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Abstract

Explosive hazards are one of the most deadly threats in modern conflicts. The U.S. Army

is interested in a reliable way to detect these hazards at range. A promising way of ac-

complishing this task is using a forward-looking ground-penetrating radar (FLGPR) sys-

tem. Recently, the Army has been testing a system that utilizes both L-band and X-band

radar arrays on a vehicle mounted platform. Using data from this system, we sought to

improve the performance of a constant false-alarm-rate (CFAR) prescreener through the

use of three deep learning architechtures; deep belief networks (DBNs), stacked denois-

ing autoencoders (SDAEs), and convolutional neural networks (CNNs). We also compare

these deep learning classifiers with two more conventional shallow learning classifiers;

single kernel support vector machines (SKSVMs) and multiple kernel learning group lasso

(MKLGL). By training the deep learners on a combination of image features and comparing

the test results to the conventional shallow learners, we were able to significantly increase

the probability of detection over both the CFAR prescreener and the shallow learners while

maintaining a nominal number of false alarms per square meter. Our research shows that

deep learners are a good candidate for improving detection rates in FLGPR systems.
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Chapter 1

Introduction

1.1 Introduction

An important goal for the U.S. Army is remediating the threats of explosive hazards as

these devices cause uncountable deaths and injuries to both civilians and soldiers through-

out the world. Since 2008, explosive hazard attacks in Afghanistan have wounded or killed

nearly 10,000 U.S. Soldiers; worldwide, explosive devices on average cause 310 deaths

The material contained in this chapter was either previously published in SPIE Defense+ Security. Interna-

tional Society for Optics and Photonics, 2014 OR has been submitted to the Geospace and Remote Sensing,
IEEE Transactions on, 2015.
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and 833 wounded per month [1]. Systems that detect these threats have included ground-

penetrating-radar (GPR), infrared (IR) and visible-spectrum cameras, and acoustic tech-

nologies [2, 3, 4]. Handheld and vehicle-mounted GPR-based systems have been the sub-

ject of recent research and great progress has been made in increasing detection capabilities

[5, 6]. The ability of Forward-looking synthetic aperture GPR (FLGPR) to detect hazards

before they are encountered makes these systems especially attractive; allowing standoff

distances to range in to tens of meters. FLGPR systems have been applied to the detection

of surface, side-attack, and buried devices [7, 8, 9]. An unfortunate drawback of FLGPR

systems is that in addition to being sensitive to explosive devices, UXO, and landmines,

they are also sensitive to other objects, both above and below the ground. Because FLGPR

is a standoff sensor, the area being examined for targets is much larger than with downward-

looking systems; thus, clutter is a serious concern. Furthermore, the explosive hazard threat

is very diverse—they are made from many different materials, including wood, plastic,

and metal, and come in many different shapes and sizes. This threat also continues to

evolve. Hence, it is nearly impossible to detect explosive hazards solely by a modeling-

based approach. We have shown in previous work that if forward-looking infrared (FLIR)

or visible-spectrum imagery is combined with L-band FLGPR, false alarm rates can be

reduced significantly [10, 11, 12, 13, 14]. We also demonstrated that fusing multiple sub-

bands and spectral features in L-band FLGPR improves detection performance [15, 16, 17].

Therefore, in this thesis, we will extend this line of sensor fusion research by examining

methods for fusion of multiple bands of FLGPR.
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Recently, the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) has

been working with an integrated L-band and X-band FLGPR system. Our focus was on the

developement of computer-aided classification algorithms for this dual-band system. We

explored several approaches that use both L-band and X-band FLGPR to improve detec-

tion statistics. These approaches include support vector machines (SVM), multiple kernel

learning (MKL), and a variety of deep learning architechures which will be the focus of

this document. Deep learning is a relatively new appraoch to the explosive hazard detection

problem [22, 32]; however, they have been shown to achieve desirable results. With that

in mind, we sought to examine several different architechures to both see what we could

achieve with different learners and also to provide a simple survey of deep learning ar-

chitechures, and their relative performance on this particular data set. The three basic deep

learners that we implemented were the deep belief network (DBN), the stacked denoising

autoencoder (SDAE), and the convolutional neural network (CNN). To achieve a more

complete understanding of the performance of these classifiers, we also compare them to

so-called shallow learners such as the SVM and the MKL. In doing this we hope to achieve

a better understanding of the effectiveness of deep learning algorithms and what, if any,

benefits they might provide over more traditional approaches.

3



1.1.1 Radar System and Data

The radar systems used to collect these data were an L-Band Multiple-Input-Multiple-

Output (MIMO) radar and an X-band radar. The L-Band MIMO radar was capable of

operating in both dual-polarization (dualpol) and all-polarization (allpol) mode. Dualpol

ony collects the HH and VV polarizations, allpol additionally collects the HV and VH cross

polarizations as well. For this paper, we will be primarily concerned with the dualpol mode.

The X-band radar only collects in the VV polarization.

The X- and L-band FLGPRs operate as stepped-frequency arrays—each transmitter indi-

vidually illuminates the scene and all receivers then measure the complex return at each

frequency and polarization, repeating for each transmitter. The parameters of the radars are

shown in Table 1.1. The government-furnished data (GFD) are represented as I/Q values

at each frequency for each transmit/receive (T/R) pair, GPS location, and pitch, roll, and

yaw of the array. From these data we are able to localize each T/R pair in 3D universal

transverse mercator (UTM) coordinates, allowing for fully motion-compensated imaging

(within the error of the platform motion estimation).
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Table 1.1
FLGPR Parameters[24] (see reprint permissions in Appendix A)

L-band X-band

Waveform Stepped frequency Stepped frequency

Transmitters 8 32

Receivers 8 4

Bandwidth 0.5–3.4 GHz 8.4–10.4 GHz

# Frequencies 2702 1024

Pulse rate 12 Hz 50 Hz

Polarizations* HH, VV, HV, VH VV

*Note that we only have HH and VV polarizations for the L-band data sets used in this paper.

We use data collected from four different lanes in this work. Each lane is between 300 and

600 meters in length and about 10 meters in width. These lanes vary from each other in the

types of targets buried, the depth of the targets and the soil composition of the lane. The

data were collected as follows. First, the targets were buried and the exact GPS coordinates

of each target recorded. Later, the test platform traversed the lane first in one direction

(either north or east), then reversed direction. We label the lanes used here as lanes A, B,

C, and D. For lanes A and B, we used the northbound data and for lanes C and D we use

the eastbound data. Lane A contained a total of 38 targets, lane B had 94 targets, lane C

had 38 targets and lane D contained 35 targets. The overall goal of this research is to get
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Table 1.2
Symbols Used in This Paper [24] (see reprint permissions in Appendix A)

Symbol Description
x(tGPS) Position of vehicle in UTM at time tGPS

v(tGPS) Velocity (m/s) of vehicle at time tGPS

xj(tGPS) Position of jth antenna element at time tGPS

wjk(f, tGPS) I/Q signal of jkth T/R pair at time tGPS and fre-

quency f
aw(f) frequency-domain window (Hamming)

ar(j, k) aperture window

c speed of light, 2.998× 108 (m/s)

the radar system to detect as many of the targets as possible while detecting as few false

positives as possible. The aim of this research is to improve the detection statistics. By

using varied lanes and target types, we hope to provide a more generalized solution to the

explosive hazard detection problem.

6



Chapter 2

Image Formation and Preprocessing

2.1 Image Formation and Preprocessing

Using the provided radar data, images were formed using a simple backpropagation algo-

rithm. The Superior Computing Cluster was used to run multiple lanes simultaneously.

The material contained in this chapter was either previously published in SPIE Defense+ Security. Interna-

tional Society for Optics and Photonics, 2014 OR has been submitted to the Geospace and Remote Sensing,
IEEE Transactions on, 2015.
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2.1.1 Backpropagation

The radar images, denoted as Ip(u, v), where p is the polarization and (u, v) are the horizon-

tal and vertical UTM coordinates of the image are formed by a backpropagation procedure

as illustrated in Fig. 2.1. The steps of this process are as follows:

1. Remove self-interference by subtracting a windowed time-average of wjk(f, tGPS)

over the variable tGPS at each frequency f and for each T/R pair.

2. For each frame (as indicated by tGPS) and polarization:

(a) Inverse Fourier transform the zero-padded (up-sampled), windowed signals

aw(f)wjk(f, tGPS),

where aw(f) is a Hamming window, producing the range/time signals

rjk(t, tGPS).

(b) Interpolate and coherently integrate the windowed range signals

ar(j, k)rjk(t, tGPS) onto the predetermined grid (u, v), and apply the

amplitude and phase correction

r2 exp {−i4πf1t} ,
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Figure 2.1: Block diagram of FLGPR backpropagation-based imaging algorithm.[24] (see

reprint permissions in Appendix A)

where f1 is the lowest frequency in the stepped frequency transmission. Note

that the windowed range signals are only interpolated and integrated onto grid

points that are between rmin and rmax range in front of the array (we use rmin =

5 and rmax = 10 meters for most of the results in this report).

We used a grid spacing of 2.5cm in both cross-range and down-range and upsample w by

a factor of 16 (to the nearest power of 2). This form of backpropagation is the most basic

synthetic aperture radar imaging method. We also experimented with a phase correction

to compensate for the motion of the vehicle. The self interference reduction and phase

correction are discussed in the following sections.
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2.1.1.1 Self-Interference Reduction

A known problem in MIMO radars is self-interference. This self-interference causes spatial

correlation in the receiver, which in turn lowers the systems capacity for performance [33].

This correlation can come from several factors such as improper antenna spacing, small

scattering angles, and angle of arrival [33]. Self-interference can be corrected for in a

signal processing approach called self-interference reduction (SIR). If we assume we have

a radar image I(x, y, t), can apply SIR as

I(x, y, t) = I(x, y, t)−
∑
t

w(t)I(x, y, t)∑
t

w(t)
. (2.1)

where w(t) is a window function. Currently, we are using w(t) = 1 as our window. This

esentially gives us a time average as our method of SIR; however, other window functions

are possible, such as

w(t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tri(t/T ) if |t− tc| < T

0 else

, (2.2)

which is the triangle function over a certain time range. It is also possible to make the SIR

causal by only windowing over prior frames. For our approach, however, we assume a full

time average is sufficient.

10



2.1.1.2 Phase Correction

The Akela L-band radar produces wideband FLGPR data by transmitting each frequency

individually. Due to platform motion, the pulses experience a time-dependent phase shift.

The phase of each pulse at the receiver from a target located at x = (x, y, z) is

φ(t) =kf (Rtx(t) +Rrx(t)), (2.3)

Rtx(t) =‖x− xtx(t)‖2, (2.4)

Rrx(t) =‖x− xrx(t)‖2, (2.5)

where kf is the wavenumber of frequency f , and xtx(t) and xrx(t) are the locations of the

transmitter and receiver at time t. If we assume that the vehicle during a frame is only

moving in the positive x direction then Rtx (and, similarly, Rrx) can be written as

Rtx(tb) =
[
(x− xtx(tb)− vΔts)

2 + (y − ytx)
2 + (z − ztx)

2
]1/2

,

where tb is the time at the beginning of the frame, v is the velocity of the vehicle, and Δts

is the time between tb and the sth frequency pulse. If we assume that frequency pulses are

spaced equally in time, then Δts = sΔt, where s = 0, 1, . . . , F − 1 is the index of the

frequency pulse and Δt is the transmit time of each pulse.

We simulated the effect of the velocity of the vehicle versus the frame rate of FLGPR to see
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what velocity-to-frame-rate ratios significantly degraded the conventional backpropagation

image. One can think of the velocity-to-frame-rate ratio as the distance the vehicle travels

during one sweep of all the frequencies. Figure 2.2 shows images of point targets located

at (down range, cross range, height) = (0, 10, 0), (3, 10, 0), and (−4, 7, 0) meters. The array

geometry is equivalent to the geometry of the actual L-band FLGPR. As these images show,

the image of the point targets degrades significantly at velocity-to-frame-rate ratios greater

than 0.25. Furthermore, the maximum return at 0 m/s velocity is more than 6dB greater

than the return at a velocity-to-frame-rate ratio of ∼ 0.42. In terms of signal-to-noise

ratio, this is equivalent to a 6dB loss in SNR. Although the simulated noise is low in these

simulated images, one could imagine that a 6dB loss in SNR for the real system could be

catastrophic. Based on the data that we have currently, the velocity-to-frame-rate ratios are

about 0.1 to 0.2 (corresponding to speeds of about 4-5 mph), which we do not expect to

cause a large amount of blurring in the image. But if speeds exceeding 10mph are desired,

then motion during the swept frequency pulses can cause significant degradation in image

quality.

Even though the real platform velocity to frame rate ratio is very small, we examined a

way to compensate for the phase error caused by the platform motion. We first estimate the

ranges as Rtx(t) and Rrx(t) as Rtx(ts) ≈ Rtx(tb) − vΔts and Rrx(ts) ≈ Rrx(tb) − vΔts

and then apply a phase compensation to the swept frequency signal as

w′
tb
(fs) = wtb(fs) exp

{
−j4π

fs
c
v(tb)Δts

}
,
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Figure 2.2: Effect of platform velocity and frame rate on simulated backpropagation image

of L-Band FLGPR

where wtb(fs) is the received signal at frequency fs, s = 0, 1, . . . , F−1, F is the number of

frequencies, and c is the speed of light. Note that this corresponds to a non-linear phase shift

proportional to fsΔts. Hence, the compensation for motion cannot simply be applied in

the time (range) domain as a time-delay. This compensation is a rough estimate of the true

effect of the motion on the 2D back-propagated image, as it is easy to see that it is only exact

when cross-range (y) and height (z) are both 0-valued. However, simulation shows that this

approximation is very effective at reducing the motion effect on the swept-frequency signal.

Figure 2.3 shows the effect of this compensation on simulated L-band FLGPR data; view

(a) shows the image with no platform motion, view (b) shows the uncompensated image,

and view (c) shows the phase-compensated result. View (c) shows that the backpropagated
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(b) Uncompensated
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(c) Compensated

Figure 2.3: Effect of phase compensation for motion effects on simulated backpropagation

of L-band FLGPR

image is significantly more focused. Furthermore, the 6dB of SNR loss is negated. The

compensated image does show, when compared to the no motion image in view (a), that

the target located off the bore-sight still has a slightly blurred signature; however, this loss

is negligible.

Table 2.1 shows the AUR of our DOM prescreener (see Section 2.1.2 for a description of

this prescreener) on four lanes with and without the phase adjustment. As these results

show, there is little difference between the results. We attribute this to the slow speed that

the vehicle is traveling. However, if faster speeds are used in future data collections, we

believe that the motion-induced blurring will be more significant.
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Table 2.1
Effect of Phase Adjustment on DOM Prescreener AUR

with adjustment without adjustment

Lane HH VV HH VV

A 0.4982 0.4230 0.4949 0.4386

B 0.2594 0.2319 0.2865 0.2499

C 0.0697 0.0128 0.0753 0.0126

D 0.1118 0.0823 0.1271 0.0943

2.1.1.3 Coherent Integration Length

Several coherent integration lengths were experimented with for the L-band radar. These

lengths represent the down range area in which each frame of the FLGPR is imaged. This

area is also a representation of the possible stand-off distance (maximum distance at which

a target can be detected). A longer coherent integration distance would mean that the im-

ages are formed farther from the vehicle; thus, objects can be detected at longer distances.

However, while it is desirable to increase stand-off distance, it is far more important to have

excellent detection statistics. A hazard that is detected closer is far preferable to a hazard

that is not detected at all. Table 2.2 shows the prescreener AUR over various coherent

integration lengths.
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Table 2.2
AUR Comparison for Different L-Band Coherence Lengths

Lane A xmin = 5, xmax = 10 xmin = 10, xmax = 15 xmin = 15, xmax = 20 xmin = 5, xmax = 20

DOM Bhatt DOM Bhatt DOM Bhatt DOM Bhatt

HH 0.4982 0.4281 0.3155 0.2428 0.2535 0.1932 0.2833 0.2450

VV 0.4230 0.3802 0.3788 0.3463 0.2635 0.2183 0.3860 0.3300

Lane B

HH 0.2594 0.2395 0.2743 0.2543 0.1934 0.1539 0.2132 0.1906

VV 0.2319 0.1767 0.2482 0.1968 0.1754 0.1456 0.2184 0.1562

In this table we can see that, while the coherent integration length of 10-15 has the best

performance for lane B, it only is slight better than the 5-10 meter integration length. Com-

paratively, lane A is vastly better over the coherent integration length of 5-10 than it is over

10-15. For this reason, we will be using the 5-10 meter coherent integration length for the

results presented in this document. Once the images had been formed, they were prepro-

cessed using a Constant False Alarm Rate (CFAR) prescreener. This prescreener finds the

intial hits and labels them using the ground truth data. It should be noted that the labels are

only used in the training lanes. Once the CFAR prescreener provides the hit list, a feature

extraction algorithm is used to pull important image features from the hit locations.
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2.1.2 Constant False Alarm Rate Prescreener

The result of the radar imaging procedure above is a coherently integrated image I at pre-

determined UTM coordinates (u, v), one for each polarization of the L-band FLGPR and

one image (the VV polarization) of the X-band FLGPR. It is well known that penetration

depth increases with wavelength; hence, the L-band will have a deeper penetration than

the X-band radar. Thus, we use the L-band radar as the detection radar for the method

proposed here; although, we will show results for X-band detection too.

The prescreening detector is the first algorithm that indicates candidate detection

locations—a block diagram is shown in Fig. 2.4. We employed two methods to indicate

the presence of a target, both of which could be considered to be a constant false alarm

rate (CFAR) detector. Consider an FLGPR image I(u, v), where u is the cross-range co-

ordinate, and v the down-range. We then produce four images from I(u, v), denoted as

Iμc(u, v), Iμh
(u, v), Iσ2

c
(u, v), Iσ2

h
(u, v), calculated as

Iμc(u, v) =
{I ∗Hc}(u, v)∑

Hc

; (2.6a)

Iμh
(u, v) =

{I ∗Hh}(u, v)∑
Hh

; (2.6b)

Iσ2
c
(u, v) ={I2 ∗Hc}(u, v)− {I ∗Hc}2(u, v); (2.6c)

Iσ2
h
(u, v) ={I2 ∗Hh}(u, v)− {I ∗Hh}2(u, v); (2.6d)
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where I2 indicates the image with each element squared, ∗ indicates convolution, and Hc

and Hh are elliptical convolution kernels as shown in Fig. 2.5. In essence, Iμc and Iμh
are

the mean values of the pixels in the center and halo, respectively, surrounding each pixel

and Iσ2
c

and Iσ2
h

are the corresponding variances. Detections can now be indicated by either

of the difference in the means (or size-contrast filter) or the modified Bhattacharya distance:

Isc(u, v) =Iμc(u, v)− Iμh
(u, v); (2.7a)

IB(u, v) = sgn{Isc(u, v)} ·
[
log

(
1

4

[
Iσ2

c
(u, v)

Iσ2
h
(u, v)

+
Iσ2

h
(u, v)

Iσ2
c
(u, v)

+ 2

])
(2.7b)

+
(Iμc(u, v)− Iμh

(u, v))2

Iσ2
c
(u, v) + Iσ2

h
(u, v)

]
; (2.7c)

where the Bhattacharya distance is modified so that it is signed such that positive distance

indicates that the mean of the center is greater than the mean of the outer. In our experi-

ments, we have determined the following prescreener parameters to be good choices for this

system: down-range radius = 0.25m; cross-range radius = 0.5m; and halo width = 0.75m.
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Figure 2.4: Block diagram of prescreener detection algorithm[24]. (see reprint permissions

in A)

Figure 2.5: Elliptical convolution kernels used in prescreener. Detection is indicated by

comparing the distribution of pixel intensities in inner ellipse to the distribution of pixel

intensities in outer halo[24]. (see reprint permissions in A)
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One could simply threshold Isc or IB to indicate a detection; however, this can result in

many detections in one local region. We wish to have one prototype detection location

for each candidate target; hence, we first calculate a maximum order-filtered image, de-

noted Io(u, v), with a 3m (cross-range) by 1m (down-range) rectangular kernel. Detection

locations are indicated by

A = arg(u,v){I∗(u, v) = Io(u, v)}, (2.8)

where I∗ is either Isc or IB and A is the set of cross-range and down-range locations of

detections. At each detection location, we also extract a set of shape- or texture-based

features, which we now describe.

