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Abstract

Combinatorial optimization is a complex engineering subject. Although formulation often

depends on the nature of problems that differs from their setup, design, constraints,

and implications, establishing a unifying framework is essential. This dissertation

investigates the unique features of three important optimization problems that can span

from small-scale design automation to large-scale power system planning: (1) Feeder

remote terminal unit (FRTU) planning strategy by considering the cybersecurity of

secondary distribution network in electrical distribution grid, (2) physical-level synthesis

for microfluidic lab-on-a-chip, and (3) discrete gate sizing in very-large-scale integration

(VLSI) circuit.

First, an optimization technique by cross entropy is proposed to handle FRTU deployment

in primary network considering cybersecurity of secondary distribution network. While

it is constrained by monetary budget on the number of deployed FRTUs, the proposed

algorithm identi?es pivotal locations of a distribution feeder to install the FRTUs in

different time horizons. Then, multi-scale optimization techniques are proposed for

digital micro?uidic lab-on-a-chip physical level synthesis. The proposed techniques handle

the variation-aware lab-on-a-chip placement and routing co-design while satisfying all

constraints, and considering contamination and defect. Last, the first fully polynomial

time approximation scheme (FPTAS) is proposed for the delay driven discrete gate sizing

xxiii



problem, which explores the theoretical view since the existing works are heuristics with no

performance guarantee. The intellectual contribution of the proposed methods establishes

a novel paradigm bridging the gaps between professional communities.
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Chapter 1

Introduction

This dissertation investigates the features of three optimization problems, and proposes

three strategic optimization techniques through CAD for them. The first problem is feeder

remote terminal unit (FRTU) installation considering the security of secondary distribution

network in smart grid, the second problem is physical-level synthesis for microfluidic

lab-on-a-chip, and the third problem is discrete gate sizing in very large scale integrated

(VLSI) circuit.
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1.1 Feeder Remote Terminal Unit (FRTU) Installation

Considering Security of Secondary Distribution

Network

With the fast development of power industry, the concerns on the energy crisis impose great

challenges in the existing power system. This leads to the integration of the smart grid

into the existing electrical grid system. Different from the traditional electrical grid, the

smart grid allows customers or utilities to be actively involved in monitoring, controlling,

and predicting the energy use. In other words, the smart grid is a modernized electricity

network with the intelligent electricity device and it delivers electricity from suppliers to

consumers using two-way digital technology to control appliances at customers’ homes [6].

This intelligent network brings many benefits, such as saving energy, reducing cost and

increasing reliability and transparency [7]. As a promising intelligence system, the smart

grid is expected to be widely integrated with the traditional electrical grid in the future.

There are a multitude of literatures on the smart grid. For example, [8] discusses challenges

to the power system planning and operation of smart grid development, [9] mentions the

evolution of smart grid and the impact on the electrical power industry, and in [10], it

states the importance to define and develop the standards and protocols of smart grid for

the electric power industry.

2



In spite of that the smart grid will bring enormous benefits, since more people can be highly

involved in the communication and controlling, as well as access the network in the smart

grid, it inevitably leads to a set of security and privacy concerns. The challenges arise with

such factors as human behavior, commercial interests and regulatory policy and so on [6].

Some of them are similar to the traditional electrical grid, however, they are more complex

to handle. The security issues are discussed in a large multitude of previous works. In [6],

the description of four aspects of security issues is given, i.e., trust, communication and

device security, privacy and security management. [11] compares the difference between

IT network and the electrical network, and it also proposes an integrated security system to

protect the smart grid against cyber attacks. [12] discusses cybersecurity in the smart grid.

For example, in [13], an attack and defense modeling for the cybersecurity of the critical

infrastructures is proposed. [14] proposes the vulnerability assessment of cybersecurity for

supervisory control and data acquisition (SCADA) systems. [15] considers the integrated

network security protocol layer for open-access power distribution systems. In [16], the

security protocols against cyber attacks in the power system are discussed. [17] discusses

the load altering attacks against smart power grids. Although there are a multitude of

approaches for the design of the appropriate protocols and attack modeling in previous

works, most of them are focused on the operation, not planning. In addition, one may note

that they are mainly focused on the transmission network and primary distribution network.

This is due to the lack of the real-time information from the secondary distribution network

in the traditional electrical grid.
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Figure 1.1 illustrates the structure of an important part of smart grid, which is a distribution

network with advanced metering infrastructure (AMI). AMI is the customer service

infrastructure between the customer and the distribution dispatching center (DDC). AMI

consists of the customer data collection, the communication network, and DDC. It is an

essential kernel part for implementing the smart grid, and makes it possible to realize the

demand response based on the supply-demand mutual recognition [18]. [19] gives a brief

introduction of smart integration, which includes AMI.

Since AMI demonstrates its importance, it has attracted a large amount of interests in

the previous works. [18] introduces the status of AMI development in Korea, and [20]

discusses the benefits for electricity grid operations and planning through a well planned

AMI. [21] proposes a flexible and cost-effective AMI system for the deregulated electricity

markets. [22] also considers the network optimization with AMI. In addition, [23] discusses

the requirements and architectural directions intrusion detection targeting an AMI. [24]

considers a few of security measures for AMI components. [25] discusses a set of

constraints for smart electricity metering devices and AMI network when it considers the

cybersecurity of AMI.

The essentially important part of AMI includes the feeder remote terminal units (FRTUs)

in primary distribution network and the smart electricity metering devices in secondary

distribution network. FRTUs can be utilized to supervise the readings from the customers’

smart electricity metering devices in real-time. FRTUs can also be remotely controlled to
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Figure 1.1: The structure of the distribution network with AMI.

perform some operation, such as open the switch. Therefore, this assists AMI to detect the

attacks of the secondary distribution network and perform some appropriate operation to

protect through FRTUs. However, as FRTU is a very expensive electronic device, and it

is not practical to install FRTUs everywhere. The endpoint and network hardware which
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includes FRTU installation takes the majority of the total AMI expense [26]. Thus, how

to choose the appropriate locations to install FRTUs, such that the cost is minimized while

the attacks can be effectively detected, becomes critical. On the other hand, due to the

restriction of the economic budget, it is difficult to install FRTUs for all the networks in a

short term. Thus, a long term investment of FRTU installation is necessary.

This dissertation proposes technique for FRTU installation considering the secondary

distribution network security. With the assistance of FRTUs, AMI in the smart grid, can

obtain more real-time information from the secondary distribution network. The security

issues could be various, which are discussed in the previous literatures, such as [6]. In this

work, it is mainly focused on the following security issue. Due to that it is convenient to

revise the reading of the smart electricity metering device for the customers, there may be

some stealing of electricity in the secondary distribution network or other illegal revision

of the reading of the smart electricity metering device. The electric companies may want

to detect this for both of their profit and the network security. Thus, how to install FRTUs

in the primary network while effectively detecting the source of attacks from the secondary

distribution network is considered in this dissertation. A cross entropy based technique to

optimize the planning of FRTU installation in different time states is proposed, such that

the economic spending is minimized while all the constraints are satisfied.
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1.2 Physical-Level Synthesis of Microfluidic

Lab-on-a-chip

The invention of microfluidic lab-on-a-chip provides great relief for the conventional

biochemical procedure, which is often expensive and not very accurate. Microfluidic

lab-on-a-chips have striking advantages that they perform multiple biochemical operations

in a much cheaper way with higher sensitivity and accuracy [27, 1].

Microfluidic lab-on-a-chips have been applied in a variety of scientific research of

biochemical analysis procedures such as DNA analysis [28] and proteomic analysis [29].

In addition, microfluidic lab-on-a-chip has initiated a revolution of human health related

research including clinical diagnostics and drug discovery [30, 31]. For example,

lab-on-a-chips have been used in clinical diagnostics on human physiological fluids [32].

The current commonly-used lab-on-a-chips, usually known as digital microfluidic

lab-on-a-chip, is based on the manipulation of the discrete droplets which contain the

biochemical samples. As shown in Figure 1.2, the droplets containing the biochemical

samples are controlled by the electrohydrodynamic force which is generated from the

programmed electrodes [1, 3, 2]. By this force, droplets for operations can be independently

moved. The basic operations such as mixture and dilution can be performed at any place

on the lab-on-a-chip. The reconfigurability allows different operations to share the same
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Figure 1.2: The schematic of a lab-on-a-chip [1, 2, 3].

place on the microfluidic array during different time intervals. With reconfigurability,

each operation can be treated as a 3-D module whose size is determined by the space

and duration the operation needs. A 3-D cell/module library can be then designed on

biochemical operations [1]. With the cell/module library and design specification, CAD

methodologies can be utilized to efficiently build a large-scale integrated microfluidic

lab-on-a-chip.

In the lab-on-a-chip CAD flow, the lab-on-a-chip placement and routing are the key parts,

which are called physical-level synthesis. Lab-on-a-chip placement is to determine the

physical location and the starting time of each operation such that the overall completion

time is minimized satisfying the constraints, e.g., non-overlapping constraint [5].

Lab-on-a-chip routing is to route the droplets from the source to the destination to ensure
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the successful completion of the operations such that the routing distance is minimized

while satisfying timing constraint and fluidic constraint. [33] proposes an algorithm based

on simulated annealing and [3] improves it by applying a T-tree data structure. The

lab-on-a-chip routing is not considered in some of previous works [3]. There are works

showing that a good lab-on-a-chip router plays an important role in the CAD flow and

techniques are proposed. [34] proposes a network flow based technique and [35] designs

an integer linear programming based algorithm for lab-on-a-chip routing.

On the other hand, the biochemical reaction is sensitive to many variations [36, 34, 5]. For

example, the temperature variations could lead to the operation completion time variation.

[37] mentions that the biochemical operations have variability margins, which can impact

the correctness of the biochemical application. [38] describes that the temperature

environment is significant for the biochemical operations since some DNA would denature

at inappropriate temperature. Thus, the biochemical operation completion time can have

variation which necessitates the lab-on-a-chip routing considering variation. However, the

traditional lab-on-a-chip placement and routing in previous works have not considered

the variation. This dissertation proposes a multi-scale variation-aware optimization

technique for the lab-on-a-chip component placement, and then seamlessly integrates the

lab-on-a-chip routing to the placement while considering variations. The simulation results

on the standard benchmark lab-on-a-chip designs demonstrate the effectiveness of the

proposed techniques.
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1.3 Approximation Scheme For Restricted Discrete Gate

Sizing Targeting Delay Minimization

The increasing chip density leads to the extensive use of gate sizing optimization in the

combinational circuit design [39, 40, 41, 42, 43]. Gate sizing plays an important role

in the very large scale integrated (VLSI) circuit design. Gate sizing has been proven

to be one of the most effective approaches for power saving and delay minimization,

which greatly affects the performance of the circuits. Therefore, effective algorithms

for gate sizing are highly desirable to improve the design quality especially in terms of

delay minimization and power saving. A large multitude of previous works with different

objectives have been proposed. The standard gate sizing techniques for exploring delay and

power tradeoff are proposed in [39, 40, 41, 43, 44, 45, 46, 47]. As the extensions to them,

gate sizing techniques considering process variations are designed in [48, 49, 50], gate

sizing techniques for cross-talk noise reduction are proposed in [51, 52, 53], a reliability

driven gate sizing technique is proposed in [54], and a security aware gate sizing technique

is proposed in [55].

However, most of the existing techniques such as a Lagrangian relaxation based technique

in [40] and a posynomial programming based approach in [44] can only handle the

continuous gate sizing problem which assumes that gate sizes can be any values within
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certain range [56]. This assumption is not realistic since it is difficult and not practical

to manufacture gates with continuous sizes. In practice, only a small set of gate sizes are

available, which imposes a pressing need for the techniques to handle discrete gate sizes.

Precisely, the discrete gate sizing problem is to assign a size to each gate from a given

set of available gate sizes such that the circuit delay is minimized while the cost target

is satisfied. This problem is known as strongly NP-hard [57]. To obtain a discrete gate

sizing solution, rounding the sizes of a continuous solution to discrete sizes is fast and

intuitive. However, it will result in the significant degradation of circuit delay compared

to the obtained continuous gate sizing solution [56, 58]. This motivates some recent

works to design combinatorial algorithms which directly handle discrete gate size, such

as a continuous solution guided dynamic programming technique in [56], a network-flow

based approach in [59], a parallelization and randomization based technique in [60], and a

multi-dimensional gradient descent based algorithm in [61]. These algorithms are effective,

however, they are all heuristics without any theoretical guarantee on the quality of their

discrete gate sizing solutions. This limits the understanding of the discrete gate sizing

problem in theory.

Given a minimization problem, an algorithm is said to approximate the optimal solution

within a factor α if this algorithm can always produce a solution whose objective function

value is at most α times the value of the optimal solution. The problem admits a

fully polynomial time approximation scheme (FPTAS) if there is an algorithm which

approximates the optimal solution within a factor of (1+ ε) for any ε > 0 and runs in
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time polynomial in both of the input size and 1/ε .

This chapter aims to deepen the understanding of the discrete gate sizing problem from the

theoretical point of view. It proposes the first fully polynomial time approximation scheme

(FPTAS) is designed for the delay driven discrete gate sizing problem.
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Chapter 2

Strategic FRTU Deployment by

Considering Cybersecurity in Secondary

Distribution Network

2.1 Introduction

The roles of labor-intensive utility workforce to periodically obtain energy consumption

data from electromechanical meters have been supplemented by electronic intelligent

devices [6]. The state-of-the-art cyberinfrastructure strengthens distribution modernization

and overall system resilience. These devices enable bi-directional data transfer between
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Figure 2.1: An FRTU example on the pole connected to a switching device.

consumer network and utility communication networks. Not only can consumers closely

monitor and control their energy usages, but also can predict their energy trending based

on their historical consumption and reduction of energy consumption for cost savings [7].

For decades, distribution expansion planning using computer-aided system for distribution

substation and feeders has been studied with dynamic model and available technologies

[62, 63, 64]. Multistage modeling for distribution planning was extensively integrated

with secondary network and distributed generation [65, 66]. Recent development includes
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deployment of advanced communication infrastructure for demand response as the nation’s

smart grid priority [18]. The design of the advanced metering infrastructure (AMI)

communication backbone requires architectural innovation on intrusion detection [23].

There have been studies on cost-effective and optimization of AMI deployment, which can

be constrained by the cyber-threats [21, 22, 25]. In recent years, research on economic and

reliability analysis of distribution planning has been focused for the purpose of operational

planning [67].

Cybersecurity of AMI system is an important issue that can impact the distribution

grid [20, 19]. Despite the benefits of emerging IP-based communication infrastructure,

there are challenging issues on system planning and operations [9]. Research includes

vulnerability assessment [13], security protocol design [15], and cybertampering [17].

Establishing an integrated cyber-physical management framework is highly desirable

in order to capture the system dynamics. This includes incorporating cybersecurity

considerations on investment planning to identify pivotal nodes in primary network for

validation purpose. The major issues of cybersecurity include communication protocol

standardization, establishment of trustworthy network, enhancement of communication

device security, and security management [10, 9, 12, 11]. There have been existing

cybersecurity standards, ISO 27002 2005 (previously known as ISO IEC 17799 2005),

NERC CIP-009-1 and ISA-99.02.01 [68, 69, 70], have extensively identified the required

audit and improvements of critical cyber assets for power grid. The use of IP-based smart

meters poses a risk of cybersecurity. The malicious intent of attackers on these smart meters
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includes manipulating the metering data and archive. The first crime has been reported in

2009 that these meters are compromised [71]. Cyberattack scenarios compromising a smart

meter are enumerated using attack tree [72].

Additional deployment of advanced sensors enhances system-wide observability. In

primary distribution network, feeder remote terminal units (FRTUs) shown in Fig. 2.1

are important for operations [73]. FRTUs have been applied in distribution automation for

fault detection, prediction, isolation, and service restoration. The FRTU also has a fault

indicator transmitting discrete status to distribution dispatching center. The operator at the

control center evaluates the subsystem of the distribution with other topology and identifies

the fault zone [74, 75]. An FRTU-based strategy is proposed to determine the fault zone and

isolate the areas separated by the boundary FRTUs [73, 76]. The communication security

between FRTUs and distribution dispatching center has is suggested to establish with

enhanced protocols against cyberattacks [16]. By utilizing the FRTU data measurements

with AMI energy metering datasets, it can enhance the existing distribution management

framework by addressing distribution grid cybersecurity. A recent development of phasor

measurement units (PMU) in primary distribution network, by modernizing the grid

from household to distributed generation, has been proposed to improve the distribution

reliability [77].

The integration of cybersecurity management and investment planning for emerging

distribution grid remain in the early stage. While the secondary network of distribution
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system has been deployed with new cyberinfrastructure, modeling cybersecurity for

operational planning has been nonexistent. The contribution of this work is the optimal

FRTU deployment by considering the secondary distribution cybersecurity with budgetary

minimization target. Multistage timeline to strategically deploy FRTUs is discussed in

this paper. The remainder of this paper is organized as follows: Section 2.2 formulates

the system model. Section 5.3 details the system model with an algorithmic analysis.

Section 2.4 provides simulation results and section 5.4 concludes with discussions.

2.2 Strategic FRTU Deployment

Feeder remote terminal units (FRTUs), as part of the communication devices for the

distribution primary network, monitor the field digital and analog measurements with

remote control capability which is associated with the capacitor bank, line reclosure, line

regulator, or remote controllable switch. These units have been deployed to interface with

the distribution dispatching center for the purpose of monitoring and control. Due to the

limited number of FRTU measurement points in the primary network, the initial estimation

for all distribution transformers associated with an FRTU is estimated based on the FRTU

measurements and distribution transformer ratings using allocation factor.

2.2.1 Enhancement of System Observability
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Figure 2.2: Primary network feeder with FRTUs and distribution
transformers in a realistic test case.

Fig. 2.2 depicts the realistic setup of a distribution feeder with distribution transformers

and FRTUs. Fig. 2.2 (a) is the geographical locations of a primary network. Fig. 2.2 (b)

is the topology for the same test case. In both figures, the black points are the FRTUs

and the circles are the distribution transformers in the primary network. The black nodes

shown in Fig. 2.3 are the metering points that can be either FRTUs or a substation device

which can provide real-time measurements. The nodes dividing the primary and secondary

distribution networks are distribution transformers.

All leaf nodes are consumers’ electronic meters. However, the measurement readings from
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the leaf node (load) may not be with a true value as it could colorblackhave been tampered.

These consistencies are categorized into 2 groups: (i) non-tampered anomaly and (ii)

tampered anomaly. The first group refers to abrupt changes of energy usage, usually with

additional use of home appliances, which can result in inconsistencies with the historical

trending. The second one is altered metering information by malicious consumers that is

inconsistent with the previous consumptions. Between the two, a false positive can occur

when an anomaly detection returns a positive indication from a home metering device but

the consumer is not tampered.
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Figure 2.3: Load growth model.

A well-designed FRTU installation provides an effective solution. Since the FRTU can

compare its reading and the reading of its children, i.e., the loads, it determines possible

irregularities if the readings do not match, and conversely, non-tampering, if matched.

The FRTUs, if well deployed, serve as a trustworthy source that can be used to validate

the real-time readings from all household energy meters. This section presents a system
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model that illustrates the anomaly inference indices from historical load profile. It will

also further discuss multistage FRTU deployment based on the deployment optimization

by incorporating prediction of future load growth into the formulation.

