python script.  The final weights are shown in Table 7.1. 
 
Most of the metrics have an inverse relationship with the Sprawl Score, meaning that if 
the metric increases, the Sprawl Score will decrease.  The only metrics with a direct 
relationship are: the percentage of persons living at less than 1,500 persons per square 
mile, the density gradient moving outward from the CBD, the average block size, and 
the average block length. 
 
The percentage explained by the principal component score (i.e., the factor category 
score for each factor) is determined by the eigenvalue calculations in the PCA.  These 
percentages are shown in Table 7.2.  This table shows that all factor category scores 
explain at least 40% of the variability of the metrics contanined in the scores. 
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Table 7.1: Metric Weights as Determined by Principal Components Analysis 
  Metric Weights 
 

Metric 

Mid-Size 
Regional 

Cities 

Small 
Regional 

Cities 

Large 
Subregional 

Cities 

Mid-Size 
Subregional 

Cities 

D
ev

el
op

m
en

t D
en

si
ty

 

Population Den 0.415 0.423 0.486 0.503 
Employ Den 0.404 0.420 0.429 0.511 
Density at < 1.5K -0.379 -0.389 -0.418 -0.398 
Density at > 25K 0.424 0.008 0.226 0.119 
Urban Density 0.247 0.444 0.478 0.501 
Density (Center) 0.231 0.315 0.269 0.203 
Pop Density (CBD) 0.272 0.320 0.050 0.140 
Emp Density (CBD) 0.391 0.307 0.225 0.034 

La
nd

 
U

se
 M

ix
 Job / Pop Balance 0.553 0.564 0.583 0.627 

Job Mixing 0.722 0.576 0.649 0.665 
Walk Score 0.416 0.591 0.489 0.405 

A
ct

iv
ity

 
C

en
te

rin
g 

Pop Variation 0.320 0.176 0.144 0.588 
Emp Variation 0.428 0.019 0.254 0.207 
Density Gradient -0.573 -0.434 -0.352 -0.457 
Pop % (CDB) 0.492 0.594 0.610 0.472 

Employ % (CBD) 0.380 0.654 0.648 0.424 

St
re

et
 

A
cc

es
ss

ib
ili

ty
 % Small Blocks 0.452 0.460 0.487 0.486 

Avg Block Size -0.424 -0.479 -0.540 -0.463 
Avg Block Length -0.467 -0.433 -0.539 -0.498 

Intersec Density 0.299 0.467 0.409 0.412 
% 4+ Intersections 0.556 0.391 0.112 0.363 

 
 

Table 7.2: Metric Weights as Determined by Principal Components Analysis 
 Metric Weights 

Factor Category 

Mid-Size 
Regional 

Cities 

Small 
Regional 

Cities 

Large 
Subregional 

Cities 

Mid-Size 
Subregional 

Cities 
Development Density 52 54 49 44 
Land Use Mix 62 65 74 66 
Activity Centering 61 42 43 41 
Street Accessibility 61 79 60 68 
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7.2.3 Sprawl Score Algorithm 
 
The result of the PCA is a normalized score for each of the four factor categories.  The 
four results from the PCA are fed into the Sprawl Score algorithm.  The Sprawl Score 
algorithm is relatively simple.  First, a raw score is calculated as the sum of all four 
factor category PCA scores.  Then a predicted sprawl score is calculated using a least-
squares linear regression of the raw total score versus the natural logarithm of 
population of the primary city of each EUC.  This is done to normalize the score based 
on population as a city with a larger population, other factors being equal, generally has 
more sprawl [3].  Modification to the normalization procedure should be considered for 
the next implementation of the script. 
 
Next, the predicted value is compared to the expected (raw) value and a standard 
residual is calculated.  This standard residual is normalized to an IQ-like scale and the 
resultant score is the Sprawl Score.  This algorithm is explained in more detail in the 
script comments in Appendix F. 
 
7.3 Rank of Pilot Cities with Sprawl Score 
 
After completing the EUC Sprawl Score calculator program, each EUC has 21 
component metric scores based on the units given in Chapter 6, four normalized factor 
category scores, and a normalized Sprawl Score.  The final Sprawl Scores (including 
four factor category scores and 21 metric scores) are listed in Tables 7.1 through 7.4, for 
the four city size categories including mid-size regional (Table 7.1), small regional 
(Table 7.2), large subregional (Table 7.3), and mid-size subregional (Table 7.4). 
 
Because the five composite scores (the four factor category scores and the Sprawl 
Score) are calculated using PCA for only the cities in the group, it should be understood 
that the ratings have most meaning when compared directly to peer cities in the group.  
A score of 100 for each of the five composite scores means that the EUC is average in 
the group.  A score lower than 100 means that the EUC is below average and a score 
above 100 means that the EUC is above average, again when compared to peers in the 
group.  However, the metrics are raw scores, thus using metrics cities can be compared 
within the group or across groups. 
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Table 7.3: Sprawl Scores (including all metrics) for mid-size regional cities 

   A
dr

ia
n 

 M
ar

qu
et

te
 

 M
ou

nt
 P

le
as

an
t 

 T
ra

ve
rs

e 
C

ity
 

Sprawl Score 70 106 130 94 

D
ev

el
op

m
en

t D
en

si
ty

 

 Overall 120 48 161 71 

 Population Den 385 201 351 285 

 Employ Den 125 101 163 137 

 Density at < 1.5K 58 69 61 74 

 Density at > 25K 1.17 0.84 3.40 0.36 

 Urban Density 19 11 16 18 

 Density (Center) 800 390 570 640 

 Pop Density (CBD) 10 15 22 2 

 Emp Density (CBD) 73 106 1775 23 

L
an

d 
U

se
 M

ix
 

 Overall 78 126 111 85 

 Job / Pop Balance 0.21 0.23 0.18 0.21 

 Job Mixing 138 150 166 146 

 Walk Score 25 40 34 21 

A
ct

iv
ity

 C
en

te
ri

ng
  Overall 60 125 89 126 

 Pop Variation 1.4 1.7 2.3 1.9 

 Emp Variation 6 10 14 7 

 Density Gradient 0.8 0.7 1.0 0.6 

 Pop % (CDB) 1.0 11.3 1.0 12.5 

 Employ % (CBD) 11 53 26 52 

St
re

et
 A

cc
es

si
bi

lit
y  Overall 84 113 97 106 

 % Small Blocks 44 50 52 48 

 Avg Block Size 0.09 0.08 0.09 0.07 

 Avg Block Length 250 300 290 250 

 Intersec Density 15.3 18.0 12.7 16.3 

 % 4+ Intersections 23 33 38 16 
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Table 7.4: Sprawl Scores (including all metrics) for small regional cities 

   A
lm

a 

 A
lp

en
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 B
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 E
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a 

 H
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sd
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 H
ou

gh
to

n 

 Io
ni
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 L
ap

ee
r 

 L
ud

in
gt

on
 

 O
w

os
so

 

 S
au

lt 
Sa

in
te

 M
ar

ie
 

 S
tu

rg
is

 

Sprawl Score 101 102 84 68 89 158 67 90 89 85 123 112 99 134 

D
ev

el
op

m
en

t D
en

si
ty

 

 Overall 119 72 58 74 88 118 52 60 101 99 150 141 87 182 

 Population Den 345 163 168 183 288 274 179 93 204 343 402 393 207 532 

 Employ Den 139 78 64 94 131 118 68 34 71 141 193 139 81 256 

 Density at < 1.5K 57 65 81 66 68 58 77 67 70 68 55 49 59 49 

 Density at > 25K 1.11 0.38 0.51 0.13 0.43 0.51 0.47 2.07 1.01 0.40 0.72 1.57 1.54 1.52 

 Urban Density 18 15 12 17 17 20 14 6 12 21 31 21 15 27 

 Density (Center) 710 460 290 420 390 990 420 280 240 360 560 920 470 380 

 Pop Density (CBD) 8 12 32 5 9 2 3 73 69 6 3 3 27 36 

 Emp Density (CBD) 26 301 1540 127 68 10 111 1049 3991 25 21 23 190 655 

L
an

d 
U

se
 M

ix
 

 Overall 98 112 114 59 123 109 109 72 120 81 109 90 83 120 

 Job / Pop Balance 0.13 0.19 0.18 0.13 0.23 0.19 0.22 0.12 0.28 0.20 0.18 0.16 0.16 0.17 

 Job Mixing 148 133 144 106 143 121 133 107 132 129 129 108 111 119 

 Walk Score 24 28 26 25 23 31 23 31 19 16 29 33 29 38 

A
ct

iv
ity

 C
en

te
ri

ng
  Overall 76 97 132 90 89 203 83 123 111 76 75 70 113 62 

 Pop Variation 1.5 1.4 3.3 1.5 2.6 1.5 1.9 2.5 1.8 1.6 1.3 1.2 1.4 1.6 

 Emp Variation 7 12 16 16 5 8 5 13 17 8 18 6 6 13 

 Density Gradient 1.6 1.0 0.9 1.1 1.2 0.9 1.1 0.6 1.1 1.3 1.5 1.7 0.7 2.5 

 Pop % (CDB) 1.5 1.6 2.0 0.9 0.9 19.9 0.1 2.7 0.7 0.7 1.0 0.8 3.1 1.6 

 Employ % (CBD) 10 19 42 15 8 81 8 26 38 5 9 11 28 17 

St
re

et
 A

cc
es

si
bi

lit
y  Overall 111 126 34 68 55 163 40 100 35 80 169 125 118 177 

 % Small Blocks 59 59 47 48 42 63 44 60 48 55 62 60 64 69 

 Avg Block Size 0.08 0.05 0.11 0.09 0.09 0.04 0.10 0.06 0.11 0.07 0.05 0.07 0.08 0.04 

 Avg Block Length 260 300 340 280 270 210 320 300 310 250 200 220 270 190 

 Intersec Density 20.5 23.8 10.1 15.5 16.6 23.3 11.8 21.4 11.5 11.2 27.5 19.8 22.6 33.3 

 % 4+ Intersections 33 36 27 27 21 42 26 24 21 22 43 32 32 30 
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Table 7.5: Sprawl Scores (including all metrics) for large subregional cities 

   C
ar
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Sprawl Score 71 78 118 135 76 106 116 

D
ev

el
op

m
en

t D
en

si
ty

 
 Overall 66 46 162 147 69 90 119 

 Population Den 106 96 393 312 119 117 224 

 Employ Den 48 37 203 148 23 41 158 

 Density at < 1.5K 77 88 53 48 79 69 79 

 Density at > 25K 0.21 0.00 0.00 0.00 0.00 0.23 0.37 

 Urban Density 11 14 23 20 14 13 18 

 Density (Center) 220 130 390 490 620 250 230 

 Pop Density (CBD) 9 4 7 6 1 9 11 

 Emp Density (CBD) 74 11 20 32 0 241 61 

L
an

d 
U

se
 M

ix
 

 Overall 104 79 114 101 43 93 166 

 Job / Pop Balance 0.21 0.18 0.23 0.20 0.16 0.15 0.28 

 Job Mixing 148 131 138 130 97 132 181 

 Walk Score 20 16 25 26 13 30 28 

A
ct

iv
ity

 C
en

te
ri

ng
  Overall 89 158 56 125 73 122 78 

 Pop Variation 5.2 2.2 1.2 1.0 1.4 1.6 2.1 

 Emp Variation 8 9 7 5 6 12 5 

 Density Gradient 1.4 0.6 2.5 1.5 0.6 0.8 1.0 

 Pop % (CDB) 1.7 15.7 1.4 11.9 0.3 3.4 1.6 

 Employ % (CBD) 14 64 5 66 0 47 11 

St
re

et
 A

cc
es

si
bi

lit
y  Overall 23 59 126 144 127 116 106 

 % Small Blocks 40 45 55 71 51 62 57 

 Avg Block Size 0.17 0.10 0.06 0.05 0.05 0.08 0.07 

 Avg Block Length 380 360 210 230 260 290 250 

 Intersec Density 8.8 14.1 20.1 18.6 33.3 24.6 15.9 

 % 4+ Intersections 32 18 32 38 21 29 17 

  



86 
 

Table 7.6: Sprawl Scores (including all metrics) for mid-size subregional cities 
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Sprawl Score 97 89 100 95 95 105 60 45 99 84 90 110 107 151 118 139 116 

D
ev

el
op

m
en

t D
en

si
ty

 

 Overall 82 64 84 95 76 71 38 60 76 91 115 111 104 212 104 172 143 

 Population Den 203 125 301 220 142 149 59 159 190 219 434 447 505 1699 236 744 729 

 Employ Den 160 57 136 120 84 67 24 20 108 96 256 163 203 661 88 679 291 

 Density at < 1.5K 72 80 70 60 72 67 89 80 74 59 67 65 66 43 46 38 66 

 Density at > 25K 0.41 0.00 0.00 0.28 0.30 0.44 0.09 0.00 0.38 0.24 0.83 0.49 0.56 0.00 0.56 0.00 0.00 

 Urban Density 18 15 31 19 13 16 12 16 18 17 34 34 25 74 17 50 64 

 Density (Center) 120 210 170 410 290 120 60 270 100 370 110 170 150 100 210 100 190 

 Pop Density (CBD) 28 24 1 1 16 7 1 1 30 3 20 35 18 12 32 19 34 

 Emp Density (CBD) 11 101 17 65 354 16 68 0 70 39 2250 154 30 40 172 197 69 

L
an

d 
U

se
 M

ix
 

 Overall 121 99 99 91 117 136 62 58 125 46 59 98 66 142 102 180 99 

 Job / Pop Balance 0.31 0.22 0.21 0.17 0.26 0.29 0.16 0.19 0.27 0.13 0.13 0.18 0.17 0.42 0.19 0.40 0.15 

 Job Mixing 158 137 131 127 138 163 95 92 149 73 76 123 76 155 107 185 148 

 Walk Score 20 23 26 26 29 30 19 13 30 19 27 31 26 21 37 39 27 

A
ct

iv
ity

 C
en

te
ri

ng
  Overall 114 165 70 78 132 125 158 91 110 74 100 97 142 53 79 41 70 

 Pop Variation 1.7 1.9 1.4 1.2 1.6 1.5 2.6 1.4 1.8 1.2 1.7 1.4 1.6 0.9 0.9 0.8 1.2 

 Emp Variation 6 5 4 5 5 6 11 6 7 6 9 4 4 4 8 3 9 

 Density Gradient 1.3 0.9 2.0 1.5 1.5 1.9 0.7 1.3 1.7 1.8 2.4 2.0 2.2 2.1 1.9 2.5 2.2 

 Pop % (CDB) 8.8 16.6 0.1 0.2 10.8 16.1 0.3 0.3 6.1 0.3 1.5 6.4 23.4 0.9 3.2 1.6 0.7 

 Employ % (CBD) 5 70 5 8 74 63 6 1 11 7 44 55 86 6 31 9 4 

St
re

et
 A

cc
es

si
bi

lit
y  Overall 64 42 111 116 35 78 34 31 100 129 111 115 117 185 167 130 137 

 % Small Blocks 48 48 68 67 49 68 47 41 67 73 58 61 69 76 79 65 66 

 Avg Block Size 0.08 0.07 0.04 0.05 0.14 0.10 0.08 0.09 0.06 0.03 0.03 0.03 0.03 0.02 0.02 0.04 0.02 

 Avg Block Length 270 330 220 190 330 290 400 350 260 180 200 200 190 140 210 160 160 

 Intersec Density 18.3 22.1 21.0 26.8 9.0 14.0 26.6 18.2 17.3 42.7 30.3 40.3 17.2 77.2 107.9 51.7 72.5 

 % 4+ Intersections 32 20 34 36 35 34 24 27 36 31 36 32 33 50 37 33 28 
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7.4 Analysis of Rankings 
 
An analysis of the values in Tables 7.3 through 7.6 showed that there were no 
calculation errors as numbers matched expected estimates.  In general, most scores 
make sense when thinking about the area under consideration for each scores.  Scores 
that do not immediately make sense can generally be explained with some context.  
This shows that the scores are at least somewhat representative of sprawl in those areas 
and the variation in scores shows that sprawl can indeed be measured for small cities. 
 
Although scores were determined, rankings are never perfect and there is always room 
for improvement.  Although future research might reduce this problem, these rankings 
are still rather useful for cities looking to make improvements and create more livable 
cities.   
 
7.4.1 Overall Winners and Losers Based on Factor Categories 
 
As with any score system, it is first useful to look at the winners and losers.  Each of the 
groups is broken down by winners and losers by category in Table 7.7.  Note that the 
most compact EUC in each group is Mount Pleasant, Escanaba, Manistee, and 
Newberry.  The most sprawling EUCs in each group are Marquette, Owosso, 
Greenville, and Harrison. 
 

Table 7.7: Best and worst EUCs based on factor categories and Sprawl Scores 

Category 
Mid-Size 
Regional 

Small 
Regional 

Large 
Subregional 

Mid-Size 
Subregional 

Dense Mount Pleasant Sturgis Greenville Newberry 

Mixed Marquette Coldwater Petoskey Sandusky 

Centered Traverse City Escanaba Gaylord Charlevoix 

Accessible Marquette Sturgis Hastings Newberry 

Compact Mount Pleasant Escanaba Hastings Newberry 

Sparse Marquette Hillsdale Gaylord Grayling 

Separated Adrian Cadillac Houghton Lake Iron River 

Scattered Adrian Sturgis Greenville Sandusky 

Inaccessible Adrian Big Rapids Caro Harrison 

Sprawling Adrian Hillsdale Caro Harrison 
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Observations from Table 7.7 include: 
 

 Multiple cities including Marquette, Sturgis, Gaylord, and Greenville appear in 
both the best and worst for certain factor categories underpinning the idea that 
the categories are distinct 

 Marquette outperforms Mount Pleasant in number of best categories, but suffers 
due to a very low density score which gives Mount Pleasant the best score in the 
group 

 Hastings only outperforms its peers on street accessibility, but it’s other ratings 
are all on the compact side leading to the best overall score in the group 

 Although Sandusky is very scattered, it performs well in all other areas and 
ultimately is measured to be very compact 

 Although Coldwater does well on mixed use, it suffers in all other categories 
and ultimately is measured to be more sprawling 
 

Some additional analyses could also be completed as future work.  For example, Mount 
Pleasant does well compared to the other three cities in its group, but looking at its 
performance on the individual metrics versus other groups, the city is not necessarily 
doing well overall.  Those scores which are lower compared to other groups should be 
addressed, even if they are higher than average within the peer group.  Looking 
forward, more analysis could be done to not only compare cities within their groups, but 
perhaps a multifaceted sprawl score between groups would also be useful. 
 
