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Abstract
Object-based approaches to the segmentation and supervised classification of 
remotely-sensed images yield more promising results compared to traditional pixel-
based approaches. However, the development of an object-based approach presents
challenges in terms of algorithm selection and parameter tuning. Subjective methods 
and trial and error are often used, but time consuming and yield less than optimal 
results. Objective methods are warranted, especially for rapid deployment in time 
sensitive applications such as earthquake induced damage assessment.

Our research takes a systematic approach to evaluating object-based image 
segmentation and machine learning algorithms for the classification of earthquake 
damage in remotely-sensed imagery using Trimble’s eCognition software. We tested a 
variety of algorithms and parameters on post-event aerial imagery of the 2011 
earthquake in Christchurch, New Zealand. Parameters and methods are adjusted and 
results compared against manually selected test cases representing different 
classifications used. In doing so, we can evaluate the effectiveness of the 
segmentation and classification of buildings, earthquake damage, vegetation, vehicles 
and paved areas, and compare different levels of multi-step image segmentations. 
Specific methods and parameters explored include classification hierarchies, object 
selection strategies, and multilevel segmentation strategies.

This systematic approach to object-based image classification is used to develop a 
classifier that is then compared against current pixel-based classification methods for 
post-event imagery of earthquake damage. Our results show a measurable 
improvement against established pixel-based methods as well as object-based 
methods for classifying earthquake damage in high resolution, post-event imagery. 
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1. Introduction1

Earthquakes are a major natural disaster that can cause significant loss of life and 
property damage. The dangers are not limited to the immediate event. Damage to 
manmade structures can further endanger the public and emergency responders as a 
result of structural instability that may be intensified by following aftershocks (Coburn 
& Spence, 2002).  Damage to roads and other infrastructure can hamper response by 
emergency responders as well as evacuation of the public from affected areas 
(Coburn & Spence, 2002).

A clear and accurate picture of both the intensity and the extent of the damage is an
important tool in organizing emergency response to an earthquake (Gamba & 
Casciati, 1998). Imagery from earth observation platforms has shown much promise in 
this role (Dong & Shan, 2013). However, there is room for improvement in the 
accuracy of classifying this data such that damage caused by an earthquake can be 
cataloged and focused on by emergency responders. 

In this thesis, I consider the example of the Christchurch, New Zealand 6.3 magnitude 
earthquake that occurred February 22nd, 2011 ("New Zealand Earthquake Report –
22 February 2011 at 12:51 p.m. (NZDT)," 2011). 185 lives were lost as a result ("List 
of deceased," 2011). 9200 buildings were destroyed as well as 146,000 damaged 
("Christchurch New Zealand 2011," n.d.). Damages from the event eventually totaled
NZ$40 billion  ("Christchurch rebuild to cost $10b more," 2013).

Remote sensing technologies including imagery from earth observation systems has a 
long history of use in identifying and assessing earthquake damage. In regards to two 
dimensional imagery, classification has been done to quantify, assess, and locate 
damage within. Traditionally, this classification has been done by human operators or 
increasingly with pixel-based classifiers applied to multispectral satellite imagery. As 
satellite sensors increase in resolution and aerial platforms such as drones provide 
increasingly higher resolution imagery, this presents both the challenge of 
classification and the benefits of more detailed maps. As spatial resolution increases, 
often with reduced spectral resolution, traditional pixel-based classifiers become less 
effective (Gao & Mas, 2008). Our work looks at object-based evaluation of 10cm 
orthophotos of post event damage from the 2011 Christchurch, New Zealand 
Earthquake.

1 The main body of this thesis is intended to be submitted at least in part for later publication in 
a peer reviewed journal. 
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2. Objectives
In this thesis, we consider the supervised classification of earthquake damage in 
remotely sensed imagery, specifically if object-based methods can improve upon 
established pixel-based methods in image classification. In this study, we consider 
only the post-event imagery. In addition, the development of an object-based classifier 
requires many choices in segmentation, feature, and classifier algorithms. We use a 
systematic approach to evaluate the ramifications of these choices in the development
of a classification scheme for a given set of imagery data.

3. Existing work
While there is a vast body of work discussing the theory and application of object-
based image analysis, there is limited work in the task of classifying earthquake 
damage in remotely sensed imagery, particularly when considering only post event 
imagery without any sort of digital elevation model or height information. In this 
context, Li et al (2009) has produced the best object-based analysis results published. 
This study is based on Quickbird panchromatic data of 0.61m and pan sharpened 
multispectral imagery of the Wenchuan Earthquake of May 12, 2008 in China. Using a 
watershed based multilevel segmentation, single class SVM classifier, and features 
such as spectral values and moment invariants they show 60% producer accuracy 
and 91% user accuracy in building damage detection with 79% overall classification 
accuracy. However, it is unclear the quality of the segmentation used or the how the 
accuracy numbers were validated (Li, Xu, Liu, & Guo, 2009).

Taskin Kaya et al (2011) takes a pixel-based approach looking at 0.61m 
pansharpened multispectral Quickbird imagery of the 2010 Haitian Earthquake. Using 
a pixel-based method with support vector selection and adaptation, they achieved 
81.5% overall accuracy with 63.4% user accuracy and 71.3% producer accuracy for 
the damage class. Results were generated from an independent validation 
set (Taskin Kaya, Musaoglu, & Ersoy, 2011).

Numerous studies comparing pixel and object-based results have also been 
completed using a variety of data for various applications. Some are applicable to our 
specific study as they incorporate various elements from our study such as
comparison of object and pixel-based results using methods different from ours or 
similar studies in a different application. Kouchi et al (2005) compared pixel-based and 
object-based methods to data obtained from a visual inspection of pre-event and post-
event Quickbird imagery. Data was from the 2003 Boumerdes, Algeria earthquake. 
Unfortunately, results were not very good with damage producer/user accuracies of 
32%/23% for pixel-based and 50%/20% for object-based methods.  Maximum 
likelihood was used for the pixel-based classification and nearest neighbor for the 
object-based approach (Kouchi & Yamazaki, 2005).
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Dong et al (2013) provides a thorough overview of the field of earthquake damage 
detection with remote sensing by surveying existing work. Studies making use of 
aerial imagery, satellite imagery, LiDAR data, SAR data, and ancillary data such as 
building vector data and other GIS maps are considered. Overall, most studies 
achieve somewhere in the range of 70%-90% accuracy in damage identification using 
either pixel-based or object-based methods. Studies that consider both pre and post 
event data as well as studies that make use of multiple data sources tend to provide 
better results. However, for studies that look at post event imagery only, results tend 
to improve as spatial resolution increases. (Dong & Shan, 2013) A solution that 
considers only post-event imagery might be considered more desirable as it only relies 
on one set of imagery, and can be used even if cloud cover or other technical 
problems prevent pre-event imagery acquisition or may simply not be available.

