
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2015

ACCESS CONTROL PROGRAMMING LIBRARY AND EXPLORATION ACCESS CONTROL PROGRAMMING LIBRARY AND EXPLORATION

SYSTEM SYSTEM

Zhitao Qiu
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Information Security Commons

Copyright 2015 Zhitao Qiu

Recommended Citation Recommended Citation
Qiu, Zhitao, "ACCESS CONTROL PROGRAMMING LIBRARY AND EXPLORATION SYSTEM", Master's report,
Michigan Technological University, 2015.
https://digitalcommons.mtu.edu/etds/912

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Information Security Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151508613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.mtu.edu%2Fetds%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.mtu.edu%2Fetds%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages

ACCESS CONTROL PROGRAMMING LIBRARY AND

EXPLORATION SYSTEM

By

Zhitao Qiu

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2015

© 2015 Zhitao Qiu

This report has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Advisor: Dr. Jean Mayo

Committee Member: Dr. Ching-Kuang Shene

Committee Member: Dr. Min Wang

Department Chair: Dr. Min Song

Dedication

To my mother, teachers and friends

who didn’t hesitate to criticize my work at every stage - without which I would neither

be who I am nor would this work be what it is today.

Contents

List of Figures . xi

List of Tables . xiii

Abstract . xv

1 Introduction . 1

1.1 Introduction . 1

1.2 Motivation . 2

2 Background . 5

2.1 Domain and Type Enforcement (DTE) 6

2.1.1 Introduction . 6

2.1.2 DTEvisual . 7

2.2 Multi-level Security (MLS) . 10

2.2.1 Introduction . 10

2.2.2 MLSvisual . 11

2.3 Role-based Access Control(RBAC) 14

2.3.1 Introduction . 14

vii

2.3.2 RBCvisual . 14

3 Implementation . 17

3.1 Introduction . 17

3.2 Programming library . 19

3.2.1 Introduction . 19

3.2.2 Wrapper API Design Principles 19

3.2.3 API Initialization and Termination Function 20

3.2.4 System Call Functions . 22

3.2.4.1 Common Steps of Making Access Control Request 22

3.2.4.2 Functions Introduction 24

3.3 Access Control Engine . 27

3.3.1 Design Structure . 27

3.3.2 Access Control Decision . 30

3.4 TCP - Process Communication . 31

3.4.1 TCP Server and Handler in the Python Engine 32

3.4.2 TCP Client in the Programming Library 33

3.5 Visualization Interface . 35

4 Test . 37

4.1 Introduction . 37

4.2 Test Tool . 38

4.3 Test Strategy . 40

viii

4.4 Correctness Test Through Interactive Command Mode 41

4.5 Correctness Test Through Container Mode 46

4.6 System Robustness Test . 50

4.6.1 Invalid Case Handling . 50

4.6.2 Stressful Condition Test . 51

4.7 Visualization Interface Test . 52

5 Conclusion and Future Work . 55

6 References . 57

A Specification . 61

A.1 DTE SPECIFICATION SYNTAX 61

A.2 MLS SPECIFICATION . 64

ix

List of Figures

2.1 DTE General Graph and Type Graph 8

(a) General Graphs . 8

(b) Type Graph . 8

2.2 MLS General Graph and Object Graph 12

(a) General Graphs . 12

(b) Object Graph . 12

2.3 RBAC Hierarchy View . 15

3.1 Programming Library Exploration System Design 18

3.2 Policy Engine Structure . 27

4.1 Visualization Interface Test . 53

xi

List of Tables

3.1 acv init Parameters Mapping Table 22

3.2 Permission Mode Mapping Table For Accessing a Directory 26

xiii

Abstract

The high complexity of advanced security models in the modern trusted systems

requires an effective formal education for students. Education access control tools

have been promoted. Though they can benefit the learning through analyzing or

visualizing access control policies, few of them are designed to teach development of

access control policies.

In this report, we propose an access control programming library which can provide

students hand-on experience with the effect of an access control policy on a running

program. A student can write a policy and then run programs under the policy.

The Programming Library provides a system call wrapper API which enforces the

developed policy in the execution of a process. The program and policy exist at the

user level. No administrator access is required. From another hand, students can

monitor how the process is affected by the policy through this tool and adjust the

rules accordingly. Furthermore, an Access Control Shell was designed as an interactive

command interface to execute the wrapper APIs, as well as a test platform or a

container to launch student program. Finally, we defined an interface for further

communication with existing visualization tools, which depict the program execution

using visualizations specific to the policy model.

xv

Chapter 1

Introduction

1.1 Introduction

In a trusted system, the principle of least privilege is applied to make sure that

only essential information or resources are provided to complete a task. Fine-grained

enforcement of the policy rules and mandatory controls for the organization security

policy are required. Advanced access control technologies and sophisticated abstract

security models have evolved, such as Domain Type Enforcement (DTE) [1], Multi-

level Security (MLS) [6] and Role-based Access Control (RBAC) [7]. These models

enforce the above mentioned principle effectively in modern security systems.

The real system usually contains mixture of those advanced models which significantly

1

increase the complexity of learning. Hence, formal education must be provided to

students to apply the sophisticated technologies correctly [2]. Yet, in order to achieve

effective education in this area, students need hands-on experience to develop a deeper

understanding of multiple security models.

There are some implementations of these access control security models like Redhat

Linux. However, these are problematic for direct use in security education due to

the complexity of large policies with mixed security models and great administration

overhead. Instead, a simplified and customized pedagogical system is more suitable

for teaching principles and performing assignments through combining different tech-

nologies and tools. This cuts the learning curve and encourages students to gain

experience.

1.2 Motivation

Pedagogical visualization tools (DTEvisual, MLSvisual, RBCvisual) have been de-

signed separately to depict the security models and allow students to develop or

analyze a policy [3,4]. These, which deploys specific graphs to analyze the security

policies , or allow students to develop a policy form scratch. These tools benefit

students by building a solid understanding in the security models, and improve the

effectiveness of security education.

2

However, in order for students to understand the effect of a policy on the dynamic

system of processes that comprise a real system, an access control programming

library that wraps the system call API to enforce the Mandatory Access Control

policies. This allows students to monitor and explore the credentials of processes

during their execution.

We developed a system call wrapper API that allows students to run a program

under a policy they develop. RBAC, MLS, and DTE are all supported. Policies are

implemented at the user level. No administrator privilege is required. The running

program can interact with existing model-specific visualization systems to further

help students understand policy development under modern models of access control.

3

Chapter 2

Background

This chapter introduces the fundamental technologies of Mandatory Access Control

and related work.

Mandatory Access Control (MAC) is usually enforced by an organization’s security

policy and is not at the discretion of any single user[2]. In MAC, even the root user is

constrained by the policy. In contrast, Discretionary Access Control (DAC) system

users or owners have control over the resources assigned. Just like in Unix file system,

DAC users can change file permissions for User, Group and Others [5].

