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Abstract 
 

The loss of prestressing force over time influences the long-term deflection of the 

prestressed concrete element. Prestress losses are inherently complex due to the interaction 

of concrete creep, concrete shrinkage, and steel relaxation.  Implementing advanced 

materials such as ultra-high performance concrete (UHPC) further complicates the 

estimation of prestress losses because of the changes in material models dependent on 

curing regime.   

Past research shows compressive creep is “locked in” when UHPC cylinders are subjected to 

thermal treatment before being loaded in compression. However, the current precasting 

manufacturing process would typically load the element (through prestressing strand release 

from the prestressing bed) before the element would be taken to the curing facility.  

Members of many ages are stored until curing could be applied to all of them at once.  This 

research was conducted to determine the impact of variable curing times for UHPC on the 

prestress losses, and hence deflections.   

Three UHPC beams, a rectangular section, a modified bulb tee section, and a pi-girder, were 

assessed for losses and deflections using an incremental time step approach and material 

models specific to UHPC based on compressive creep and shrinkage testing.  Results show 

that although it is important for prestressed UHPC beams to be thermally treated, to “lock 

in” material properties, the timing of thermal treatment leads to negligible differences in 

long-term deflections.  Results also show that for UHPC elements that are thermally treated, 

changes in deflection are caused only by external loads because prestress losses are “locked-

in” following thermal treatment.



1 

 

Chapter 1 Introduction and Motivation 

1.1 Background 
 

Prestressed concrete was the most significant change in building materials at the beginning 

of the 20th century, allowing engineers and architects to test the structural limits of concrete 

construction.  Longer spans and more efficient shapes pushed the realm of possibility for 

designers.  The first engineer to present the idea of prestressing concrete was P.H. Jackson 

in 1888 (Dinges 2009).  Unfortunately, the lack of high strength steel prevented the idea 

from becoming much more than that.  

  

Eugene Freyssinet further pursued the idea of prestressed concrete and patented the idea in 

1928. During the following years, Freyssinet stated the need for high strength materials to 

overcome the loss of tension in the prestressing steel.   He was the first engineer to 

recognize that concrete creep influenced prestress losses. Although Freyssinet patented the 

idea, prestressed concrete was brought to a halt by the lack of funding and advanced 

materials needed to promote the concept (Dinges 2009). 

  

Gustave Magnel, a research professor in Germany during World War II, was able to perform 

full scale testing on prestressed beams and further develop the concept with relation to 

material properties.  He proved that prestressed losses had a very important impact on 

prestressed concrete design.  At the end of the war, Magnel successfully began using 

prestressed concrete in bridges and other infrastructure that was used to rebuild Europe.  In 
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1951, with Magnel as the chief designer, the Walnut Lane Bridge was the first prestressed 

concrete bridge completed in the United States. (Dinges 2009)  

Figure 1.1 depicts the concept of prestressing. Part A of the figure shows the concrete 

element in the prestressing bed where the section is cured until the concrete can withstand 

the required stresses brought on by release of prestressing strands. Part B depicts the beam 

when the pretensioned strands are released from the bed.  The upward deflection, or 

camber, is caused by the compressive force that is eccentric to the center of gravity of the 

concrete. Part C of Figure 1.1 shows the beam in service.  Due to the prestressing the beam 

will exhibit compressive stress in the bottom fibers of the beam.  This method is inherently 

ideal for concrete as its potential to carry compressive stress is its best attribute.   

 

Figure 1.1 Prestressed Concrete Concept 

As seen from the history of prestressed concrete, stronger materials lend themselves well to 

the prestressing procedure. Current prestressing procedures employ the use of concrete with 

high compressive strengths (up to 12,000 psi) and steel with high tensile capacities (Grade 
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270 and 300) with ultimate strength of 270,000 psi and 300,000 psi, respectively.  With the 

use of additives, concrete plants starting to achieve 1-day compressive strengths up to 8,000 

psi. 

 

Ultra high performance concrete (UHPC) was developed in Europe in the 1990’s where it 

was first known as reactive powder concrete (RPC). Since its introduction, UHPC has been a 

material which has sparked interest in research throughout the world.  ACI Committee 239 

has published this definition of UHPC as concrete that has a minimum specified 

compression strength of 22,000 psi with specified durability, tensile ductility and toughness 

requirements; fibers are generally included to achieve specified requirements.  The high 

strength of this material is achieved through dense particle packing which implies high 

durability, improved freeze-thaw resistance, increased resistance to various chemicals, and 

higher penetration resistance (Wille et al. 2011). The improved tensile properties are 

achieved through steel fiber reinforcement.  The properties of UHPC make it appealing to 

the prestressed concrete industry because it allows for higher prestressing forces and 

decreased amounts of concrete.  The long-term durability also provides potential for bridges 

with a 100 year service life or longer (Ahlborn et al. 2008).  

   

 Due to a very low w/c ratio in UHPC, as low as 0.14, the cement does not reach full 

hydration.  However, it has been observed that by applying a thermal treatment UHPC 

exhibits improved performance. (Loukili et al. 1998; Kollmorgen 2004; Graybeal 

2006)..  Thermal treatment allows for continued hydration of the cement particles and 

increased pozzolanic reaction of the silica fume (Cheyrezy et al. 1995).  The thermal 
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treatment is also beneficial for increasing the rate at which these reactions take place.  The 

recommended thermal treatment is 195° ± 3° at 95 % ± 3% relative humidity. 

1.2 Need for Research 
 

Advancement in concrete materials has led to the ability to develop products that 

significantly out-perform traditional concrete in nearly every measurable standard.  Although 

this development is positive for the construction industry, it is important for these new 

materials to be well understood because of their impact on safety and expense.  The use of 

UHPC is specifically of interest to the prestressing industry and the industry continues to 

gain confidence as the behavior of UHPC is better understood. 

 

Prestress losses are of particular interest with this new material because deflections are 

affected by losses, which in turn are affected by mix design, curing, and concrete strength 

among others.  Previous research has concluded that creep and shrinkage exhibited by 

UHPC would be “locked-in” if the concrete was subjected to thermal treatment in the 

precasting procedure (Flietstra 2011).  This appears to be true for specimens that are 

thermally treated before being loaded in compression but this is not consistent with current 

prestressing facilities.  Precast facilities in the U.S. build the element first, including loading 

the element in compression at the time of prestressing release, prior to thermal treatment. 

UHPC research at Michigan Tech has shown that creep and shrinkage are important to 

consider when UHPC is tested mimicking prestressing industry practices (Flietstra 2011).  

However, no previous research has addressed the impact of timing of thermal treatment on 

the prestress losses and consequently, the estimated short and long-term deflections.   
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1.3 Thesis Objective and Scope 
 

The objective of this research is to determine the impact that timing of thermal treatments 

can have on short-term and long-term deflections of three UHPC beams.  This research 

aims to model the creep, shrinkage, and modulus of elasticity data collected by previous 

research at Michigan Tech and incorporate the models for predicting deflections. 

   

This document reviews literature on the fundamentals of compressive creep of concrete, 

current ASTM creep testing standards, UHPC material properties, the current state of 

UHPC compressive creep research, and various methods for analyzing prestress losses.  The 

literature review also discusses current UHPC design codes and how prestress losses are 

being considered in those codes. 

 

Prestress losses are estimated for three UHPC beams.  The analysis uses compressive creep 

data sets from UHPC cylinders obtained during and after curing regimes that replicate 

industry practice.  The curing regimes are those that were tested by Flietstra (2011).  The 

data is used to fit compressive creep function curves for ambient cured and thermally treated 

conditions.  The three scenarios investigated are a rectangular solid beam, a bulb tee girder, 

and a 2nd generation Pi-girder designed by FHWA specifically for UHPC (Graybeal 2009b).  

The first generation of this shape is documented by the FHWA as well (Graybeal 2009a).  

This analysis of the prestressed losses utilizes an incremental time-step approach to calculate 

short and long-term losses taking into account the different properties of UHPC at both 

early age and long-term.  Deflections are then calculated from traditional methods. 
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Deflections are directly impacted by prestress losses. This research will show whether the 

timing of thermal treatment, or in other words the manufacturing process, has a measureable 

influence on short-term and long-term deflections. 

1.4 Thesis Outline 
 

Chapter 2 of this thesis is a literature review of publications relevant to the material 

discussed in the remainder of the document, including creep and shrinkage models, and 

UHPC background. Chapter 3 discusses the analytical methods used to determine losses and 

deflection for three UHPC beams.   Chapters 4 and 5 present and discuss the results of 

losses and deflections from the different curing regimes tested.  The final chapter (6) offers 

recommendations for future work related to this paper. Appendices with sample calculations 

are included for completeness. 
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Chapter 2 Literature Review 

2.1 Fundamentals of Concrete Compressive Creep 
 

When concrete is stressed it exhibits an instantaneous strain. When that stress is sustained 

over a period of time, the concrete undergoes additional strain which is referred to as creep. 

Creep can be considered in several phases through the loading history of the specimen. After 

the instantaneous strain or initial creep, the specimen will deform over time due to basic 

creep and shrinkage.  The creep coefficient at any time is the basic creep strain at that time 

divided by the initial strain of the specimen. Creep may be observed at all stress levels and 

under any type of loading scenario (compression, bending, tension, etc.).  The amount of 

creep strain the concrete will exhibit is dependent on several characteristics including 

magnitude of sustained load, duration of load, age of loading, and several of the concrete 

properties (Nawy 2010). Although it is preferred to consider the properties one at a time, 

most concrete properties are covariant and changing one variable can have a significant 

effect on other variables (Neville 1970). 

 

Several factors can have an influence on concrete creep, but can essentially be divided into 

two distinct categories.  The first category includes all material influences that stem from 

constitutes in the concrete mix, their proportions, and the applied stress.  The latter category 

includes environmental factors such as moisture exchange and temperature.   
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2.1.1 Material Influences 
 

 The properties of the normal strength concrete matrix are very influential in determining 

the creep potential of concrete. The content of the cement paste in the concrete plays a large 

role in determining creep properties because when loaded at stress levels comparable to the 

cement paste, the aggregate does not creep. The driving force behind the cement paste creep 

is that after a sustained stress, the physically absorbed water is forced out of the C-S-H 

compound causing a creep strain (Mehta and Monteiro 2006).  Although moisture 

movement plays a large role in concrete creep, it is not the only contributing factor.  The 

interfacial transition zone (ITZ) is the area around the large aggregate that is hydrated 

differently than the bulk cement paste and is, therefore, less dense.  This zone is commonly 

the weakest point in the concrete microstructure.  At higher stress levels, greater than 30 or 

40 percent of ultimate stress, the microcracks in the ITZ have experimentally shown 

significant creep (Mehta and Monteiro 2006).  It was also proven that rapidly hardening 

cements provide less potential for creep (Neville 1970).  Neville’s tests were performed at 

similar ages and with similar applied stress, showing that the more hardened cement paste 

exhibited less creep.  These tests also showed that portland-pozzolan mixtures were more 

likely to creep than portland cement mixtures.  

  

In regards to normal strength concrete, several authors have concluded that the unhydrated 

cement content will act in a manner similar to aggregate.  Neville suggested that creep of 

concrete and cement paste can be related to the sum of aggregate and unhydrated cement 

contents (Neville 1970), and Powers concluded with regards to shrinkage that any 
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unhydrated cement be considered a part of the aggregate (Mehta and Monteiro 2006).  While 

very little research has been done to define creep in UHPC, these concepts are important 

when describing the creep of UHPC because of the large amount of unhydrated cement in 

the concrete matrix. 

 

The stress-strength relationship plays an important role in the creep behavior of the 

specimen.  Although it is well understood and proven that creep is proportionally related to 

applied stress and inversely related to strength, the range in which this relationship is linear is 

not fully understood. Linearity has been observed to have an upper limit with stress-strength 

ratios from 0.3 to 0.75 (Neville 1970).  As Neville also notes, micro cracking generally takes 

place in a concrete compression specimen at stress-strength ratios of 0.4 to 0.6.  It is not 

surprising that once microcracks begin to develop that creep would increase more rapidly. 