Myint et al (2011) perform a thorough investigation of object vs. pixel results within the 
context of high urban density classification. The study data consists of Quickbird 
imagery of both Phoenix and Tempe Arizona and looks to classify urban data such as 
buildings, vegetation, lakes, impervious surfaces and others.  The pixel-based 
classifier is a traditional maximum likelihood classifier. The object-based method is 
more complex, using a multilevel segmentation along with nearest neighbor or rule 
based classifiers for different classes. Ultimately, for the test image of Tempe, overall
accuracies of 87.8% for pixel-based and 95.2% for object-based classifications were 
achieved when compared against manually delineated validation data sets created 
through visual interpretation. In the larger Phoenix image, the results were not quite as 
good but it is important to consider in our work that the worst case building 
producer/user classification results were 50%/81.25% for pixel-based and 
83.91%/91.25% for object-based (Myint, Gober, Brazel, Grossman-Clarke, & Weng, 
2011).

4. Methods
4.1 Input Data
Post event imagery was obtained from Land Information New Zealand. Imagery was 
obtained on the 24th of February by New Zealand Aerial Mapping Limited at the 
request of the Christchurch Response Center. The imagery has a 10cm per pixel 
ground resolution and comprises red, green, and blue layers only. The resulting 
orthophotos were generated from a pre-existing the digital elevation model (DEM) and
were not checked against ground truth to verify if there was any earthquake damage 
that may not be accounted for in the DEM ((LINZ), n.d.). This work is based on tiles 1-
0003-0002 and 1-0003-0003. Tiles were projected to WGS_84_UTM_zone_59S and 
combined into one image in ArcGIS. The resulting image is 6335x8393 pixels in size.  
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The projection was done at the suggestion of eCognition technical support to resolve 
an issue regarding determination of polygon overlap. 

Training and sample data was generated manually in ArcGIS. Clearly identifiable 
examples of different classes were identified as randomly as possibly by the operator.
Polygons were used to delineate classes. Generally, polygons were drawn at the 
edges of visually recognizable objects, such that the polygon enclosed the object as 
best as possible without including extraneous pixels. This was somewhat challenging 
with the rubble class as the delineations were not always very clear. It was also 
impossible with the pavement class as pavement objects are all connected and form a
large contiguous recognizable object in the image. As such, sample polygons were 
drawn only around clear sections of pavement. 5 classes were able to cover all the 
land cover as seen in the image: building, pavement, vehicle, vegetation, and rubble.  
A set of polygons was created and a randomly chosen subset split off to form the 
validation data set.  Table 4.1-1 outlines the number of training samples used both in 
terms of number of pixels as well as number of objects that result from segmentation.

Table 4.1-1 Number of training and validation pixels, as well as objects covered at 
75% overlap. Overlap parameters and their impact on results are addressed in 
chapter 6.

class training pixels validation pixels Training, 75% validation, 75%

building 1561546 180232 983 129

pavement 304553 165393 114 62

vehicle 12532 9222 19 24

vegetation 42920 69150 13 22

rubble 314096 235490 252 185

4.2 Object-Based
Given the wide ranging objectives, a classification system needs to be able to 
accommodate numerous variables such as imagery type, classifications needed, 
feature importance, and training data quality. There are four phases in this system: 
planning, segmenting, sampling, and classifying. The latter three phases require 
human interpretation of the results. Based on this interpretation, modifications can be 
made to improve the results before moving on. Figure 4.2-1 provides a flowchart 
outlining these phases.

11



End

Determine 
Number of Levels 

Needed

Set or Adjust 
Parameters

Segment

Identify Objects 
to Classify

Results OK?

Add Classes Or 
More Subclasses

Identify Samples

Feature Space 
Optimization

Train Classifier

Classify

Generate 
Accuracy 

Assessment

Good 
Separation? Results OK?

More Levels?
Bring Down 

Classification to 
Next Level

Start

Figure 4.2-1 Flow chart representing a systematic approach to building an object-
based classifier.

In the planning phase, we identify the items in the image we wish to classify. It is 
important to not only consider the object of interest- rubble in our case, but all readily 
identifiable objects. By classifying as many objects as possible, we can attempt to 
achieve more readily distinguishable objects to aid in classification later. It is also 
important to consider how items differ in spectral, spatial, and texture values. A 
strategy that aims to classify objects that are most different in these categories will be 
more successful. 

4.2.1 Segmentation
In the segmentation phase, we use eCognition’s multiresolution segmentation 
algorithm to delineate the image into objects for classification. An in depth discussion 
of the multiresolution segmentation algorithm is presented in Appendix C. The 
multiresolution segmentation algorithm takes several parameters. First is the scale 
parameter which sets the average size of the segments for a given level. Next are the 
composition of homogeneity criterion- shape and compactness. Shape decides how 
much spatial versus spectral values affect segmentation. Compactness decides how 
compact in size the resulting segment will be. Finally, the operator must decide on the 
number of levels needed. Ideally, the items we wish to classify will be perfectly 
delineated by the object boundaries and comprise a single object. If the objects of 
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interest differ in size to a significant degree, several levels of segmentation may be
needed using different parameters at each level. Then, independent classifications 
can be run at each level. Objects at upper levels are large objects comprised of 
smaller objects at the next lowest level. A logical relationship between super-objects 
and sub-objects at lower levels is maintained so classifications can be easily shared 
between levels. Although several tools have been developed to automate some of the 
parameter selection (Zhang, Maxwell, Tong, & Dey, 2010), human interpretation of the 
results and subsequent adjustments to the parameters is still a common practice that 
yields acceptable results.  Suitable segmentation is achieved by adjusting the 
parameters such that we minimize the number of image objects that comprise a 
physical item in the image while avoiding objects that span to areas outside of said 
physical object. Figures 4.2.1-1, 4.2.1-2 and 4.2.1-3 provide examples of 
segmentation results at different scale parameters. 