The following sections will introduce three types of MAC security models in detail.

The visualization tool for each model has been developed to assist students in analyze

and developing related policies. Each tool contains different graphs based on the

5

characteristics of the specific models. These tools operate on the policies written in

model specific languages and implement parsers to translate the policy specification

to access control matrix. The syntax for each model specification is introduced in the

tool section.

2.1 Domain and Type Enforcement (DTE)

2.1.1 Introduction

DTE is an enhanced type enforcement access control technology, where system is

partitioned into different access control domains and types [1]. In type enforcement

for UNIX, domains are defined as collections of active subjects (processes) and types

are associated with passive objects (files, messages, other resources) [1].

Instead of using complex tables to stand for authorized access modes between domains

and types or domains and domains, DTE System enforces the access control policies

through a high level language called DTE Language (DTEL) [1]. Access to objects

in different domains are decided through the specifications written in DTEL. In a

DTE UNIX system, access control rules in a DTEL specification are processed and

enforced at the level of UNIX kernel [1]. Access rights are granted to domains which

group the processes. Therefore, even root processes in DTE UNIX are subjected to

6

DTE policy.

DTE provides a process oriented access control[2] by placing statements on domains,

which constrain the exact object types that each process or subject can access. This

helps students to think about the principle of least privilege from the view of subject

precisely. Aforementioned benefits of DTE and further applications in education are

introduced in Carr and Mayo’s paper [2], which forms one important foundation for

this project.

The syntax of DTEL is described in next subsection.

2.1.2 DTEvisual

DTEvisual is a visualization tool to facilitate the learning of DTE, which provides two

graphical visualizations for a selected DTE policy: the General Graph and the Type

Graph [3]. The General Graph depicts domains, types, transitions between domains,

and access from domains to a given type.The Type Graph shows object types and is

displayed using a radial tree. All the files at the same level in the directory hierarchy

are connected using a dotted circle. Directories are indicated by a trailing slash.

Different types are identified through color of the labels [3]. Figure 2.2 shows the two

type of graphs.

7

(a) General Graphs (b) Type Graph

Figure 2.1: DTE General Graph and Type Graph

Users can create a DTE specification from scratch using the graph operations, or they

can import the specification, and then analyze and modify the graph.

DTE specification in DTEvisual is a text-based policy which follows specific syntax

of Domain Type Enforcement Language (SDTEL). The list 2.1 is a sample of SDTEL

specification. Please see detailed specification syntax introduction in Appendix A.

8

Listing 2.1: DTE Sample Specification

type dte_t ,readable_t ,generic_t ,writable_t ,sysbin_t ,log_t;

domain login_d = (/usr/bin/login),

(cdrw ->writable_t),

(exec ->student_d ,admin_d);

(dr ->generic_t ,dte_t),

domain admin_d = (/usr/bin/{sh,csh ,ksh}),

(cdrwx ->generic_t);

(drwx ->dte_t ,writable_t ,readable_t ,sysbin_t),

domain student_d = (/usr/bin/{sh ,csh ,ksh}),

(drx ->sysbin_t),

(cdrwx ->generic_t),

(dr ->readable_t),

(drw ->writable_t ,dte_t);

initial_domain = login_d;

assign -r log_t /usr/data/log;

assign -r generic_t /;

assign -r readable_t /etc/test/;

assign -r -s sysbin_t /usr/bin ,/bin ,/sbin;

assign -r writable_t /usr/data/record ,/temp;

assign -r -s dte_t /dte/policy;

9

2.2 Multi-level Security (MLS)

2.2.1 Introduction

MLS is based on the Bell-LaPadula model, which is consistent with military-style

classifications [13]. MLS uses categories on objects and clearances for subjects. In the

confidentiality classification, security clearances reflect the order of security sensitive

levels; categories comes from the “need to know” principle[13] that subjects should

only be granted to read the objects required by the job. For example, the security

clearances range from top-secret to public, and categories range from weapon to

mobile-device. Security levels combine clearances and categories. For example, Jack

is cleared into the level (top-secret, weapon, mobile-device), and a tank document is

at the level of (secret, weapon). In this example, Jack can read the tank document.

The dominates relation can be suggested from this example, which is defined as below:

Dominates: the security level (L,C) dominates the security level (L′, C ′)

if and only if L′ ≤ L and C ′ ⊆ C[13].

The set of security levels form a lattice corresponding to the domination relation from

the power set of that set[13]. The domination relation decides the access rights. In

the example above, level (top-secret, weapon, mobile-device) dominates level (secret,

10

weapon). Jack can read access to the tank document. The access control process

induced from the domination relation can be simply characterized by the phrase “no

read up and no write down” [5]. This phrase reflects two important properties: simple

security property and star-property. The simple security property prevents a subject

read an object of a higher security level; meanwhile, the star-property requires a

subject not write to a lower security level object [5]. Hence, in this example, Star-

property further can prevent Jack write access to the tank document, which constrains

the information flow from high to low.

2.2.2 MLSvisual

The visualization tool MLSvisual focuses on the interpretation of the security level

hierarchy as well as the read and write permissions to files for users with different

clearance levels. Figure 2.2 shows two types of MLS graphs. The General Graph

allows users to explore the lattice formed by the set of security levels by building

portions of interest. For example, the user may select a node and add its predecessors

or successors, or select two nodes and build that portion of the lattice that connects

them. The Object Graph depicts the security levels assigned to objects, which forms

concentric circles surrounding the root directory. Each node consists of two colors,

left for clearance and the right for the category [4].

11

(a) General Graphs (b) Object Graph

Figure 2.2: MLS General Graph and Object Graph

MLS Specification syntax is similar to SDTEL, but has its own semantics. List 2.2 is

a sample of this. Detailed illumination can be found in Appendix A.

12

Listing 2.2: MLS Sample Specification

clearances:top <secret <topsecret <seven

#Category section: list all the categories , no order is required. Syntax: "←↩

categories: category1 , category2 , ..."

categories:Michigan ,Washington

#Assign security levels to directories in the file system. Syntax: "assign ←↩

clearance:category1:category2 :... [-r | -s] directory1 , directory2 , ..."

assign secret:Michigan -r /usr , /top

assign seven:Washington /usr/weaponCatalog

#Assign security levels to users. Syntax: "users clearance:category1:category2 :...←↩

user1 , user2 , ..."

users secret:Michigan:Washington Ning , Mike

users seven:Washington David , Jack

13

2.3 Role-based Access Control(RBAC)

2.3.1 Introduction

Role-based Access Control models only assign access rights to roles[7]. Users are

assigned to roles, and then acquire permissions through inheritance from the roles.