2.1.3 Image Feature Extraction

Once the hit list is generated, image features are extracted from the hit locations. The

primary image features that were used were the Histogram of Ordered Gradients (HOG),

Local Binary Patterns (LBP) and the Local Statistics (LSTAT). Additionally, the imagelet

and Fast Finite Shearlet Transform (FFST) of each hit was also extracted. For each of the

following features, a sub-image, or imagelet, was extracted for each detection location and

the features were then extracted from the imagelet.
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2.1.3.1 Histogram of Ordered Gradients

At each detection location, we calculate an image-based texture feature called the his-

togram of ordered gradients (HOG)[47]. This feature represents the texture by calculating

local gradients and then compiling these gradients into a histogram descriptor. We use cell

patterns of 3 × 3, 4 × 4, and 5 × 5 for this feature. These cells contain, 8 × 8, 16 × 16,

and 24 × 24 pixels each respectively. A histogram is computed for each cell of pixels sur-

rounding the detection location. The center cell is centered on the detection location. The

surrounding cells are organized such that there is 50% overlap between neighboring cells.

The histogram in each cell has 9 bin centers. Thus, there are a total of 9 feature values per

cell, for a total of 81 feature values in the 3 × 3 cell pattern that describe each detection.

Figure 2.6 illustrates the HOG calculation for an example detection.
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(a) Sub-image at hit location (b) Gradient calculation and

3× 3 cell arrangement with

50% overlap

(c) Cell-based 9-bin histogram of

gradients feature

Figure 2.6: Example of histogram of ordered gradients (HOG) with 3×3 cell arrangement,

50% overlap of cells, 8 × 8 pixels per cell. Feature is a 3 × 3 × 9 = 81-length vector of

histogram components[24]. (see reprint permissions in Appendix A)

2.1.3.2 Local Binary Patterns

The second feature we use is called local binary pattern (LBP). This feature uses gray-scale

variations to capture the texture of objects in an image. An effective method for capturing
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this texture information is the LBP that was developed by Ojala et al [29]. First, the LBP

captures a binary pattern for each pixel in the image. To accomplish this, we use an 8 pixel

neighborhood with a radius of 1. For each neighborhood we calculate

LBP8,1 =
8∑

p=1

s(tp − tc)2
p, (2.9)

where

s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 x ≥ 0,

0 x < 0.

Each value of the summation in (2.9) contributes a unique bit to the binary representation

of LBP, giving this feature its name. The LBP operator is calculated for each pixel in the

image. The calculation of the histogram is the final step of the LBP feature extraction,

hLBP (m) =
∑

u,v∈image

S{LBP8,1(u, v) = m}, m = 1, . . . , 256, (2.10)

where S{H} is a Boolean function that takes the value of 1 if the argument H is true and

0 else. The histogram contains 256 bins; each bin contains the count of the pixels in the

image with the corresponding LBP pattern. The histogram is then normalized by

h̃LBP (m) =
hLBP (m)∑256
i=1 hLBP (i)

.

The normalized histogram values comprise the LBP feature.
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2.1.3.3 Local Statistics

The third feature extracted is the local statistics (LSTAT). These are simply the first four

central moments of the imagelet. For reference, the equations for each are given here. In

these equations, xm,n refers to the m-th row and n-th column of the imagelet and xn refers

to the column vector n in the imagelet.

U1 =

⎡
⎢⎢⎣
∣∣∣∣∣∣∣∣

m∑
i=1

xi,1

m

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

m∑
i=1

xi,2

m

∣∣∣∣∣∣∣∣
, ...,

∣∣∣∣∣∣∣∣

m∑
i=1

xi,n

m

∣∣∣∣∣∣∣∣

⎤
⎥⎥⎦ (2.11)

U2 =

[∣∣∣∣∣
m∑
i=1

(xi,1 − μ1)
2

∣∣∣∣∣ ,
∣∣∣∣∣

m∑
i=1

(xi,2 − μ2)
2

∣∣∣∣∣ , ...,
∣∣∣∣∣

m∑
i=1

(xi,n − μn)
2

∣∣∣∣∣
]

(2.12)

U3 =

[∣∣∣∣E(x1 − μ1)
3

σ3
1

∣∣∣∣ ,
∣∣∣∣E(x2 − μ2)

3

σ3
2

∣∣∣∣ , ...,
∣∣∣∣E(xn − μn)

3

σ3
n

∣∣∣∣
]

(2.13)

U4 =

[∣∣∣∣E(x1 − μ1)
4

σ4
1

∣∣∣∣ ,
∣∣∣∣E(x2 − μ2)

4

σ4
2

∣∣∣∣ , ...,
∣∣∣∣E(xn − μn)

4

σ4
n

∣∣∣∣
]

(2.14)

These features are then normalized and strung together as shown.

LSTAT (i) = [U1,i,U2,i,U3,i,U4,i] (2.15)

The reasoning behind using the absolute value of each statistic is to condition the data for
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use with the deep learning algorithms, which require inputs of x ∈ [0, 1] for the use of the

sigmoid function. Due to this requirement, the LSTAT feature is somewhat limited in the

information it presents and thus is not expected to perform as well as the other two features.

It may, however, be useful in conjuction with other features.

2.1.3.4 Fast Finite Shearlet Transform

The final feature pulled from the imagelets was the Fast Finite Shearlet Transform (FFST)

coefficients. This feature was computed using Häuser’s FFST algorithm [30, 31]. This

algorithm is freely available and regularly updated. The FFST has been shown to work well

for convolutional neural networks (CNNs) in the Forward-Looking Long-Wave Infrared

(FL-LWIR) buried explosive hazard problem [32]. The FFST is a discrete version of the

Shearlet Transform, computed as

‖f − fN‖22 ≤ CN−2(logN)3 as N → ∞ (2.16)

In this equation, fN is a nonlinear Shearlet approximation of the function f and N is the

largest Shearlet coefficient in absolute value. In order to discretize this, finite Shearlets must

be introduced. These finite Shearlets rely on three factors: dilation, shear, and translation.

Assuming an image size of M×N , we let j0 =
⌊
1
2
log2 max{M,N}⌋ which is equal to the

number of considered scales. We also assume this image is on a grid of G = {(m1,m2) :
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m1 = 0, ...,M − 1,m2 = 0, ..., N − 1}. Given this, the dilation, shear, and translation can

be defined as

Dilation: aj =
1

4j
, j = 0, ...j0 − 1; (2.17a)

Shear: sj,k = k2−j,−2j ≤ k ≤ 2j; (2.17b)

Translation: tm =
(m1

M
,
m2

N

)
,m ∈ G . (2.17c)

With these properties, the Shearlets can be written as

Ψj,k,m(x) = Ψaj ,sj,k,tm(x) = Ψ(A−1
aj ,

1
2

S−1
sj,k

(x− tm)) (2.18)

in the time domain, where Aa =

⎛
⎜⎜⎝a 0

0
√
a

⎞
⎟⎟⎠ is the dilation matrix and Ss =

⎛
⎜⎜⎝1 s

0 1

⎞
⎟⎟⎠ is

the shear matrix. Now we can take the shearlets into the Fourier domain to get

Ψ̂j,k,m(ω) = Ψ̂(AT
aj
ST
sj,k

ω)e−2πi〈ω,tm〉 (2.19a)

= Ψ̂1(4
−jω1)Ψ̂2(2

jω2

ω1

+ k)e
−2πi

〈
ω,(m1/M

m2/N
)
〉
. (2.19b)

From here, the dicrete shearlet transform is simply a matter of multiplying the function of

interest by the shearlets and applying the inverse FFT. Parsevel’s formula is used for first
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step to obtain (2.20), then the 2D IFFT is applied to obtain

SH(f)(h, j, k,m) =
1

MN

∑
ω∈Ω

Ψ̂(4−jω1, 4
−jkω1+2−jω2)f̂(ω1, ω2)e

2πi
〈
ω,(m1/M

m2/N
)
〉

(2.20)

This equation can be notationally simplified by defining ĝj,k(ω) := Ψ̂(4−jω1, 4
−jkω1 +

2−jω2)f̂(ω1, ω2). Using this and applying the 2D IFFT, we arrive at

SH(f)(h, j, k,m) = ifft2(ĝj,k), (2.21)

which is the discrete shearlet transfom. A more in-depth derivation of the fast finite shearlet

transform may be found in [31]. Using the algorithm freely available at Häuser’s website

[49], we are able to compute the shearlet coefficients of each hit’s imagelet. For this data

set, the FFST provided 13 shearlet coefficients for each imagelet. A sample of these shear-

lets from a hit in Lane A are shown in Fig. 2.7.
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(a) Shearlet 1 (b) Shearlet 2 (c) Shearlet 3

(d) Shearlet 4 (e) Shearlet 5 (f) Shearlet 6

(g) Shearlet 7 (h) Shearlet 8 (i) Shearlet 9

(j) Shearlet 10 (k) Shearlet 11 (l) Shearlet 12

(m) Shearlet 13

Figure 2.7: Shearlet coeffiecients for one lane hit
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Since this feature is primarily extracted for use in the Convolution Neural Network (CNN),

it seemed advantageous to pick the most detailed coeffieicents. Having observed these

plots, the first shearlet coeffieicents were chosen; however, the first four were all rather

detailed. The reason only one set of shearlet coeffieicents was chosen is two-fold. First,

the concatenation of two 2D features is a difficult problem that typically results in a loss

of clarity of the features. Second, the prescreener finds many hits. Using 2D features to

represent these hits as is required for the CNN leaves us with large 3D matrices which are

N × N × P in size, where N is the feature length and P is the number of hits. In order

to keep all the shearlets, these matricies would have to become 4-dimensional, giving us a

feature matrix of size N × N × P × 13 for each polarization. While this could certainly

be done, it would have been very time-consuming to compute. Furthermore, the curse of

dimensionality would have resulted in a poorly generalized classifier. Thus, only the first

Shearlet coefficients were used. Given more time, it would have been interesting to see

what the other shearlets could have provided. This topic will be revisited in the Section

4.5. We now present a more formal introduction to the deep learning methods used in this

document.
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Chapter 3

Classification Methods

3.1 Deep Learning Methods

The motivation for development and use of Deep Learning architechures starts at the human

brain. More specifically, the way the human brain identifies what we see [21]. Recent

understanding of the mind’s recognition shows that the neocortex uses six layers and a

forward-backward structure to classify image data collected by the eye [46]. Additional

motivation for deep learning comes from the limitations of so-called shallow architechures,

such as Neural Networks (NNs). It is often the case that adding more than two hidden

The material contained in this chapter was either previously published in SPIE Defense+ Security. Inter-

national Society for Optics and Photonics, 2014 OR has been accepted for publication in SPIE Defense+
Security. International Society for Optics and Photonics, 2015 OR has been submitted to the Geospace and
Remote Sensing, IEEE Transactions on, 2015.
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layers to an NN is detrimental to the network’s performance [45]. Deep learning seeks to

transend this boundary and allow multiple hidden layers, which in turn allows the nodes

of each hidden layer to act as more generalized feature detectors and thus allows a higher

level of recognition.

Let us first consider the classic neural net, with one input, one hidden, and one output

clasification layer. Since there is only one hidden layer, its nodes can only represent a

general feature information. Say for example that the nodes in the NN hidden layer repre-

sent Gabor-like filters. Since a deep learner is heirachical, its hidden layers can represent

varying classes and dimensions of feature detectors. The deep learner’s first layer could be

Gabor-like, then the second layer could be edge and corner detectors, then pixel intensities

in the layer after that. It is in this manner that a deep learner can reduce the dimensionality

of an input.

In the case of the famous MNIST dataset, the input image is a 28 × 28 greyscale image

of a handwritten digit from 0 to 9. This yields a network input of 1 × 784. In the case of

the neural network, this input would typically be expanded out over a larger hidden layer,

then fanned back in to a 1 × 10 clasification layer. Even with the limitation of a single

hidden layer, NNs have been shown to achieve testing errors as low as 7.6% [27]. This is

good, but far from state-of-the-art. Using appropriate deep learning algorithms, a testing

error of 0.7% [27] or lower can be achieved. The improvements do not stop at MNIST;

deep learning algorithms have been shown to perform excellently on a variety of image

32



classification tasks such as facial recognition [44], document classification [27], and even

speech recognition [43]. With this motivation in mind we will now describe the three most

common deep learning architechures, the Deep Belief Network (DBN), Stacked-Denoising

Autoencoder (SDAE), and the Convolutional Neural Network (CNN).

3.1.1 Deep Belief Networks

DBNs are a type of deep learning network formed by stacking Restricted Boltzmann Ma-

chines (RBMs) in succesive layers to reduce dimensionality by making a compressed rep-

resentation of the input. DBNs are trained layer by layer using greedy algorithms and

information from the previous layer. In this subsection, we will first discus RBMs and how

to train them, then move on to training DBNs.

3.1.1.1 Restricted Boltzmann Machines

In this section, we will denote σ(x) as the sigmoid activation function,

σ(x) =
1

1 + e−x
. (3.1)

Restricted Boltzmann Machines are simple binary learners that generate stochastic repre-

sentations of the input data. They consist of two layers, one visible and one hidden. The
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visible layer is the input layer and typically consists of a 1 × N vector of normalized,

grayscale pixel values. The hidden layer can then be thought of as a feature representation

layer. The defining equation of the RBMs is the energy equation,

E(v,h) = −bv − ch− vhW, (3.2)

where v is the input vector, h is the hidden feature vector, b and c are the visible and hidden

layer biases, respectively, and W is the weight matrix that connects the layers. It should be

noted that weights only exist between the hidden and visible layers, that is to say, that the

nodes in either layer are not interconnected. v is the input and used to train hidden layer h

as

h = σ(c+ vW). (3.3)

The hidden layer is then used to reconstruct the visible layer in the same manner,

vrecon = σ(b+ hWT ). (3.4)

The reconstruction of the visible layer is put back through (3.3) to form hrecon and then the

weight updates are given by

ΔW = ε(〈vh〉data − 〈vh〉recon), (3.5)
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where ε is the learning rate. Itereated over several epochs, this weight update performs a

type of gradient descent called Contrastive Divergence [21].

3.1.1.2 Training DBNs

Training a DBN is done layer by layer, where each layer is an RBM. Once the first RBM is

trained, its reconstructed hidden layer is used in (3.6) to create the visible layer of the next

RBM. Once the first RBM is trained, its reconstructed hidden layer hrecon is used to create

the visible layer of the next RBM by

vn+1 = σ(cTn + hnW
T
n ) (3.6)

where n denotes the layer number. Once the visible layer has been created, the layer is

trained as an RBM. This cycle is repeated for the number of layers desired. After all layers

have been trained, the DBN is typically then mirrorred to make an encoder-decoder as

shown in the Unrolling column of Fig. 3.1 [18]. Once this has been done, passing an input

through the encoder-decoder will produce a reconstruction of the same size as the input.

This pass through is done simply using

xrecon,n+1 = Wnxrecon,n (3.7)

xrecon,n−1 = WT
nxrecon,n (3.8)
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Figure 3.1: Training of a deep belief network[51]

where xrecon,1 = xT
data for the encoding side and xrecon,1 = xrecon on the decoding side.

This reconstruction along with the input can then be passed though a cost function and fine-

tuning can be performed as shown in the rightmost column of Fig. 3.1. This fine-tuning is

often done using stochastic gradient descent or Hinton’s up-down algorithm [19].

3.1.2 Stacked Denoising Autoencoders

SDAEs are deep learning architechures formed by stacking Denoising Autoencoders

(DAEs). Autoencoders and Denoising Autoencoders will be explained in the next two

subsections and the final subsection will talk about training SDAEs.
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3.1.2.1 Autoencoders

Autoencoders, like RBMs, have two layers: one input and one hidden. The input vector

is mapped to the hidden layer via a deterministic mapping function. This representation is

then used to generate a reconstruction of the input vector using the same mapping function

and transposing the connecting weights and biases. Using this reconstruction, one can use

a cost function to find the reconstruction error. Common cost functions are the squared

error and cross-entropy. Using these errors, one can optimize the Autoencoder through

methods, such as stochastic gradient descent [20]. Equation (3.9) shows the mapping to the

hidden layer, often called the encoding step. Equation (3.10) shows the reconstruction, or

decoding, step [21].

y = fθ(x) = σ(Wx+ b1), (3.9)

where W is the NxD weight matrix and b1 is the encoding bias and x is the D-dimensional

input vector.

z = gθ′(y) = σ(VTy + b2), (3.10)

where V is the NxD decoding matrix and b2 is the decoding bias.

This leaves a reconstruction error to be optimized,

L(X,Z) =
1

2

m∑
i=1

||zi − xi||22. (3.11)
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This is the traditional squared error; an alternative is the reconstruction cross-entropy:

LH(x, z) = H(Bx||Bz)

= −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)].

This approach is suggested if x and z can be interpreted as either bit vectors or vectors of

bit probabilities.

3.1.2.2 Denoising Autoencoders

A Denoising Autoencoder (DAE) is designed to reconstruct a repaired input from a corrupt

input. A corrupt input x̃ is created from input x by means of stochastic mapping x̃ ∼

qD(x̃|x). This is then encoded, y = σ(Wx̃ + b1) and decoded, z = σ(VTy + b2). The

objective is still to minimize the average reconstruction error LH(x, z) = H(Bx||Bz) over

the training set. For the method we are using, the function qD(x̃|x) is a Masking Noise in

which a percentage of the input nodes are chosen at random and forced to zero. Fig. 3.2

shows the training of a DAE more clearly [20].
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Figure 3.2: Training of a denoising autoencoder[50]

Figure 3.3: Training of a stacked denoising autoencoder[50]

3.1.2.3 Training SDAEs

Stacking DAEs to form SDEA deep architechures is much like stacking RBMs to form

DBNs. It is important to note that input corruption is only used for the initial training of

each layer [20]. After the mapping function fθ is learned, it is used on clean inputs. Fig. 3.3

shows the training process of SDEAs [20]. Once the stack has been built, the output may

be used as an input for a supervised learning algorithm, such as an SVM. Another popular

method involves using the layer weights to initialize a NN and then using that network to

do the fine-tuning and classification [21].
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3.1.3 Convolutional Neural Networks

CNNs are a type of neural network with a unique architechure. Inspired by the visual

system, these networks consist of alternating convolutional layers and sub-sampling layers.

The convolutional layers generate feature maps by convolving kernels over the data in the

previous layers and the sub-sampling layers downsample the feature maps [21]. CNNs

work directly on the 2D data as opposed to the other forms of deep networks which string

out the data into 1D feature vectors.