Another more complicated conclusion involves Newberry, which does well in all 
categories except activity centering.  Newberry is rated as the most compact, but those 
who are familiar with Newberry know that many businesses exist outside of the central 
business district along the M-28 corridor.  Because of the EUC algorithm, Newberry’s 
gap in population between M-28 and the CBD caused the M-28 section not to be 
selected as part of the EUC.  This does severely skew the results and should be noted by 
Newberry officials as well as peer cities.  Although this is clearly an issue that needs to 
be addressed in subsequent studies, the scores still hold merit.  For instance, when 
reviewing a high score for Newberry, careful attention should be paid to whether or not 
one could assume that score would change significantly based on updated EUC 
boundaries.  For this reason, the EUC boundaries are placed on the Sprawl Scorecards. 
 
In addition, a Sprawl Score less than 100 does not necessarily mean that the city is 
suffering from negative effects of sprawl, it simply means that there are more areas 
where improvement is needed than not.  Cities should interpret the data by narrowing 
down to the metrics that are causing the negative scores.  All cities have room for 
improvement, as not all cities have positive scores for every metric.  The only time a 
city should be completely alarmed is when all of their four factor category scores are 
negative. 
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An example Sprawl Scorecard is shown below in Figure 7.2 and Sprawl Scorecards for 
each of the pilot cities are included in Appendix G.  The street map in Figure 7.2 and 
the figures in Appendix G is sourced from ESRI’s World Street Map dataset which is 
available for academic use [112].  Population numbers are from the 2010 Census [7].  
The rest of the data in the figures were compiled from the datasets used to derive the 
Sprawl scores [79,101,102,105,106]. 
 
On the individual Sprawl Scorecards, the overall Sprawl Score as well as the four factor 
category scores are listed at the top.  All values on the sheet are color-coded, with dark 
red representing significant sprawl to dark green representing very compact patterns.  
To determine the precise color for the Sprawl Score and factor category scores, 
standardized residual scores are used.  For the rest of the 21 raw metric scores, z-scores 
are used to determine the precise color. 
 
Peer cities are also listed on the scorecard for easier comparison.  Below the summary 
are the four factor categories broken into the total of 21 metrics used for the scores.  
Each metric shows the overall raw score, the number of standard deviations away from 
the mean score in the group, the percentile rank of the city for that metric, and the best 
and worst performers among peer group members for that metric with their 
corresponding raw score. 
 
From these color-coded Sprawl Scorecards, cities and regions can get a quick idea of 
where their city is doing well and where the city is suffering from negative effects of 
sprawl.  These ratings can be compared using the summary scoresheet in Tables 7.3 
through 7.6 or through a comparison with the Sprawl Scorecards of peer communities in 
Appendix G. 
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Figure 7.2: Example Sprawl Scorecard for Houghton, Michigan 
Source for map is ESRI’s World Street Map dataset [112] 

 
7.4.2 How Communities Should Use the Sprawl Scorecard 
 
To show how communities can use the Sprawl Scorecards to help in planning, an 
example study for Houghton is presented.  Broad analyses of factor category scores and 
more pointed analyses of specific metrics within cities can both be very useful.  
Looking at the Houghton Sprawl Scorecard, there are some findings worthy of 
consideration. 
 
Although Houghton has an overall negative development density score, this is primarily 
due to low population and employment density.  Looking at the EUC boundaries and 
thinking about the large area of influence and small population of the community, this is 
not inherently a problem and probably does not need to be addressed.  Especially when 
directly comparing this to all of the positive centering scores, which shows that 
Houghton has a vibrant and functional CBD.  Anyone who lives within the boundaries 
of the Houghton EUC could tell you that the downtown is vibrant, and it is good to see 
that the centering numbers reflect this. 
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Even with the relative high score for activity centering however, there is still room for 
improvement for Houghton if the city wants an even more vibrant downtown.  The two 
lowest scores in the category are percentage of housing and employment in the 
downtown.  Upon thinking about the population and employment in the region, one 
could see that this is likely because of all of the employment on the hill outside 
downtown south on M-26 towards South Range.  To improve this, Houghton could 
either incentivize more downtown living and working, or disincentivize building out the 
hill, or both.  The Sprawl Score does not seek to tell cities like Houghton what to do, 
but is meant to be a tool to begin the process of narrowing down the question set to be 
asked and beginning to look at possible ways forward. 
 
One final piece of information regarding the Houghton case study that cannot be 
ignored is Houghton’s poor scores on land use mix.  A planner’s first question here 
should be, what specific metrics are causing this?  The second question should then be, 
why is this the case and is this actually a problem?  And finally if they deem this a 
problem, what could be done, if anything, to address the problem?  These are not easy 
questions to answer, but the score should help supplement their knowledge of the area 
and draw attention to the issue. 
 
To imagine the types of conversations that could occur, consider the folloing 
hypothetical scenario.  Perhaps the main reason job mixing is so poor in Houghton is 
found to be the fact that all education jobs are a mile to the east at Michigan Tech.  
Perhaps this is not a problem because that is considered walkable.  They could address 
the problem directly by adding more businesses along the corridor and growing the 
CBD.  Or perhaps they could help address the problem indirectly by adding a fixed bus 
line between the school and downtown, which might not change the score, but would 
address the issue and make for a more livable city. 
 
These types of conversations can be started based upon a quick analysis of the Sprawl 
Scorecards by local and regional officials.  This shows the relevance of the scores and 
how the score can help small cities draw direct conclusions and make improvements to 
their cities. 
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Chapter 8: Conclusions and Recommendations 
 
Conclusions are presented in Section 8.1, including a review of the results and a 
discussion of the answers to the original research questions and those that still remain.  
Section 8.2 presents a discussion of how the Sprawl Score can be used by city planners 
and regional planning agencies in order to begin adjusting their policies to mitigate 
sprawl in their communities.  Finally, Section 8.3 discusses future research 
opportunities for advancing this work. 
 
8.1 Conclusions 
 
The goal of this study was to develop a method for measuring sprawl using a case study 
of small cities in Michigan.  A scoring mechanism was developed and results were 
presented for the 42 small cities in the study.  For each city, an overall Sprawl Score, 
four factor category scores for development density, land use mix, activity centering, 
and street accessibility, as well as 21 metric sub-scores were calculated.  Although 
many metrics and algorithms were presented throughout the literature review, Ewing et 
al.’s 2014 list of metrics used for large cities was determined to be most applicable and 
was used for this research. 
 
8.1.1 Research Question Summary 
 
A primary research question and three additional questions were presented in Chapter 1.  
This section summarizes the findings of this research with respect to addressing these 
questions. 
 
What metrics are best for quantifying sprawl?  
 
Although the original goal of this research was to determine the best metrics to quantify 
sprawl, this objective was not fully reached although progress was made.  The metrics 
selected for use were those vetted by the Ewing et al.’s 2014 scoring mechanism, which 
were released after this research was already underway.  These metrics were referenced 
by the authors to be their best summarizing scores at the time of publication.  Therefore, 
these were chosen for the analysis in this work. 
 
The calculated scores do begin to show what elements are more important and how 
these elements interact to measure sprawl.  Especially at the smaller population of the 
pilot cities, it becomes clear in comparison why certain metrics change based on small 
developmental differences in the cities.  For instance, overall population density does 
not seem to be as important as percentage density within the CBD, based on the 
principal components analysis.  Some metrics could be removed from the score in 
future work. 
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What measures have been used consistently to measure sprawl? 
 
This question was addressed and summarized in the literature review.  Although density 
seems to be the most common measure, the next five most used are accessibility, 
centrality, continuity, porosity, and mixed use. 
 
It should also be noted here that researches have chosen a variety of metrics to access 
each of the most used measures.  Although most researchers have been using census or 
similar collected data, many researches have begun incorporating remote sensing and 
digital image analysis techniques to assess these measures. 
 
Does sprawl exist at small scales? 
 
With the differences in scores and the conclusions drawn from these values, it is clear 
that sprawl not only exists at small scales, but it can be identified and measured.  
Although the effects may not be as damning for small cities as large cities, small cities 
have noticeable, measureable sprawl.  In fact, with the sensitivity to city size selection, 
there is a compelling argument that sprawl is easier to measure at small scales. 
 
How do various measures of sprawl compare for the pilot cities of this study? 
 
The answer to this question is summarized in Table 7.1. and Sprawl Scorecards show 
comparisons for 42 cities in the pilot group. 
 
8.1.2 Other Conclusions 
 
The geographical area selected around the core of the city is critical to many of the 
scores and the results show how sensitive the metrics are to city size selection.  For 
larger cities, this is not as noticeable, but for smaller cities, the metrics can be skewed 
significantly by which blocks are included or not in the city definition. 
 
This is actually a positive finding, as the fact that sprawl metrics in smaller cities are 
very sensitive to the area means that sprawl measured in smaller cities is easier to 
distinguish than for larger cities.  As sprawl is easier to distinguish, small cities may be 
the best places to focus further research. 
 
8.2 How the Sprawl Score can be used 
 
The Sprawl Scorecards for each community along with the overall results could be sent 
to the mayor’s office of each city along with an executive summary of this study.  The 
aim is to help planning professionals and elected representatives better understand 
sprawl and focus their efforts to affect positive change for their community. 
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Following are a list of ideas for utilizing the Sprawl Score for those involved with city 
planning. 
 

 Review the Sprawl Scorecard and understand the Sprawl Score, the four 
component scores, and the 21 metrics mean and how they are measured 

 Review the best and the worst scores and compare these scores to other cities in 
the size range and across the study 

 Host a brainstorming charrette with important players in the city’s planning and 
development (e.g., local planners, government officials, developers, business 
leaders, and community leaders)  

o In this session, ideas should be drawn up as to why the city is the best 
and worse in the given categories 

o Acknowledge problem areas as all cities will have some problems to 
address; this is okay as the first step to solving problems is admitting 
they are problems 

 Use session results to frame sprawl-related issues and pinpoint ideas for change 
o Take pride in areas with high scores 
o Begin addressing problem areas using specific programs 

 Subsequent work and meetings should select specific metrics and relevant, 
realistic objectives to fix problem areas or highlight areas where score are strong 

o Remember that not all problems can be fixed at once 
o Any work in this regard will help make the city a better place for all 

residents 

8.3 Recommendations for Future Research 
 
This research marks the beginning of examining sprawl in small cities and using this as 
a way to identify the components of sprawl.   
 
Future research should branch from and build off this foundation ultimately leading to 
the development of more precise measures for larger cities with the end goal of leading 
to a consensus in measuring sprawl.  Consensus will provide policy makers and 
planners a better understanding of sprawl and will enable the pursuit of more logical 
development programs for 21st century cities. 
 
There are several ways that this research could be extended, and a few directions are 
discussed in this section.  Many of these items could be the focus future research. 
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8.3.1 Perform In-Depth Analysis of Sprawl Score for Pilot Cities 
 
Although the Sprawl Score is best used as a practical tool for city planners, future 
research could be done by running an in-depth analysis of all pilot cities and component 
scores.  Drawing more conclusions from this data could help communities as well as 
help to focus further research. 
 
8.3.2 Extend the Scope of the Sprawl Score 
 
This study should be extended to more cities around the world to help others to begin 
addressing their sprawl problems as well as to help further the research in identifying 
the best set of sprawl component metrics. 
 
The Sprawl Score could be extended to EUCs in other states across the United States.  
With some minor changes to the data collection, this could be done relatively easily and 
would provide a much broader picture of the quality of these metrics. 
 
The Sprawl Score could also be extended to all EUAs as well to see how effective it is 
with larger cities and to validate the metrics.  Metrics for all EUCs and EUAs in 
Michigan have actually already been calculated along with the 42 pilot cities in this 
study, so there is already precedence and support for extending these algorithms to other 
EUAs. 
 
Yet another possibility would be extending the Sprawl Score by focusing on different 
sized urban areas.  For instance, scores could be looked at for core based statistical 
areas (CBSAs) or perhaps the U.S. Bureau of Economic Analysis’s old Economic 
Areas.  Smaller scales could be used as well including urban areas or even cities 
themselves, and perhaps even tracts or block groups within cities. 
 
Finally, a culmination of these projects would be to compare metrics for cities using 
different geographical area units to draw conclusions about sprawl within the city.  This 
could offer interesting insights into the location as well as causes and effects of sprawl. 
 
8.3.3 Run Senstativity Testing to Improve Geographical Area Selection 
 
Future research should focus on sensitivity testing for even better city size selection.  
Size of the area of influence could start at the size of the Central Business District and 
increase until the appropriate size is determined. 
 
Another method would be to do senativity testing in tandem with calculating metrics.  
This could be completed by looking at each individual metric and varying the size of 
the city scope block-by-block to look at effects on the metric score. 
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Either of these studies would not only help narrow down metrics, but they would help in 
understanding exactly what types of city elements improve or worsen scores.  Through 
careful selection and analysis of area, not only will sprawl measures be more precise, 
but it will be possible to examine exactly what dynamics cause the metrics to change. 
 
8.3.4 Reduce the Number of Metrics 
 
With the components measured and presented in this research, the data can be mined to 
remove redundant metrics and list the most important metrics in identifying sprawl.  
Studies of differing scopes and the improvement of EUC and CBD algorithms will also 
support this endeavor. 
 
Another route would be to begin by experimenting with more metrics, comparing each 
metric across cities in the research area and narrowing to only the most significant 
metrics. 
 
Although this project focused on a primary group of 21 metrics, future research should 
focus on paring down the number until a fundamental grouping is achieved.  The goal 
should be to reduce the number of metrics to as few as possible to simplify the 
modeling of the sprawl system.  A simpler system will make the measure more 
transparent and more usable.  With a simplified system, true scientific experiments, 
with only one independent variable changing, can be performed.  That being said, 
enough variables should still be used to make sure the model is robust and effective. 
 
8.3.5 Improve Tools and Extend Tools to Other Areas 
 
The EUC selection algorithm, although a good start, could be improved.  Some cities 
had too much area selected (e.g., Houghton) and some had too little (e.g., Newberry), 
which skewed some metric calculations.  An improved algorithm will help make for 
more precise, meaningful scores 
 
Central Business Districts are also areas of extreme importance.  In developing the 
algorithms for the Sprawl Score, there were few examples of selecting CBD center 
points or polygons.  The CBD center point creation in this research was a manual 
process and the polygon creation was not complete.  CBD analysis plays an important 
role in the sprawl and other urban studies. 
 
The Walk Score location tool has many applications beyond just sprawl measurements 
to allow for the quick amalgamation of Walk Scores.  This algorithm could be used by 
cities and regions looking to assess walkability, real estate agents to collect walkability 
for their current offerings, businesses to assess walkability of all of their locations, as 
well as researchers utilizing the scores in mass for any reason. 
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8.3.6 Address Other Research Realms of Sprawl 
 
Although this research primarily focused on determining the components of sprawl, the 
research also overlaps with better understanding the causes and consequences of sprawl.  
Initially, these metrics should also be applied to studies of causes and consequences to 
gauge their effectiveness. 
 
As components of sprawl usually occur for a specific reason, these reasons can be 
addressed to determine the root causes of sprawl.  Small city research is where reasons 
will be much clearer to identify as the links between causes, components, and 
consequenses are less convoluted. 
 
These numbers could also be used as part of the growing body of research on the 
consequences of sprawl, as only larger cities have been examined thus far.  Although 
consequences may not be as severe for these smaller cities, results would still be 
intriguing.  Research in both of these areas could also help support research on larger 
cities. 
 
8.3.7 Perform Historical Comparisons with Sprawl Score 
 
Although this research focused primarily on the present time period, many researchers 
have begun to compare sprawl across time as a metric for sprawl.  These metrics should 
be calculated for each of the past three census periods and compared. 
 
Also, understanding the historical zoning and master plans will also shed light on the 
sprawl development in the city.  These components should be considered in any 
historical analysis of sprawl. 
 
Understanding how sprawl organically grew in each city could show smaller cities how 
best to grow or even if growth is the best option. 
 
8.3.8 Make the Sprawl Score more Accessible 
 
A user-friendly Sprawl Score web interface could be developed.  The Sprawl Score 
could be used by the general public as well as professionals in a manner similar to Walk 
Score.  Although the Walk Score algorithm is well accepted, the most successful part of 
the Walk Score is the accessibility of the score to the public through the website.  A 
website is useful for increasing the prominence of Sprawl Score. 
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8.3.9 Analyze Inter-Urban Influence 
 
Cities do not exist in a vacuum.  Just because a person uses a city for a certain purpose 
does not mean the person uses the city for all purposes.  In other words, cities influence 
other cities, and this influence needs to be understood in order to best interpret the 
results of a Sprawl Score as well as to improve the Sprawl Score. 
 
All cities in this study have unique issues.  For instance, Sault Sainte Marie is certainly 
influenced by the larger population in Sault Sainte Marie, Canada.  Some urban clusters 
have multiple cores, such as Houghton’s separate, but related (and adjacent) core of 
Hancock.  Others, such as Alma and Mount Pleasant, share a border.  And many of the 
UCs are influenced by larger UAs due to proximity. 
 