This feature is similar to the UNIX group based access control; it can also serve as

implementation for DAC, as well as MAC. As a generalized approach, RBAC models

are now widely accepted[7].

2.3.2 RBCvisual

RBCvisual defines two graphical views: Matrix view and Hierarchy view. Matrix view

presents two tables about the role-to-object permission and user-to-role assignment.

Hierarchy view in Figure 2.3 depicts the relationships in a graph where nodes stand

for users and roles, and edges show the inheritance relationship between the nodes.

Another graph reflects the permission assignment corresponding to the highlighted

node.

RBAC Specification syntax is more straightforward than that of the DTE and MLS

14

Figure 2.3: RBAC Hierarchy View

models. It contains three sections which define the hierarchy of the roles, the role-

to-user assignment and role-to-object assignment. Please find a sample specification

with a simple introduction in the List 2.3.

15

Listing 2.3: RBAC Sample Specification

#Section 1: define the inheritance relation between the roles

inheritance: Admin > Users

inheritance: Users > Guest

#Section 2: define the role -to -user assignment

user: Guest Gerry

user: Users Ping

user: Admin Lucy , Ping

#Section 3: define the role -to -object assignment

object: Guest ,Admin , Users r,w,x /TestFile1

object: Guest ,Admin , Users r,w /TestFile1

object: Users , Admin r,w /TestFile2

object: Admin r,w,x /TestFile2

16

Chapter 3

Implementation

3.1 Introduction

The access control programming library and related exploration system is based on

the access control policy languages adopted in the visualization tools, and the parsers

are extracted from the visualization tools mentioned in Chapter 2.

The system design contains two major components: a Programming Library (wrapper

API), a Policy Engine (policy translation and access control analysis).The system

also implements an interface to the visualization tools. The design of the exploration

system is depicted in Figure 3.1. The wrapper API are written in C. The Policy

Engine and other parts are written in Python.

17

Programming
Library ACV Agent

 Policy Engine

ACV Visualization

ACV Exploration SystemACV SHELL

Policy
Specification

Student
Program

Figure 3.1: Programming Library Exploration System Design

The Programming Library provides a wrapper API for the system call API. The

wrapper for a system call will make an appropriate access request before performing

the requested system call. Then the Engine Agent will forward the request to the

Policy Engine to make a decision. This request can trigger the visualization tool to

launch if visualization is configured and tools are in place. The model-specific graphs

can depict the policy rules in the visualization window.

TCP was used for the communications between modules including the connection

between the library and the policy engine, and the connection between the policy

engine and the visualization tools. The implementation of the process communication

for the connection between the library and the policy engine is one of the difficulties

in this project. Details regarding this will be addressed in the section of this chapter.

Finally, an Access Control Shell was created, which is an interactive command line

18

interface for the application and test of the library wrapper API. It will be introduced

in Chapter 4.

3.2 Programming library

3.2.1 Introduction

The Programming library allows students to monitor the execution of a program

under a selected policy. The program usually operates on some system resources such

as creating a file or changing a file name. The access control wrapper API of the

Programming Library will be used to replace the system call API.

The next two sections will describe the design principles of the Programming Library

and introduce the implementation of the API functions.

3.2.2 Wrapper API Design Principles

The Programming library effectively wraps the system calls through which access

requests are made. The names of routines in the wrapper API are comprised of the

string ”acv ” prepended to the corresponding system call. Additionally, some system

19

calls require parameters that are not part of the POSIX interface. For example, a call

to execvp may contain a parameter that designates the domain in which the process

will execute on successful completion of the routine.

Each model shares the same API interface, but extracts different parameters to form

the access control request. For example, in the rename wrapper API, DTE extracts

Domain ID, whereas RBAC extracts Role Name and User Name.

3.2.3 API Initialization and Termination Function

Before using the wrapper API, function acv init has to be called to execute the re-

quired initialization. acv init handles the initial setting for the access control process,

such as the policy file name with the full path; launch the Engine Agent, which cre-

ates model specific policy manager and starts TCP server. acv init will make sure

only one Engine Agent exists in the system, so that only currently selected policy file

will be enforced. At the end of the student programs, acv end must be called to clean

up the resources including termination of the Engine Agent.

20

int acv_init(const char *specPath ,const char * acv_param1 , const char *acv_param2 , ←↩

const char *vflag ,char *envp [])

acv_init initializes the access control environment variables shared by the ←↩

wrapper API based on the input , creating a new process of the Engine Agent , ←↩

which imports the policy and listens to the access control request messages.

#Input arguments :

specPath: specification name ,

acv_param1 , acv_param2: model specific , refer to Table 3.1

vflag: need visualization or not

envp: defaulted to NULL; for environmental variables

#Usage example:

acv_init(path , RoleName , username , "-V", NULL);

int acv_env_init(int argc , char *argv [])

acv_env_init is used with the test tool AC Shell , which already calls acv_init.←↩

Hence , acv_env_init will transfer the context of AC Shell to the student ←↩

program through the argc , argv variables passed by main entry function.

int acv_end ()

acv_end cleans up resources such as closing sockets and terminating the Engine ←↩

Agent process.

#Return value for above three functions: 0 for success , -1 for failure (Upon ←↩

failure , program should exit).

21

Table 3.1
acv init Parameters Mapping Table

Model acv param1 acv param2
RBAC RoleName Username
DTE InitialDomainID NONE
MLS UserName NONE

3.2.4 System Call Functions

This section will introduce the system call wrapper functions in the API. A selected

set of functions are implemented in the wrapper API. Each function will check the

model type and makes appropriate access control requests to get the authorization

before calling the POSIX system call. First, we will introduce the common steps

shared by the individual function, and then illustrate the details of each function.

3.2.4.1 Common Steps of Making Access Control Request

Generally, a system call wrapper function extracts access control parameters based

on the selected model, and then builds an access control request, which is further for-

warded to the Policy Engine for decision making. In other words, the implementation

for each security model will extract their own parameters and permission modes.

First, the wrapper API decides which kinds of objects to extract based on the targets

22

of the system call function.

Second, the required access privileges of the objects are converted according to the

permission attributes of the operation. For example, in the RBAC model, the rename

function needs w + x access right for the parent folder of the target file.

Moreover, some model specific parameters like RoleName and UserName are obtained

from the access control global data. Those are initialized through acv init and can

be changed in the program through the Set functions of the Programming Library:

int set_username(const char *ac_typevalue);

int set_domainname(const char *ac_typevalue);

int set_rolename(const char *ac_typevalue);

At the end, the wrapper API receives the access control result from the Policy Engine.

It returns a failure code of rejection or performs the system call function if allowed.

Please note that the ultimate execution of a system call function is still subjected to

the underlying system access control, such as the DAC of UNIX. For example, even

when a MLS policy permits the execution of acv write to a file, if the owner of the

file sets the permission mode to read only like mode 0444 in Linux, the write system

call will fail.