The convolutional layer l is generated from a feature map j by

alj = σ(blj +
∑
i∈M l

j

al−1
j ∗ kl

ij), (3.12)

where σ is the activation function, usually tanh or sigmoid, blj is a scalar bias, M l
j is an

indice vector of feature maps i in layer l - 1, * is the 2D convolution operator and kl
ij is the

kernel used on map i in layer l - 1. A sub-sample layer l is generated from a feature map j

by

alj = down(al−1
j , N l), (3.13)

where down is a downsampling function, such as mean-sampling, that downsamples by
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factor N l [21]. The output layer is then generated by

o = f(bo +W ofv), (3.14)

where fv denotes a feature vector concatenated from the feature maps of the previous layer,

bo is a bias vector and W o is a weight matrix. The parameters to be learned are thus kl
ij , b

l
j ,

bo and W o. Gradient descent is used to learn these parameters and this can be efficiently

performed through the use of convolutional backpropagation [21]. Figure 3.4 from on the

Comparison of Learning Algorithms for Handwritten Digit Recognition shows an example

of the layer structure and function of a Convolutional Neural Network very similar to the

one used in Palm’s toolbox [21, 48].

Figure 3.4: Example of a convolutional neural network
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3.2 Shallow Learning Methods

In order to better understand the performance of the deep learning algorithms, two shallow

algorithms were also tested. The algorithms tested for comparision were the Single Ker-

nel Support Vector Machine (SKSVM) and the Multiple Kernel Learning - Group Lasso

(MKLGL). These algorithms have been used previously in the FLGPR detection problem

and their benefits are known [31]. The following two subsections will discus in detail the

two shallow algorithms.

3.2.1 Single Kernel Support Vector Machine

The optimization problem is the most general definition of the SVM algorithm

min
w,b

‖w‖2
2

, (3.15)

subject to

yi(w
Txi − b) ≥ 1, i = 1, . . . , n, (3.16)

where yi ∈ {−1,+1} are the class labels and (wTxi − b) is the equation of the class-

separating hyperplane. In this form, the SVM does not support overlapping classes. The
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soft-margin SVM was thus introduced to compensate for the overlapping classes case,

min
w,ξ,b

{
‖w‖2
2

+ C
n∑

i=1

ξi

}
, (3.17a)

subject to

yi(w
Txi − b) ≥ 1− ξi, ξi > 0, i = 1, . . . , n, (3.17b)

where C determines how many errors are allowed in the training [42]. Note that (3.17)

represents a linear soft-margin SVM. This may be extended to the more general kernel

soft-margin SVM in which the optimization problem is solved using Lagrange multipliers.

The single-kernel SVM (SKSVM) is defined as

max
α

{
1Tα− 1

2
(α ◦ y)TK(α ◦ y)

}
, (3.18a)

subject to

0 ≥ αi ≥ C, i = 1, . . . , n, αTy = 0, (3.18b)

where 1 is the n-length vectors of 1s, K = [κ(xi,xj)] ∈ R
n×n is the kernel matrix, and ◦

indicates the Hadamard product [40]. Note that for the kernel κ(xi,xj) = xT
i xj (which is

simply the Euclidean dot product), the SKSVM reduces to the linear SVM.

One of the drawbacks of using the above SVM formulation is that it treats each datum

equally; hence, when there is an imbalance between the number of datum in each class,

then the SVM decision boundary is driven primarily by the data from the class with more
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data points. This is a problem in explosive hazards detection as there are typically many

more false alarm detections than there are true targets—the true targets only comprise a

small overall area of the lane. To attack this issue, we use a formulation of the SVM

for imbalanced data which uses a different error cost for positive (C+) and negative (C−)

classes. Specifically, we change the constraints of the kernel SVM formulation at (3.18) to

0 ≥ αi ≥ C+, ∀i|yi = +1; 0 ≥ αi ≥ C−, ∀i|yi = −1; αTy = 0; (3.19)

where C+ is the error constant applied to the positive class and C− is the error constant

applied to the negative class. In our application, the positive class is true positives and the

negative class is false alarms. We set C+ = n−/n+ and C− = 1, where n− is the number

of objects in the negative class and n+ is the number of objects in the positive class. This

essentially allows for fewer errors in the true positives class.

The popular LIBSVM is used here to efficiently solve the SKSVM problem [26]. A classi-

fier model is the output of LIBSVM. This model contains the vector α and the bias b. We

can then classify a measured feature vector x by computing

y = sgn

[
n∑

i=1

αiyiκ(xi,x)− b

]
, (3.20)

where sgn is the signum function.
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3.2.2 Multiple Kernel Learning - Group Lasso

MKL extends the idea of kernel classification by allowing the use of combinations of mul-

tiple kernels. The kernel combination can be computed in many ways, as long as the

combination results in a Mercer kernel [35]. In this paper we assume that the kernel K is

composed of a weighted combination of pre-computed kernel matrices, i.e.,

K =
m∑
k=1

σkKk, (3.21)

where there are m kernels and σk is the weight applied to the kth kernel. The composite

kernel can then be used in the chosen classifier model. For this paper, we will use the SVM.

Thus, MKL SVM extends the SKSVM optimization at (3.18) by also optimizing over the

weights σk,

min
σ∈Δ

max
α

{
1Tα− 1

2
(α ◦ y)T

(
m∑
k=1

σkKk

)
α ◦ y)

}
, (3.22a)

subject to (typically)

0 ≤ αi ≤ C, i = 1, . . . , n, αTy = 0, (3.22b)

where Δ is the domain of σ. Note that, if the kernel weights are assumed constant, this is the

exact same problem as SKSVM [34]. Many researchers have used this property to propose

alternating optimization (AO) procedures to solve the problem of min-max optimization.

This method solves the inner maximization given a constant kernel K, and then updates
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the kernel weights σk in order to solve the outer minimization. This is done iteratively until

convergence.

Many MKL implementations only work for a single domain, thus the domain of σ is very

important. For example, Δ = {σ ∈ R
m : ‖σ‖2 < 1, σk > 0} is the 
2-norm MKL [36, 37].

Our MKL instantiation is generalized to allow for an 
p-norm domain Δ = {σ ∈ R
m :

‖σ‖p < 1, σk > 0} [39]. We use the MKL group lasso (MKLGL) optimization procedure

proposed by Xu et al. [39]. This method uses a closed form solution for solving the outer

minimization to improve efficiency in (3.22), i.e.,

σk =
f
2/(1+p)
k(∑m

k=1 f
2p/(1+p)
k

)1/p , k = 1, . . . ,m; (3.23a)

fk = σ2
k(α · y)TKk(α · y). (3.23b)

We use a modified MKLGL algorithm which uses the SKSVM for unbalanced classes—

i.e., we apply the constraints with C+ and C− as shown at (3.19). The MKLGL training

algorithm is outlined in Alg. 1. The MKLGL is simple to implement and is efficient as the

update equations for σk are closed-form. MKL can find the optimal kernel among a set

of candidates by tuning the weights on each kernel. In this way, it can be thought of as

a classifier fusion algorithm. The individual kernels can be computed in many ways—see

[38] for more discussion on the formation of the kernel matrices.
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Algorithm 2: Appeared in [24] (see reprint permissions in Appendix A)

Data: (xi, yi) - feature vector and label pairs; Kk - kernel matrices

Result: α, σk - MKLGL classifier solution

Initialize σk = 1/m, k = 1, . . . ,m (equal kernel weights) ;

while not converged do

Solve unbalanced SKSVM for kernel matrix K =
∑m

k=1 σkKk;

Update kernel weights by eqs. (3.23);
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Chapter 4

Results and Discussions

4.1 Deep Networks for False Alarm Rejection

On its own, the CFAR prescreener does a good job of finding targets. However, through the

use of deep learners, we believe we can further improve these results. A deep learner’s abil-

ity to learn high-dimensional features and represent them by compressed, low-dimensional

vectors makes them an excellent candidate for false alarm rejection. For this section, we

train on one lane and test on another. The two lanes used here will be denoted as Lane A

and Lane B. In addition to testing on both lanes, we also tested with and without the phase

The material contained in this chapter was either previously published in SPIE Defense+ Security. Inter-

national Society for Optics and Photonics, 2014 OR has been accepted for publication in SPIE Defense+
Security. International Society for Optics and Photonics, 2015 OR has been submitted to the Geospace and
Remote Sensing, IEEE Transactions on, 2015.
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adjustment. Each algorithm will thus have four tables associated with it, one for single im-

age features with phase adjustment, one for single features without phase adjustment, one

for combinations of features with phase adjustment, and one for combinations of features

without phase adjustment. The numbers in these tables represent the AUR improvement of

the algorithm as compared to just the prescreener.

The area under ROC (AUR) is here used to show the relative performance of our different

detection methods and classifiers. This metric is calculated by normalizing the area under

the receiver operating characteristic (ROC) curve for a given method. Figure 4.1 shows

the calculation of the AUR for an example ROC curve. We chose to limit the maximum

FA per squared-meter rate (FAR) to 0.1 for our AUR calculation as a FAR > 0.1 results in

digging about every 1 meter down a 10 meter wide lane). The AUR equation is

AUR =
1

0.1

∫ 0.1

0

pd(FAR)d(FAR), (4.1)

where pd(FAR) is the probability of detection for the given FAR. The minimum possible

AUR is 0, which indicates that no targets were detected, and the maximum possible AUR

is 1, which indicates that all targets were detected with 0 FAR. For each ROC, we will also

show the ROC curve and corresponding AUR of a uniform random detector, which is a

detector such that one indicates hits at a predetermined uniform random spatial rate—the

uniform random detector will be shown by a red dotted line. The AUR improvement then

is the percentage of improvement of the AUR over the prescreener. After all the tables have

been presented, two figures will be shown. One figure is the ROC curve for the best single
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Figure 4.1: Illustration of AUR calculation[24](see reprint permissions in Appendix A)

feature and the other is the ROC curve for the best combination of features.

4.1.1 DBNs for False Alarm Rejection

Deep belief networks are very useful for learning representations and patterns in large

data sets. Because of this, they can be trained to generate accurate representations and

reconstructions of data and images and thus could be useful for learning to detect and reject

false alarms in FLGPR data. One way to do this is to use a DBN to learn the notion of a

false alarm and then use the reconstruction root mean-square error (RMSE) to determine if

the object is a target or not. Our process is as follows. First, we use the CFAR Prescreener

to determine where the hits are in the training lane and then extract the image features

as described in the Section 2.1.3. Second, we remove all the true hits so that only the

false alarms remain. Third, we train three DBNs, one for each FLGPR channel, on the

image features of the false alarms. In doing this, we hope that the DBNs will learn to
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very accurately model false alarms and, by contrast, do a very poor job of reconstructing

true positives. Once the DBNs are trained, we load the testing lane. We once again use

the CFAR Prescreener to find hits in the testing lane and then extract their features. We

then push each of the prescreener hits through the DBN and take the RMSE between the

reconstruction and the feature input. This RMSE is then used as the hits’ confidences in

the ROC curve. The main idea is that since the DBN is well trained on false alarms, it will

model targets very poorly, thus leading to a high RMSE and therefore a high confidence

for the ROC curve.

Since DBNs have many parameters to adjust, many different architechures, learning rates,

and epoch amounts were tested. The best combination we found for this data set is an

architechure using two hidden layers of sizes 40 and 20, giving a full encode-decode stack

architechure of [x 40 20 40 x̂], where x is the 1×N feature vector input and x̂ is the 1×N

reconstruction of the input.This architechure is used for all three channels, as is the learn-

ing rate of 0.9 and 30 epochs of contrastive divergence for the RBM training. Such a low

number of epochs were used as this network was prone to overfitting on the training data.

In order to better compare the performance, this process was repeated for every combina-

tion of image features over three cellsizes. In each trial, the AUR of the prescreener alone

was compared to the AUR of the DBN FA rejector and the improvement percentage was

calculated. The AUR improvements of all of these trials can be seen in Tables 4.1 and 4.3.

These trials were also performed on the images with no phase correction; thoseresults can

be seen in Tables 4.2 and 4.4. These tables are ordered as follows: single image feature with

52



phase correction, single image features without phase correction, combinations of image

features with phase corrections, and combinations of image features without phase correc-

tion. The number in each cell is the percentage improvement of the classifier AUR over

the prescreener AUR. The maximum improvement of each feature set for each polarization

and each run is bolded for clarity.
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Table 4.1
Percent AUR Improvemets using Single Features with DBN

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -53.52 -18.42 64.35 -92.35 0.39 9.38

Mimo VV: -28.02 57.97 31.07 -0.66 -55.84 -84.62

Set VV: -84.86 -98.44 -99.77 -76.67 -80.50 -71.65

LBP

Mimo HH: -68.56 -90.16 -94.89 -15.89 -86.87 -87.48

Mimo VV: -65.66 -76.08 -86.00 -16.59 -52.64 -73.94

Set VV: -23.52 -22.57 -39.63 -23.25 -1.94 13.26

LSTAT

Mimo HH: -41.96 -74.36 -83.76 -54.70 -89.53 -71.26

Mimo VV: -49.91 -79.70 -67.29 -38.90 -74.84 -67.14

Set VV: -49.83 -62.22 -75.42 1.27 -28.21 -78.71

FFST

Mimo HH: -38.75 -58.58 -57.30 -66.68 -63.39 -69.71

Mimo VV: -32.39 -30.87 -49.86 -48.58 -63.70 -57.29

Set VV: -51.23 -91.83 -38.58 -14.36 -33.77 -25.28
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Table 4.2
Percent AUR Improvemets using Single Features with DBN and No Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -55.06 -18.93 22.61 -93.21 3.51 10.34

Mimo VV: -46.21 54.02 7.75 -88.14 -82.35 -8.54

Set VV: -84.86 -98.44 -99.77 -90.56 -89.14 -91.78

LBP

Mimo HH: -77.09 -85.56 -96.02 -85.85 -27.63 -55.80

Mimo VV: -63.77 -87.30 -93.54 -85.32 -86.92 -91.45

Set VV: -23.52 -22.57 -39.63 -23.89 -16.24 -33.17

LSTAT

Mimo HH: -69.82 -90.01 -81.96 -56.91 -89.24 -77.58

Mimo VV: -46.96 -60.91 -88.09 -41.18 -71.22 -79.73

Set VV: -49.83 -62.22 -75.42 -16.06 -26.08 -59.87

FFST

Mimo HH: -31.91 -57.54 -58.20 -59.00 -67.33 -60.71

Mimo VV: -30.15 -53.17 -73.24 -65.75 -64.60 -59.35

Set VV: -57.40 -37.81 -48.65 -79.11 -51.96 -51.43
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Table 4.3
Percent AUR Improvemets using Combinations of Features with DBN

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -17.44 -7.44 36.02 -64.17 -50.11 12.91

Mimo VV: -27.29 7.80 62.56 -85.62 -23.33 22.28

Set VV: -24.59 4.21 6.93 10.15 39.89 48.79

HOG & LSTAT

Mimo HH: -44.12 -1.15 -26.45 -57.99 -67.80 -52.42

Mimo VV: -41.88 -30.14 -27.19 -15.61 -57.60 -55.56

Set VV: -37.58 -39.88 -48.66 -10.76 -5.43 -26.67

LBP & LSTAT

Mimo HH: -40.29 -37.59 -66.45 -54.60 -74.57 -83.28

Mimo VV: -48.30 -65.87 -60.89 -41.19 -66.66 -80.98

Set VV: -59.21 -64.90 -67.95 -10.06 -5.05 -8.63

HOG, LBP & LSTAT

Mimo HH: -30.28 -21.91 -46.21 -46.44 -71.90 -77.92

Mimo VV: -48.55 -58.41 -48.79 -43.58 -59.67 -65.15

Set VV: -57.12 -62.12 -59.76 -11.38 3.82 3.02
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Table 4.4
Percent AUR Improvemets using Combinations of Features with DBN and No Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -26.04 -8.43 36.69 -90.51 -16.99 17.42

Mimo VV: -46.41 21.83 60.06 -51.57 -12.21 15.07

Set VV: -24.59 4.21 6.93 5.82 39.58 60.51

HOG & LSTAT

Mimo HH: -42.77 -25.73 -34.54 -44.25 -51.01 -72.08

Mimo VV: -66.01 -42.61 -14.11 -30.96 -61.10 -40.39

Set VV: -37.58 -39.88 -48.66 5.88 -16.75 -36.17

LBP & LSTAT

Mimo HH: -47.56 -71.32 -62.73 -55.96 -80.36 -83.38

Mimo VV: -65.34 -68.07 -81.06 -37.70 -60.76 -79.89

Set VV: -59.21 -64.90 -67.95 0.53 -8.40 -3.68

HOG, LBP & LSTAT

Mimo HH: -38.89 -52.78 -47.51 -64.61 -68.13 -77.06

Mimo VV: -58.38 -58.23 -47.24 -31.84 -58.92 -72.16

Set VV: -57.12 -62.12 -59.76 -11.94 6.17 -2.87
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These tables tell us a few things about the DBN false alarm rejector. We see that the HOG is

the best single feature. We see that though the LBP on its own does not perform very well,

when combined with the HOG it helps form the best overall improvement of the network.

We can also see that the LSTAT features seem to degrade the performance of the rejector.

The best theory as to why the LSTAT features are so harmful is that they are not very unique

between the false alarms and the actual hits and thus blur the line between the two classes.

Because of this, the RMSE for the hits would be very similar to that of the false alarms and

thus using the RMSE as the hit confidence is useless.

In almost every case, the phase adjusted data outperformed the non-phase adjusted data.

This is a bit unexpected as the non phase adjusted data preformed better in the prescreener.