Figure 4.2.1-1 Example of good segmentation showing good coverage of visually 
recognizable objects by segmented image objects2

2 Original aerial image obtained from Land Information New Zealand 
(https://data.linz.govt.nz/layer/1932-christchurch-post-earthquake-01m-urban-aerial-photos-24-
february-2011/). License for distribution and modification allowed under Creative Commons 
Attribution 3.0 New Zealand (http://creativecommons.org/licenses/by/3.0/nz/).
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Figure 4.2.1-2 Example of poor segmentation results showing too many image objects 
per visually recognizable object.3

Figure 4.2.1-3 Example of poor segmentation results showing too large of an image 
object for the visually recognizable objects. 3

3 Original aerial image obtained from Land Information New Zealand 
(https://data.linz.govt.nz/layer/1932-christchurch-post-earthquake-01m-urban-aerial-photos-24-
february-2011/). License for distribution and modification allowed under Creative Commons 
Attribution 3.0 New Zealand (http://creativecommons.org/licenses/by/3.0/nz/).
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4.2.2 Sampling
In the sampling phase, we identify samples of classes to use in training a supervised 
classification algorithm. It is important to create training samples for not only the 
classes we are interested in- rubble and buildings, but to identify training samples of 
all recognizable object classes within the whole image. The ideal result is a set of 
classes that are highly separable by some set of features. eCognition provides a 
Feature Space Optimization (FSO) tool (further described in Appendix D) to perform 
feature selection. By providing a set of training samples- and feature names, the FSO 
tool determines which features provide the best class separability. We provided a set 
of 66 features, comprising spectral, geometrical, and textural values and extract the 10 
best features. The 66 features are a subset of pre-configured features available in 
eCognition. The only preconfigured features omitted are Haralick textures for 
directions other than “All”. While eCognition offers more features, these require 
configuration in regards to the spectral bands available or parameters specific to the 
scene being evaluated. A complete description of the features used is available in the 
appendix B.

We chose the 10 features that maximized separation distance in the FSO tool.
Typically, additional features beyond the top 10 do not add to the discriminative power 
of the classifier. Based on experience, separation values of greater than or equal to a 
magnitude provide good classification results. We also observe that it is important to 
observe a non-decreasing separation curve, which means that the addition of features 
does not improve the classifier performance. A curve that is not non-decreasing may
indicate problems with the sample selection and lead to poor classification results. 
Typically, adding or removing random samples resolves this issue in one or two tries. 
If poor separation results are achieved, we return to the start of the sampling phase
and build upon the sample selection by adding more classes or subclasses to improve 
segment separation until a non-decreasing separation curve is observed as shown in 
Figure 4.2.2-1.
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Figure 4.2.2-1 Example of good Feature Space Optimization output graph.

4.2.3 Classifying
In the classifying phase we use the features and samples identified in the previous 
step to classify objects from the planning phase. Training segments and features are 
input into a training algorithm. The output classifier is then used to predict the label of 
new image segments. Different classification algorithms (as defined in appendix A) 
can be assessed and their parameters adjusted to improve performance. From there, 
an accuracy assessment can be generated in eCognition against either the existing
training samples or a separate validation dataset. If the results are not acceptable, we 
return to the sample phase to further refine the training inputs or the classifier 
parameters. If the results are accessible, we apply them to any lower levels in the 
segmentation hierarchy and start the process over again on the next level below the 
current level if such exists. An example of a resulting classification map for all levels is 
shown in Figure 4.2.3-1. 

There are still several points in this procedure which require human interpretation of 
the results. Our work evaluates the effectiveness of different strategies and 
parameters at these points with an eye toward full automation of these tasks without 
human intervention. We specifically look at how results are affected by breaking up 
classes into subclasses, the effects of multilevel segmentations, classifier algorithm 
and parameter selection, object selection parameters, and labeling of the individual 
segments.
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Figure 4.2.3-1 Output results of an object-based classifier delineating the different 
classes.4

4.3 Pixel-Based Approach
All results are compared against a typical pixel-based classification. Pixel-based 
classification techniques are highly established. Although many variations of pixel-
based methods exist, classification of very high resolution imagery based purely on 
spectral values using an SVM classifier is an established method for similar imagery 
and situations (Li et al., 2009) (Taskin Kaya et al., 2011). We compare systems using 
the same training data and classification hierarchies. Final results are compared on a 
per pixel basis for both object-based and pixel-based methods. Reasoning for this 
comparison method is further discussed in Chapter 4.4.

We use the Orfeo Toolbox, an open source package to do our pixel-based 
classification and compute pixel-based accuracy assessments of the final object-
based classification results. Figure 4.3-1 shows the output of a pixel-based classifier 
using the Orfeo Toolbox. The workflow for a pixel-based classification is similar to the 
steps outlined before, but we ignore the segmentation step. Feature Space 
Optimization is also not needed as we only consider the spectral values of the pixels.

4 Original aerial image obtained from Land Information New Zealand 
(https://data.linz.govt.nz/layer/1932-christchurch-post-earthquake-01m-urban-aerial-photos-24-
february-2011/). License for distribution and modification allowed under Creative Commons 
Attribution 3.0 New Zealand (http://creativecommons.org/licenses/by/3.0/nz/).
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Figure 4.3-1 Output results of a pixel-based classifier delineating the different 
classes.5

4.4 Evaluation of Results
There are two important considerations to be made when comparing object-based and
pixel-based results.  First, as seen in figure 6-1, image objects may not represent 
training and validation data the same as pixels, eliminating the possibility of a fair 
comparison. Pixels considered in a pixel-based evaluation as part of one class, may
be considered as a part of a different class in object-based results depending on 
where the image object boundaries fall. Second, because the image objects differ in 
the number of pixels they contain, especially in a multilevel object-based classification,
they must be weighted to ensure a fair comparison with pixel-based results. The 
easiest way to address both concerns is to evaluate both pixel-based and object-
based results on a per-pixel basis in the final classification maps they produce (Myint 
et al., 2011).

5 Original aerial image obtained from Land Information New Zealand 
(https://data.linz.govt.nz/layer/1932-christchurch-post-earthquake-01m-urban-aerial-photos-24-
february-2011/). License for distribution and modification allowed under Creative Commons 
Attribution 3.0 New Zealand (http://creativecommons.org/licenses/by/3.0/nz/).

18



5. Results
\While our classification system looked at several classes including building, 
pavement, vehicle, vegetation and rubble classes, our work is most interested in the 
classification performance of the rubble classes which are indicators of earthquake 
damage. When considering post event 10cm RGB orthophotos, our pixel-based 
classification system produced a 62% overall accuracy and rubble user and producer 
accuracies of 88% and 62%. Our object-based approach ultimately improved this to 
77% overall accuracy with rubble user and producer accuracies of 88% and 94%. 
Both cases were evaluated at the pixel level using an independent validation data set. 
Producer and user accuracies for different classes are illustrated in figure 5-1 for 
object-based classification and figure 5-2 for pixel-based classification. 