This behavior becomes more relevant to UHPC because UHPC is a very homogeneous 

material compared to normal strength concrete, and therefore, will be less likely to form 

microcracks. UHPC is typically fiber reinforced and the fibers bridge the gaps between 

microcracks upon formation to carry the tensile stresses across these cracks.  

  

The relationship between the age of loading and the creep potential is also interesting to 

point out.  For the same stress-strength ratios at time of loading, specimen that were loaded 

earlier showed less creep than specimen loaded later in their strength gain (Neville 1970).  

The reason for this is the specimen continues to gain strength and several days after the 

specimen was loaded, the stress-strength ratio is inherently lower.  
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2.1.2 Environmental Factors 
 

Environmental factors, such as relative humidity and temperature of storage, play an 

important role in the creep of concrete. The relative humidity in which the concrete is stored 

can have a significant impact on the amount of creep.  Troxell showed that at a relative 

humidity of 50%, creep may be two to three times greater than at a relative humidity of 

100% (Neville 1970).  Sometimes, like in the case of precast elements, the storage humidity 

can be controlled, but with cast-in-place applications humidity may be more variable during 

curing. Although less of an influence on creep, temperature has also been shown to have an 

effect.  Through experimentation, compressive creep of normal strength concrete has been 

shown to be proportional to the surrounding temperature at which the load is applied 

(Neville 1970).  The relationships between environmental factors and normal strength 

concrete compressive creep are important to consider because thermal treatments use high 

temperatures in combination with high humidity to increase the rate of hydration or to “lock 

in” time dependent properties of UHPC.   

2.2 Creep Testing Methods 
 

Standards are available for testing compressive creep for normal strength concrete, and while 

no such standards exist for UHPC, some can be modified to help characterize UHPC in 

compressive creep. 

 

The American Society for Testing and Materials (ASTM) is the organization that publishes 

the most commonly used set of testing standards in the United States.  The organization 
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strives to improve product quality, enhance safety, facilitate market access and trade, and 

build consumer confidence in products.  When industries attempt to achieve widespread 

consumption of new technology or new products it is beneficial to come together with 

ASTM to achieve standardization goals. 

   

ASTM C512/C512M-10 is the Standard Method for Creep of Concrete in Compression 

(ASTM 2013). The purpose of this test is to determine the compressive creep strain in 

normal strength concrete. The results of this test can be used to compare the creep 

potentials of different concretes.  ASTM C512 describes loading procedures, specimen sizes, 

and testing apparatus’s with regards to the testing of normal strength concrete. With few 

modifications, ASTM C512 has been used in UHPC creep research with much success 

(Flietstra 2011).  Modifications that are important to consider when testing UHPC are the 

applied level of load, creep frame rigidity, preliminary static compressive testing, and the 

casting of specimens for testing.  ASTM C512 calls for a compressive creep load no greater 

than 40 percent of current compressive strength.  To provide information relevant to the 

prestressing facility the stress induced by the creep frame was increased to 60 percent of 

current compressive strength of the cylinder, which is the maximum concrete stress allowed 

at time of release of prestressing strands as prescribed by ACI (ACI 318-11).  A combination 

of high concrete stress level and increased stress capacity of UHPC calls for larger loads to 

be placed on the UHPC cylinders, as compared to normal strength concrete specimens.  For 

this reason it is important the creep frames used for UHPC compressive creep testing are 

able to maintain high compressive loads at a constant level while remaining rigid.  Previous 
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UHPC research resulted in the design of creep frames and hydraulic pumps to maintain this 

constant load (Nyland 2008, Flietstra 2011).  

  

Before loading the specimen for compressive creep testing, it is necessary to know the 

current compressive strength of the specimen.  ASTM C39 is the accepted standard for 

testing the compressive strength of normal strength concrete cylinders.  Similar to 

compressive creep testing, modifications were made to ASTM C39 to account for the 

differences in normal strength concrete and UHPC.  Modifications include increasing the 

load rate from 35 psi/s to 150 psi/s and using 3 x 6 in cylinders instead of 4 x 8 in or 6 x 12 

in cylinders (Kollmorgen 2004).   It should also be noted that previous UHPC research has 

used horizontally casted steel molds (Flietstra 2011).  The reasoning for horizontal molds 

was to ensure planeness on either end of the section without the need for end grinding, 

especially with time of loading being a critical factor and end grinding being time consuming. 

  

No ASTM standards exist with regards to mixing and curing UHPC materials or test 

specimens, but suggested methods are available for both mixing and curing through 

individual manufactures.    

2.3 Ultra High-Performance Concrete (UHPC) 

2.3.1 UHPC History 
 

After being introduced by the French in 1990, ultra high performance concrete has been 

slow to hit the market in the United States.  With a lack of design codes in the United States, 

designers and researchers are using design codes that are being developed across the world 
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to introduce UHPC to the United States infrastructure. To date, nearly 20 bridges in the 

United States have incorporated UHPC in construction using two primary techniques.  The 

first is complete UHPC construction in which the bridge uses UHPC for either the bridge 

girders or both the bridge girders and bridge deck. The second application of UHPC has 

been the use of thin overlays or full depth joints between girders. 

   

Two bridges in Iowa and one bridge Virginia have used UHPC bridge girders. The Wapello 

County Bridge in Iowa and the Cat Point Creek Bridge in Virginia were the first two uses of 

UHPC bridge girders in the United States and both utilized 45 inch deep bulb tees (Graybeal 

2013). The third bridge to use UHPC girders, also in Iowa, was the Jakway Park Bridge. This 

application used an innovative pi-girder in an attempt to optimize the material performance 

of UHPC (Graybeal 2013). 

 

Numerous other applications have used ultra-high performance concrete in the U.S. Most of 

this work has been done by the New York DOT and the Iowa DOT.  Applications include 

waffle deck panels, full depth joints between deck panels, full depth joints between girders, 

and shear connections to girders. Table 2.1 lists construction involving UHPC as well as 

references for each project (Graybeal 2013). 
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Table 2.1 List of UHPC Bridge Projects in United States as of 2012 

Name Year Application Reference 

Mars Hill Bridge, Wapello County , 
IA 2006 

Three 45-in-deep bulb-tee 
beams 

Bierwagon 
(2005) 

Route 624 over Cat Point Creek, 
Richmond County, VA 2008 

Five 45-in-deep bulb-tee 
beams 

Ozyildirim 
(2011) 

Jakway Park Bridge, Buchanan 
County, IA 2008 

Three 33-in-deep pi shaped 
girders 

Keierleber 
(2010) 

State Route 31 over Canadaigua 
Outlet, Lyons, NY 2009 Joints between deck bulb tees Shutt (2009) 

State Route 23 over Otego Creek, 
Oneonta, NY 2009 

Joints between full-depth deck 
panels Royce (2011)  

Little Cedar Creek, Wapello 
County, IA 2011 

Fourteen 8-in-deep waffle 
deck panels Moore (2012) 

Finderboard Road Bridge over 
Staten Island Expressway, NY 

2011 to 
2012 Joints between deck bulb tees 

Royce (2011) 
 

State Route 248 over Bennett 
Creek, NY 2011 Joints between deck bulb tees Royce (2011) 

U.S. Route 30 over Burnt River and 
UPRR bridge, Oregon 2011 

Haunch and shear connectors 
and transverse joints 

Bornstedt 
(2011) 

U.S. Route 6 over Keg Creek, 
Pottawatomie County, IA 2011 

Longitudnal and transverse 
joints between beams Anon  

Ramapo River Bridge, Sloatsburg, 
NY 2011 

Joints between full-depth deck 
panels Anon 

State Route 42 Bridges (2) near 
Lexington, NY 2012 

Joints between full-depth deck 
panels and shear pockets Anon 

State Route 31 over Putnam Brook 
near Weedsport, NY 2012 

Joints between full-depth deck 
panels Anon 

I-690 Bridges (2) over Peat Street 
near Syracuse, NY 2012 

Joints between full-depth deck 
panels Anon 

I-690 Bridges (2) over Crouse 
Avenue near Syracuse, NY 2012 

Joints between full-depth deck 
panels Anon 

I-690 Bridge over Kirkville Road 
near Syracuse, NY 2012 

Joints between full-depth deck 
panels Anon 
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Windham Bridge over BNSF 
Railroad on U.S. Route 87 near 
Moccasin, Montana 2012 

Joints between full-depth deck 
panels and shear connections 
to beams 

Anon 
 

 

Although several commercially available UHPC premix blends are available worldwide, the 

only available UHPC in the U.S. at the time of creep testing by Flietstra was Ductal®, a 

product of Lafarge (Flietstra 2011).  The research presented herein develops models using 

data collected from Ductal® specimens. 

2.3.2 UHPC Composition 
 

UHPC is able to obtain the impressive mechanical properties by taking advantage of a low 

water to cement ratio and a very dense microstructure.  This is achieved by eliminating the 

coarse aggregates and using very small particles. The matrix has very few voids and the void 

system is discontinuous.  Additionally, fiber reinforcement is added to the mixture which 

improves tensile strength by bridging the cracks in the concrete.   The composition of 

Ductal® is presented in Table 2.2, showing many of the same constituents that are used in 

normal strength concrete but with different proportions.  The materials selected in UHPC 

are chosen based on particle size and shape to optimize the particle packing in the concrete. 

The dry ingredients of the product are shipped in a bag, and are pre-mixed. The fibers and 

superplaticizer are delivered separately.  Water, superplasticizer, and steel fibers are added to 

the mixture during the mixing procedure.  
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Table 2.2 Typical Ductal Composition, BSI 1000 

Constituent Proportion 
(lb/yd3) 

Percent by 
Weight  

Sand 1719 41.1 
Cement 1197 28.6 
Silica Fume 388 9.3 
Ground Quartz 354 8.5 
Metallic Fibers  

270 6.4 (8x10-3 -in dia by 0.5-in long) 
Water 236 5.6 
Superplasticizer 22 0.5 

2.3.3 UHPC Material Properties 
 

Extensive research has been conducted to test the mechanical properties of UHPC for 

structural design. The Federal Highway Administration (FHWA) has tested UHPC 

specimens for compressive strength, tensile strength, modulus of elasticity, Poisson’s ratio, 

fatigue behavior, thermal properties, bond strength, impact resistance, early-age creep, and 

shrinkage (Graybeal 2013). The results of this testing was published as ranges for each of the 

mechanical properties. Table 2.3 summarizes the results obtained by FHWA (Graybeal 

2013). 
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Table 2.3 Typical UHPC Mechanical Properties 

Property Range 
Compressive Strength 20 to 30 ksi 
Tensile cracking strength 0.9 to 1.5 ksi 
Modulus of elasticity 6,000 to 10,000 ksi 
Poisson's Ratio 0.2 

Coefficient of thermal expansion 5.5 to 8.5 x 10-6/°F 
Creep Coefficient .2 to .8 

Specific creep 4 x 10-8 to 3 x10-7/psi 

Total shrinkage Up to .0009 
 

Others have published results showing the mechanical properties they obtained throughout 

extensive testing of Ductal®.  These results are similar to the ranges obtained by Graybeal.  

 

The most important mechanical properties with regards to this research are the elastic 

modulus increase with time and the early age compressive strength gain.  The elastic 

modulus has an effect on the amount of creep a specimen will endure and rapid strength 

gain gives the prestressing plant the ability to load elements sooner (by releasing strands at 

transfer) and increasing production without increasing plant size.  Although this may be 

beneficial to the plant, precautions have to be considered when loading prestressed elements 

so early in their strength gain.  A time dependent study of elastic modulus is important if 

trying to measure prestress losses when the specimen is loaded at a very early age.  Peuse 

completed extensive compressive strength and modulus of elasticity testing on UHPC in 

2006 at Michigan Tech (Peuse 2008, Ahlborn et al. 2011).  Peuse examined mechanical 

properties at ages 3, 7, 14, and 28 days using four curing regimes.  The curing regimes were 
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an ambient cure, a thermal treatment, a delayed thermal treatment, and a double delayed 

thermal treatment.  The delayed thermal treatment and double delayed thermal treatments 

were started at 10 days and 24 days, respectively, after mixing.  The results of this work 

showed results similar to the results obtained by Graybeal and Lafarge as shown in Table 

2.3. 

