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Improved parametric empirical determination of module short circuit current for
modelling and optimization of solar photovoltaic systems

Rob Andrews?®, Andrew Pollard®, Joshua M. Pearce*

% Department of Mechanical and Materials Engineering, Queen’s University, Canada
b Department of Materials Science and Engineering and Department of Electrical and Computer Engineering, Michigan Technological
University, USA

Abstract

Correct modelling of solar photovoltaic (PV) system yields is necessary to optimize system design, improve reliability
of projected outputs to ensure favourable project financing and to facilitate proper operations and maintenance. An
improved methodology for fine resolution modelling of PV systems is presented using module short-circuit current
(Isc) at 5-minute time-scales, and clearly identifies pertinent error mechanisms that arise when working at this high
resolution. This work used a modified version of the Sandia array performance model, and introduces new factors to the
calculation of I, to account for identified error mechanisms, including instrumentation alignment, spectral, and module
power tolerance errors. A simple methodology was introduced and verified where specific module parameters can be
derived solely from properly filtered performance time series data. In particular, this paper focused on methodologies for
determining the predicted I, for a variety of solar PV module types. These methods of regressive analysis significantly
reduced the error of the predicted model, and demonstrate the need for this form of modelling when evaluating long
term PV array performance. This methodology has applications for current systems operators, which will enable the
extraction of useful module parameters from existing data in addition to more precise continuous monitoring of existing
systems, and can also be used to more accurately model and optimize new systems.

Keywords: Photovoltaic, PV, System modelling, Short-circuit current, Translation models

Nomenclature 1. Introduction

G Solar irradiation(W/m?) As the solar photovoltaic (PV) industry matures, the

By Beam Irradiation(W/m?) levelized cost of solar electricity will reach grid parity in a

Dy Diffuse Irradiation(W/m?) growing number of geographic locations (Branker et al.,

Ay Albedo Irradiation(W/m?) 2011). Critical to the development of the industry is the

Pr... Py Empirically derived parameters correct modelling of the performance of the PV system

T Module Temperature(°C) Ly .

WS Wind speed(m/s) which is essential for:

I Modelled Short-Circuit C t(A . o

AM Ai(; aness ort-Circuit Current(4) (i) proper optimization of system parameters (Mondol

K Clearness Ratio et al., 2007; Notton et al., 2010; Al-Karaghouli and

Ise Short Circuit Current (A) Kazmerski, 2010; Kaldellis et al., 2009)

1 Rated short circuit t at STC (A .

GfS" Ir?aZiaiio(ﬁ a(tnrscq% ffg{)g‘;wam% C4) (ii) increased reliability of the projected outputs,so as to

o temperature coefficient(1/°C) ensure favourable project financing (Ren et al., 2009;

T. module cell temperature(°C') Mondol et al., 2009) and,

T module temperature at STC (25°C) (iii) proper operation and maintenance of existin

ns Pyranometer unit vector in the north-south plane prop b R &

[ Pyranometer angle in the north-south plane(°) systems (Stelna 2011)

ew Pyranometer unit vector in the east-west plane . . .

" Pyranometer angle in the east-west plane (°) The modelling of a PV system in the context of this

v Azimuth angle(°) paper will refer to the determination of the transfer

Z:Z éenith {*Hg%e(o) ] - function between meteorological parameters and the

b orrection factor for pyranometer plane tilt output form an actual PV module. In particular, this

paper focuses on methodologies for determining the
predicted short-circuit current (Is.) for a variety of
module types, which can then be applied for the

*1400 Townsend Drive Houghton, MI 49931-1295 906-487-1466 optimization of a system located anywhere with known

Email address: pearce@mtu.edu (Joshua M. Pearce ) meteorological data and used in the improvement and
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development of future more detailed studies. There are
many available modelling routines, which have a wide
range of applicability for daily, weekly or monthly
time-scales, as will be described below (King et al.,
2004b; Kroposki et al., 1996; Whitaker et al., 1997;
De Soto et al., 2006; Kurokawa et al., 1998). Generally,
as the time-scale of simulation increases, instantaneous
errors due to atmospheric effects (partial or full soiling,
cloud cover, aerosols, spectral shift, etc.) may be
assumed to be reduced due to long term averaging, and
are therefore will not be directly included. (King et al.,
2004a; Whitaker and Newmiller, 1998). However,
analysis of PV performance at smaller time-scales is
desirable in order to identify loss mechanisms and
quantify system performance on a continuous basis;
therefore, the purpose of this paper is to investigate the
applicability of modelling techniques with temporal
resolution down to a 5-minute time-scale. To achieve this
level of granularity, a more rigorous treatment of a
variety of second order loss mechanisms is required as the
assumption of correction through averaging is no longer
valid. The purpose of increasing the granularity of the
simulation is to account for all predictable mechanisms
from a series of PV data. The resultant data set can be
then used to quantify:

(i) system relative performance and realistic output
ratios

(ii) instantaneous system output for grid integration and
smart grid operation

(iii) persistent and instantaneous loss mechanisms (eg.
soiling, string outages)

(iv) site specific shading losses

(v) module degradation, including both crystalline
silicon (c-Si) long term degradation (Skoczek et al.,
2009; A, 2003; Chianese et al., 2003) and the
Staebler-Wronski effect (SWE) for amorphous
silicon (Staebler and Wronski, 1977; Pearce et al.,
2003; Wronski et al., 2004)

(vi) other external factors (e.g. winter albedo increases
or snow losses (Andrews and Pearce, 2012a,b))

In addition, many current modelling techniques require
laboratory evaluation for proper determination of
modelling parameters, notably the NREL Module Energy
Rating (MER) procedure (Marion et al., 1999) and the
Sandia PV performance model (King et al., 2004a). The
proposed technique will enable the derivation of system
parameters using only a training set of system current
output that is correlated with basic meteorological
information, as is available from many commercial
installations. The general procedure then optimizes a
parametric model based on this training set, which will
yield important system characteristics, and to then
extrapolate these results to the entire dataset for system
characterization.

The goals of this paper are to present an improved
methodology for characterizing PV systems, and to
demonstrate the application of this model on collected
data from an outdoors testing facility. This methodology
will then be compared to other leading modelling
techniques applied to this dataset to demonstrate the
utility of this new model. This improved modelling
technique can be utilized to better optimize system
parameters and predict yields, however the application of
this methodology to the direct optimization of a new PV
system is left for future work.

2. Background

A complete PV system includes solar modules,
inverters, power conditioning hardware, mounting
systems, and other components that are required to
transform  solar  irradiation into  grid-interactive
electricity. Existing models that describe these systems
will be discussed along with common sources of errors in
these models.

2.1. Previously Developed models

Current techniques to model short-circuit current can
be placed into the following main categories (i)direct
transfer function (ii) empirical Tables (iii) analytical
lumped diode, (iv)empirical models, (v) translation
models and (vi) sophisticated validation.

2.1.1. Direct Transfer Functions

Direct transfer function models apply a linear transfer
function for solar irradiation to determine the power
output of a module, assuming constant or temperature
dependant module efficiencies (Makrides et al., 2011;
Whitaker and Newmiller, 1998).  These models are
generally used on large time-scale data, but can display a
significant seasonal bias (Makrides et al., 2011). The
assumption made, however, is that the errors inherent in
the measurement of the input parameters to the model,
other than irradiation, could be greater than the
magnitude of their contribution to the model, and are
thus ignored (Whitaker and Newmiller, 1998).

2.1.2. Empirical Tables

FEmpirical table models utilize a database of
current-voltage (I-V) cell characteristics obtained at a
variety of irradiances and temperatures. The actual
performance of the modules is determined from a linear
interpolation between the measured values, based on
supplied meteorological conditions; however, look-up
tables do not necessarily incorporate other environmental
factors. That is, a fundamental assumption that is often
made is that the climate and spectral conditions remain
constant between the area where the testing was
performed and the actual PV installation (Ransome,
2010).
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2.1.3. Analytical Lumped Diode

The analytical lumped diode models are based
primarily on an analytical analysis of the PV device
itself, where the module is considered as either a single or
dual diode linked with a series and shunt resistance.
Parameters to define the analytical circuit are then
derived from cell I-V curves or from empirical or
analytical relations based on information provided by a
manufacturer (Akbaba and Alattawi, 1995; Xiao et al.,
2004; Mermoud and Lejeune, 2010; King et al., 1996).
These models take into account the basic operation of a
PV cell and have been found to be highly accurate
(Makrides et al., 2011). The one-diode version of the
lumped-diode model is the power model that is utilized
by the commercial simulation package, PVSYST, which
is widely used in industry (Mermoud and Lejeune,
2010). Another notable implementation of this model is
that adopted by the California Energy
Commission/University of Wisconsin (De Soto et al.,
2006). These models depend on the light current (1),
which is obtained similarly to I, using:

IL = %f(AM)Isco[l + O‘(Gt)TC - a(GO)TO] (1)

where Gy is the global solar irradiation, G, is irradiation
at standard testing conditions (STC), f(AM) is a
function that accounts for the spectral effect of air mass,
I is the module short circuit current at STC, « is the
temperature coefficient in 1/°C, and T, and T, are the
temperatures of the cell and STC, respectively. In some
cases [, is presumed to be nearly directly proportional to
solar irradiation (De Soto et al., 2006). Therefore, the
proposed modifications to determine I,., as noted below
can also be applied to the determination of I, for diode
models.