2.2.2 Anomaly Inference from Historical Load Profile

Data packets of energy usages are transmitted to the consumer billing center approximately

a few minutes each cycle, e.g., 10 minutes or 15 minutes [78, 79]. A 10-minute cycle

is utilized throughout this paper. A set of historical data from the billing center can be

obtained for the purpose of system planning. Fig. 2.4 illustrates the average 10-minute

usages from some historical datasets, which are in black color lines. This helps build the

relational database for consumer billing center to obtain high resolution datasets that can

be obtained over time. Based on the database, the anomalies of the given datasets can be

defined through a density-based approach.

Since data acquisition of home metering system is archived every 10 minutes. A total

number data points per day is 6 points / hour ×24 hours = 144 points. This is quantified

with respect to the number of observable day, d. The neighboring data points of q-th

10-minute usage of any day (i.e., p-th) is referred to the same q-th 10-minute data point

from day 1 to day d except p-th day, where d ≥ p. To determine if a point is inconsistent

with others, e.g., the point at 12:00pm on Nov. 18th, comparison of this data point is made
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with other points in other days at the same time, i.e., the points at 12:00pm on all the other

days except Nov. 18th. In general, the normal density datasets are similar to the density

around its neighbors, while the anomaly density datasets are considerably different to other

neighboring points.

Each household with the energy metering datasets is defined as a load i. Its q-th 10-minute

usage data in ampere average of the p-th day is denoted by Ip,i,q, which defines its

reachability distance to another data Io denoted by [80]:

ϕk(Ip,i,q, Io) = max{φk(Io′),ψk(Ip,i,q, Io)}, (2.1)

where the distance ψk(Ip,i,q, Io) is |Ip,i,q− Io|, Io′ denotes the k-nearest neighbor of Ip,i,q,

k is a natural number, φk(Io′) is the k-distance of Ip,i,q such that at least for a set of k

data Io′′ satisfying that ψk(Ip,i,q, Io′′) ≤ ψk(Ip,i,q, Io′), and for at most a set of k− 1 data,

ψk(Ip,i,q, Io′′)< ψ(Ip,i,q, Io′). The set of k-nearest neighbors of Ip,i,q is denoted by K(Ip,i,q).

Based on the historical datasets, K(Ip,i,q) can be obtained through the q-th 10-minute usage

data of a few days other than the p-th day, or through the other 10-minute usage data in the

p-th day. Note that 10-minute interval is an example to illustrate how it is analyzed within

a time interval. The local reachability density µk of data Ip,i,q is denoted by

µk(Ip,i,q) =

(
∑o∈K(Ip,i,q)

ϕk(Ip,i,q, Io)

Nk(Ip,i,q)

)−1

, (2.2)
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where Nk(Ip,i,q) is the number of data in K(Ip,i,q), which may be larger than k since Io′ is

unique for Ip,i,q, while Io is not necessarily unique, and thus k-nearest neighbor of Ip,i,q

may not be unique. A local anomaly factor of Ip,i,q, denoted by yk(Ip,i,q), is defined as an

anomaly score. It is the average ratio of local reachability density of the neighbors of Ip,i,q

.

yk(Ip,i,q) =

(
∑o∈K(Ip,i,q)

µk(Io)

µk(Ip,i,q)

Nk(Ip,i,q)

)
. (2.3)

The dataset anomaly is determined when yk is greater than 1.0. The local reachability

density, yk(Ip,i,q), measures the difference between this data and its neighboring data. The

value of data is typically similar to neighboring data, and thus the local anomaly factor is

approximately 1.0. Otherwise, it is greater than 1.0.
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Figure 2.4: Consumer electronic load profile from historical datasets.
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An example is provided in Fig. 3.3 where it reflects a real-world 10-day historical dataset

in a summer for a load i from a smart meter reading. This example is arbitrarily modified

with anomaly values. The 9-th 10-minute usage data of the 5th day, i.e., I5,i,9, is 400.5A.

The dataset can be determined if it is anomalous by finding all the 9-th 10-minute usage

data of load i for the rest of days, i.e., {I1,i,9, · · · , I4,i,9, I6,i,9, · · · , I10,i,9}. Assume that these

data are {681.8, 760.9, 800.0, 734.5, 741.8, 755.4, 701.8, 732.7, 760.9} and k = 5. The

5-nearest neighboring data points for I5,i,9 is 741.8. The set of the 5 neighboring data

points in K(I5,i,9) is {681.8, 701.8, 732.7, 734.5, 741.8}. The reachability distance to the

neighboring data points in K(I5,i,9) is |741.8− 400.5| = 341.3 using Eq. (2.1). Similarly,

the reachability distances of the neighboring data points in K(I5,i,9), can be computed,

i.e., {341.3, 341.3, 341.3, 341.3, 341.3}. The local reachability density is µk(Ip,i,k) =(341.3+341.3+341.3+341.3+341.3
5

)−1
= 0.59× 10−3. One can compute the local reachability

density of the neighboring data points in K(I5,i,9), i.e., {.014, .019, .007, .008, .010}. Thus,

the anomaly score yk(I5,i,9) can be computed as, yk(I5,i,9) =
0.014+0.019+0.007+0.008+0.010

5×0.59×10−3 =

19.66, which is much greater than 1.0. This data is inferred as anomalous.

In the case of segregating weekdays and weekend energy consumption, it can be

categorized into 2 groups in the similar way. Comparison only corresponds to each group

of the two to ensure regularity of these datasets. If both cases of energy profiles are similar,

then only a single analysis is required. For simplicity, a single case is interpreted in this

study.
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Figure 2.5: An example of anomaly for the 9-th 10-minute usage data of
the 5th day for load i.

From Eq. (2.1) to Eq. (2.3), the anomalous dataset can be evaluated based on the historical

data for each load can be identified. Fig. 3.3 illustrates an anomaly, i.e., yk(I5,i,9) that can

be calculated from the data I5,i,9 = 19.66. Similarly, a total number of times of anomaly in

a year for any load can be computed this way.

An anomaly trending associated with a consumer is defined as follows:

Λ(Ip,i,q) =


1, if yk(Ip,i,q)≫ 1.0,

0, otherwise.

∀p, i,q. (2.4)

The ni is the total number of the historical anomaly readings with 10-minute cycle for node

i in one year, i.e.,

ni = ∑Λ(Ip,i,q),∀p,q. (2.5)

The probability of anomaly for load i, denoted by Pi, can be estimated based on the

frequency of anomaly occurrence over the total number of daily energy usage data as
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follows:

Pi =
ni

Ni
, (2.6)

where Ni is the total number of all historical readings with 10-minute cycle for node i in

one year. For the future loads, since there is no historical data, the probability of anomaly

is set to 50%, by default.

Conceptually, the summation of current for all consumers with energy meters is close to

the value of the root node of FRTU average current measurements. Due to budgetary

constraints, each distribution transformer cannot be ideally assigned with one FRTU for

cross validation. Fig. 2.3 shows an example of FRTU parent node with child nodes as

the distribution transformers with current readings. The loads in the gray area is the

possible future load growth. The current difference of the node 1 of p-th day, the q-th

10-minute cycle is ∆Ip,1,q = Ip,1,q− (Ip,5,q + Ip,10,q + Ip,16,q + Ip,17,q + Ip,18,q). Note that

Ip,5,q is the FRTU node that provides current information of its child nodes, i.e., Ip,13,q and

Ip,14,q. The measurements of these two child nodes are substituted with the FRTU parent

node to evaluate the current. These historical datasets of FRTU current measurements are

archived in a centralized database to cross-check the anomalous measurement readings

from consumers.

The datasets are used to determine the pivotal FRTU location(s) for future deployment.

The following Anomaly Coverage Index (ACI) is defined here as the system constraint to
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determine the ratio between anomalous consumers under an FRTU monitoring and total

anomalous consumers:

ACI =
1
O

O

∑
k=1

((
∑M

j=1 Ṕj,k|(Pj,k>p∗)∩(η≤η∗)
)

∑N
i=1(P̃i,k|Pi,k>p∗)

)
. (2.7)

The M is a set of consumer nodes with each of their anomaly probabilities Pj,k > p∗ (with

p∗ = 0 by default) under a candidate FRTU in which the downstream of its location shall

not connect with more than η∗ consumer(s). The N is the total number of anomalous

consumers under one feeder with Pi,k > p∗, where M ≤ N and Ṕ, P̃ ⊂ P. The O is the

total number of scenarios with different anomaly probabilities. The ACI∗, p∗, and η∗ are

user-defined constraints. The ACI constraint is, when there is some anomaly in the network,

the FRTU solution is able to narrow down the location, with satisfying user-defined ACI,

to at most η∗ customers. Fig. 2.6 shows an example to determine ACI with η∗ = 3. Nodes

3 and 4 are FRTU candidate locations. The total anomalous consumers are N = 3, i.e.,

loads 13, 16, and 18. The FRTU at node 3 in the example connects η = 3 consumers,

and η ≤ η∗ for all the malicious consumer load 13. While the FRTU at node 4 connects

η = 4 consumers, and η > η∗ for the anomalous consumer loads 16 and 18. Thus, M = 1.
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Assuming that O = 2, the ACI for the network configuration is computed as:

ACI =
1
2

2

∑
k=1

(
∑1

j=1
(
Ṕj,k|(Pj,k>0)∩(η≤3)

)
∑3

i=1(P̃i,k|Pi,k>0)

)

=
1
2

(
(.345)

(.345+ .132+ .537)
+

(.345)
(.345+ .132+ .537)

)
= 34%.

3 4
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9 10 11 12
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…
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Figure 2.6: Example to determine ACI.
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2.2.3 Prediction of Future Load Growth

Load growth models for the distribution grid are established and discussed in [81, 82]. In

this problem formulation, future load growth is a key factor for network planning, which

might involve additional loads within a feeder [82]. These additions might also have new

branches connecting to the existing network in the future. Due to the properties of the

load growth, i.e., growth rate as the function of time, Gompertz function is utilized [83].

Generally, the load growth model based on Gompertz function is developed in planning as

a function of time t [83].

S(t) = G · e−bect
. (2.8)

where the three parameters G,b,c allow considerable flexibility of data fit, G is the upper

asymptote of rating capacity (kVA) for distribution transformer under each feeder, and

e = 2.718 [83]. The Gompertz function S(t) estimates the amount of load growth with the

time t in kVA.

These parameters are set accordingly based on the historical datasets. Each feeder consists

of an existing load set associated with a Gompertz function, e.g., G is set to the maximum

future loads without overload violations. The c is the sum of anomaly score of all the
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historical datasets, i.e.,

c = ∑yk(Ip,i,q),∀p, i,q, (2.9)

which indicates that the larger anomaly score may be further investigated, as a consequence,

slower rate of future growth. The b is set to be the current existing load which can be

obtained from the historical datasets. It implies that the populated areas of existing loads

may have less opportunities for future load growth. Fig. 2.3 depicts an example of load

growth, and b is the current existing load. For example, if there currently are 10 loads in

shaded area, then b is set to 10. The c is the sum of anomaly score of the historical data of

the existing loads.

2.3 Algorithmic Analysis

The proposed algorithm is based on machine learning techniques. First, it requires

the up-to-date input data of distribution network datasets and historical trending from

household energy meters. The network topology and the historical trending are then

utilized to train for labeling nodes in the primary network using conditional random field

(CRF). During the process of training, each node is labeled with either Y or N. The

node with label Y is associated with a larger mean of its probability density function

(PDF) for the FRTU candidate location. Otherwise, node with label N is associated
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with a smaller mean value. It is then followed by cross entropy (CE) method. This is

an iterative process and each iteration is generated with multiple larger numbers in order

to form different samples. For each sample, the selected candidate nodes for FRTUs are

evaluated to ensure the constraints of the optimization formulation is within the limit, while

the historical trending anomaly datasets are considered and verified if all constraints are

satisfied. However, if the convergence criterion is not satisfied, the best 10% sampling

datasets satisfying the constraints are selected. These mean values of the PDF functions on

those nodes are updated incrementally. The module outputs the best performance samples

which indicate the best FRTU locations. Fig. 2.7 shows a high-level abstraction of the

proposed methodology which includes three major modules: (A) Training for labeling, (B)

Incremental PDF function adjustment, and (C) FRTU deployment optimization.

2.3.1 Training For Labeling

Due to the size of primary distribution network to avoid total enumeration for all nodes,

conditional random field (CRF) is utilized to initialize the start point for training. It models

the correspondence between the neighboring parent nodes and the child nodes. Each node

is assigned with a label Y or N. The Y suggests an FRTU installed, and N suggests no

FRTU installed. Thus, the node with label Y has more chance to be added an FRTU, while

the node with label N has less chance.

32



START

(A) Training for labeling using 

conditional random field

Label each node 

in the primary 

distribution network

Associate with PDF of the 

FRTU candidate locations

Yes
Set a smaller mean 

value of PDF for 

FRTU candidate 

locations

No

(B) Begin CE optimization: each PDF 

generates multiple of numbers

Network architecture and 

weighting factor

Identify the large combination of 

candidate FRTU locations with 

different samples 

(C) Have objective function and 

constraints been satisfied? 

Discard and 

report infeasible 

solutions

No

Determine the 

candidate 

nodes 

from the best 

10% samples

Update the PDFs 

with an incremental 

mean value in the 

best 10% 

performance 

samples

Yes

Yes

Input data with distribution network topology and 

historical trending from consumer metering devices

Are constraints satisfied for 

each sample?

Are convergence criteria 

satisfied?

For each node, the label is Y

Output optimal solutions 

with the best FRTU 

locations from the samples

End

No

Perform anomaly 

inference 

evaluation based 

on the historical 

trending data 

from customers in 

secondary 

network

Figure 2.7: Flowchart for proposed cybersecurity planning framework.

The following part gives the CRF model, and the procedure of training to get corresponding

labels, which are based on the probability of the label sequence, as shown in Fig. 2.8. For

each pair of parent node and child node, there will be different combinations for the label

assignment. Each combination is called a label sequence. Denote by Φ j the j-th feature
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function, denote by li the label of node i, by L a level index, and by o the observation. The

L is defined by the depth level from the bottom of the distribution feeder where the child

nodes indicate L = 1, and the immediate parent nodes of L = 1 are in level 2 with L = 2.

The level L is increasing until it reaches to the root node of the distribution feeder. The

observation is the input, representing the observed knowledge, which is the level index of

the nodes in this problem. The feature function captures the common features for training

to determine candidate locations of deploying FRTU in a feeder. An example of the feature

function is as follows.

Φ j(li−1, li|o) =


1, if li−1 = Y , li = N, level = L,

0, otherwise,

(2.10)

The ρ denotes the weighting factor. The CRF probability is estimated through the

enumerative training with a set of n+ 1 matrices, denoted by Mi(o), i = 1,2, · · · ,n+ 1.

Again, each is labeled with either a Y or N. Matrices Mi(o) are defined as all different

combinations of label assignment for a pair of parent node and child node, with given level

index. The labels on path with largest weighting factor are used as the output labels. One

has,

Mi(li−1, li|o) = exp
(

∑
j

ρ jΦ j(li−1, li,o), i
)
, (2.11)
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An example is shown in Fig. 2.8. To make the graph completed and the expression

simplified, a start point and an end point are added, which are l0 and l3 respectively. It

has the matrix for the different combinations of labels along path, e.g., the path along grey

line , or the path along grey dashed line.

One can see that from the start point to the first label, M1(o) has only two elements which

indicate two possible paths, i.e., from start to the first Y , and from start to the first N. Thus,

M1(o) has two elements as follows. Similarly, M2(o) has four elements since it has four

possible paths, and M3(o) has two elements.

M1(o) =
(
M1(l0,Y |o) M1(l0,N|o)

)
, (2.12)

M2(o) =

 M2(Y,Y |o) M2(Y,N|o)

M2(N,Y |o) M2(N,N|o)

 . (2.13)

For example, one possible path from l1 to l2 for M2 is

M2(l1 = N, l2 = Y |o) = exp
(

∑
j

ρ jΦ j(N,Y |o)
)
. (2.14)
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Figure 2.8: An illustration of M matrix of proposed CRF model.

Denote by Z(o) the normalization factor. Denote by Pl(l|o,ρ) the CRF probability

corresponding to one path from the start to end, and as a result,

Pl(l|o,ρ) = 1
Z(o)

3

∏
i=1

Mi(li−1, li|o), (2.15)

The proposed model, representing the correspondence between the parent node and child

node, is utilized to optimize the weighting factor ρ based on the solution of the IEEE 13-bus

system [84]. Quasi-Newton method can be used to compute the above parameters to train

the CRF model. This provides the form of the probability of a label sequence, denoted by

l, given the observation sequence, denoted by o, which is equal to a normalized product

of potential functions, where l = {l1, l2, · · · , ln} [85]. The labels of each node can be thus

obtained.
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2.3.2 Incremental PDF Function Adjustment

The proposed function generator is to adjust the PDFs incrementally using Gaussian

distribution. A random variable is a function associating a unique numerical value with

every outcome of an experiment and the value of the random variable may vary from

iteration to iteration when the experiment is repeated. The density of a continuous random

variable is a probability density function (PDF). Each node in stage m is associated with

an initial PDF. A set of PDFs are generated that determine the tentative location for FRTU

deployment with corresponding cost. If the convergence criterion is not satisfied, the PDFs

of the nodes associated with the minimum cost is updated with a larger mean value. The

nodes are selected from the best 10% samples replacing with a larger mean value. This

procedure is iterated until the convergence criterion is satisfied. If the system already has

some existing FRTUs, the probability of these nodes is set to 1, which means these nodes

are selected all the time.

In CE optimization, each PDF requires a start point for its mean u and the variance. If there

is a good start point, the optimization can converge efficiently. Otherwise, the optimization

might converge slowly. As illustrated in Fig. 2.9, if the initial mean u is at start point 2, it

may converge to achieve optimum at first iteration. However, if it starts at point 1, it may

converge much slower to achieve its optimality, i.e., it shows 4 iterations. Thus, a good

start point for each PDF in CE is essential. In this paper, the CRF label provides a good
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Figure 2.9: Illustration of two start points. The one starts from point 1
requiring additional iterations to than point 2.

basis to choose the start point for CE method. That is, the solution from (A) in Fig. 2.7 is

utilized as a start point for the mean values of these PDFs. If a node is assigned with label

Y by CRF, its initial PDF will have large mean and small variance in CE. If it is assigned

with label N by CRF, its initial PDF will have small mean and large variance. This makes

the approach more efficient to reach convergence value.

The f (a) below is the minimization target function, where the random variable a is in a

space A, in which a family of probability density functions (PDFs) is distributed.

f∗ = min f (a), a ∈ A. (2.16)

The associated functions for Eq. 2.16 are denoted by Pr(a,u), where u is a parameter.

With a different u, it leads to different PDF. To minimize f (a), the proposed CE
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method approximates the optimal solution for f such that f (a) ≤ f becomes a rare event.

An indicator function is denoted by Q(·), which assists converting from the original

optimization target to an optimization of a rare event function. The Q( f (a) ≤ f) is equal

to 1 when f (a) ≤ f. Otherwise, it is equal to 0. Using the PDF with u, a set of δ samples

are generated from a, denoted by A = a1,a2, · · · ,aδ . The Eu(·) is denoted as an expectation

associated with Pr(a,u).

The θ(f) is defined with the expectation of Q
(

f (A)≤ f
)
.