2.4 UHPC Creep Research 
 

Compressive creep models of ultra-high performance concrete are very limited compared to 

normal strength concrete models.  Each case uses specific mix proportions, curing 

conditions, and testing procedures that impacted the results.  These factors along with the 

results and associated creep coefficients are discussed below. The creep coefficient is 

commonly used to reference the creep potential of the material and is defined as the creep 

strain of the specimen at 28 days of loading divided by the initial strain induced initially by 

sustained loads. 

  

Flietstra (2011) was the first to complete UHPC compressive creep research that took into 

consideration loading the specimens before and during the application of thermal treatment.  

The loading plan was done to mimic the loading procedure commonly used in the 

precasting/prestressing plant.  The curing regimes also were designed to mimic the 

prestressing plant procedures. The regimes included ambient cure, pre-steam with a thermal 

treatment, standard thermal cure, pre-steam with a delayed thermal cure, and pre-steam with 

a double delayed thermal cure.  Pre-stream environment was 100% relative humidity and 

140°F, and the thermal treatment was 100% relative humidity and 198°F.  The ambient 
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cured specimens were in an ambient environment (50% R.H. and 70°F) throughout the 

curing and loading of the concrete.  The standard thermal cure specimen had no treatment 

until the time of creep loading, at which point they were thermally treated immediately after 

being loaded.  The pre-steam technique is used in the prestressing plant to increase the rate 

of hydration and strength gain, therefore allowing for an earlier release time of the 

prestressing force. 

  

 All specimens in Flietstra’s research were loaded in compression when they reached 

strength of 14,000 psi, as recommended by the UHPC manufacturers.   For cylinders that 

were given a pre-steam treatment, the strength of 14,000 psi was reached in 14 to 18 hours. 

Ambient cured specimens reached 14,000 psi compressive strength in approximately 70 

hours.  Flietstra loaded the cylinders in the creep frames at these times.  Figure 3 shows an 

image of the creep frames used by Flietstra (2011). Permission for the use of this figure is 

shown in Appendix C.  
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Figure 2.1 Creep frames used by Flietstra (2011) 

 

Flietstra used creep cylinders that were 3 inches in diameter and 12 inches in length.  To 

ensure the ends were parallel, steel horizontal molds were used that were designed to 

maintain parallel ends without the need to end grind the cylinders.  Upon reaching the 

strength of 14,000 psi, the cylinders were loaded to either 60 percent of the current 

compressive strength or 20 percent of the current compressive strength.  Strains were 

measured with a Whittemore strain gauge several times during the first week and once a 

week for a month following.  The results of Flietstra’s work showed that if UHPC specimens 

are loaded in compression during or before the thermal treatment is applied, the creep 

coefficients are much different than what previous researchers have reported for creep 

coefficients of specimens that were thermally treated before compressive loading.  Flietstra 

found the creep coefficient for thermally treated cylinders to be 1.12 for the 0.6f ’ci load level 

(Flietstra 2011). 
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Graybeal (2006) tested long-term creep and early age high stress creep.  The long-term creep 

testing was conducted according to ASTM C512.  The curing regimens used in this testing 

were ambient cure, steam treated, tempered steam treatment, and delayed steam treatment.  

For the steam treated and tempered steam treated specimen, the creep loading was initiated 

4 days after casting.  The delayed steam specimens were loaded 21 days after casting, and the 

ambient cure specimens were loaded 28 days after being casted.   The sizes of the cylinders 

used in the testing were 4 inches in diameter and 8 inches in height.  All of the cylinders 

were end ground until parallel.  The testing results produced final creep coefficients of 0.29 

for steam treated specimens, 0.78 for untreated specimen, 0.66 for tempered steam, and 0.31 

for delayed steam treatment. From this research it was concluded that if a steam treatment 

was applied to the specimens before loading, the UHPC exhibited very little creep.  

 

Testing by Graybeal also investigated UHPC that was subjected to compressive loading early 

in its strength gain (Graybeal 2006). The purpose of this testing program was to answer 

questions related to the appropriate delay before the transfer of the prestressing force to the 

prestressed UHPC girder.  The two strength levels investigated were 8.6 ksi and 12.5 ksi.  

The ambient cured specimens were loaded to stress levels ranging from 60 to 90 percent of 

their current compressive strength and unloaded after 30 minutes of sustained loading.  The 

results showed that specimens loaded at an early age exhibit a large amount of creep strain in 

the short duration that they are loaded.  For comparison, a cylinder that was stressed to a 

similar stress/strength ratio in the short-term creep testing had a creep coefficient of 0.42, 

while the long-term steam treated specimen had a creep coefficient of 0.27.  These results 
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emphasized the importance of understanding the early age creep potential and the 

importance of steam treating specimens that require early age loading (Graybeal 2006). 

 

Another research program that investigated the time dependent deformations of UHPC was 

started in Germany at the University of Karlsruhe by Burkart and Muller (2008).  The 

purpose of this research was to create a comprehensive database enabling the development 

of a thermodynamically sound material law for the time- and load-dependent deformation 

behavior of UHPC.  The researchers investigated several parameters which are commonly 

considered when investigating normal strength concrete creep, including age of loading, 

storing conditions, specimen size and geometry, and stress level of the concrete. Stress levels 

were 30 and 60 percent of the compressive strength at the time of loading. The cylinders 

were loaded at 1, 3, and 28 days.  Specimens not loaded at 1 day were moist cured for 2 days 

then cured in ambient conditions until loaded.  Conclusions from this research show that 

models for normal strength concrete and high strength concrete do not accurately predict 

the compressive creep behavior of UHPC. Most importantly these results have shown the 

effects of creep on early age concrete are much more pronounced with UHPC specimens 

(Burkart and Muller 2008). 

   

The nonlinearity of UHPC creep was also tested by using two stress levels at different 

loading ages (Burkart and Muller 2008).  The reason for this testing was to find a range of 

service stresses where creep can be assumed to be linearly related to the stress inducing that 

creep.  Because of the high compressive strength of UHPC, it was expected to have a limit 

above the originally defined range for normal strength concrete or high strength concrete.  
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The results showed that the relationship between creep deformation and stress was linear up 

to a stress level of 60 percent of ultimate strength. 

 

Tests were also performed to determine the strength limit under sustained loading (Burkart 

and Muller 2008).  Specimens loaded at an early age (1 day) were shown to carry sustained 

loads of 90 percent of the current stress capacity (Burkart and Muller 2008).  The specimens 

loaded at 28 days, although there was a large scatter, seem to have a strength limit of 

approximately 80 percent of the 28 day strength (Burkart and Muller 2008). 

 

Francisco published a research plan in 2009 designed to model the creep and shrinkage of 

ultra-high performance fiber-reinforced concrete taking into account a moderate heat 

treatment (Francisco et al. 2012).  This moderate heat treatment is used by prestressing 

facilities to accelerate the hardening of concrete immediately after molding.  This treatment 

is similar to the “pre-steam” treatment that was used by Flietstra (2011).  

  

Francisco constructed two different UHPC mixtures using different types of superplasticizer 

in each.  His work also used two moderate heat treatments.  One treatment was a moist 

environment with a temperature of 50 degrees C and the other was for a shorter duration at 

a temperature of 65 degrees C.  The size of the cylinder used during creep and shrinkage 

tests were 70 mm in diameter and 220 mm tall.  The specimens were loaded to 40% of the 

compressive strength and were loaded 2 days after molding.  A hand ball micrometer was 

used to measure the strains on 2 or 4 axes.  The average 20 hour strength and average 28 day 

strength of the UHPFRC was 152 MPa (22,000 psi) and 188 MPa (27,000 psi), respectively.  
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Results obtained for one year showed creep strains of approximately 1000 μm and shrinkage 

strains of 250 μm (Francisco et al. 2012). 

   

Loukili published his experimental investigation of reactive powder concrete (RPC) in 1998 

which aimed to characterize the creep and shrinkage of fiber reinforced RPC after a 90° C 

heat treatment (Loukili et al. 1998).  Two types of cylinders were prepared for this work. For 

mechanical testing the cylinders measured 110 mm in diameter and 220 mm in height.  The 

cylinders intended for creep and shrinkage testing measured 90 mm in diameter and 600 mm 

in height.  The specimens were cured in water at 20° C for 7 days, placed in 90° C water for 

4 days, then air dried at 90° for 2 days.  The creep and shrinkage tests were measured with 

three LVDT sensors separated 120 degrees from each other.  The creep specimens were 

loaded to approximately 20 percent of the compressive strength at the time of loading and 

remained in the creep frames for 4 months.   The mechanical properties of this concrete 

were similar to the properties in the literature described above with 28 day compressive 

strength around 160 MPa and Young’s modulus around 50 GPa.   

The results of the creep testing were compared to similar testing conducted on 3 different 

high strength concretes and showed the fiber reinforced RPC exhibited significantly higher 

specific creep in all three cases.  Loukili notes this is due to the increased paste content and 

lack of coarse aggregate in RPC (Loukili et al. 1998). 

  

Garas investigated compressive creep of UHPC using varying curing regimes (Garas et al. 

2012).  The intent of this work was to incorporate a curing regime that was achievable by 

most prestressing facilities in the United States.  The UHPC supplier recommends a 90 
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degree C cure which would require most plants to make changes.  Compressive creep testing 

was performed on cylinders measuring 4 inches in diameter by 15 inches tall.  The specimens 

were loaded at 7 days to a load equivalent to 40 percent of the 7-day compressive strength.  

The strain was measured for 1 year after loading.  The measured specific creep (µε divided 

by applied stress) for the 90° C thermal treatment, the 60° C thermal treatment, and the 

ambient cure was 22.6 μm/ksi, 28.5 μm/ksi, and 59.8 μm/ksi, respectively. These results 

show that decreasing the temperature of thermal treatment had a significant effect on the 

creep results.  Garas’s work also reinforced the importance that thermal treatment can have 

on the amount of creep strain that UHPC will undergo (Garas et al. 2012). 

 

Numerous researchers have recognized the issue of integrating current precast plant 

procedures into laboratory test methods such as defining compressive creep and 

corresponding drying shrinkage.  However, no analysis has been documented that considers 

the impact of the creep testing results and curing regimes on long-term losses and 

deflections.  

2.5 Prestress Loss and Deflection Analysis 
 

Prestress losses are due to the complex interaction of elastic shortening, concrete creep and 

shrinkage, and steel relaxation.  This section outlines the methods considered and used in the 

analysis of prestress losses and deflections for 3 UHPC beams.   It should be noted that 

most of the methods outlined in this section were formulated for normal strength concrete 

and were adapted to more accurately model ultra-high performance concrete.   
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2.5.1 Normal Strength Concrete Models for Determining Prestress 
Losses 
 

Many methods have been proposed to calculate prestress losses including lump sum, 

simplified methods, and incremental time-step methods.  For most structural design 

applications the simplified approaches are appropriate.  Due to the variability of prestress 

losses, even the most detailed approaches produce only an estimate and may over-estimate 

or underestimate the actual losses as shown by a probabilistic comparison (Gilbertson and 

Ahlborn 2004).   To understand the methodology behind calculating prestress losses, it is 

important to consider all of the loss components that are associated with prestressing 

concrete.  The first components of loss happen during the tensioning of strands in the 

prestressing facility before the concrete is placed.  These components are due to friction, 

seating, and temperature effects.  Generally these losses are the responsibility of the 

prestressing facility as they are dependent on the specific casting beds and prestressing 

equipment used by that facility.  At the time of transfer, the precast element exhibits elastic 

shortening. This is a one-time loss but can contribute a significant amount of prestress loss 

at transfer.  Once the prestressing strands are released or cut, the long-term loss components 

begin to act on the prestressed element.  Long-term losses in pre-tensioned members include 

creep, shrinkage, and steel relaxation.  