23

3.2.4.2 Functions Introduction

The following functions in the wrapper API are based on related POSIX Libc function

definition [8]. For detailed arguments format and usage of the functions, please refer

to the GNU POSIX Manual[8]. We will mainly introduce functions of the API from

the view of access control .

int acv_rename(const char *oldpath , const char *newpath) ;

acv_rename Rename a file by wrapping LIBC function rename. acv_rename function ←↩

is used to change the name of a file.

acv_rename decides whether the parent folder or the file itself will be the ←↩

object for access control depending on the two cases below:

1) If target is a file , we are going to rename it , so the object is the file ←↩

itself;

2) If target is a directory , we move the file to target folder , so the object ←↩

is the parental directory of the file.

int acv_execvp(const char *file , char *const argv[],const char * acv_param);

acv_execvp executes a file by wrapping LIBC function rename. Child process ←↩

executing the program specified by file will be forked [13]. Execution ←↩

permission will be requested and appropriate mode value will be fetched based ←↩

on the model. acv_param is NULL , except for DTE , it is the Domain ID for the ←↩

command to execute.

int acv_creat(const char *pathname , mode_t mode);

24

acv_creat creates a file by wrapping LIBC function creat.The argument mode ←↩

follows the same definition of creat. acv_creat is equivalent to acv_open with ←↩

flags equal to O_CREAT | O_WRONLY | O_TRUNC [14]. Permission rights ←↩

corresponding the required value in the flags are checked. Write permission is ←↩

checked for the parental folder of the pathname (Table 2).

int acv_write(int fildes , const void *buf , size_t nbytes);

Write a file by wrapping LIBC function write. fildes is returned from acv_creat←↩

. Access right is checked through acv_creat.

int acv_read(int fildes , void *buf , size_t nbytes);

read a file by wrapping LIBC function read. fildes is returned from acv_creat. ←↩

Access right is checked through acv_creat.

int acv_open(const char *pathname , int oflags);

Open a file by wrapping LIBC function open.The argument mode follows the same ←↩

definition of open. Permission rights corresponding the required value in the ←↩

flags are checked.

int acv_access(const char * filename , int mode);

Delete directories by wrapping LIBC function rmdir. The argument mode follows ←↩

the same definition of access. Permission rights for the file corresponding the←↩

required value in the modes are checked.

int acv_mkdir(const char * pathname , int mode);

Create directories by wrapping LIBC function mkdir. The argument mode follows ←↩

the same definition of mkdir. Write permission is checked for the parental ←↩

folder of the pathname (Table 3.2).

int acv_rmdir(const char * pathname);

Delete directories by wrapping LIBC function rmdir. Write permission is checked←↩

for the parental folder of the pathname (Table 3.2).

25

int acv_chdir(const char *pathname);

Change to the target directories by wrapping LIBC function chdir. Search ←↩

permission is checked for the parental folder of the path (Table 3.2 For MLS , ←↩

it corresponds to the read right.

int acv_remove(const char *pathname);

Delete a file by wrapping LIBC function remove. Remove permission is checked ←↩

for the parental folder of the path (Table 3.2).

Return value for above functions :0 for success , -1 for failure

Table 3.2
Permission Mode Mapping Table For Accessing a Directory

Model search read remove/write
RBAC x rx wx
DTE d rxd wxd
MLS r r w

26

3.3 Access Control Engine

3.3.1 Design Structure

Figure 3.2 depicts the design of the policy engine.

Figure 3.2: Policy Engine Structure

The Policy Engine consists of 3 components, each of which is implemented in one

python class: an Engine Agent, a TCP Server, and a Policy Manager (parser and de-

cision function). The Engine Agent containing the main method is the entrance of the

Policy Engine. The Policy Engine runs as a single process which is launched through

the system call of python acv agent.py in acv init with appropriate parameters such

as a model policy and a visualization flag. This section will introduce Engine Agent

27

and Policy Manager. TCP Server will be introduced in next section .

During the execution of python acv agent.py, an instance of Engine Agent is created.

The Engine Agent will further create a Policy Manager instance, which further im-

ports the policy. Then, a TCP Server instance will be created and starts to listen for

access control requests. After processing by the TCP Server, the itemized message

will be passed to the Policy Manager for access control decision. Meanwhile, the En-

gine Agent will also bring up a visualization tool if configured. A copy of the request

will be transferred to the tool.

The Policy Manager is the core of the Policy Engine. It is responsible for parsing the

policy and decision making for the access control requests. Abstract Factory Design

Pattern which uses generic interface of the factory to create concrete objects[5] was

adopted in the implementation of Policy Manager. The abstract class defines two

interfaces import policy and acv query. A concrete policy manager for a specific

model is chosen in the run time when running the program. This greatly increases

the flexibility of Programming Library. Students can write the same program and

execute it under different security models. The Programming Library can decide at

run time which exact policy parser and decision logic to use based on the necessary

input, such as the model type or policy path.

For example, given a model type of RBAC, an instance of classs RBACPolicyMgr

which implements the Policy Manager for RBAC is created through the factory. Then,

28

RBACPolicyMgr further calls importPolicy function, where the RBAC parser will

translate the policy and extract access control matrices from the specification state-

ments written in the corresponding RBAC language mentioned in Chapter 2. Upon

receiving an access control request, the decision routing will be called and appropriate

response will be returned to the originating API function through TCP message.Upon

receiving a request, acv query of the Engine Agent will pass the itemized message to

the queryManager function of RBACPolicyMgr, which further calls RBAC decision

function queryUserAccessObjFromRole to grant the access.The decision function will

be described in next subsection.

Below two lists show the code snapshot for the Policy Manager Factory and the

Engine Agent.

Listing 3.1: ACV Engine PolicyMgr Factory

class ACVEnginePolicyMgrFactory(object):

@staticmethod

def create_policy_manager(policy_type):

if policy_type == "RBAC":

return RBACPolicyMgr ()

elif policy_type == "DTE":

return DTEPolicyMgr ()

elif policy_type == "MLS":

return MLSPolicyMgr ()

29

Listing 3.2: Engine Agent

class ACV_Agent ():

def __init__(self , PolicyPath): #read from command arguments

self.acv_policy_manager = ACVEnginePolicyMgrFactory.←↩

create_policy_manager(getModelType(PolicyPath))

self.acv_policy_manager.importPolicy(PolicyPath)

def acv_query(self , itemized_acv_message):

answer ,output = self.acv_policy_manager.queryManager(itemized_acv_message)

3.3.2 Access Control Decision

The decision routing in each model specific policy manager handles the itemized

access control requests. Access control request is itemized for each model as following:

for DTE, domain ID, access object and requested permission set (RqsPermSet); for

RBAC, role name, access object and RqsPermSet; for MLS, subject, object and

RqsPermSet.