2.1.4. Empirical Models

Empirical modelling relies on fits to meteorological
data, which employ empirical parametric equations that
can include information about various meteorological and
performance factors. One of the most common models of
this form is the one proposed by PVUSA (Whitaker
et al., 1997), which is expressed as:

P=Gy(Pi+ PG+ Py Tp+Py-WS) (2

where P is the module power, T,, is the module
temperature, WS is the wind speed, and P;...P; are
parametric coefficients. This enables performance data to
be fit to a model; however, it does not include
information on spectra or long term performance
degradation of the modules, and is not related to the
fundamental physics affecting the models, all of which
means it is difficult to apply across a wide range of
meteorological conditions.

2.1.5. Translation Models
Translation models are wused to translate PV
performance information from STC to the actual
operating conditions, and a standard for this translation
is provided by ASTM under E1036. There are two
notable practical implementations of translation models
in PV system modelling adopted by NREL (Marion
et al., 1999) and SANDIA (King et al., 2004b). Both
these models require computation of I;w the short
modelled circuit current of the module, which maintain a
similar form to the ASTM E1036 standard for
determination of Ig, as given by:
~ Gy
Isc = G7[8(30 [1 + a(Gt)TC - a(GO)TO} (3)
where the assumption is made that « is a function of
irradiation. Both the NREL and Sandia models, assume
this coefficient to be a constant function of irradiation, and
the equations for the NREL and Sandia model are given
as equation 4 and 5, respectively.

jsc == Isco%[l + a(Tm - TO)} (4)
. B AOI)+ D
Isc = scof(AM) L f( G ) ! [1 + Q(Tmodule - TO)}

(5)
where I;c is the modelled short circuit current, B; and
D, are the beam and diffuse irradiation, respectively, and
f(AOI) is a function to account for reflectivity losses.
These translational models introduce a level of
flexibility to include loss mechanisms in cell
characterization that include temperature, spectral, solar
angle of incidence, soiling, etc. This paper adopts and
modifies this modelling approach.

2.1.6. Sophisticated Validation

Sophisticated validation, as developed by the Tokyo
University of Agriculture and Technology does not
directly predict module performance, but is included so
as to aid in the identification of loss mechanisms that can
be used for future modelling work (Matsukawa et al.,
2003). The parameters include array temperature,
shading, load matching, incident angle, DC circuit,
“other”, and “unknown” (Kurokawa et al., 1998; Oozeki
et al., 2006). In particular, sophisticated validation
includes a novel way to determine the shading factors on
modules, which is similar to the analysis presented in this
paper. The model does not, however, monitor spectral,
soiling, or other atmospheric effects.

2.2. Modelling errors

Inherent in the models described above are errors
associated with them, as noted previously: (Ransome,
2010; Makrides et al., 2011; Kroposki et al., 2000a,b;
Cameron et al., 2008; Becker et al., 2008). Generally,
model error is characterized by the Mean Bias Error
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(MBE) and the Root Mean Squared Error (RMSE) as
these parameters provide a measure of first and second
order effects (mean and its variability), respectively.
Clearly, the longer the period of time over which data are
collected and averaged, the mean and RMS errors should
diminish.

There are issues with the modelling paradigm of long
term averaging, which can be characterized generally by
the loss of data resolution that could lead to poor design
and operations decisions. Consider, for example, the case
of a system installed in a northern climate at a large
(greater than 40°) installation angle. A winter monthly
average might show that the module output is as
expected over this period, however this analysis neglects
the fact that there is a loss of energy when the module is
covered with snow, which is offset by the larger albedo
present in the snow covered surroundings. In this case
there is additional irradiation available from the
environment that could be converted to electricity,
however this would not be apparent from long term
averaged data  (Andrews and Pearce, 2012a). In
addition, it has been shown that hourly averaging of
solar irradiation data can tend to bias the level of actual
irradiation towards lower values (Ransome and Funtan,
2005), leading to systemic under estimation of module
performance. A review of the atmospheric and
systematic effects that become more acute at smaller
averaging intervals, and when accumulated can lead to
long-term averaging error are discussed below.

2.2.1. Stochastic Atmospheric effects

Generally speaking, the measurement of solar
irradiation and PV devices are not co-located. At the
local test site used for this study, even modules within a
10m radius of the measurement pyranometer did not
display a response that could be directly correlated to
the measured irradiation on a day with some cloud cover
at a 5-minute time-scale, and a full description of this is
given in section 4.3. Because the optical thickness of
clouds is not continuous and can be considered to be
random (Marshak et al., 1995), it can be seen that the
amount of light incident on geographically disparate
areas can vary stochastically. Therefore, the RMSE of a
model will tend to increase as averaging time scale is
decreased and as geographic distance between measured
data locations increases.