  

This research considered several techniques to determine that most applicable method for 

the calculation of prestress losses.  The prestress losses are to be computed at the point of 

the span where the tensile forces of the prestressed element are most critical (PCI 2010). For 

this research all beams were analyzed at the mid-span.  
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2.5.1.1 Elastic Shortening 
 

Three methods were considered when determining the elastic shortening component of the 

prestress losses.  The first and most simplified of these methods was the gross-section 

approximation method, which is presented in the PCI Design Handbook (PCI 2010).  This 

method, as seen in Equation 2.1, calculates the elastic shortening by multiplying the stress in 

the concrete at the level of prestressing strands (fcir) by the modular ratio (Eps/Eci).  The term 

Kcir represents a 10 % decrease in prestressing to account for the stress in the concrete after 

transfer and is taken at 0.9 for pretensioned members. 
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𝐸𝑝𝑠  = elastic modulus of prestressing steel 

𝐸𝑐𝑖  =elastic modulus of concrete 

𝑃𝑖 = force in prestressing strands 

𝑒 = distance from concrete centroid to strand centroid 

𝐼𝑔 = gross moment of inertia 

𝑀𝑔  = moment caused by dead load 

 

The next method for calculating losses due to elastic shortening was similar to the gross 

section approximation method with the inclusion of an iterative process (ACI 423.X 2013).  
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The iterative gross section approach is more accurate because it accounts for the elastic 

shortening that happens immediately after the strands are cut.  To account for this 

difference, a closed form solution is formulated by using the Equations 2.3 and 2.4 below 

and solving for ∆𝑓𝑝𝑠to obtain equation 2.5 (Naaman 2010).  

𝑓𝑝𝑖 = 𝑓𝑝𝐽2 − ∆𝑓𝑝𝑅1 − ∆𝑓𝑝𝐸𝑆    [Eqn. 2.3] 

   ∆𝑓𝑝𝐸𝑆 = 𝑛𝑝𝑖[
𝑓𝑝𝑖
𝑓𝑝𝐽2

(𝑓𝑐𝑔𝑝)𝐹𝑗(𝑓𝑐𝑔𝑝)𝐺]   [Eqn. 2.4] 

∆𝑓𝑝𝐸𝑆 =
(𝑓𝑐𝑔𝑝)𝐹𝑗�𝑓𝑝𝐽2−∆𝑓𝑝𝑅(𝑡0,𝑡𝑡)�+(𝑓𝑐𝑔𝑝)𝐺𝑓𝑝𝐽2

𝑓𝑝𝐽2
𝑛𝑝𝑖+(𝑓𝑐𝑔𝑝)𝐹𝑗
�

  [Eqn. 2.5] 

Where 

𝑓𝑝𝑖 =  𝑓𝑝𝐽2 − ∆𝑓𝑝𝑅(𝑡0, 𝑡𝑡) 

(𝑓𝑐𝑔𝑝)𝐹𝐽= stress in concrete at level of strands due to prestressing force 

(𝑓𝑐𝑔𝑝)𝐺 = stress in concrete at level of strands due to dead load 

𝑛𝑝𝑖 = moduluar ratio ( 
𝐸𝑝𝑠

𝐸𝑐
� ) 

𝑓𝑝𝐽2 = stress in strands after jacking losses, i.e. anchor loss and friction loss 

∆𝑓𝑝𝑅(𝑡0, 𝑡𝑡) = loss of strand stress due to relaxation from 𝑡0 to 𝑡 

The third and most accurate process reviewed for use in the calculation of elastic shortening 

was the transformed section approach (ACI 423.X 2013).  This method makes three 

assumptions; linear elastic material behavior, perfect bond between concrete and steel 

reinforcement, and plane sections remain plane.  The transformed section approach is more 
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accurate than the others because it accounts for the difference in modulus of elasticity 

between the concrete and the steel.  The calculation of elastic shortening using the 

transformed section approach involves determining a new center of gravity and moment of 

inertia for the transformed section.  Once the transformed section properties of the element 

are determined, the method of determining the elastic shortening is similar to above.  Either 

the gross section approximation method or the iterative gross section method can be used 

with the transformed section properties. Differences in opinions exist as to whether the 

elastic shortening should even be considered when using the transformed section properties 

(AASHTO 2012).  Current practice is that when using the transformed section properties to 

calculate prestressed losses, elastic shortening at time of release and elastic elongation due to 

externally applied loads during the service life of the element are subtracted from the total 

losses (AASHTO 2012). 

2.5.1.2 Long Term Losses 
 

Long-term prestress losses are those caused by the time dependent properties of concrete 

and steel.  The calculation of long-term losses is a very complex calculation because each 

component of loss is continuously affected by the other components.  To further complicate 

the calculation, these factors are dependent on uncertainties such as the time of loading, 

curing method, and environmental conditions (ACI 423.X 2013). Although they are not 

completely understood, there are many published methods for calculating long-term 

prestress losses. 
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The first method reviewed for the analysis of long-term prestress losses was the AASHTO 

LRFD refined method presented in the AASHTO LRFD Bridge Design Specification 

(AASHTO 2012).  This method divides the long-term losses into two time periods: from 

release of prestress strands until the placement of the deck (with subscript id) and from 

placement of the deck until the end of the service life (df).  The equation for prestress losses 

is as follows: 

dfpSSpRpCDpSDidpRpCRpSRpLT ffffffff )()( 21 ∆+∆+∆+∆+∆+∆+∆=∆    [Eqn. 2.6] 

The AASHTO document presents equations for each of the components shown in the 

above equation (AASHTO 2012).  

 

A second technique for computing long-term prestess loss was the age adjusted effective 

modulus approach, which was first introduced by Trost in 1967 (Wollmann et al. 2003).  As 

described by Wollmann et al. (2003), the time dependent strain in the concrete is expressed 

as the sum of elastic and creep strains due to initial stress, elastic and creep strains due to 

change in stress, and the shrinkage strain.  This relationship is expressed in Equation 2.7.  

The first term represents the elastic and creep strains due to an applied stress and the integral 

term represents the elastic and creep strains due to stress changes within the time interval 

between 𝑡 and 𝑡o. 

𝜀𝑡 = 𝜎0
𝐸0
�1 + 𝜑𝑡,𝑡0� + ∫ { 1

𝐸(𝑡)
𝑑𝜎(𝑡)
𝑑𝑡

[1 + 𝜑(1, 𝑡)]}𝑑𝑡 + 𝜀𝑠𝑡
𝑡
𝑡0

  [Eqn. 2.7] 

A simplified method, which was proposed by Trost, replaces the integral term by an aging 

coefficient, μ. The aging coefficient account for the reduced creep of concrete loaded at a 
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greater age, and is therefore a function of load history.  An aging coefficient of one would 

imply that loading is done in a single step at time 𝑡 =  𝑡0. Upon developing the theory of age 

adjusted effective modulus, Bazant showed that when change in stress is included by creep 

and shrinkage, μ ranges from .5 to 1.0 and for concrete loaded between ages 10 and 100 days 

a value of 0.7 to 0.9 is appropriate (Bazant 1972). 

 

The incremental time-step method is another method for predicting long-term losses. It is 

based on the theory of superposition of elastic and creep strains from increments of stress 

placed on a structure (ACI 423.X 2013).  This repetitive computational procedure accounts 

for the interdependency of the steel relaxation, creep, and shrinkage. This procedure also 

allows for the designer to choose the time step that can account for a more accurate 

computation depending on the specific element’s loading schedule.  Typically, a small time 

step is used early in the service life and a larger time step is used at the prestressed element 

approaches the end of service.  It should be noted that this technique is cumbersome and 

generally is computerized for increased efficiency.  The detailed process for this method is 

described in Section 3.3 of this document.   

2.5.2 Normal Strength Concrete Models for Determining Deflections 
 

The calculation of prestress losses is critical to understanding the short and long-term 

deflections of concrete elements.  Deflections not only lead to tensile cracking but can be 

obvious to the user and cause concern over the safety of the structure.  Failure to control 

deformations in prestress elements can lead to reverse deflections that can cause roof 

drainage problems, uncomfortable ride conditions on bridges, and alignment and cracking 
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issues in buildings (Nawy 2010).  ACI 318-11 limits deflections in buildings based on the 

location in the building and the likeliness to be damaged due to large deflections.  The values 

for these limits range from L/180 to L/480 (ACI 318-11), where L is the span length. 

2.5.2.1 Theoretical Derivation of Deflection Methods 
 

The moment-area method is conveniently used in design for determining deflections because 

the moments along the length of the member are generally known at early stages of design. 

This method, which was first developed by Mohr, is based on the relationship between 

bending moment and curvature at any point on the flexural member (Naaman 2010).  The 

deflection of a beam at any point is the area under the moment diagram from the reference 

point to the point in question.  

 

Another method for determining deflections commonly used in practice is the method of 

virtual work.  This approach relates a system of forces in equilibrium to a compatible system 

of displacements.  The name of this method is derived from the virtual systems of forces or 

displacements that are introduced to the system.  Generally for the calculation of beam 

deflection, only the effects of bending moments and shear are considered because the axial 

forces and twisting moments have little or no effect on the vertical deflections.  Thus, the 

deflection of a beam, 𝐷𝑗 , by method of virtual work at point 𝑗 is given by 

𝐷𝑗 = ∫
𝑀𝑢𝑗𝑀
𝐸𝐼 

𝑑𝑙   [Eqn. 2.8] 

Where 𝑀𝑢𝑗 is the moment caused by the virtual load, 𝑀 is the moment caused by actual 

loads, and 𝐸 and 𝐼 describes the section properties of the beam (Ghali et al. 2009).  Equation 
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2.8 shows the form for calculating deflection from virtual work caused by the bending 

moment.  This form does not include deformations caused by shear or torsion.  

Several other methods such as the conjugate beam method and the equivalent load method 

can also be used to calculate the deflections accurately.   

2.5.2.2 Practical Determination of Short and Long-term Deflections 
 

Short-term deflections should be calculated using one of the techniques described above 

taking into account the initial prestressing forces and the losses at that time period.   

Design code, ACI (ACI 318-11), and design handbook, PCI (PCI 2010), present methods to 

calculating long-term deflections using factors along with the calculated initial deflections 

found through analysis methods. 

 

ACI presents a method for calculating long-term deflections with the λΔ multiplier.  The 

expression given below, Equation 2.9, details the calculation of this multiplier.  

     λ∆ = 𝜉
1+50𝜌′

   [Eqn. 2.9] 

The term 𝜉  is the time dependent factor and is determined from R9.5.2.5 in the ACI code 

and, 𝜌’ is the reinforcement ratio of the compression steel in the concrete beam.  

PCI Design Handbook (PCI 2010) also describes a method that uses multipliers on the 

initial deflections to calculate the long-term deflections.  In this method, initial deflections 

are determined and multiplied by the values in table 5.8.2 of the PCI Design Handbook (PCI 

2010) to calculate the long-term deflections. 
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Both of these methods are unsuitable for the estimation of deflection in UHPC beams 

because the relationships given in these methods were empirically determined from data 

obtained with normal strength concrete.  The multipliers mainly represent concrete creep 

and shrinkage of NSC concrete which follows different relationships than UHPC.  

 

A more detailed approach to determining long-term deflections is needed for UHPC 

elements. The incremental time step approach, described in section 2.5.2.1, accounts for the 

applied prestressing force at each stage and calculates a deflection at each stage.  These 

deflections are additive and sum to the total long-term deflection at any age.   

2.6 Deflection Data from UHPC bridges 
 

With UHPC becoming more known in the United States, several bridges have been built 

with this new material.  This research has paid particular interest to the work of the Iowa 

DOT and their designs of the bridge in Wapello County and the Jakway Bridge.  As stated 

above in Section 2.3, these bridges are constructed with UHPC girders and were the first of 

their kind in the United States (Graybeal 2013).  The prestress loss analysis in this paper uses 

both of these shapes in the prestress loss analysis for comparison between the measured 

results of these bridges and the results obtained from this research.  The Iowa Highway 

Research Board has sponsored Iowa State University to complete extensive testing on these 

bridge girders and help aid in the design of the UHPC Bridge.  The results of these tests are 

included below to provide a benchmark for this research (Wipf et al. 2009, Rouse 2011).   
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The first UHPC Bridge in the United States was constructed as a bridge replacement to span 

the Little Soap Creek in Wapello County, Iowa.  The adequacy of the bridge design was 

verified through an experimental test program completed at Iowa State University (Wipf et 

al. 2009).  This test program included material testing, large and small scale laboratory 

testing, and field testing.   