Each model has its own decision routing to authorize the request. But they share

the same logic. Let’s define PolicyPermSet as the permission set defined in the

policy. First, the DTE handling routing will pull out the PolicyPermSet from the

policy data matrices for above described items presented in the request. For ex-

ample, to handle an access control request of DTE, routing queryDomainAccessObj

of DTEPolicyManager will extract the PolicyPermSet for the domain student d and

30

access object /home/zhitaoq/Document/test.log. Then, RqsPermSet will be com-

pared with PolicyPermSet to see it is satisfied or not for the authorization through:

RqsPermSet.issubset(PolicyPermSet).

3.4 TCP - Process Communication

There are several methods to communicate between the different processes or compo-

nents, but for this project, TCP socket was chosen.The reasons other methods were

not selected are based on two factors: language and flexibility.

First, the Library code was written in C language which is different from the lan-

guage used for the Policy Engine, which is Python. After some trials, the other

methods such as message queue and pipe were found not appropriate for the cross-

language communication in this project. Message queue was used initially, which

was implemented in a third party module sysv ipc adopted by the Python library to

communicate with C language function directly, but sysv ipc is not well tested and

still has bugs. Sometimes the messages sent from a C process to a Python process

were malformed. In contrast, the TCP Sockets are well-implemented and tested for

this purpose as a relatively high level communication method between processes.

31

Second, while integrating the aforementioned different components into a whole explo-

ration system, it is important that the system can be low coupling and high cohesion.

TCP Socket communication can minimize the coupling between components [10].

Compared to TCP Sockets, the pipe mechanism reduces the flexibility. TCP Socket

interface is especially useful in this project because the Programming Library must

run in two modes with or without the visualization component. This is an example

of what Robert Frost mentioned “Good fences make good neighbors.” This chapter

mainly focuses on introducing the implementation between the Programming Library

and the Policy Engine.

In the socket communication, we use the Client and Server model. Engine Agent acts

as a TCP Server to accept messages from the Programming library, which plays the

role of a TCP Client.

3.4.1 TCP Server and Handler in the Python Engine

This subsection describes the main process to establish the TCP server through the

Python Library’s socket module.

First, the module tcpserver was designed. This exposes the object acv server and

the method agent tcphandler. acv server is a wrapper function for Python socket

module, which initializes the host name, port and debugging setting. It contains a

32

start method for the caller to create the socket, and then bind and listen. Incoming

connection requests were bound with the agent tcphandler, which accepts the argu-

ments of the acv agent, tcp connection and sock address. In method agent tcphandle,

acv query method of acv agent passes the access request message to the Policy Man-

ager. Afterward, the server responds to the client through the sendall method of the

TCP connection.

If visualization is enabled, these request messages from the Programming Library will

be passed to the visualization tool to display graphs for the students to monitor the

execution process.

3.4.2 TCP Client in the Programming Library

In the Programming Library, the Access Control Channel function is responsible for

delivering a Access Control Request message to the decision engine. Coding the TCP

Client in C language to communicate with Python TCP Server is problematic and

introduced a lot difficulty in two way communications, as well as in the debugging.

Later we changed the problem and fixed it by introducing the embed Python Inter-

preter in C language. TCP Client is then also coded in Python language. Detailed

implementation as below.

33

1. Build a separate Python module acv query.py to implement the actual socket

client, which connects to the server and receives response.

2. extend and embed the Python Interpreter in the Access Control Channel func-

tion.

(a) Initialize the Python Interpreter through Py Initialize(), which creates fun-

damental python modules and maintains a related table for the resources,

as well as calculating the module search path from the environment vari-

ables.

(b) Import module acv query, and save the result to a callable PyObject:

pQueryFunc which is a pointer to represent the actual Python object.

(c) Call Python/C API PyObject CallObject to pass the ACV Request mes-

sage to pQueryFunc [11].

Listing 3.3: Embed Python Interpreter

pQueryModule = PyImport_Import(PyString_FromString ((char*)"acv_query.py"));

pDict = PyModule_GetDict(pQueryModule);

pQueryFunc = PyDict_GetItemString(pDict , (char*)"acv_query");

34

There are two notes about the usage of this Python/C library API.

1. Include header file Python.h before any other standard header files, because

it contains some pre-processor definitions which might bring some impact to

others [9].

2. Set PYTHONPATH TO working directory setenv(”PYTHONPATH”,”.”,1);

3.5 Visualization Interface

To launch the visualization tools in run time and allow more graphic monitoring

features to be created in the future, we have defined the interface in the Programming

Library and other related components.

First, the visualization can be configured through acv init argument. The AC Shell

also preserves the -V flag, which will pass the visualization request through acv init

all the way to the Engine Agent.

Second, the Engine Agent will locate the visualization tool path through the system

path setting and launch the tool based on the model type for an access control request

sent from the Programming Library. After that, the refresh message will be sent for

each further access control request, which will be also buffered to allow replaying

35

function in the tools.

The process communication between the Visualization tools and Policy Engine uses

TCP socket. The message handler acvisual tcp server and acvisua tcp handler are

similar to the versions of TCP server and handler described in the previous section.

36

Chapter 4

Test

4.1 Introduction

In this chapter, first, we will introduce our test tool AC Shell, and then illustrate

the correctness and robustness test of the Programming Library and the access con-

trol decision. At last, visualization interface test is performed to make sure correct

message is passed to the visualization tool through TCP sockets.

37

4.2 Test Tool

Access Control Shell (AC Shell) was designed as a test platform for the Program-

ming Library as well as a command line tool to practice the policy specified system

programming. Basically, AC Shell is a command-line interpreter based on the open

source Google Mini Shell [12], which reads user’s input as a command and executes

it. In this report, we reshaped the mini shell to an interactive wrapper API test tool

by mapping a wrapper API to a shell built-in command. It also plays the role of

program execution container, through which students write their program without

much concern of the Programming Library initialization.

AC Shell collects necessary information for the Programming Library by establishing

an environment with default parameter values or acquiring the specified values based

on the user command line input. It will save these parameters as access control

context. When the student program is launched through the container, it will start the

Engine Agent and pass the AC Context to the student program. Hence, the students

can focus on the system programming. When AC Shell exits, it will terminate the

Engine Agent.

As an interactive command interface, it can test the wrapper APIs flexibly and conve-

niently. Combination test of wrapper APIs can be performed by observing the result

38

under different policy setting. Model specific parameters like Domain Name, Role

Name or User Name can be changed as needed through running the Set command.

The changed values will be reflected in the access control request immediately without

the need to re-compile the program.

From another point of view, the Access Control Shell provides more hands-on ex-

perience in the system programming level for the students to explore the selected

policy.