2.2.2. Deterministic Atmospheric effects

Deterministic atmospheric effects relate to the
attenuation of solar irradiation through atmospheric
constituents, which affects both the magnitude and
spectral distribution of the irradiation. The magnitude of
solar irradiation is generally well understood from ground
based integrating pyranometers. However, the spectral
distribution of the atmospheric irradiation varies
throughout the day, and broadly speaking is defined by
two opposing deterministic trends: (1) the spectral

distribution of the light shifts toward the infared as Air
Mass (AM) increases, and (2) the spectral distribution of
the light shifts toward the ultraviolet as the cloud optical
thickness increases (Gottschalg, 2003). The effect of this
spectral shift on PV device performance depends on the
spectral response of a given technology and the tilt angle
of the module (Simon and Meyer, 2011; Gottschalg
et al., 2004), however the spectral shift can be
determined from a convolution of the module’s spectral
response to the in-plane incident spectrum of light,
similar to the procedure described in (Andrews and
Pearce, 2012a). This work will rely upon empirical
relations of atmosphere as described by AM, clearness
ratio (k¢), and beam ratio (b) to module response since
most sites do not have spectral data immediately
available. Although, an open source spectral project that
decreases the costs of these measurements considerably
has been implemented (Romero et al., 2012). In addition,
the recommended empirical relations only require beam
and diffuse irradiation data as inputs.

2.2.83. Module power tolerances

Power tolerances on modules relate to the accuracy of
module STC (AM1.5G, 1000 W/m?2, T, 25°) power
ratings, and generally are in the range of 3% — +5% of
rated power output, depending on the manufacturer.
Recent studies by (Thevenard et al., 2010) and (Poissant,
2009) also found that a majority of commercially
available modules on the market operated outside their
power tolerances. Because the STC rating of a module is
one of the main inputs to any modelling methodology, an
error in power tolerance directly translates into modelling
output errors. Therefore it is desirable to include a
methodology to correct for the actual power tolerance of
the modules in a modelling algorithm.

2.2.4. Module and instrumentation mis-alignment
Accurate knowledge of the alignment of both the
module and measurement instruments is required,
especially if horizontal irradiation measurements are to
be utilized. On long time scales, instantaneous errors due
to slight misalignments will be inconsequential; however,
if high resolution modelling is required, then the angles
should be known precisely in order to avoid a daily
fluctuating bias, and this effect was observed in the
course of data analysis. In addition, the averaging
interval of data collection can bias the magnitude of
collected irradiation data such that a longer averaging
interval will tend to artificially lower the measured
magnitude of irradiation (Ransome and Funtan, 2005).

2.2.5. Albedo irradiation

Albedo irradiation can have a substantial effect on the
total energy balance of a module (Ineichen et al., 1987;
Andrews and Pearce, 2012a); however, it is not always
explicitly included in many modelling methodologies,
which can introduce a seasonal bias.
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3. Methodology

In order to adapt current modelling approaches to
estimate module I, at short (5-minute) time-scales, the
following approach is proposed, which is an adaptation of
the Sandia translation modelling approach, that follows
the translation equation(5) (King et al., 2004a):

R (B; % f(AOI) % f(AM) + Dy % f(K;) + Ap) o

-lsc =

1000

cee ]sco¢lsco[1 + a(Tc - TO)} (6)

This equation adds an albedo irradiation term A;, a
module power tolerance modifier, ¢g.o, an air mass
spectral function, f(AM) and a clearness ratio spectral
function, f(Ky). The addition of these terms enables the
direct estimation of the aforementioned loss mechanisms,
which were not included in equation (5).

In order to solve this equation, the independent
meteorological variables must be first accurately collected
with high temporal resolution. Following this, a set of
module performance data is required to enable the
determination of the model coefficients. Recall that the
purpose of modelling is to provide the ability to predict
current and future system performance both for known
and future installations. The goal of this methodology is
to account for the fundamental physical processes that
affect PV performance, therefore improving its validity
for geographically disparate systems over exiting
techniques. Thus the application of the methodology
permits either continual monitoring of an existing
installation, or characterization of an existing system for
use in the prediction of a planned installation.

3.1. Irradiation Components

The in-plane irradiation can be evaluated from
horizontal pyranometer data, and as is common the
discussion will be limited to data collected from this
device. True in-plane measurements of the irradiation
components are the most accurate, however care is
required to account for the effects of tilt on the
performance of many pyranometers (Nast, 1983). Global
and diffuse irradiation can be measured using an
unshaded and shaded pyranometer respectively, however,
it is possible to derive diffuse irradiation from only global
irradiation using a variety of methodologies (Li et al.,
2011; Ruiz-Arias et al., 2010; Torres et al., 2010); but it
should be noted that there can be large errors associated
with these techniques.

The in-plane diffuse irradiation can be calculated by a
variety of approaches; the one chosen for this study is that
of (Perez et al., 1990).