 

The modified bulb tee used for Wapello County bridge girders is shown in Figure 2.1.  Five 

strands are harped at two points and decline linearly along the web of the section.  Seven 

wire, Grade 270, 0.6 inch strands run horizontally for the central 22 feet of the beam.  An 

additional 24 0.6 inch strands are located in the bottom flange, 8 of which are debonded in 

the last 3.5 ft. of the beam and 16 which are debonded over the last 6.5 ft. Curing of these 

beams was very similar to a curing method used by Flietstra (Wipf et al. 2009).  Once the 

concrete placement was finished, the beam underwent a steam cure at 140 °F for 12 hours.  

At this point it was determined the UHPC reached a strength of 12,000 psi and the strands 

were released. Following the prestressing strand release, the UHPC was heat treated at 194 

°F for 48 hours. 
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.  

Figure 2.2 Modified Bulb Tee for Wapello Co. Bridge Girders (Wipf et al. 2009) 

The beams constructed for the large scale laboratory testing were similar to the beams used 

for the bridge with a total span of 71 feet and prestressing done in the same manner (Wipf et 

al. 2009).  During flexural testing of this beam the amount of prestressing force in the beam 

was estimated.  Using the applied moment, at which the cracking occurred, the prestressing 

force was estimated to be 1517 kips or 27.2% loss from the original prestress level.  This 

experimental calculation of prestress losses was compared with traditional calculations of 

prestress losses presented by AASHTO.  The losses that were accounted for were initial 

relaxation, elastic shortening, shrinkage, creep, and secondary relaxation.  The calculated 

analytical prestressing force resulted in 30.4% losses which correlates fairly well with was 

measured experimentally.   

 

A second UHPC bridge that was reviewed for this research was constructed in Buchanan 

County, Iowa spanning over the east branch of the Buffalo Creek (Rouse et al. 2011).  The 

bridge was 115 ft. long and consisted of 3 spans with the longest being 50 feet.  Similarly the 
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design of this beam underwent laboratory and field testing to verify the adequacy of the 

design (Rouse 2011).   

 

 The shape used for the girders of this bridge was the innovative pi-shaped girder, which was 

first proposed by the FHWA and Graybeal (2009a).  After testing the first generation pi 

shaped girder, concerns were revealed about the transverse deck stiffness, cracking behavior 

at service loads and the lateral live load distribution (Graybeal 2009a).  This revelation led to 

the design of the 2nd generation pi-girder girder, which was modified to address those 

concerns.   The cross section of the 2nd generation pi-girder used in Buchanan County is 

shown in Figure 2.3. 

 

Figure 2.3 2nd Generation Pi-Girder (Rouse et al. 2011) 

 
The beams were constructed in a similar fashion to those used for the bridge in Wapello 

County.  After the concrete was placed, the forms were immediately covered and the girders 

underwent a thermal cure at 194 °F.  The girders were removed from the forms after 25 

hours and the strands were released at 40 hours.  The release strength of the concrete was 
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12,500 psi.  Laboratory testing for this beam consisted of compressive strength testing and 

flexural stength testing using specimens that were cast at the time of girder construction.  

Field testing of the Jakway Bridge involved monitoring strains and deflections of the bridge 

upon completion of the project and 1 year after completion.  The tests used a known, 

tandem-axle dump truck crossing the bridge, and both static and dynamic testing was 

completed. No prestress loss calculations are presented in the report for the Jakway Bridge 

project.  

2.7 Current UHPC Design codes 
 

Publishing a design code is very important for the acceptance UHPC as a construction 

material.  With national design codes, engineers will use the material more regularly in 

practice and have better confidence in the material performance. To date three design 

recommendations have been published on a national level dealing with UHPC.  Australia, 

France, and Japan have led the way in this field (Gowripalan and Gilbert 2000, AFGC 2002 

,JSCE 2006) . 

 

Australia released Design Guidelines for RPC Prestressed Concrete Beams in 2000 with the 

intent to provide guidelines for the design of prestressed beams using Ductal® (Gowripalan 

and Gilbert 2000).  Where possible, the guidelines aimed to stay consistent with the limit 

states philosophy of the Australian Standard for Concrete Structures, AS3600-1994.  Relying 

heavily on results published overseas, the authors used an approach based on the structural 

mechanics and material properties found in literature.  Similar to design codes found in the 
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U.S., the Australian guides led to the design of prestressed RPC beams that are adequate in 

strength, serviceability, and durability.   

 

The Australian guidelines characterize UHPC with regards to its behavior in compression, 

tension, modulus of elasticity, density, Poisson’s ratio, creep, and shrinkage.  It also provides 

design recommendations for strength in flexure, shear, and torsion, crack and deflection 

control, loss of prestress, and anchorage zones.   

 

The prestressed losses section of this document outlines methods for short-term and long-

term losses.  The short-term loss recommendation is similar to that of gross section 

approximation method discussed in Section 2.5.1.1.  The time-dependent loss 

recommendations call for a time step analysis of the cross-sections under consideration 

using the age-adjusted effective modulus method (Gowripalan and Gilbert 2000). This 

section also notes that techniques suggested by the Australian Standard for Concrete 

Structures (Gowripalan and Gilbert 2000) is an overestimate of losses and should not be 

used for UHPC. 

 

In 2006, the Japan Society of Civil Engineers published Recommendations for Design and 

Construction of Ultra High Strength Fiber Reinforced Concrete Structure (Draft) (JSCE 

2006). These recommendations prescribe a procedure for examining safety and serviceability 

performance metrics which are different from those of traditional reinforced concrete.  The 

guidelines presented by the JSCE use the principles of design and construction to meet the 

performance requirements for safety, serviceability, durability, and resistance to fatigue. 
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Section 10 of the JSCE guidelines are written to address design of Prestressed UHPC 

members.  The general guideline in this section is that all design topics be shall agree with 

the JSCE Standard Specifications for Concrete Structures – 2002 “Structural Performance 

Verification.”(JSCE 2006) With regards to prestress losses, the guidelines state that the loss 

of prestress due to shrinkage needs to be considered when designing with UHPC.  It also 

states that a detailed study may be made to evaluate prestress timing, Young’s modulus, 

creep coefficient at early age, and effects of steel bars to determine the loss of prestressing 

force.  The document provides no details regarding the calculation of prestress losses.   

 

The AFGC-SETRA recommendations were composed by the French in 2002 and are 

composed of three parts (AFGC 2002).  The first part provides specifications regarding the 

mechanical properties of UHPC, procedures to be used for placement, and construction 

inspections of finished products. The second part deals with design of UHPC structure and 

the third part deals with durability issues involved with UHPC.  The design section, or Part 2 

of the recommendations, builds off the French codes for prestress and reinforced concrete 

design but takes into account the strength introduced by the steel fibers.  The 

recommendations give no guidelines regarding estimating prestress loss, but do state that 

heat treatment can significantly reduce creep, and that if nothing is known at preliminary 

stages regarding creep, the long-term creep coefficient can be taken as 0.8 without heat 

treatment and 0.2 with heat treatment (AFGC 2002).   
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Chapter 3 Analytical Plan 

3.1 Modeling UHPC Time Dependent Properties 
 

To account for the advanced material properties of UHPC, experimental test data was used 

to model certain parameters instead of using typical coefficients that have been proven to 

estimate the behavior of normal strength concrete.  This section describes the data and 

techniques used to model UHPC creep, shrinkage and modulus of elasticity over time. 

3.1.1 UHPC Creep Model 
 

This research deals mainly with the effect of creep on prestress losses, so the importance of 

correctly describing creep for UHPC is paramount.  The data used for the analysis in this 

work was obtained by Flietstra (2011) at Michigan Tech. Flieststra’s data was chosen to 

model creep because of the curing regimes and loading regimes used mimic the prestressing 

industry norm.  Through experimentation, Flieststra’s data shows the creep strain of UHPC 

follows a curve until thermal treatment is applied. After thermal treatment, the creep strain 

follows a different model. Creep strain rapidly approaches a limit where it will exhibit very 

little to no additional creep once the thermal treatment is complete (i.e. properties are 

“locked-in”).  It should be noted that although the creep coefficients obtained by Flietstra 

were different than previous UHPC compressive creep research, the predicted creep curve 

for ambient cured UHPC obtained from Flietstra’s work predicts ultimate creep strains 

similar to previous work by Graybeal (Flietstra 2011).  A function was fit to the data of 

ambient cured specimens.  The form of this equation was chosen because it is standard in 

ACI when describing creep (ACI 209-92). This form was also chosen by Graybeal (2006) to 
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describe the compressive creep of UHPC.  Equation 3.1 shows the relationship obtained by  

fitting the equation form to the data collected during testing by Flietstra (2011).  A graphical 

representation of this equation is shown later in Section 3.3.2. 

𝜀𝑐𝑟 = 𝑡 .6

4.069+𝑡 .6 ∗ 1713  [Eqn. 3.1] 

Where 𝜀𝑐𝑟 is the creep strain and 𝑡 is the time in days after loading. 

3.1.2 UHPC Shrinkage Modeling 
 

The shrinkage of UHPC was also tested by Flietstra (2011).  Equation 3.2 below was fit to 

shrinkage data that Flietstra (2011) obtained in conjunction with the creep results in order to 

determine basic creep.  Equation 3.2 describes how the shrinkage strain was calculated for 

that component of prestress loss.  A graphical representation of shrinkage strain for ambient 

conditions is shown later in Section 3.3.2.   

𝜀𝑠ℎ = 58.7 ∗ ln(𝑡) + 122    [Eqn 3.2]     

Where 𝜀𝑠ℎ is the shrinkage strain at 𝑡 days. 

3.1.3 Modeling Elastic Modulus  
 

Elastic modulus test data was used to develop a relationship to describe the change in 

modulus over time.  To create this model, data was used from Peuse’s work at Michigan 

Tech. (2006) Using elastic modulus data collected at 3, 7, 14, and 28 days, a curve was fit to 

represent the gain in elastic modulus for all ambient cured specimens.  The relationship to 

compute the modulus of elasticity, at any time, 𝐸𝑐𝑖, is: 
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𝐸𝑐𝑖 = 418.09 ∗ ln(𝑡) + 5281.5  [Eqn. 3.3] 

Where 𝑡 is time from casting of the UHPC in hours. 

 

To account for the fact the data for elastic modulus testing was recorded from the time of 

casting the cylinders, 72 hours was added to the time in the Matlab program.  This is because 

the Matlab program sets the initial time (t=0) as the release of the prestressing strands, which 

were assumed to be cut 72 hours after the beam was cast.   

3.2 Selection of Beam Shapes for Analysis 
 

Three different sections were used during the prestress loss and deflection analysis to 

provide a broad range of applicability (see Table 3.1 for properties of each section).  The 

first shape, a 12RB24 rectangular section (PCI 2010), was selected to provide a basic 

example of prestress loss and deflection calculation.  The section was also used to verify the 

Matlab program against simple hand calculations (Appendix D).  The author recognizes this 

shape does not optimize the advantages of UHPC. The results obtained from the analysis of 

the rectangular shape are not included in the results section of this thesis, but rather in 

Appendix B.   
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Table 3.1 Prestressed Concrete Beam Properties  

 
Section Type 

 

Rectangular 
Section 

Modified Bulb 
Tee 

PI 
Shaped 

Gross Section Area (in2) 288 495.7 861 
Gross Moment of Inertia (in4) 13824 352516 105730 
Linear Weight  
( kip/ft) 0.3 0.540 0.932 
Distance from Neutral Axis to 
Bottom Fiber (in) 12 18.3 22.5 
Span Length (ft) 50 110 87 
# of prestressing strands at 
mid-span 10 47 18 
Area of 0.6” ø Strands (in2) 0.216 0.216 0.216 
Distance from Strand 
Centroid to Bottom (in) 3.6 4.9 3.5 

 

The second shape that was used in the research was the shape of the bridge girder used for 

the UHPC bridge designed by the Iowa DOT in Wapello County.  The shape was a 

modified Iowa DOT Bulb Tee C standard.  The dimensions of the cross section at mid-span 

are shown in Figure 3.1 (Wipf et al. 2009).  For an analysis to be done on this shape 

assumptions were made on the concrete cover at the bottom of the section.  The assumption 

was the strands at the bottom of the section were covered by 2 inches of UHPC.  This 

dimension was chosen as it is typical of the strand spacing in the rest of the section and it 

meets the requirements for concrete cover on a bridge girder laid out by AASHTO LRFD 

Bridge Design Specifications (AASHTO 2012). The Wapello County bridge beams were 111 

feet long and had a span of 110 feet, which was also the length used in the prestress loss and 

deflection analysis of this shape.  The modified bulb tee is a reasonable approach to use 

UHPC with very common bridge shape.  The Iowa Highway Research Board (Wipf et al. 
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2009) reports results from experimental and analytical testing to determine prestress losses 

and deflections of the modified bulb tee bridge.   