Figure 5-1 Object-based results as compared against validation data for different 
classes. Confusion matrix is located in Table E-2.

0 0.2 0.4 0.6 0.8 1

User Accuracy

Producer Accuracy

Object Classifier Accuracy

rubble vegetation vehicle pavement building

19



Figure 5-2 Pixel-based results as compared against validation data for different 
classes. Confusion matrix is located in Table E-1.

Ultimately, this systematic approach (outlined in Chapter 4.2) resulted in a multilevel 
segmentation comprised of four levels using scale parameters of 20, 50, 100, and 
200. All levels used shape and compactness factors of 0.5. Classification was 
ultimately carried out on the fourth level (scale parameter 200) for buildings, and 
second level (scale parameter 50) for classes of pavement, rubble, vehicle, and 
vegetation. A Naïve Bayes classifier was used on level four and a Support Vector 
Machine on level 2 using the default linear kernel with c parameter of 2. Features used 
in training the classifier are listed in Table 5-1
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Table 5-1 Features returned by the FSO tool used in object-based classifier.
Level Four Features Level Two Features
(Extent) Length/Width (Layer value) Mean green
(Shape) Compactness (Layer value) Saturation
(Shape) Main Direction (Extent) Area
(Based on polygons) Average length of 
edges

(Shape) Asymmetry

(Based on skeletons) Degree of skeleton 
branching

(Shape) Main direction

(Based on skeletons) Length of mainline 
(regarding cycles)

(Shape) Radius of largest enclosed 
ellipse

(Texture) GLCM contrast (Based on polygons) Number of edges
(Texture) GLCM correlation (Texture) GLCM entropy 
(Texture) GLDV mean (Texture) GLCM stddev
(Texture) GLDV contrast

6. Discussion
The feedback mechanism outlined in Chapter 4.2 provided several opportunities to 
improve upon our results. The first to consider was object selection. In order to 
provide a more similar comparison between object and pixel-based results, training 
samples were taken from polygons in shape files. As shown in Figure 6-1, the 
resulting objects do not always line up exactly with the polygons and some criteria 
must be used to decide if an object should be classified as a training object or not. We 
considered percentage of overlap between the object and the polygon. Classification 
results are compared when looking at overlap of training polygons with image objects 
of 0%, 25%, 50%, 75%, and 100%.  As we can see in Figures 6-2 and 6-3, different 
classes benefit differently from the various settings. 
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Figure 6-1 Example of a training polygon showing overlap with image objects. 6

Figure 6-2 Producer accuracies measured at various overlap parameter percentages.

6 Original aerial image obtained from Land Information New Zealand 
(https://data.linz.govt.nz/layer/1932-christchurch-post-earthquake-01m-urban-aerial-photos-24-
february-2011/). License for distribution and modification allowed under Creative Commons 
Attribution 3.0 New Zealand (http://creativecommons.org/licenses/by/3.0/nz/).
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Figure 6-3 User accuracies measured at various overlap parameter percentages.

We also considered multilevel vs single level classification. Instead of classifying 
buildings on one level and everything else on another level of smaller objects, we 
classified everything on level 2. Notice how building classification goes from 91% 
producer accuracy to 32% (as illustrated in figures 5-1 and 6-4, respectively) when 
classifying them at an inappropriate level. 

Figure 6-4 Performance of an object-based classifier that only consider objects from 
one level- Level 2. Confusion matrix is located in Table E-3.
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In an attempt to improve class separability and overall classifier performance, we 
broke down the rubble class into 4 individual subclasses; building chunks- rubble that 
contained visibly identifiable pieces of building, high density-rubble that contained 
discernable pieces of debris, low density- a class for rubble with no discernable 
contents, and sticks- a class used to identify debris containing long structural elements 
such as steel beams or lumber. Breaking classes up into subclasses offers an 
encouraging boost in performance when comparing results against the training data. 
This is likely because a smaller subclass allows greater over fitting. However, the 
effects of over fitting are not evident when testing on our validation data as illustrated 
by Figure 6-5. 

Figure 6-5 Effect of using more specific subclasses of rubble. Confusion matrix is 
located in Table E-4.

Choice in classifier algorithm and parameters can have a significant impact on results. 
Techniques for seeking improvements in results revolve around the reduction of over 
fitting, this is readily apparent when the classifier does very well on the training data, 
but returns poor results when looking at the validation data. eCognition offers five 
different classifier training algorithms- Decision Trees, Random Trees, Support Vector 
Machines, k Nearest Neighbor and Naïve Bayes. We test the classifiers against the 
validation data both at level 2 and level 4 as well as tuned versions of these algorithms
intended to reduce over fitting. To try and reduce over fitting we adjust the following 
parameters. On decision trees, enable the 1SE rule for pruning. On Random Trees, 
we increase the minimum sample count to two. For Support Vector Machines, we use 
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a radial basis function kernel with a C parameter of 3. For k Nearest Neighbor, the k 
parameter is increased to 3. Naïve Bayes has no parameters that can be adjusted. 
Figures 6-6 and 6-7 illustrate the accuracy of different algorithms. 

Figure 6-6 Performance of various classifier algorithms on building classification.

Figure 6-7 Performance of various classifier algorithms on rubble classification.

Often, the choice is not clear as to which classifier is superior. Some may offer 
excellent producer performance while poor user accuracy performance or vice versa. 
We attempt to balance these by selecting the classifier which produces the best 
average user or producer performance by choosing Naïve Bayes for level four and a 
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Support Vector Machine for level two. However, some applications may favor better 
performance in certain categories. For examples if we wanted to make sure we 
classified as much earthquake damage as possible without regard to false positives, 
we should consider the highest possible producer accuracy without regard to user 
accuracy. 

7. Conclusions and Future Work
As demonstrated, the systematic approach provides feedback to the user that makes 
an improvement in results from several different choices in classification system 
parameters. Classifier results are improved by segmentation strategy, class hierarchy, 
and classifier algorithm choices. As shown by the single layer segmentation results, 
it’s important to consider a segmentation strategy that correctly accounts for the 
relative size of physical objects. The preceding class hierarchy work strategy also 
demonstrates the importance of a systematic approach to this hierarchy strategy. And 
finally, the impact of choice in classifier algorithm is extensively documented above-
different classifier algorithms can produce highly variable accuracy results for the 
same given inputs. 