These issues could be analyzed to help better understand a given city, to better 
understand the metrics, and to improve the metrics. 
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Appendix B: EUC_Creator.py – Overview Full Python Script 
 
B.1 Overview for Programmers 
 
This section is meant to be an addendum to Chapter 5, Section 2 for those well versed in 
programming.  The overall algorithm for determining EUCs seems relatively 
straightforward, but there are many points where the bits and pieces of this algorithm 
becomes tricky to program.  Hence, this section is provided to make it easier to replicate 
and extend this program for other applications. 
 
This section is intended to guide those well versed in computer programming to be able 
to use and modify the EUC creation Python script for their work.  To begin, it is 
recommended that Section 5.2 is read first to understand the basic overview of the 
software.  This section will cover some of the nuances that were not covered in that 
section. 
 
In order to execute this script, a copy of ESRI ArcGIS version 10.0 or higher with 
Python 2.6 or higher is recommended.  When the script is executed, many support 
shapefiles are created and the script will take between a few hours and a couple of days 
to execute, depending on processor speed.  It is recommended that this program is run 
on a workstation with at least 1GB of memory and 5GB of free disk drive space.  In 
order to run the package, the following files must be in the current directory: 
euc_creator.py, MI_UAC_2010.shp, ruca2010Michigan.csv, tl_2010_26_bg10.shp, and 
tl_2010_26_tabblock10.shp. 
 
The script utilizes the extensive ArcPy library as well as the csv library (for dealing 
with RUCA file processing).  The script has two built-in functions, delete_file and 
create_layer.  Delete_file works for both layers and shapefiles, checking to see if the 
file exists, and if so deleting the file.  Create_layer first deletes the layer using 
delete_file and then makes a new layer.  Both functions are used extensively, as many 
shapefiles and layers are created and deleted throughout the program. 
 
It should also be noted that a fair amount of SQL statements are used throughout the 
script to perform complex selections or removals from selections.  Although a working 
knowledge of SQL will help, advanced ArcGIS users should be familiar with the syntax 
of these commands. 
 
Comments are included throughout the script to help explain the functionality of the 
steps in the program.  Block comments separate the program into sections and short 
comments discuss the functionality of individual lines of code. 
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Although many of the comments are self-explanatory, some of the broader concepts 
will be discussed in the following subsections including reasoning and methodology of 
the loops in the program, the donut addition algorithm, and the RUCA algorithm.  The 
final subsection will address some of the issues that occurred as the script was being 
developed to help achieve a better understanding and appreciation for why certain 
pieces of the algorithm were developed. 
 
B.1.1 Reasoning and Methodology of Loops in Algorithm 
 
There are a total of 10 for loops and one while loops in the script.  Each is described 
briefly below (tab spacing shows level of loop in the script): 
 

 for loop 1 – Main loop (1st UAC loop): This loops through each UAC in order 
of decreasing population density, each time creating a new EUC, appending 
appropriate block groups and blocks, and adding it to the EUC shapefile. 

o for loop 2 – 2nd UAC loop: This loops through each UAC for each run 
of the main loop in order to remove block groups that overlap any other 
UAC (i.e., no block group that intersects more than one UAC will be 
fully included in and EUC). 

o for loop 3 – 1st EUC loop: This loops through EUCs created in prior 
runs of loop 1 in order to remove block groups that overlap any larger 
EUC (i.e., larger EUCs get preference on block groups that could 
otherwise be included in multiple EUCs). 

o while loop – Block while loop: Each run through this loop will add on 
additional outlying blocks to the current EUC.  This loop will run 
indefinitely, until there are no more outlying blocks that meet the criteria 
for addition to the EUC.  The while flag will be set to 1 to stop the loop 
only when no blocks are available. 

 for loop 4 – Block for loop: This loops through each outlying 
block to the current boundaries of the EUC (these are working 
boundaries which are growing slowly until the EUC is fully 
created).  Each run through the loop determines if the block 
should be included or not in the EUC. 

 for loop 5: RUCA tract loop: This loops through each 
RUCA tract in the RUCA file, to see if the current block 
is in the RUCA tract. 

o for loop 6: RUCA code loop: This loops through 
each RUCA code to see if the current block’s tract 
is acceptable or not. 

 for loop 7: 3rd UAC loop: This loops through each UAC in order 
to remove blocks that overlap any other UAC.  This process is 
very similar to the 2nd UAC loop except it is checking blocks 
instead of block groups 
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 for loop 8: 2nd EUC loop: This loops through EUCs created in 
prior runs of loop 1 in order to remove blocks that overlap any 
larger EUC.  This process is very similar to the 1st EUC loop 
except it is checking blocks instead of block groups. 

o for loop 9: 1st “dummy” loop: This loop actually doesn’t really loop at 
all (it loops through one value, the current EUC being worked on).  The 
reason for this is that the EUC needs to be named and this seemed like 
the easiest method to add the name to the EUC.  This may be made 
simpler in a future version of the script. 

o for loop 10: 2nd “dummy” loop: This loop is identical to loop 9, except 
it is executed in the case that the EUC file is already created (everything 
but the first run of loop 1) 

 
B.1.2 Donut Addition Algorithm 
 
Throughout the algorithm that adds block groups and blocks to each EUC, there is the 
chance that “donuts” will be created.  A donut is an area where block groups or blocks 
were added to the EUC that ended up fully enclosing another block group or block.  For 
continuity purposes, these need to be added into the EUC.  There are two times where 
the current EUC is checked for donuts. 
 
The donut algorithm works similarly in each case it is used.  First, a union operation is 
performed on the current EUC with the “NO_GAPS” option selected, which assigns an 
FID of -1 to all gap (i.e., donut) block groups (and blocks, depending on the algorithm).  
All of these gap block groups (and blocks) are selected and any with zero land area are 
removed from the selection.  The selected block groups (and blocks) are then appended 
to the current EUC shapefile. 
 
B.1.3 RUCA Algorithm 
 
The purpose of the RUCA algorithm is to verify that a block is indeed within a census 
tract that has at least 30 percent of workers commuting to the UAC.  Ideally, this 
information would be available at the block level, but the only dataset that is maintained 
with this information is the RUCA dataset from the United States Department of 
Agriculture’s Economic Research Service.   
 
The complete definition of RUCA codes from the USDA-ERS website is: 
 

The rural-urban commuting area (RUCA) codes classify U.S. census tracts using 
measures of population density, urbanization, and daily commuting.  The most 
recent RUCA codes are based on data from the 2010 decennial census and the 
2006-10 American Community Survey.  The classification contains two levels.  
Whole numbers (1-10) delineate metropolitan, micropolitan, small town, and 
rural commuting areas based on the size and direction of the primary (largest) 
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commuting flows.  These 10 codes are further subdivided based on secondary 
commuting flows, providing flexibility in combining levels to meet varying 
definitional needs and preferences [99]. 

 
A table of RUCA codes used in the 2010 RUCA file are included above in Table 5.3.  
Further documentation can be obtained at the USDA-ERS website [100]. 
 
The RUCA algorithm is executed for each set of new outlying blocks being checked to 
be added to the EUC (during the while loop).  For loop 4 loops through every outlying 
block in the current iteration of the while loop and for each block, loops through the 
rows in the RUCA table (loop 5).  Each row in the RUCA table includes one census 
tract along with its RUCA code.  The RUCA file is a comma-separated value (CSV) 
file, with the following columns: 

 State-County FIPS Code 
 State 
 County 
 State-County-Tract FIPS Code 
 Primary RUCA Code 2010 
 Secondary RUCA Code, 2010 
 Tract Population, 2010 
 Land Area (square miles), 2010 
 Population Density (per square mile), 2010  

 
Only columns 3 and 5 (starting at a count of 0) are stored, which are the Tract FIPS 
Code and the Secondary RUCA Code.  The Tract FIPS Code for the current row in the 
RUCA table is compared to the Tract FIPS Code of the current block in question.  Once 
the loop locates a match (the correct row in the table is found), loop 6 is entered which 
loops through all acceptable RUCA codes for the given type of UA (UZA, large UC, or 
small UC).  If the stored secondary RUCA code matches an acceptable code, then the 
RUCA flag is set to 1, meaning that the block is acceptable.  If after execution of loop 5 
the RUCA flag was never raised, the block is removed from consideration.  Otherwise, 
the block is accepted. 
 
B.1.4 Issues and Fixes 
 
Throughout the development of the script, many errors were encountered and fixed.  
Some of these fixes involved convoluting the program, which is why they are discussed 
here to aid the user in understanding the algorithm. 
 

 Many EUCs contained blocks over water, specifically for Michigan being one of 
the Great Lakes.  Clearly water is not a place where most people will decide to 
build (except for extreme circumstances a la Dubai’s Palm Islands or Mumbai’s 
filling in of islands to create one mega-land mass).  To fix this problem, there 
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are many places in the algorithm where block groups and blocks with 0 land 
area are removed from the selection before sets are added to the EUC. 

 There were situations where EUCs would overlap each other, which is clearly 
not desirable.  These situations are complicated, as these are times where the 
OMB would combine sections into CSAs, and they will offer limitations in 
developing the sprawl score which will be discussed in that chapter.  However, 
at this point, overlaps should be removed.  To do this, a few checks throughout 
the script to eliminate overlaps.  Specifically, loops 2, 3, 7, and 8 were created 
for this purpose. 

 Some situations arose where certain blocks were not being added when they 
should have been (they met the criteria for addition).  This was due to two 
distinct problems.  The first was simply an error in the algorithm where block 
groups were being checked when block checks were called for.  The second was 
more critical.  Datasets from different years were being used (specifically 2010 
for those datasets only updated on a decennial basis and 2013 for datasets 
updated on a yearly basis).  To fix this problem, only datasets from 2010 were 
used, even if updated datasets were available.  This is important to note when 
extending this algorithm.  2010 datasets should be used at least until all the 2020 
datasets are released.  Note that RUCA datasets seem to be the latest released, as 
the 2010 RUCA dataset was released December 2013. 

 For some EUCs, not all of the UAC was included.  This was not acceptable, as 
the smallest a EUC can be is the size of the UAC that it contains.  This happened 
because some block groups were removed from consideration because they were 
either included in a bordering EUC or a bordering UAC.  To fix this problem, 
code was added to add back in any blocks missing from the EUC after all block 
groups were processed and before the block while loop was executed.  This 
section of code is found under the block comment “Add UAC intersecting 
blocks to the current EUC.” 

 An issue existed where block groups or blocks on the border of a EUC were not 
selected when they should have been if the borders exactly lined up, but did not 
cross.  To fix this for block groups, search distances of -1 feet were added to 
block group intersection commands.  For block selection commands, a series of 
a “boundary touches” location selection followed by a “within” location removal 
command were executed. 
 

As discussed earlier, some block groups that were added resulted in unreasonably large 
EUCs, especially in more rural areas such as the Upper Peninsula.  To fix this problem, 
a check was added to make sure that block groups over 5x the size of the original UAC 
area were not added to the EUC. 
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B.2 EUC_Creator.py – Full Python Script 
 
###############################EUC_Creator.py################################# 
##This program creates a shapefile including all Extended Urban Clusters for## 
##urban areas in Michigan.  This uses a modified approach to                ## 
##Galster, et. al's "Which Land Should be Considered?"                      ## 
##  1. The EUC consists of the Census Bureau defined urban cluster boundary ## 
##  2. Boundaries are modified to follow census block group boundaries      ## 
##  3. "Outlying" blocks are added that                                     ## 
##    3a. contain 60 or more dwelling units per sq. mile                    ## 
##    3b. and are located in a census tract from which at least             ## 
##        30 percent of the workers commute to the UC                       ## 
############################################################################## 
 
#Import Libraries 
import arcpy 
import csv 
 
######################### 
##Function Declarations## 
######################### 
 
def delete_file(file,type): 
    '''This function checks if a file exists and if so, deletes the file''' 
    if arcpy.Exists(file) == 1: 
        arcpy.Delete_management(file,type) 
    return 
 
def create_layer(fromfile,newfile): 
    '''This function deletes an old layer and makes a new layer''' 
    delete_file(newfile,"LAYER") 
    arcpy.MakeFeatureLayer_management(fromfile,newfile) 
    return 
 
################### 
##Initializations## 
################### 
 
#Initialize folder and file locations 
arcpy.env.workspace = "H:/PHD/EUC_Creator/" 
bg_file = "tl_2010_26_bg10.shp" 
blk_file = "tl_2010_26_tabblock10.shp" 
uac_file = "MI_UAC_2010.shp" 
ruca_file = "H:/PHD/EUC_Creator/ruca2010Michigan.csv" 
 
#Initialize names that will be used throughout the program 
geoid_field = "GEOID10" #Used in block layer 
name_field = "NAME10" #Used in the UAC layer 
area_field = "ALAND10" #Used in the UAC layer 
pop_field = "POP10" #Used in the UAC layer 
 
#Initialize constants that will be used throughout the program 
m2_to_mi2 = pow(100,2)/pow(2.54,2)/pow(12,2)/pow(5280,2) 
ruca_accept_UA = ['1.0','1.1','2.0','2.1','4.1','5.1','7.1','8.1','10.1'] 
ruca_accept_UCL = ['4.0','5.0','7.2','8.2','10.2'] 
ruca_accept_UCS = ['7.0','8.0','10.3'] 
 
############# 
##Main Loop## 
############# 
 
#Initialize loop counter for main loop 
loop_count = 1; 
 
#Create a cursor to go through each UAC sorted by population in decending order 
create_layer(uac_file,"uac_lyr") 
uac_cursor = arcpy.SearchCursor("uac_lyr","","","","POP10 D") 
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#Loop through each UAC to create each EUC 
for current_UAC in uac_cursor: 
    
    #Initializations for current iteration of loop 
    current_UAC_name = current_UAC.getValue(name_field) 
    city_sql = ' "NAME10" = \'%s\' '%(current_UAC_name) #Used w/ bg layer 
    current_UAC_size = current_UAC.getValue(area_field) 
    bg_cutoff_size = current_UAC_size * 5 #Size limit for including bgs - 5x 
    size_sql = ' "ALAND10" > %s '%(bg_cutoff_size) 
    current_UAC_pop = current_UAC.getValue(pop_field) 
    while_flag = 0 #Flag variable for exiting block while loop 
     
    #Make new layers for block group and block files 
    create_layer(bg_file,"bg_lyr") 
    create_layer(blk_file,"blk_lyr") 
         
    ########################################################## 
    ##Select block groups from UAC to include in current EUC## 
    ########################################################## 
     
    #Select the current UAC from the UAC file 
    arcpy.SelectLayerByAttribute_management("uac_lyr","NEW_SELECTION",city_sql) 
     
    #Perform an intersection to include all BGs that intersect the UC, 
    #-1 will make sure not to include ones that just have a coincident line 
    arcpy.SelectLayerByLocation_management("bg_lyr","INTERSECT","uac_lyr", 
        selection_type="NEW_SELECTION",search_distance="-1 Feet") 
     
    #Remove any block groups that have no land area 
    arcpy.SelectLayerByAttribute_management("bg_lyr","REMOVE_FROM_SELECTION", 
        ' "ALAND10" = 0') 
 
    #Remove block groups that at larger than cutoff amount of original UAC area 
    arcpy.SelectLayerByAttribute_management("bg_lyr","REMOVE_FROM_SELECTION", 
        size_sql) 
     
    #Create a cursor to go through each UAC a second time 
    create_layer(uac_file,"UAC_lyr2") 
    uac_cursor_2 = arcpy.SearchCursor("UAC_lyr2") 
 
    #Loop through each UAC and remove block groups that are within any other UAC 
    for current_UAC_2 in uac_cursor_2: 
 
        #Store current inner loop UAC name and FID 
        current_UAC_2_name = current_UAC_2.getValue(name_field) 
        current_UAC_2_fid = current_UAC_2.getValue("FID") 
 
        if current_UAC_name <> current_UAC_2_name: 
                         
            #Make temporary UAC layer 
            create_layer(uac_file,"UAC_lyr_temp") 
 
            #Select only the current inner loop UAC from the file 
            fid_uac2_sql = ' "FID" = %s'%(current_UAC_2_fid) 
            arcpy.SelectLayerByAttribute_management("UAC_lyr_temp", 
                "NEW_SELECTION",fid_uac2_sql) 
 
            #Select all block groups that intersect the current inner loop UAC 
            #and make a layer 
            arcpy.Intersect_analysis(["bg_lyr","UAC_lyr_temp"], 
                "UAC_BG_intersect","ALL","-1 FEET","INPUT") 
            arcpy.MakeFeatureLayer_management("UAC_BG_intersect.shp", 
                "UAC_BG_intersect_lyr") 
 
            #Remove all intersecting block groups from the current outer loop 
            #bg selection 
            arcpy.SelectLayerByLocation_management("bg_lyr","CONTAINS", 
                "UAC_BG_intersect_lyr",selection_type="REMOVE_FROM_SELECTION") 
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            #Clean up temporary shapefiles and layers for inner loop 
            delete_file("UAC_BG_intersect.shp","SHAPEFILE") 
            delete_file("UAC_BG_intersect_lyr","LAYER") 
            delete_file("UAC_lyr_temp","LAYER") 
     
    #Only run next loop if EUC file has been created 
    #(iteration 2 or beyond of main loop) 
    if loop_count <> 1: 
         
        #Create a new EUC layer 
        create_layer("EUC_All.shp","EUC_All_lyr") 
 
        #Create a cursor to go through each EUC 
        euc_cursor = arcpy.SearchCursor("EUC_All_lyr") 
 
        #Loop through each EUC and remove bgs that are within any other EUC 
        for current_EUC in euc_cursor: 
 
            #Store current inner loop UAC FID 
            current_EUC_fid = current_EUC.getValue("FID") 
             
            #Create a temporary EUC layer 
            create_layer("EUC_All.shp","EUC_All_lyr_temp") 
 
            #Select only the current inner loop EUC from the file 
            fid_euc_sql = ' "FID" = %s'%(current_EUC_fid) 
            arcpy.SelectLayerByAttribute_management("EUC_All_lyr_temp", 
                "NEW_SELECTION",fid_euc_sql) 
             