 

Figure 3.1 Cross Section of Modified Iowa Bulb Tee Girder (Wipf et al. 2009) 

The third shape that was used in this analysis was the pi-girder used by the Iowa DOT for 

the Jakway Bridge, also in Iowa (Rouse et al. 2011).  The shape was developed and optimized 

specifically to exploit the advanced mechanical and durability properties of UHPC (Graybeal 

2009b).  In-field testing was also completed on this bridge and is highlighted in the report by 

the Iowa Research Board (Rouse et al. 2011).  The cross-sectional view of the pi-girder is 

shown in Figure 3.2.2. 
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Figure 3.2 Cross Section of Pi-Girder (Rouse 2011) 

The analysis also applied a deck on the modified bulb tee to simulate field conditions 

throughout the life of the structure. For the analysis to be complete, the composite section 

properties had to be determined. Figure 3.3 shows the shape of the composite section.  The 

assumed deck thickness was 8 inches and the effective flange width was determined as 115 

inches (AASHTO 2012).  The centroid of the composite section is also dimensioned in 

Figure 3.3. 

115 in

8in

36.3 in

 

Figure 3.3 Cross Section of Composite Shape of Bulb Tee Section 
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3.3 Prestress Loss Calculation Methods 
 

This section describes the methods used in the calculation of prestress losses for this 

research.  Many approaches used to calculate prestress losses offer simplified methods for 

normal strength concrete using coefficients that are empirically derived.  These approaches 

are not appropriate for this research as the behavior of the UHPC material is not yet well 

characterized.  This section discusses the incremental time-step method programmed to 

calculate prestress losses accounting for variables such as thermal treatment and beam shape.  

The Matlab program is found in Appendix A.   

 

Prestress losses are generally considered to start once the prestressing strands have been cut 

and the compressive forces transfer to the concrete element.  For this research the 

instantaneous losses due to anchorage set and friction are not considered because they are 

generally accounted for by the prestressing facility. Losses due to anchor set and friction 

depend on the type of anchors and the methods for tensioning prestressing strands, both of 

which are dependent of the individual facility.  To maintain similarity between the 3 different 

beams, 0.6 inch diameter low relaxations strands with an ultimate strength of 270 ksi were 

used in all three beams. 

 

The first loss and only short-term component considered in this research was the prestress 

loss due to elastic shortening of the concrete member at the time of strand release.  The 

closed form solution of the iterative method using the gross section properties was used to 



48 
 

compute the elastic shortening loss with one step as opposed to several iterations based on 

an initial guess.  Equations 2.3 – 2.5 in Section 2.5.1.1 show the derivation of this solution.   

 

After calculating prestress loss due to elastic shortening, the long-term losses were calculated 

using an incremental time step approach.  This method is illustrated in multiple publications 

(Naaman 2010, Nawy 2010, ACI 423.X 2013). The first step of this procedure is to 

determine the creep strain and shrinkage strain during each time step.  The models described 

in Section 3.1 are used in this step to determine the creep and shrinkage strains.  The strain 

values are used to determine the amount of creep and shrinkage strain that occurred during 

that time increment.  It should be noted that time steps should be chosen to include 

important loading stages in the life of the prestressed element and are generally smaller in the 

early phases and longer towards the end of the beams life.  

 

Based on the general assumption of perfect bond between the concrete and the steel, 

prestress steel losses due to concrete creep and shrinkage were determined by summing the  

concrete creep and shrinkage strains, 𝜖𝑐𝑟 and 𝜖𝑠ℎ, and multiplying that sum by the elastic 

modulus of the steel, 𝐸𝑝𝑠.  The step is shown in Equation 3.4. 

∆𝑓𝑝𝐶𝑅+𝑆𝐻 = 𝐸𝑝𝑠(𝜖𝑐𝑟 + 𝜖𝑠ℎ)  [Eqn. 3.4] 

The stress lost due to steel relaxation of low-relaxation prestressing strands is calculated 

using Equation 3.5 between two time steps, 𝑡𝑖 and 𝑡(𝑖−1).  
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∆𝑓𝑝𝑅 = 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
log�𝑡𝑖−𝑡(𝑖−1)�

45
[𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑓𝑦
− .55]  [Eqn. 3.5] 

Where: 

𝑡 = time in hours 

𝑓𝑝𝑦 = yield stress of prestressing steel 

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = strand stress at beginning of time step 

  

The summation of the relaxation losses and the concrete creep and shrinkage losses 

determines the gross losses, ∆𝑓𝑝−𝑔𝑟𝑜𝑠𝑠, for that time step.  With each time increment, the 

tendons will also experience an associated tendon stress increase.  This occurs because the 

loss of prestressing force lessens the compressive stresses in the concrete at the level of the 

prestress.  The reduction of concrete stress is in turn a strain in the concrete in the opposite 

direction of the prestressing force causing a small tensile increase in the prestressing strand, 

(i.e., causing the strand to “stretch”).  

 

This increase in strand stress, or elastic rebound, is first based on the the change in concrete 

stress due to prestress loss. Using the basic principles of prestressed concrete to determine 

the change in concrete stress, ∆𝑓𝑐𝑜𝑛𝑐., at the centroid of the prestressing force, 𝑒, such that   

∆𝑓𝑐𝑜𝑛𝑐. = 𝑃
𝐴𝑔

+ 𝑃∗𝑒2

𝐼𝑔
  [Eqn. 3.6] 

Where 

   𝑃 =  ∆𝑓𝑝−𝑔𝑟𝑜𝑠𝑠 ∗ 𝐴𝑝𝑠  [Eqn. 3.7] 

Where 
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∆𝑓𝑝−𝑔𝑟𝑜𝑠𝑠 = ∆𝑓𝑝𝐶𝑅+𝑆𝐻 + ∆𝑓𝑝𝑅 [Eqn. 3.8] 

𝐴𝑝𝑠 = Total Area of Prestressing Steel 

The elastic rebound, a strand stress at the centroid of the prestressing force, is then 

computed by multiplying the concrete stress at the prestressing centroid by the modular 

ratio: 

∆𝑓𝑝𝑅𝑒𝑏𝑜𝑢𝑛𝑑 =  ∆𝑓𝑐𝑜𝑛𝑐 ∗
𝐸𝑝𝑠
𝐸𝑐

  [Eqn. 3.9] 

Where 

𝐸𝑝𝑠= elastic modulus of prestressing steel 

𝐸𝑐= elastic modulus of concrete at the time step of interest 

After calculating the elastic rebound, the net loss and final strand stress can be determined 

for that time step by adding the stress gained from elastic rebound to the gross losses.  This 

strand stress will be used as the initial prestressing force for the following time step.   

3.3.1 Modeling for Ambient Curing Conditions of UHPC 
 

The Matlab program was designed to analyze the prestress losses of the ambient cured 

beams before determining the losses for beams that were thermally cured.   For ambient 

conditions, the functions that were derived for creep (Eqn. 3.1), and shrinkage (Eqn. 3.2), 

elastic modulus (Eqn. 3.3) were used to describe the behavior of the beam through the 

entirety of its life.  Several conditional statements were used in the programing to ensure the 

stresses were evaluated correctly.  For creep, shrinkage, elastic modulus, and steel relaxation, 

“if statements” were used to differentiate between the first step of the program and all of the 

following steps.  This was important because within each time step, the losses that occurred 
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only during that increment were desired.   To calculate the value of each loss component, the 

equations from Section 3.3 were used to determine the components’ value for the end of the 

current time step, and then the value that was calculated at the end of the previous time step 

for that parameter was subtracted.  An “if statement” was added that limited the steel 

relaxation equation to only subtract the prestress losses due to steel relaxation if the initial 

prestressing force for that time step was greater than 55 percent of the prestressing strand 

yield stress (Nawy 2010), else Eqn. 3.5 becomes negative and trivial. 

3.3.2 Modeling for Thermal Treatment Curing Conditions 
 

To determine the prestress losses of elements that underwent thermal treatment, as 

described by Flietstra, adjustments were made to the program written for the elements that 

were ambient cured.  As described in Chapter 2, many studies have shown that when UHPC 

undergoes a thermal treatment, the creep and shrinkage are “locked in” and remain constant 

through the life of the element.  With creep, once the element is finished with the thermal 

treatment, it has been found that 1650 μm will be “locked in” with a load level of 60% of 

compressive strength (Flietstra 2011).  Flietstra showed that creep was “locked in” and did 

not change with time for thermally treated UHPC specimens.  It was also shown that creep 

strain will approach 1650 μm no matter when the thermal treatment is applied.  To account 

for this in the simulation of long-term prestress losses, a conditional statement was added to 

return a creep strain of 1650 μm following the completion of thermal treatment.  For each 

of the steps following the thermal treatment, the concrete experiences no additional creep 

strain.  Figure 3.4 is a graphical representation of the creep strain models used for both 

ambient cured and the two thermal treatments scenarios.  
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Figure 3.4 Creep Strain Models for Ambient Cured UHPC 

The shrinkage strain was handled in a slightly different manner because experimental testing 

has shown that upon completion of the thermal treatment, the specimen will not exhibit 

additional shrinkage strain beyond the shrinkage strain the concrete has already endured 

(Flietstra 2011).  To account for this, a conditional statement was added to the Matlab code 

that set shrinkage strain equal to 0 for all time steps past the determined time of the thermal 

treatment. Figure 3.5 graphically displays the shrinkage strain of UHPC over time for various 

curing regimes. 
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Figure 3.5  UHPC Shrinkage Strain Models used in Prestress Losses Analysis 

 

Elastic modulus was also adjusted to account for pre-steam curing and thermal treatments 

because of the rapid change in stiffness that occurs in the matrix when the element 

undergoes these treatments.  Testing reported by Ahlborn et al. (2011) shows that upon 

completion of thermal treatment the elastic modulus approaches 8130 ksi.    
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Figure 3.6 Modulus of Elasticity Models used in Prestress Losses Analysis 

To ensure the programming was appropriately determining the creep strain, shrinkage strain, 

and elastic modulus hand calculations (Appendix D) were completed for several time steps 

and compared to the results of the program. 

3.4 Short and Long-term Deflection 
 

The final step in programming was determining the deflection that the beam would exhibit 

given the prestress losses it had incurred.  Deflections were calculated at the end of each 

time step so that a clear estimate of the deflections could be had over the life of the 

structure.  The deflections are divided into three terms: camber due to the prestressing 

effects, girder dead load deflection, and deck weight dead load deflection.  The dead load 

deflection caused by the deck was applied after 60 days, which is the assumed time of deck 

construction.  The deflection caused by dead weight, both girder and deck, follows 

traditional deflection analysis and is shown in Equation 3.10. Note that deflection is 

influenced by the changing elastic modulus; therefore thermal treatment will have an effect 
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on the deflection.  After deck placement the stiffness is also affected by the increased 

moment of inertia from the composite section.   

∆ 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑 = 5𝑤𝐿4 

384𝐸𝑐𝑖𝐼
    [Eqn. 10] 

Where 

𝑤 = applied dead load 

𝐿 = beam span 

𝐸 = Modulus of elasticity at current time step 

𝐼= Moment of inertia 

Prestressed concrete members are continuously subjected to sustained eccentric compressive 

loading due to the prestressing force.  This force results in an upward deflection, called 

camber.  Camber is used to counter downward deflections and is an important calculation 

because errors in camber can lead to unfavorable service conditions and beam sag.  The 

equation that was used to calculate camber due to the prestress force is shown in Equation 

3.11.  This equation, similar to equation 3.10, is derived from the moment-curvature 

relationships.   