θ(f) = Eu

(
Q
(

f (A)≤ f
))

, (2.17)

Given a u, Monte Carlo method is utilized to compute θ , which first generates a large

number of samples, e.g., δ samples, using the PDF with the given u. For each sample, it

computes Q( f (a)≤ f), with the average value [86].

θ̃(f) =
1
δ

δ

∑
i=1

Q
(

f (ai)≤ f
)
. (2.18)

The original optimization target, min f (a), can be converted to the optimization of a

stochastic, or a rare event function. That is, to maximize f such that θ(f) is approaching

0. One can see that when θ(f) approaches 0, f (a) is greater than f with extremely high
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possibility. The maximized f consequently leads to the minimized f (a).

Since the parameter u is unknown, it is necessary to compute an appropriate value for it.

As a result, it may lead to a good start point to compute θ in Eq. (2.18). An intuitive

way is to search the appropriate u in a large range iteratively. However, the range can be

large and it may be challenging to search it efficiently. In addition, when θ(f) approaches

0, f (a) ≤ f becomes a rare event, this would force Monte Carlo method to use a large

number of samples for lower efficiencies. The importance sampling can be utilized to

approximate u∗ with a ũ for a set of samples using the PDF with ũ. This iterates until the

pre-defined convergence criterion is satisfied, e.g., θ(f) = 0.1. This approximates for the

targeted optimization.

The algorithm proceeds iteratively [86]. In our problem, each node is associated with a

PDF. Each PDF has an initial mean u, and it generates some variable a. The variable a in

PDF is usually continuous random variable. Thus, it takes the following technique to make

it binary. If a < 1− u, a = 0. Otherwise, a = 1. In this fashion, these variables form a

randomly generated input sample; in other words, it provides a possible FRTU installation

solution. A set of such samples are evaluated, and the good performance sample is used to

incrementally update the corresponding PDFs. That is, its mean u will gradually increase

at the same time the variance will gradually decrease. The PDFs will continue to generate

another round of variables as the input samples. Note that the above procedure is iterative

process, i.e., the node with updated PDF makes this node with a higher value closer to the
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variable a = 1 in the next iterations. Updating PDFs based on previous good performance

samples provides better samples in next iteration. Finally the convergence criterion will be

satisfied.

If the convergence criterion is not satisfied, the top performance samples are utilized to

update the parameters in PDF. During each iteration, f is also concurrently updated for an

approximation f∗. That is, f is set to the value of f (a) corresponding to the top performance

sample. In this case, f is updated for each iteration to the current minimum number of

FRTUs which can satisfy all the constraints. The above procedures are iterated until the

convergence criterion is satisfied. The module outputs the best performance samples which

indicate the best FRTU locations. Note that if the system already has some existing FRTUs,

the probability of these nodes is set to 1, which means that these nodes are selected all the

time. The example in Fig. 2.10 illustrates the procedure. Suppose that there are two nodes,

and corresponding variables are a1, a2, the means are u1, u2. The grey paraboloid is the

PDF for the two variables. Since there are two variables, it illustrates in 2 dimensions. The

grey points are generated variables which correspond to a set of randomly generated input

samples, i.e., if a < 1−u, a = 0, otherwise a = 1, and 1 is to propose an FRTU installation

while 0 is otherwise. The black dot represents the top performance solution. Then the PDF

is updated according to the black point with u increasing and variance decreasing. This

procedure is iterated until it reaches convergence criterion.
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Figure 2.10: The illustration of CE optimization.

2.3.3 FRTU Deployment Optimization

Considering the anomaly indices from secondary distribution network, the optimal

investment in multistage FRTU deployment is formulated as follows: The total investment

cost is defined by C(·). For each node i in the primary network, a binary variable xi is

associated with it. Node with xi = 1, indicates FRTU node or otherwise without. The entire

period of timeline denotes T is the m stages that include {t1, t2, t3, · · · , tm}. Each stage has

6 months. Denote by n j the total number of loads in stage t j. Define X j = {x1,x2, · · · ,xn j},

where 1≤ j≤m. Note that different time stage may have different node number due to the

load growth.

The objective function of optimization is to minimize the total costs C(XT ) for the entire

distribution network in a given T period (with multiple m stages) while satisfying ACI
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constraint.

min ∑m
j=1

(
αCi

t, j(X j)+βCo
t, j(X j)

)
(2.19)

where α and β are the factors related to the costs of infrastructure investment and

operations defined in Eqs. (2.20) and (2.21). The Ci
t, j(X j) is the investment cost of the

stage t j, and Co
t, j(X j) is the operation cost of the stage t j, defined as Eqs. (2.22) and (2.23).

α = (1+ ri
t, j)× t i

j, (2.20)

j ∈ stages having investment, and

β = (1+ ro
t, j)× to

j , (2.21)

j ∈ stages having operations, where rt, j denotes the rate of interest in the stage t j.

Ci
t, j(X j) =

n j

∑
i=1

Ci
jxi, (2.22)

where n j is the total number of the nodes (including the original nodes and new added
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nodes) in stage t j. The Ci
j is the investment cost for the nodes in stage t j that includes the

costs for infrastructure deployment, survey, and new network additions.

Co
t, j(X j) =

n j

∑
i=1

Co
j xi, (2.23)

where Co
j is the operating cost for the nodes in stage t j, including the maintenance

cost, repairing cost, the estimated power loss cost, and the operations cost. This work

only considers multistage FRTU deployment based on existing network topology with

predictable load growth in some areas. Only cost incurred on the efforts to deploy FRTU

devices is considered.

2.4 Simulation Results

In this simulation setup, the proposed method is implemented in MATLAB and tested on

a personal computer with 1.86GHz CPU and 3GB main memory. Fig. 2.11 illustrates the

simulation test case of a distribution network including the current loads. This consists of

51 nodes in primary distribution network. The secondary distribution network is designed

with 27 nodes in the first stage, i.e., when m = 1 in Eq. (2.19).

The sample of this simulation is set up based on the realistic datasets from utilities given in

Table 2.1. Irregular values are arbitrarily modified from the dataset for anomaly evaluation.
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In stage 1, each load is with probability of anomaly in Eq. (2.6), as follows. P1 of nodes

{52, 59, 60, 61, 64, 65, 71, 76, 78}= 0.6, P2 of nodes {53, 72} = 0.55, P3 of nodes {54,

55, 56, 57, 62, 63, 75, 77} = 0.1, P4 of nodes {66, 67, 69, 70}= 0.05, and the remaining

nodes are with 0 probability.

All the predicted future loads in stage 2 are assigned with 0.5 probability of anomaly. The

α and β from Eq. (2.19) are both set to 1.5, i.e., α +β = 3.0. The investment cost Ci
j for

all stages is set to $4000 per FRTU, and operating cost Co
j for all stages is set to $2000 per

FRTU. Thus, the total cost for each FRTU is $9000.

Table 2.1
A sample of realistic dataset.

Timestamp Current Current Current
Phase A Phase B Phase C

2:00PM 2/20/12 EST 177.3A 252.3A 192.2A
2:10PM 2/20/12 EST 206.4A 268.3A 221.6A
2:20PM 2/20/12 EST 214.2A 280.0A 240.8A
2:30PM 2/20/12 EST 198.8A 264.8A 208.8A
2:40PM 2/20/12 EST 201.9A 261.4A 215.6A
2:50PM 2/20/12 EST 218.0A 267.9A 206.0A
3:00PM 2/20/12 EST 199.4A 255.7A 184.9A
3:10PM 2/20/12 EST 206.8A 262.2A 198.6A
3:20PM 2/20/12 EST 214.9A 275.9A 204.0A
3:30PM 2/20/12 EST 202.8A 261.1A 199.4A

The proposed method using conditional random field (CRF) is utilized here to assign each

node of a distribution feeder with a label Y or N. The node with label Y is associated

with a larger mean of its probability density function (PDF) for the FRTU candidate

location. Otherwise, node with label N is associated with a smaller mean value. It
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is then followed by cross entropy (CE) method. This is an iterative process and every

iteration is generated with multiple larger numbers in order to form different samples.

For each sample, the selected nodes are evaluated to see when there is some anomaly,

whether the FRTUs can narrow down the location, with user-defined ACI, to at most η

consumers. If the convergence criteria are not satisfied, the best 10% sampling datasets

satisfying the constraints are selected. These mean values of the PDF functions on those

nodes are updated incrementally. For each iteration, f is also concurrently updated for an

approximation f∗. That is, f is set to the value of f (a) corresponding to the top performance

sample. After each iteration, f is updated to the current minimum number of FRTUs which

can satisfy all the constraints. The module outputs the best performance samples which

indicate the best FRTU locations. In this simulation, η is set to 4, and ACI is set to 0.9.

The convergence criteria is set to θ(f) = 0.1. In this simulation example, functions from

Eqs. (2.16) and (2.18) are used. Eq. (2.16) gives the minimization target and the current

best value. Eq. (2.18) computes the expectation of Q( f (A)≤ f ), and it also corresponds to

the convergence criteria θ( f ) = 0.1, which indicates that the current solution approaches

optimal solution.

The proposed approach is tested using the stage 1 test case, which is illustrated in Fig. 2.11.

There are a total of additional 8 FRTUs in this solution, which cover all the loads with more

than 0.5 anomaly probability. To determine the candidate locations of FRTU deployment,

a set of high probability potentially tampered by malicious consumers on each load is

generated. The simulation result demonstrates it narrows down the locations to less than
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or equal to 4 consumers’ electronic meters with ACI of 0.9. It can thus determine if this

scenario can be possibly cybertampered or false positive cases. The minimum cost is 8×

$9000 = $72000.
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Figure 2.11: A distribution network in stage 1 with optimization result of
FRTU candidate locations.

Gompertz function is utilized to predict the future load growth. According to Eq. (2.8), c

is the sum of anomaly score of all the historical datasets, b is set to be the current existing

load which can be obtained from the historical datasets, and G is set to the maximum

future loads without overload violations. It implies that a node has greater possibility to

have future load with larger G, smaller b and smaller c. First, S(t) based on Eq. (2.8) is

computed for each node. In this simulation, the largest 20% S(t) are predicted to have

future loads. In this simulation, the predicted load growth consists of 7 nodes in the second
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Figure 2.12: A distribution network in stage 2 with predicted load growth,
and optimization result of FRTU candidate locations.

stage, i.e., when m = 2, shown as the gray nodes in Fig. 2.12.

Fig. 2.12 also illustrates the FRTU optimization solution by considering the predicted load

growth in the feeder. The solution consists of 12 FRTUs, which results in the total cost

of 12× $9000 = $108000. It can be observed that the proposed solution can monitor

all loads. Simultaneously with potential anomaly and load growth model, the simulation

results shows that it can narrow down the location of the anomaly to at most 4 loads with≥

0.9 ACI. Although this solution may have more cost than the one in Fig. 2.11, it considers

the load growth possibility. In contrast, the solution shown in Fig. 2.11 which does not

consider load growth possibility is not able to detect the anomaly from the future loads,
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e.g., from nodes 79 and 80. These nodes might result in the high false positive rate. On the

other hand, a larger η can result in a higher ACI. For example, for the test case in Fig. 2.11,

if adding one FRTU at node 2, and it may narrow down to the location at most 5 loads with

1.0 probability, i.e., η = 5 and ACI= 1.0.

The Figs. 2.13 and 2.14 compare the two solutions in Fig. 2.11 and Fig. 2.12. Fig. 2.13

shows the comparison of the ACI, which is computed through the times that the FRTU

deployment can narrow down the anomaly to at most 4 nodes over the total times of

anomalies in all rounds. It can be seen that in stage 1, both solutions can achieve a satisfying

ACI, which is greater than ACI= 0.9. However, in stage 2, the solution without considering

the future load growth (the solution in Fig. 2.11) has a much worse ACI compared to that

with considering the future load growth (the solution in Fig. 2.12), and it is not able to

satisfy the constraint of ACI. In contrast, it is effective to consider the future load growth

when performing the FRTU optimization. Fig. 2.14 provides the numerical comparison in

term of additional FRTUs and loads to be monitored. The solution without considering

the future load growth requires additional 8 FRTUs and the one considering the future

load growth requires additional 12 FRTUs. Although the solution with future load growth

requires more FRTUs, it can monitor more loads with better ACI. Thus, one can see the

solution with future load growth outperforms the other one.

Comparison between proposed method and greedy algorithm is provided for analysis.

Ideally, the greedy algorithm recommends every 4 loads under a common parent node
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Figure 2.13: The comparison of the ACI between the solution in Fig. 2.11
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Figure 2.14: The comparison of the number of FRTUs and the number of
loads between the solution in Fig. 2.11 and the solution in Fig. 2.12.

shall be added with one FRTU. With this, it could minimize the cost of FRTU, i.e., each

load with ACI of 0.9 is grouped with the other offspring nodes under an FRTU parent node.

However, its optimality depends on the topology of a feeder. As shown in Fig. 2.15 in stage

1, if each parent node is chosen with 4 child nodes from the left side, it will have these

sets of nodes: {52,53,54,55},{56,57,58,59},{60,61,62,63}· · · . The greedy algorithm

selects node 4 for the first set, node 9 for the second set, and node 2 for the third set, and

so on, which have 7 FRTUs in total. However, this will lead to violation of constraint by
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having node 9 needs to take over 6 nodes, and node 25 takes over 5 nodes. This can result

in optimal solutions but may violate the ACI constraint.

In contrast, the proposed algorithm addresses this issue by considering both minimization

target and the constraint. As shown in Table 4.1, it compares the greedy algorithm and the

proposed algorithm in stage 1. It is observed that the proposed algorithm outperforms the

greedy algorithm.
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Figure 2.15: An FRTU deployment solution in stage 1 using greedy
algorithm.
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Table 2.2
The comparison of the greedy algorithm and the proposed algorithm in

stage 1.

# of FRTUs ACI Cost
Greedy Algorithm 7 52% $63000
Proposed Method 8 93% $72000

2.5 Summary

Integration of cyber-physical modeling for distribution planning has been a critical issue

for strategic cyberinfrastructure investment. With the rapid development of IP-based

communication on secondary network, it is crucial to provide an assisted tool for planning

engineers to identify the system bottleneck for cross-checking the malicious activities in

secondary distribution network. The proposed method aims to perform FRTU deployment

in primary network by considering secondary network cybersecurity.

Due to the complexity of combinatorial enumeration for multistage deployment, adopting

the existing optimization techniques may not suggest systematic identification of FRTU

candidate locations. The proposed iterative algorithm recommends three major modules,

which combines the combinatorial nature of the problem with potential multiple stages

optimization based on the budget and historical anomaly datasets.

The simulation results demonstrate the feasibility of the proposed method by providing
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a practical solution for multistage investment planning of distribution cyberinfrastructure

enhancement. Future work includes cost recovery of cyberinfrastructure for utilities to

better project the return of investment.
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Chapter 3

Multi-Scale Variation-Aware Techniques

for High Performance Digital

Microfluidic Lab-on-a-chip Component

Placement1

3.1 Introduction

Traditional biochemical laboratory procedures are often very expensive to perform and

the invention of microfluidic lab-on-a-chip alleviate the burden. Lab-on-a-chip integrates
1©2011 IEEE. Reprinted, with permission, from Chen Liao and Shiyan Hu, “Multiscale Variation-Aware
Techniques for High-Performance Digital Microfluidic Lab-on-a-Chip Component Placement”, IEEE
Transactions on NanoBioscience, March 2011.
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miniaturized components for implementing various functions in biochemical analysis into

a chip using microfluidic technology [27, 1]. By lab-on-a-chips, biochemical experiments

can be performed in a much cheaper way while having higher sensitivity and accuracy

in detection [87, 88]. It can be effectively utilized as a test tube for the real biochemical

experiment. Lab-on-a-chip has been successfully applied to many different areas. For

example, the important genetic applications and biochemical analysis procedures such

as DNA analysis and proteomic analysis [28]. In an ongoing world-wide research

collaboration known as the Human Genome Project, lab-on-a-chips also significantly

improve the speed to identify the estimated 80,000 genes in human DNA [89]. The

microfluidic lab-on-a-chip is also applied in the electrochemical real-time monitoring of

glucose and oxygen in [90], and the development of microfluidic lab-on-a-chip for vitro

hepatotoxicity is discussed in [91]. In addition, it becomes indispensable for conducting

human health related research including clinical diagnostics and drug discovery [31, 30].

For example, lab-on-a-chip has been successfully used in clinical diagnostics on human

physiological fluids [32]. The proteomic analysis for cervical cancer based on microfluidic

lab-on-a-chips is given in [29]. The lab-on-a-chip has more applications, such as being

used in toxicological, protein and so on.

A lab-on-a-chip is a set of microarrays, which are miniaturized test benches, integrated

on a solid substrate. It allows multiple biochemical operations/reacations to be performed

simultaneously to achieve high throughput and speed, and also with the high accuracy.

Usually, as shown in Figure 1.2, a lab-on-a-chip has no larger area than one square

57



centimeter. Similar to the traditional electronic integrated chip which as a very high

computation speed, it can perform thousands of biochemical operations in a few second,

such as sample holding, reagent mixing, separation and detection and so on [89]. The

first generation of microfluidic lab-on-a-chip is continuous flow based and consists of

permanently etched micropumps, microvalves, and microchannels. It is not accurate

and not simple to operate. In contrast, the prevailing second generation of microfluidic

lab-on-a-chip is droplet based which means that the liquids are manipulated as discrete

microdroplets [1]. A few methods to manipulate microdroplets have been designed, such as

those with structured surfaces, thermocapillarity, electrochemical effects and electrostatic

actuation [92]. A popular lab-on-a-chip technology is based on electrowetting where

each nanoliter droplet is controlled by the electric-field-induced electrohydrodynamic

force generated from the programmed electrodes (refer to Figure 1.2 [1, 2, 3]). The

reconfigurability allows different operations to share the same place on the microfluidic

array during different time intervals. With systematic electrical signal programming, each

biochemical operation can be treated as a three dimensional (3-D) module/cell whose

size is decided by the space and the duration the operation needs. Together with the

reconfigurability offered in lab-on-a-chips, a three-dimensional module/cell library can be

designed [1]. With the cell/module library and design specification, CAD methodologies

can be utilized to efficiently build a large-scale integrated microfluidic lab-on-a-chip (refer

to Figure 3.1 [4]) [1, 93]. In other words, the cell-library based design methodology

enables us to build a large-scale integrated microfluidic lab-on-a-chip efficiently using CAD
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methodologies [1, 93].
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Figure 3.1: An input example of the microfluidic lab-on-a-chip component
placement problem [4].

Similar to the case of IC design, the increasing complexity of the microfluidic lab-on-achips

results in the increase of complexity of the physical-level synthesis of lab-on-a-chip. Thus,

the high quality module placer and router are necessary for the lab-on-a-chip CAD. In

the lab-on-a-chip CAD flow, the physical-level synthesis, which consists of lab-on-a-chip

component placement and lab-on-a-chip routing, is the crucial component which has

significant impact on the the whole flow. In detail, lab-on-a-chip component placement

determines the physical location and the starting time for each operation such that the total

completion time is minimized while all constraints are satisfied. Lab-on-a-chip routing is

to seek the best routes to transport droplets such that the total length of routes is minimized

while the distance constraint is satisfied. Similar to VLSI circuit, novel techniques to

efficiently compute accurate solutions for lab-on-a-chip component placement and routing

problems are in great demand in biochip CAD.
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In contrast to the manual design, CAD uses the computer technology in the design process

to handle device miniaturization and increasing design complexity. In the lab-on-a-chip

CAD flow, physical component placement of digital microfluidic lab-on-a-chip is a crucial

part whose solution may significantly impact the whole flow.