It is possible that, because the prescreener does a better job on the non phase adjusted data,

that there is less room for improvement and thus the network does not appear to work as

well. This theory will be touched on in more detail in the Section 4.4. Figures 4.2 and

4.3 show the best overall ROC curves for the single features and combinations of features,

respectively. For the single features, we use the HOG feature; for the combination, we use

the HOG and LBP. Note that not all the FLGPR channels are positively improved. In the

case of the single image features, the X-Band is not improved positively.
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(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.2: Best improvements of DBN using single image features

(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.3: Best improvements of DBN using combinations of image features

4.1.2 SDAEs for False Alarm Rejection

Stacked Denoising Autoencoders have been used very successfully in feature learning and

image recognition applciations [20, 25]. This makes them another possible candidate for
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a false alarm rejector. Two methods were attempted; the first was to train the SDAE and

then use the layers as layers of a Neural Network. In this case, the backpropagation of

the NN is used for further fine-tuning of the network as well as for classification of the

testing data. The second method uses the top layer of the SDAE as the input to an SVM,

which will be used to classify the data. In the former case, there are many options that can

be changed to optimize the SDAE. These include SDAE learning rate, SDAE activation

function, SDAE zero mask percentage, number of epochs to train the SDAE, layer sizes,

NN activation function, NN learning rate, and number of epochs to train the NN. Taking

inspiration from the DBN trials, a seperate SDAE and subsequent NN was trained on each

channel of radar data. The parameters of both the SDAE and NN that we found to work the

best after much trial and error can be seen in Table 4.5, where x is the length of the input

feature vector. An additional measure that was taken was reducing the number of false

alarms in the training data to prevent the network from becomeing too biased. Using the

training labels, we reduce the numebr of false alarms in random order until there are equal

targets and FAs. For the latter approach, we use the same SDAE parameters. We found

that the linear kernel in the SVM did a better job than the RBF kernel in this case, so that is

what was used. The new confidences are thus the distance of the point from the hyperplane

found by the SVM.
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Table 4.5
SDAE-NN Parameters

Parameter Name: Value:

SDAE Activation: Sigmoid

SADE Learning Rate: 0.9

SDAE Zero Mask: 60%

SDAE Epochs: 350

SDAE Layers: [x 30 15]

NN Activation: sigmoid

NN Learning Rate: 0.9

NN Epochs: 200

4.1.2.1 SDAE into FFNN

The first attempt to use an SDAE for false alarm rejection was to train the SDAE as men-

tioned in Section 3.1.2.3 and then use the layers of the SDAE as layers of a Neural Network

(NN). The process for doing this is simple. Once the SDAE has been trained, the weights

that make up the mapping function fθ of each layer are simply used as the weights of the

NN. Likewise, the layer sizes are used as the NN’s layer sizes and an output layer of size

c is added, where c is the number of classes in the training data. In the FLGPR case, c =

2 as each hit is either a target or a false alarm. The weights connecting the top layer of

61



the SDAE to the output layer of the NN are initialized randomly. The training features are

then pushed through the NN and classified based on the maximum node value in the output

layer. This is then compared with the training label for that feature set and the errors are

backpropagated through the network to fine-tune the weights. This process is repeated for

a certain number of epochs and then the network is set. At this point, the testing data can

be fed forward though the network and classified. The testing data is not used to modify

the network. The testing data was gathered the same way as in the DBN case, using the

CFAR prescreener to locate hits and determine confidences. The prescreener results are

then used to generate a basis ROC curve and the AUR is calculated. These hit locations are

then pushed through the NN and classified as either targets or FAs. If a hit is classified as

a false alarm, the network throws out the hit location and confidence from the prescreener

hit list. The newly revised hits list is used to form a new ROC curve and the new AUR

is calculated. The prescreener and SDAE AURs are then compared to determine the per-

centage improvement. Tables 4.6 and 4.8 show the AUR improvements of the SDAE-NN

with the phase adjustment while Tables 4.7 and 4.9 show improvements of the SDAE-NN

without the phase adjustment. As before, the best overall improvement for each feature

combination is bolded.
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Table 4.6
Percent AUR Improvemets using Single Image Features with SDAE-NN

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 38.66 48.97 69.01 -39.35 -14.19 12.69

Mimo VV: 11.19 71.23 89.63 15.89 11.11 23.28

Set VV: 2.92 -100.00 -100.00 -6.16 23.43 11.49

LBP

Mimo HH: 0.00 0.00 0.00 0.00 0.00 0.00

Mimo VV: 0.00 0.00 0.00 0.00 0.00 0.00

Set VV: -100.00 -100.00 -100.00 -100.00 -100.00 -100.00

LSTAT

Mimo HH: -39.42 -23.06 -32.24 -66.57 -76.38 -25.07

Mimo VV: -37.94 -30.71 7.49 -36.82 -21.20 0.00

Set VV: -57.02 -35.00 -8.64 2.97 -41.32 -2.23

FFST

Mimo HH: 0.00 -100.00 -100.00 -100.00 0.00 0.00

Mimo VV: -100.00 -100.00 -100.00 -100.00 -100.00 0.00

Set VV: 0.34 0.34 0.34 1.82 -100.00 -100.00
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Table 4.7
Percent AUR Improvemets using Single Image Features with SDAE-NN and No Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 16.11 35.29 64.87 -3.67 -7.21 7.86

Mimo VV: 15.00 64.94 54.72 2.74 20.64 45.95

Set VV: 2.92 -100.00 1.56 -13.86 21.55 -65.99

LBP

Mimo HH: 0.00 0.00 0.00 -100.00 -100.00 -100.00

Mimo VV: 0.00 0.00 0.00 -100.00 -100.00 -100.00

Set VV: -100.00 -100.00 -100.00 -100.00 -100.00 -100.00

LSTAT

Mimo HH: -60.71 -36.48 -46.71 -27.34 -27.12 -13.07

Mimo VV: -53.35 -19.80 -4.57 -23.23 -61.57 -79.11

Set VV: -57.02 -35.00 -8.64 -100.00 -35.75 3.08

FFST

Mimo HH: -5.26 -100 -100 0 -100 0

Mimo VV: -100 -5.26 -100 0 -100 0

Set VV: -4.94 -4.77 -100 1.82 1.82 -100
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Table 4.8
Percent AUR Improvemets using Combinations of Image Features with SDAE-NN

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 25.75 45.02 68.48 -46.29 -19.45 16.03

Mimo VV: -100.00 55.90 18.94 4.10 19.73 -100.00

Set VV: -100.00 38.49 0.34 -15.84 27.73 48.16

HOG & LSTAT

Mimo HH: -4.97 23.46 -100.00 -8.72 8.61 24.23

Mimo VV: -18.37 25.76 16.02 11.80 5.78 28.12

Set VV: -31.15 -8.40 0.81 18.23 27.95 8.27

LBP & LSTAT

Mimo HH: -8.94 -29.27 -5.17 -35.52 -14.31 -7.66

Mimo VV: -12.76 -16.43 -30.10 -14.05 -32.75 -69.86

Set VV: -29.02 -23.73 -0.22 -38.85 -25.05 -39.07

HOG, LBP & LSTAT

Mimo HH: 14.20 22.87 24.27 4.56 -23.04 11.84

Mimo VV: 1.32 29.24 53.41 -16.94 32.27 23.99

Set VV: -42.46 -1.82 -74.13 24.57 -14.37 42.58
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Table 4.9
Percent AUR Improvemets using Combinations of Image Features with SDAE-NN and No Phase

Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 17.44 47.58 63.90 -30.25 -16.43 19.63

Mimo VV: -100.00 50.84 20.50 1.57 33.97 46.39

Set VV: -100.00 17.05 -100.00 -32.89 -1.52 58.19

HOG & LSTAT

Mimo HH: -43.38 18.33 32.29 -6.21 2.18 16.10

Mimo VV: -20.27 25.30 36.81 10.46 16.08 18.33

Set VV: -31.15 -6.04 -93.91 -24.50 34.00 3.32

LBP & LSTAT

Mimo HH: 1.00 -26.07 -18.82 -18.94 -62.23 -40.62

Mimo VV: -39.77 -11.79 1.62 0.00 -46.71 7.35

Set VV: -29.02 -23.73 -0.22 6.26 13.49 -74.30

HOG, LBP & LSTAT

Mimo HH: -32.55 34.24 31.86 -16.69 -100.00 -100.00

Mimo VV: -20.59 9.54 57.13 9.55 -5.02 20.78

Set VV: -42.46 5.54 -52.58 27.80 33.94 33.50
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Much like the DBN, we can see that the SDAE-NN performs much better with combina-

tions of image features than it does on any single feature; however, the difference is not as

large as with the DBN. Much like the DBN, the SDAE-NN also prefers the HOG and LBP

features. The HOG is again the best single feature and the HOG and LBP is the best com-

bination. Dissimilarly, the LSTAT does not perform as poorly as it did in the DBN, either

alone or in a combination. This is likely due to the SDAE’s methods of training. Again, the

phase adjusted data provided for better improvements than the non phase adjusted data. We

also see that the SDAE-NN, in general, outperforms the DBN. Figures 4.4 and 4.5 again

show the best improvements for the single and combinations of features.

(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.4: Best improvements of SDAE-NN using single image features

67



(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.5: Best improvements of SDAE-NN using combinations of image features

4.1.2.2 SDAE into SVM

The second attempt to use an SDAE for false alarm rejection involves again training the

SDAE as in Section 3.2.3 and then using the top layer representation of the data as the

input to an SVM. Unlike the case of the SDAE-NN, we found it was better not to limit

the number of false alarms. Thus, the SDAEs and subsequent SVMs were trained using

all the hits of the training lane. To train, we used the same size SDAEs as in the previous

section with the same number of epochs. After the SDAE was trained, each hit was pushed

up through the SDAE and a matrix of the compressed representations was generated. This

new training matrix was then used as the training input to the SVM. We trained two models

for each sensor, one with a linear kernel and one with a radial basis function (RBF) kernel.

To perform the testing, the test lane’s hits were pushed up through the pretrained SDAE’s
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layers and a matrix of compressed representations was saved. This compressed feature

matrix was used in the SVM prediction equation at (3.20). The distance from the SVM

classification hyperplane was then used as the new confidence value for the hits. Results

showed that the linear kernel outperformed the RBF kernel; thus, results in Tables 4.10

and 4.12 represent the testing over multiple cellsizes and feature combinations using the

linear kernel SVM and the phase adjustment. Results in Tables 4.11 and 4.13 show the

improvements made by using the linear kernel SVM and non phase adjusted data.
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Table 4.10
Percent AUR Improvemets using Single Image Features with SDAE-SVM

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -2.85 -39.16 22.03 -56.50 -24.04 -6.98

Mimo VV: -25.28 -5.92 60.71 -20.74 18.69 -51.49

Set VV: -90.68 -29.79 10.41 -7.74 8.21 24.22

LBP

Mimo HH: -16.33 -13.94 -13.40 -43.01 -34.32 -41.48

Mimo VV: -24.53 -47.32 -21.41 -69.54 -64.19 -63.59

Set VV: -38.28 -12.17 -38.80 -20.50 11.84 6.02

LSTAT

Mimo HH: -59.85 -34.98 -23.54 -30.66 -64.32 -28.86

Mimo VV: -53.69 -39.96 -64.50 -43.45 -67.87 -84.17

Set VV: -41.63 -68.29 -31.23 -1.86 24.62 -41.37

FFST-

Mimo HH: -40.52 -31.26 -31.33 -65.18 -67.06 -60.97

Mimo VV: -65.65 -67.19 -75.97 -45.20 -60.53 -59.47

Set VV: -35.17 -59.88 -27.76 -33.32 -49.80 -40.84
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Table 4.11
Percent AUR Improvemets using Single Image Features with SDAE-SVM and No Phase

Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -11.09 -74.62 5.96 -30.01 -76.19 -30.52

Mimo VV: -48.93 1.37 47.82 -53.16 5.96 22.67

Set VV: -90.68 -29.79 10.41 -17.96 13.94 37.70

LBP

Mimo HH: -29.49 -20.19 -29.09 -25.70 -51.59 -14.05

Mimo VV: -22.68 -47.78 -47.16 -62.20 -65.54 -39.56

Set VV: -38.28 -12.17 -38.80 7.67 15.47 28.55

LSTAT

Mimo HH: -69.73 -38.76 -42.30 -49.22 -44.00 -70.92

Mimo VV: -21.84 -74.44 -37.18 -76.60 -74.20 -81.80

Set VV: -41.63 -68.29 -31.23 -42.43 -54.01 -37.90

FFST

Mimo HH: -98.11 -43.94 -63.87 -62.08 -57.68 -59.16

Mimo VV: -30.05 -53.59 -67.35 -69.88 -61.14 -57.03

Set VV: -48.16 -61.30 -73.48 -34.41 -57.93 -32.66
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Table 4.12
Percent AUR Improvemets using Combinations of Image Features with SDAE-SVM

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 7.62 19.98 68.73 -60.08 -24.42 8.02

Mimo VV: -39.98 -82.88 54.98 -42.28 -27.85 19.49

Set VV: -15.30 9.30 -8.99 -35.82 22.40 -32.13

HOG & LSTAT

Mimo HH: -29.69 22.82 -1.04 -38.75 -67.39 -30.77

Mimo VV: -46.10 -52.95 -27.08 -45.48 -60.80 -87.21

Set VV: -29.83 -1.21 -52.74 -22.04 -69.55 37.95

LBP & LSTAT

Mimo HH: -51.75 -40.92 -37.97 -62.87 -36.68 -82.14

Mimo VV: -50.87 -45.59 -9.06 -59.91 -60.50 -51.85

Set VV: -65.69 -70.56 -69.65 -12.73 -52.72 -22.75

HOG, LBP & LSTAT

Mimo HH: -3.25 -23.26 42.29 -34.57 -35.64 -60.97

Mimo VV: -32.62 -50.03 14.80 -57.40 -55.55 -62.51

Set VV: -82.41 -14.26 -43.79 -55.85 -18.33 43.21
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Table 4.13
Percent AUR Improvemets using Combinations of Image Features with SDAE-SVM and No Phase

Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -22.62 -4.78 41.96 -43.22 -57.21 -2.79

Mimo VV: -35.40 -84.97 51.73 -60.72 -26.57 -21.00

Set VV: -15.30 9.30 -8.99 6.13 7.17 49.98

HOG & LSTAT

Mimo HH: -28.27 8.08 -13.91 -80.49 -43.19 -51.69

Mimo VV: -30.57 -50.62 -43.38 -48.13 -6.64 -92.39

Set VV: -29.83 -38.94 -51.90 7.33 -20.18 26.29

LBP & LSTAT

Mimo HH: -57.59 -40.30 -37.92 -49.40 -63.49 -50.32

Mimo VV: -23.80 -30.67 -26.57 -48.57 -75.46 -72.71

Set VV: -65.69 -70.56 -69.65 -58.43 -3.05 -42.97

HOG, LBP & LSTAT

Mimo HH: -39.16 3.90 -9.55 -45.80 -30.74 -32.38

Mimo VV: -28.49 -37.19 14.70 -24.12 -47.22 -8.37

Set VV: -82.41 -14.28 -35.47 -21.63 -19.31 17.30
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Tables 4.10-4.13 seem to show that using the SVM to finetune the SDAE may be undesired.

Indeed, if one compares the SDAE-SVM results with the SDAE-NN results, it is clear that

the SDAE-NN performs almost uniformly better than the SDAE-SVM. This could likely be

attributed to the power of the single kernel SVM combined with the power of the SDAE.

Perhaps the two combined algorithms cause such an overfit to the training data that the

testing data becomes horribly misclassified. Unlike in the case of the SDAE-NN, the SVM

cannot be cut off at a certain number of epochs to generalize better to the testing data.

Because of this, we believe the SDAE-SVM is overtraining and, hence, the testing results

are poor. Figures 4.6 and 4.7 further show the shortcomings of this network.

(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.6: Best improvements of SDAE-SVM using single image features
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(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.7: Best improvements of SDAE-SVM using combinations of image features

4.1.3 CNNs for False Alarm Rejection

The final deep architechure explored for FA rejection was the CNN. This architechure has

already shown to achieve state-of-the-art performance on machine learning benchmarks

such as the MNIST data [27]. Because of its previous performace and its ability to use

N × N input features (i.e. raw imagelets), we are exploring ways of using this network

for FA rejection. As before, we train a different CNN for each channel, all having the

same layer setup. These layers are slightly different depending on which feature is used for

training due to the math behind the network. Each network has an N ×N input layer and

an output layer of size 2× 1. In between are two convolutional layers (C1 and C2) and two

subsampling layers (S1 and S2). The subsampling layers both use a scale of 2. The details

on the convolutional layers are given in Table 4.14. The overall structure is thus [input C1

S1 C2 S2 output].
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Table 4.14
CNN Layer Parameters

Layer Output Maps Kernel Size Imglet Kernel Size HOG Kernel Size LBP Kernel Size FFST Coeffs
C1 6 4 2,3,2 5 4

C2 12 5 3,2,2 5 5

We randomly reduce the number of FAs to twice the number of hits per channel for train-

ing. The learning rate was 0.9 and 350 epochs were used in for training. These numbers

were found to be optimal in preliminary testing. Since the CNN operates on 2D inputs,

combinations of image features were not an option. Table 4.15 shows the results of using

phase adjusted data and Table 4.16 shows the results using non phase adjusted data.
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Table 4.15
Percent AUR Improvemets Using CNN

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

Imagelet

Mimo HH: 0.00 -100.00 -100.00 -100.00 0.00 -100.00

Mimo VV: 0.58 -15.56 0.00 0.33 -100.00 0.00

Set VV: -36.53 0.34 -100.00 -100.00 -100.00 1.82

HOG

Mimo HH: -41.33 -100.00 -32.63 -40.90 -45.87 -79.46

Mimo VV: -40.54 0.00 -100.00 -23.28 -12.21 -86.52

Set VV: 0.34 -24.64 0.34 1.82 -100.00 -100.00

LBP

Mimo HH: -100.00 -100.00 -100.00 0.00 0.00 0.00

Mimo VV: 0.76 0.76 0.76 0.00 0.00 0.00

Set VV: 0.34 0.34 0.34 1.82 2.70 4.39

FFST

Mimo HH: -5.26 -100.00 -100.00 -5.26 -100.00 -100.00

Mimo VV: -5.26 -5.26 -100.00 -5.26 -5.26 -100.00

Set VV: -12.23 -4.94 -100.00 -12.23 -4.94 -100.00
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Table 4.16
Percent AUR Improvemets Using CNN and No Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

Imagelet

Mimo HH: 0.00 -100.00 -100.00 -100.00 0.00 -100.00

Mimo VV: 0.65 -25.61 0.00 0.00 -100.00 0.00

Set VV: -36.53 0.34 -100.00 -3.49 -100.00 1.82

HOG

Mimo HH: -50.00 -100.00 -55.78 -37.88 -100.00 -73.15

Mimo VV: -76.36 0.00 -100.00 -43.61 -37.68 -100.00

Set VV: 0.34 -24.64 0.34 -100.00 1.82 1.82

LBP

Mimo HH: -100.00 -100.00 -100.00 -100.00 -100.00 -100.00

Mimo VV: 0.37 0.37 0.37 0.00 0.00 0.00

Set VV: 0.34 0.34 0.34 -1.66 -2.04 -0.03

FFST

Mimo HH: -5.26 -100.00 -100.00 -100.00 -100.00 0.00

Mimo VV: -5.26 -5.26 -100.00 0.00 -100.00 0.00

Set VV: -12.23 -4.94 -100.00 -49.16 -100.00 1.82
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(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.8: Best improvements of CNN using single image features

The results of the CNN are actually disappointing. This network has been shown to work

very well on a wide range of image classification tasks, but it falls short here. Additionally,

as seen in our conclusions in Section 4.4, it is by far the slowest of the deep learning

networks. Since CNNs have also been shown to perform rather well on similar data [32],

we believe they are still worth consideration. Figure 4.8 further displays the inadequete

performance of the CNN.

4.2 Comparison with Shallow Methods

To achieve a better understanding of the possible benefits of using deep leanring algorithms

for this problem, we also tested with two shallow architechures that have been explored

previously for this problem [24]. These architechures are the previously described SKSVM

and MKLGL. Again we used the same two lanes, A and B, and again we represent the same
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results, the percentage AUR improvement over the prescreener. Additional comparisons

between the deep and shallow algorithms, such as run time and memory costs, can be

found in Section 4.4.