            #Select all block groups that intersect the current inner loop EUC 
            #and make a layer 
            arcpy.Intersect_analysis(["bg_lyr","EUC_All_lyr_temp"], 
                "EUC_BG_intersect","ALL","-1 FEET","INPUT") 
            arcpy.MakeFeatureLayer_management("EUC_BG_intersect.shp", 
                "EUC_BG_intersect_lyr") 
 
            #Remove all intersecting bgs from current outer loop bg selection 
            arcpy.SelectLayerByLocation_management("bg_lyr","CONTAINS", 
                "EUC_BG_intersect_lyr",selection_type="REMOVE_FROM_SELECTION") 
 
            #Clean up temporary shapefiles and layers for inner loop 
            delete_file("EUC_BG_intersect.shp","SHAPEFILE") 
            delete_file("EUC_BG_intersect_lyr","LAYER") 
            delete_file("EUC_All_lyr_temp","LAYER") 
 
    #Create an empty current EUC temp file and append all selected block groups 
    arcpy.Select_analysis("blk_lyr","current_EUC_temp",' "FID" = -1 ') 
    arcpy.Append_management("bg_lyr","current_EUC_temp.shp","NO_TEST") 
 
    ######################################################################## 
    ##Add "donut" block groups to the current EUC - completes BG selection## 
    ######################################################################## 
    #An example is a block group that is surrounded by selected block groups 
    #that is not yet included in the EUC... it should be for continuity 
     
    #Select all block groups that border the current set and make this a layer 
    #The union function sets FIDs of all gap block groups to -1 
    arcpy.Union_analysis("current_EUC_temp.shp","bg_donuts",gaps="NO_GAPS") 
    create_layer("bg_donuts.shp","bg_donuts_lyr") 
 
    #Select all gap block groups from the donut layer 
    arcpy.SelectLayerByAttribute_management("bg_donuts_lyr","NEW_SELECTION", 
        ' "FID_curren" = -1 ') 
 
    #Select all gap block groups from the block group layer 
    arcpy.SelectLayerByLocation_management("bg_lyr","WITHIN","bg_donuts_lyr", 
        selection_type="NEW_SELECTION") 
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    #Remove any block groups that have no area 
    arcpy.SelectLayerByAttribute_management("bg_lyr","REMOVE_FROM_SELECTION", 
        ' "ALAND10" = 0') 
 
    #Append gap block groups to current EUC temp file 
    arcpy.Append_management("bg_lyr","current_EUC_temp.shp","NO_TEST") 
 
    ################################################### 
    ##Add UAC intersecting blocks to the current EUC ## 
    ################################################### 
    #Would occur if BG was removed due to intersection with another existing EUC 
 
    #Dissolve current EUC temp file and create layer for dissolved feature 
    arcpy.Dissolve_management("current_EUC_temp.shp","current_EUC_temp_diss") 
    create_layer("current_EUC_temp_diss.shp","current_EUC_temp_diss_lyr") 
 
    #Select only the current UAC from the UAC file 
    arcpy.SelectLayerByAttribute_management("uac_lyr","NEW_SELECTION",city_sql) 
 
    #Select all blocks within current UAC and remove blocks within current EUC 
    arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN","uac_lyr", 
        selection_type="NEW_SELECTION") 
    arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
        "current_EUC_temp_diss_lyr",selection_type="REMOVE_FROM_SELECTION") 
 
    #Append all remaining blocks to the current EUC 
    arcpy.Append_management("blk_lyr","current_EUC_temp.shp","NO_TEST") 
 
    #Note: The following only works for tabblock files if the file has 
    #housing and population prejoined 
 
    ########################################### 
    ##Add outlying blocks to the current EUC ## 
    ########################################### 
     
    #While there are still blocks to add, run through procedure to add blocks 
    while while_flag == 0: 
 
        ##################################################################### 
        ##Select outlying blocks that contain 60 or more dwellings per mile## 
        ##################################################################### 
 
        #Dissolve current EUC temp file and create layer for dissolved feature 
        delete_file("current_EUC_temp_diss.shp","SHAPEFILE") 
        arcpy.Dissolve_management("current_EUC_temp.shp", 
            "current_EUC_temp_diss") 
        create_layer("current_EUC_temp_diss.shp","current_EUC_temp_diss_lyr") 
 
        #Select all blocks that border current EUC and remove those within EUC 
        arcpy.SelectLayerByLocation_management("blk_lyr","BOUNDARY_TOUCHES", 
            "current_EUC_temp_diss_lyr",selection_type="NEW_SELECTION") 
        arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
            "current_EUC_temp_diss_lyr",selection_type="REMOVE_FROM_SELECTION") 
 
        #Remove all blocks with no land area or no houses 
        arcpy.SelectLayerByAttribute_management("blk_lyr", 
            "REMOVE_FROM_SELECTION",' "ALAND10" = 0 OR "HOUSING10" = 0') 
 
        #Remove all blocks that have under 60 dwellings per square mile 
        remove_condition = "\"HOUSING10\"/(\"ALAND10\"*%s) < 60"%m2_to_mi2 
        arcpy.SelectLayerByAttribute_management("blk_lyr", 
            "REMOVE_FROM_SELECTION",remove_condition) 
 
        ################################################################## 
        ##Remove outlying blocks that do not contain at least 30 percent## 
        ##of workers commuting to the UAC - Uses RUCA file and codes###### 
        ################################################################## 
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        #Create a cursor to go through each selected block 
        blk_cursor = arcpy.SearchCursor("blk_lyr") 
 
        #Decide which RUCA codes are acceptable based on population of UAC 
        #50,000+ is an Urbanized Area 
        #10,000-49,999 is a large Urban Cluster 
        #2,500-9,999 is a small Urban Cluster 
        if current_UAC_pop >= 50000: 
            ruca_codes_accept = ruca_accept_UA 
        elif current_UAC_pop >=10000: 
            ruca_codes_accept = ruca_accept_UCL 
        else: 
            ruca_codes_accept = ruca_accept_UCS 
             
        #Loop through each selected block and remove if necessary 
        for blk_row in blk_cursor: 
 
            #Store current blocks GeoID and parse out the tract ID 
            current_geoid_blk = blk_row.getValue(geoid_field) 
            current_geoid_tract = current_geoid_blk[:11] 
 
            #Read in csv file (with statement makes sure file will close after 
            #completion of this block) 
            with open(ruca_file, 'rb') as ruca_csv: #Read in csv file 
 
                #Store data array from csv file 
                ruca_array = csv.reader(ruca_csv, delimiter=',') 
 
                #Loop through each row of the data array file 
                for ruca_row in ruca_array: 
 
                    #Reset flag used in RUCA code analysis 
                    #0 means unacceptable, 1 means acceptable 
                    ruca_flag = 0 
                     
                    #Store the RUCA tract and RUCA code for the current row 
                    ruca_tract = ruca_row[3] 
                    ruca_code = ruca_row[5] 
                     
                    #If current block's tract matches the current RUCA tract, 
                    #loop through each acceptable ruca code and check to see if 
                    #the current block's tract has an acceptable RUCA code 
                    if current_geoid_tract == ruca_tract: 
                        for acceptable_ruca in ruca_codes_accept: 
                            if ruca_code == acceptable_ruca: 
                                ruca_flag = 1 
 
            #If flag never raised (no acceptable code found for 
            #current block), then remove the block from selection 
            if ruca_flag == 0: 
                fid_blk = str(blk_row.getValue("FID")) 
                fid_blk_sql = "FID = %s"%(fid_blk) 
                arcpy.SelectLayerByAttribute_management("blk_lyr", 
                    "REMOVE_FROM_SELECTION",fid_blk_sql) 
                             
        #Create a cursor to go through each UAC a third time 
        create_layer(uac_file,"UAC_lyr3") 
        uac_cursor_3 = arcpy.SearchCursor("UAC_lyr3","","","","POP10 D") 
 
        #Loop through each UAC and remove blocks that are within any other UAC 
        for current_UAC_3 in uac_cursor_3: 
 
            #Store current inner loop UAC name and FID 
            current_UAC_3_name = current_UAC_3.getValue(name_field) 
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            if current_UAC_name <> current_UAC_3_name: 
 
                #Make temporary UAC layer 
                create_layer(uac_file, "UAC_lyr_temp") 
             
                #Select only the current inner loop UAC from the file 
                name_uac3_sql = ' "NAME10" = \'%s\''%(current_UAC_3_name) 
                arcpy.SelectLayerByAttribute_management("UAC_lyr_temp", 
                    "NEW_SELECTION",name_uac3_sql) 
 
                #Remove all intersecting blocks from the current outer loop 
                #block selection 
                arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
                    "UAC_lyr_temp",selection_type="REMOVE_FROM_SELECTION") 
                 
        #Only run next loop if EUC file has been created 
        #(iteration 2 or beyond of main loop) 
        if loop_count <> 1: 
             
            #Create a new EUC layer 
            create_layer("EUC_All.shp","EUC_All_lyr2") 
 
            #Create a cursor to go through each EUC 
            euc_cursor_2 = arcpy.SearchCursor("EUC_All_lyr2") 
 
            #Loop through each EUC and remove blks that are within any other EUC 
            for current_EUC_2 in euc_cursor_2: 
 
                #Store current inner loop UAC FID 
                current_EUC_2_fid = current_EUC_2.getValue("FID") 
 
                #Create a temporary EUC layer 
                create_layer("EUC_All.shp", "EUC_lyr_temp") 
 
                #Select only the current inner loop EUC from the file 
                fid_euc2_sql = ' "FID" = %s'%(current_EUC_2_fid) 
                arcpy.SelectLayerByAttribute_management("EUC_lyr_temp", 
                    "NEW_SELECTION",fid_euc2_sql) 
 
                #Remove all intersecting blks from current blk selection 
                arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
                    "EUC_lyr_temp",selection_type="REMOVE_FROM_SELECTION") 
 
        #If blocks are selected, add blocks to the current EUC temp file 
        #Otherwise set while flag to kick out of loop next iteration 
        blk_selected = int(arcpy.GetCount_management("blk_lyr").getOutput(0)) 
        if blk_selected <> 0: 
 
            #Create a layer including all blocks to add 
            arcpy.Select_analysis("blk_lyr","blks_add") 
            create_layer("blks_add.shp","blks_add_lyr") 
             
            #Create temporary EUC layer 
            create_layer("current_EUC_temp.shp","current_EUC_temp_lyr") 
             
            #Merge the blocks add layer with the current EUC and remake file 
            arcpy.Merge_management(["blks_add_lyr","current_EUC_temp_lyr"], 
                "current_EUC_merge") 
            delete_file("current_EUC_temp.shp","SHAPEFILE") 
            arcpy.Copy_management("current_EUC_merge.shp", 
                "current_EUC_temp.shp") 
            delete_file("current_EUC_merge.shp","SHAPEFILE") 
             
        else: 
            while_flag = 1 
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        ##################################################################### 
        ##Add "donut" blks to current EUC - completes current blk selection## 
        ##################################################################### 
 
        #Select all blocks that border the current set and make this a layer 
        #The union function sets FIDs of all gap blocks to -1 
        arcpy.Union_analysis("current_EUC_temp.shp","blk_donuts",gaps="NO_GAPS") 
        create_layer("blk_donuts.shp","blk_donuts_lyr") 
 
        #Select all gap blocks from the donut layer 
        arcpy.SelectLayerByAttribute_management("blk_donuts_lyr", 
            "NEW_SELECTION",' "FID_curren" = -1 ') 
 
        #Select all gap block groups from the block group and block layers 
        arcpy.SelectLayerByLocation_management("bg_lyr","WITHIN", 
            "blk_donuts_lyr",selection_type="NEW_SELECTION") 
        arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
            "blk_donuts_lyr",selection_type="NEW_SELECTION") 
 
        #Remove any blocks and block groups that have no area 
        arcpy.SelectLayerByAttribute_management("bg_lyr", 
            "REMOVE_FROM_SELECTION",' "ALAND10" = 0') 
        arcpy.SelectLayerByAttribute_management("blk_lyr", 
            "REMOVE_FROM_SELECTION",' "ALAND10" = 0') 
         
        #Create a temporary block group and block shapefile and layer 
        arcpy.Select_analysis("bg_lyr", "bg_donuts_temp") 
        create_layer("bg_donuts_temp.shp","bg_donuts_temp_lyr") 
        arcpy.Select_analysis("blk_lyr", "blk_donuts_temp") 
        create_layer("blk_donuts_temp.shp","blk_donuts_temp_lyr") 
 
        #Merge the blks and bgs with the current EUC and remake file 
        arcpy.Merge_management(["blk_donuts_temp_lyr","bg_donuts_temp_lyr", 
            "current_EUC_temp.shp"],"current_EUC_merge") 
        delete_file("current_EUC_temp.shp","SHAPEFILE") 
        arcpy.Copy_management("current_EUC_merge.shp","current_EUC_temp.shp") 
 
        #Clean up temporary shapefiles and layers for while loop 
        delete_file("blks_add.shp","SHAPEFILE") 
        delete_file("current_EUC_merge.shp","SHAPEFILE") 
        delete_file("bg_donuts_temp.shp","SHAPEFILE") 
        delete_file("blk_donuts_temp.shp","SHAPEFILE") 
        delete_file("current_EUC_merge.shp","SHAPEFILE") 
        delete_file("blk_donuts.shp","SHAPEFILE") 
 
    ####################################### 
    ##Create final disolved EUC shapefile## 
    ####################################### 
     
    #If first time through loop, create new EUC file 
    if loop_count == 1: 
 
        #Clean up old files 
        delete_file("EUC_All.shp","SHAPEFILE") 
 
        #Create a new EUC file (dissolved) with the first EUC 
        arcpy.Dissolve_management("current_EUC_temp.shp","EUC_All") 
 
        #Add in a name field to the file 
        arcpy.AddField_management("EUC_All.shp","EUC_Name","TEXT","","",128) 
 
        #Create an EUC layer 
        create_layer("EUC_All.shp","EUC_All_lyr") 
 
        #Create a dummy cursor and use it to loop through EUCs 
        #Will actually only loop once to set current EUC name 
        dummy_cursor = arcpy.UpdateCursor("EUC_ALL_lyr") 
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        for dummy_value in dummy_cursor: 
            dummy_value.setValue("EUC_Name",current_UAC_name) 
            dummy_cursor.updateRow(dummy_value) 
 
    #If EUC All file has already been created 
    #(iteration 2 or beyond of main loop) 
    else: 
        #Create a new EUC file (disolved) with the current EUC 
        arcpy.Dissolve_management("current_EUC_temp.shp","current_EUC") 
 
        #Add in a name field to the file 
        arcpy.AddField_management("current_EUC.shp","EUC_Name","TEXT","","",128) 
 
        #Create an EUC layer for current EUC 
        create_layer("current_EUC.shp","current_EUC_lyr") 
         
        #Create a dummy cursor and use it to loop through EUCs 
        #Will actually only loop once to set current EUC name 
        dummy_cursor = arcpy.UpdateCursor("current_EUC_lyr") 
        for dummy_value in dummy_cursor: 
            dummy_value.setValue("EUC_Name",current_UAC_name) 
            dummy_cursor.updateRow(dummy_value) 
 
        #Append the current EUC to the EUC All file and delete the current EUC 
        arcpy.Append_management("current_EUC.shp","EUC_All.shp") 
        delete_file("current_EUC.shp","SHAPEFILE") 
                                   
    ############################### 
    ##File cleanup for outer loop## 
    ############################### 
         
    delete_file("bg_lyr","LAYER") 
    delete_file("blk_lyr","LAYER") 
    delete_file("UAC_lyr2","LAYER") 
    delete_file("UAC_BG_intersect.shp","SHAPEFILE") 
    delete_file("UAC_BG_intersect_lyr","LAYER") 
    delete_file("UAC_lyr_temp","LAYER") 
    delete_file("EUC_All_lyr","LAYER") 
    delete_file("EUC_BG_intersect.shp","SHAPEFILE") 
    delete_file("EUC_BG_intersect_lyr","LAYER") 
    delete_file("EUC_All_lyr_temp","LAYER") 
    delete_file("current_EUC_temp.shp","SHAPEFILE") 
    delete_file("current_EUC_temp_lyr","LAYER") 
    delete_file("bg_donuts.shp","SHAPEFILE") 
    delete_file("bg_donuts_lyr","LAYER") 
    delete_file("current_EUC_temp_diss.shp","SHAPEFILE") 
    delete_file("current_EUC_temp_diss_lyr","LAYER") 
    delete_file("UAC_lyr3","LAYER") 
    delete_file("EUC_All_lyr2","LAYER") 
    delete_file("blks_add.shp","SHAPEFILE") 
    delete_file("blks_add_lyr","LAYER") 
    delete_file("current_EUC_merge.shp","SHAPEFILE") 
    delete_file("blk_donuts.shp","SHAPEFILE") 
    delete_file("blk_donuts_lyr","LAYER") 
    delete_file("bg_donuts_temp.shp","SHAPEFILE") 
    delete_file("bg_donuts_temp_lyr","LAYER") 
    delete_file("blk_donuts_temp.shp","SHAPEFILE") 
    delete_file("blk_donuts_temp_lyr","LAYER") 
    delete_file("current_EUC.shp","SHAPEFILE") 
    delete_file("current_EUC_lyr","LAYER") 
     
    #Increase loop counter for next iteration 
    loop_count = loop_count + 1 
 
#Final file cleanup 
delete_file("uac_lyr","LAYER") 
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Appendix C: EUC_Metrics.py – Full Python Script 
 
###############################EUC_Metrics.py############################## 
##This program appends 21 metrics to the Extended Urban Clusters         ## 
##shapefile which was created using EUC_Creator.py.  The approach used to## 
##calculate each metric is outlined in the dissertation Chapter 6, but   ## 
##there should be enough comments here to follow along                   ## 
########################################################################### 
 
##Basic Notes for running the program 
#1 Python editor must be exited after running program for EUC file to 
#    update properly 
#2 The following pre-processing steps must be done before running program 
#   A Jobs data (from LEHD LODES7 WAC) must be merged with the block file 
#   B WalkScore_Locator.py must be run and the resulting Walk Scores column 
#      must be merged with the block file 
#   C NLCD data must be merged with the EUC file using NLCD_table.dbf 
#      (described in section 6.3.1 of the dissertation) 
#   D A CBD points file must be created (described in section 6.3.1 of the 
#      dissertation) 
#   E A CBD polygon file must be created by running CBD_polygon_creator.py 
#      and completing some additional steps as described in section 6.3.2 
#      of the dissertation 
#   F An intersections file must be obtained from University of Utah's 
#      Metropolitan Research Center (MRC) or developed in some other mannor 
#      They clipped their file to Riehl's EUC file 
#3 There are three additional metrics calculated (prefixed EX).  These 
#    can be ignored as these are just alternates to the EW metrics 
#4 Notes for next version update 
#   A popden - not normalized 
#   B lt1500, gt12500 - should these be normalized to population? 
#   C urbden - should be changed to be population density, not an area 
#      percentage 
#   D dgcent, popdcen, empdcen, dgrad, popcen, empcen are set to -1 for 
#      the 5 EUCs that do not have their CBD in Michigan 
#   E avgblklng - Algorithm uses slightly different dataset and slightly 
#      different method form Ewing et al. 
 