Because of the high temporal resolution of irradiation
data, slight pyranometer tilt errors in the east-west plane
imposed false daily variations in irradiation distribution.

A series of vector equations were adapted from (Boers
et al., 1998) to allow for correction of irradiation values due
to small errors in pyranometer level, and are summarized
below:

ns = [cos(¢) 0 sin(y)] (7)
ew = [0 cos(k) sin(k)] (8)
n = (ns)X (ew) 9)
5= [sinf@i)cos(w) sin(0,)sin(y) sin(6,)] (10)
Gy = 0015 (11)

Vectors ns and ew define a unit vector in the
north-south and east-west orientations, derived from the
tilt angle of the pyranometer along these directions, 1)
and k respectively. The cross product of these two
vectors defines the mnormal to the plane of the
pyranometer, n. The vector representing the position of
the sun is defined as §. Using these vectors, the angle
between the solar vector and the pyranometer normal
can be computed, and compared to the angle between
the solar angle and a theoretical flat plane defined by the
normal vector [0 0 1]. These angles can be used to derive
the correction factor, G which will correct readings from
a slight pyranometer misalignment to pure horizontal
measurements.

The graph in Figure 1 indicates the large effects on
instantaneous relative measured irradiation from small
variations in pyranometer tilt.

—— Raw irradiation
1200 — — -Tilt corrected irradiaiton
10001 —--Correction factor (Right aX|s—)_ o 11.03
€ > T
£ 8007 !
2 / 7\ 1012
/ e
5 600 ! E
5 ! =
e}
S 400t /
g . 10.99
= /
200+ /s
e
o ‘ ‘ ~0.97
04:48 09:36 14:24 19:12
Time of day

Figure 1: Effects on apparent irradiation collected due to
a miss-alignment in the east-west plane of ¢ = 1°. These
small variations can lead to inaccurate predictions of Air
Mass correction factors, and daily biases when used with
the high resolution modelling.

3.2. Model fitting
The independent variables required for equation(6) are
the in-plane irradiation and module temperature. The
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remainder of the coefficients in the model can be
determined from empirical analysis, and the general steps
for model fitting are:

(i) selection of training days of operational data,
(ii) preliminary estimation of module power tolerances,

(iv) evaluation of component spectral functions, and

)
)
(iii) evaluation of module temperature coefficients,
)
(v) final fitting.

3.2.1. Determination of training days

Training days refer to representative days of PV
performance without unpredictable external influences.
Generally, training days should have the following
characteristics:

1. Modules are not covered or shaded, thus days where
snow is present on the modules, or at zenith angles
below their shading angle should be excluded. This
can be determined by setting a threshold value for the
module performance ratio, which for this study was set
at 60%.

2. Dust or soiling effects have been minimized. If there
is a regular module cleaning regimen, points should be
chosen at periods after the cleaning, otherwise at times
when dust deposition is minimized. In this study, only
days up to three days after a daily rainfall of 3mm or
more were included in order to attempt to minimize the
effects of dust covering.

3. Nightimes and times where in-plane irradiation is less
than 10W/m? should be eliminated.

4. Points should include as wide a variety of seasons and
metrological conditions as possible.

These training points should be assembled into a
continuous time-series of module performance.

3.2.2. Preliminary Estimation of ¢rsco

The first step in determining the remaining empirical
coefficients is to reduce the bias in the model by making
an estimation of the actual power tolerance of the modules
being analysed. This is achieved by solving for I,., using
an iterative optimization of ¢js.,, minimizing the least-
squares objective function (fcn):

max

fen = Z ||j80(t) - ISC(t)”Q (12)

with the simplified, non-spectral version of equation (6)
given by:

1000

1+ (T — To)]
(13)

Isc = sco¢]sco

3.2.8. Determination of temperature coefficients

The cell temperature can be determined from direct
measurements at the back of the module or by empirical
methods to determine module temperature. The cell
temperature will vary from the measured module back
sheet temperature and must be corrected using the
relations in (King et al., 2004a).

The empirical temperature coefficient is determined by
first calculating a non-spectral output ratio defined by

OR = I,./I,. (14)

where I,. is calculated as in equation (13).  This
represents the relative output of the modules as
compared to the mnon-spectral de-biased translation
model. For a properly temperature corrected module
performance dataset, there should be mno correlation
between temperature and output ratio for constant
atmospheric conditions and levels of solar irradiance.
Thus, a regression dataset that contained only points in
the following range was determined:

) 1 <AM <1.2

(if) 900 <Gy <1000

(iii) 6Gy <2W/m? - min

(iv) 6Gy(t — 1) <2W/m? - min

(i

where the dG; operator returns G;(t) — G¢(t — 1) and
indicates the presence of fluctuating cloud cover, and the
lagged operator 0G(t — 1) further eliminates points that
are momentarily stationary inside a period of fluctuating
cloud cover. This set of parameters selects clear sky
conditions in a narrow range of the clear sky spectrum,
in order to reduce the effects of spectral influence on the
results. Following  this, a robust linear
regression (Dumouchel and Fanny, 1991) of OR and cell
temperature is performed, and iteratively optimized until
the slope of the linear regression is equal to zero.