4.2.1 SKSVM

One popular method that we have looked into in the past is using SVMs to classify the

data and generate confidences. The way this works is that the SVMs learn a hyperplane to

seperate the data points into two classes. We use LIBSVM to train the SVMs and make

predictions on them. The predictions give the labels of the testing data as well as the data’s

distances to the hyperplane. These distances are then used as the hits’ confidences when

creating the ROC curve. In this way, a point that is farther from the hyperplane should be

more correctly classified and thus have a higher confidence value. Additionally, we choose

-1 as the label for FAs, meaning they have a negative distance to the hyperplane and thus a

negative confidence. We tested two different kernels for the SVM. The first was the linear

kernel. As the name implies, this kernel seeks to find a linear hyperplane to seperate the

two classes. Tables 4.17 and 4.19 show the AUR improvements using linear kernel SVMs

over various cellsizes and image features with the phase adjusted data. Tables 4.18 and

4.20 show the results for the non phase adjusted data. For a more accurate comparison to

the deep learning algorithms, three SVMs were trained, one for each channel. The best

overall improvements are bolded for each channel and feature set.
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Table 4.17
Percent AUR Improvemets using Linear Kernel and Single Image Features with SKSVM

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -24.57 14.22 64.12 -24.62 -9.72 8.48

Mimo VV: -19.78 22.18 10.86 -30.47 -5.69 -12.07

Set VV: -44.39 -29.39 -29.34 -27.20 4.73 28.29

LBP

Mimo HH: 23.77 19.75 -2.40 -11.43 -5.92 -26.19

Mimo VV: -9.65 -17.75 10.64 -26.82 -55.77 -30.57

Set VV: -36.90 -32.48 -13.14 -38.93 3.50 14.72

LSTAT

Mimo HH: 9.04 9.84 -31.52 -24.44 -35.37 -38.29

Mimo VV: -24.57 -62.19 -33.56 -40.17 -60.58 -43.00

Set VV: -50.09 -52.19 -63.48 -33.57 -50.19 -6.12

FFST

Mimo HH: -74.28 -60.69 -32.40 -72.47 -69.38 -58.19

Mimo VV: -6.88 -60.62 -38.54 -40.51 -70.23 -56.68

Set VV: -73.00 -64.25 -55.65 -42.98 -53.95 -45.30
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Table 4.18
Percent AUR Improvemets using Linear Kernel and Single Image Features with SKSVM and No

Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -46.98 6.72 41.94 -19.78 -11.90 7.82

Mimo VV: -18.26 22.88 20.44 -37.88 -13.67 2.24

Set VV: -44.39 -29.39 -29.34 -27.20 4.73 28.29

LBP

Mimo HH: -18.38 16.84 2.07 -1.45 -8.56 -39.84

Mimo VV: -8.24 15.22 0.24 -16.39 -11.19 -28.62

Set VV: -36.90 -32.48 -13.14 -38.93 3.50 14.72

LSTAT

Mimo HH: -36.38 -30.06 -45.19 -32.73 -32.00 -30.25

Mimo VV: -20.55 -47.66 -36.64 -46.41 -53.57 -17.00

Set VV: -50.09 -52.19 -63.48 -33.57 -50.19 -6.12

FFST

Mimo HH: -56.00 -41.99 -59.20 -70.04 -50.96 -56.49

Mimo VV: -53.75 -41.08 -83.05 -49.13 -59.82 -69.81

Set VV: -27.35 -49.16 -77.35 -35.61 -7.75 -61.33
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Table 4.19
Percent AUR Improvemets using Linear Kernel and Combinations of Image Features with SKSVM

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -2.98 22.86 63.62 -32.07 -9.30 8.77

Mimo VV: -29.90 19.52 12.00 -20.25 -7.14 -10.76

Set VV: -44.19 -27.86 -30.79 -23.03 5.39 26.91

HOG & LSTAT

Mimo HH: 6.21 25.75 22.73 -38.75 3.32 -5.44

Mimo VV: -47.27 11.51 6.55 -36.76 -34.89 1.48

Set VV: -35.76 -19.55 -31.47 -50.65 -12.71 20.42

LBP & LSTAT

Mimo HH: 16.17 9.77 -30.91 -13.47 -29.80 -36.59

Mimo VV: -28.05 -62.93 -33.91 -38.87 -61.67 -42.55

Set VV: -40.63 -51.14 -63.37 -20.47 -41.19 -5.62

HOG, LBP & LSTAT

Mimo HH: 5.51 25.81 22.82 -38.80 3.50 -5.48

Mimo VV: -47.27 11.72 6.55 -35.13 -34.68 1.56

Set VV: -35.26 -19.50 -31.52 -46.17 -12.80 20.42
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Table 4.20
Percent AUR Improvemets using Linear Kernel and Combinations of Image Features with

SKSVM and No Pase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -37.59 7.78 43.22 -15.09 -10.92 7.70

Mimo VV: -16.59 27.36 22.50 -36.25 -13.00 2.13

Set VV: -44.19 -27.86 -30.79 -23.03 5.39 26.91

HOG & LSTAT

Mimo HH: -28.57 3.61 19.60 -36.78 -3.86 -8.70

Mimo VV: -20.08 -0.33 26.24 -31.85 -13.97 14.65

Set VV: -35.76 -19.55 -31.47 -50.65 -12.71 20.42

LBP & LSTAT

Mimo HH: -32.99 -31.21 -44.95 -32.41 -30.57 -30.21

Mimo VV: -9.68 -49.03 -36.31 -38.57 -54.00 -13.95

Set VV: -40.63 -51.14 -63.37 -20.47 -41.19 -5.62

HOG, LBP & LSTAT

Mimo HH: -26.53 3.55 19.56 -32.27 -3.80 -8.72

Mimo VV: -19.71 0.12 26.24 -29.50 -14.02 14.62

Set VV: -35.26 -19.50 -31.52 -46.17 -12.80 20.42
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From these tables, we can see that much like the deep learners, the HOG and LBP are

the strongest features. In a departure from the deep learners, the singluar features actually

outperform the combinations in several instances. For example, the HOG is the best of

the single features and the HOG/LBP combo is the best of the combinations. The HOG

alone does better overall than the HOG/LBP combo. Another observation that can be made

is that the LSTAT does not perform as poorly as with the deep learners. We believe the

SKSVM handles the LSTAT better due to the shallowness of the architechure. In this way,

the SKSVM combined with the CFAR prescreener is not overtraining and thus can yield

better test results. We also see that in some cases the non phase adjusted data outperforms

the phase adjusted data. This may be due again to the shallowness of the architechure pre-

venting overtraining. Figures 4.9 and 4.10 show the ROCs of the best performing SKSVM

classifiers.

(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.9: Best improvements of linear kernel SKSVM using single image features
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(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.10: Best improvements of linear kernel SKSVM using combinations of image

features

The other kernel tested was the RBF, or Radial Basis Function, kernel. As opposed to the

linear kernel, the RBF uses a Gaussian proximity to map the features to a much higher

dimensional space. This kernel is very widely used in SVMs [41] and thus was thought to

be a good candidate for testing the SKSVM. The training and testing process is the same as

with the linear kernel; the only real difference is declaring the kernel model in LIBSVM to

be RBF. Tables 4.21 and 4.23 show the resulting AUR improvements using the RBF kernel.
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Table 4.21
Percent AUR Improvemets using RBF Kernel and Single Image Features with SKSVM

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 10.73 29.48 71.47 -11.40 -0.65 1.29

Mimo VV: -46.91 1.44 18.75 -8.96 5.83 -17.29

Set VV: -40.01 -40.90 -25.33 -29.08 -4.48 26.73

LBP

Mimo HH: 17.38 -36.52 -86.81 -27.86 -87.20 -87.68

Mimo VV: -31.27 -94.91 -79.29 -91.61 -88.57 -95.69

Set VV: -15.54 7.79 -75.53 -51.52 -73.53 -70.91

LSTAT

Mimo HH: -1.68 -5.50 -26.53 -28.42 -20.50 -32.66

Mimo VV: -18.76 -50.64 -25.03 -37.24 -53.57 -30.21

Set VV: -59.83 -66.30 -55.03 -58.11 -45.45 -19.18

FFST

Mimo HH: -100 -100 -100 -100 -100 -100

Mimo VV: -100 -100 -100 -100 -100 -100

Set VV: -100 -100 -100 -100 -78.30 -100
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Table 4.22
Percent AUR Improvemets using RBF Kernel and Single Image Features with SKSVM and No

Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -18.25 26.06 48.95 -23.29 -5.75 -1.42

Mimo VV: -40.09 4.89 7.08 -31.16 -6.66 -2.48

Set VV: -40.01 -40.90 -25.33 -29.08 -4.48 26.73

LBP

Mimo HH: -36.04 -40.62 -80.50 -12.67 -59.03 -71.21

Mimo VV: -53.98 -96.98 -77.97 -65.26 -95.75 -97.23

Set VV: -15.54 7.79 -75.53 -51.52 -73.53 -70.91

LSTAT

Mimo HH: -20.44 -30.78 -30.26 -34.42 -34.09 -34.00

Mimo VV: -33.78 -34.30 -20.30 -33.98 -69.36 -31.72

Set VV: -59.83 -66.30 -55.03 -58.11 -45.45 -19.18

FFST

Mimo HH: -48.58 -100 -100 -56.18 -100 -100

Mimo VV: -53.75 -100 -100 -44.66 -100 -100

Set VV: -71.34 -100 -100 -52.04 -100 -100
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Table 4.23
Percent AUR Improvemets using RBF Kernel and Combinations of Image Features with SKSVM

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 7.64 29.43 79.89 -15.98 -2.14 -1.15

Mimo VV: -49.55 -1.50 0.14 -20.89 -11.36 -27.17

Set VV: -47.91 -32.86 -29.52 -28.17 13.81 4.57

HOG & LSTAT

Mimo HH: 8.75 26.27 18.21 -19.19 5.22 -2.96

Mimo VV: -5.08 22.05 12.51 -12.60 -22.97 10.06

Set VV: -28.45 -30.21 -27.55 -34.79 -14.09 11.34

LBP & LSTAT

Mimo HH: -1.91 -6.29 -26.24 -29.58 -22.13 -32.35

Mimo VV: -17.61 -50.47 -25.38 -41.39 -53.07 -27.65

Set VV: -57.61 -68.07 -55.12 -22.26 -43.17 -19.49

HOG, LBP & LSTAT

Mimo HH: 7.91 25.61 18.39 -17.91 4.75 -3.11

Mimo VV: -5.72 20.73 12.33 -15.85 -24.59 9.90

Set VV: -28.01 -31.83 -26.12 -33.76 -13.58 10.37
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Table 4.24
Percent AUR Improvemets using RBF Kernel and Combinations of Image Features with SKSVM

and No Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -18.06 25.28 48.91 -15.00 -3.02 -5.88

Mimo VV: -57.70 2.01 -1.45 -29.45 -6.12 -16.50

Set VV: -47.91 -32.86 -29.52 -28.17 13.81 4.57

HOG & LSTAT

Mimo HH: -18.90 -4.76 11.62 -21.43 -8.70 -10.94

Mimo VV: -15.11 9.35 35.37 -31.58 -16.36 11.39

Set VV: -28.45 -30.21 -27.55 -34.79 -14.09 11.34

LBP & LSTAT

Mimo HH: -29.35 -29.47 -30.13 -29.57 -32.95 -32.99

Mimo VV: -19.11 -34.25 -20.17 -43.39 -69.45 -28.69

Set VV: -57.61 -68.07 -55.12 -22.26 -43.17 -19.49

HOG, LBP & LSTAT

Mimo HH: -17.82 -5.48 11.23 -23.87 -10.26 -11.77

Mimo VV: -15.38 8.13 34.37 -34.23 -16.99 9.79

Set VV: -28.01 -31.83 -26.12 -33.76 -13.58 10.37
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Similarly to the SDAE-SVM, the RBF performs worse than the linear kernel. It is possible

in both cases that the freedom of shape provided by the RBF kernel provides a better fitted

hyperplane to the training data, and thus the distance of the points from that hyperplane

is shorter. This would correspond directly to an overtraining situation. We can also see

an interesting comparison between the phase and non phase adjusted data. While it is

consistent with the other learners in that the phase adjusted data outperforms the non phase

adjusted data in general, the non phase adjusted data seemed to consistently do better for

the Mimo VV polarization when using combinations of image features.

(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.11: Best improvements of SKSVM rbf kernel using single image features
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(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.12: Best improvements of SKSVM rbf kernel using combinations of image fea-

tures

4.2.2 MKLGL

Another popular method we have previously explored is the MKLGL algorithm. This

learner uses multiple kernels to further optimize the hyperplane in an attempt to provide

better classification than the standard SKSVM. Our particular approach uses 10 kernels, the

first five are RBF kernels,the next three are polynomial kernels, and the final two are linear

kernels. After training, this gives a kernel matrix size of N ×N × 10, where N is the input

feature length. Once trained, one simply must build a testing matrix in the same fasion,

just using the testing data vectors in place of the training data vectors, then use LIBSVM’s

svmpredict function. From here, the process is the same as it was in the SKSVM case; the

distance from the hyperplane become the new confidence of the alarm. Tables 4.25 through

4.28 show the results of the MKLGL appraoch.
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Table 4.25
Percent AUR Improvemets using Single Image Features with MKLGL

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -70.49 -50.96 0.57 -81.62 -66.27 -39.38

Mimo VV: -76.84 -40.98 -60.42 -94.25 -97.75 -98.02

Set VV: -24.32 -16.37 -42.86 0.62 -8.22 21.40

LBP

Mimo HH: -85.48 -58.44 -43.74 -73.98 -12.64 -32.19

Mimo VV: -24.44 -61.82 -70.90 -83.17 -100.00 -96.27

Set VV: -30.40 -25.03 -37.81 13.53 -31.96 -77.65

LSTAT

Mimo HH: -42.63 -59.55 -64.65 -80.52 -45.81 -70.43

Mimo VV: -47.62 -49.25 -62.50 -58.30 -58.56 -42.49

Set VV: -70.81 -31.52 -64.00 -28.97 -45.64 -34.42

FFST

Mimo HH: -100 -50.84 -30.56 -100 -84.04 -58.35

Mimo VV: -100 -58.36 -53.54 -100 -45.75 -76.32

Set VV: -100 -55.52 -46.32 -100 -52.38 -30.75
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Table 4.26
Percent AUR Improvemets using Single Image Features with MKLGL and No Phase Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -65.16 -45.66 -14.42 -76.67 -92.80 -98.67

Mimo VV: -64.40 -54.41 -64.97 -94.35 -100.00 -97.35

Set VV: -24.32 -16.37 -42.86 0.62 -8.22 21.40

LBP

Mimo HH: -79.64 -68.86 -48.65 -50.82 -95.16 -89.93

Mimo VV: -22.29 -90.76 -86.97 -82.89 -99.70 -62.41

Set VV: -30.40 -25.03 -37.81 13.53 -31.96 -77.65

LSTAT

Mimo HH: -56.94 -92.96 -75.78 -72.44 -17.59 -16.26

Mimo VV: -67.58 -56.26 -55.76 -68.43 -58.16 -61.41

Set VV: -70.81 -31.52 -64.00 -28.97 -45.64 -34.42

FFST

Mimo HH: -100 -58.63 -45.38 -100 -78.48 -57.89

Mimo VV: -100 -76.14 -48.64 -100 -77.28 -53.39

Set VV: -100 -46.08 -56.91 -100 -31.03 -72.25
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Table 4.27
Percent AUR Improvemets using Combinations of Image Features with MKLGL

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -70.78 -51.09 0.42 -81.76 -66.34 -39.70

Mimo VV: -76.63 -41.08 -60.34 -93.01 -97.70 -98.02

Set VV: -24.37 -16.35 -42.55 0.81 -7.90 21.97

HOG & LSTAT

Mimo HH: -70.29 -67.24 -47.23 -81.28 -50.92 -70.65

Mimo VV: -79.35 -55.83 -61.84 -77.69 -82.58 -70.29

Set VV: -65.12 -18.97 -48.05 -11.20 -28.41 -18.81

LBP & LSTAT

Mimo HH: -42.51 -59.44 -64.56 -80.54 -45.36 -70.41

Mimo VV: -47.73 -49.48 -62.75 -58.78 -59.98 -43.23

Set VV: -70.74 -31.30 -63.96 -28.72 -45.39 -34.36

HOG, LBP & LSTAT

Mimo HH: -70.29 -67.24 -47.25 -81.34 -50.93 -70.65

Mimo VV: -79.25 -55.85 -61.84 -77.61 -82.61 -70.29

Set VV: -64.97 -18.77 -48.07 -11.32 -28.53 -18.81
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Table 4.28
Percent AUR Improvemets using Combinations of Image Features with MKLGL and No Phase

Adjustment

Train A, Test B Train B, Test A

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -65.51 -45.86 -14.63 -75.69 -92.78 -98.68

Mimo VV: -64.38 -54.83 -64.99 -94.46 -100.00 -97.38

Set VV: -24.37 -16.35 -42.55 0.81 -7.90 21.97

HOG & LSTAT

Mimo HH: -66.13 -74.96 -61.83 -74.05 -34.16 -37.59

Mimo VV: -76.06 -58.03 -49.99 -77.44 -80.07 -81.31

Set VV: -65.12 -18.97 -48.05 -11.20 -28.41 -18.81

LBP & LSTAT

Mimo HH: -57.46 -92.96 -75.82 -73.06 -18.10 -16.35

Mimo VV: -67.70 -56.43 -55.66 -68.67 -59.30 -61.94

Set VV: -70.74 -31.30 -63.96 -28.72 -45.39 -34.36

HOG, LBP & LSTAT

Mimo HH: -66.61 -74.85 -61.88 -74.10 -34.20 -37.56

Mimo VV: -75.94 -58.03 -49.89 -77.36 -80.07 -81.31

Set VV: -64.97 -18.77 -48.07 -11.32 -28.53 -18.81
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Unfortunately, the MKLGL fails to outperform the SKSVM. In fact, comparing all the ta-

bles in this section, we can actually see that the MKLGL is one of the worst classifiers

attempted. It is likely that MKLGL is simply too powerful in conjunction with the CFAR

prescreener, which would lead to overtraining and thus poor testing results. This overtrain-

ing is likely amplified by the small amount of training data. In the next section, we use data

from three different lanes to train each network and then test on a single lane. In that case,

we would expect the MKLGL, as well as all the other networks, to perform much better

given the larger and more diverse training set.

(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.13: Best improvements of MKLGL using single image features
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(a) Lane B ROCs Before (b) Lane B ROCs After

Figure 4.14: Best improvements of MKLGL using combinations of image features

4.3 Multi-Lane Training for Single Test Lane

Given the size of the data we had, we also explored using multiple lanes to train the classi-

fiers and then testing them on one lane. We use the same two lanes as above, however we

also add two more lane, which we will call Lane C and Lane D. We then ran each classifier

by training on three of the lanes and testing on the fourth. Again, our main testing criterion

is the AUR out to a FAR of 0.1 FAs per meter squared. To get a full comparision of the

effects of using multiple lanes to train, we also trained the shallow learners using the same

methods. Algorithm parameters remained the same for all learners; this test was simply to

find if adding more training data provided any benefits. We also compared the results of

both the phase corrected data and the non phase corrected data. Since no parameters were
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changed in any of the networks, we will forgo unnecessary introductions to each again and

simply present the results followed by a discussion of them.