#Import Libraries and checkout extensions 
import arcpy 
import csv 
import numpy 
import math 
import urllib2 
 
arcpy.CheckOutExtension("Spatial") #Check out spatial visualization license 
 
################### 
##Initializations## 
################### 
 
#Initialize folder and file locations 
arcpy.env.workspace = "H:\PHD\EUC_Metrics" #Set location of working folder 
EUC_file = "EUC_All.shp" 
blk_file = "tl_2010_26_tabblock10.shp" 
CBD_point_file_short = "CBD_Points_UA_Named_City_Only" 
CBD_point_file = CBD_point_file_short + ".shp" 
CBD_poly_file = "CBD_polygons_all.shp" 
NLCD_file = "nlcd_2011.img" 
NLCD_table_file = "NLCD_table.dbf" 
road_file = "allroads_miv14a.shp" 
intersection_file = "intersections_MI_EUC.shp" 
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#Initialize names that will be used throughout the program 
name_field = "EUC_Name" #Set name of name field to be used in the EUC layer 
employ_field = "C000" 
retail_field = "CNS07" 
info_field = "CNS09" 
finance_field = "CNS10" 
realest_field = "CNS11" 
techserve_field = "CNS12" 
edu_field = "CNS15" 
health_field = "CNS16" 
entertain_field = "CNS17" 
hotelfood_field = "CNS18" 
othservices_field = "CNS19" 
ws_field = "WalkScore" 
 
#Initialize constants that will be used throughout the program 
m2_to_mi2 = pow(100,2)/pow(2.54,2)/pow(12,2)/pow(5280,2) 
R = 3959 #radius of the earth in miles 
 
##################### 
##Create New Fields## 
##################### 
 
#Add in some fields for base metrics 
arcpy.AddField_management("EUC_All.shp","pop","DOUBLE") 
arcpy.AddField_management("EUC_All.shp","CBD_x","DOUBLE") 
arcpy.AddField_management("EUC_All.shp","CBD_y","DOUBLE") 
 
#Add in fields for Ewing's  metrics (EW = Ewing et al.) 
#  (EX = Additional ones) to EUC file 
#Could add in a check for each field to see if it exists first 
#Labels (e.g., D1, are used throughout the program to refer to sections 
#  that are used to help calculate the labeled metric 
 
#D1 - Gross population density of all census blocks in EUC in persons per 
#       square mile 
arcpy.AddField_management("EUC_All.shp","EWpopden","DOUBLE") 
 
#D2 - Gross employment density of all census blocks in EUC in jobs per 
#       square mile 
arcpy.AddField_management("EUC_All.shp","EWempden","DOUBLE") 
 
#D3 - percentage of the population living at low suburban densities 
#       (less than 1,500 persons per square mile) 
arcpy.AddField_management("EUC_All.shp","EWlt1500","DOUBLE") 
 
#D4 - percentage of the population living at medium to high urban densities 
#       (greater than 12,500 persons per square mile - transit-supportive) 
arcpy.AddField_management("EUC_All.shp","EWgt12500","DOUBLE") 
 
#D5 - gross population density of urban lands - currently this is actually 
#       the percentage of urban area to total area 
arcpy.AddField_management("EUC_All.shp","EWurbden","DOUBLE") 
 
#D6 - estimated density at the center of the metro area derived from a 
#       negative exponential density function 
arcpy.AddField_management("EUC_All.shp","EWdgcent","DOUBLE") 
 
#D7 - Gross population density of CBD in EUC in persons per square mile 
#       (not weighted) 
arcpy.AddField_management("EUC_All.shp","EWpopdcen","DOUBLE") 
 
#D8 - Gross employment density of CBD in EUC in jobs per square mile 
#       (not weighted) 
arcpy.AddField_management("EUC_All.shp","EWempdcen","DOUBLE") 
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#M1 - job-population balance (using blocks instead of 1-mile ring block 
#       groups) 
arcpy.AddField_management("EUC_All.shp","EWjobpop","DOUBLE") 
 
#M2 - degree of job mixing (entropy) (using blocks instead of 1-mile 
#       ring block groups) 
arcpy.AddField_management("EUC_All.shp","EWjobmix","DOUBLE") 
 
#M3 - weighted average Walk Score 
arcpy.AddField_management("EUC_All.shp","EWwalkscor","DOUBLE") 
 
#C1- coefficient of variation in census block population densities 
arcpy.AddField_management("EUC_All.shp","EWvarpop","DOUBLE") 
 
#C2- coefficient of variation in census block employment densities 
arcpy.AddField_management("EUC_All.shp","EWvaremp","DOUBLE") 
 
#C3 - density gradient moving outward from the CBD 
arcpy.AddField_management("EUC_All.shp","EWdgrad","DOUBLE") 
 
#C4 - percentage of EUC population in CBD (using EUC instead of MSA 
#       and CBD only without subcenters) 
arcpy.AddField_management("EUC_All.shp","EWpopcen","DOUBLE") 
 
#C5 - percentage of EUC employment in CBD (using EUC instead of MSA 
#       and CBD only without subcenters) 
arcpy.AddField_management("EUC_All.shp","EWempcen","DOUBLE") 
 
#S1 - percentage of small urban blocks 
arcpy.AddField_management("EUC_All.shp","EWsmlblk","DOUBLE") 
 
#S2 - average block size 
arcpy.AddField_management("EUC_All.shp","EWavgblksz","DOUBLE") 
 
#S3 - average block length 
arcpy.AddField_management("EUC_All.shp","EWavgblkln","DOUBLE") 
 
#S4 - intersection density - removes blocks with < 50 popden 
#       (half of EW's suggested 100) 
arcpy.AddField_management("EUC_All.shp","EWintden","DOUBLE") 
 
#S5 - percentage of 4-or-more-way intersections 
arcpy.AddField_management("EUC_All.shp","EW4way","DOUBLE") 
 
#S1a - percentage of small urban blocks without removing large blocks 
arcpy.AddField_management("EUC_All.shp","EXsmlblk","DOUBLE") 
 
#S2a - average block size without removing large blocks 
arcpy.AddField_management("EUC_All.shp","EXavgblksz","DOUBLE") 
 
#S4a - intersection density - does not removes blocks with < 50 popden 
arcpy.AddField_management("EUC_All.shp","EXintden","DOUBLE") 
 
############################## 
##Make Layers for Processing## 
############################## 
 
#Make EUC a layer 
if arcpy.Exists("EUC_lyr") == 1: 
    arcpy.Delete_management("EUC_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(EUC_file,"EUC_lyr") 
 
#Make CBD points a layer 
if arcpy.Exists("CBD_point_lyr") == 1: 
    arcpy.Delete_management("CBD_point_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(CBD_point_file,"CBD_point_lyr")  
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#Make CBD polygons a layer 
if arcpy.Exists("CBD_poly_lyr") == 1: 
    arcpy.Delete_management("CBD_poly_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(CBD_poly_file,"CBD_poly_lyr") 
 
#Make intersections a layer 
if arcpy.Exists("intersection_lyr") == 1: 
    arcpy.Delete_management("intersection_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(intersection_file,"intersection_lyr") 
 
############################### 
##Join CBD points to EUC file## 
############################### 
 
# Join the EUC and CBD Shapefiles   
arcpy.AddJoin_management("EUC_lyr","EUC_Name","CBD_point_lyr","Name")   
 
#Setup CBD sql statements for CalculateField function 
CBD_sql_x = "[%s.POINT_X]"%(CBD_point_file_short) 
CBD_sql_y = "[%s.POINT_Y]"%(CBD_point_file_short) 
 
#Copy CBD x and CBD y points 
arcpy.CalculateField_management("EUC_lyr","EUC_All.CBD_x",CBD_sql_x) 
arcpy.CalculateField_management("EUC_lyr","EUC_All.CBD_y",CBD_sql_y) 
 
#Clean up join 
arcpy.RemoveJoin_management("EUC_lyr",CBD_point_file_short) 
 
############################ 
##Main Loop - for each EUC## 
############################ 
 
#Create a cursor to go through each EUC and loop through each EUC 
EUC_cursor = arcpy.UpdateCursor("EUC_lyr") 
for current_EUC in EUC_cursor: 
 
    ################################################# 
    ##Initializations for current iteration of loop## 
    ################################################# 
 
    #Initializations needed for many metrics 
    sum_aland = 0.0 
    sum_pop = 0.0 
    sum_emp = 0.0 
     
    #Get values from current EUC 
    current_EUC_name = current_EUC.getValue(name_field) 
    current_EUC_cbd_x_coord = current_EUC.getValue("CBD_x") 
    current_EUC_cbd_y_coord = current_EUC.getValue("CBD_y") 
    current_EUC_developed_land = current_EUC.getValue("Devel_Lnd") #D5 
 
    #Convert EUC CBD coords to radians 
    lon_EUC_r = math.radians(current_EUC_cbd_x_coord) 
    lat_EUC_r = math.radians(current_EUC_cbd_y_coord) 
 
    #Initializations needed for specific metrics (labeled) 
    blk_count = 0.0 #D3/D4/S1a/S2a 
    lt1500_count = 0.0 #D3 
    gt12500_count = 0.0 #D4 
    d = numpy.array([]) #D6/C3 
    D = numpy.array([]) #D6/C3 
    jobpop = 0.0 #M1 
    J = numpy.array([]) #M1/M2 
    P = numpy.array([]) #M1/M2 
    TJ = 0.0 #M1/M2 
    TP = 0.0 #M1/M2 
    jobmix_j_vec = numpy.array([]) #M2 
    jobmix = 0.0 #M2 
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    ws_sum = 0.0 #M3 
    popden_vec = numpy.array([]) #C1 
    empden_vec = numpy.array([]) #C2 
    normal_blk_count = 0.0 #S1/S2 
    sml_blk_count = 0.0 #S2 
    sum_aland_normal_block = 0.0 #S2 
    sum_road_len = 0.0 #S3 
    road_count = 0.0 #S3 
    sum_aland_high_density = 0.0 #S4 
     
    #Make a fresh block layer 
    if arcpy.Exists("blk_lyr") == 1: 
        arcpy.Delete_management("blk_lyr","LAYER") 
    arcpy.MakeFeatureLayer_management(blk_file, "blk_lyr") 
     
    #Select only blocks in the current EUC by selecting the current EUC and 
    # then the blocks within the EUC 
    euc_select_sql = ' "EUC_Name" = \'%s\' '%(current_EUC_name) 
    arcpy.SelectLayerByAttribute_management("EUC_lyr","NEW_SELECTION", 
        euc_select_sql) 
    arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN","EUC_lyr", 
        selection_type="NEW_SELECTION") 
 
    ###################################### 
    ##Loop 2 - for each block in the EUC## 
    ###################################### 
     
    #Create a cursor to go through each block in the EUC 
    blk_cursor = arcpy.SearchCursor("blk_lyr") 
    for current_blk in blk_cursor: 
 
        ################################################### 
        ##Initializations for current iteration of loop 2## 
        ################################################### 
         
        #Get and store values from current block 
        blk_aland = current_blk.getValue("ALAND10")*m2_to_mi2 
        blk_pop = current_blk.getValue("POP10") 
        blk_employ = current_blk.getValue(employ_field) 
        blk_x_coord = float(current_blk.getValue("INTPTLON10")) 
        blk_y_coord = float(current_blk.getValue("INTPTLAT10")) 
 
        #Calculate the population and employment densities; 0 if no land 
        if blk_aland > 0: 
            blk_popden = blk_pop / blk_aland 
            blk_empden = blk_employ / blk_aland 
        else: 
            blk_popden = 0.0 #might need to change to -1 
            blk_empden = 0.0 
 
        #Convert block longitude and latitude to radians 
        lon_blk_r = math.radians(blk_x_coord) 
        lat_blk_r = math.radians(blk_y_coord) 
         
        #Sum land area, population, and employment for all blocks in EUC 
        sum_aland += blk_aland 
        sum_pop += blk_pop 
        sum_emp += blk_employ 
 
        ################################ 
        ##Specific Metric Calculations## 
        ################################ 
 
        ##D3/D4/S1a/S2a## 
        #increment block counter 
        blk_count += 1.0 
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        ##D3 - 1/2## 
        #count if density less than 1500 for lt1500 category 
        if blk_popden < 1500 and blk_popden >= 0: 
            lt1500_count += 1.0 
         
        ##D4 - 1/2## 
        #count if density greater than 12500 for gt12500 category 
        if blk_popden > 12500: 
            gt12500_count += 1.0 
 
        ##D6/C3 - 1/2## 
        #If CBD exists, calculate D and d for equation D = Do*e^(-b*d) 
        if current_EUC_cbd_x_coord <> 0: 
             
            #Calculate difference in lat/lon between blk and EUC 
            dlat = lat_blk_r - lat_EUC_r 
            dlon = lon_blk_r - lon_EUC_r 
 
            #Calculate current d value using Haversine formula 
            a = math.pow(((math.sin(dlat/2)),2) + math.cos(lat_blk_r) 
                * math.cos(lat_EUC_r) * math.pow((math.sin(dlon/2)),2)) 
            c = 2 * math.atan2( math.sqrt(a), math.sqrt(1-a) )  
            di = R * c #(where R is the radius of the Earth) 
 
            #Append current distance and current density to d/D lists 
            d = numpy.append(d,di) 
            D = numpy.append(D,blk_popden) 
 
        ##M1/M2 - 1/2## 
        #Vectors created here, calculated after the loop due to need for 
        #EUC densities (not calculated until after loop runs through all 
        #blocks in EUC) 
        if blk_popden >= 100: 
             
            #Append employment and population values onto lists 
            J = numpy.append(J,blk_employ) 
            P = numpy.append(P,blk_pop) 
 
            #Add employment and population to total counts 
            TJ = TJ + blk_employ 
            TP = TP + blk_pop 
             
            ##M2## 
            num_sectors = 5.0 
 
            #Store all job counts for current block 
            jobs_retail = current_blk.getValue(retail_field) 
            jobs_entertainment = current_blk.getValue(entertain_field) 
            jobs_health = current_blk.getValue(health_field) 
            jobs_education = current_blk.getValue(edu_field) 
            jobs_personalservices = (current_blk.getValue(info_field) + 
                current_blk.getValue(finance_field) + 
                current_blk.getValue(realest_field) + 
                current_blk.getValue(techserve_field) + 
                current_blk.getValue(hotelfood_field) + 
                current_blk.getValue(othservices_field))                
            jobs_5_total = (jobs_retail + jobs_entertainment + 
                jobs_health + jobs_education + jobs_personalservices) 
 
            #As long as jobs exist, run jobmix calculations 
            if jobs_5_total <> 0: 
 
                #Calculate percentages for all five job categories 
                P_retail = 100.0 * jobs_retail / jobs_5_total 
                P_entertainment = 100.0 * jobs_entertainment / jobs_5_total 
                P_health = 100.0 * jobs_health / jobs_5_total 
                P_education = 100.0 * jobs_education / jobs_5_total 
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                P_personalservices = (100.0 * jobs_personalservices / 
                    jobs_5_total) 
 
                #As long as percentages are not 0 calculate mixing factor 
                #Otherwise, set it to 0 
                if P_retail <> 0: 
                    jobmix_blk_retail = (P_retail * math.log(P_retail) / 
                        math.log(num_sectors)) 
                else: 
                    jobmix_blk_retail = 0.0 
                if P_entertainment <> 0: 
                    jobmix_blk_entertainment = (P_entertainment * 
                        math.log(P_entertainment) / math.log(num_sectors)) 
                else: 
                    jobmix_blk_entertainment = 0.0 
                if P_health <> 0: 
                    jobmix_blk_health = (P_health * math.log(P_health) / 
                        math.log(num_sectors)) 
                else: 
                    jobmix_blk_health = 0.0 
                if P_education <> 0: 
                    jobmix_blk_education = (P_education * 
                        math.log(P_education) / math.log(num_sectors)) 
                else: 
                    jobmix_blk_education = 0.0 
                if P_personalservices <> 0: 
                    jobmix_blk_personalservices = (P_personalservices * 
                        math.log(P_personalservices) / 
                        math.log(num_sectors)) 
                else: 
                    jobmix_blk_personalservices = 0.0 
 
                #Sum mix factors 
                jobmix_j = (jobmix_blk_retail + jobmix_blk_entertainment + 
                    jobmix_blk_health + jobmix_blk_education + 
                    jobmix_blk_personalservices) 
            else: 
                jobmix_j = 0 
 
            #Append current job mix factor to job mix factor list 
            jobmix_j_vec = numpy.append(jobmix_j_vec,jobmix_j) 
             