3.2.4. Determination of component empirical coefficients

The two spectral functions, f(AM) and f(K;) were
applied to the components of irradiation (Dy,B;) rather
than to the global irradiation. The rationale for this is
introduced in (Andrews and Pearce, 2012a),where it is
noted that the spectral distribution of incident
irradiation can vary significantly between beam and
diffuse irradiation. The effects of AM tend to control the
spectral distribution of beam irradiation, whereas cloud
cover expressed as K; tends to control the spectral
distribution of diffuse irradiation, therefore the functional
dependence of these atmospheric factors is applied to the
respective component of light on which they have the
greatest impact.

Therefore, a beam and diffuse output ratio is defined as
equations (15) and (16) respectively
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I.#1000 _
ORp _ Lscotrsco[l+ax(Tm —T,)] (De + At) (15)
eam Btf(AOI)
1,..*¥1000 —(Bi+ A
ORpif fuse = Lzeefrseolbear@n T T VT 1)

Dy

Points representing clear sky conditions were chosen
for regression of AM components, and those representing
cloudy conditions were used for regression of K;
components. In order to select these points from within
the training days dataset the following criterion were
utilized:

1. AM points
§G(t) <6W/m?-min
§G(t — 1) <6W/m?-min
kt >.65

2. K; points
§Gy >6W/m? - min

A comparison of the points chosen by both sets of limits
is given by Figure 2.
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1000 1000 Selected points

800 800
600 o 600
400 400
200 200

00:00 12:00 00:00 12:00 00:00 12:00 00:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
Time of day Time of day

(a) Clear sky (b) Clouds

I (A)
(A

Figure 2: Example of points selected for the clear sky and
cloud cases.

A regression was then performed using the beam and
diffuse output ratios compared to AM and K}, respectively
and the resulting trend was fit using polynomials of order
two or three to formulate f(AM) and f(K;) using robust
regression methods (Dumouchel and Fanny, 1991).

3.8. Final ¢rsco optimization

Once the temperature and spectral modifier functions
have been determined, another least-squares optimization
is performed on the full equation 6 in order to determine
an appropriate value for ¢js.,, after other predictable
biases have been removed.

4. Model Evaluation

The proposed model was applied to a collected set of
I, and its relative performance was compared to other
common modelling methodologies.

4.1. Data collection

Solar PV module performance data were collected at
the Open Source Outdoors Test Field (OSOTF) located
in Kingston, Ontario. This is a large scale outdoors
testing site, developed in an open collaboration between
18 academic and industry partners (Pearce et al., 2012).
A selected set of 20 modules at the OSOTF at tilt angle
of 5° — 70° were used in the analysis which encompassed
both ¢-Si and a-Si:H PV modules. These modules are
referred to by a module index, which is defined as shown
in Table 1.

Table 1: Module index reference, ¢ represents crystalline
and a represents amorphous.

Module| Module Brand Module| Module Brand
Index Angle  Identifier|| Index Angle  Identifier
lc 5° 1 la 5° 4

2c 10° 1 2a 5° 4

3c 10° 2 3a 5° 4

4c 15° 3 4a 10° 4

5¢ 20° 1 5a 10° 4

6¢ 20° 2 6a 10° 4

Tc 40° 1 Ta 20° 4

8c 40° 2 8a 20° 4

9c 60° 1 9a 40° 4

10c 60° 2 10a 60° 4

The modules and meteorological conditions were
monitored at 5-minute intervals, I, was measured using
an optically isolated current shunt circuit, and module
back sheet temperature measurements were made with
type T thermocouples with field-welded junctions.
Incident irradiation was measured using two CMP-22
pyranometers, one with a shadow band measuring diffuse
irradiation and one measuring global irradiation.
Temperature, RH, Wind speed and direction and
time-lapse photos were also recorded (Pearce et al.,
2012).

Using this collected information, the methodology
described in section 3 was applied to the collected
performance datasets in order to identify its ability to
predict module performance, and was compared to other
modelling techniques.

4.2. Modelling results

Initially, summary graphs are shown, which demonstrate
the development of model coefficients.