4.3.1 DBN

Table 4.29
Percent AUR Improvemets using Single Image Features with DBN and Phase Adjustment[51]

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train C,B,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 231.86 283.75 281.68 90.64 19.61 46.63 -48.13 0.42 5.67 18.14 67.75 11.62

Mimo VV: 305.15 518.99 380.84 151.75 263.55 219.96 -76.58 -17.13 29.27 3.78 51.24 61.88

Set VV: -92.90 512.74 530.04 -40.40 73.30 49.84 11.53 28.67 -5.70 -12.30 6.32 16.36

LBP

Mimo HH: 234.48 255.52 102.44 -80.34 -11.72 2.86 -66.04 -70.09 -69.72 -79.83 -79.28 -94.81

Mimo VV: 7.50 -92.43 106.36 -49.25 -68.00 -96.79 -62.15 -71.82 -47.81 -81.17 -23.87 -68.28

Set VV: 59.67 168.25 144.56 -29.99 -62.15 -99.85 -71.93 -47.99 -33.85 -77.88 -81.81 -29.50

LSTAT

Mimo HH: 89.72 -68.50 -12.09 -16.59 -86.72 -89.23 -76.29 -92.03 -67.82 -53.56 -83.39 -69.20

Mimo VV: 195.38 -100.00 47.71 -72.40 -96.50 -54.98 -47.92 -79.13 -73.28 -61.27 -73.51 -45.54

Set VV: 195.49 -67.94 111.87 -57.62 -74.24 -71.37 -47.23 -48.64 -79.76 -42.54 -42.70 -72.66

FFST

Mimo HH: 51.57 46.89 33.89 35.50 -45.87 -6.51 -59.27 -63.19 -67.67 -51.29 -22.73 -54.79

Mimo VV: 102.18 26.63 156.05 -6.77 -17.36 37.68 -71.34 -61.28 -72.01 -53.00 -84.47 -46.81

Set VV: 332.11 211.60 221.08 -68.15 -94.58 -36.80 -53.85 -56.13 -40.12 -75.66 -43.68 -69.92
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Table 4.30
Percent AUR Improvemets using Single Image Features with DBN and No Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -77.44 -97.74 38.80 -30.66 21.61 26.23 -56.29 3.37 11.48 -87.79 -0.36 -47.66

Mimo VV: -66.96 -100.00 68.98 -63.60 92.03 117.60 1.13 -92.46 -30.00 -60.61 37.85 -1.25

Set VV: -74.65 -42.32 -100.00 -72.09 -99.99 -92.69 -82.53 -92.35 -93.27 -91.04 -98.99 4.31

LBP

Mimo HH: -57.68 -79.45 -65.44 -16.38 -56.72 -63.54 -16.40 -27.09 -46.81 -88.25 -75.69 -72.79

Mimo VV: -52.79 -72.45 -49.22 -56.07 0.06 10.93 -69.33 -84.75 -88.74 -37.23 -54.78 -65.62

Set VV: -12.20 -63.53 -93.45 -9.83 -19.91 -40.50 -15.74 -78.60 -54.07 -74.68 -39.34 -75.95

LSTAT

Mimo HH: -14.99 -78.74 -89.02 -50.46 -80.29 -96.10 -56.33 -83.55 -72.69 -63.31 -75.02 -81.64

Mimo VV: -78.63 -88.23 -70.52 -62.31 -89.11 -95.64 -56.15 -65.60 -74.00 -64.93 -84.81 -58.55

Set VV: -35.96 -13.25 -59.36 -62.65 -55.97 -65.53 -20.85 -18.50 -49.93 -64.84 -56.90 -71.41

FFST

Mimo HH: -76.56 -41.43 -57.08 -83.70 -10.38 -43.18 -63.05 -63.11 -60.16 -35.11 -57.79 -55.51

Mimo VV: -53.38 -75.55 -45.11 -74.99 -54.71 8.32 -65.63 -66.01 -54.02 -31.61 -51.07 -32.39

Set VV: -24.39 31.36 28.60 -21.57 -18.36 -24.00 14.72 -46.55 -50.47 -31.09 -82.41 -47.15
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Table 4.31
Percent AUR Improvemets using Combinations of Image Features with DBN and Phase

Adjustment[51]

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 94.75 126.19 231.12 88.07 131.30 125.96 -94.47 -53.42 11.61 1.99 -36.17 63.21

Mimo VV: 355.44 518.67 385.07 206.32 327.83 344.22 -55.90 -28.35 21.31 2.02 22.38 78.51

Set VV: 308.43 499.35 849.49 1.86 83.08 88.97 -1.54 41.02 54.18 -28.83 9.03 0.22

HOG & LSTAT

Mimo HH: 220.00 125.39 39.46 39.80 -98.08 -99.00 -30.75 -48.40 -63.63 -8.06 -20.60 -17.64

Mimo VV: 295.63 109.56 91.04 22.44 12.73 -54.53 -6.70 -56.44 -45.14 -32.62 -37.70 -38.71

Set VV: 291.85 101.93 162.88 -49.41 -50.96 -52.62 -6.11 1.31 -11.22 -24.63 -43.51 -54.98

LBP & LSTAT

Mimo HH: 111.17 44.02 -17.11 -47.77 -35.83 -62.69 -56.01 -76.45 -83.82 -40.47 -40.08 -71.63

Mimo VV: 135.24 -29.93 -80.78 -48.13 32.31 5.26 -33.69 -65.83 -75.94 -50.03 -72.11 -60.46

Set VV: 174.62 204.50 99.20 -75.25 -62.21 -54.57 -7.49 -4.30 -2.74 -60.03 -68.03 -65.86

HOG, LBP & LSTAT

Mimo HH: 93.99 78.86 28.38 -2.67 -29.39 -60.81 -57.03 -72.92 -73.67 -27.30 -16.46 -35.79

Mimo VV: 169.42 -12.38 -38.15 -43.46 55.73 34.32 -44.87 -64.68 -64.91 -47.16 -46.89 -39.67

Set VV: 80.80 259.97 161.69 -56.27 -47.70 -48.00 -11.50 -1.79 6.22 -60.61 -55.26 -52.68
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Table 4.32
Percent AUR Improvemets using Combinations of Image Features with DBN and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -70.13 2.02 35.74 76.70 56.14 63.02 -63.42 -16.63 -20.22 -20.22 30.69 57.43

Mimo VV: 37.35 74.71 72.83 47.12 115.79 125.17 -14.70 -2.93 20.02 -6.43 47.60 59.19

Set VV: -0.84 109.88 152.57 14.85 90.24 69.12 -67.60 43.15 53.55 -27.21 -29.14 19.50

HOG & LSTAT

Mimo HH: -5.09 -47.11 -50.79 -18.45 -83.08 -99.99 -56.72 -60.36 -64.40 -44.75 -39.35 -31.47

Mimo VV: -16.64 -52.22 -46.89 -55.33 -85.68 -70.72 -16.56 -48.74 -58.49 -54.20 -37.51 -17.84

Set VV: 24.66 -19.95 -24.63 -64.97 -61.57 -57.55 -11.22 -5.40 -22.19 -40.68 -44.21 -38.70

LBP & LSTAT

Mimo HH: -33.88 -70.75 -86.41 -45.35 -46.18 -79.82 -52.75 -80.08 -82.54 -57.07 -69.34 -58.48

Mimo VV: -62.81 -64.39 -89.81 -70.47 -33.10 -55.31 -32.83 -62.77 -74.22 -72.73 -69.24 -72.48

Set VV: -9.79 9.04 -37.04 -71.59 -58.22 -58.61 -15.95 -0.45 0.77 -56.32 -62.48 -67.27

HOG, LBP & LSTAT

Mimo HH: -27.58 -71.73 -87.02 -5.87 -55.11 -64.43 -55.24 -75.13 -78.49 -57.26 -62.45 -33.43

Mimo VV: -29.78 -50.35 -74.47 -58.75 3.10 -58.15 -22.70 -61.68 -63.37 -54.40 -63.70 -43.95

Set VV: 0.90 9.67 -25.26 -73.54 -62.74 -45.52 -13.95 1.41 -0.11 -55.54 -56.04 -52.74

Comparing Tables 4.29, 4.30, 4.31, and 4.32, one can easily see that by using multiple

lanes for training, we generally get a much better performance from the DBN as opposed

to training on a single lane. The most likely reason behind this is that the increased training

data allows the DBN to learn a better representation of the false alarms and thus will do a

worse job at reconstructing the targets. This then provides a larger RMSE which directly

translates into a larger confidence for the target locations and thus a lower confidence for

102



the false alarms. These results are further evident when looking at Figures 4.15 and 4.16.

We can also see that some lanes are better for testing than others. For instance, it seems that

in the single feature case, training on A, B, and D and then testing on C yields much better

results than any other combination of lanes. This result is also seen when combinations

of features are used. Looking at Fig. 4.15(a), which is the prescreener ROC for Lane C,

we see that Lane C has much to gain from testing with these networks. Also keeping in

line with the single train, single test results, we see that the phase adjusted data generally

outperforms the non phase adjusted data.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.15: Best improvements of DBN using single image features[51]
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(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.16: Best improvements of DBN using combinations of image features[51]
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4.3.2 SDAE-NN

Table 4.33
Percent AUR Improvemets using Single Image Features with SDAE-NN and Phase

Adjustment[50]

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 280.63 286.02 157.06 100.88 58.56 110.21 -34.74 -0.13 24.65 11.98 49.38 36.65

Mimo VV: 253.28 365.10 450.64 100.35 317.22 315.88 -8.28 30.02 44.96 1.98 41.64 73.38

Set VV: 121.52 467.38 682.43 16.00 56.17 97.29 -7.38 -0.20 56.12 -56.53 8.25 -23.45

LBP

Mimo HH: 203.23 203.23 203.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mimo VV: -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 0.00 0.00 0.00

Set VV: 203.23 203.23 203.23 0.00 0.00 0.00 1.82 1.82 1.82 0.34 0.34 0.34

LSTAT

Mimo HH: -34.95 56.36 146.68 -19.36 -55.56 -57.69 -53.14 -95.19 -70.41 -59.43 -52.71 -32.51

Mimo VV: 171.65 -53.80 -39.17 -62.55 0.92 -100.00 -71.49 -42.97 -94.10 -37.01 -51.70 -12.41

Set VV: 78.07 -100.00 173.08 -87.09 -88.51 9.62 -59.44 -41.17 -44.24 -47.71 -63.51 -73.51

FFST

Mimo HH: 0.00 203.23 -100.00 203.23 -100.00 -100.00 0.00 -100.00 0.00 -100.00 -100.00 0.00

Mimo VV: 0.00 -100.00 203.23 -100.00 -100.00 -100.00 -100.00 -100.00 0.00 -100.00 -100.00 -100.00

Set VV: 0.00 -100.00 203.23 203.23 -100.00 0.00 0.00 1.82 1.82 -100.00 -100.00 -100.00
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Table 4.34
Percent AUR Improvemets using Single Image Features with SDAE-NN and No Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 15.47 28.60 9.12 32.40 71.27 70.44 -23.59 -7.51 28.49 -3.84 38.08 52.35

Mimo VV: 53.54 81.91 63.22 20.74 135.33 0.00 -13.83 32.54 48.42 44.99 38.28 70.16

Set VV: -7.99 95.58 129.59 36.02 42.49 73.35 -16.31 22.05 31.01 19.72 -100.00 36.87

LBP

Mimo HH: -100.00 -100.00 -100.00 0.00 0.00 0.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00

Mimo VV: 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 0.00 0.00 0.00 0.00 0.00

Set VV: -100.00 -100.00 -100.00 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.34 0.34 0.34

LSTAT

Mimo HH: -12.99 -19.92 -24.57 51.44 -38.64 -28.26 -34.04 -36.41 -34.81 -6.38 -41.86 -34.94

Mimo VV: -48.36 41.60 -3.60 -0.41 -9.87 -2.42 -16.06 -41.54 -29.75 -28.93 -33.33 -16.64

Set VV: -5.05 -16.40 22.11 -96.88 -19.67 20.69 -3.52 -6.03 -6.43 -15.53 -17.44 -7.21

FFST

Mimo HH: 0 -100 -100 0 -100 -100 0 0 0 -100 0 0

Mimo VV: 0 -100 -100 0 0 0 0 -100 0 0 -100 0

Set VV: 0 -100 -100 0 0 -100 -100 1.82 1.82 0.34 0.34 -100
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Table 4.35
Percent AUR Improvemets using Combinations of Image Features with SDAE-NN and Phase

Adjustment[50]

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 272.98 144.20 155.03 64.79 133.42 118.61 -43.45 12.79 25.17 13.57 52.82 38.03

Mimo VV: 92.01 369.65 448.69 115.40 335.38 427.92 -22.38 23.88 41.91 -3.83 20.72 81.23

Set VV: 367.18 461.64 707.30 22.96 3.54 86.05 -14.81 -45.18 21.58 -56.33 11.60 31.34

HOG & LSTAT

Mimo HH: 105.62 224.97 226.42 12.96 -26.78 -2.82 -45.54 -33.68 -28.28 -45.91 -24.37 -24.14

Mimo VV: 310.49 267.54 443.49 91.63 28.12 67.27 -1.03 -65.17 -35.65 -24.77 -19.71 46.69

Set VV: 101.67 598.18 433.50 -54.77 29.44 17.17 -17.63 -40.89 5.84 -41.22 9.74 -65.47

LBP & LSTAT

Mimo HH: 28.78 11.43 199.72 -45.78 -52.66 -78.92 -54.30 -69.40 -64.57 -46.72 -71.57 -23.87

Mimo VV: 200.95 -100.00 100.05 -66.77 -75.38 -9.99 -67.87 -100.00 -95.36 -45.96 -52.51 -48.65

Set VV: 237.66 1.47 247.13 -67.62 -37.83 -60.86 -66.21 4.71 -75.74 -70.86 -40.41 -77.04

HOG, LBP & LSTAT

Mimo HH: 103.46 116.17 108.80 15.31 -52.23 -7.07 -29.80 -53.49 -50.37 -42.98 -62.49 -24.91

Mimo VV: 299.77 303.34 509.20 -74.20 80.47 -32.53 -54.13 -13.82 -57.51 -22.63 -19.61 30.21

Set VV: 247.77 -100.00 362.17 -34.67 57.77 95.25 -11.20 -3.59 5.63 -51.82 8.18 -23.42
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Table 4.36
Percent AUR Improvemets using Combinations of Image Features with SDAE-NN and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 15.58 33.21 21.32 37.06 81.93 -16.56 -13.45 -5.70 27.24 -16.96 38.00 64.98

Mimo VV: 35.95 82.10 66.97 25.73 136.24 148.34 -33.65 19.13 36.61 15.72 29.92 63.45

Set VV: 6.76 110.48 142.48 24.57 35.29 103.86 4.06 46.91 31.76 18.74 7.41 36.25

HOG & LSTAT

Mimo HH: -10.96 17.00 37.85 46.48 13.47 53.35 -17.11 -4.35 17.04 -16.70 15.97 30.88

Mimo VV: 1.74 82.40 86.85 -6.90 46.38 99.92 -17.27 14.20 14.39 4.50 26.48 16.95

Set VV: 136.98 82.91 97.66 -29.65 -2.79 69.90 29.54 26.69 37.95 -6.88 -8.48 16.72

LBP & LSTAT

Mimo HH: -14.73 -32.03 -15.77 19.92 -47.63 -43.88 -38.21 -34.82 -39.19 -12.98 -25.75 -20.54

Mimo VV: -33.83 41.60 43.28 -36.53 -18.21 28.72 -13.76 -46.37 -35.71 -38.06 -34.02 -8.53

Set VV: 67.77 -26.28 -10.96 -66.75 -29.50 40.50 -18.16 -28.47 3.13 -58.64 -10.06 -7.15

HOG, LBP & LSTAT

Mimo HH: 8.96 -20.42 23.03 61.61 14.58 63.05 -11.34 -22.14 7.41 -8.72 8.58 33.92

Mimo VV: 22.70 125.70 103.26 14.98 39.97 140.83 -9.59 9.15 29.59 9.80 24.35 13.35

Set VV: 74.08 57.68 101.05 -5.27 22.73 64.00 11.02 46.22 25.88 -15.33 20.34 13.23

Much like the DBN case, we see a massive improvement over the single-train-single-test

results in the SDAE-NN. The HOG remains the best single feature and that combinations of

features still outperform single features. The interesting difference we see in the SDAE-NN

is that when testing on Lanes A and B, the non phase adjusted data generally outperforms

the phase adjusted data. This may be due to a combination of the SDAE being a more

forgiving network than the DBN. In support of this, we see that, just like the single-train-
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single-test results the SDAE-NN outperforms the DBN in terms of AUR improvement.

Comparing the AUR improvements in Figs. 4.15 and 4.16 with those in Figs. 4.17 and 4.18

further shows the abilities of the SDAE-NN to dramatically improve the prescreener results

of Lane C over the DBN.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.17: Best improvements of SDAE-NN using single image features[50]

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.18: Best improvements of SDAE-NN using combinations of image features[50]
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4.3.3 SDAE-SVM

Table 4.37
Percent AUR Improvemets using Single Image Features with SDAE-SVM and Phase

Adjustment[50]

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 48.52 33.35 -27.22 20.99 3.77 -18.56 -74.58 -16.68 -37.44 -35.29 -80.43 -14.79

Mimo VV: -19.85 268.33 -20.50 16.16 -25.21 61.44 -71.71 -25.00 -84.05 -48.54 -80.90 12.26

Set VV: 358.17 404.89 307.43 -50.91 -52.28 30.62 -6.08 31.99 17.64 -32.81 -42.18 -28.43

LBP

Mimo HH: 220.74 67.58 235.16 23.09 157.84 73.15 -44.19 -58.72 -51.91 -0.33 -29.24 -43.08

Mimo VV: 312.86 309.66 442.93 94.09 200.93 340.52 -53.92 -72.32 -58.97 -21.53 -20.23 5.66

Set VV: 150.85 550.18 711.13 -2.00 27.46 55.25 -16.12 7.89 35.78 -46.86 9.03 -5.79

LSTAT

Mimo HH: 110.76 53.98 63.19 73.22 -38.55 25.44 -46.75 -76.53 -38.09 -78.82 -46.41 -54.20

Mimo VV: 48.73 32.85 69.86 11.72 -8.54 22.90 -76.96 -78.83 -33.72 -86.73 -45.49 -56.30

Set VV: 200.04 11.12 281.56 -76.08 -51.95 -55.79 9.64 -38.62 -44.07 -60.46 -69.48 -58.43

FFST

Mimo HH: 31.50 -100.00 -100.00 -31.56 -100.00 -100.00 -80.92 -100.00 -100.00 -54.75 -100.00 -100.00

Mimo VV: 148.90 -100.00 -100.00 25.73 -100.00 -100.00 -55.70 -100.00 -100.00 -62.42 -100.00 -100.00

Set VV: 150.30 -100.00 -100.00 -56.85 -100.00 -100.00 -40.22 -100.00 -100.00 -100.00 -100.00 -100.00
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Table 4.38
Percent AUR Improvemets using Single Image Features with SDAE-SVM and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -17.52 -89.30 -55.72 -38.77 -56.54 -27.75 -64.68 -32.45 -81.86 -7.05 -60.43 -25.88

Mimo VV: -52.51 -54.50 -34.38 17.67 -34.40 71.25 -19.03 -68.13 -46.44 -65.21 -77.84 3.63

Set VV: -3.76 81.23 98.53 -49.50 -4.95 45.86 8.86 9.78 16.61 -29.05 0.36 -2.49

LBP

Mimo HH: -34.26 -20.46 -4.81 22.28 -54.44 -2.31 -22.82 -73.65 -37.65 -24.17 -12.93 -32.30

Mimo VV: -1.27 -7.54 25.70 -33.35 -5.57 83.75 -51.72 -51.54 -54.85 -76.95 -25.45 0.49

Set VV: 108.80 62.93 257.29 46.19 52.04 52.52 -4.67 -2.13 34.53 -17.65 22.54 14.32

LSTAT

Mimo HH: -96.92 -31.78 -67.91 -13.07 -32.48 -14.28 -41.48 -36.93 -83.51 -42.32 -51.99 -44.36

Mimo VV: -32.75 -48.26 12.55 -28.64 -65.67 -41.45 -61.55 -60.31 -51.13 -24.18 -41.86 -69.99

Set VV: -6.34 39.74 -3.76 -13.05 -44.54 -74.92 -30.21 -34.10 -38.83 -71.08 -63.00 -59.06

FFST

Mimo HH: -6.56 -100.00 -100.00 -29.88 -100.00 -100.00 -63.34 -100.00 -100.00 -70.84 -100.00 -100.00

Mimo VV: -48.84 -100.00 -100.00 -34.14 -100.00 -100.00 -56.50 -100.00 -100.00 -63.61 -100.00 -85.02

Set VV: -48.84 -100.00 -100.00 -26.82 -100.00 -100.00 -49.35 -100.00 -100.00 -100.00 -100.00 -100.00
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Table 4.39
Percent AUR Improvemets using Combinations of Image Features with SDAE-SVM and Phase

Adjustment[50]

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 133.45 145.87 82.41 16.93 63.46 56.51 -84.61 -18.96 0.63 -55.02 -68.47 5.55

Mimo VV: 84.26 31.23 347.92 -17.43 84.31 167.72 -87.85 1.30 -35.33 -16.94 6.27 44.93

Set VV: 127.90 468.02 519.75 -0.73 17.29 40.26 -38.27 24.78 12.41 -31.27 -20.10 -45.18

HOG & LSTAT

Mimo HH: -7.99 75.89 -26.39 -57.50 -57.89 17.43 -52.45 -83.54 -47.88 -27.72 -21.52 -6.36