𝐶𝑎𝑚𝑏𝑒𝑟 = −𝑓𝑝𝑠𝐴𝑝𝑠𝑒𝐿2 

12𝐸𝑐𝑖𝐼 
− 𝑓𝑝𝑠𝐴𝑝𝑠𝑒𝐿2 

24𝐸𝑐𝑖𝐼 
   [Eqn. 3.11] 

Similarly to dead load deflections, the elastic modulus and the moment of inertia are 

dependent on thermal treatment, time-step, and deck placement and, therefore, will effect 

deflection.  After calculating the dead load and camber deflections individually the values 

were summed to account for the total deflection.  
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Chapter 4 Results and Discussion 
 

This study consisted of applying an incremental time step prestress loss analysis for three 

different UHPC beam cases (rectangular section, modified bulb tee section, and pi-girder 

section)  and three different thermal treatment regimens (ambient cure, 48 hour thermal 

treatment following casting, 30 day delay prior to thermal treatment) for each of those beam 

cases.  The results from the modified bulb tee section and the pi-girder section are presented 

below.  The time of 𝑡=0 was established as the point in which the prestressing strands were 

released. It should be noted that camber is taken as a negative deflection for the results 

presented herein.  The purpose of the analysis of the rectangular section was to confirm the 

Matlab results with simple hand calculations (Appendix D); therefore the results are not 

presented as part of this section but rather can be found in Appendix B.  The prestress loss 

and deflection results presented herein differ from previous studies because they considered 

the industry practice through modeling time dependent factors that affect prestress losses 

and subsequently deflection.   
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4.1 Bulb Tee Section Results 
The modified bulb tee section results using ambient curing conditions are shown in Figure 

4.1.  These results are a graphical representation of the prestressing strand stress and the 

 

Figure 4.1 Prestress Loss and Deflection Results for Bulb Tee Section - Ambient Cure 

deflection over time.  The prestress losses are calculated for 10 years but are only shown in 

this figure for the first 3000 hours (125 days), which is true for Figures 4.2 and 4.3 as well.  

The abrupt change, at 60 days (1440 hours), in strand stress and deflection is caused by the 

deck placement.  

 

Figure 4.2 shows the estimated prestress losses and deflections for the modified bulb tee 

beam that was subjected to a thermal treatment 48 hours after the prestressing strands were 

released.  This method is more typical of what might be expected in industry and is also 

recommend by UHPC suppliers.  As before, the abrupt change at 1440 hours represents the 
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composite deck placement. In addition, the abrupt change at 48 hours represents the change 

in material behavior due to thermal treatment.    

 

Figure 4.2 Strand Stress and Deflection for Modified Bulb Tee – Thermal Treatment at 48 Hours  
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Figure 4.3 shows the results of loss of prestress and deflections of a modified bulb tee that 

was subjected to thermal treatment 30 days after release of the prestressing strands.   

 

Figure 4.3 Strand Stress and Deflection for Modified Bulb Tee Thermally Treated at 30 Days 

Similarly, the graph shows abrupt changes at 30 days (720 hours) due to thermal treatment 

and at 60 days (1440 hours) due to deck placement.  Analysis was completed up to 10 years 

of service for the beam to determine the long term effects of the thermal treatment timing. 

4.2 Pi-girder Results 
 

The pi-girder was developed by FHWA as an attempt to optimize the mechanical properties 

of UHPC for bridges.  The Jakway Bridge in Iowa was constructed using girders of this 

shape.  The pi-girder beams were not subjected to deck placement in the analysis because the 

shaped does not require additional decking.  The elastic gain and additional deflections 

caused by the cast-in-place UHPC joint connections that connect parallel girders were not 
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considered in this research.  Figure 4.4 shows the prestress losses and deflections of the pi-

girder subjected to ambient curing conditions.   

 
Figure 4.4 Strand Stress and Deflection for Pi-girder - Ambient Cure 

Figure 4.5 shows the prestress losses and deflections of the pi-girder that was thermally 

treated 48 hours after release of prestressing strands.  The figure below shows the results of 

the analysis for the first 3000 hours of service from when the prestressing strands are 

released.  
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Figure 4.5 Strand Stress and Deflection for Pi-girder - Thermal Treatment at 48 Hours 

Figure 4.6 shows the prestress losses and deflections of the pi-girder that was thermally 

treated 30 day after release of prestressing strands.  The figure below shows the results of the 

analysis for the first 3000 hours of service from when the prestressing strands are released.  

Results for the first ten years of service for all shapes are discussed in Section 4.3. 
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Figure 4.6 Strand Stress and Deflection for Pi-girder – Thermal Treatment at 30 Days 

4.3 Discussion of Results 
 

Four time steps are most critical during the life of the beam.  For the discussion of the 

results presented in Sections 4.1 and 4.2, the values for strand stress, percentage of prestress 

loss, and deflections at the four critical time steps are compared.  Critical times in the 

industry are at the time of release, construction, and long-term.   

The first of the critical times is 100 hours after the release of prestressing strands.  The time 

step was chosen because it is important to know the beams behavior after release.  This time 

step also highlights differences in deflection due to thermal treatment 48 hour after release 

and thermal treatment that is delayed by 30 days.   

The next critical time step highlighted is 60 days, before and after the placement of a cast-in-

place deck.   It is important for the engineer to understand the deflection of the beam if they 

are planning to use unshored construction at this stage of the beams life. This is especially 
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true of UHPC beams because the more slender the beam, the more its behavior is affected 

by flexural cracking.  Controlling deflections before adding additional dead load will mitigate 

cracking at the bottom of section and improve the lifespan of the bridge.  For the same 

reasons it is important to understand the behavior of the girders after the deck it placed.  

The final time step chosen for this research was 10 years after the beam was constructed.  

This time step gives a clear understanding of the long term effects of the timing of thermal 

treatment.  It has been shown that beyond 10 years of service life, changes in prestress losses 

and deflections were negligible.  

4.3.1 Strand Stress 

4.3.1.1 Modified Bulb Tee 
 

Table 4.1 shows the strand stress of the UHPC modified bulb tee section and the UHPC pi-

girder section for the three curing regimes at each of the critical time steps.  The strand 

stress shows how the thermal treatment effects prestress loss.  In the modified bulb tee 

shape the strand stress for the beam that is subjected to thermal treatment 48 hours after 

release shows significant prestress losses during the first 100 hours.  This is because after 

thermal treatment the compressive creep strain is locked to a value that is well above the 

creep strain for UHPC under ambient cure (see Figure 3.4).   The results from the 48 hour 

thermal treatment simulation also show that after thermal treatment, UHPC exhibits 

minimal creep and shrinkage and, in turn, prestress loss.  This finding was also observed by 

previous UHPC compressive creep research (Graybeal 2006). 
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Table 4.1 Strand Stress at Critical Time Steps 

  
Time After Release 

Shape Curing Regime 100 Hours 60 days BD* 60 days AD* 10 years 

Modified Bulb Tee 
Ambient  183.0 ksi 161.8 ksi 164.9 ksi 147.8 ksi 

TT at 48 Hours 157.9 ksi 157.5 ksi 160.7 ksi 160.0 ksi 
30 Day Delayed TT 183.0 ksi 153.1 ksi 156.3 ksi 155.8 ksi 

  

Pi-girder  
Ambient  188.5 ksi 166.5 ksi 148.9 ksi 

TT at 48 Hours 162.6 ksi 162.1 ksi 161.5 ksi 
30 Day Delay TT 188.5 ksi 157.5 ksi 157.0 ksi 

* BD denotes before placement of deck and AD denotes after deck placement 

The prestress loss estimation results for the modified bulb tee that underwent a thermal 

treatment at 30 days after prestress release show differences in strand stresses beginning at 

60 days.  As shown at 100 hours in Table 4.1, the strand stress for the beam with the 

simulated 30 day delay in thermal treatment is the same as the strand stress for the beam that 

was cured in an ambient environment.  This is because at 100, hours the prestress loss 

calculation is using the same models to compute creep strain, shrinkage strain, and elastic 

modulus.   

At deck placement, the strand stress of the UHPC modified bulb tee beam that was 

thermally treated at 30 days after release shows little difference (4.4 ksi or 2% of the original 

jacking stress) compared to the beam that was subjected to thermal treatment 48 hours after 

release.  This observation is important to understanding the importance of timing of thermal 

treatment.  

Results from the 10 year time step (long term) show that if thermal treatment is delayed for 

30 days as opposed to the thermal treatment shortly after release, the strands will experience 

as little as 5 ksi difference of prestress loss.  Although the compressive creep strain, 
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shrinkage strain, and elastic modulus of UHPC are “locked-in” after thermal treatment, the 

timing of thermal treatment has only a small effect on the final prestress losses. 

4.3.1.2 Pi-girder  
 

The results for strand stresses at the critical time steps for the pi-girder are also given in 

Table 4.1.  Many of the relationships that were observed for the modified bulb tee section 

were similar in the pi-girder section.  The main difference between the sections was that the 

pi-girder girder was not stressed as highly as the bulb tee section.  This beam, designed by 

the FHWA, only used 18 prestressing strands at the bottom of the section as opposed to the 

47 strands that were used in the bulb tee section.  One of the reasons for this was the pi-

girder section was not designed to span as long of a distance.  It should be noted that the pi-

girder beam did not experience elastic gain due to deck placement because no deck was 

needed with this section.  

  

Similar to the modified bulb tee section, the long term losses of the pi-girder girder show 

that a UHPC beam that is subjected to a thermal treatment shortly after release of prestress 

(48 hours) will experience less prestress loss than the same beam that is thermally treatment 

at 30 days after casting.  However, the difference, 6.5 ksi or 2% of the initial prestress, is 

small. 

4.3.2 Prestress Losses 
 

Prestress loss is commonly presented or calculated in terms of the percentage of prestressing 

force that is lost after release of prestressing strands relative to the original jacking force.  In 
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an article published by Post-Tensioning Institute, typical losses for a pretensioned beam are 

19 percent of the initial jacking stress (ACI 423.X 2013). The PCI Design Handbook 

indicates that total prestress losses range from 12 to 25 percent for normally weight concrete 

and from 15 to 27 percent for lightweight concrete (PCI 2010).  Table 4.2 shows the 

percentage of prestress loss for each of the critical time steps for the UHPC modified bulb 

tee section and the UHPC pi-girder section. 

 

Table 4.2 Prestress Losses as Percentage of Initial Strand Stress 

 
 

Time After Release 
Shape Curing Regime 100 Hours 60 days BD* 60 days AD* 10 years 

Modified Bulb 
Tee 

Ambient  19.9% 29.2% 27.8% 35.3% 
TT at 48 Hours 30.9% 31.0% 29.6% 30.0% 

30 Day Delay TT 19.9% 33.0% 31.6% 31.8% 
  

Pi-girder  
Ambient  17.5% 27.1% 34.8% 

TT at 48 Hours 28.8% 29.0% 29.3% 
30 Day Delay  TT 17.5% 31.0% 31.3% 

* BD denotes before placement of deck and AD denotes after deck placement 

Table 4.2 shows that long term losses range from 30 percent of initial stress to 35.3 percent 

of initial stress for the modified bulb tee shape.  Prestress loss analysis results are presented 

in the report of the modified bulb tee published by the Iowa DOT (Wipf et al. 2009). In this 

report, the prestress losses were calculated as 30.4 percent with assumed material behavior 

and 27 percent when calculated based on experimental results.  These values compare well 

with the 30.0 percent loss of prestress calculated here for the modified bulb tee that was 

subjected to thermal treatment 48 hours after prestress release, which is representative of the 

actual curing sequence.  
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The pi-girder girder showed results that were very similar to the modified bulb tee in terms 

of percentage of prestress loss over the life of the beam.  However, results show that early in 

the life of the structure the pi-girder girder losses less prestressing than the modified bulb 

tee. This is most likely because the stress in the concrete due to the prestressing force was 

less in the pi-girder girder.  