Listing 4.1: AC Shell Command Line options

AC Shell command line instruction:

-E for execution of program , for example , Prog1.exe

-M for model type , MLS ,DTE , RBAC

-D for initial domain ID , student_d is provided as default value

-U for initial user name , Login name will be used as defaulted userName

-R for initial role name , stduent is the default value

-P for policy path Default is "policy" with the model type ,

such as, policy.rbac

One of model type or policy path must be specified. If model type is specified without

specifying policy, default policy will be used, for example, ”policy.mls”, ”policy.dte”

or ”policy.rbc”.

For example, ./acshell -E Prog1.exe -M MLS

39

./acshell -E Prog1.exe -P policy/policy.mls

Test programs need to include below three parts to launch through AC Shell:

A) #include ”acv wrapper api.h”

B) acv env init(argc,argv)

Notes: pass AC Context or environment to student program

C) acv end();

Note: To execute programs without AC Shell, acv init() must be called to setup all

the parameters, for example,

RBAC : acv init(specPath, initRoleName, “zhitaoq”, “−NV ”, NULL);

4.3 Test Strategy

Generally the test consists two parts: correctness test of access control decision and

the system robustness test.

The correctness test of the access control logic for each of the three security models as

described in Section was performed separately under different set of policies. The test

policies cover different access control scenarios to verify the correct decision making.

The execution of the wrapper API was verified through observing the result code

and output message, which was compared against the expected code and output.

40

Failure code (-1) and related outputs were defined into indicate the corresponding

reject reasons. Test results were also observed to make sure that the underlying

discretionary access control of the system itself is not violated.

For the quality assurance of the software, the system robustness test verifies that the

Programming Library and exploration system function correctly in the presence of

invalid inputs or stressful circumstances[3].

Based on different approaches of using AC Shell, correctness tests were divided to

two parts: test through the interactive command line interface of AC Shell, and test

through container by executing student level test programs.

The Programming Library API unit tests are mainly performed in the first part of

Correctness Test. Integration tests are mainly performed in the second part.

The system robustness test will be described in a separate section.

4.4 Correctness Test Through Interactive Com-

mand Mode

Before the API test, the selected policy needs to be imported to the ACV Shell in

the command line or through acv init, which is described in 3.2.

41

Below is a sample test process which tests wrapper API acv rename for RBAC model.

The base policy is policy.rbac, as shown in Listing 4.1.

After running ./acv shell, acv init was executed with the arguments below, where

user zhitaoq has a role of graduate. NV stands for No Visualization.

[ACV Shell] acv init PolicyPath graduate,zhitaoq,NV

First the API was tested with no permission configured.

The user zhitaoq inherits the permissions from the role graduate. How-

ever, graduate only has access to /Users/zhitaoq/Wrap/trunk/src/Archive

with permission mode r,w,x. Renaming file parse.py under /Users/zhitao-

q/Wrap/trunk/src is not permitted by this policy. The arguments from the

command line were passed to the wrapper API to execute. The ACV Request

is denied by the policy engine. The final result is printed as text log in the shell.

[ACV Shell]./acv rename /Wrap/trunk/src/parse.py /Wrap/trunk/src/parse.sh

Second added permission to src in the policy.rbac as below, and rerun the command

in ACV Shell. The file was renamed successfully.

object: graduate r,w,x -r /Users/zhitaoq/Wrap/trunk/src/.

Benefit from the interactive mode, this part of test can adjust the model specific

parameters to improve test productivity. Such as calling set RoleName Admin,

42

set username to cathy, who is configured different access rights to the object, can

perform a testcase without changing rule for Role graduate.

Based on the test cases designed, two or more APIs can also be combined to test in

ACV Shell interactively, such as after the command acv rename is executed success-

fully, acv execvp can be tested further. This can make sure complex scenario can be

covered in the test.

43

Listing 4.2: Sample Base Test Policy

filename: policy.rbac

inheritance: dev > qc

inheritance: sales > qc , cust

inheritance: pres > sales , dev

inheritance: graduate > sales , dev

user: qc quinn

user: dev dave , dot ,zhitaoq

user: admin charles , dave , cathy

user: pres patty

user: sales sam

user: graduate zhitaoq

object: cust r,w,x /path/to/db

object: qc x /path/to/tests

object: dev r,w /path/to/tests

object: pres r,w /path/to/evidence

object: sales r,w -r /path/to/files

object: sales r,w,x /path/to/db

object: graduate r,w,x -r /Users/zhitaoq/Wrap/trunk/src/Archive

44

Listing 4.3: Test log for the denied case

HomePath is : /Users/zhitaoq/Wrap/trunk/src

SpecPath is : /Users/zhitaoq/Wrap/trunk/src/policy/policy.rbac

setACVArgs start.

setACVArgs input :/ Users/zhitaoq/Wrap/trunk/src/policy/policy.rbac graduate zhitaoq←↩

-NV!

setACVArgs done!

To launch ACV Agent.SPECPATH IS : /Users/zhitaoq/Wrap/trunk/src/policy/policy.rbac

Go to Loop for receiving message.

DEBUG:TCP Server:listening

Acv rename request.

DEBUG:server:Got connection

acv_query:zhitaoq ,graduate ,/ Users/zhitaoq/Wrap/trunk/src ,wx

Python Engine Agent receive msg.

zhitaoq

graduate

/Users/zhitaoq/Wrap/trunk/src

set(['x', 'w'])

requested permset:

set(['x', 'w'])

QueryManager: the role graduate has no permission.

deny:Role graduate has user zhitaoq assigned to it but has no access to the object ←↩

/Users/zhitaoq/Wrap/trunk/src.

Result of call: -1

Renaming is not allowed.

45

4.5 Correctness Test Through Container Mode

Test programs simulating student programs are written to test certain complex sce-

narios via the combinations of a subset of wrapper APIs.

A sample program is introduced here to describe the test process. Basically, it cre-

ates a file and writes some strings to the file. Next, the file is created under folder

/Users/zhitaoq/Wrap/trunk/src/. At last, it opens the file to read and prints out

the result.

Through this test mode, the program can be used to test policy of different security

models. For example, this program tests a set of wrapper APIs for file operation.

First, we run the program with RBAC default specification policy.rbac: ./acshell -E

Prog1 -m RBAC

46

Listing 4.4: Partial RBAC policy

inheritance: student > sales , dev

User: student zhitaoq

object: student r,w,x /Users/zhitaoq/Wrap/trunk/src/

With all the required permissions configured in the policy, this process is executed

successfully with the expected result. After executing the program and deleting the

read permission for the role graduate as below , the request of acv open with permis-

sion mode O RDONLY was denied.

object : graduatew, x− r/Users/zhitaoq/Wrap/trunk/src/

Listing 4.5: Sample Execution Log for RBAC

INFO:RbcPolicyManager:zhitaoq

INFO:RbcPolicyManager:graduate

INFO:RbcPolicyManager :/ Users/zhitaoq/Wrap/trunk/src/

INFO:RbcPolicyManager:requested permset:

INFO:RbcPolicyManager:set(['x', 'w'])

INFO:RbcPolicyManager:configured permset:

INFO:RbcPolicyManager:set(['r'])

Deny:Role graduate

acv_create is not allowed for : ACV_TEST_PROG1.log !