Mimo VV: 106.31 161.34 149.31 -10.01 131.08 -67.87 -76.17 -60.90 -50.77 -76.65 -20.21 -10.06

Set VV: 291.48 51.29 232.01 -79.00 -69.94 -4.73 -41.98 -21.63 15.29 -64.96 15.25 -5.54

LBP & LSTAT

Mimo HH: 22.48 33.91 29.85 -33.64 -40.19 4.06 -68.76 -79.18 -75.12 -71.03 -43.56 -49.68

Mimo VV: 128.27 34.11 149.27 -4.01 -36.21 -79.73 -84.94 -48.72 -27.52 -43.92 -39.32 -38.56

Set VV: -6.73 44.37 46.74 -7.45 -34.85 -11.88 -60.90 -17.97 9.74 -61.44 -45.08 -61.66

HOG, LBP & LSTAT

Mimo HH: -13.21 78.33 22.59 -2.95 -28.77 -30.79 -89.43 -78.76 -77.40 -76.86 -63.39 -71.85

Mimo VV: 52.35 25.05 -63.18 75.92 49.89 35.92 -84.28 -51.79 -76.35 -29.39 -24.52 -4.54

Set VV: -93.53 171.26 200.04 -64.68 -35.05 11.54 -55.61 10.42 31.87 -60.46 -15.39 16.61
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Table 4.40
Percent AUR Improvemets using Combinations of Image Features with SDAE-SVM and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -69.22 -36.64 -92.05 -93.40 91.26 -0.83 -66.90 -42.23 -44.61 -67.14 -32.93 46.15

Mimo VV: 64.63 25.39 51.57 -2.81 97.36 44.14 -90.80 -40.49 12.67 -73.92 -42.24 38.07

Set VV: 55.57 158.04 193.15 -21.27 -8.60 40.30 -3.52 -8.59 -0.01 -28.92 -18.67 6.70

HOG & LSTAT

Mimo HH: -81.21 -67.31 -93.23 -32.49 -88.51 17.63 -89.11 -65.27 -21.00 -46.70 -57.57 -87.44

Mimo VV: -15.33 -57.77 -74.35 -52.26 -67.58 17.86 -73.61 -47.23 -54.55 -87.80 -84.52 -61.74

Set VV: 17.69 67.35 193.33 4.95 -25.80 73.01 -15.05 10.99 10.90 -76.90 5.86 -50.48

LBP & LSTAT

Mimo HH: -50.18 -61.74 -0.59 -24.66 -28.07 -19.65 -81.72 -58.58 -73.73 -45.25 -44.19 -10.48

Mimo VV: -88.99 11.07 -22.63 -21.97 -40.87 -25.65 -30.55 -63.28 -56.47 -58.73 -39.79 -34.23

Set VV: -64.64 -15.95 -10.72 -62.34 -24.73 -63.47 -61.96 -7.34 -57.46 -50.12 -64.04 -36.18

HOG, LBP & LSTAT

Mimo HH: -45.46 -90.19 -40.42 -23.68 -44.86 -95.76 -75.12 -70.86 -55.14 -58.00 -15.25 11.82

Mimo VV: -99.69 -59.01 -20.20 -38.61 -19.76 91.19 -7.85 -75.74 -55.23 -71.36 -63.80 -8.26

Set VV: -100.00 164.56 49.50 -81.38 15.18 8.48 -76.98 -46.66 -56.30 -44.88 9.21 -0.66

Keeping consistent with the results thus far, the multi-lane SDAE-SVM also outperforms

its single-lane trained counterpart by a good margin. Unlike the SDAE-NN, the LBP is

actually the strongest single feature for the SDAE-SVM. In fact, the LBP alone actually

outperforms the HOG and LBP combination, which is the strongest combination of fea-

tures. This is a strange occurance in this set. It does not seem logical that a single feature

would provide better information than a combination of features. Perhaps the addition of
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the other features causes the SDAE to slightly overtrain, which is then amplified by the

SVM and thus the testing classification rates are lower.

Also unlike the SDAE-NN, the phase adjusted data performs better in general overall. Even

the combinations of image features tested on Lanes A and B, the phase adjusted data per-

forms better than the non phase adjusted data. By comparing both forms of the SDAEs,

we see that the SDAE-SVM is the better overall performer for single image features, while

the SDAE-NN seems to be better for combinations of image features. This difference can

likely be atttributed to how the finetuning mechanisms of each approach work. Adding

more data in the form of combinations of image features seems to be helpful when using

a NNs backpropagation to finetune the architechure. Likewise, it would appear that using

solitary image features allows the SVM to perform better when finding a hyperplane to

seperate the classes. Figures 4.19 and 4.20, show the best improvements of the single and

combination features of the SDAE-SVM respectively.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.19: Best improvements of SDAE-SVM using single image features[50]
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(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.20: Best improvements of SDAE-SVM using combinations of image features[50]
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4.3.4 CNN

Table 4.41
Percent AUR Improvemets Using CNN

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

Imglet

Mimo HH: -100.00 216.49 203.23 0.00 0.60 0.00 -5.27 -4.66 0.00 0.00 0.00 0.00

Mimo VV: -100.00 -100.00 203.23 -100.00 0.00 0.00 -93.99 -100.00 -100.00 0.00 -100.00 0.00

Set VV: 221.72 -100.00 -100.00 -11.40 0.00 0.00 -2.04 1.82 -100.00 -24.64 -76.29 -100.00

HOG

Mimo HH: 49.59 134.71 203.23 -7.38 -12.01 -100.00 -48.89 -100.00 0.00 -30.93 -100.00 -16.39

Mimo VV: 156.37 13.91 206.48 52.68 -100.00 -100.00 -75.10 -47.64 -24.01 -27.99 0.00 -60.03

Set VV: 315.36 282.93 203.23 -100.00 -15.92 -100.00 1.82 -19.98 -100.00 0.34 0.34 0.34

LBP

Mimo HH: 203.23 203.23 203.23 -100.00 -100.00 -100.00 0.00 0.00 0.00 0.00 0.00 0.00

Mimo VV: 203.23 203.23 203.23 -100.00 -100.00 -100.00 0.00 0.00 0.00 -100.00 -100.00 -100.00

Set VV: -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 4.39 4.39 -0.03 -100.00 -100.00 -100.00

FFST

Mimo HH: -100.00 0.00 -100.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 -5.26 -5.26 -100.00

Mimo VV: -100.00 -100.00 -100.00 0.00 -100.00 -100.00 -100.00 0.00 0.00 -100.00 -100.00 -5.26

Set VV: -100.00 0.00 0.00 -100.00 -100.00 0.00 1.82 -100.00 -100.00 -4.94 -4.94 -4.94
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Table 4.42
Percent AUR Improvemets Using CNN and No Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

Imglet

Mimo HH: -100.00 0.00 -100.00 0.00 11.09 -100.00 -100.00 -100.00 0.00 -12.43 -5.26 -100.00

Mimo VV: -100.00 -100.00 -100.00 -12.71 -100.00 -100.00 -100.00 0.00 0.00 -100.00 -100.00 -5.26

Set VV: 42.48 0.00 0.00 -22.20 -100.00 0.00 -27.13 -100.00 -100.00 -15.02 -15.34 -4.94

HOG

Mimo HH: -32.30 -48.50 0.00 -48.01 7.77 -100.00 0.00 -58.37 -100.00 -12.97 -52.21 -54.41

Mimo VV: -18.93 -100.00 0.00 0.00 0.00 0.00 -3.44 -58.40 -12.85 -5.26 -66.10 -100.00

Set VV: -25.26 38.06 -100.00 -100.00 -48.54 -64.66 -100.00 17.70 1.82 -4.25 -100.00 -100.00

LBP

Mimo HH: -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00

Mimo VV: 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 0.00 0.00 -100.00 -100.00 -100.00

Set VV: -100.00 -100.00 -100.00 1.41 1.80 1.80 -100.00 -100.00 -100.00 -4.94 -4.94 -4.94

FFST

Mimo HH: -100.00 0.00 0.00 0.00 0.00 -100.00 -100.00 -100.00 0.00 -5.26 -5.26 -100.00

Mimo VV: -100.00 -100.00 0.00 14.23 -100.00 -100.00 -100.00 0.00 -100.00 -100.00 -100.00 -5.26

Set VV: 27.52 20.82 0.00 9.82 -100.00 0.00 -58.44 -10.17 -100.00 -49.35 -5.51 -100.00

While the multi-lane CNN yields much better results than the single-lane verison, they are

still disappointing. Considering how long the CNN takes to run a single cell (see Table

4.57), the performance is even less desirable. This may be due several factors. Perhaps

the layer size, mapping size, and sampling rate are not yet optimal. Perhaps the network is

over or under training. Possibly the data sampling could use improvement. Without more

time to explore these options, we cannot be certain. Due to this, much of the future work
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section is dedicated to improving the CNNs.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.21: Best improvements of SDAE-NN using single image features
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4.3.5 SKSVM

Table 4.43
Percent AUR Improvemets using Single Image Features with SKSVM Linear Kernel and Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 91.99 219.42 214.94 -3.21 31.49 37.72 -35.30 -17.34 -8.34 -20.27 17.66 34.53

Mimo VV: 120.71 468.28 289.78 16.73 205.67 206.40 -10.53 -9.98 -8.13 -29.88 59.47 48.68

Set VV: 170.62 681.16 702.75 -3.71 -6.22 33.59 -8.34 2.19 15.89 -53.69 -18.86 11.97

LBP

Mimo HH: 205.85 200.34 120.04 2.07 -64.26 -49.51 -21.52 -43.67 -47.71 11.93 -23.93 -39.50

Mimo VV: 93.68 7.78 285.56 112.82 29.26 60.01 -47.67 -68.83 -51.71 -17.67 -14.14 -9.50

Set VV: -19.39 69.87 313.62 -41.43 5.64 12.42 -32.35 -14.02 1.02 -39.05 -46.32 -10.66

LSTAT

Mimo HH: 129.12 198.32 159.34 76.00 78.82 53.72 -23.76 -20.87 -48.62 -66.88 -37.58 -46.07

Mimo VV: 264.75 302.78 61.09 54.86 116.76 78.24 -50.11 -39.33 -43.16 -46.35 -49.65 -47.19

Set VV: 9.21 190.47 -1.72 -39.29 30.77 10.13 -52.85 -25.40 -39.72 -58.39 -39.54 -37.83

FFST

Mimo HH: 11.36 70.14 135.15 39.46 -16.54 -7.44 -56.48 -62.50 -48.86 -51.27 -56.67 -49.27

Mimo VV: -71.26 8.10 -8.20 60.54 69.16 139.59 -57.24 -57.83 -49.03 -60.04 -64.91 -44.63

Set VV: 210.24 218.53 133.64 -30.02 -94.78 -94.20 -36.95 -72.25 -44.85 -77.19 -76.88 -68.08

119



Table 4.44
Percent AUR Improvemets using Single Image Features with SKSVM Linear Kernel and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -58.83 0.12 25.46 -80.62 15.75 63.02 -34.26 -14.66 -7.62 -13.43 -9.90 32.57

Mimo VV: -47.38 51.18 15.62 -6.44 100.64 115.92 -26.18 -5.14 -0.94 -47.75 37.50 71.46

Set VV: -10.75 157.62 164.74 -3.71 -6.22 33.59 -8.34 2.19 15.89 -53.69 -18.86 11.97

LBP

Mimo HH: -9.67 -36.59 -4.25 0.61 -51.31 -40.32 -20.38 -32.64 -44.05 7.59 0.36 -7.45

Mimo VV: 40.50 22.64 2.47 48.60 -46.18 -60.75 -4.84 -23.16 -59.10 9.17 3.88 -35.67

Set VV: -73.42 -43.98 36.41 -41.43 5.64 12.42 -32.35 -14.02 1.02 -39.05 -46.32 -10.66

LSTAT

Mimo HH: 5.09 17.46 -47.88 21.45 12.53 -18.17 -40.15 -26.05 -40.92 -29.28 7.48 -36.42

Mimo VV: 4.53 58.80 30.93 -12.13 1.08 18.17 -40.98 -46.66 -36.89 5.54 -50.64 -49.83

Set VV: -63.98 -4.21 -67.59 -39.29 30.77 10.13 -52.85 -25.40 -39.72 -58.39 -39.54 -37.83

FFST

Mimo HH: -72.12 -89.87 -64.24 -55.01 -32.93 -45.94 -73.30 -65.90 -62.19 -98.67 -58.51 -70.63

Mimo VV: -45.41 -24.83 -75.77 -20.29 19.72 -78.16 -71.00 -62.34 -51.58 -71.21 -62.78 -45.72

Set VV: 2.31 5.05 -22.95 -30.02 -94.78 -94.20 -36.95 -72.25 -44.85 -78.39 -78.09 -69.76
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Table 4.45
Percent AUR Improvemets using Combinations of Image Features with SKSVM Linear Kernel

and Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 197.45 214.06 218.55 26.75 22.43 23.91 -29.68 -19.31 -13.27 55.46 22.99 33.76

Mimo VV: 282.96 476.41 287.46 124.25 219.25 197.36 -23.09 -12.21 -6.98 9.49 56.20 52.87

Set VV: 62.77 612.93 681.07 -51.45 14.76 36.36 -31.53 17.23 17.96 -38.36 -15.54 8.90

HOG & LSTAT

Mimo HH: 157.41 272.87 190.21 79.61 124.91 108.59 -28.79 -15.57 -10.53 14.51 -4.12 23.43

Mimo VV: 297.54 409.77 464.38 25.80 178.53 327.17 -21.61 -4.29 14.27 -13.30 31.09 43.61

Set VV: 155.95 378.02 283.11 -40.45 31.88 31.34 -31.00 -13.42 10.31 -45.96 -19.03 -15.30

LBP & LSTAT

Mimo HH: 282.98 251.38 227.80 23.20 60.44 50.60 -9.18 -21.36 -43.51 30.67 -30.51 -34.60

Mimo VV: 143.79 541.42 149.27 34.30 95.47 71.97 -19.20 -31.47 -44.12 14.75 -32.08 -50.49

Set VV: -13.11 285.48 32.25 8.66 58.55 14.46 -42.66 -22.89 -38.77 -50.23 -39.21 -37.80

HOG, LBP & LSTAT

Mimo HH: 168.11 271.72 190.35 68.47 122.51 107.23 -31.74 -16.19 -10.80 25.20 -3.28 23.34

Mimo VV: 318.02 416.92 466.33 21.54 174.67 327.62 -20.13 -4.97 14.35 -9.17 30.56 43.71

Set VV: 217.34 374.83 292.67 -36.76 36.65 31.64 -22.22 -11.79 10.24 -50.39 -19.01 -14.47
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Table 4.46
Percent AUR Improvemets using Combinations of Image Features with SKSVM Linear Kernel

and No Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -18.92 -6.94 24.03 -1.89 -7.11 61.05 -17.05 -13.61 -9.11 -8.88 -3.54 32.74

Mimo VV: 20.83 39.90 20.47 30.27 92.48 116.38 -15.64 -8.65 -2.82 -12.74 42.23 70.88

Set VV: -46.32 135.12 157.59 -51.45 14.76 36.36 -31.53 17.23 17.96 -38.36 -15.54 8.90

HOG & LSTAT

Mimo HH: -18.82 40.00 6.73 19.35 57.64 48.46 -29.58 -4.50 -10.17 -37.57 -9.14 11.45

Mimo VV: 31.12 48.79 99.41 -3.98 78.43 117.15 -45.90 2.55 3.86 -7.44 13.80 23.05

Set VV: -15.59 57.65 26.34 -40.45 31.88 31.34 -31.00 -13.42 10.31 -45.96 -19.03 -15.30

LBP & LSTAT

Mimo HH: 11.10 22.22 -25.66 15.69 1.18 -9.71 -4.90 -28.38 -43.19 13.92 -10.66 -35.34

Mimo VV: 37.52 89.33 48.51 35.12 -21.65 19.53 -38.03 -27.97 -32.08 12.11 -36.96 -47.46

Set VV: -71.34 27.13 -56.38 8.66 58.55 14.46 -42.66 -22.89 -38.77 -50.23 -39.21 -37.80

HOG, LBP & LSTAT

Mimo HH: -26.43 39.56 6.46 33.33 55.81 48.36 -30.17 -4.57 -10.55 -29.55 -9.38 11.40

Mimo VV: 42.87 49.09 99.41 -4.43 80.70 117.28 -40.52 2.37 3.80 -2.42 13.90 23.07

Set VV: 4.66 56.59 29.50 -36.76 36.65 31.64 -22.22 -11.79 10.24 -50.39 -19.01 -14.47

If one compares the results seen in Tables 4.43 and 4.45 to the deep learning results in this

section, one would see that the performance margin is much smaller than anticipated. While

the deep learners tend to perform better using combinations of image features, the SKSVM

with the linear kernel does better than most deep learners with single image features. We

see that the SKSVM with linear kernel even performs rather well with the LSTAT feature,

which has easily been the weakest image feature used. The SKSVM even outperforms
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some of the deep learners using combinations of image features that include the LSTAT

feature. This is not good news for the deep learners.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.22: Best improvements of linear kernel SKSVM using single image features

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.23: Best improvements of linear kernel SKSVM using combinations of image

features
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Table 4.47
Percent AUR Improvemets using Single Image Features with SKSVM RBF Kernel and Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 240.38 208.14 240.94 71.26 63.77 47.00 -2.40 -8.79 -17.43 42.49 31.83 18.16

Mimo VV: 158.69 319.69 197.05 82.13 149.72 173.04 -22.66 -12.47 -10.64 4.11 35.84 32.06

Set VV: 428.48 638.99 591.08 -39.82 -13.38 23.70 8.52 0.31 7.87 -50.23 -22.94 -30.05

LBP

Mimo HH: 86.64 -63.77 -74.79 -8.04 -78.53 -61.27 -12.16 -53.61 -49.22 0.49 -14.78 -42.31

Mimo VV: -68.38 -93.69 233.64 -35.75 26.31 -100.00 -31.94 -90.26 -57.44 -24.33 -95.06 -84.29

Set VV: 177.81 85.18 -100.00 -57.14 -38.36 -45.46 -18.56 -29.44 -84.84 -42.43 -45.61 -90.48

LSTAT

Mimo HH: 181.73 248.90 227.38 69.88 92.64 44.72 -14.27 -18.35 -40.08 -46.33 3.97 -24.95

Mimo VV: 125.21 304.73 310.26 27.73 85.16 66.80 -39.93 -31.05 -37.54 -16.73 -51.02 -29.55

Set VV: 176.99 252.96 238.93 -57.62 -14.12 -10.42 -87.53 -37.31 -25.39 -66.81 -57.86 -36.15

FFST

Mimo HH: -100.00 48.77 -100.00 20.37 -55.05 -18.52 -42.03 -100.00 -100.00 -100.00 -66.67 -100.00

Mimo VV: -100.00 119.27 -100.00 -100.00 -100.00 -100.00 -100.00 -93.81 -100.00 -100.00 -100.00 -100.00

Set VV: -100.00 45.47 -100.00 -100.00 -47.66 -59.26 -100.00 -88.31 -100.00 -100.00 -55.46 -100.00
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Table 4.48
Percent AUR Improvemets using Single Image Features with SKSVM RBF Kernel and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -21.89 1.91 40.93 7.48 64.74 90.11 -10.63 -13.19 -5.36 7.30 11.92 38.73

Mimo VV: 13.13 39.63 38.04 0.32 106.79 146.21 -14.54 5.12 -5.56 -26.02 49.32 45.11

Set VV: 74.29 143.71 127.91 -39.82 -13.38 23.70 8.52 0.31 7.87 -50.23 -22.94 -30.05