 
        ##M3 - 1/2## 
        #Note: Currently WalkScore tabulation occurs in WalkScoreLocator.py 
        #Get block walkscore, weight it based on population and employment, 
        # and add to EUC WalkScore sum 
        walkscore_raw = current_blk.getValue(ws_field) 
        walkscore_weighted = walkscore_raw * (blk_pop + blk_employ) 
        ws_sum = ws_sum + walkscore_weighted 
         
        ##C1 - 1/2## 
        popden_vec = numpy.append(popden_vec,blk_popden) 
 
        ##C2 - 1/2## 
        empden_vec = numpy.append(empden_vec,blk_empden) 
         
        ##S1/S2 - 1/2## 
        #count small blocks if land area less than 0.01 
        # normal blocks if land area less than 1 
        # and sum area of normal blocks 
        if blk_aland < 0.01: 
            sml_blk_count += 1.0 
        if blk_aland <= 1: 
            normal_blk_count += 1.0 
            sum_aland_normal_block += blk_aland 
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        ##S4 - 1/2## 
        #Sum area of all blocks that are high density (greater than 50) 
        if blk_popden >= 50: 
            sum_aland_high_density += blk_aland 
 
        ############## 
        ##End Loop 2## 
        ############## 
 
    ##D1 - 1/1## 
    #Calculate overall population density for entire EUC 
    EWpopden = sum_pop / sum_aland 
 
    ##D2 - 1/1## 
    #Calculate overall employment density for entire EUC 
    EWempden = sum_emp / sum_aland 
 
    ##D3 - 2/2## 
    EWlt1500 = 100.0 * lt1500_count / blk_count 
 
    ##D4 - 2/2## 
    EWgt12500 = 100.0 * gt12500_count / blk_count 
 
    ##D5 - 1/1## 
    EWurbden = 100.0 * current_EUC_developed_land * m2_to_mi2 / sum_aland 
     
    ##D6/C3 - 2/2## 
    #If CBD exits, calculate D and d in equation D = Do*e^(-b*d) 
    if current_EUC_cbd_x_coord <> 0: #Make sure CBD exists 
 
        #Take the natural log of d and D values 
        for i in range(0,len(d),1): 
            if (d[i] and D[i]) <> 0: 
                d[i] = math.log(d[i]) #should not take log of this? 
                D[i] = math.log(D[i]) 
 
        #Fit a polynomial to D versus d; equation is D = Dcent*exp(-grad*d) 
        coefficients = numpy.polyfit(d,D,1) 
        grad = coefficients[0] 
        #2nd argument comes back as log(Dcent), exp removes log 
        Dcent = math.exp(coefficients[1]) 
        EWdgcent = Dcent 
        EWdgrad = -grad 
    else: 
        EWdgcent = -1 #Store as -1 if there is no CBD in Michigan 
        EWdgrad = -1 
 
    ##D7/D8/C4/C5 Calculations - 1/1## 
    #Initializations for these calculations 
    sum_aland_cbd = 0.0 
    sum_pop_cbd = 0.0 
    sum_emp_cbd = 0.0 
    sum_pop_cbd_weighted = 0.0 
    sum_emp_cbd_weighted = 0.0 
 
    #If the CBD exists, run calculations for D7/D8/C4/C5 
    if current_EUC_cbd_x_coord <> 0: #Make sure CBD exists 
 
        #Create a 2nd block layer used for only CBD blocks 
        if arcpy.Exists("blk_cbd_lyr") == 1: 
            arcpy.Delete_management("blk_cbd_lyr","LAYER") 
        arcpy.MakeFeatureLayer_management(blk_file, "blk_cbd_lyr") 
 
        #Select only blocks in the current CBD by selecting the current CBD 
        # and then the blocks within the CBD  
        cbd_select_sql = ' "Name" = \'%s\' '%(current_EUC_name) 
        arcpy.SelectLayerByAttribute_management("CBD_poly_lyr", 
            "NEW_SELECTION",cbd_select_sql) 
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        arcpy.SelectLayerByLocation_management("blk_cbd_lyr","WITHIN", 
            "CBD_poly_lyr",selection_type="NEW_SELECTION") 
 
        #Create a cursor to go through each block in the CBD 
        blk_cursor_cbd = arcpy.SearchCursor("blk_cbd_lyr") 
        for current_blk_cbd in blk_cursor_cbd: 
 
            #Get and store values from current block 
            blk_aland_cbd = current_blk_cbd.getValue("ALAND10")*m2_to_mi2 
            blk_pop_cbd = current_blk_cbd.getValue("POP10") 
            blk_employ_cbd = current_blk_cbd.getValue(employ_field) 
 
            #Add values from current block to CBD sums 
            sum_aland_cbd += blk_aland_cbd 
            sum_pop_cbd += blk_pop_cbd 
            sum_emp_cbd += blk_employ_cbd 
            sum_pop_cbd_weighted += (blk_pop_cbd * (blk_pop_cbd + 
                blk_employ_cbd)) 
            sum_emp_cbd_weighted += (blk_employ_cbd * (blk_pop_cbd + 
                blk_employ_cbd)) 
 
        #As long as sum not 0, calculate D7/D8 values, otherwise set to 0 
        if sum_aland_cbd <> 0: 
            EWpopdcen = sum_pop_cbd_weighted / (sum_aland_cbd * 
                (sum_pop + sum_emp)) 
            EWempdcen = sum_emp_cbd_weighted / (sum_aland_cbd * 
                (sum_pop + sum_emp)) 
        elif sum_cbd_aland == 0: 
            EWpopdcen = 0.0 
            EWempdcen = 0.0 
 
        #Calculate C4/C5 values 
        EWpopcen = 100.0 * sum_pop_cbd / sum_pop 
        EWempcen = 100.0 * sum_emp_cbd / sum_emp 
 
    #If no cbd's in Michigan, set D7/D8/C4/C5 values to -1 
    else: 
        EWpopdcen = -1 
        EWempdcen = -1 
        EWpopcen = -1 
        EWempcen = - 1 
 
    ##M1/M2 - 2/2## 
    #Calculate Job to Population Ratio 
    JP = TJ / TP 
 
    #Loop through all values in J vector and calculate jobpop/jobmix values 
    #Based on Ewing et al. equations 
    for i in range(0,len(J),1): 
        jobpop_blk = ((1 - abs(J[i] - JP * P[i]) / (J[i] + JP * P[i])) * 
            (J[i] + P[i]) / (TJ + TP)) 
        jobpop += jobpop_blk 
        jobmix_blk = jobmix_j_vec[i] * (J[i] + P[i]) / (TJ + TP) 
        jobmix += jobmix_blk 
    EWjobpop = jobpop 
    EWjobmix = jobmix 
     
    ##M3 - 2/2## 
    EWwalkscor = ws_sum / (sum_pop + sum_emp) 
 
    ##C1 - 2/2## 
    EWvarpop = numpy.std(popden_vec)/numpy.mean(popden_vec) 
     
    ##C2 - 2/2## 
    EWvaremp = numpy.std(empden_vec)/numpy.mean(empden_vec) 
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    ##S1/S2a - 2/2## 
    EWsmlblk = 100.0 * sml_blk_count / normal_blk_count 
    EXsmlblk = 100.0 * sml_blk_count / blk_count 
 
    ##S2/S2a - 2/2## 
    EWavgblksz = sum_aland_normal_block / normal_blk_count 
    EXavgblksz = sum_aland / blk_count 
     
    ##S3 - 1/1## 
    #Create a road layer 
    if arcpy.Exists("road_lyr") == 1: 
        arcpy.Delete_management("road_lyr","LAYER") 
    arcpy.MakeFeatureLayer_management(road_file, "road_lyr") 
 
    #Select all roads in the current EUC (EUC selection done above loop) 
    arcpy.SelectLayerByLocation_management("road_lyr","WITHIN","EUC_lyr", 
        selection_type="NEW_SELECTION",search_distance="1 Meters") 
 
    #Create a cursor to go through each road segment in the EUC 
    road_cursor = arcpy.SearchCursor("road_lyr") 
    for current_road in road_cursor: 
         
        #Store length of current road segment 
        road_len = current_road.getValue("LENGTH") 
 
        #Sum road segment lengths and road count 
        sum_road_len = sum_road_len + road_len 
        road_count = road_count + 1.0 
 
    #Calculate average road length which is the average block length 
    EWavgblkln = sum_road_len / road_count 
     
    ##S4 - 2/2 and S5/S4a - 1/1## 
    #Select all intersections within EUC and count the number 
    # of intersections selected for S5 and S4a 
    arcpy.SelectLayerByLocation_management("intersection_lyr","INTERSECT", 
        "blk_lyr",selection_type = "NEW_SELECTION") 
    intersections_total = len( 
        arcpy.Describe("intersection_lyr").FIDSet.split('; ')) 
 
    #Select all 4-or-more-way intersections for S5 
    arcpy.SelectLayerByAttribute_management("intersection_lyr", 
        "SUBSET_SELECTION",' "ICOUNT" >= 4') 
    intersections_4way = len( 
        arcpy.Describe("intersection_lyr").FIDSet.split('; ')) 
 
    #Select high density blocks, select all intersections located within 
    # these blocks, and then count the number of high density intersections 
    # for S4 
    arcpy.SelectLayerByAttribute_management("blk_lyr","SUBSET_SELECTION", 
        ' "POPDEN" >= 50') 
    arcpy.SelectLayerByLocation_management("intersection_lyr","INTERSECT", 
        "blk_lyr",selection_type = "NEW_SELECTION") 
    intersections_highdensity = len( 
        arcpy.Describe("intersection_lyr").FIDSet.split('; ')) 
 
    #S4 Final Calculation 
    EWintden = intersections_highdensity / sum_aland_high_density 
 
    #S5 Final Calculation 
    EW4way = 100.0 * intersections_4way / intersections_total  
 
    #S4a Final Calculation 
    EXintden = intersections_total / sum_aland 
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    ######################################### 
    ##Store all metrics for the current EUC## 
    ######################################### 
 
    current_EUC.setValue("pop",sum_pop) 
     
    current_EUC.setValue("EWpopden",EWpopden) #D1 
    current_EUC.setValue("EWempden",EWempden) #D2 
    current_EUC.setValue("EWlt1500",EWlt1500) #D3 
    current_EUC.setValue("EWgt12500",EWgt12500) #D4 
    current_EUC.setValue("EWurbden",EWurbden) #D5 
    current_EUC.setValue("EWdgcent",EWdgcent) #D6 
    current_EUC.setValue("EWpopdcen",EWpopdcen) #D7 
    current_EUC.setValue("EWempdcen",EWempdcen) #D8 
 
    current_EUC.setValue("EWjobpop",EWjobpop) #M1 
    current_EUC.setValue("EWjobmix",EWjobmix) #M2 
    current_EUC.setValue("EWwalkscor",EWwalkscor) #M3 
 
    current_EUC.setValue("EWvarpop",EWvarpop) #C1 
    current_EUC.setValue("EWvaremp",EWvaremp) #C2 
    current_EUC.setValue("EWdgrad",EWdgrad) #C3 
    current_EUC.setValue("EWpopcen",EWpopcen) #C4 
    current_EUC.setValue("EWempcen",EWempcen) #C5 
     
    current_EUC.setValue("EWsmlblk",EWsmlblk) #S1 
    current_EUC.setValue("EWavgblksz",EWavgblksz) #S2 
    current_EUC.setValue("EWavgblkln",EWavgblkln) #S3 
    current_EUC.setValue("EWintden",EWintden) #S4 
    current_EUC.setValue("EW4way",EW4way) #S5 
 
    current_EUC.setValue("EXsmlblk",EXsmlblk) #S1a 
    current_EUC.setValue("EXavgblksz",EXavgblksz) #S2a 
    current_EUC.setValue("EXintden",EXintden) #S4a 
     
    #Update the EUC row 
    EUC_cursor.updateRow(current_EUC) 
 
    ################# 
    ##End Main Loop## 
    ################# 
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Appendix D: CBD_Creator.py – Full Python Script 
 
###############################CBD_Creator.py############################## 
##This program creates CBDs for all of Michigan's EUC's principal cities ## 
##This program should be run on the shapefile which was created using    ## 
##EUC_Creator.py.  This program should be executed before EUC_Metrics.py ## 
##The approach used to create these polygons is outlined in the section  ## 
##6.3.2, but there should be enough comments here to follow along.       ## 
##The output of this program is the file "CBD_polygons.shp."  Currently  ## 
##this file does not create all CBDs so post processing must be done to  ## 
##complete this and prepare "CBD_polygons_all.shp" for EUC_Metrics.py.   ## 
########################################################################### 
 
#Import Libraries 
import arcpy 
import os 
 
################### 
##Initializations## 
################### 
 
#Set location of working folder 
home_folder = "H:\PHD\Metrics" 
arcpy.env.workspace = home_folder 
 
#Initialize folder and file locations 
EUC_file = "EUC_All.shp" 
CBD_points_file = "CBD_Points_UA_Named_City_Only.shp" 
blk_file = "tl_2010_26_tabblock10.shp" 
 
#Initialize names that will be used throughout the program 
employ_field = "C000" 
name_field = "EUC_Name" 
 
#Initialize loop counter - because first loop needs to be distinguished 
loop_count = 1 
 
############################## 
##Make Layers for Processing## 
############################## 
 
#Make EUC a layer 
if arcpy.Exists("EUC_lyr") == 1: 
    arcpy.Delete_management("EUC_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(EUC_file,"EUC_lyr") 
 
#Make block a layer 
if arcpy.Exists("blk_lyr") == 1: 
    arcpy.Delete_management("blk_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(blk_file,"blk_lyr") 
     
#Make CBD points a layer 
if arcpy.Exists("CBD_Points_lyr") == 1: 
    arcpy.Delete_management("CBD_Points_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(CBD_points_file,"CBD_Points_lyr") 
 
############################ 
##Main Loop - for each EUC## 
############################ 
 
#Create a cursor to go through each EUC and loop through each EUC 
EUC_cursor = arcpy.UpdateCursor("EUC_lyr") 
for current_EUC in EUC_cursor: 
 
    #Store name for current EUC 
    current_EUC_name = current_EUC.getValue(name_field) 
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    #Do not create CBD Polygons for five EUCs that have primary cities 
    # outside of Michigan 
    if (current_EUC_name <> "Toledo, OH--MI" and 
        current_EUC_name <> "South Bend, IN--MI" and 
        current_EUC_name <> "Elkhart, IN--MI" and 
        current_EUC_name <> "Michigan City--La Porte, IN--MI" and 
        current_EUC_name <> "Marinette--Menominee, WI--MI"): 
         
        ################################################## 
        ##Delete files from previous loops if they exist## 
        ################################################## 
         
        #Delete temporary EUC block layer if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("EUC_blks_temp.shp") == 1: 
            arcpy.Delete_management("EUC_blks_temp.shp","SHAPEFILE") 
 
        #Delete Spatial Weights Matrix if it already exists 
        # (will if it was last run) 
        if os.path.isfile(home_folder + "\current_EUC_weights.swm"): 
            os.remove(home_folder + "\current_EUC_weights.swm") 
 
        #Delete Morans I output shapefile if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("current_EUC_ClusterOutlier.shp") == 1: 
            arcpy.Delete_management("current_EUC_ClusterOutlier.shp", 
                "SHAPEFILE") 
 
        #Delete Morans I output layer if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("current_EUC_ClusterOutlier_lyr") == 1: 
            arcpy.Delete_management("current_EUC_ClusterOutlier_lyr", 
                "LAYER") 
             
        #Delete temporary current CBD shapefile if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("current_CBD_temp.shp") == 1: 
            arcpy.Delete_management("current_CBD_temp.shp","SHAPEFILE") 
 
        #Delete temporary current CBD layer if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("current_CBD_temp_lyr") == 1: 
            arcpy.Delete_management("current_CBD_temp_lyr","LAYER") 
 
        #Delete donut blocks shapefile and layer if either already exist 
        # (will if it was last run) 
        if arcpy.Exists("blk_donuts.shp") == 1: 
            arcpy.Delete_management("blk_donuts.shp","SHAPEFILE") 
        if arcpy.Exists("blk_donuts_lyr") == 1: 
            arcpy.Delete_management("blk_donuts_lyr","LAYER") 
 
        #Delete dissolved temporary current CBD shapefile if it already 
        # exists (will if it was last run) 
        if arcpy.Exists("current_CBD_temp_diss.shp") == 1: 
            arcpy.Delete_management("current_CBD_temp_diss.shp", 
                "SHAPEFILE") 
             
        #Delete dissolved temporary current CBD layer if it already 
        # exists (will if it was last run) 
        if arcpy.Exists("current_CBD_temp_diss_lyr") == 1: 
            arcpy.Delete_management("current_CBD_temp_diss_lyr","LAYER") 
             
        #Delete current CBD shapefile if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("current_CBD.shp") == 1: 
            arcpy.Delete_management("current_CBD.shp","SHAPEFILE") 
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        #Delete current CBD layer if it already exists 
        # (will if it was last run) 
        if arcpy.Exists("current_CBD_lyr") == 1: 
            arcpy.Delete_management("current_CBD_lyr","LAYER") 
 
        ############################################################ 
        ##Run Cluster and Outlier Analysis (Local Morans I) on EUC## 
        ############################################################ 
             
        #Select all blocks in current EUC and create a temporary shapefile 
        # to use for SWM 
        euc_select_sql = ' "EUC_Name" = \'%s\' '%(current_EUC_name) 
        arcpy.SelectLayerByAttribute_management("EUC_lyr","NEW_SELECTION", 
            euc_select_sql) 
        arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
            "EUC_lyr",selection_type="NEW_SELECTION") 
        arcpy.Select_analysis("blk_lyr","EUC_blks_temp") 
         
        #Create Spatial Weights Matrix for Morans I Calculations 
        arcpy.GenerateSpatialWeightsMatrix_stats("EUC_blks_temp.shp","id", 
            "current_EUC_weights.swm","INVERSE_DISTANCE","EUCLIDEAN",1, 
            "#","#","ROW_STANDARDIZATION") 
 