As demonstrated, there can be negative impacts on results if different choices are
made. These choices result in an object-based classifier that produces measurable 
improvements over established pixel-based approaches to classification. Furthermore, 
the final object-based classification shows an improvement in overall classifier results 
from 62% for pixel-based to 77% for object-based. Rubble classifier producer 
accuracy is also improved from 62% to 94% while user accuracy results hold steady at 
88%.  

Future work looks to employ computational methods to make evaluations regarding 
such outputs as segmentation, feature selection, and classifier parameters. Choices in 
these parameters can be automatically made based on these evaluations reducing the 
need for human interaction and any possible error it can introduce. 
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Appendix A. Classifiers
A.1 SVM
There are a variety of classification algorithms available in eCognition. Each has
various parameters that can also be configured. We first considered the Support 
Vector Machine. When the data is mapped into an N-dimensional feature vector, the 
support vector machine will attempt to fit a hyperplane that maximizes the margin 
distance between examples from each class to this hyperplane. The parameter C, the 
cost parameter, determines the amount of training data that can be misclassified (e.g., 
on the wrong side of the hyperplane). A higher C decreases the number of 
misclassified points, but makes for an overly complex model that may not be as 
generally applicable to new data (Clarke, Fokou©*, Zhang, & SpringerLink (Online 
service), 2009). eCognition also allows for the use of a kernel function. A kernel 
function effectively remaps that data into a different, usually higher-dimensional, basis 
space. This allows data with complex boundaries to be effectively classified by an 
SVM. eCognition supports the Radial Basis Function Kernel which is controlled by the 
gamma parameter. Smaller values of gamma result in a smoother decision boundary 
while larger values result in a more complex boundary. While a more complex 
boundary can result in better fitting on the training data, this can result in overfitting on 
test data (Clarke et al., 2009). Also, SVMs natively work on binary class problems.
There are two common approaches for handling multiclass data: 1) a one against 
many approach that breaks out a single class and compares it with the remainder of 
that data or 2) a more computationally intensive approach that builds a classifier for 
every pair of classes and uses an ensemble vote for the final class label (Clarke et al., 
2009).

Configurable Parameters:
C
Kernel (linear or RBF)
Gamma (for RBF kernel only)

A.2 Decision Trees
A decision tree is a classification method that classifies a dataset by subjecting it to a 
series of binary decisions based on feature values. A decision tree can be trained by 
taking the training data set, partitioning it based on some feature value, and 
recursively partitioning each subset until the subset of data are all members of the 
same class or further recursion adds no value to the classification (Alpaydin, 2010).
There are several parameters that eCognition allows users to configure. Maximum 
depth limits the depth of the tree and resulting recursive comparisons. Minimum 
sample count ensures that any ending branch of the tree has at least this many 
samples. Both of these prevent overly complex trees that might over fit the data. Max 
categories specifies the maximum number of categories to cluster data into at any 
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given level. This may result in multiple classes being lumped together at upper levels. 
A reasonable number reduces processing time while maintaining accuracy. Cross 
validation folds allows us to compare our model against the training data to assess its 
accuracy. While cross validation is a useful tool in many different classifier algorithms, 
it is only supported with Decision Trees by eCognition. The data are broken down into 
N number of randomly selected folds. One is left out as a validation data set, the rest 
are used for training. This allows us to select the resulting training model that best fits 
a given random validation set from the training data (Alpaydin, 2010). The remaining 
options are for pruning the tree in order to better handle outliers in the training data. 
The 1SE rule is a preprocessing method that prunes branches as the tree is created. 
The smallest tree with an error rate less than the observed minimum plus one 
standard error is pruned (Breiman, 1984). Truncating is a post-pruning method that 
eliminates unnecessary branches such that the branches that remain cover the largest 
number of examples possible (Alpaydin, 2010). Finally, the Decision Tree trainer also 
allows surrogate splits. This allows a node to split not only on its primary feature as 
normal, but also on a secondary feature that yields a similar split. This allows us to 
capture objects that may be outliers in a given feature, but inliers in others (Breiman, 
1984).

Configurable Parameters:
Maximum depth
Minimum sample count
Max categories
Cross validation folds
1SE rule (yes/no)
Truncating (yes/no)
Surrogate splits (yes/no)

A.3 Random Trees
Random Trees, or Random Forests use bootstrap aggregation to create an ensemble 
of decision trees. At each split in the tree, a random selection of features is used to 
calculate the split. At the end, the class label is determined by a vote of the forest.
Random Forests are better at avoiding over-fitting than decision trees (Breiman, 
2001). Random forests can be subject to many of the same parameters as a plain 
decision tree such as depth, minimum sample count, and maximum categories as well 
as make use of surrogates. Additional parameters include active variables- the 
number of randomly selected features to be considered at each tree node, forest 
accuracy- a target for the desired level of accuracy, and a termination criteria which 
can be set to the maximum number of trees, forest accuracy, or both. 

Configurable Parameters:
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Maximum depth
Minimum sample count
Max categories
Surrogate splits (yes/no)
Active variables
Forest accuracy
Termination criteria (maximum number of trees, forest accuracy, or both)

A.4 Bayes
The Bayesian classifier is a Naive Bayes Classifier that considers each feature 
independently of the others when deciding on a classification. When presented with an 
item to classify, it considers the probability of classification in a given class as a 
product of the probability given each feature as well as the overall probability that an 
item belongs to a given class (Alpaydin, 2010).

A.5 k Nearest Neighbor
The k Nearest Neighbor classifier is also a simple classifier. Classifications are 
assigned based on a vote of the k training examples closest to the example to be 
classified. Classification is based on whichever group holds the majority. This 
classifier is only configurable by the k parameter (Alpaydin, 2010).

Configurable Parameters:
k
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Appendix B. Object Features
B.1 Layer Values
Layers are features calculated from the different spectral bands in the image. 
Sometimes they consider only one band, or the relationship of one band to others. 

Brightness
This parameter considers the average brightness of the specified levels. We include
all 3 RGB layers when calculating this object feature.

= brightness weigh tof image layer k on a scale of 0 to 1. 
K = number of layers k used for evaluation =  ( ) = mean intensity of image layer k

1 ( ) 
Mean Layer
This calculates the mean for the given layer. 

# = total number of pixels contained in ( , ) = image layer intensity at pixel ( , )1# ( , )( , )
Standard Deviation Layer
The standard Deviation for the given layer.