This chapter is mainly focused on the lab-on-a-chip placement. Precisely, it determines the

physical location and the starting time of each operation such that the overall completion

time determined by the last operation is minimized (see Figure 3.2 for an example).

Similar to VLSI placement, designing a high quality module placer is quite challenging

in lab-on-a-chip CAD. There are a large multitude of previous works for VLSI placement.

For example, [94] proposes a quadratic based placement algorithm. A partition-based

placement approach is designed in [95]. [96] proposes the constraint graph based technique

for global placement and the greedy method based technique for the detailed placement.

All the above techniques are effective in VLSI placement. One may want to directly

migrate the techniques from VLSI placement to lab-on-a-chip component placement.

However, there are critical differences. For example, lab-on-a-chip component placement

handles resource constraint and scheduling constraint while VLSI placement only considers

location optimization. On the other hand, VLSI placement is usually for two dimension

while lab-on-a-chip component placement is for three dimension due to the reaction time.

Thus, simple migration of the techniques from VLSI design to lab-on-a-chip design is

difficult to lead to high quality solutions.
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Figure 3.2: Illustration of a lab-on-a-chip component placement.

In spite of wide application of lab-on-a-chips, existing research works on lab-on-a-chip

CAD are quite limited. For the lab-on-a-chip component placement, there are not much

previous works [33, 3]. [33] proposes a simulate annealing based technique and [3]

improves it by the incorporation of T -tree data structure. These algorithms are effective,

however, they are not always able to compute a lab-on-a-chip component placement

satisfying all design constraints due to that they are based on simulated annealing [3].

On the other hand, the timing of a biochemical reaction is sensitive to variations such as

temperature variations, which necessitates the variation-aware lab-on-a-chip component

placement. However, no previous work considers this issue. Thus, effective algorithmic

techniques to compute high quality variation-aware lab-on-a-chip component placement

satisfying various design constraints are in demand.

In this chapter, a multi-scale variation-aware optimization technique is proposed for the
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lab-on-a-chip component placement. Our technique is always able to return high-quality

placement and it is the first technique addressing the variation-aware lab-on-a-chip

component placement. Our simulation results demonstrate that without considering

variations, the proposed technique significantly outperforms the previous state-of-the-art

approach [3] and is able to achieve up to 65.9% reduction in completions time. When

considering variations, the variation-unaware design has the average yield of 2%, while our

variation-aware technique can always compute the designs satisfying the yield constraint

with only 7.7% completion time increase. The main contribution of this chapter is

summarized as follows.

† Without considering variations, the multi-scale technique which consists of grid

coarsening stage and front-line based fine-scale tuning stage is proposed to efficiently

compute the solution for the variation-unaware lab-on-a-chip component placement.

† In contrast to the previous simulated annealing based works which cannot always

return the solution satisfying all constraints, our proposed technique can obtain the

nearly optimal solutions while satisfying all the constraints.

† To the best of the authors’ knowledge, this is the first work addressing

the variation-aware lab-on-a-chip component placement. A novel multi-scale

variation-aware optimization technique is proposed. Latin Hypercube sampling

technique is also integrated in the multi-scale technique for efficiency.

† The simulation results on the standard benchmark lab-on-a-chip designs demonstrate
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that without considering variations, the proposed technique always satisfies the

design constraints, and it outperforms the state-of-the-art approach [3] with up to

65.9% reduction in completion time.

† When considering variations, the variation-unaware design has the average yield of

2%, while the design by our variation-aware technique can always satisfy the yield

constraint with only 7.7% completion time increase.

The rest of the chapter is organized as follows. Section 3.2 presents the problem

formulation and integer linear programming formulation for lab-on-a-chip component

placement. Section 3.3 introduces our multi-scale optimization technique for

variation-unaware placement. Section 3.4 describes our multi-scale variation-aware

technique to efficiently compute the variation-aware placement. Section 4.4 presents the

simulation results with analysis. A summary of work is given in Section 4.5.

3.2 Preliminaries

3.2.1 Problem Formulation

A lab-on-a-chip is to manipulate droplets which contain biochemical reactants to perform

biochemical reactions/operations. As a basic element in a lab-on-a-chip, each biochemical
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operation can be treated as a three-dimensional cell/module whose volume is decided by

the space (x− y plane) and the duration (t-dimension) the operation needs. For a module

m, denoted by l(m) its length, by w(m) its width and by h(m) its height which is the time

needed to perform the corresponding biochemical operation, respectively. Note that the

timing of a biochemical reaction is sensitive to variations such as temperature variations.

That is, the variations may impact the height of a module h(m), which results in the

variational height. In practice, droplet movements are manipulated at discrete intervals and

the biochemical operations are scheduled at discrete time. A lattice is laid onto the solution

space, which means that a module can be placed only at a grid point. The lab-on-a-chip

component placement is to determine the physical location and the starting time of each

operation/module/component.

In the lab-on-a-chip component placement, modules are to be packed such that scheduling

constraint, spacing constraint, and resource constraint are satisfied [3]. Scheduling

constraint, also called precedence constraint, specifies temporal relationship between

operations by a sequencing graph. Spacing constraint, also called non-overlapping

constraint, ensures that no operations can be performed during the same scheduled time

period at the same location. For those modules sharing some resources, they can be

scheduled at the same time only if there are enough available resources. This is called

resource constraint. Given n modules, the lab-on-a-chip component placement problem

targets to compute module placement solution with minimum completion time (determined

by the last module) subject to the above constraints. When considering variations such as
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temperature variations, some modules in the above lab-on-a-chip component placement

may overlap due to the change of module size in some operating condition. Given a

lab-on-a-chip component placement, we call the placement under an operating condition

a sample. Given a large enough number of samples, yield is defined as the ratio of the

number of samples not leading to any overlap over the total number of samples. In the

variation-aware lab-on-a-chip component placement problem, a yield constraint is given

and one targets to compute a placement solution satisfying the yield constraint. Our

problem is formulated as follows.

Performance Driven Variation-Aware Lab-on-a-chip Component Placement: Given

a set of three-dimensional modules, each of which is specified by some length, width,

and variational height, and a fixed die area, to compute a solution for the lab-on-a-chip

component placement, i.e., to decide the physical locations of the module with minimum

overall completion time such that the non-overlapping, resource and scheduling constraints

are satisfied, and the yield constraint is also satisfied.

3.2.2 Integer Linear Programming (ILP) Formulation for

Variation-Unaware Lab-on-a-chip Component Placement

We first introduce the ILP formulation for variation-unaware lab-on-a-chip component

placement in this subsection. The variation-aware lab-on-a-chip component placement will
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be presented in Section 3.4. In contrast to the previous approach for the lab-on-a-chip

component placement [3] which migrates VLSI circuit placement/floorplanning

techniques, our technique directly solves the lab-on-a-chip component placement as a

constrained three dimensional packing problem. For this, the problem of the lab-on-a-chip

component placement is formulated as an integer linear programming (ILP) problem. We

associate with each module i and each three-dimensional grid point (x,y, t) a binary variable

ax,y,t,i, i.e, ax,y,t,i ∈ {0,1}. Each module is indexed by its lower left corner. Thus, ax,y,t,i = 1

means that the lower left corner of the i-th module is placed at (x,y, t). Given n modules,

the objective is to minimize the timing T subject to the following constraints.

The first constraint is to ensure that each module can be placed at only one location. That

is,

∑
(x,y,t)

ax,y,t,i = 1,∀i = 1,2, . . .n. (3.1)

The non-overlapping constraint is handled as follows. For any grid point, at most one

module can be placed to cover it, i.e., the corresponding operation is active at the grid

point. Formally, a module mi covers (x,y, t) if its lower left index is in [x− l(mi),x]× [y−

w(mi),y]× [t−h(mi), t], i.e., any of ax′,y′,t ′ is 1 where x− l(mi)< x′ ≤ x, y−w(mi)< y′ ≤ y

and t−h(mi)< t ′ ≤ t. Thus,

∑
∀ module i covers (x,y,t)

ax,y,t,i ≤ 1,∀(x,y, t). (3.2)
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To handle the resource constraint, assume that there are υ types of resources and there are

r j, j = 1,2, . . . ,υ available units of resource j. Denote by the non-negative constant sir j
the

required units of resource j for performing operation i. For all the modules performed at

time t, total required resources need to be no greater than the available resources for each

resource type. Thus,

∑
∀ module i covers t

sir j
·ax,y,t,i ≤ r j,∀t, j, (3.3)

where a module covers a time t if the corresponding biochemical operation is active at t. A

module mi covers t if the t-coordinate of its lower left index is in [t− h(mi), t]. To handle

precedence/scheduling constraint, if module i needs to be performed before module j as

specified in the sequencing graph, we have

ax,y,t, j + ∑
∀(x′,y′,t ′) with t ′≥t

ax′,y′,t ′,i ≤ 1,∀(x,y, t). (3.4)

Note that the above t ′ needs to be iterated to T (subject to the following boundary issues)

which is the maximum completion time. Further note that the boundary issue needs to be

handled. An operation with the corresponding module m cannot be started at time later

than T − h(m) since all operations need to be completed by T . This means that all t for

module m in the above formulations can be up to T − h(m). x and y for module m are

similarly handled. For the simplicity of presentation, assume that all boundary issues have

been taken care of in the following formulation.
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The objective of the linear program (LP) is to minimize T . Since one does not know

T and the precedence/scheduling constraints cannot be formulated without it, the above

mathematical program is cast to a decision problem rather than an optimization problem.

The complete decision integer linear programming formulation is shown as follows,

assuming that the boundary issues have been taken care of for simplicity.

min 1

s.t.

∑(x,y,t) ax,y,t,i = 1,∀i = 1,2, . . .n

∑∀ module i covers (x,y,t) ax,y,t,i ≤ 1,∀(x,y, t)

∑∀ module i covers t sir j
·ax,y,t,i ≤ r j,∀t, j

ax,y,t, j +∑∀(x′,y′,t ′) with t ′≥t ax′,y′,t ′,i ≤ 1,∀(x,y, t)

ax,y,t,i ∈ {0,1}.

(3.5)

Suppose that there is an approach to solve this integer linear program which will be

presented soon. The optimal completion time, denoted by T ∗, can be then found by

performing a binary search within the upper bound, denoted by T , and lower bound,

denoted by T . Each time, T = T+T
2 is used to formulate the above decision linear program.
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Subsequently, either the lower bound or the upper bound will be set to T according to the

decision result. That is, if the integer linear program is not feasible, the lower bound T

is set to T . Otherwise, the upper bound T is set to T . The above process is iterated until

the ratio between T and T is smaller than a user specified parameter. Denote by B the ratio

between the initial upper and lower bounds. The above technique needs O(logB) iterations.

This process can be accelerated through performing the following logarithmic scale binary

search proposed in [97] within the upper and lower bounds of T ∗. For this, each time,

T =
√

T ·T is used to formulate the decision linear program. The decision problem is then

solved and either the lower bound or the upper bound will be set to T as above. It can be

shown that in this way, the number of iterations is reduced to O(log logB) as follows. After

solving each decision problem, if the upper bound is reduced to T , the ratio between the

new upper and lower bounds will be T
T =

√
T ·T
T =

√
T
T . If the lower bound is increased to

T , the new ratio will be T
T = T√

T ·T
=
√

T
T . In either case, the ratio of new upper and lower

bounds is reduced to
√

B. After the next iteration, the ratio will be reduced to B1/4. In

general, one can prove that after i oracle queries, the ratio between upper and lower bounds

is B
1
2i . Clearly, for this ratio to be below a ratio b, it needs O(log( logB

logb )) iterations. For any

constant ratio b, the above logarithmic scale binary search needs to perform O(log logB)

iterations. In our simulations, since T needs to be an integer by recalling that each module

can only be placed in discrete position (i.e., at grid point), instead of using a fixed ratio b,

we perform the logarithmic scale binary search until T −T ≤ 1. As demonstrated in the

simulation results, the logarithmic scale solution search is efficient.
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The classic sequential rounding proposed in [98] is adopted to solve our ILP. One first

relaxes the integer constraint ax,y,t,i ∈ {0,1} in Eqn. (3.5) to be ax,y,t,i ∈ [0,1]. The resulting

linear program, called relaxed linear program, does not have any integer constraint. It is

well known that in practice, the linear programming problem can be solved in quadratic

time in terms of the number of variables and constraints. The solution for the relaxed linear

program will be rounded to integers in an iterative manner.

In each iteration, a linear program is solved. In the solution, all ax,y,t,i > 1−δ are fixed to 1,

where δ is a user specified parameter. If no new variable is fixed, the one with the smallest

rounding error will be fixed to 1. These can be accomplished by adding some additional

constraints ax,y,t,i = 1 to Eqn. (3.5). The new linear program will then be solved. Thus, each

time, at least one variable is rounded. The above process is repeated until all variables have

the integer values. This guarantees that the rounding procedure will compute an integer

solution. This process is integrated into the logarithmic solution search as described above

to solve the ILP.

3.3 Multi-Scale Optimization

Given a large lab-on-a-chip, the linear program may contain many variables and constraints,

which degrades the efficiency in computation. This motivates us to explore the multi-scale

optimization technique for the problem of the lab-on-a-chip component placement. This
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technique consists of grid coarsening for speedup and fine-scale tuning for completion time

improvement. Note that similar multi-scale techniques are popular in VLSI placement,

however, our algorithm is different from them.

3.3.1 Grid Coarsening

In grid coarsening stage, the grid size is first coarsened by a factor of ρ . That is, the

three-dimensional modules are only allowed to be placed at grid location which is a

multiple of ρ . For example, setting ρ = 4 along t-dimension means that each module

can only be placed at a coordinate of 0,4,8, . . . along t-dimension (refer to Figure 3.3).

In this way, the number of variables will be significantly reduced. For example, there is

no ax,y,1,i,ax,y,2,i,ax,y,3,i in the linear program when setting ρ = 4. One can similarly set

ρ along the x,y dimensions. As a result, the number of constraints and the complexity of

the linear program will be significantly reduced. Note that there is no such restriction on

T . Together with the fact that modules can have various heights, T does not need to be a

multiple of ρ . Solving the lab-on-a-chip component placement at a coarse scale introduces

speedup but degrades the solution quality. Varying ρ , different tradeoff between runtime

and solution quality can be obtained.
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Figure 3.3: An example to illustrate fine-scale tuning where 0,4,8 refer to
the time.

3.3.2 Fine-Scale Tuning

To recover the solution quality loss, the following fine-scale tuning technique is proposed.

For simplicity of presentation, let us just focus on the completion time reduction along

t-dimension, and other dimensions could be handled similarly. After obtaining the integer

linear program solution at a coarse scale, we will attempt to move each module downward

along t-dimension. Consider an example in Figure 3.3 which shows an integer linear

program solution with ρ = 4. The modules starting at t = 4 can be certainly pushed

downward to reduce the completion time. In contrast to only moving the modules along

t-dimension, in our algorithm, more solution space will be explored. Take module 5 as an

example. Suppose that its lower left corner is placed at (1,2,4), i.e., a1,2,4,5 = 1. A new

linear program will be formulated as follows. All the binary variables corresponding to
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the module 5 are limited to those ax,y,t ′,5 such that (x,y) spans the lab-on-a-chip base area

and t ′ only spans over {1,2,3,4}, i.e., at a fine scale. Recall that in the previous linear

problem in Eqn. (3.5), t in ax,y,t,5 spans over the whole t-dimension (≤ T in the decision

LP) when grid coarsening is not applied. With grid coarsening, t can only take the values of

0,4,8, . . . ,T to save the runtime. In contrast, in the fine-scale tuning stage, one can afford

to set t as every possible integer value since it is restricted to a small local region around

the solution of the coarsened integer linear program. The whole strategy makes sense since

the coarsened integer linear program solution should be a good starting point for further

tuning.

The fine-scale tuning technique is formally described as follows. Define the i-front-line

module set as a set of modules with starting time at i · ρ in the coarsened integer linear

program solution. The 0-front-line module set is the set {m1,m2,m3,m4} for the example

shown in Figure 3.3. Given the i-front-line module set, define the i-upward module set as

the union of all q-front-line module set where q ≥ i. For example, the 1-upward module

set consists of all the modules except those in the 0-front-line module set (which have the

starting time at 0). It is the set {m5,m6, . . . ,m14} for the example shown in Figure 3.3.

Similarly, define the i-downward module set as the union of all q-front-line module set

where q < i. For example, the 1-downward module set consists of the modules in the

0-front-line module set (which have the starting time at 0). It is the set {m1,m2,m3,m4}

for the example shown in Figure 3.3. Clearly, the union of any i-th upward and downward

module set forms the set containing all modules.

73



Starting with the 1-downward module set, for every module mi in the set, fix it as in the

coarsened integer program solution. In Figure 3.3, this means that all ax,y,0,i for i = 1,2,3,4

are fixed to the values in the solution of the coarsened integer program. Denote by tc(m)

the current t of module m in an integer linear program solution. Thus, ax,y,tc(m),m = 1 for

some x,y. For each module mi in the 1-upward module set, the variables are constructed

to span all x,y while t is restricted to {tc(m)− ρ + 1, tc(m)− ρ + 2, . . . , tc(m)}. We

then formulate all the non-overlapping, resource, and scheduling constraints over these

variables. The resulting integer linear program will be solved using sequential rounding

technique described in Section 3.2.2 (without grid coarsening since it is the fine-scale

tuning stage and the computation is affordable in local region). Note that the new decision

program is feasible when the completion time is set to the same T as the previous coarsened

integer linear program. This is the case since one can assign the values of a according to the

solution of the previous coarsened integer linear program. The purpose of the tuning is to

reduce T . For this, a loop is formed and each time T is decremented until the integer

program becomes infeasible. For example, one possible fine-scale tuning solution for

1-upward module set of Figure 3.3 is shown as Figure 3.4. One can see that the locations

of some modules are moved downward and the completion time is reduced.

After this, we will proceed to the 2-downward module set and 2-upward module set.

Basically, fix the module location for the second downward set and seek the improvement

over the upward second module set. This process is repeated until the current best solution

reaches the last front-line. Our simulation results indicate the completion time can be
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Figure 3.4: A possible fine-scale tuning solution for 1-upward module set
of Figure 3.3, where 0,4,8 refer to the time. Assume that all constraints are
satisfied.

significantly reduced by this fine-scale tuning technique. Refer to Section 4.4 for the

details.

3.4 Variation-Aware Placement Design

In reality, the biochemical operations are quite sensitive to the variations. For example,

the environment with different temperature results in the uncertain duration of operations

which refers to the variational height of the modules. With variational heights of

modules, it becomes a significant challenge to design a high-performance microfluidic

lab-on-a-chip. Figure 3.5 shows an example of variation-unaware solution for the

lab-on-a-chip component placement without any overlap, which is illustrated in two

dimension for simplicity. With the variational height of module 2, an overlap between

module 2 and module 5 could be introduced, which means that the design is sensitive
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to variations. It is clear that the quality of microfluidic lab-on-a-chip design is highly

dependent on variations. However, no previous works on lab-on-a-chip design consider the

variation-aware lab-on-a-chip component placement. It is desirable to design an effective

technique for the problem.
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Figure 3.5: Illustration of the overlap which is due to variations in a
variation-unaware lab-on-a-chip component placement.