And then, we switched to test the DTE with default specification policy.dte: ./acshell

-E Prog1 -M DTE -D student d

47

Listing 4.6: Partial DTE policy

domain student_d = (/usr/bin/{sh ,csh ,ksh}),

(drx ->sysbin_t ,gradExec_t),

(cdrwx ->generic_t),

(dr ->readable_t ,gradReadable_t ,dte_t),

(drw ->studWritable_t),

(exec ->guest_d);

assign -r studWritable_t /Users/zhitaoq/Wrap/trunk/src;

Listing 4.7: Sample Execution Log for DTE

INFO:DTEPolicyManager:student_d

INFO:DTEPolicyManager :/ Users/zhitaoq/Wrap/trunk/src

INFO:DTEPolicyManager:Requested: set(['d', 'w'])

INFO:DTEPolicyManager:Configured: set(['r', 'd', 'w'])

pass:good

performed acv_create.

At last, we execute Prog1 under MLS policy as below with default specification pol-

icy.mls. User name is zhitaoq, with security level of secret:michigan, which has write

permission to higher level object top-secret:michigan.

./acshell -E Prog1 -M MLS

48

Listing 4.8: Partial MLS policy

users secret:michigan zhitao

assign top -secret:michigan /Users/zhitaoq/Wrap/trunk/src

Listing 4.9: Sample Execution Log for MLS

INFO:MLSPolicyManager:

INFO:MLSPolicyManager:Subject: zhitaoq

INFO:MLSPolicyManager:Subject: secret

INFO:MLSPolicyManager:Subject: set(['michigan '])

INFO:MLSPolicyManager:Object: /Users/zhitaoq/Wrap/trunk/src

INFO:MLSPolicyManager:Object: top -secret

INFO:MLSPolicyManager:Object: set(['michigan '])

pass:good

performed acv_create ..

The decision result can be totally different based on the rules defined in the corre-

sponding policy.

49

4.6 System Robustness Test

4.6.1 Invalid Case Handling

User enters the initial setting for the Programming Library through acv init or

acv env init for AC Shell. So our test must make sure correct arguments are passed.

First, specification file input test. This test make sure correct policy path is specified

before further handling. We verified that incorrect policy path will be detected, and

program will terminate gracefully.

Second, that correct model type is selected. The model type must be one of the values

”DTE”, ”RBAC” or ”MLS”, which is extracted from the policy name or through AC

Shell command line input. Otherwise, the call of acv init or acshell will indicate the

failure.

Third, for other parameters, such as RoleName, UserName for RBAC, DomainID for

DTE, UserName for MLS if no values are specified, default values involved in the

access control process are verified.

Furthermore, tests are performed to cover the case that students write their programs

without calling acv init or acv env init. For example, one program calls acv rename

50

directly. This test verifies that the API call fails with appropriate message which

indicates AC Library not initialized.

4.6.2 Stressful Condition Test

The purpose for this test is to make sure the system still functions correctly and the

right policy will be enforced under the circumstances that multiple processes could

be launched at the same time.

First, tests are performed to make sure that only one policy can be selected in the

system at the same time. As illustrated in Chapter 3, the library initialization function

acv init or acv env init (launched by acshell) must be called at the beginning of

each program. The design of the function makes sure that only one policy agent

is allowed to exist in the system, which enforces one policy. So, when one process

already executes the policy agent, other programs can detect this and then terminate

accordingly.

Multiple-process tests are performed in two cases: with the same type of policy, and

with different types of policy. The same test steps of below list are followed.

51

Listing 4.10: Test Steps for Stress Test

1.Run selected programs simultaneously through shell script;

2. Verify that only one Engine Agent process starts , access control requests are←↩

handled correctly under the appropriate policy;

3. Verify that the processes spawned by the executing program terminate ←↩

gracefully , including the Engine Agent process , the TCP Server process;

4. Verify that sockets and files are closed;

4.7 Visualization Interface Test

This section introduces the test performed for the Visualization Interface.

To enable visualization mode, the value of −V must be entered in the ACV Shell

command line or set int the acv init function call of the Test Program. Then we ver-

ify that acv agent function detects the visualization request and launch the correct

visualization tool related to the specified model. If the visualization tool aforemen-

tioned in Chapter 2 is not installed in the system yet, a message will print out for

this. Otherwise, verify that the correct policy is selected and appropriate graphs are

displayed.

Following the above example of testing acv rename for RBAC in previous section.

Verify that when the permission request is rejected, the following graph is displayed

52

to explain the rejected request. The related rules and graph nodes are highlighted. It

shows clearly that user zhitaoq which is role of graduate with limited privilege config-

ured to access /Users/zhitaoq/Wrap/trunk/src/Archive folder. Detailed permission

sets are printed in the top of right window. Figure 4.1 depicts this result visually.

Figure 4.1: Visualization Interface Test

53

Chapter 5

Conclusion and Future Work

In this report, we investigated three security models of Mandatory Access Control

technologies and visualization tools. We also implemented the Access Control Policy

Programming Library and the Exploration Shell. A selected collection of System Call

Wrapper APIs were implemented for the POSIX System Call APIs. Policy parsers

were extracted from the existing tools and integrated to the Policy Engine, and the

Access Control Policy Manager was also implemented to provide decision for the

Access Control Request.

This Programming Library and exploration system shows the students related pol-

icy credential changes in the execution of a running program in system level. The

information level for more or less logs can be adjusted conveniently. It also defined

55

the TCP socket interface to communicate with visualization tools, through which the

abstract access control process can be depicted visually. This achieved the expected

effect as a pedagogical tool to provide the availability of hands-on experience in the

security formal education.

However, currently, the Programming Library just implemented a limited set of sys-

tem call wrapper APIs, which focus on the file system operations and binary execu-

tion. In the future, the library can be extended to cover more system call functions,

such as memory or process control, so that students can have more advanced security

programming experience.

In addition, this report describes a command line tool called Access Control Shell, but

it is mainly used as a wrapper API test platform and binary execution container. It

can be enhanced to contain more security functions or features similar to SE-Linux to

provide more hands-on experience for the students, such as adding a sesearch feature

of SE-Linux, or even build an access control Linux container (LXC) [11].