# = total number of pixels contained in ( , ) = image layer intensity at pixel ( , )
1# ( , )( , )

1# ( , )( , )
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Max Diff 
This feature is the maximum difference between mean values for different layers. 

i, j = image layers( ) = mean brightness of image layer( ) = mean intensity of image layer i( ) = mean intensity of image layer j
= image layers of positive brightness and weight max, | ( ) ( )|( )

Hue, Saturation, Intensity 
This is a different method expressing color rather than traditional RGB values. 

Given RGB values normalized on a scale of 0,1
max = greatest of the RGB values
min = smallest of the RGB values

if max = R:= 60° × 360°
If max = G:= 60° × + 120°360°
If max = B:= 60° × + 240°360°

= 1 3+ + ×
= 1 3 ( + + )
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B.2 Texture
Gray Level Co-Occurrence Matrixes are a tool used to measure texture of an object. A 
GLCM is a matrix that describes the relationship to pixels nearby. Typically, these are 
computed in a single direction, up, down, across, diagonal, or all directions and a 
given displacement between pixels. In eCognition, this displacement is one pixel and 
we consider only the GLCM for all directions. The resulting matrix is defined in the x 
and y as the possible pixel or gray level values- in an 8 bit image, this would be 0-255. 
Given a pixel value at i,j and it’s neighboring value, these would correspond to the x 
and y values in the GLCM. From the resultant GLCM, different features can be 
computed to describe the texture of an object.  All GLCMs are normalized to allow 
comparison between objects (Haralick, 1979).
Operation for normalization:

i = row number
j = column number, = normalized cell
N = number of rows or columns , = value of cell i,j in the matrix

, = , ,,
GLCM Homogeneity 

The GLCM Homogeneity is high if the GLCM is strongest along the diagonal. A 
Homogeneous image has little local variability. The value decreases exponentially.

i = row number
j = column number, = normalized cell
N = number of rows or columns 

,1 + ( ),
GLCM Contrast

The GLCM Contrast measures how much local variability there is, in essence- the 
opposite of homogeneity. This also increases exponentially. 
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i = row number
j = column number, = normalized cell
N = number of rows or columns 

, ( ),
GLCM Dissimilarity
This is a measure of contrast that increases linearly. 

i = row number
j = column number, = normalized cell
N = number of rows or columns 

, | |,
GLCM Entropy
This is a measure of how uniformly the elements in the GLCM are distributed. 

i = row number
j = column number, = normalized cell
N = number of rows or columns 

, ( ln ,, )
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GLCM Angular 2nd Momentum
A measure of homogeneity, the resulting value is high for larger values and lower for 
smaller values.

i = row number
j = column number, = normalized cell
N = number of rows or columns 

( , ),
GLCM Mean
The average frequency with which pixels occur in relation to other pixels. 

i = row number
j = column number, = normalized cell
N = number of rows or columns 

,,
GLCM Standard Deviation 
This a measure of the deviation of pixels surrounding the GLCM Mean.

i = row number
j = column number, = normalized cell
N = number of rows or columns , = GLCM Mean

, (, , , )
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GLCM Correlation
This is a measure of the dependency of neighboring pixels

i = row number
j = column number, = normalized cell
N = number of rows or columns , = GLCM Mean, = GLCM standard deviation

, ( , )( )( )( ),
GLDV
The grey level difference vector (GLDV) is essentially a sum of the diagnols of the 
GLCM, it counts up the number of instances of a given different between pixels. There 
are a few more features that can be calculated from this value as well. 

GLDV Angular Second Momentum
A measure of homogenity, the resulting value is high for larger values and lower for 
smaller values.

N = number of rows or columns 
= image object level

GLDV Entropy 
This produces a high value if all elements are smaller, essentially the opposite of the 
angular second moment. 

N = number of rows or columns 
= image object level

( ln )
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GLDV Mean and GLDV Contrast are functionally equivalent to the GLCM Dissimilarity 
and GLCM Contrast measures, respectively. 

B.3 Geometry
These are features that consider the size and the shape of the image object. 

B.3.1 Extent
Area
Area is the number of pixels that represent an object. If the ground area per pixel is 
known, this is multiplied by the number of pixels.

AV = area of image object V
#PV = total number of pixels contained in PV

u = size of the pixel in system units, u=1 if the unit is a pixel

 #  × 
Border Length
This is the length of all borders shared with another object or the edge of the scene. 

bv = border length of image object
bo = length of outside border
bi = length of inside border= +
Length
Length is a function of the total number of pixels and the length to width ratio.

#PV = total number of pixels contained in PV

= length to width ratio of object V

#
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Length/Thickness
This is exactly what it implies, length of the object divided by thickness.

L = length of the object
T= thickness of the object

Length/Width
Length/Width is the smaller of either the ratio of the eigenvalues of the covariance 
matrix or the value computed from the bounding box., eigenvalues = ratio length of v of the eigenvalues

= ratio length v of the bounding box to total number of object pixels
= length to width ratio of object V=  ,  

Number of Pixels
This is a straightforward count of the number of pixels contained in the object.

Thickness
This feature only has a valid result for 3-dimensional objects. 

Volume 
This feature only has a valid result for 3-dimensional objects. 

Width
Width is calculated similar to length, it is a function of the total number of pixels and 
the length to width ratio.

#PV = total number of pixels contained in PV

= length to width ratio of object V#
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B.3.2 Shape
Asymmetry 
Given an ellipse that completely encloses the object, this is a measure of the ratio of it 
major and minor axes. It is similar to length/width but not as accurate. 

= minimal eigenvalue
= maximal eigenvalue

1
Border Index
A measure of the border length of the object as compared to the border length of the 
smallest enclosing rectangle. 

= image object border length
= length of image object v
= width of image object v

2( + )
Compactness
Like Border Index, this considers the smallest enclosing rectangle but is a comparison 
of the number of object pixels to the size of this rectangle. 

= length of image object v
= width of image object v

# = total number of pixels contained in ×#
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Density
Density considers both the size of an enclosing ellipse and the size of an enclosing 
square. Thus, a perfect square is considered most dense by this measure. 

# = diameter of a square object with # pixels+ = diameter of the elipse

#1 + +
Elliptic Fit
Given an ellipse of the same length and width of the object, this is a measure of what 
falls inside the ellipse versus what falls outside the ellipse

# = total number of pixels contained in ( , ) = the elliptic distance at pixel ( , )
2 #{( , ) : ( , ) 1}# 1
Main Direction
Given a covariance matrix of spatial distribution, this is the larger of two eigenvectors 
computed from eigenvalues. 