3.4.1 Variation-Aware Optimization

A novel multi-scale variation-aware optimization technique is proposed based on the

multi-scale technique in Section 3.3. We will first introduce the yield evaluation technique

and then the variation-aware optimization technique.

Recall that a placement under an operating condition is called a sample. Given a large

enough number of samples, yield is defined as the ratio of the number of samples not

leading to any overlap over the total number of samples. Monte Carlo simulations are

performed to evaluate the yield [99]. For this, a large number (e.g., 10,000) of samples
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could be generated according to the probabilistic distributions on variational heights.

However, it degrades the efficiency. To address this, Latin Hypercube sampling technique,

which is first proposed in [100], is integrated in the multi-scale variation-aware placement

technique. It is a popular technique in improving the simulation efficiency and it has

been successfully used in a few VLSI CAD problems such as [101]. The advantage

of Latin Hypercube sampling is that one can use only a few samples to approximate

the simulation results with a large number of samples. This significantly improves the

efficiency in computation. We refer the interested readers to [100, 101] for the details of

Latin Hypercube sampling technique.

In the variation-unaware linear programming formulation, i.e., Eqn. (3.5), the heights of

modules are all fixed. While in variation-aware optimization, duration following Gaussian

distribution is introduced to our linear programming formulation. To solve it, our approach

is motivated from [102] which formulates and solves the robust Knapsack and Portfolio

problems using uncertain data based linear programming. In Eqn. (3.5), the height h(m) of

each module m is replaced by h(m)+β × ĥ(m), where ĥ(m) is defined as the variational

range according to Gaussian distribution, and β is a parameter to control the variation.

Varying β , different placement solutions will be obtained. For example, when β is set to

1, the placement solution is the worst-case design, and when β is set to 0, the placement

solution is variation-unaware design. Denote by h̃(m) the variational height, i.e., h̃(m) =

h(m)+β × ĥ(m). Note that after this transformation, each h̃(m) is a constant for any fixed

β . To explore the best trade-off between the yield and completion time, in our simulations,
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the search of β (from 0.1 to 1.0 with a step size of 0.1) is performed.

With a fixed β , one can solve the integer linear program in Eqn. (3.5). Based on this

solution, the multi-scale placement optimization technique is enhanced to consider the

variations for yield improvement. Recall that in fine-scale tuning, when proceeding to

i-front-line, the technique perturbs the current placement to compute a new placement

solution for the (i+1)-upward module set in the small local region. In contrast to directly

using this new placement solution, the yield of this solution will be computed. If the yield

is greater than the yield constraint, this solution will be taken. Otherwise, the original

solution will be kept. The algorithm will proceed to the next front-line in a similar way.

As the example shown in Figure 3.6, the yield constraint is set to 99%. A fine-scale tuning

solution for 1-upward module-set is computed from a grid-coarsening solution. The yield

of the new solution is less than 99%. Thus, this solution is discarded and the original one

is kept. The algorithm will proceed to the 2-upward module-set in a similar way.

3.5 Simulation Results

In the simulations, the proposed multi-scale integer linear programming based

lab-on-a-chip component placement algorithm is implemented in C++, and is tested on

a computer with 2.5GHz CPU and 4GB main memory. We conduct the simulation on

a set of standard lab-on-a-chip benchmarks used in [3] and compare our new algorithm
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yield < 99%

This solution will be discarded.
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Figure 3.6: An example to illustrate the variation-aware multi-scale
technique.

without considering variations to [3]. We also conduct the simulation to compare our

variation-aware optimization with the variation-unaware optimization. In our simulation,

the yield constraint is set to 99% and Gaussian variation is assumed with the variational

range ĥ set to 0.1 which is equal to 3σ in Gaussian distribution. Note that our proposed

technique could also handle other distributions. Techniques used in comparisons are

summarized as follows.

† NEW: the proposed multi-scale variation-unaware optimization technique.

† NEW w/o Fine-Tune: NEW except that the fine-scale tuning is turned off.

† NEW w/ standard binary solution search: NEW with standard binary solution search

instead of logarithmic scale solution search.

† NEW w/ variations: the proposed multi-scale variation-aware optimization
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technique.

3.5.1 Variation-Unaware Design

We first compare our algorithm with the previous work [3]. The results are summarized

in Table 3.1. Since our algorithm is a multi-scale based technique, it is interesting

to investigate the performance when the fine-scale tuning is turned off, i.e., NEW w/o

Fine-Tune. We make the following observations.

Table 3.1
Comparison of NEW and the previous work [3]. Timing refers to the

overall completion time of the last module in the solution of the
lab-on-a-chip component placement. CPU refers to the runtime in seconds.

Timing reduction refers to the completion time improvement of NEW
which is computed by comparing to the previous work [3].

Testcase Previous work [3] NEW w/o Fine-Tune NEW
Name Area Timing CPU(s) Timing CPU(s) Timing Timing Timing CPU(s) Yield

Constraint Reduction Reduction
vitro1-1 9×9 80 36.8 76 137.7 5.0% 56 30.0% 190.0 0.5%
vitro1-2 8×8 100 20.8 69 95.8 31.0% 54 46.0% 135.5 0%
vitro1-3 7×7 107 31.2 69 209.0 36.7% 54 49.5% 261.0 0%
vitro1-4 6×6 N/A N/A 69 81.8 N/A 54 N/A 109.8 0%
vitro2-1 8×8 78 18.4 47 94.5 39.7% 42 46.2% 101.1 2%
vitro2-2 7×7 64 13.6 45 54.9 29.7% 42 34.4% 65.5 1.5%
vitro2-3 6×6 129 6.8 48 78.0 62.8% 44 65.9% 73.6 1.0%
vitro3-1 7×7 64 9.6 45 22.6 29.7% 44 31.3% 27.0 4.5%
vitro3-2 6×6 63 14.6 47 29.4 35.4% 44 30.2% 34.2 10.5%
vitro3-3 5×5 112 12.6 45 14.6 59.8% 42 62.5% 17.7 0%
Average 44.0% 2.0%

† The previous work [3] cannot always return a solution satisfying the chip area

constraint due to the nature of simulated annealing. It is the case for the benchmark

design vitro1-4. The best design we can get after 20 runs of [3] needs the
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lab-on-a-chip area of 7×6 with completion time 96. This violates the area constraint

of 6×6. Some other results we can get are 9×8×118 and 12×6×72 which violate

the area constraint even more.

† NEW is always able to meet the design constraints. Our solution is much better than

the previous work. On average, the completion time is reduced by 44%. For the

design vitro2-3, 65.9% completion time reduction is achieved.

† The multi-scale technique in NEW consists of grid coarsening and fine-scale

tuning. Note that T is not rounded to the multiple of ρ in the linear programming

formulation. To choose ρ , extensive simulations are performed and the following

parameter setting gives the best tradeoff between solution quality and runtime. We

coarsen the time dimension by a factor of ρ = 8 on t for the first 4 testcases and ρ = 4

on t for the last 6 testcases.

† Fine-scale tuning can significantly improve the solution quality. Comparing NEW

and NEW w/o Fine-Tune, one can achieve up to 1− 56/76 = 26.3% completion

time improvement.

† It can be seen that [3] saves some runtime over NEW, however, its solution quality is

much worse. As mentioned above, the completion time by NEW can be about half of

that of [3] in some testcases. Current lab-on-a-chip design technology is still in the

early stage without very large scale integration. It is the time to compute high quality

design solutions for promoting the technology advances in lab-on-a-chip as much as
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possible. That is, the solution quality, rather than efficiency, is of the top importance.

With regard to the proposed technique, the obtained large improvement in solution

quality clearly outweighs the runtime slowdown.

NEW contains many advanced techniques including logarithmic scale solution search

proposed in [97]. It is interesting to investigate the performance of our algorithm (with

T =
√

T ·T compared to the traditional binary search (with T = T+T
2 ). The results are

summarized in Table 3.2. Note that the solution could be changed compared to NEW

since each time the approximation result to the decision integer linear program may be

different. However, one can see that the solution quality difference is slight, but the runtime

difference is quite significant. For example, the logarithmic solution search runs up to

543.5/135.5 = 4.0× faster for the design vitro1-2.

Table 3.2
The results of NEW w/ standard binary solution search.

Testcase NEW w/ standard
binary solution search

Name Area Constraint Timing CPU(s)
vitro1-1 9×9 54 291.6
vitro1-2 8×8 56 543.5
vitro2-1 8×8 42 219.8
vitro2-2 7×7 44 93.2
vitro2-3 6×6 44 79.8
vitro3-1 7×7 44 35.6
vitro3-2 6×6 44 34.3
vitro3-3 5×5 42 17.8
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3.5.2 Variation-Aware Design

We compare the variation-aware placement with the variation-unaware placement. To

explore the best trade-off between the yield and completion time, a search for the best

solution satisfying the yield constraint is applied by varying the parameter β . The yield

constraint is set to 99%. The results with best β are summarized in Table 3.3, where the

timing increase is computed as the ratio of the completion time of NEW w/ variations over

that of NEW minus 1. From Table 3.1 and Table 3.3, we make the following observations.

Table 3.3
The results of variation-aware optimizations. Timing increase is computed
through comparing the completion time of NEW and NEW w/ variations.

Testcase Variation aware design
Name Area Constraint Timing Timing Increase CPU(s) Yield

vitro1-1 9×9 58 3.6% 2889.2 100%
vitro1-2 8×8 58 7.1% 1933.2 100%
vitro1-3 7×7 60 11.1% 1544.2 100%
vitro1-4 6×6 61 13.0% 1955.3 100%
vitro2-1 8×8 45 7.1% 1690.9 100%
vitro2-2 7×7 47 11.9% 1130.0 100%
vitro2-3 6×6 47 6.8% 931.7 100%
vitro3-1 7×7 45 2.3% 523.4 100%
vitro3-2 6×6 45 2.3% 528.3 100%
vitro3-3 5×5 47 11.9% 275.7 100%
Average 7.7% 100%

† For all testcases, the yields of the variation-unaware design computed by NEW are

very small. For example, the yield of testcase of vitro3-3 is 0, and the largest yield is
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10.5% for testcase of 3-2. The average yield is only 2%. When considering Gaussian

variations, for each module m with an original height of h(m), the variational height

has a possibility of 1
2 to be greater than h(m), which could lead to overlap if the

computed variation-unaware placement is quite compact (i.e., with small amount of

empty space). A rough analysis would then show that the possibility of an overlap

(when considering variations in a variation-unaware placement solution) could reach

1− (1/2)n for n modules. Although this number would not be accurate, one can

get the sense on why the yield is very small. This also demonstrates that without

considering variations, it is difficult to design a high-performance lab-on-a-chip.

† For all testcases, our variation-aware design can satisfy the yield constraint. It

demonstrates that these designs are significantly insensitive to variations, which

means that the NEW w/ variations is effective. On the other hand, the completion

time of the design computed by NEW is smaller than that of NEW w/ variations.

However, the great improvement of the yield outweighs the increase of completion

time.

3.6 Summary

In this chapter, a variation-aware optimization technique is proposed for the lab-on-a-chip

component placement. As a large number of variables and constraints significantly impact
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the efficiency in computation, the multi-scale technique including the grid coarsening and

fine-scale tuning is explored. Meanwhile, since the quality of microfluidic lab-on-a-chip

design is highly dependent on the variations, this chapter designs the variation-aware

technique for lab-on-a-chip component placement using Latin Hypercube sampling

based Monte Carlo simulation. The simulation results on standard benchmark designs

demonstrate that the proposed technique is effective and outperform the state-of-the-art

work, with up to 65.9% reduction in completion time. In addition, our variation-aware

technique can always satisfy the yield constraint with small degradation in completion

time.
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Chapter 4

Physical-Level Synthesis For Digital

Lab-on-a-chip Considering Variation,

Contamination and Defect

4.1 Introduction

As mentioned in Chapter 3, the microfluidic lab-on-a-chip leads to the automation

of laboratory procedures in biochemistry [103, 37]. It gradually replaces traditional

biochemistry procedures and has been widely used due to its advantages in, e.g., sample

holding, reagent mixing, separation and detection etc. [87, 88]. This novel technology has
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been successfully applied in different areas. For example, the microfluidic lab-on-a-chip

is applied in the electrochemical real-time monitoring of glucose and oxygen in [90], and

the development of microfluidic lab-on-a-chip for vitro hepatotoxicity is discussed in [91].

Meanwhile, there are also some works on the human health related research. For example,

the proteomic analysis for cervical cancer based on microfluidic lab-on-a-chips is given

in [29].

The prevailing digital microfluidic lab-on-a-chip is based on the manipulation of discrete

liquid droplets which contain biochemical samples for the reactions [1]. Microfluidic

processing is performed on unit-sized packets of fluid which are transported, stored, mixed,

reacted or analyzed in a discrete manner using a standard set of basic instructions. The

complex procedures, such as chemical synthesis or biological assays, can be built up step

by step. Refer to Figure 1.2 [1, 2, 3, 5]. The nanoliter droplets containing the biochemical

samples are between two electrified plates. Through the systematic electrical signal

programming, the droplets can be transported to the desired places for the biochemical

operations.

It is well known that compared to manual IC design, the computer-aided design (CAD)

methodologies has largely reduced the design efforts of the integrated circuit (IC) design.

CAD methodologies have not been widely used in commercial lab-on-a-chips. Due to the

increasing complexity and decreasing size, it is necessary to apply CAD methodologies

for the large-scale integrated lab-on-a-chip design [1, 93, 5]. As mentioned in Chapter 3,
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in the lab-on-a-chip CAD flow, the lab-on-a-chip placement and routing are the key parts,

which are called physical-level synthesis. Lab-on-a-chip placement is to determine the

physical location and the starting time of each operation such that the overall completion

time is minimized satisfying the precedence constraint, non-overlapping constraint and

resource constraint [5]. Lab-on-a-chip routing is to route the droplets from the source to

the destination to ensure the successful completion of the operations such that the routing

distance is minimized while satisfying timing constraint and fluidic constraint.

This chapter is mainly focused on physical-level synthesis, including both of lab-on-a-chip

placement and routing. Refer to Figure 4.1. Each operation can be treated as a

three-dimensional (3-D) module, decided by x,y and t, where x− y plane is its space

and t is the time duration of this operation. Together with the reconfigurability of

lab-on-a-chips, a 3-D module library can be designed on biochemical operations [1]. These

operations/modules need to be placed at the 3-D space, and the droplets are transported

from the source to destination, where both of the source and destination can be either an

operation or a reservior/dispensing port.

Contamination and defect also need to be considered during lab-on-a-chip physical-level

synthesis [104]. Contamination in lab-on-a-chip is caused by liquid residue of the

transportation between different operations [104]. The contaminated grids usually need

to wait for a certain time before they can be used for routing again. Defect in lab-on-a-chip

is usually due to the lab-on-a-chip manufacturing imperfection, which are affected by
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Figure 4.1: Illustration of lab-on-a-chip placement and routing.

the shrinking processes, new materials and so on [105]. The defective grids can not be

used for routing at any time. Refer to Figure 4.2 for an illustration of contaminated grid

and defective grid. Contamination aware and defect tolerant technique in microfluidic

lab-on-a-chip has attracted much attentions in previous literatures. A contamination aware

algorithm for droplet routing in lab-on-a-chip is proposed in [104]. [106] considers the

cross-contamination problems on pin-constrained lab-on-a-chips during the lab-on-a-chip

design flow. [107] proposes a unified synthesis method that simultaneously consider

defect tolerant architectural synthesis and defect aware physical design for lab-on-a-chip.

[105] designs a defect tolerant methodology based on graceful degradation and dynamic

reconfiguration for lab-on-a-chip design.

On the other hand, the biochemical reaction is sensitive to many variations [36, 34, 5]. For

example, the temperature variations could lead to the operation completion time variation.

[37] mentions that the biochemical operations have variability margins, which can impact
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Figure 4.2: An illustration of routing with timing constraint, considering
contamination and defect. The routing needs to avoid the contaminated grid
and defective grid. The grey route may violate the timing constraint since
the routing length might be greater than tmax, e.g., tmax = 10.

the correctness of the biochemical application. [38] describes that the temperature

environment is significant for the biochemical operations since some DNA would denature

at inappropriate temperature. Thus, the biochemical operation completion time can have

variation which necessitates the lab-on-a-chip routing considering variation. Refer to

Figure 4.3. Without considering variation, a grid which is supposed to be used for routing

may be occupied by the module with variational height, and may lead to the failure of

routing [34, 35]. However, the traditional lab-on-a-chip routing does not consider the

variation. Note that [5] only considers placement with variation, which has impact on

routing, but it neglects the routing.

This is the first work to propose the optimization technique for lab-on-a-chip physical-level

synthesis considering variation, contamination and defect. The main contribution of this
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Figure 4.3: (a) An example of placement and routing. The lower left corner
of a module can be placed at a grid. (b) The module could have variational
height, and is touching with each other. Thus, there is no space for its
routing, which leads to the failure of routing.

chapter is summarized as follows.

† To the best of the authors’ knowledge, this is the first work to consider all the impacts

of variation, contamination and defect in lab-on-a-chip physical-level synthesis.

† It proposes the maze routing based, variation, contamination and defect aware droplet

routing technique, and it seamlessly integrates the routing to the placement technique

in [5]. It improves the placement solution in order to satisfy all the constraints for

routing, which is the main reason for the routing yield improvement. This realizes

the placement and routing co-optimization and enhances the lab-on-a-chip CAD tool.

† The simulation results on a set of standard testcases demonstrate that, without

considering variation, the routing yield is very small which may lead to the failure of

the design. For example, the design of vitro2-1 only has the routing yield of 41.5%.
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† With considering variation, our technique can successfully route the droplets while

satisfying the routing yield constraint. It significantly improves the average routing

yield by 51.2% with only 3.5% increase in completion time.

† There is no violation of using the defective/contaminated grids through the proposed

technique, while the technique without considering contamination and defect uses

17% of the defective/contaminated grids.

The rest of the chapter is organized as follows: Section 4.2 presents the problem

formulation, and gives the definition of the terminologies. It also briefly introduces

the technique proposed for placement in [5]. Section 4.3 proposes our technique for

physical-level synthesis considering variation, contamination and defect. Section 4.4

presents the simulation results with analysis. A summary of work is given in Section 4.5.

4.2 Preliminaries

4.2.1 Problem Formulation

A lab-on-a-chip is to perform biochemical reactions/operations through manipulating

droplets which contain the biochemical reactants. Recall that each biochemical operation

can be considered as a three-dimensional (3-D) module decided by x,y and t, where
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x− y plane is its space and t is its duration. In practice, the movement of droplets is

manipulated at discrete intervals without unexpected overlapping with other droplets, and

the biochemical operations are scheduled at discrete time. Thus, a lattice is laid onto the

3-D space and divides the space to a set of unit grids, which are the lab-on-a-chip routing

grids. The droplets can only be moved through these grids, and a module can only be

placed at a grid. Refer to Figure 4.1 for illustration.

In the lab-on-a-chip placement, it is to determine the physical location and the starting

time of each operation such that the overall completion time is minimized while satisfying

the precedence constraint, non-overlapping constraint and resource constraint. Precedence

constraint defines the temporal relationship between operations through a sequencing

graph. Non-overlapping constraint ensures that no operations can be performed during the

same time period at the same location. Resource constraint is that the operations sharing

some resources can be scheduled at the same time period only if there are enough available

resources [5].