56

Chapter 6

References

[1] Badger L., D.F. Sterne, D.L. Sherman, K.M. Walker, S.A. Haghighat. A Domain and

Type Enforcement UNIX Prototype. Proc. Fifth USENIX UNIX Security Symposium,

1995.

[2] Carr S. and J. Mayo. Teaching Access Control With Domain Type Enforcement. Journal

of Computing Sciences in Colleges, 27(1) pp. 74-80, 2011.

[3] Yifei Li, Steve Carr, Jean Mayo, Ching-Kuang Shene, Chaoli Wang ”DTEvisual: A Vi-

sualization System for Teaching Access Control using Domain Type Enforcement.” Journal

of Computing Sciences in Colleges, 28 pp. 125-132, 2012.

[4] Man Wang,Steve Carr, Jean Mayo, Ching-Kuang Shene, Chaoli Wang ”MLSvisual: A

Visualization Tool for Teaching Access Control Using Multi-Level Security” Proceedings of

57

the 2014 conference on Innovation and technology in computer science education, 2014.

[5] Wikipedia Discretionary access control, BellLaPadula model, Robustness testing, Ab-

stract Factory at http://en.wikipedia.org/wiki/, 2015.

[6] David Elliott Bell ”Looking Back at the Bell-La Padula Model” Proceedings of the 21st

Annual Computer Security Applications Conference, 2005

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,and R. Chandramouli. ”Proposed

nist standard for role-based access control”. ACM Trans. Inf. Syst. Secur.,4(3):224274,

Aug. 2001.

[8] GNU LIBC POSIXManual, available at http://www.gnu.org/software/libc/manual/html node/,

2015.

[9] Python document, available at https://docs.python.org/, 2015

[10] Andrew Hunt, David Thomas ”The Pragmatic Programmer: From Journeyman to

Master” Addison-Wesley Professional, 1999.

[11] SELinux Wiki, available at http://wiki.gentoo.org/wiki/SELinux/Tutorials/

Controlling file contexts yourself, 2015

[12] Mini-shell, Google Project Hosting, GNU GPL v3, https://code.google.com/p/mini-

shell/, 2011

58

[13] Matt Bishop, ”Computer Security Art and Science”, Addison-Wesley, QA 76.9.A25

B56, 2002.

[14] Linux Programmer’s Manual, Michael Kerrisk, http://man7.org/linux/man-

pages/man2, 2015

59

Appendix A

Specification

A.1 DTE SPECIFICATION SYNTAX

DTE specification normally contains four sections [2 ,3].

Section 1 Type definition

Declares one or more object type names , which are then available to other parts of ←↩

a DTE specification. The statement starts with keyword Type and then lists all ←↩

the defined object types with suffix_t. No ordering is required.

Syntax format: T y p e objecttype1_t , objecttype2_t , objecttype3_t ,

For example:

Type dte_t ,readable_t ,generic_t ,writable_t ,sysbin_t ,projectA_t

Section 2 Domain definition

61

Domain definition is expressed as a list of tuples. Domain definition statement ←↩

start with keyword domain and follows with domain ID and execution environment ←↩

.

Defines a restricted execution environment composed of three parts [1]:

a. Entry Program , executed by a process in order to enter the domain , for ←↩

example , /usr/bin/login for domain login_d ,

b. Define Access permissions to the object types , e.g. drwx ->writable_t . This←↩

contains multiple lines.

c. Permissions to access programs in other domains e.g. exec ->user_d for ←↩

domain login_d. Or allow Auoto transition to another domain , like (auto ->←↩

login_d) for daemon_d.

domain daemon_d = (/sbin/init),

(dr ->generic_t ,readable_t ,dte_t),

(cdrw ->writable_t),

(drx ->sysbin_t),

(auto ->login_d);

domain login_d = (/usr/bin/login),

(dr ->readable_t ,generic_t ,dte_t),

(cdrw ->writable_t),

(exec ->admin_d , user_d , graduate_d ,faculty_d);

domain user_d = (/usr/bin/{sh,csh ,ksh}),

(drx ->sysbin_t),

(cdrwx ->generic_t),

(drw ->writable_t);

(dr ->readable_t ,dte_t),

Section 3 Initial domain

This section contains one statement to declare the initial DTE domain.

62

initial_domain = daemon_d;

Section 4 Type Assignments

The assignments in this section will associate a type with one or more files.

Syntax format: a s s i g n [-r] typeId_t directory1 directory2 ;

A statement may be recursive , in which case it applies to all files in the ←↩

directory tree rooted at the named directory. Recursive assignment of a file ←↩

with prefix P overrides an assignment for a file with a prefix shorter than P. ←↩

For instance a recursive assign statement for /etc overrides a recursive ←↩

assignment for /.

Below are more examples:

assign -r generic_t /;

assign -r projectA_t /proj1;

assign -r projectB_t /proj2;

assign -r -s dte_t /dte;

assign -r writable_t /dev ,/usr/var/test ,/tmp/test ;

assign -r readable_t /etc;

63

A.2 MLS SPECIFICATION

MLS specification normally contains four sections.

1) Section1: Clearance Statement

Define one or more clearance levels , which are then available to other parts of a ←↩

MLS specification. Clearance Statement starts with keyword clearances and then ←↩

lists all the defined security levels from low to high.

Syntax format: c l e a r a n c e s : level1 <level2 <

For example , there are three security levels from low to high as: unclassified , ←↩

secret , topsecret. We define the Clearance Statement as below:

clearances: unclassified <secret <topsecret

2) Section2: Category Statement

Define one or more categories , which are then available to other parts of a MLS ←↩

specification. Category Statement starts with keyword categories and then lists←↩

all the categories after it without ordering.

Syntax format: "categories: category1 , category2 ...

categories:weapon , nuclear , grocery

3) Section3: Directory Security Assignment Statement

Assign security levels to directories in the file system. The statement starts with←↩

assign , and then follows with the clearance level and categories , which are ←↩

assigned to the directory occurring at the end of the statement. One directory ←↩

can be assigned to multiple categories.

64

Syntax format: "assign clearance: category1: category2 ... [-r | -s] directory1 , ←↩

directory2 ,

Here are some examples:

assign unclassified: -r /

assign secret:weapon -r /weapon

assign topsecret:nuclear -r /nuclear

4) Section4: User Security Assignment Statement

Assign security levels to users. This statement starts with keyword users and ←↩

follows with the clearance level and categories , which are assigned to the user←↩

list occurring at the end of the statement.

Syntax format: "users clearance: category1:category2 ... user1 , user2 ...

For examples:

users topsecret:nuclear:weapon ping

users topsecret:nuclear david

users unclassified: micky , lucy

65

	ACCESS CONTROL PROGRAMMING LIBRARY AND EXPLORATION SYSTEM
	Recommended Citation

	zhitaoqiums.pdf