        #Run Cluster and Outlier Analysis (Local Morans I) 
        arcpy.ClustersOutliers_stats("EUC_blks_temp.shp",employ_field, 
            "current_EUC_ClusterOutlier.shp", 
            "GET_SPATIAL_WEIGHTS_FROM_FILE","#","#","#", 
            "current_EUC_weights.swm") 
 
        #Make Cluster/Outlier file a layer 
        arcpy.MakeFeatureLayer_management("current_EUC_ClusterOutlier.shp", 
            "current_EUC_ClusterOutlier_lyr") 
 
        ################################################################# 
        ##Select blocks with appropriate z-values to be included in CBD## 
        ##and append to current CBD file                               ## 
        ################################################################# 
         
        #Select all blocks with z value >= 1 and create new shapefile 
        arcpy.Select_analysis("current_EUC_ClusterOutlier_lyr", 
            "current_CBD_temp",' "LMiZScore" >= 1 ') 
 
        #Make temporary current CBD file a layer 
        arcpy.MakeFeatureLayer_management("current_CBD_temp.shp", 
            "current_CBD_temp_lyr") 
 
        #Select all blocks touching a current CBD block 
        # and remove low-z blocks (z > -1 and < 0) 
        arcpy.SelectLayerByLocation_management( 
            "current_EUC_ClusterOutlier_lyr","BOUNDARY_TOUCHES", 
            "current_CBD_temp_lyr",selection_type="NEW_SELECTION") 
        arcpy.SelectLayerByLocation_management( 
            "current_EUC_ClusterOutlier_lyr","ARE_IDENTICAL_TO", 
            "current_CBD_temp_lyr",selection_type="REMOVE_FROM_SELECTION") 
        arcpy.SelectLayerByAttribute_management( 
            "current_EUC_ClusterOutlier_lyr","REMOVE_FROM_SELECTION", 
            ' "LMiZScore" > -1 AND "LMiZScore" < 0') 
 
        #Append all new blocks to current CBD file 
        arcpy.Append_management("current_EUC_ClusterOutlier_lyr", 
            "current_CBD_temp.shp","NO_TEST") 
 
        ################################### 
        ##Add donut blocks to current CBD## 
        ################################### 
         
        arcpy.Union_analysis("current_CBD_temp.shp","blk_donuts", 
            gaps="NO_GAPS") 
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        arcpy.MakeFeatureLayer_management("blk_donuts.shp", 
            "blk_donuts_lyr") 
        arcpy.SelectLayerByAttribute_management("blk_donuts_lyr", 
            "NEW_SELECTION",' "FID_curren" = -1 ') 
        arcpy.SelectLayerByLocation_management("blk_lyr","WITHIN", 
            "blk_donuts_lyr",selection_type="NEW_SELECTION") 
        arcpy.Append_management("blk_lyr","current_CBD_temp.shp","NO_TEST") 
 
        ################################################################# 
        ##Prepare CBD polygon to be added to the CBD polygons shapefile## 
        ################################################################# 
             
        #Dissolve CBD temp file 
        arcpy.Dissolve_management("current_CBD_temp.shp", 
            "current_CBD_temp_diss","","","SINGLE_PART","") 
 
        #Make temporary dissolved current CBD file a layer 
        arcpy.MakeFeatureLayer_management("current_CBD_temp_diss.shp", 
            "current_CBD_temp_diss_lyr") 
 
        #Select only polygon for principle city and create new shapefile 
        arcpy.SelectLayerByLocation_management("current_CBD_temp_diss_lyr", 
            "CONTAINS","CBD_Points_lyr",selection_type="NEW_SELECTION") 
        arcpy.Select_analysis("current_CBD_temp_diss_lyr","current_CBD") 
 
        #Add in a name field to the file 
        arcpy.AddField_management("current_CBD.shp","Name","TEXT", 
            "","",128) 
 
        #Make current CBD file a layer 
        arcpy.MakeFeatureLayer_management("current_CBD.shp", 
            "current_CBD_lyr") 
 
        #Create a dummy cursor and use it to loop through CBDs in current 
        # file - Will actually only loop once to set current CBD name 
        dummy_cursor = arcpy.UpdateCursor("current_CBD_lyr") 
        for dummy_value in dummy_cursor: 
            dummy_value.setValue("Name",current_EUC_name) 
            dummy_cursor.updateRow(dummy_value) 
 
        #################################################### 
        ##Append CBD polygon to the CBD polygons shapefile## 
        #################################################### 
             
        #Create file if first iteration, otherwise, append to file 
        if loop_count == 1: 
            arcpy.Select_analysis("current_CBD_lyr","CBD_polygons") 
        else: 
            arcpy.Append_management("current_CBD_lyr","CBD_polygons.shp", 
                "NO_TEST") 
         
        #Increase loop counter for next iteration 
        loop_count = loop_count + 1 
 
#################################### 
##Cleanup all temporary shapefiles## 
#################################### 
 
#Delete EUC layer, blk layer, and CBD points layer for cleanup purposes 
if arcpy.Exists("EUC_lyr") == 1: 
    arcpy.Delete_management("EUC_lyr","LAYER") 
if arcpy.Exists("blk_lyr") == 1: 
    arcpy.Delete_management("blk_lyr","LAYER") 
if arcpy.Exists("CBD_Points_lyr" == 1): 
    arcpy.Delete_management("CBD_Points_lyr","LAYER") 
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#Delete temporary EUC block layer for cleanup purposes 
if arcpy.Exists("EUC_blks_temp.shp") == 1: 
    arcpy.Delete_management("EUC_blks_temp.shp","SHAPEFILE") 
                 
# Delete Spatial Weights Matrix for cleanup purposes 
if os.path.isfile(home_folder + "\current_EUC_weights.swm"): 
    os.remove(home_folder + "\current_EUC_weights.swm") 
 
#Delete Morans I output shapefile and layer for cleanup purposes 
if arcpy.Exists("current_EUC_ClusterOutlier.shp") == 1: 
    arcpy.Delete_management("current_EUC_ClusterOutlier.shp","SHAPEFILE") 
if arcpy.Exists("current_EUC_ClusterOutlier_lyr") == 1: 
    arcpy.Delete_management("current_EUC_ClusterOutlier_lyr","LAYER") 
 
#Delete temporary current CBD shapefile and layer for cleanup purposes 
if arcpy.Exists("current_CBD_temp.shp") == 1: 
    arcpy.Delete_management("current_CBD_temp.shp","SHAPEFILE") 
if arcpy.Exists("current_CBD_temp_lyr") == 1: 
    arcpy.Delete_management("current_CBD_temp_lyr","LAYER") 
 
#Delete donut blocks shapefile and layer for cleanup purposes 
if arcpy.Exists("blk_donuts.shp") == 1: 
    arcpy.Delete_management("blk_donuts.shp","SHAPEFILE") 
if arcpy.Exists("blk_donuts_lyr") == 1: 
    arcpy.Delete_management("blk_donuts_lyr","LAYER") 
 
#Delete dissolved temp current CBD shapefile and layer for cleanup purposes 
if arcpy.Exists("current_CBD_temp_diss.shp") == 1: 
    arcpy.Delete_management("current_CBD_temp_diss.shp","SHAPEFILE") 
if arcpy.Exists("current_CBD_temp_diss_lyr") == 1: 
    arcpy.Delete_management("current_CBD_temp_diss_lyr","LAYER") 
 
#Delete current CBD shapefile and layer for cleanup purposes 
if arcpy.Exists("current_CBD.shp") == 1: 
    arcpy.Delete_management("current_CBD.shp","SHAPEFILE") 
if arcpy.Exists("current_CBD_lyr") == 1: 
    arcpy.Delete_management("current_CBD_lyr","LAYER") 
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Appendix E: WalkScore_Locator.py – Full Python Script 
 
###########################WalkScore_Locator.py############################ 
##This program queries WalkScore.com to collect and report Walk Scores   ## 
##for lat/lon pairs.  Currently the program works for as many pairs as   ## 
##the user would like.  The program currently accepts a CSV file that has## 
##only three columns, an identifier, a latitude, and a longitude.  The   ## 
##file appends a column of Walk Scores to a new file. This program should## 
##be executed and the Walk Score column should be added to the block file## 
##before running EUC_Metrics.py.                                         ## 
########################################################################### 
 
#Import Libraries 
import urllib2 
import csv 
import time 
 
#Initialize folder and file locations 
blk_file_addr = 'H:/PHD/Metrics/block_latlon.csv' 
write_file_addr = 'H:/PHD/Metrics/block_ws_all.csv' 
 
#Initialize string where the Walk Score will be found in the source code 
find_string = 'has a Walk Score of ' 
find_str_len = len(find_string) 
 
#Open the block CSV file 
with open(blk_file_addr) as readfile: 
 
    #Create a blank list that will store Walk Scores 
    new_rows_list = [] 
     
    #Loop though each row of the block CSV file to calculate Walk Score 
    # for each block lat/lon 
    readdata = csv.reader(readfile) 
    for readrow in readdata: 
        #Try to get the numeric value of the first entry in the row 
        try: 
            float(readrow[0]) 
        #If this fails, this should be the header row, store header labels 
        # and skip to next loop iteration 
        except ValueError: 
            col1_name = readrow[0] 
            col2_name = readrow[1] 
            col3_name = readrow[2] 
            continue 
        #As long as the row only has three columns, store these as the 
        # geographic id, latitude, and longitude 
        if len(readrow) == 3: 
            gid = readrow[0] 
            lat = readrow[1] 
            lon = readrow[2] 
 
            #Preprocess latitude and longitude values for proper formatting 
            # as expected by WalkScore.com by first removing + signs and 
            # then removing leading 0s.  Walk Score site has a problem with 
            # leading 0s giving different scores even though otherwise 
            # identical numbers are used 
            if lat[0] == '+': 
                lat = lat[1:] 
            if lon[0] == '+': 
                lon = lon[1:] 
            if lon[0] == '-' and lon[1] == '0':  
                lon = lon[0] + lon[2:] 
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            #Create the web address to be called 
            url_str = ('https://www.walkscore.com/score/loc/lat=' + 
                lat + '/lng=' + lon) 
 
            #Try to call the website and receive a response.  If it fails, 
            # pause for 10 seconds and keep trying until it succeeds. 
            # Site tends to fail every 1000 calls or so. 
            loaded = 0 
            while loaded == 0: 
                try: 
                    req = urllib2.Request(url_str) 
                    response = urllib2.urlopen(req) 
                    loaded = 1 
                except: 
                    time.sleep(10) 
                     
            #Store the source code for the page 
            page_data_full = response.read() 
 
            #Find the string that preempts the Walk Score value in the 
            # source code 
            ws_position_start = page_data_full.find(find_string) 
 
            #If find command succeeds, store the value 
            if ws_position_start <> -1: 
 
                #Locate Walk Score position and store 3 possible values for 
                # Walk Score (in case it is a three digit value, e.g., 100) 
                ws_position = ws_position_start + find_str_len 
                ws_string_1 = page_data_full[ws_position] 
                ws_string_2 = page_data_full[ws_position+1] 
                ws_string_3 = page_data_full[ws_position+2] 
 
                #Store the Walk Score 
                # If value is single digit, store just 1 character 
                # If two digits, store 2 characters 
                # If three digits, store 3 characters 
                if ws_string_2 == ' ': 
                    ws_string = ws_string_1 
                elif ws_string_3 == ' ': 
                    ws_string = ws_string_1 + ws_string_2 
                else: 
                    ws_string = ws_string_1 + ws_string_2 + ws_string_3 
 
                #Convert Walk Score to a number 
                walk_score = int(ws_string) 
 
            #If find command failed, assume Walk Score is 0 
            else: 
                walk_score = 0 
 
            #Create a new row to be appended to the list and append the row 
            new_row = [gid, lat, lon, walk_score] 
            new_rows_list.append(new_row) 
 
#Close the file after all blocks are complete 
readfile.close() 
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#Open the new file for writing 
with open(write_file_addr,'ab') as writefile: 
    writedata = csv.writer(writefile) 
 
    #Write the column headers 
    writedata.writerow([col1_name,col2_name,col3_name,'WalkScore']) 
 
    #Loop through each row in the list of Walk Scores and write the row to 
    # the new CSV file 
    for row in new_rows_list: 
        writedata.writerow([row[0], row[1], row[2], row[3]]) 
 
#Close the file after all blocks have been written to the file 
writefile.close() 
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Appendix F: EUC_Sprawl_Score.py – Full Python Script 
 
#############################EUC_Sprawl_Score.py########################### 
##This program uses Principal Components Analysis (PCA) to calculate four## 
##factor category scores: development density, land use mix, activity    ## 
##centering, and street accessibility.  These scores are then weighted   ## 
##and an overal Sprawl Score is calculatd for each of the 42 pilot EUCS. ## 
##This program should be executed only after using EUC_metrics.py to     ## 
##solve for the 21 metric values.  No steps need to be completed prior to## 
##executing other than that.  The only input file is EUC_All.shp.  The   ## 
##five values are appended to this file and it is the only output.  The  ## 
##approach used to complete the PCA and the Sprawl Score calculation is  ## 
##outlined in the dissertation Chapter 7, but there should be enough     ## 
##comments here to follow along.                                         ## 
########################################################################### 
 
#Note: Uses city population - must be pre-joined as of the current 
#version - should be updated so that this data comes from 2010 places 
#with demographics joined 
 
#Import Libraries and checkout extensions 
import numpy 
import arcpy 
 
################### 
##Initializations## 
################### 
 
#Initialize folder and file locations 
arcpy.env.workspace = "H:\PHD\Metrics" #Set location of working folder 
EUC_file = "EUC_All.shp" 
 
#Set groups of cities to be used for PCA 
#This version of the program calculates PCA once for each group 
#Each row is a separate group 
#The pilot group inlcudes four groups, totaling 42 cities 
Name_Group =[["Traverse City, MI", "Adrian, MI","Mount Pleasant, MI", 
              "Marquette, MI"], 
             ["Owosso, MI","Escanaba, MI","Alma--St. Louis, MI", 
              "Coldwater, MI","Houghton, MI","Ionia, MI","Alpena, MI", 
              "Big Rapids, MI","Lapeer, MI","Sault Ste. Marie, MI", 
              "Sturgis, MI","Cadillac, MI","Hillsdale, MI", 
              "Ludington, MI"], 
             ["Greenville, MI","Manistee, MI","Houghton Lake, MI", 
              "Gaylord, MI","Petoskey, MI","Hastings, MI","Caro, MI"], 
             ["Cheboygan, MI","Fremont, MI","East Tawas, MI", 
              "Charlevoix, MI","Grayling, MI","Harrison, MI","Bad Axe, MI", 
              "Manistique, MI","Newberry, MI","Iron River, MI", 
              "Munising, MI","Gladwin, MI","Sandusky, MI","Kalkaska, MI", 
              "Rogers City, MI","Hart, MI","St. Ignace, MI"]] 
 
#Number of principal components to use from PCA 
num_components = 1 
 
#Initialize number of variables per category 
num_vars_d = 8 #_d for development [d]ensity (used throughout program) 
num_vars_m = 3 #_m for land use [m]ix (used throughout program) 
num_vars_c = 5 #_c for activity [c]entering (used throughout program) 
num_vars_s = 5 #_s for [s]treet accessibility (used throughout program) 
     
##################### 
##Create New Fields## 
##################### 
 
#F1 - Development Density (uses metrics D1-D8) 
arcpy.AddField_management(EUC_file,"EW_F1_dens","DOUBLE") 
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#F2 - Mixed Use (uses metrics M1-M3) 
arcpy.AddField_management(EUC_file,"EW_F2_mixu","DOUBLE") 
 
#F3 - Centering (uses metrics C1-C5) 
arcpy.AddField_management(EUC_file,"EW_F3_cntr","DOUBLE") 
 
#F4 - Street (uses metrics S1-S5) 
arcpy.AddField_management(EUC_file,"EW_F4_strt","DOUBLE") 
 
#Final Sprawl Score 
arcpy.AddField_management(EUC_file,"SprwlScore","DOUBLE") 
 
############################## 
##Make Layers for Processing## 
############################## 
 
#Make EUC a layer 
if arcpy.Exists("EUC_lyr") == 1: 
    arcpy.Delete_management("EUC_lyr","LAYER") 
arcpy.MakeFeatureLayer_management(EUC_file,"EUC_lyr") 
     
################################################# 
##Main Loop - for each group in the pilot group## 
################################################# 
 
for i in range(0,len(Name_Group)): 
 
    ################################################# 
    ##Initializations for current iteration of loop## 
    ################################################# 
     
    #Initialize arrays for each of the 21 metrics 
    EWpopden = numpy.array([]) #D1 
    EWempden = numpy.array([]) #D2 
    EWlt1500 = numpy.array([]) #D3 
    EWgt12500 = numpy.array([]) #D4 
    EWurbden = numpy.array([]) #D5 
    EWdgcent = numpy.array([]) #D6 
    EWpopdcen = numpy.array([]) #D7 
    EWempdcen = numpy.array([]) #D8 
    EWjobpop = numpy.array([]) #M1 
    EWjobmix = numpy.array([]) #M2 
    EWwalkscor = numpy.array([]) #M3 
    EWvarpop = numpy.array([]) #C1 
    EWvaremp = numpy.array([]) #C2 
    EWdgrad = numpy.array([]) #C3 
    EWpopcen = numpy.array([]) #C4 
    EWempcen = numpy.array([]) #C5 
    EWsmlblk = numpy.array([]) #M1 
    EWavgblksz = numpy.array([]) #M2 
    EWavgblkln = numpy.array([]) #M3 
    EWintden = numpy.array([]) #M4 
    EW4way = numpy.array([]) #M5 
 
    #Initiailize an array for population of the EUC 
    EUCpop = numpy.array([]) 
 
    ######################### 
    ##Loop 2 - for each EUC## 
    ######################### 
 
    #Loop 2 and 3 will go through each EUC in the name group 
    # and add all metrics to the metric arrays 
     