In the traditional lab-on-a-chip routing, given a set of sources and destinations, the droplets

are manipulated to transport from its source to the destination, while satisfying timing

constraint and fluidic constraint. The source and destination can be either a module

or a reservoir/dispensing port. Dispensing port is a place on the chip for some droplet

generation. Timing constraint specifies the maximum timing of a droplet transporting from

the source to the destination [108]. Fluidic constraint states that the minimum spacing
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between two droplets is one grid [108].

As the routing procedure is neglected when performing the lab-on-a-chip placement in

some previous works [3, 5], the placement solution may have no space for routing, which

results in the negative effect on the physical-level synthesis. Figure 4.4 shows such an

example. Thus, if a placement solution has no space to route, one could improve the

placement to make it routable, which means that there is space for routing and the updated

placement satisfies the precedence constraint, non-overlapping constraint and resource

constraint.
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Figure 4.4: An example of non-routable placement solution for testcase
vitro3-1 using [5]. The three grey modules are too close to each other, and
thus the routing might fail.

Given an initial placement solution consisting of a set of modules specified by some
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lengths, widths and heights, and the sources and destinations, our physical-level synthesis

problem without considering variation aims to improve the placement solution to be

routable, and route each droplet from its source and destination, such that the timing

constraint and fluidic constraint are satisfied. In addition, the contamination and defect

also need to be considered during routing.

On the other hand, the biochemical reaction is sensitive to many variations [34]. Thus,

the case that the biochemical reaction completion time can have variation necessitates the

lab-on-a-chip routing considering variation. Since each module can be considered as a 3-D

module as mentioned above, for a module m, it can be decided by l(m)×w(m)× h(m),

where l(m),w(m) and h(m) respectively denote its length, width and height. Note that the

height is the time needed to perform the corresponding biochemical operation. Refer to

Figure 4.3. The completion time variation affects the height of the module h(m). Define

the resultant height to be variational height, denoted by h̃(m). The model in [5] defines

h̃(m) = h(m)+β × ĥ(m), (4.1)

where ĥ(m) is the variational range for the height of the module following Gaussian

distribution, β is a user defined parameter which can adjust the induced variation to the

module, 0 ≤ β ≤ 1. Larger β , larger variation. When β = 0, it leads to a design without

considering variation, and when β = 1, it leads to worst-case design. Note that through

Eqn. (4.1), with any fixed β , the height of module h̃ will be a constant [5]. To explore the
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best tradeoff between the routing yield and CAD design solution quality using different

β , a search needs to be applied through varying β . In our simulation, the search of β is

performed from 0.1 to 1.0 with a step size of 0.1.

Given a physical-level synthesis solution, which consists of the routing solution integrated

with a placement, we call the routing with the placement under an operating condition a

physical-level synthesis sample. Note that in the placement problem in [5], a sample is

only associated with a placement solution, while in our problem, a sample is associated

with a physical-level synthesis solution. Recall that given a large enough number of those

physical-level synthesis samples, routing yield is defined as the ratio of the number of

samples not violating any constraint over the total number of samples. The high routing

yield means that it is good for most operating conditions. In the physical-level synthesis

problem considering variation, a routing yield constraint is given, which is between 0%

and 100%, and one targets to compute a physical-level synthesis solution satisfying the

routing yield constraint. It is also clear that the variation is different from contamination

and defect. Our problem is formulated as follows.

Physical-Level Synthesis For Lab-on-a-chip Considering Variation, Contamination

and Defect: Given an initial placement solution consisting of a set of modules specified by

lengths, widths, and variational heights, and the sources and destinations, our physical-level

synthesis problem aims to improve the placement solution to be routable, and decide the

transporting route for each droplet from its source to the destination such that the timing
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constraint, fluidic constraint and the routing yield constraint are satisfied, while avoiding

the defective and contaminated grids.

4.2.2 Multi-Scale Technique For Placement Considering Variation

Chapter 3 introduces the multi-scale variation aware technique for placement. We first

briefly overview it since our technique will be seamlessly integrated to the initial placement

solution using its technique, which is also introduced in [5]. Recall that [5] only considers

variation aware placement but not routing.

In Chapter 3, the placement problem is defined as follows. Given a set of 3-D modules,

each of which is specified by some length, width, and variational height, and a fixed die

area, to decide the physical locations of the module with minimum overall completion

time such that the non-overlapping, resource and scheduling constraints are satisfied, and

the placement yield constraint is also satisfied. Note that placement yield in [5] refers to

the ratio of the number of placement samples not leading to any overlap over the total

number of placement samples. This placement yield is different from our routing yield.

In its proposed technique, the lab-on-a-chip placement problem is formulated as an integer

linear programming (ILP) problem. A lattice is laid onto the 3-D space and divides the

space to a set of unit grids. The left lower corner of each module will be placed at one

and only one grid, satisfying all the constraints. Each grid can be occupied by no greater
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than one module. In the ILP in [5], there are a large number of variables associated with

grids, modules and constraints. Refer to [5] for details of the ILP formulation. Given a

large lab-on-a-chip, the ILP may contain too many variables and constraints, which largely

degrades the efficiency in computation [5]. Thus, the multi-scale technique consisting

of grid coarsening for speedup and fine-scale tuning to improve the completion time is

proposed.

4.2.2.1 Grid Coarsening

In the original ILP, the lower left corner of each module allows to be placed at any grid, as

long as the constraints are satisfied. In grid coarsening, the grid size is coarsened by a factor

of κ , which means that the modules are only allowed to be placed at the grid location with

the coordinates of a multiple of κ . For example, if set κ = 4 along t-dimension, the modules

can be only placed at a coordinate of 0,4,8,12 . . . along t-dimension. The coarsening of

other coordinate is the same. Refer to Figure 4.5(a) for illustration. There is a tradeoff

between the runtime and solution quality.

4.2.2.2 Fine-Scale Tuning

Fine-scale tuning is utilized to recover the solution quality loss in grid coarsening. Take

t-dimension for example. After grid coarsening, the ILP is solved and a coarsened
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placement solution can be obtained. The solution quality may be negatively impacted

by grid coarsening. However, refer to the example of coarsened placement solution in

Figure 4.5(a). Some modules may be able to be pushed down to improve solution quality.

Thus, a set iterations of tuning is performed. Suppose the lower left corner of a module is

placed at i ·κ in t-dimension. Define the local region of this module to be between (i−1) ·κ

and i ·κ in t-dimension, where i is an integer and i ≤ 1. For example, the local region of

module 5 in Figure 4.5(a) is between 0 and 4 in t-dimension. For the i-th iteration, define

all the lines at i ·κ in t-dimension the i-th front line. In the i-th iteration, the modules whose

lower left corners are placed below i ·κ are fixed, and those placed above i ·κ will search a

location with smaller completion time in their local region while satisfying all constraints.

Consider Figure 4.5 as an example. In the first iteration, module 1, module 2, module 3

and module 4 are fixed as the coarsened placement solution and the other modules will be

tuned. Each front line will be handled in an iteration, until all front lines are handled. An

improved placement will be obtained. Refer to [5] for details.

4.3 Proposed Physical-Level Synthesis Technique

Considering Variation

A novel optimization technique for lab-on-a-chip physical-level synthesis considering

variation, contamination and defect is proposed. There are two key parts in our technique.
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Figure 4.5: (a) An example of grid coarsening of t-dimension, with κ =
4. For simplicity, the illustration is in 2-D, i.e., x and t coordinates. (b)
A possible fine-scale tuning solution for (a). The total completion time is
reduced.
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Figure 4.6: Two different fine-tuned solutions show that placement and
routing interacts with each other during fine-tuning procedure. (a) An initial
routing and placement solution. (b) One possible fine-tuned solution. (c)
The other possible fine-tuned solution.

It considers variation to satisfy the routing yield constraint, and also handles contamination

and defect. It is seamlessly integrated to the placement technique, which enhances

the lab-on-a-chip CAD tool. Note that in the physical-level synthesis, the routing and

placement largely impact each other, and our technique performs routing during placement

optimization procedures in order to improve the solution. Figure 4.6 shows an example that
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the placement and routing interacts with each other during fine-tuning. Figure 4.7 gives the

flow chart of the algorithm. Basic routability check is to check whether the grid coarsening

placement solution has space for routing and satisfies all the constraints for placement. If

not, the perturbation will be performed to make it pass the basic routability check.START
Start front line based physical-level synthesisAfter each front line i, check the routability

Yes Discard this solutionNoPerform routing for next front line

A grid coarsening placement solution

Routable?All constraints satisfied?(e.g., yield constraint)Yes
All front lines are handled?Keep this solution No

Output the solution of physical-level synthesis considering variationNo

Basic routibility checkYes PerturbationNo

Yes
END

Figure 4.7: The flow chart of the proposed physical-level synthesis
algorithm considering variation.
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4.3.1 Maze Routing For Lab-on-a-chip Routing Considering

Contamination and Defect

Maze routing is a standard technique in VLSI CAD design, and it has also been used for

biochip routing, such as [109, 104, 110]. Maze routing divides the entire routing space as

a set of unit grids, and parts of which might be blocked or already occupied by the existing

routes. It continues to increase the concentric circles centering at the source until one

circle reaches the destination. A path can be then obtained by counting downward through

the circles [111]. If each grid is associated with a weight, the maze routing is also able

to compute a minimum weight route. Figure 4.8 illustrates the maze routing procedure.

For simplicity, it is a 2-D maze routing, and each grid is with equal weight except the

blocked/occupied grids. Starting at the source, the radius of the circles grows from 1 to

8 until the circle reaches the destination. Tracing back in a circular fashion, a minimum

weight route can be obtained. [110] also utilizes maze routing for lab-on-a-chip routing.

However, it does not consider variation, contamination and defect.

In our problem, given a source and a destination, 3-D maze routing is utilized to compute

the route. Each grid in the 3-D space is associated with an equal weight unless specified.

If the grid is occupied by a module or an existing route, a very large weight will be then

assigned such that no other route through this grid will be the minimum weight route. A

route with the minimum weight among all possible routes will be chosen as the best/shortest
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Figure 4.8: An illustration of 2-D maze routing (x and y coordinates).
S denotes source, and D denotes destination. S and D could be
lab-on-a-chip module 1 and lab-on-a-chip module 2. A black grid denotes a
blocked/occupied grid. Each grid is with a unit weight except that the black
grids are with a weight of g. It shows a possible minimum weight route
from the source to the destination. It needs 8 grids to route from the source
to the destination.

route for transporting the droplet. Note that in our case there is a restriction, i.e., when route

along the t-dimension, it chooses the route from down to up, but not up to down. This is

due to that t-dimension represents the time.

The proposed technique can handle the fluidic constraint. Recall that fluidic constraint

states that the minimum spacing between two droplets is one grid. When a route is chosen

to transport the droplet, all the grids adjacent to the grids on this route will be assigned

with a very large weight. It guarantees that these grids will not be chosen any more such

that the fluidic constraint is satisfied. The proposed technique can also handle the timing
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constraint. Given the timing constraint tmax, when routing length in a route is greater than

tmax, this route will be discarded. Refer to Figure 4.2. There are two routes from module

1 to module 2, i.e., the black one and the grey one. The grey one may violate the timing

constraint since the routing length might be greater than tmax. Thus, the grey one will not

be kept.

The proposed technique can handle the contamination and defect. Given a set of defective

grids with certain coordination x,y in the lab-on-a-chip, these grids can not be used for

routing for all the time, i.e., any possible t. Given a set of contaminated grids with certain

coordinations, these grids need to be disable for routing for a certain time. For example,

a contaminated grid is at {x,y, t}, and the wash time to clear the contamination is tc, then

the grids {x,y, t},{x,y, t + 1}, . . . ,{x,y, t + tc} cannot be used in the routing. Thus, the

proposed technique will assign a very large weight to these grids to avoid these grids.

Refer to Figure 4.9 for an example. In this example, the contaminated grid can not be used

in routing for at least 2 time units, and the defective grid can not be used in routing at all.

4.3.2 Physical-Level Synthesis Considering Variation

Recall that multi-scale optimization technique including grid coarsening and fine-scale

tuning in [5] only considers placement. In fine-scale tuning for placement, the modules

below the current front line are fixed, and the modules above the current front line can
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Figure 4.9: An example to illustrate the defective grid and contaminated
grid in 2-D, i.e., x and t coordinates.

explore better placement in their local regions. The above procedure neglects the routing,

and it may result in the negative effect on physical-level synthesis. That is, it may have

no space for routing, which makes the synthesis fail. Based on the initial placement

solution using [5], our synthesis technique seamlessly integrates routing to the multi-scale

optimization technique for placement. Considering variation, it largely enhances the design

technique to be aware of routing yield during routing and placing.

At a high level, our technique for physical-level synthesis performs routing in each front

line based iteration of the fine-scale tuning while considering the constraints. The route

ordering for each pair of modules is according to the topological order in the precedence
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Figure 4.10: Different module variational heights result in different
physical-level synthesis samples of the fine-tuned solution based on initial
solution in Figure 4.6(a). (a) A fine−scale tuning solution for Figure 4.6(a),
and sample 1 of routing and placement. It satisfies the timing constraint and
fluidic constraint. (b) Sample 2 violates the fluidic constraint. (c) Sample
3 has no space for routing. (d) Sample 4 satisfies the timing constraint and
fluidic constraint.

graph. If the fine-scale tuned design for i-th front line is routable such that all the constraints

are satisfied, the fine-scale tuned solution is taken instead of the original design. Otherwise,

this solution will not be taken. Due to that [5] does not consider routing, it could happen

that even before fine-scale tuning, the design is not routable. In this case, some perturbation

of the modules will be performed to make it routable. For example, move up some

modules, or, switch two of the modules as long as all the constraints are satisfied. In this

fashion, it guarantees that the design using our technique has space to route and satisfies all

constraints. After the last front line, the last feasible solution is returned as the solution.

In detail, the initial coarsened placement is utilized as the input. The basic routing check

is first performed to see whether it is routable. If not, some perturbation of the modules

will be performed to improves it to be. In our simulation, it moves up some adjacent

modules, or moves some adjacent modules parallel to other unoccupied space with the
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same t-dimension, by which those modules are not adjacent to others. After that, it starts

with the 1st front line. The modules whose lower left corner below the 1st front line are

fixed as in the initial coarsened solution, and the others will search a better placement in

their local region. The routing will be performed after the search. If the resulting routing

can satisfy the fluidic constraint, timing constraint as well as the routing yield constraint,

this solution will be kept. Otherwise, this solution will be discarded. It will then proceed

to next front line, i.e., 2nd front line. The above procedures are iterated until all the front

lines are processed. A synthesized solution with the routing and tuned placement can be

obtained, which guarantees that all the constraints including the routing yield constraints

are satisfied. Figure 4.11 shows the detailed flow.

The routing yield constraint is checked during fine-scale tuning to consider variation as

follows. To evaluate routing yield, the technique of Latin Hypercube sampling is utilized.

Refer to Section 4.3.3 for the details. Given a certain physical-level synthesis solution, a

number of values with the module variational heights are generated according to Gaussian

distribution. Some variational heights would lead to the failure of the design due to that a

grid initially assigned for the routing may be occupied by the module. Refer to Figure 4.3

for an example. Thus, the routing yield is the ratio of the number of samples with successful

routing over the total number of samples. When a new solution is obtained after proceeding

to i-th front line, the routing yield of this design will be computed. The routing yield

constraint is that, if the routing yield is greater than the user defined number, e.g., 99%, this

solution is taken, and the algorithm proceeds to next front line. Otherwise, this solution will
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Start front line based physical-level synthesisPerform fine-scale tuning for each front line iA fine-tuned placement solution

Latin Hypercube sampling to generate a number of samples
Keep this solution

Has space to route?

Discard this solution

NoCompute a routing solutionYes
Satisfying fluidic constraint and timing constraint?Yes

Satisfying routing yield constraint? No
All front lines are handled?Output the solution of physical-level synthesis considering variationYes

Proceed to next front line

No
END

Figure 4.11: The detailed flow chart of our front line based physical-level
synthesis.

be discarded and the previous solution is kept. The algorithm will proceed to (i+1)-th front

line similarly. Consequently, this technique guarantees that after each round of fine-scale

tuning, the design always satisfies the routing yield constraint. Refer to Figure 4.10 for an

illustration. A fine-scale tuning solution is computed from a grid coarsening solution in

Figure 4.6(a). Suppose that there are totaly 4 physical-level synthesis samples due to the
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different module variational heights. 2 samples violates the constraint. Thus, the routing

yield will be only 50%, which is less than 99%. Thus, the routing yield constraint is not

satisfied and this fine-tuned solution will be discarded.

4.3.3 Computation of Routing Yield Using Latin Hypercube Sampling

Latin Hypercube sampling technique is first proposed in [100] and has been often utilized

in analysis with uncertain data. Take two-dimensional Latin Hypercube sampling as an

example. The range of each variable is divided to bins with equal probability. For each bin,

a sample value for this variable is generated. As shown in the example in Figure 4.12, it

has two variables, and there are five bins for each variable. It only needs five samples

to well cover the whole space. The advantage of Latin Hypercube sampling is that it

only needs a small number of samples while maintaining the same accuracy. The Latin

Hypercube sampling is used for routing yield estimation. With a certain physical-level

synthesis solution, a set of sample values for the module variational heights are generated

based on Latin Hypercube sampling according to Gaussian distribution. These variational

heights result in different physical-level synthesis samples and are utilized to compute the

routing yield.
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Figure 4.12: An example to illustrate Latin Hypercube sampling. Green
grids represent the probability density, blue grids represent the intervals with
equal probability, and red points are Latin Hypercube samples.

4.4 Simulation Results

In the simulation, the proposed technique considering variation is implemented in C++,

and tested on a Pentium IV machine with 1.86GHz CPU and 3GB main memory. We

conduct the simulation on a set of standard testcases used in [5, 3]. We would like to

compare our simulation results with the previous works. However, since this is the first

work for lab-on-a-chip physical-level synthesis considering variation, contamination and

defect, there is no previous work for comparison. Thus, a set of simulations of the design

without considering variation are also conducted. Recall that the routing constraints include

fluidic, timing and routing yield constraints, and the placement constraint includes the
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non-overlapping, resource and scheduling constraints. Denote the proposed technique

considering variation by ROUTE with V. Denote the technique without routing yield

constraint by ROUTE without V. A set of simulations considering contamination and defect

are performed to show that the proposed technique can well handle them. Denote our

technique considering contamination and defect by ROUTE with V, D/C.

In the simulation, Gaussian distribution is utilized for variation distribution. Note that we

could also use other distributions. The σ in Gaussian distribution is set to 1/30. Thus, 3σ

is 10% and the variational range ĥ is set to 10% of h. It coarsens the time dimension by a

factor of κ = 12 on t for the first 4 testcases and κ = 4 on t for the last 6 testcases, since

this setting obtains the best tradeoff between runtime and solution quality. The simulation

results of the comparison between ROUTE without V and ROUTE with V are summarized

in Table 4.1. Table 4.2 shows the worst case design.Figure 4.13 illustrates one routing

solution for vitro3-1 using ROUTE without V and one using ROUTE with V. The following

observations can be obtained.

† Without considering variation, the optimization solutions using both of

ROUTE without V and ROUTE with V are routable. That is, all the droplets can

be transported from their source to destination while satisfying the timing constraint

and fluidic constraint.