= eigenvalue
= variance of X
= variance of Y180° tan ( , ) + 90°

Radius of Largest Enclosed Ellipse
Starting with an ellipse of the same area as the object, the ellipse is scaled down until 
it is completely enclosed by the object. The ratio of the resulting ellipse to the original 
ellipse is returned as the value.( , ) = the elliptic distance at pixel ( , )( , ), ( , ) =  ( , ), ( , )  
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Radius of Smallest Enclosed Ellipse 
Like the previous feature, this starts with an ellipse of the same area as the object and 
is increased in size until it completely encloses the object. The ratio of the resulting 
ellipse to the original ellipse is returned as the value.( , ) = the elliptic distance at pixel ( , )( , ), ( , ) =  ( , ), ( , )  
Rectangular Fit
Given a rectangle with equal area to the original object and the same length and width 
as the object, this is a measure of the area of the image that falls outside the rectangle 
versus the area inside the rectangle.( , ) = the elliptic distance at pixel ( , )#{( , ) : ( , ) 1}#
Roundness
Given both the smallest enclosing ellipse and the largest enclosed ellipse, this returns 
the radius of the enclosing ellipse minus the radius of the enclosed ellipse. 

= radius of largest enclosed ellipse
= radius of smallest enclosed ellipse

Shape Index
The smoothness of the border of an image object, it considers the border length and 
the number of pixels.

= image object border length4 # = border length of square with # pixels 4 #
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B.3.3 Based on Polygons
This is a set of features calculated from a vectorization of the pixels in an object 
(Trimble, 2014).

Area(excluding inner polygons)
This feature is the area of the polygon subtracting any polygons that may be enclosed 
by the object.( , ), = 0, ,  with = and = as the given points=
12
Area(including inner polygons)
Same as above, but the area of any enclosed polygons included in the feature.

Average Length of Edges (Polygon)
The average length of all edges of the polygon.

= length of edge i
n = total number of edges

Compactness (Polygon)
Given a circle with the same perimeter as the polygon, this is a comparison of the area 
between the two.

a = area
p = perimeter4
Length of Longest Edge (Polygon)
The length of the longest edge.

Number of Edges (Polygon)
The number of edges the polygon has. 
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Number of Inner Objects (Polygon)
The number of inner objects completely surrounded by the polygon.

Perimeter (Polygon)
The sum of the length of all edges of the polygon.

Polygon Self-Intersection (Polygon)
This feature isn’t really used for classification, but to test for a rare condition where the 
resulting polygon intersects itself. 

Standard Deviation of Length of Edges
How much the lengths of the edges deviate from their average value. 

= length of edge i
n = total number of edges

= mean value of all lengths

( )
B.3.4 Based on Skeletons
Skeletons are based on a Delaunay triangulation (Delaunay, 1934) of the 
aforementioned polygons. Skeleton branches are determined by the three types of 
triangles created:
-One neighbor triangles indicate end points of the skeleton.
-Two neighbor triangles indicate connecting triangles 
-Three neighbor triangles indicate branch points of the skeleton

A skeleton is a branching line created by midpoints of the above triangles (Trimble, 
2014).

Average Branch Length 
The average length of all branches in the object’s skeleton. 

Average Area Represented by Segments
The average area of all the Delaunay triangles.

Curvature/Length (Only Main Line)
A measure of how much the main line of the skeleton changes direction. 
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Degree of Skeleton Branching
How many degrees to which the skeleton branches in the object.

Length of Main Line (No Cycles)
The length of the mainline ignoring any inner polygons that must be crossed. 

Length of Main Line (Regarding Cycles) 
The same as above, but not crossing any inner polygons.

Length/Width (Only Main Line)
The ratio of length to width of the main line of the object. 

Maximum Branch Length
As measured from the intersection with the mainline to the end of the branch. 

Number of Segments
A count of all segments of the main line and branches of an object skeleton.

Standard Deviation Curvature (Only Main Line) 
The standard deviation of the changes in direction in the main line. 

Standard Deviation of Area Represented by Segments 
The standard deviation of the area of the resulting Delaunay triangles in the object. 

Width (Only Main Line) 
The average height of all the triangles crossed by the main line. In cases where the 
height is not crossed by a side of the triangle, the nearest side is used to define the 
height. 
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Appendix C. Image Segmentation
Although there are many ways to segment an image into objects, we only consider 
eCognition’s multiresolution segmentation algorithm, primarily due to its quality and 
lack of competitive alternatives in the literature. This segmentation algorithm is a 
merging algorithm. When starting from an unsegmented image, single pixels are 
considered first. A merging cost is calculated for each possible merge- this is known 
as the degree of fitting. If the result is less than the least degree of fitting calculated by 
the algorithm parameters, a merge is performed. Objects are continually merged until 
no merges are possible given the initial parameters. For subsequent levels after the 
base image, the input is the segments from the previous level which are then merged 
until the given parameters are met. 

Segmentation is driven is driven by three main parameters. The most important is the 
scale parameter- this drives the size of the resulting segments. Scale represents the 
average size in pixels of the resulting objects. The shape and compactness numbers 
are given in a scale of 0-1. Shape determines how much influence color versus shape 
has on the segmentation. A higher value means a lower influence of color.  The 
resulting influence of shape is then further influenced by the Compactness parameter. 
A higher compactness value results in more compact objects while a lower value 
results in objects with smoother borders. We primarily stick with the default shape and 
compactness parameters of 0.1 and 0.5 (Baatz & Schäpe, 2000)
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Appendix D. Feature Space Optimization
To decide which of the features to use in classification, we use eCognition’s Feature 
Space Optimization Tool. This tool calculates the Euclidean distance between classes 
as described by a set of features. Given the set of 66 features as described above, 
this tool will find the subset of features that provides the best separation distance out 
to a given dimension. Part of the output includes a graph showing how much 
separation increases as features are added. This can be a good indication of which 
features stop adding significant value to the classification and may start inducing some 
confusion (Trimble, 2014).

Figure C-1 Example of good Feature Space Optimization output graph.
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Appendix E. Confusion Matrixes
Results of a classification process are compared using a confusion matrix. A 
confusion matrix is a table with actual classification in rows, and the predicted 
classification in columns. As such, the diagonal of this chart represents correct 
predictions. Items in the columns that don’t match are known ground truth items that 
have been misclassified by the classifier. We calculate both user and producer 
accuracy for each class. Producer accuracy is a measure of how many items in the 
validation data that the classifier successfully classified. User accuracy is a measure 
of the reliability of the classifier- of all the items in the validation sample classified by 
the classifier compared to all items in that class identified by the classifier whether part 
of the validation sample or not.  Finally, we calculate the overall accuracy for the entire 
classification by averaging the producer and user accuracies for all classes (Alpaydin, 
2010).