4.2.1. Temperature Coefficients

Figure 3 shows an example of a regression analysis for
temperature correction for a-Si:H and c¢-Si PV. The
regression dataset shows the temperature dependence of
a narrow band of constant spectrum and irradiation
data, and the full dataset shows the trends apparent in
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the total set. Because higher module temperatures tend
to occur at times of lower AM, the trends in the full
dataset could be showing some spectral dependence as
well.  Figure 4 presents the combined results of the
regression analysis in determining the appropriate
temperature coefficients for all amorphous silicon and

crystalline silicon modules included in this study,
compared to the manufacturer’s datasheet value.
o
1:23
25
&
3

W ® w w
Panel temparatues (°C)

(b) Amorphous

0
Panel temparatues (°C)

(a) Crystalline

Figure 3: Sample of a-Si:H and ¢-Si temperature coefficient
regressions
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0' 0
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Panel Index Panel Index
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Figure 4: Resultant temperature coefficients, the

horizontal lines represents the data-sheet value of argc
for each module. In the case of the crystalline modules,
the colour of the bars matches to the data sheet line, in
the case of the white bar, the matching line is the dashed
grey line.

4.2.2. Spectral coefficients

In order to determined the spectral components, a
regression analysis was performed to find a polynomial
which fit the proposed data. There is some scatter
inherent in this method of data regression, and it was
found that the use of a robust iterative fitting algorithm
produced the most reliable results.  The regression
analysis for f(AM) was performed against the beam
output ratio for a polynomial fit of order three and is
shown in Figure 5 and the f(AM) proposed by Sandia is
shown as a thick solid line.

This regression was performed for all modules in the
study and a summary of f(AM) for varying module angles

5 degrees Crystalling

40 degrees Crysialiing

RFESECEILRTY

B en 2 ‘-5I

b {mn
™ §|.4|

(b)
5 degrees Amorphous 40 degrees Ammphous.
i Cloar days data e | Cloar days dala
18| —— Regression Fit v 1.8{{ —— Riegressian Fit
(|=Sangacume_ | s |l==Sadacuve |

R FTEEETLRTT

Figure 5: AM regression results, the sandia AM curve is
shown for comparison (King et al., 2004a). (a) and (b)
show ¢-Si modules at 5° and 40° and (b) and (c) show
a-Si:H modules at 5° and 40°

and technologies is shown in Figure 6, compared to the
Sandia air mass correction factor.

Similarly, a regression is performed for f(K;) using a
robust algorithm to find a polynomial of order two, and
the regression for selected modules is shown in Figure 7.
A summary of the f(K;) for all the modules in the study
is shown in Figure 8.

4.2.8. Module power tolerance determination

After spectral regression, the final optimized values for
Orsco were determined using a least-squares fitting
algorithm. The results for all modules involved in the
study is summarized in Figure 9, which indicates module
tolerance variation between manufacturers.

12 12
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1 o R e\ 1
2 <~ M, . s
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(a) Crystalline (b) Amorphous

Figure 6: (a) and (b) show a summary of f(AM)
for crystalline and amorphous silicon PV modules,
respectively. The dotted line is the reported curve from
the Sandia model (King et al., 2004a).
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Figure 8: f(k;) for crystalline (a) and amorphous silicon
(b) modules.

4.8. Model Errors

To quantify the quality of fit of the model, the RMSE
and MBE of the modified model compared to other similar
methodologies are compared in Figure 10. In addition, in
order to identify the seasonal stability of the prediction,
a moving average representation of the model errors over
the period of observation as shown in Figure 11, where
averaging at a daily and weekly resolution is shown.

It can be seen that the model NRMSE is relatively
large at these small time-scales. This can be explained by
considering the effects of stochastically varying cloud
cover. In order to demonstrate this, Figure 12 shows the
autocorrelation  function of the error between
pyranometer output and scaled I, for a module within a
10m radius of the pyranometer, calculated according to
the methods in (Brockwell and Davis, 2002). This figure
indicates that there is not a significant correlation in

L
Psco

0.95

1.2 3 4 7 8 9 10 1.2 3 4 9 10

5 6 5 6 7
Panel Index Panel Index

(a) Crystalline (b) Amorphous

Figure 9: ¢4.0 showing variation in power tolerances for
c-Si(a) and a-Si:-H (b) PV modules, the shades represent
the manufacturers.
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Figure 10: Quantification of model errors in terms of
NRMSE for (a)e-Si and (¢) a-Si:H , and of MBE for (b)
¢-Si and (d) a-Si:H.

time for the difference between pyranometer and module
response on a day with cloud cover present, but that
there is a high correlation in the absence of cloud cover.
Therefore, because on a cloudy day the pyranometer and
module are not subject to the same irradiation, there will
be a relative error in the model which cannot be
corrected, and which increases as averaging interval
decreases.