† With considering variation, ROUTE with V is always able to satisfy all design

constraints, including routing yield constraint. For example, for the design vitro1-1,
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the routing yield is 100.0%. In contrast, ROUTE without V can not satisfy the routing

yield constraint. For example, for the design vitro1-1, the routing yield is only 15.0%.

Thus, the routing yield improvement of vitro1-1 is as high as 85.0%.

† The average routing yield improvement of all the testcases is 51.2%. The designs

using ROUTE with V satisfying routing yield constraint demonstrates that they are

insensitive to the variation.

† In terms of overall completion time, compared to ROUTE without V, ROUTE with V

computes the solutions with smaller completion time for two testcases, i.e., vitro1-3

and vitro1-4, while ROUTE with V computes the solution with larger completion

time for the other testcases.

† It can be seen that there is a tradeoff between overall completion time and routing

yield. ROUTE without V saves some completion time in the design. However,

the routing yield using it is much worse. Although ROUTE with V may need

more completion time, the average completion time increase is only 3.5%, while

the average routing yield improvement can be 51.2%. Since it is critical to consider

the impact of variation to the biochemical operations, it is worth while to satisfy

routing yield constraint through sacrificing some completion time.

† The routing length for the droplet transportation of ROUTE with V is longer than

that of ROUTE without V. This is due to that considering the variation, the modules

might have larger distance between each other.

† The runtime of ROUTE with V is similar to ROUTE without V. This demonstrates
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that our design with considering variation does not necessarily take more runtime

during the optimization compared to the design without considering variation.

† The result in [5] shows a shorter overall completion time compared to

ROUTE with V. For example, the overall completion time of vitro3-1 using

ROUTE with V is 52 while that in [5] is only 45. However, [5] does not consider

routing at all, and its solution may have no space for routing. Refer to the example

for testcase vitro3-1 shown in Figure 4.4. The placement yield in [5] is only for the

placement. Although the placement yield is 100% for vitro3-1, its routing yield

is close to 0%. We have the similar observations on other testcases. Thus, the

small overall completion time and high placement yield in [5] are not useful for

the physical-level synthesis.

(a) One routing solution
for vitro3-1 using
ROUTE without V.

(b) One routing solution
for vitro3-1 using
ROUTE with V.

Figure 4.13: Routing solution for virtro3-1. The droplets are transported
from the sources to the destinations. A pair of source and destination, and
the corresponding routing are painted by the same color.

To demonstrate that ROUTE with V can handle contamination and defect in the

lab-on-a-chip, we also conduct a set of simulations considering contamination and defect,
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Table 4.1
The comparison of ROUTE without V and ROUTE with V. Compl. time
refers to the overall completion time of the last module in the solution of

the lab-on-a-chip placement and routing. R. length is the total routing
length which is the total number of grids needed for the transportation of

droplets in this design. R. yield is routing yield. CPU refers to the runtime
in seconds. Compl. time increase is computed through comparing the

completion time of ROUTE without V and ROUTE with V. R. yield impr.
is the routing yield improvement computed through comparing the routing

yield of ROUTE without V and ROUTE with V.

ROUTE without V ROUTE with V
Testcase Compl. R. R. CPU(s) Compl. R. R. CPU(s) Compl. time R. yield

time length yield time length yield increase impr.
vitro1-1 62 310 15.0% 2666.4 76 316 100.0% 2226.0 0% 85.0%
vitro1-2 62 348 15.0% 2772.9 76 352 100.0% 2355.3 0% 85.0%
vitro1-3 74 340 63.0% 1421.5 73 350 100.0% 1112.8 -1.4% 37.0%
vitro1-4 75 390 64.0% 2625.7 74 401 100.0% 1012.9 -1.3% 36.0%
vitro2-1 49 190 41.5% 3271.8 53 209 100.0% 2499.0 8.2% 58.5%
vitro2-2 48 206 62.5% 2839.4 53 263 100.0% 1663.5 10.4% 37.5%
vitro2-3 48 162 56.0% 1666.8 51 185 100.0% 1801.0 6.3% 44.0%
vitro3-1 52 158 46.0% 653.6 52 182 100.0% 728.2 0% 54.0%
vitro3-2 48 142 69.0% 758.2 53 142 100.0% 716.2 10.4% 31.0%
vitro3-3 48 120 56.0% 648.3 49 122 100.0% 641.3 2.1% 44.0%
Average 3.5% 51.2%

i.e., ROUTE with V, D/C. It arbitrarily selects a set of defective grids and contaminated

grids among all the grids before placement. Subsequently, both of placement and routing

can not use these grids. Table 4.3 summarizes the simulation results. The number of

defective grid is 5 and that of contaminated grid is also 5. Note that other numbers could

also be handled. The following observations can be made.

† The contamination and defect have some impact on the overall completion time of

all the testcases. For example, for the design vitro1-1, the completion time increases

to 77, while the previous completion time without considering contamination and

defect is 76. This is due to that the defective and contaminated grids are arbitrarily
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Table 4.2
The worst case design of ROUTE with V. R. length is the total routing

length which is the total number of grids needed for the transportation of
droplets in this design. R. yield is routing yield.

Testcase Compl. time R. length R. yield
vitro1-1 83 584 100%
vitro1-2 83 584 100%
vitro1-3 102 616 100%
vitro1-4 74 570 100%
vitro2-1 54 261 100%
vitro2-2 67 240 100%
vitro2-3 61 269 100%
vitro3-1 62 222 100%
vitro3-2 64 205 100%
vitro3-3 61 164 100%

generated, and the placement of modules and routing may need more space to avoid

these grids. However, some increase of completion time is reasonable in order to

keep all the modules/operations effective.

† The average violation percentage of ROUTE with V, D/C is 0%, while that of

ROUTE with V is 17%. It shows that most of the routings in ROUTE with V would

fail since the defective/contaminated grids are used. In contrast, ROUTE with V, D/C

avoids using those grids and can obtain the successful solution.

† The routing yield is as good as the previous designs using ROUTE with V which

does not consider the contamination and defect. This demonstrates that our design

considering variation is able to well handle the contamination and defect.

† Since a few grids can not be utilized for routing, they result in the increase of some

routing length.
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Table 4.3
The comparison of ROUTE with V and ROUTE with V, D/C. # of D, C

refers to the number of defective grid and contaminated grid. Compl. time
refers to the overall completion time of the last module in the solution of

the lab-on-a-chip placement and routing. R. length is the total routing
length which is the total number of grids needed for the transportation of

droplets in this design. R. yield is routing yield. Violation percentage
refers to the number of defective/contaminated grids used in the routing

over the total number of defective/contaminated grids.

ROUTE with V ROUTE with V, D/C
Testcase # of Compl. R. R. Violation Compl. R. R. Violation
Testcase D, C time length yield percentage time length yield percentage
vitro1-1 5,5 76 316 100.0% 20.0% 77 513 100.0% 0.0%
vitro1-2 5,5 76 352 100.0% 30.0% 78 547 100.0% 0.0%
vitro1-3 5,5 73 350 100.0% 30.0% 89 535 100.0% 0.0%
vitro1-4 5,5 74 401 100.0% 20.0% 86 552 99.0% 0.0%
vitro2-1 5,5 53 209 100.0% 10.0% 73 321 100.0% 0.0%
vitro2-2 5,5 53 263 100.0% 0.0% 54 257 99.0% 0.0%
vitro2-3 5,5 51 185 100.0% 20.0% 54 286 100.0% 0.0%
vitro3-1 5,5 52 182 100.0% 10.0% 53 215 99.0% 0.0%
vitro3-2 5,5 53 142 100.0% 20.0% 56 174 100.0% 0.0%
vitro3-3 5,5 49 122 100.0% 10.0% 50 154 99.0% 0.0%
average 17.0% 0.0%

4.5 Summary

This is the first physical-level synthesis work for lab-on-a-chip which considers variation,

contamination and defect. It proposes the maze routing based, variation, contamination

and defect aware droplet routing technique, and it seamlessly integrates the routing to

the placement technique in [5]. The simulation results demonstrate that the proposed

technique can route the droplets using a small number of grids considering contamination

and defect. There is no violation of using the defective/contaminated grids through the

proposed technique, while the technique without considering contamination and defect
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uses 17% of the defective/contaminated grids on average. On the other hand, without

considering variation, the routing yield is very small which may result in the failure of

the design. With considering variation, our routing technique can successfully route the

droplets for a set of standard testcases while satisfying the routing yield constraint with

only a little increase of completion time. Compared to that without considering variation,

the average routing yield improvement is as high as 51.2% while the average completion

time increase is only 3.5%.
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Chapter 5

Approximation Scheme For Restricted

Discrete Gate Sizing Targeting Delay

Minimization1

5.1 Introduction

The increasing chip density leads to the extensive use of gate sizing optimization in the

combinational circuit design [39, 40, 41, 42, 43]. Effective algorithms for gate sizing are

1©Springer and the original publisher, Journal of Combinatorial Optimization, vol. 21, issue 4, 2009, pp. 497
- 510, “Approximation Scheme For Restricted Discrete Gate Sizing Targeting Delay Minimization”, Chen
Liao and Shiyan Hu, original copyright notice is given to the publication in which the material was originally
published, by adding; with kind permission from Springer Science and Business Media.
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highly desirable to improve the design quality especially in terms of delay minimization

and power saving. A large multitude of previous works with different objectives have

been designed. The standard gate sizing techniques for exploring delay and power tradeoff

are proposed in [39, 40, 41, 43, 44, 45, 46, 47]. As the extensions to them, gate

sizing techniques considering process variations are designed in [48, 49, 50], gate sizing

techniques for cross-talk noise reduction are proposed in [51, 52], a reliability driven gate

sizing technique is proposed in [54], and a security aware gate sizing technique is proposed

in [55].

Unfortunately, most of the existing techniques such as a Lagrangian relaxation based

technique in [40] and a posynomial programming based approach in [44] can only handle

the continuous gate sizing problem which assumes that gate sizes can be any values within

certain range [56]. This assumption is not realistic since it is difficult and not practical

to manufacture gates with continuous sizes. In practice, only a small set of gate sizes are

available, which imposes a pressing need for the techniques to handle discrete gate sizes.

Precisely, the discrete gate sizing problem is to assign a size to each gate from a given

set of available gate sizes such that the circuit delay is minimized while the cost target

is satisfied. This problem is known as strongly NP-hard [57]. To obtain a discrete gate

sizing solution, rounding the sizes of a continuous solution to discrete sizes is fast and

intuitive. However, it will result in the significant degradation of circuit delay compared

to the obtained continuous gate sizing solution [56, 58]. This motivates some recent

works to design combinatorial algorithms which directly handle discrete gate size, such
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as a continuous solution guided dynamic programming technique in [56], a network-flow

based approach in [59], a parallelization and randomization based technique in [60], and a

multi-dimensional gradient descent based algorithm in [61]. These algorithms are effective,

however, they are all heuristics without any theoretical guarantee on the quality of their

discrete gate sizing solutions. This limits the understanding of the discrete gate sizing

problem in theory.

This chapter aims to deepen the understanding of the discrete gate sizing problem from the

theoretical point of view. Recall that given a minimization problem, an algorithm is said to

approximate the optimal solution within a factor α if this algorithm can always produce a

solution whose objective function value is at most α times the value of the optimal solution.

The problem admits a fully polynomial time approximation scheme (FPTAS) if there is an

algorithm which approximates the optimal solution within a factor of (1+ε) for any ε > 0

and runs in time polynomial in both of the input size and 1/ε .

In this chapter, the first fully polynomial time approximation scheme is designed for the

delay driven discrete gate sizing problem. The algorithm works under the scaling and

rounding framework of [112, 113, 114]. The proposed approximation scheme involves a

level based dynamic programming algorithm which handles the specific structures in gate

sizing problem and adopts an efficient oracle query procedure. It can approximate the

optimal gate sizing solution within a factor of (1+ε) in O(n1+cm2c/εc) time for 0 < ε < 1

and in O(n1+cm2c) time for ε ≥ 1, where n is the number of gates, m is the maximum
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number of gate sizes for any gate, and the constant c is the maximum number of gates per

level. The technique needs the assumption that c is a constant, which is why our algorithm

is said to approximate the restricted discrete gate sizing. Due to the fact that the discrete

gate sizing problem is strongly NP-hard [57], making such an assumption is reasonable.

The rest of the chapter is organized as follows: Section 5.2 presents the notations and

the problem formulation of the discrete gate sizing problem. Section 5.3 proposes our

approximation scheme to solve the discrete gate sizing problem and analyzes the time

complexity and approximation ratio. A summary of work is given in Section 5.4.

5.2 Preliminaries

5.2.1 Notations and Definitions

A combinational circuit can be represented by a directed acyclic graph (DAG). Given a

DAG G = (V, E) with n = |V | nodes, each node corresponds to a gate. Following the

convention of the gate sizing literature, let the primary input gates, denoted by PI, specify

the nodes with zero in-degree, and the primary output gates, denoted by PO, specify the

nodes with zero out-degree. In the gate sizing problem, the arrival times at all primary input

gates are 0. The arrival time of a gate is defined as the time when the current arrives at the

input of the gate, and the gate delay in this chapter is computed according to Elmore delay
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model, i.e., it refers to the product of its resistance and the total capacitance of all its fan-out

gates. The delay of a circuit refers to the maximum arrival time at any primary output gate

of the circuit. Discrete gate sizing is to minimize the circuit delay through appropriately

assigning the gate size at each gate since different gate sizes lead to different delays. Refer

to Figure 5.1. Think of pushing a flow into the primary input gates of G and it goes from

g1 to g3. We call that g1 is upstream to g3, and g3 is downstream to g1. Denote by f in(g)

the set of fan-in (input) gates of gate g and by f out(g) the set of fan-out (output) gates of

gate g. For example, f in(g2) = {g1} and f out(g1) = {g2}. For each gate g, denote by s(g)

the assigned gate size. It needs to be in a set of available gate sizes for g, denoted by S(g).

Denote by m the maximum number of gate sizes for any gate, i.e., |S(g)| ≤ m,∀g.

The circuit will be partitioned by levels. Initially, we would let level-1 gates specify all

the primary input gates and let level-2 gates specify the gates immediately downstream to

level 1 gates. However, since a gate g can be reached through different paths from primary

input gates, it can belong to different levels according to the above definition. Thus, for

each gate, its level is defined as the minimum possible level reachable from any primary

input gate. In addition, for a gate g, if there exists a path from g to any level-i gate g′, the

level of g will be no greater than i, the level of g′. This means that whenever a gate g′ is

included into a level i, we also include all the gates along any path to g′ to level i provided

that they are not yet included in any of the previous levels (level 1,2 . . . , i−1). Denote by

c the maximum number of gates in any level. Our FPTAS needs the assumption that there

are constant gates in each level, i.e., c = O(1). Thus, it is said to approximate the restricted
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discrete gate sizing.

Level 1 Level 2 Level 3 Level 4

g1
g10

g9

g8

g7

g6g5

g4

g3

g2

Level 5

g12

g11

Figure 5.1: Illustration of levels.

It is helpful to look at an example to illustrate the concept of level. Refer to Figure 5.1

where the levels for gates are shown. After g4 is classified as a level-2 gate, g5 would be

classified as a level-3 gate. However, g7 is also classified as a level-2 gate since it connects

to g1 which is a level-1 gate. Backtracking the graph from g7, g6 and g5 can be reached and

they are not yet classified. Thus, they are also included in level 2. The backtracking stops

when a gate with classified level is encountered. The total backtracking time (summing

up backtracking time over all nodes) takes O(|E|) = O(n2) time which will be bounded

by the FPTAS time. In summary, in Figure 5.1, L1 = {g1,g2}, L2 = {g3,g4,g5,g6,g7},

L3 = {g8,g9}, L4 = {g10}, and L5 = {g11,g12}. In addition, c = 5 which is due to the

level-2 gates.

Recall that the circuit delay is defined as the arrival time at any circuit primary output gate.

Since the delay along a path is the sum of delay of each gate along the path, equivalently,
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discrete gate sizing problem is to minimize the longest path delay. In this chapter, the gate

delay is computed using Elmore delay model, which is widely used in VLSI design [115].

The delay of a gate is equal to the product of its resistance and the capacitance of all

its immediate downstream gates. Note that the gate size determines the resistance and

capacitance of a gate, and gate delay is related to the capacitance of its fan-out gates rather

than the capacitance of itself.

Refer to the example in Figure 5.2 for better understanding of the arrival time and gate

delay. Suppose that in the example, g1 is assigned with gate size 2, g2 is assigned with gate

size 5, g3 is assigned with gate size 1, g4 is assigned with gate size 1, and g5 is assigned

with gate size 7. Denote by t(g) the arrival time at the input of a gate g. Recall that the

arrival time of a gate is defined as the time when the current arrives at the input of the

gate. For example, the arrival time at g2 is shown as t(g2) in the figure. Let d(g,s(g))

denote the gate delay of g when g is assigned with gate size s(g). This incorporates

the fact that different gate size assignment will lead to different gate delay. Similarly,

let C(g,s(g)) and R(g,s(g)) denote the capacitance and resistance of gate g when it is

assigned with gate size s(g), respectively. In Figure 5.2, g1 is the primary input gate

which has arrival time 0. The arrival time at g2, i.e., t(g2), is equal to the delay of g1, i.e.,

t(g2) = d(g1,2) = R(g1,2)C(g2,5). t(g3) and t(g4) are both equal to t(g2) plus the delay

of g2, i.e., t(g3) = t(g4) = t(g2)+d(g2,5) = t(g2)+R(g2,5)(C(g3,1)+C(g4,1)). For the

gate with in-degree greater than 1, the maximum arrival time needs to be taken to guarantee

the worst-case circuit performance. For example, t(g5) = max{t(g3) + d(g3,1), t(g4) +
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d(g4,1)}= max{t(g3)+R(g3,1)C(g5,7), t(g4)+R(g4,1)C(g5,7)}.

g1 g5

g4

g3

g2

t(g2)d(g1)

Figure 5.2: Illustration of gate delay d and arrival time t.

On the other hand, the circuit cost will be also impacted by gate size assignment. Each gate

g at size s is associated with a cost w(s(g)). The cost of a set of gates is defined as the sum

of costs of all gates. The cost constraint W says that the sum of costs of all gates in G needs

to be less than or equal to W .

The following notations will be used in our FPTAS design. Let T ∗ denote the delay of the

optimal gate sizing solution. Let T and T denote certain upper bound and lower bound

on T ∗, respectively. Various techniques can be used to obtain T and T . For example, T

can be obtained from always using the largest capacitance and the largest resistance at any

gate (even if they belong to different sizes), ignoring the cost constraint. Similarly, T can

be obtained from always using the smallest capacitance and the smallest resistance at any

gate, ignoring the cost constraint. T and T can be certainly computed in linear time through

evaluating the circuit delay (by a traversal) in each case. Note that although the real lower

bound and upper bound may be different, the bounds make sense due to that the optimal

solution must be in this range and can be searched out. On the other hand, as our FPTAS is
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independent of T and T , it is not important to design techniques which can generate tighter

upper or lower bounds.

Some notations frequently used in this chapter are summarized as follows.

† n: the total number of gates.

† m: the maximum number of gate sizes for any gate.

† c: the maximum number of gates in any level.

† T ∗: delay of the optimal discrete gate sizing solution.

† T : a lower bound on T ∗.

† T : an upper bound on T ∗.

† t(g): the arrival time at the input of a gate g.

† Li: the set of gates in level i.