For a given class, the accuracy values can be calculated as such:

 =          ( )
 =         ( )

Table E-1 Pixel-Based Results using an SVM classifier.
building pavement vehicle vegetation rubble sum

building 76974 79392 18558 735 11885 187544
pavement 6239 156428 2220 8 7355 172250
vehicle 3165 3511 2318 91 472 9557
vegetation 227 753 0 70968 72 72020
rubble 53718 32666 5828 567 152535 245314
sum 140323 272750 28924 72369 172319

User 
Accuracy

0.55 0.57 0.08 0.98 0.89

Producer 
Accuracy

0.41 0.91 0.24 0.99 0.62

average 0.62
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Table E-2 Object-based results using a Level 4 Bayes classifier, Level 2 Stock SVM
classifier, 75% overlap for training object creation, and combined rubble in a single 
class.

building pavement vehicle vegetation rubble sum
building 164640 11059 2 0 4504 180205
pavement 20945 132207 0 0 12213 165365
vehicle 2616 1599 524 0 4512 9251
vegetation 0 4141 0 55680 9171 68992
rubble 5319 7980 373 1 221726 235399
sum 193520 156986 899 55681 252126

User Accuracy 0.85 0.84 0.58 1.00 0.88
Producer 
Accuracy

0.91 0.80 0.06 0.81 0.94

average 0.77

Table E-3 Object-based results using an SVM classifier on level 2 only, 0% overlap for 
training object creation, and multiple subclasses for rubble.

building pavement vehicle vegetation rubble sum
building 57534 38827 27468 11511 44865 180205
pavement 6729 33587 38088 19971 66990 165365
vehicle 1203 39 4547 562 2900 9251
vegetation 5176 0 12158 15722 35936 68992
rubble 25958 73 21708 1318 184956 234013
sum 96600 72526 103969 49084 335647

User Accuracy 0.60 0.46 0.04 0.32 0.55
Producer 
Accuracy

0.32 0.20 0.49 0.23 0.79

average 0.40
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Table E-4 Object-based results using Bayes on Level 4 Bayes, Level 2 stock SVM 
classifier with multiple rubble, and 75% overlap for training object creation. 

building pavement vehicle vegetation rubble sum
building 164640 11486 0 9 4070 180205
pavement 20945 124048 0 0 20372 165365
vehicle 2616 213 178 0 6244 9251
vegetation 0 1022 0 52805 15165 68992
rubble 5279 11212 329 3007 214444 234271
sum 193480 147981 507 55821 260295

User 
Accuracy

0.85 0.84 0.35 0.95 0.82

Producer 
Accuracy

0.91 0.75 0.02 0.77 0.92

average 0.72
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Appendix F. Imaging Platforms 
There are many earth observation systems that can be used for detecting earthquake 
damage. Each has several benefits and drawbacks.  The first major sensor category is 
passive systems that detect emitted or reflected spectral data from the earth’s surface 
such as cameras and CCDs. The second is active systems that direct a signal to the 
earth surfaces and measure the reflected signal such as LiDAR and Synthetic 
Aperture RADAR systems. Passive systems exist at all levels of spectral and spatial 
resolution depending on the need and platform capabilities. In addition to capturing 2 
dimensional data, 3 dimensional data can be captured when stereo pairs of the same 
scene are acquired. Active systems are also available in a variety of spatial 
resolutions and provide height data, but lack the spectral capabilities of passive 
systems (Bossler, Jensen, McMaster, & Rizos, 2004).

These sensor systems are mounted on a variety of platforms- ground based, aerial, 
and space based. For our purposes, space based and aerial platforms are most 
interesting as they can both aid in mapping damage over a large area quickly. Each 
excels in specific areas though. Space based systems can more easily regularly visit 
remote areas as their operation depends on no earth bound infrastructure after 
launch. Typically, their higher altitude also allows a space based sensor to observe a 
larger area at a given time as well. However, these higher altitudes also provide 
spatial resolution challenges and space based systems are typically not as high 
resolution as an aerial based system. Temporal resolution also has some advantages 
and disadvantages. While satellite orbits are fairly predictable with regular revisits to 
the same areas on the globe, the time period between these revisits can be lengthy 
indeed. While some space based systems have the ability to operate off nadir, 
increasing their temporal resolution, this provides added challenges in contending with 
the resultant shadows and other factors from oblique imagery. And finally, space 
based systems have the added challenge of contending with atmospheric conditions. 
Weather, smoke, dust and other items both man-made and natural can obscure views 
of the ground (Bossler et al., 2004).

Aerial based platforms including planes and UAVs provide several advantages and 
disadvantages to space based systems. Spatially, aerial platforms can hold the 
advantage over space based systems offering higher resolution imagery, although at 
the cost of coverage area. Still, given the lower costs and flexibility in aerial platforms, 
multiple vehicles may be deployed simultaneously to increase coverage in a given 
time period. The flexibility of aerial systems also gives more options for increasing 
temporal resolution either through using multiple vehicles and multiple flights of one or 
more vehicles. However, the capabilities of aerial platforms can often make operations 
in very remote areas challenging or impossible, especially if local infrastructure has 
seen significant damage. Aerial systems also have some advantage in dealing with 
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atmospheric conditions in that they can fly under conditions that might obscure the
view from a satellite, however some of the very same atmospheric conditions that 
satellites are susceptible to can also make flying an aircraft dangerous or impossible 
such as dangerous weather conditions or extensive dust and smoke. (Bossler et al., 
2004)

As we can see, while satellites can offer a consistent, reliable service when in all 
areas when atmospheric conditions permit, aerial platforms provide greater flexibility, 
the potential for better spectral, spatial, and temporal resolution as well as a platform 
more conducive to non-imaging sensors such as LiDAR.

Alternate forms of data are also useful in assessing earthquake damage. Increasingly, 
geospatial data is readily available on roads, buildings, and many natural features 
such as waterways and vegetation cover. Data such as this can be used in assisting
the classification process as well as used in comparison with post event damage 
assessment. The internet and social media have also shown some usefulness as 
sources for geospatially significant, timely information on natural disasters that also 
might aid in earthquake damage assessment (Yin, Lampert, Cameron, Robinson, & 
Power, 2012).
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