LBP

Mimo HH: -28.67 -85.13 -69.13 -71.21 -62.76 -43.20 -5.20 -85.44 -92.20 -16.99 -84.79 -76.75

Mimo VV: -20.38 -93.55 -100.00 0.65 -53.85 -98.44 -81.12 -97.88 -96.96 -82.57 -99.60 -53.04

Set VV: -8.38 -38.93 -100.00 -57.14 -38.36 -45.46 -18.56 -29.44 -84.84 -42.43 -45.61 -90.48

LSTAT

Mimo HH: -2.46 35.90 -24.17 6.77 30.24 -17.50 -28.99 -24.08 -42.66 -6.79 -3.08 -33.49

Mimo VV: 10.36 64.83 34.27 -6.29 3.21 42.57 -62.14 -38.73 -39.14 -30.15 -36.26 -18.78

Set VV: -8.65 16.40 11.78 -57.62 -14.12 -10.42 -87.53 -37.31 -25.39 -66.81 -57.86 -36.15

FFST

Mimo HH: -100.00 -80.35 -100.00 -100.00 -100.00 -100.00 -100.00 -62.48 -100.00 -54.53 -62.16 -100.00

Mimo VV: -100.00 -49.37 -100.00 -100.00 -34.47 -100.00 -100.00 -65.08 -100.00 -59.39 -100.00 -100.00

Set VV: -100.00 -52.03 -100.00 -100.00 -47.66 -59.26 -100.00 -88.31 -100.00 -100.00 -57.80 -100.00
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Table 4.49
Percent AUR Improvemets using Combinations of Image Features with SKSVM RBF Kernel and

Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 273.14 196.44 213.91 34.39 42.79 38.60 -20.58 -29.51 -27.24 52.70 22.50 16.69

Mimo VV: 193.47 356.46 144.30 112.68 198.25 86.52 -12.85 -22.43 -19.97 0.58 -0.15 32.41

Set VV: 267.71 71.33 648.46 -67.08 -16.78 7.69 -4.58 -12.16 -20.62 -52.70 -17.06 -24.17

HOG & LSTAT

Mimo HH: 264.04 308.11 247.29 62.82 99.04 114.33 -3.00 5.74 -4.68 14.79 30.15 52.87

Mimo VV: 326.51 510.54 607.13 65.97 222.70 297.37 0.62 -2.52 10.16 0.15 28.78 51.34

Set VV: 334.12 341.04 341.13 -32.22 22.92 16.06 -31.57 -15.64 21.77 -51.63 -23.10 -14.85

LBP & LSTAT

Mimo HH: 215.81 269.43 271.29 21.95 73.98 28.72 -15.35 -23.23 -36.61 -4.24 -12.51 -18.55

Mimo VV: 364.31 336.92 341.10 3.92 102.65 59.59 -36.06 -37.80 -37.53 -22.34 -43.99 -25.36

Set VV: -11.83 99.93 311.62 -32.76 -7.16 -4.82 -51.46 -26.24 -29.09 -51.50 -50.08 -31.65

HOG, LBP & LSTAT

Mimo HH: 260.72 311.56 245.42 79.81 95.70 111.11 -13.85 2.77 -4.34 22.11 27.88 53.46

Mimo VV: 340.86 526.14 608.43 72.35 219.51 294.85 -2.00 -4.14 8.56 -2.79 28.58 49.90

Set VV: 222.35 283.57 315.54 -58.91 19.90 15.24 -35.20 -21.25 17.95 -54.83 -21.68 -14.50
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Table 4.50
Percent AUR Improvemets using Combinations of Image Features with SKSVM RBF Kernel and

No Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -22.49 -8.42 33.93 -39.84 49.03 60.76 -16.96 -24.31 -11.61 -1.13 2.60 33.35

Mimo VV: -53.39 34.00 37.23 -7.09 102.78 111.97 -23.09 -8.62 -28.75 -19.50 30.12 32.28

Set VV: 21.27 -43.50 146.83 -67.08 -16.78 7.69 -4.58 -12.16 -20.62 -52.70 -17.06 -24.17

HOG & LSTAT

Mimo HH: 9.24 60.72 36.55 56.86 84.53 31.69 -14.34 4.08 0.99 -1.15 26.63 20.34

Mimo VV: 42.57 107.72 101.88 -11.23 110.94 93.65 -29.09 3.23 13.73 14.94 8.15 49.44

Set VV: 43.17 45.45 45.48 -32.22 22.92 16.06 -31.57 -15.64 21.77 -51.63 -23.10 -14.85

LBP & LSTAT

Mimo HH: 9.74 28.13 -14.82 -15.54 14.58 -17.55 -13.21 -23.69 -38.15 -8.36 -2.02 -32.19

Mimo VV: 27.85 75.99 29.03 -25.21 1.72 39.46 -58.72 -44.26 -31.84 -21.92 -27.80 -14.63

Set VV: -70.92 -34.07 35.75 -32.76 -7.16 -4.82 -51.46 -26.24 -29.09 -51.50 -50.08 -31.65

HOG, LBP & LSTAT

Mimo HH: 4.11 59.68 35.40 46.92 85.25 30.15 -12.77 3.36 0.75 -7.07 26.13 20.19

Mimo VV: 18.84 106.04 101.39 9.16 106.86 94.88 -30.66 2.92 13.02 -6.20 7.68 48.27

Set VV: 6.31 26.50 37.04 -58.91 19.90 15.24 -35.20 -21.25 17.95 -54.83 -21.68 -14.50
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Continuing our investigation of the SKSVM, we see from Tables 4.47-4.50 that the RBF

kernel performs rather well also. In fact, it out performs the linear kernel for the single

LSTAT, as well as the combinations of {HOG & LSTAT} and {HOG, LBP, & LSTAT}.

For the rest of the features, the differences vary from marginal to large. Like the linear

kernel, the non phase adjusted data produces much worse results than the phase adjusted

data.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.24: Best improvements of RBF kernel SKSVM using single image features
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(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.25: Best improvements of RBF kernel SKSVM using combinations of image

features
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4.3.6 MKLGL

Table 4.51
Percent AUR Improvemets using Single Image Features with MKLGL and Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: 294.99 210.30 203.06 105.53 109.19 36.92 -26.42 -21.86 -14.35 67.64 38.11 56.63

Mimo VV: 194.17 463.08 479.66 98.32 257.71 296.70 -26.08 -12.42 5.41 -6.70 45.00 56.58

Set VV: 392.78 674.78 533.60 -29.01 24.25 38.70 -21.75 8.55 7.31 -40.01 -17.03 -0.61

LBP

Mimo HH: 288.33 258.68 235.02 25.84 59.86 173.11 -1.35 8.33 5.43 76.01 83.91 75.24

Mimo VV: 533.62 481.33 552.52 98.09 227.71 325.02 -12.81 -19.23 16.43 30.51 86.40 82.98

Set VV: 491.70 634.52 776.80 23.95 58.66 57.09 20.84 48.22 15.32 1.91 20.14 -4.81

LSTAT

Mimo HH: 147.19 305.66 222.76 63.81 102.69 70.71 -14.10 -17.17 -38.76 -73.26 4.19 -16.37

Mimo VV: 51.66 126.00 325.86 56.28 85.01 92.31 -44.84 -38.33 -36.40 -14.22 -43.18 -27.70

Set VV: 83.99 170.71 432.31 -37.57 -20.29 -3.30 -74.45 -25.59 -36.30 -81.24 -51.50 -34.98

FFST

Mimo HH: 61.33 53.63 6.12 -17.69 -47.94 -7.71 -56.16 -67.40 -52.09 -39.40 -53.72 -35.31

Mimo VV: -58.26 45.48 -64.52 62.40 87.02 -61.64 -65.41 -57.47 -78.87 -71.83 -56.74 -39.48

Set VV: 363.45 161.78 -64.66 -15.48 -4.67 -62.01 -20.16 -58.45 -5.40 -72.30 -41.85 -48.43
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Table 4.52
Percent AUR Improvemets using Single Image Features with MKLGL and No Phase Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG

Mimo HH: -13.73 9.95 30.98 29.24 51.53 97.50 -22.69 -15.70 -1.65 -16.14 19.71 41.68

Mimo VV: 3.74 46.52 48.02 -20.04 90.61 145.32 -10.60 5.53 8.79 -8.66 50.34 67.03

Set VV: 62.51 155.51 108.95 -29.01 24.25 38.70 -21.75 8.55 7.31 -40.01 -17.03 -0.61

LBP

Mimo HH: 15.74 27.09 32.84 38.81 38.28 81.98 10.31 18.85 8.04 46.82 49.08 58.03

Mimo VV: 33.78 73.72 61.77 96.25 113.34 121.75 -2.36 6.51 16.53 20.12 72.80 72.15

Set VV: 95.13 142.24 189.16 23.95 58.66 57.09 20.84 48.22 15.32 1.91 20.14 -4.81

LSTAT

Mimo HH: -22.44 -2.73 -28.62 16.09 25.54 -14.52 -34.01 -31.71 -36.53 -21.83 -19.00 -34.79

Mimo VV: 9.37 24.52 69.08 -7.78 -25.91 68.07 -62.25 -35.50 -36.74 -49.20 -33.88 -21.45

Set VV: -39.32 -10.72 75.55 -37.57 -20.29 -3.30 -74.45 -25.59 -36.30 -81.24 -51.50 -34.98

FFST

Mimo HH: -82.69 -55.43 -75.13 -40.46 -62.85 -87.34 -68.01 -56.82 -60.51 -34.31 -65.13 -73.22

Mimo VV: -63.88 -49.54 -51.24 -48.58 -4.35 35.06 -49.38 -33.21 -63.54 -56.61 -31.49 -66.32

Set VV: 52.84 -13.67 -88.35 -15.48 -4.67 -62.01 -20.16 -58.45 -5.40 -73.76 -44.91 -51.15
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Table 4.53
Percent AUR Improvemets using Combinations of Image Features with MKLGL and Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: 293.11 207.83 204.36 99.63 109.29 34.51 -28.84 -24.99 -15.59 75.31 39.38 56.68

Mimo VV: 251.38 467.63 470.88 105.80 258.16 296.48 -22.15 -11.09 6.30 -2.05 45.48 55.08

Set VV: 433.50 668.41 556.56 -33.97 38.36 43.56 -23.88 15.26 7.87 -39.14 -13.32 -3.50

HOG & LSTAT

Mimo HH: 277.02 310.42 211.87 78.95 162.14 119.68 -4.60 10.03 -7.43 8.05 33.33 46.10

Mimo VV: 298.51 412.70 515.09 106.64 178.10 317.76 -8.21 0.54 22.36 -15.66 37.99 55.49

Set VV: 319.36 431.58 415.73 -15.86 42.88 26.33 -34.79 -10.69 11.15 -55.35 -20.70 -11.39

LBP & LSTAT

Mimo HH: 176.22 325.73 250.51 33.51 93.08 63.01 -12.93 -16.68 -37.75 -68.09 4.64 -15.33

Mimo VV: 101.44 173.46 349.92 46.13 71.89 79.41 -41.78 -37.09 -35.63 -12.11 -37.49 -27.67

Set VV: 47.01 143.20 437.41 -39.50 -20.00 -1.79 -65.61 -22.83 -36.62 -79.35 -47.73 -34.49

HOG, LBP & LSTAT

Mimo HH: 280.49 310.57 212.16 72.23 161.16 118.80 -5.95 9.85 -7.52 9.16 33.44 46.19

Mimo VV: 298.84 415.30 516.07 103.08 176.91 317.91 -7.94 0.56 22.36 -16.40 38.05 55.43

Set VV: 328.93 419.47 412.54 -11.29 43.90 26.38 -35.42 -9.22 10.96 -55.23 -20.58 -11.92
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Table 4.54
Percent AUR Improvemets using Combinations of Image Features with MKLGL and No Phase

Adjustment

Train B, D, A, Test C Train C, B, A, Test D Train C, B, D, Test A Train A,C,D, Test B

Cellsize: 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

HOG & LBP

Mimo HH: -17.02 10.83 29.78 36.25 43.32 95.43 -19.79 -15.95 -2.34 -25.51 20.51 41.96

Mimo VV: 15.99 51.97 46.24 -3.39 92.42 143.24 -7.10 6.84 7.74 -3.36 50.09 66.93

Set VV: 75.94 153.41 116.52 -33.97 38.36 43.56 -23.88 15.26 7.87 -39.14 -13.32 -3.50

HOG & LSTAT

Mimo HH: 6.51 43.39 34.48 64.88 78.19 59.98 -13.37 5.90 -0.03 -3.49 -0.03 19.45

Mimo VV: 49.80 85.97 107.71 29.12 62.40 93.52 -31.09 9.45 12.72 19.32 19.86 43.37

Set VV: 38.30 75.31 70.08 -15.86 42.88 26.33 -34.79 -10.69 11.15 -55.35 -20.70 -11.39

LBP & LSTAT

Mimo HH: -10.83 0.82 -23.63 8.93 24.72 -15.05 -31.87 -31.91 -36.06 -20.09 -19.42 -33.10

Mimo VV: 24.09 29.95 79.45 -24.10 -30.97 73.83 -56.44 -36.27 -34.01 -40.22 -30.89 -12.39

Set VV: -51.52 -19.80 77.23 -39.50 -20.00 -1.79 -65.61 -22.83 -36.62 -79.35 -47.73 -34.49

HOG, LBP & LSTAT

Mimo HH: 4.81 43.50 34.53 64.31 78.04 59.83 -13.57 5.75 -0.12 -4.45 -0.68 19.45

Mimo VV: 47.62 85.58 108.10 27.95 62.59 93.52 -31.77 9.56 12.61 18.11 20.04 43.47

Set VV: 41.45 71.31 69.03 -11.29 43.90 26.38 -35.42 -9.22 10.96 -55.23 -20.58 -11.92
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The results of the multi-lane MKLGL are outstanding to say the least. Again, the non

phase adgusted results are many times worse than the phase adjusted results, so we will

focus on those. If we compare the MKLGL to the SKSVMs, we see that the MKLGL

performs much better than either kernel in almost every case. It even does well on the Test

A and Test B runs, which are notoriously the weakest. Looking back even further, we see

that the MKLGL even outperforms the deep learning networks in the Test B. However, the

DBN and SDAE-NN both come very close on certain feature sets, particularly the HOG

and the HOG/LBP combination. Looking into the other runs, however, we see that for

the HOG/LBP combination, the MKLGL is outperformed by the DBN and the SDAE-NN

almost uniformly.

(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.26: Best improvements of MKLGL using single image features
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(a) Lane C ROCs Before (b) Lane C ROCs After

Figure 4.27: Best improvements of MKLGL using combinations of features

4.4 Conclusions

Reviewing our results, some interesting conclusions can be drawn. At first glance it appears

that the deep learning algorithms perform very well in the single-lane training experiments

and, in contrast, the shallow learning algorithms seemed to perform better when multiple

lanes were used for training. Once multiple lanes were used for training, the shallow learn-

ing algorithms seemed to perform better. In the all around sense, this is more or less true.

The shallow learners using certain features, such as the LBP or the LSTAT, do outperform

the deep learners when multiple lanes are used for training. However, as Tables 4.55 and

4.56 show, if we closely examine the HOG and HOG/LBP feature combinations, we see a

different story unfold.

135



Table 4.55
Best Performing Algorithm for Select Features using Single-Lane Training

HOG Test B Test A

Mimo HH: SKSVM-RBF SDAE-NN

Mimo VV: SDAE-NN SDAE-NN

Set VV: SDAE-SVM SKSVM-Lin

HOG & LBP

Mimo HH: SKSVM-RBF SDAE-NN

Mimo VV: DBN DBN

Set VV: SDAE-NN DBN

Table 4.56
Best Performing Algorithm for Select Features using Multi-Lane Training

HOG Test C Test D Test A Test B

Mimo HH: MKLGL SDAE-NN DBN DBN

Mimo VV: DBN SDAE-NN SDAE-NN SDAE-NN

Set VV: MKLGL SDAE-NN SDAE-NN DBN

HOG & LBP

Mimo HH: MKLGL SDAE-NN SDAE-NN MKLGL

Mimo VV: DBN SDAE-NN SDAE-NN SDAE-NN

Set VV: DBN DBN DBN SDAE-NN
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In this examination, we see that when restricted to these two features the deep learners

really shine. The SDAE-NN does particularly well as an all around FA rejector when

trained and tested on the HOG and HOG/LBP features. Likewise, the DBN also does rather

well, getting the top slot on some and falling not far behind on most others. This speaks to

the robustness of these algorithms. The idea behind the DBN is to learn a representation

of the input data and then use this representation to attempt to reconstruct new data in the

same way. The SDAE attempts to learn a mapping between the corrupted input to a lower

dimensional output. It then uses the NN to finetune the layer connections and then uses

the FFNN to attempt to classify new data. Conversly, the MKLGL seeks to take multiple

kernel matricies and find an optimal hyperplane between the feature vectors of the two

output classes. Because of this, the MKLGL requires more memory to store its relevant

variables.

As Table 4.57 shows, for the multi-lane training the MKLGL runs in about half the time of

the DBN and both SDAEs. This is likely due to the speed of LIBSVM, MKLGL’s primary

function call. However, the MKLGL requires about 1.4 GB more memory to store the

variables generated than the DBN and SDAEs. This is because the MKLGL needs, in our

case, 10 N × N kernel matricies in its model to perform its predictions; conversely the

DBN only needs two weights matrices and two bias vectors.
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Table 4.57
Run Time and Memory Requirement Comparison of Different False Alarm Rejection Classifiers

Network Type Lanes Trained Run Time/Cellsize(sec) Memory Used(MB)

DBN 1 54 438

DBN 3 337 266

SDAE-NN 1 284 439

SDAE-NN 3 319 264

SDAE-SVM 1 343 439

SDAE-SVM 3 500 264

CNN 1 2592 502

CNN 3 4198 305

SKSVM Linear 1 49 439

SKSVM Linear 3 40 271

SKSVM RBF 1 49 439

SKSVM RBF 3 40 271

MKLGL 1 56 597

MKLGL 3 146 1846

Overall, the SDAE-NN seems to be the best overall choice out of the networks explored.

When combined with the HOG feature or the combination of the HOG and LBP features,

the SDAE-NN had the most improvements over all the results. Following that are the DBN
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and the MKLGL. The DBN is simple, yet rugged. Its performance could possibly be en-

hanced with a fine-tuning step, however the methods we attempted to achieve this, both

were detremental to the results. This was attributed to potential over-training since the

DBN’s confidence relies on the RMSE of the reconstructed inputs. Thus a better recon-

struction is actually less desirable for the true targets. The MKLGL, while requiring much

more memory than both the SDAE-NN and the DBN combined, was still the quickest.

When allowing all other considered image features, the MKLGL also assumes the top spot

in AUR improvement. While there is no one-size-fits-all solution to this problem, it seems

clear that deep learning algorithms are both a viable and perhaps even desirable approach

moving forward.

4.5 Future Work

There are a few recommendations for further developement that could likely improve the

performance of the deep learning algorithms as false alarm rejectors. If the training portions

of the deep learning algorithms could be parallelized, it could significantly reduce runtimes.

This gives two advantages. One, the results would be available sooner to the vehicle crew

which could increase stand-off distance to the potential threat. Two, it would allow the

researcher to perform more test runs to better fine-tune the parameters of the network.

These algorithms have many different parameters to tune and at current run times it is very

time consuming to change one at a time and re-run to check for changes. Along these lines,
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we believe the CNN has much more potential than was found in our experiments. Due to

both the CNNs’ long run time, the CNNs were not as heavily tested as they could have

been. Additionally, the FFST should be investigated further to see if other coeffieicents or

even the full transform would provide better results in not only the CNN but perhaps the

other algorithms as well.
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