    #Create a cursor to go through each EUC 
    EUC_cursor = arcpy.SearchCursor("EUC_lyr") 
    for current_EUC in EUC_cursor: 
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        #Store the name of the current EUC 
        current_EUC_name = current_EUC.getValue("EUC_Name") 
 
        #################################################### 
        ##Loop 3 - for each name in the current name group## 
        #################################################### 
         
        for j in range(0,len(Name_Group[i])): 
 
            #if current EUC row matches the name of the EUC in the current 
            # name group, then append all metric values onto arrays 
            if current_EUC_name == Name_Group[i][j]: 
                EWpopden = numpy.append(EWpopden, 
                    current_EUC.getValue("EWpopden")) 
                EWempden = numpy.append(EWempden, 
                    current_EUC.getValue("EWempden")) 
                EWlt1500 = numpy.append(EWlt1500, 
                    current_EUC.getValue("EWlt1500")) 
                EWgt12500 = numpy.append(EWgt12500, 
                    current_EUC.getValue("EWgt12500")) 
                EWurbden = numpy.append(EWurbden, 
                    current_EUC.getValue("EWurbden")) 
                EWdgcent = numpy.append(EWdgcent, 
                    current_EUC.getValue("EWdgcent")) 
                EWpopdcen = numpy.append(EWpopdcen, 
                    current_EUC.getValue("EWpopdcen")) 
                EWempdcen = numpy.append(EWempdcen, 
                    current_EUC.getValue("EWempdcen")) 
                EWjobpop = numpy.append(EWjobpop, 
                    current_EUC.getValue("EWjobpop")) 
                EWjobmix = numpy.append(EWjobmix, 
                    current_EUC.getValue("EWjobmix")) 
                EWwalkscor = numpy.append(EWwalkscor, 
                    current_EUC.getValue("EWwalkscor")) 
                EWvarpop = numpy.append(EWvarpop, 
                    current_EUC.getValue("EWvarpop")) 
                EWvaremp = numpy.append(EWvaremp, 
                    current_EUC.getValue("EWvaremp")) 
                EWdgrad = numpy.append(EWdgrad, 
                    current_EUC.getValue("EWdgrad")) 
                EWpopcen = numpy.append(EWpopcen, 
                    current_EUC.getValue("EWpopcen")) 
                EWempcen = numpy.append(EWempcen, 
                    current_EUC.getValue("EWempcen")) 
                EWsmlblk = numpy.append(EWsmlblk, 
                    current_EUC.getValue("EWsmlblk")) 
                EWavgblksz = numpy.append(EWavgblksz, 
                    current_EUC.getValue("EWavgblksz")) 
                EWavgblkln = numpy.append(EWavgblkln, 
                    current_EUC.getValue("EWavgblkln")) 
                EWintden = numpy.append(EWintden, 
                    current_EUC.getValue("EWintden")) 
                EW4way = numpy.append(EW4way, 
                    current_EUC.getValue("EW4way"))    
                 
                #Note - Largest group uses average of four populations 
                # Smallest group uses city population 
                # Middle groups use EUC population 
                # This should be modified for future implementations 
                if i == 0: 
                    pop_use = 56947 
                elif i == 3: 
                    pop_use = current_EUC.getValue("pop_city") 
                else: 
                    pop_use = current_EUC.getValue("pop") 
                EUCpop = numpy.append(EUCpop,pop_use) 
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        ######################### 
        ##End Loop 3 and Loop 2## 
        ######################### 
 
    #Concatenate metric scores into category arrays 
    EWdensity = numpy.array([EWpopden,EWempden,EWlt1500,EWgt12500,EWurbden, 
        EWdgcent,EWpopdcen,EWempdcen]) 
    EWmixuse = numpy.array([EWjobpop,EWjobmix,EWwalkscor]) 
    EWcentering = numpy.array([EWvarpop,EWvaremp,EWdgrad,EWpopcen, 
        EWempcen]) 
    EWstreet = numpy.array([EWsmlblk,EWavgblksz,EWavgblkln,EWintden, 
        EW4way]) 
 
    ################################# 
    ##Principal Components Analysis## 
    ################################# 
     
    ##PCA - Step 1 - Correlation matrices## 
    #Determine correlation matrices for each category 
    corrmat_d = numpy.corrcoef(EWdensity) 
    corrmat_m = numpy.corrcoef(EWmixuse) 
    corrmat_c = numpy.corrcoef(EWcentering) 
    corrmat_s = numpy.corrcoef(EWstreet) 
 
    ##PCA - Step 2 - Eigenvalues/eigenvectors## 
    #Determine Eigenvalue, proportions, and eigenvectors for each category 
    eig_val_d, eig_vec_d = numpy.linalg.eig(corrmat_d) 
    eig_prop_d = eig_val_d / eig_val_d.sum() 
 
    eig_val_m, eig_vec_m = numpy.linalg.eig(corrmat_m) 
    eig_prop_m = eig_val_m / eig_val_m.sum() 
 
    eig_val_c, eig_vec_c = numpy.linalg.eig(corrmat_c) 
    eig_prop_c = eig_val_c / eig_val_c.sum() 
 
    eig_val_s, eig_vec_s = numpy.linalg.eig(corrmat_s) 
    eig_prop_s = eig_val_s / eig_val_s.sum() 
     
    #Group and sort the eigenvalues, propotions, and eigenvectors 
    eig_group_d = [(eig_val_d[k],eig_prop_d[k],eig_vec_d[:,k])  
                 for k in range(len(eig_val_d))] 
    eig_group_d.sort() 
    eig_group_d.reverse() 
 
    eig_group_m = [(eig_val_m[k],eig_prop_m[k],eig_vec_m[:,k])  
                 for k in range(len(eig_val_m))] 
    eig_group_m.sort() 
    eig_group_m.reverse() 
 
    eig_group_c = [(eig_val_c[k],eig_prop_c[k],eig_vec_c[:,k])  
                 for k in range(len(eig_val_c))] 
    eig_group_c.sort() 
    eig_group_c.reverse() 
 
    eig_group_s = [(eig_val_s[k],eig_prop_s[k],eig_vec_s[:,k])  
                 for k in range(len(eig_val_s))] 
    eig_group_s.sort() 
    eig_group_s.reverse() 
     
    ##PCA - Step 3 - Weights vector## 
    #Verify that eigenvalues and eigenvectors are real 
    pc_weights_d = eig_group_d[0][2].real 
    pc_weights_m = eig_group_m[0][2].real 
    pc_weights_c = eig_group_c[0][2].real 
    pc_weights_s = eig_group_s[0][2].real 
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    #Correct for the problem where more eigenvalues are negative 
    # than positive by negating weights  
    if (pc_weights_d < 0).sum() > .5*pc_weights_d.shape[0]: 
        pc_weights_d_correct = -pc_weights_d 
    else: 
        pc_weights_d_correct = pc_weights_d 
    if (pc_weights_m < 0).sum() > .5*pc_weights_m.shape[0]: 
        pc_weights_m_correct = -pc_weights_m 
    else: 
        pc_weights_m_correct = pc_weights_m 
 
    if (pc_weights_c < 0).sum() > .5*pc_weights_c.shape[0]: 
        pc_weights_c_correct = -pc_weights_c 
    else: 
        pc_weights_c_correct = pc_weights_c 
 
    if (pc_weights_s < 0).sum() > .5*pc_weights_s.shape[0]: 
        pc_weights_s_correct = -pc_weights_s 
    else: 
        pc_weights_s_correct = pc_weights_s 
         
    #Fix problem with weights - should probably fix this for V2 
    fix_d = [1,1,-1,1,1,1,1,1] 
    fix_m = [1,1,1] 
    fix_c = [1,1,-1,1,1] 
    fix_s = [1,-1,-1,1,1] 
    pc_weights_d_correct = abs(pc_weights_d_correct) * fix_d 
    pc_weights_m_correct = abs(pc_weights_m_correct) * fix_m 
    pc_weights_c_correct = abs(pc_weights_c_correct) * fix_c 
    pc_weights_s_correct = abs(pc_weights_s_correct) * fix_s 
 
    #Compile weights matrices for each category and store 
    # first eigenvector weights only 
    #Also rechecks to make sure less values are negative than positive 
    W_d = pc_weights_d_correct.reshape(num_vars_d,1) 
    if (W_d < 0).sum() > .5*W_d.shape[0]: 
        W_d = -W_d 
         
    W_m = pc_weights_m_correct.reshape(num_vars_m,1) 
    if (W_m < 0).sum() > .5*W_m.shape[0]: 
        W_m = -W_m 
         
    W_c = pc_weights_c_correct.reshape(num_vars_c,1) 
    if (W_c < 0).sum() > .5*W_c.shape[0]: 
        W_c = -W_c 
         
    W_s = pc_weights_s_correct.reshape(num_vars_s,1) 
    if (W_s < 0).sum() > .5*W_s.shape[0]: 
        W_s = -W_s 
 
    ##PCA - Step 4 - Means and standard devations## 
    #Calculate statistics for each of the 21 metrics by category 
         
    #Means 
    means_d = EWdensity.mean(axis = 1) 
    num_vals_d = EWdensity.shape[1] 
    means_m = EWmixuse.mean(axis = 1) 
    num_vals_m = EWmixuse.shape[1] 
    means_c = EWcentering.mean(axis = 1) 
    num_vals_c = EWcentering.shape[1] 
    means_s = EWstreet.mean(axis = 1) 
    num_vals_s = EWstreet.shape[1] 
 
    #Standard Deviations 
    #multiplier converts population SD to sample SD 
    stdevs_d = (numpy.sqrt(EWdensity.var(axis = 1) * 
        num_vals_d / (num_vals_d - 1))) 
     



145 
 

    stdevs_m = (numpy.sqrt(EWmixuse.var(axis = 1) * 
        num_vals_m / (num_vals_m - 1))) 
    stdevs_c = (numpy.sqrt(EWcentering.var(axis = 1) * 
        num_vals_c / (num_vals_c - 1))) 
    stdevs_s = (numpy.sqrt(EWstreet.var(axis = 1) * 
        num_vals_s / (num_vals_s - 1))) 
 
    ##PCA - Step 5 - Z-values## 
    #Intialize standardized value arrays for each of the 21 metrics 
    # by category 
    EWdensity_standardized = numpy.array([],order=2) 
    EWmixuse_standardized = numpy.array([],order=2) 
    EWcentering_standardized = numpy.array([],order=2) 
    EWstreet_standardized = numpy.array([],order=2) 
 
    #Compile standardized values (z-values) for each of the 21 metrics 
    # by category 
    for var in range(0,num_vars_d): 
        new_array = (EWdensity[var] - means_d[var])/stdevs_d[var] 
        EWdensity_standardized = numpy.append( 
            EWdensity_standardized,new_array) 
    EWdensity_standardized = EWdensity_standardized.reshape( 
        (num_vars_d,num_vals_d)) 
 
    for var in range(0,num_vars_m): 
        new_array = (EWmixuse[var] - means_m[var])/stdevs_m[var] 
        EWmixuse_standardized = numpy.append( 
            EWmixuse_standardized,new_array) 
    EWmixuse_standardized = EWmixuse_standardized.reshape( 
        (num_vars_m,num_vals_m)) 
 
    for var in range(0,num_vars_c): 
        new_array = (EWcentering[var] - means_c[var])/stdevs_c[var] 
        EWcentering_standardized = numpy.append( 
            EWcentering_standardized,new_array) 
    EWcentering_standardized = EWcentering_standardized.reshape( 
        (num_vars_c,num_vals_c)) 
 
    for var in range(0,num_vars_s): 
        new_array = (EWstreet[var] - means_s[var])/stdevs_s[var] 
        EWstreet_standardized = numpy.append( 
            EWstreet_standardized,new_array) 
    EWstreet_standardized = EWstreet_standardized.reshape( 
        (num_vars_s,num_vals_s)) 
 
    ##PCA - Step 6 - Principal Component Extraction## 
    #Calculate score for each of the four categories 
    score = 0 #principal component 
    for var in range(0,num_vars_d): 
        score = score + W_d[var]*EWdensity_standardized[var] 
    EWdensity_score = 100 + 25*score #normalized score 
 
    score = 0 #principal component 
    for var in range(0,num_vars_m): 
        score = score + W_m[var]*EWmixuse_standardized[var] 
    EWmixuse_score = 100 + 25*score #normalized score 
 
    score = 0 #principal component 
    for var in range(0,num_vars_c): 
        score = score + W_c[var]*EWcentering_standardized[var] 
    EWcentering_score = 100 + 25*score #normalized score 
 
    score = 0 #principal component 
    for var in range(0,num_vars_s): 
        score = score + W_s[var]*EWstreet_standardized[var] 
    EWstreet_score = 100 + 25*score #normalized score 
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    ########################### 
    ##Sprawl Score Calculator## 
    ########################### 
     
    ##SS - Step 1 - Perform linear regression of scores on ln of pop## 
 
    #Calculate total of raw normalized scores 
    raw_score_total = (EWdensity_score + EWmixuse_score + EWcentering_score + 
        EWstreet_score) 
 
    #Take natural log of population vector 
    EUCpop_ln = numpy.log(EUCpop) 
 
    #Prepare population vector as a matrix 
    EUCpop_ln_matrix = numpy.vstack( 
        [EUCpop_ln, numpy.ones(len(EUCpop_ln))]).T 
 
    #Perform the linear regression storing slope and intercept 
    slope, intercept = numpy.linalg.lstsq( 
        EUCpop_ln_matrix, raw_score_total)[0] 
 
    ##SS - Step 2 - Calculate standardized reduals## 
 
    #Predict the sprawl score total from regression values 
    predicted_score_total = slope * EUCpop_ln + intercept 
 
    #Residuals are raw score minus the predicted score 
    residuals = raw_score_total - predicted_score_total 
 
    #Standardize the residuals 
    sd_residuals = numpy.sqrt( 
        numpy.var(residuals) * numpy.shape(residuals)[0] / 
        (numpy.shape(residuals)[0] - 1)) 
 
    #Calculate standard residuals - this is the raw sprawl score 
    standard_residuals = residuals / sd_residuals 
 
    ##SS - Step 3 - Calculate normalized Sprawl Score## 
    sprawl_score = 100.0 + standard_residuals * 25.0 
 
    ################################## 
    ##Store final scores in EUC file## 
    ################################## 
 
    #Initialize counter for number of scores entered 
    score_count = 0 
 
    ######################### 
    ##Loop 4 - for each EUC## 
    ######################### 
     
    #Create a cursor to go through each EUC 
    EUC_cursor = arcpy.UpdateCursor("EUC_lyr") 
    for current_EUC in EUC_cursor: 
     
        #Store the name of the current EUC 
        current_EUC_name = current_EUC.getValue("EUC_Name") 
 
        #################################################### 
        ##Loop 5 - for each name in the current name group## 
        #################################################### 
         
        #Loop through each name in the current name group 
        for j in range(0,len(Name_Group[i])): 
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            #if current EUC row matches the name of the EUC in the current 
            # name group, then store the five values in the EUC file 
            if current_EUC_name == Name_Group[i][j]: 
                 
                current_EUC.setValue("EW_F1_dens", 
                    EWdensity_score[score_count]) #F1 - Density 
                current_EUC.setValue("EW_F2_mixu", 
                    EWmixuse_score[score_count]) #F2 - Mixed Use 
                current_EUC.setValue("EW_F3_cntr", 
                    EWcentering_score[score_count]) #F3 - Centering 
                current_EUC.setValue("EW_F4_strt", 
                    EWstreet_score[score_count]) #F4 - Streets 
                current_EUC.setValue("SprwlScore", 
                    sprawl_score[score_count]) #Final Sprawl Score 
 
 
                #increment score counter 
                score_count += 1 
             
        #Update the EUC row 
        EUC_cursor.updateRow(current_EUC) 
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Appendix G: Sprawl Scorecards for All 42 Pilot Cities 
 
This section contains a Sprawl Scorecard for each of the 42 pilot cities in the study.  
They are in alphabetical order.  For an overview of the scorecards, see Chapter 7.  High 
Resolution scorecards are included in Appendix H, the enclosed DVD that is included 
in the media pocket on the inside back cover of this dissertation. 
 
The street map used in Figures G.1-G.42 is sourced from ESRI’s World Street Map 
dataset which is available for academic use [112].  Population numbers are from the 
2010 Census [7].  The rest of the data in the figures were compiled from the datasets 
used to derive the Sprawl scores [79,101,102,105,106]. 
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Appendix H: Support Files on Supplimental DVD 
 
The following folders and files are included on the DVD in the media pocket on the 
inside back cover of this dissertation.  Each Python script is in a separate folder which 
includes all files necessary to run the script. 
 

 CBD_Creator 
o CBD_Creator.py 
o CBD_Points_UA_Named_City_Only.shp* 
o EUC_All.shp* 
o tl_2010_26_tabblock10.shp* 

 EUC_Creator 
o EUC_All.shp* 
o EUC_Creator.py 
o EUC_Pilot.shp* 
o MI_UAC_2010.shp* 
o ruca2010Michigan.csv 
o tl_2010_26_bg10.shp* 
o tl_2010_26_tabblock10.shp* 

 EUC_Metrics 
o EUC_Metrics.py 
o allroads_miv14a.shp* 
o CBD_Points_UA_Named_City_Only.shp* 
o CBD_polygons_all.shp* 
o EUC_All.shp* 
o intersections_MI_EUC.shp* 
o mi_wac_S000_JT01_2010.csv 
o NLCD_table.dbf^ 
o tl_2010_26_tabblock10.shp* 

 EUC_Sprawl_Score 
o EUC_All.shp 
o EUC_Sprawl_Score.py 

 Final_EUC_Shapefile 
o EUC_All.shp 

 Sprawl_Scorecards 
o CityX_Scorecard.pdf# 

 WS_Locator 
o block_latlon.csv 
o WalkScore_Locator.py 

 
*Shapefiles are actually a collection of between 4 and 7 files 
#42 files where CityX is the city name 
^NLCD raster file to produce table not included as it is 16GB.  The file can be obtained  
  at http://www.mrlc.gov/ 
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