5.2.2 Problem Formulation

Discrete Gate Sizing Problem: Given a DAG G = (V, E), and a set S(g) of available gate

sizes for gate g, to compute a gate size assignment at each gate in G from the available

gate sizes such that the arrival time at any primary output gate (circuit delay) is minimized

while the cost constraint W is satisfied.
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Instead of enumerating all paths to obtain the circuit delay, the discrete gate sizing problem

is usually formulated to a mathematical programming problem as follows [56].

min T

s.t. ∑∀gi w(s(gi))≤W ,

t(gi)≤ T,∀gi ∈ PO

t(gi)+d(gi,s(gi))≤ t(g j),∀gi ∈ f in(g j),

d(gi,s(gi)) = R(gi,s(gi))∑∀g j∈ f out(gi)C(g j,s(g j)),

0≤ t(gi),∀gi ∈ PI

s(gi) ∈ S(gi),∀gi.

(5.1)

It is clear that the delay of a gate depends on the gate size assignment on its immediate

downstream (fan-out) gates and the arrival time at a gate depends on the gate assignments

of all the gates along any path from primary input gates to the gate.

Note that as the same as many previous works, the objective of our discrete gate sizing

problem is to minimize the longest path delay. With more than one paths in a combinational

circuit, the path with the largest delay is defined as the critical path, and its corresponding

delay is equivalent to the circuit delay T .
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5.3 The Discrete Gate Sizing Algorithm

5.3.1 Overview of the Algorithm

Our FPTAS is motivated from [116, 117] and it works under the framework of the classic

scaling and rounding based FPTAS design [112, 113, 114]. In contrast to discrete gate

sizing problem, [116, 117] consider different problems, namely, the minimum cost delay

driven buffering problem and layer assignment problem. Although the new technique

shares some common features with [116, 117] in appearance, there are underlying

difference between their technique and our technique. In particular, [116, 117] can only

handle tree topology while our discrete gate sizing technique needs to handle DAG which

is a larger class of graphs. Due to this, a level based dynamic programming technique is

proposed in this work.

At a high level, the FPTAS works in the framework of [112, 113, 114]. Recall that T ∗

denote the circuit delay of the optimal gate sizing solution. The algorithm first makes a

guess on T ∗. Denote the guessed value by T . Subsequently, check whether the guessed

value T is a good guess, namely, whether it is sufficiently close to (at most ε away from)

the optimal cost T ∗. If T is a good guess, the corresponding discrete gate sizing solution

will be returned as an approximate solution which is at most ε away from the optimal
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solution. Otherwise, the other guess is made. This process is repeated until a good guess is

obtained.

There are two major algorithmic design issues with the above flow. First, since the optimal

solution is not known, how can we tell whether a solution is sufficiently close to the optimal

solution? Second, how can we effectively make the new guess to reduce the total number

guesses if the current guess is not good? Certainly, one should utilize the information from

the previous guesses in generating a possibly good new guess.

For the first issue, a procedure called oracle is used to check whether a solution is good.

That is, the oracle can approximately decide whether T ∗ ≥ T for any positive number T

efficiently. Once we have the oracle in hand, the second issue can be handled by efficient

search using oracle. For example, one could perform a binary search between the upper

and lower bounds of T ∗ using the oracle. However, this kind of technique cannot be used in

designing the FPTAS since the number of iterations for binary search depends on the initial

bounds. If the range between them is unbounded, the FPTAS will run in unbounded time.

Thus, an efficient bound independent oracle based search technique proposed in [113] is

used in this chapter.
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5.3.2 Oracle Construction

5.3.2.1 Level Based Dynamic Programming

We begin with describing how to construct the oracle. The key part of the oracle is a level

based dynamic programming algorithm which can efficiently tell either (1+ ε)T ≥ T ∗ or

T < T ∗ for any T > 0. The efficiency is achieved by effectively pruning inferior solutions

to make the number of solutions polynomially bounded during dynamic programming. By

the proposed level based dynamic programming, the following lemma can be reached.

Lemma 1: Given any T,ε > 0, the level based dynamic programming algorithm can

compute a solution with the delay at most (1+ ε)T , or report that there is no solution

which can have delay no greater than T , in O(nm2c · (n/ε)c)) time, where n is the number

of gates, m is the maximum number of gate sizes for any gate and the constant c is the

maximum number of gates per level.

Proof: Let Vi denote the set of all the gates up to level i in G. A gate sizing solution on Vi

refers to a gate size assignment on gates in Vi. We call such a solution a level-i solution,

denoted by γ(Vi). Given a level-i solution γ(Vi), to model the impact to the next level gates,
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it is characterized by

(Vi, t(g1),s(g1), t(g2),s(g2), . . . , . . . , t(gk),s(gk),w(Vi)), (5.2)

where Li = {g1,g2, . . . ,gk}. This means that for any gate g ∈ Li, the solution is

characterized by the arrival time t(g) at g when it is assigned to the size of s(g).

Further, the solution characterization also includes the cumulative cost so far, denoted

by w(Vi). It is computed as the sum of costs for all the gates in Vi, i.e., w(Vi) =

∑w(s(g)),∀g ∈ Vi. It can be easily seen that a solution is uniquely characterized as in

Eqn. (5.2). Further, if there are multiple solutions having the same characterization on

Vi, t(g1),s(g1), t(g2),s(g2), . . . , . . . , t(gk),s(gk), only one of them (with smallest cumulative

cost w(Vi)) needs to be maintained in the dynamic programming and all others are called

redundant which can be pruned for acceleration. Note that the cumulative cost w(Vi) is

the total cost of the set of all gates up to level i, and {g1,g2, . . . ,gk} are the set of gates in

level i. The level based dynamic programming begins with the primary input gates, i.e.,

L1. For each gate g in L1, for any size, the arrival time at the input of g is always 0 since

it is a primary input gate. For any solution, its cumulative cost can be easily computed by

summing up the costs of all gates in L1 (under the gate size assignment of the solution).

Since there are at most m gate sizes for any gate and at most c gates per level, there are at

most O(mc) solutions for V1 (V1 = L1).

The level based dynamic programming then proceeds to the second level gates, i.e., L2. For
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a solution γ1(V1), we grow it to incorporate the gate size assignment on all level-2 gates.

For this, all the possible sizes of level-2 gates are enumerated and a solution is generated

from γ1(V1) per combination. Since there are at most m gate sizes for any gate and there are

at most c gates per level, there will be at most mc new solutions generated from a solution

γ1(V1). This is also the case for other level-1 solutions γ2(V1),γ3(V1), . . .. Totally, there

would be O(mc ·mc) = O(m2c) level-2 solutions.

If this process is continued, the number of solutions would be exponential in terms of the

number of levels which is O(n). On the other hand, there are at most O(mc) possibilities

on gate size assignment for the gates in L2. If we are able to polynomially bound the

number of possibilities on arrival times for all gates in L2, the number of solutions can be

polynomially bounded. This is due to the following fact. For two solutions with the same

gate size assignment and the same arrival time at every gate in L2, we only need to pick

the solution with smaller cumulative cost (in case of tie, arbitrarily pick one) to propagate

in dynamic programming since both solutions have the same impact to the downstream

gates except the cumulative cost. This motivates us to use the classic rounding technique

to bound the number of possibilities on the arrival time for all gates in L2.

Given a solution, for each gate gi ∈ L2, round down its arrival time t(gi) to be the

nearest multiple of T ε/n, i.e., t(gi) = ⌊t(gi)/(T ε/n)⌋ ·T ε/n. Recall that T is the guessed

circuit delay and we are only interested in whether there is a solution with circuit delay

(approximately) upper bounded by T . Thus, if there is any solution with the arrival time at
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any gate larger than T , the solution will be pruned. Due to this, at any gate, there can be

at most n/ε distinct arrival times after rounding. Thus, after processing the level-2 gates

and the rounding procedure, there can be at most O(mc · (n/ε)c) solutions (mc distinct gate

sizes for L2 and (n/ε)c distinct arrival times for L2).

It is helpful to see an example to illustrate the above process. Refer to Figure 5.3 where two

solutions are presented. In Figure 5.3, [a,b] to the left of a gate g means that its rounded

arrival time is a and its gate size is b. The two solutions are level-3 solutions and their

gate size assignments at every level-3 gate are the same. Suppose that after rounding, both

solutions have the same arrival time at every level-3 gate. Since the second solution has

larger cumulative cost w(V3) = 12, it will be pruned.

2

5

1

1

1

5

1

5

Solution 1

Solution 2

[7,1]

[10,5]

[7,1]

[10,5]
Cumulative 

cost = 9

Cumulative 

cost = 12

Figure 5.3: An example of pruning where solution 2 is inferior to solution
1.
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Suppose that both level-1 gates and level-2 gates have been processed in the above fashion,

the level based dynamic programming proceeds to level-3 gates. For each of the O(mc ·

(n/ε)c) level-2 solutions, it can generate at most O(mc) level-3 solutions. Totally, there

would be O(mc · (n/ε)c ·mc) solutions. Subsequently, the rounding procedure is performed

and at most O(mc ·(n/ε)c) solutions will be kept after rounding. In general, one can see that

there are at most O(mc) distinct gate sizes and O((n/ε)c) distinct arrival times for any level.

Consequently, the number of solutions at any level is always bounded by O(mc · (n/ε)c)

after rounding.

In this fashion, the level based dynamic programming proceeds level by level until the last

level is handled. At each level, at most O(mc ·(n/ε)c ·mc) solutions will be generated where

only O(mc · (n/ε)c) of them are not redundant according to rounding. Note that updating

cumulative cost can be easily performed in O(c) time for each solution. The pruning can

be implemented using a multi-dimensional array where each entry links to a solution with

different gate sizes and rounded arrival times for a level. Locating an entry takes O(c) time.

When a new level-i solution is generated, find and compare its cost to the level-i solution

with the same gate sizes and arrival times at all level-i gates. If there is no such solution, link

the solution to the entry. Otherwise, compare the cost to the cost of the existing solution.

If its value is larger, prune the new solution. Otherwise, replace the solution with the new

solution. Thus, the time complexity can be bounded as O(c ·mc · (n/ε)c ·mc) per level and

O(nm2c · (n/ε)c) for all levels, assuming that O(c) = O(1). Note that if T is too small, it

is possible that no solution can be generated at any primary output gate (e.g., at a level, all
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the solutions have delay greater than T and are pruned).

Recall that the delay of a circuit refers to the maximum arrival time at any primary output

gate. Due to the rounding procedure, the obtained circuit delay is not accurate. First, it is

a lower bound on the actual circuit delay since only down-rounding is performed. Thus, if

the dynamic programming technique cannot find a solution which has delay no greater than

T , there is no solution which can have the delay no greater than T with unrounded delay

at each gate. Second, since the rounding error in delay for each gate is bounded by T ε/n

which is our rounding factor, together with the fact that there are at most n gates along any

path between a primary input gate and a primary output gate, the rounding error for the

whole circuit is bounded by T ε . This means that if a solution has the circuit delay of T , its

actual circuit delay without rounding is bounded by (1+ ε)T .

5.3.2.2 Oracle Construction

The oracle will decide whether either (1+ ε)T ≥ T ∗ or T < T ∗ for any T > 0. For this,

the oracle calls the level based dynamic programming with the input T and ε . If there is a

solution returned, it means that a solution with the circuit delay at most (1+ ε)T has been

obtained. Thus, T ∗ ≤ (1+ ε)T . Otherwise, it means that there is no solution which can

have the circuit delay T . In the first case, the oracle will return TRUE. In the second case,

the oracle will return FALSE.
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5.3.3 The FPTAS

FPTAS works as searching for the best delay T within the lower bound T and the upper

bound T in an iterative manner. None of binary search and logarithmic scale binary search

within these bounds can terminate in time independent of the bounds [113, 116]. If the

range between them is unbounded, the time complexity of FPTAS will be unbounded.

Thus, a technique proposed in [113], which is also used in [116, 117], is adopted to tackle

this difficulty. By the proposed FPTAS, we can reach the following theorem.

Theorem 1: The discrete gate sizing problem can be approximated within a factor of (1+

ε) in O(n1+cm2c/εc) time for any 0 < ε < 1 and in O(n1+cm2c) time for any ε ≥ 1, where

n is the number of gates, m is the maximum number of gate sizes for any gate, and the

constant c is the maximum number of gates per level.

Proof: The idea of the searching technique is that instead of sticking to ε during

optimization, adapting ε can significantly improve the runtime. This is due to the fact

that the time complexity of the dynamic programming algorithm is inversely proportional

to ε . If one sets ε as a geometrically decreasing sequence leading to ε , the total runtime

will be bounded by the last run, independent of the number of iterations and the initial

bounds.

[113] shows that this is possible. The oracle is called iteratively. In i-th iteration, set
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εi =
√

Ti/Ti−1 and Ti =
√

TiTi/(1+ εi). Use Ti and εi as the input to the oracle. Depending

on the binary result of the oracle, either Ti+1 will be updated to (1+ ε)Ti (when the oracle

returns TRUE) or Ti+1 will be updated to Ti (when the oracle returns FALSE). This process

is iterated until Ti/Ti < 2. During iterations, the ratio Ti/Ti will be progressively reduced

as Ti+1/Ti+1 = (Ti/Ti)
3/4 [113]. Note that the total runtime for dynamic programming is

in the form of O(∑i nm2c · (n/εi)
c)) = O(nm2cnc ·∑i(1/εi)

c)). It is shown in [113] that

1/εi < (2+
√

2)
√

Ti/Ti. As a result, the runtime bound becomes O(nm2cnc ·∑i(
√

Ti/Ti)
c).

Since c ≥ 1, O(nm2cnc ·∑i(
√

Ti/Ti)
c) = O(nm2cnc · (∑i

√
Ti/Ti)

c). Together with the fact

that ∑i

√
Ti/Ti = O(1) when setting Ti and εi as above [113], the total time will be bounded

by O(nm2cnc ·O(1)c).

At some point, Ti/Ti < 2. The above iterative procedure terminates. Similar to [112],

the level based dynamic programming is applied using the following setting. For each

gate, its arrival time will be down rounded to the nearest multiple of T ε/n where ε is the

target approximation ratio ε . If its arrival time is greater than Ti, it will be pruned. Thus,

at any gate, there will be at most 2n/ε distinct arrival times. In any level, there are at

most (2n/ε)c possibilities of arrival times. After the whole circuit is processed, pick the

smallest delay Ts with the cost no greater than the cost constraint W to be our solution.

Since arrival time is only down-rounded, Ts ≤ T ∗. Rounding the arrival time of this gate

sizing solution back, the delay is at most (1+ε)Ts ≤ (1+ε)T ∗. This single run of dynamic

programming takes O(nm2c · (2n/ε)c)) time since the only difference from Lemma 1 is

that we can have O((2n/ε)c) possible arrival time combinations at any level instead of
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O((n/ε)c) possibilities. Together with the runtime for the iterative oracle calls, the total

runtime is bounded by O(nm2cnc ·O(1)c +nm2c · (2n/ε)c). This gives an FPTAS when c is

a constant.

The pseudo-code for the algorithm is shown in Algorithm 1, Algorithm 2 and Algorithm 3.

Algorithm 1 Level based dynamic programming.
DP(Tr,T,ε)
// there are l levels in the combinational circuit
i← 1
while i≤ l do

for each level-(i−1) solution do
generate level-i solutions by enumerating all gate size
assignment of level-i gates

end for
for each level-i solution γ do

if the cost of γ is >W then
remove γ

else
for each level-i gate g do

if the arrival time at g is > T then
remove γ

else
round it down to the nearest multiple of Trε/n

end if
end for

end if
if cost of γ is larger than cost of the level-i solution
with the same arrival time at every level-i gate then

remove γ
else

replace the solution with γ
end if

end for
i← i+1

end while
return the best delay solution or no feasible solution
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Algorithm 2 The oracle.
ORACLE(T,ε)
if DP(T,T,ε) returns a solution then

return TRUE
else

return FALSE
end if

Algorithm 3 The fully polynomial time approximation scheme for discrete gate sizing
problem.

FPTAS(T ,T ,ε)
while T/T > 2 do

ε ′←
√

T/T −1
T ←

√
T T/(1+ ε ′)

if ORACLE(T,ε ′) =TRUE then
T ← T (1+ ε ′)

else
T ← T

end if
end while
return DP(T ,T ,ε)

5.4 Summary

Discrete gate sizing is a critical optimization due to its effectiveness in obtaining various

delay and power trade-off in a combinational circuit. However, all of the existing works

are heuristics without any theoretical guarantee on the quality of their gate sizing solutions.

This chapter designs the first FPTAS for the discrete gate sizing problem. Our algorithm can

obtain an approximation within a factor of (1+ε) in O(n1+cm2c/εc) time for any 0< ε < 1

and in O(n1+cm2c) time for any ε ≥ 1, where n is the number of gates, the constant c is

the maximum number of gates per level, and m is the maximum number of gate sizes for
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any gate. The FPTAS needs the assumption that c is a constant. An interesting future work

would be to design an FPTAS with a relaxed assumption.
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Chapter 6

Conclusions

This dissertation considers FRTU installation and VLSI physical design. It proposes

optimization techniques all of them are based on computer aided design. The first part

is feeder remote terminal unit (FRTU) installation considering the security of secondary

distribution network in smart grid. The second part consists of two problems. They are

physical-level synthesis for microfluidic lab-on-a-chip, including lab-on-a-chip placement

and routing, and discrete gate sizing in VLSI circuit.

For the smart grid, a cross entropy based algorithm is proposed to deploy FRTUs in the

primary network considering cybersecurity in secondary distribution network. Compared

to the greedy algorithm which may always violate the constraint, the proposed algorithm

can minimize the cost of the FRTU deployment while satisfying the constraint, i.e.,
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whenever a load is tampered, with the probability of λ , one can locate it within a range

of η loads, where λ and η are user defined parameters.

For the microfluidic lab-on-a-chips, it considers physical-level synthesis. Physical-level

synthesis of lab-on-a-chip includes the lab-on-a-chip placement and routing. Placement

is to determine the physical location and the starting time of each operation such that

the overall completion time is minimized while satisfying the precedence constraint,

non-overlapping constraint and resource constraint. Routing transports the droplets from

the source to the destination such that the timing constraint and fluidic constraint are

satisfied. In this procedure, variation, contamination and defect need to be considered. This

thesis proposes the first optimization technique based on CAD for physical-level synthesis

work which considers variation, contamination and defect of the lab-on-a-chip design.

It also proposes maze routing based, variation, contamination and defect aware droplet

routing technique, and it seamlessly integrates the routing to the placement technique in [5].

The proposed technique improves the placement solution for routing, which may initially

have no space for routing, and achieves the placement and routing co-optimization while

resisting the negative impact of variation, contamination and defect.

For discrete gate sizing problem, this thesis aims to deepen the understanding of the

discrete gate sizing problem from the theoretical point of view. It designs the first fully

polynomial time approximation scheme (FPTAS) for the delay driven discrete gate sizing

problem. The proposed algorithm can obtain an approximation within a factor of (1+ ε)
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in O(n1+cm2c/εc) time for any 0 < ε < 1 and in O(n1+cm2c) time for any ε ≥ 1, where

n is the number of gates, the constant c is the maximum number of gates per level, and m

is the maximum number of gate sizes for any gate. The FPTAS needs the assumption that

c is a constant. An interesting future work would be to design an FPTAS with a relaxed

assumption.
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