5. Discussion

In a translation model for PV performance, the proper
determination of I, is the most critical, as it is directly
affected by a wide variety of environmental factors.
Thus, the purpose of this methodology is to improve the
accuracy of prediction of I, and also to enable the
extraction of useful system performance information from
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Figure 11: Moving average representation of time series
errors. (a) and (b) show weekly averaging for ¢-Si and a-
Si:H respectively and (b) and (d) show daily averaging for
c-Si and a-Si:H, respectively

(b)

Figure 12: Autocorrelation function of the difference
between pyranometer and PV module output over a day.
The lag represents time into the sample, the value of the
autocorrelation is proportional to the relation between
points separated by a given lag. The horizontal lines
represent the significance bounds for this lag. (a) Errors
on a cloudy day and (b) Errors on a clear day

a collected time series of module performance. The
understanding and inclusion of the underlying processes
that affect I,. will also increase the applicability of the
model to other geographic and therefore atmospheric
areas. The goal of this process is to allow integration into
previously developed and validated power models, such
as the Sandia performance or lumped diode models.
Compared to other models, it can be seen that the
proposed methodology has a lower RMSE and
significantly lower MBE than both predictive models.
This can be expected as the proposed model contains
information measured from the system it is modelling,
however it demonstrates the magnitude of errors that are
possible when system data are not included in the
modelling process. It was found that the largest gains in

10

MBE can be attributed to determination of ¢jgco,
however, improvements are also present from the
determination of system  specific spectral and
temperature coefficients.

5.1. Inclusion of f(K¢)

The inclusion of f(K;) can be justified by a
demonstration diffuse output ratio dependence on
clearness ratio for periods of high diffuse irradiation.
However, because of the stochastic nature of the errors
shown during diffuse modelling, there is significant
scatter in these data. The physical realities of the
underlying process indicate that as the clearness ratio
increases, the spectrum tends to shift towards red and
away from the spectral response of both devices, thus
decreasing the effective irradiation on the face of the
module. However, the opposite trend is seen in both
module technologies. The inclusion of this factor can
thus be debated, however it does enable proper system
modelling especially in climates that experience high
levels of diffuse irradiation, and its inclusion decreases
the RMSE of the resulting model.

5.2. Module Power tolerances

It can be seen that it is possible to extract information
related to module power tolerances from the time-series
performance data. From this analysis, it can be seen that
the ¢-Si modules ranged from under performing by 5% to
over performing by 3% relative to their rated performance
depending on the manufacturer. In the case of the a-Si:H
based module, there is a clear trend of module performance
related to module index. Because this is the first year of
installation of these amorphous modules, it is likely that
initial degradation due to the Staebler-Wronski effect can
account for the large variability in performance over this
first year.

5.3. Moving average representation of time series data

Figure 11 demonstrates a method of displaying seasonal
bias in time series data. It can be seen that averaged over a
weekly period, the normalized model error is within 5% for
both models, and that there are no major seasonal trends
visible in the snow free months. However, as the averaging
interval is increased to a daily average, the normalized
error can be seen to increase as more stochastic events
increase the variance in the signals. This is important for
realizing the large values of RMSE recorded for all models
in this paper are due to the very small averaging interval
used in the dataset, and demonstrates that over larger
averaging intervals, the model error begins to approximate
the bias error.

5.4. Uses of regression modelling

The methodologies presented here have applicability in
the design and optimization of new systems; however,
there is utility to be had from regression modelling of
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existing systems. Initially, it allows the determination of
important system characteristics, as discussed earlier. It
also allows for a detailed account of mechanisms affecting
systems performance, for example the effects of snowfall
on system performance can be seen in the time-series
data, with larger errors existing in January, February and
March at the OSOTF. Interestingly, it can be seen that
¢-Si modules at 60°, when analysed on a daily averaging
interval can be seen to outperform system projections at
the beginning of the year, indicating that the increased
albedo from the newly fallen snow increased the incident
irradiation.

Additionally, regression modelling allows for precise
near-term forecasting of system production for use in grid
integration and smart and micro grid development.
Finally, it can be used for tracking of system health, and
thus to identify cell and module failures in a system. For
example, it is apparent from the dataset that modules 2,
5, and 7 experienced some form of failure in early
August, which warranted further investigation.

6. Conclusions

This study has demonstrated improvements to current
photovoltaic modelling methodologies, which allow for
more accurate prediction of system performance at small
time-scales. The results demonstrated that differences in
module tolerances can have large influences on the error
of resulting estimations, and that the inclusion of actual
module tolerances through regressive analysis can
significantly reduce this error. In addition, it was shown
that specific module performance parameters can be
derived solely from properly filtered performance time
series data. Simple methods were introduced to filter
these data, and examples of the required regressive

analysis were shown. In addition, model error
mechanisms were identified and addressed. This
methodology has applications for current systems

operators, which will enable the extraction of useful
module parameters from existing data in addition to
more precise continuous monitoring of existing systems,
and can also be used to more accurately model and
optimize new systems.
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