4.3.3 Short and Long-Term Deflections 
 

Prestress losses have no effect on the ultimate strength of a flexural component unless the 

effective prestress (or long term level of prestress) is less than 50 percent of the ultimate 

capacity of the prestressing strand. However, an over or under-estimation of prestress losses 

can have an impact on the serviceability limit states such as camber, deflection, or cracking 

(ACI 423.X 2013).  Therefore, it is important to understand how the prestress losses affect 

the deflections of the beam over the service life.  Table 4.3 shows the computed deflection 

results using prestress losses obtained from the incremental time-step method for the 

modified bulb tee section and the pi-girder section under various curing regimes.   

Discussion answers three important questions regarding the relationship between prestress 

losses and deflections of UHPC beams.  The effect of thermal treatment on deflection, 

deflections on ambient cured UHPC beam versus UHPC beams that are thermally treated, 

and the effect of thermal treatment timing on short and long term deflections are addressed 

in the following sections.  Note that all deflections shown in Table 4.3 report a negative 

deflection.  For this work downward deflection was considered the positive direction, 

therefore, a negative deflection represents an upward camber.  
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As previously discussed, several components of prestress loss are “locked-in” upon 

completion of thermal treatment.  The effect of thermal treatment on prestress losses, in 

turn, has an effect on the deflection of the beam.   Table 4.3 shows the computed 

deflections for both beam shapes at critical time-steps for all three curing regimes.  As 

expected, ambient cured beams have the least camber remaining for long-term conditions.  

After thermal treatment, the UHPC beam experiences changes in deflection that are 

negligible (.05”) in the prestressed concrete industry.   

Table 4.3 Deflections at Critical Time Steps 

* BD denotes before placement of deck and AD denotes after deck placement 
Note: Negative deflection represents and upward camber 

 

The timing of thermal treatment may not affect the long term deflection of UHPC beams, 

but if the short term deflection is critical, the difference in deflection should not be ignored.  

The modified bulb tee that was subjected to thermal treatment 48 hours after prestress 

release shows nearly 0.38 in. more deflection than the beam in which thermal treatment was 

delayed 30 days.  The computed deflection for the UHPC pi-girder at 100 hours showed 

similar results, with the timing of thermal treatment resulting in a .39 in. differential. This 

could be of importance to a prestressing facility that needs to know the deflections of beams 

for transportation purposes.    

  
Time After Release 

Shape Curing Regime 
100 

Hours 60 days BD* 60 days AD* 10 years 

Modified Bulb Tee 
Ambient  -1.39 in -1.03 in -0.4 in -0.21 in 

TT at 48 Hours -1.01 in -1.0 in -0.4 in -0.39 in 
30 Day Delay TT -1.39 in -0.96 in -0.35 in -0.34 in 

  

Pi-girder  

Ambient  -0.89 in -0.54 in -0.28 in 
TT at 48 Hours -0.5 in -0.5 in -0.45 in 
30 Day Delay 

TT -.89 in -.45 in -0.44 in 
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Chapter 5 Conclusions and Future Work 
 
5.1 Conclusions 
 

The purpose of this research was to determine if the timing of thermal treatment during the 

manufacturing procedure of two UHPC prestressed beams has an effect on long-term losses 

and deflections of UHPC beams.  Prestress losses were estimated for three UHPC beams 

(rectangular section, bulb tee section, and pi-girder section) to understand the short and 

long-term deflections.  The prestress losses were computed using an incremental time-step 

method and material models to account for differences due to the timing of thermal 

treatment if applied at all.  This method allowed for losses to be computed at any desired 

time step.  The time step method also allowed for computation of creep strains and 

shrinkage strains using models that were derived from data collected by Flietstra in which 

the manufacturing process was replicated (Flietstra 2011).  All data to obtain the results of 

this research are based on test results from Lafarge’s Ductal® UHPC, and contains 2% by 

volume steel fibers.  The timing of thermal treatments used for the analysis presented herin, 

was chosen to represent upper and lower bound of feasible times for UHPC beams to be 

thermally treated after release of prestress. 

 

These specific conclusions have been made based on the results reported using the prestress 

loss simulation: 

• UHPC beams that are not thermally treated show increased prestressed losses and 

deflections.  If a prestressing facility chooses not to thermally treat their UHPC 

beams, detailed estimations of long term deflections should be made. 
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• The timing of thermal treatment has negligible effects on long-term prestress loss or 

deflections for the UHPC beams studied. 

• Past creep research has stated that creep and shrinkage are locked-in after UHPC has 

been thermally treated.  This concept also applies to long-term prestress losses and 

deflections.  After thermal treatment, the beams experience negligible prestress losses 

and deflections.  Following thermal treatment, external loads such as deck placement 

or live load will be the only contributors to changes in prestress levels and deflection. 

5.2 Future Work 
 

The completion of this work has led to the author to understand areas of this topic that 

should be researched further.  The industry needs more consistency in testing creep and 

other time dependent material properties for UHPC.  This could be accomplished by 

developing standards similar to the ASTM testing standards that govern the testing of 

normal strength concrete.  Also, the need for more compressive creep testing data of UHPC 

is important.  Because this property is complex a larger data base would create a more 

consistent model for the material behavior.   

 

A continuation of this research is to perform prestress loss analysis using the creep 

coefficients reported by previous researchers.  A comparison the methods used in this 

research compared to values recommended by other research would be beneficial.   

The final recommendation for future work is to complete full scale testing of long-term 

deflections on UHPC for validation of computational methods.   

  



71 
 

References 
 

AASHTO, (2012). LRFD Bridge Design Specifications, Sixth Edition, American Association of  

State Highway and Transportation Officials, Washington, DC. 

ACI Committee 209, (1992), (Reapproved 2008), Prediction of Creep, Shrinkage and Temperature 

Effects in Concrete Structures (ACI 209R-92), American Concrete Institute, Farmington 

Hills, MI, 2011. 

ACI Committee 423, (2013 Draft), Estimating Prestress Losses (ACI 423.X), American 

Concrete Institute, Farmington Hills, MI, 2011. 

Ahlborn, T.M., D.K. Harris, D.L. Misson and E.J. Peuse (2011). "Characterization of 

Strength and  Durability of Ultra-High-Performance Concrete Under Variable 

Curing Conditions."Transportation Research Record: Journal of the Transportation 

Research Board 2251(-1): 68-75.  

Ahlborn, T.M., E. J.Peuse,  D.L. Misson. (2008). ULTRA-HIGH  PERFORMANCE 

CONCRETE  FOR  MICHIGAN  BRIDGES MATERIAL PERFORMANCE – 

PHASE I, MDOT Research Report RC-1525, Michigan Department of 

Transportation, Lansing, MI. 

AFGC, (2002), Association Française de Génie Civil , Interim Recommendations for Ultra High 

Performance Fibre-Reinforced Concretes. 

American Concrete Institute –ACI (2008), Building Code Requirements for 

Structural Concrete, Committee 318, ACI, Farmington Hills, MI,. 



72 
 

American Society for Testing and Materials International. (2013). "Annual Book of ASTM 

Standards".  

ASTM C 39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. 

2005.  

ASTM C 512, Standard Test Method for Creep of Concrete in Compression. 2002. 

Anon [Internet], “North American Ductal® Bridge Projects.” Available at  

www.ductallafarge.com [Viewed November 21, 2013]. 

Bazant, Z.P., (1972) “Prediction of Concrete Creep Effects Using Age-Adjusted Effective 

Modulus Method.” ACI Journal, V.69, No.4, April, pp. 212-217. 

Bierwagen, D. and Abu-Hawash, A., (2005). “Ultra-High Performance Concrete Highway  

Bridge,” Proceedings of the 2005 Mid-Continent Transportation Research Symposium, Ames, 

IA, August. 

Bornstedt, G. and Shike, C., (2011) “Connecting Precast Prestressed Concrete Bridge Deck 

Panels with Ultra High Performance Concrete,” Proceedings of the PCI National Bridge 

Conference, October 22–26, Salt Lake City, UT, Compact Disc, Paper 106. 

Burkart, I. and Müller, H.S., (2008) “Creep and Shrinkage Characteristics of Ultra High 

Strength Concrete (UHPC),” Proceedings of the Second International Symposium on Ultra 

High Performance Concrete, Ed., Fehling, E., Schmidt, M., and Stürwald. S., Kassel 

University Press, Kassel, Germany, pp. 469–476. 

Cheyrezy, M., Maret, V., and Frouin, L., (1995) “Microstructural Analysis of RPC (Reactive  

Powder Concrete),” Cement and Concrete Research, Vol. 25, No. 7, pp. 1,491–1,500. 

 



73 
 

Dinges, T. (2009). The History of Prestressed Concrete: 1888 to 1963. Architictural  

Engineering and Construction Science. Manhattan, Kansas, Kansas State University. 

Master of Science. 

Flietstra, J.C. (2011).  Creep and Shrinkage Behavior of Ultra High Performance Concrete Under 

Compressive Loading With Varying Curing Regimes. Houghton, MI: MS Thesis, Michigan 

Technological University. 

Francisco, P. F. Benboudjema., P. Rougeau, JM. Torrenti, (2012) “Creep and Shrinkage  

Prediction for a Heat-Treated Ultra High Performance Fibre-Reinforced Concrete,” 

Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for 

High Performance Construction Materials, Ed., Schmidt, M., Fehling, E., Glotzbach, C., 

Fröhlich, S., and Piotrowski, S., Kassel University Press, Kassel, Germany, 2012, pp. 

325–331.  

Garas, V. Y., K. E. Kurtis, L.F. Kahn. (2012). "Creep of UHPC in tension and compression: 

Effect of thermal treatment." Cement & Concrete Composites 34(4): 493-502. 

Ghali, A., Favre, R., and ElBadry, M. (2012). Concrete Structures – Stresses and 

Deformations: Analysis and Design for Serviceability, Spon Press, New York, NY. 

Gilbertson, C.G., and Ahlborn, T.M. (2004). “ A probalistic comparison of prestress loss 

methods in prestressed concrete beams”, PCI JOURNAL, V.49, No. 5, Sept-Oct, 

pp. 52-69.  

Gowripalan, N. and Gilbert, R.I., "Design Guidelines for Ductal Prestressed Concrete 

Beams," The University of New South Wales, Sydney, Australia, 2000 



74 
 

Graybeal, B.(2006). “Material Property Characterization of Ultra-High Performance  

Concrete,” FHWA, U.S. Department of Transportation, Report No. FHWA-HRT-

06-103, McLean, VA. 

Graybeal, B.A., (2009a) “Structural Behavior of a Prototype Ultra-High Performance 

Concrete Pi-Girder,” FHWA, U.S. Department of Transportation, Report No. 

FHWA-HRT-10-027. 

Graybeal, B.A., (2009b) “Structural Behavior of a 2nd Generation Ultra-High Performance 

Concrete Pi-Girder,” FHWA, U.S. Department of Transportation, Report No. 

FHWA-HRT-10-026,  114 pp.  

Graybeal, B.A., (2013) “Ultra-High Performance Concrete: A State-of-the-Art Report for the 

Bridge Community,” FHWA, U.S. Department of Transportation, Report No. 

FHWA-HRT-13-060.  

JSCE, (2006). Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced 

Concrete Structures (Draft), Japan Society of Civil Engineers, JSCE Guidelines for 

Concrete No. 9. 

Keierleber, B., Bierwagen, D., Wipf, T., (2008) and Abu-Hawash, A., “Design of Buchanan  

County, Iowa, Bridge, Using Ultra High-Performance Concrete and Pi Beam Cross 

Section,” Proceedings of the 2008 PCI National Bridge Conference, Precast/Prestressed 

Concrete Institute. 

Kollmorgen, G.A. (2004).  Impact of Age and Size on the Mechanical Behavior of an Ultra-High 

Performance Concrete. Houghton, MI: MS Thesis, Michigan Technological University. 

Loukili, A., Richard, P., and Lamirault, J., (1998), “A Study on Delayed Deformations of an  

Ultra High Strength Cementitious Material,” Fourth CANMET/ACI/JCI Conference:  



75 
 

Advances in Concrete Technology, Publication No. SP-179, Ed., Malhotra, V.M. 

American Concrete Institute, Farmington Hills, MI, pp. 929–950. 

Mehta, P.K., and Monteiro, P.J.M (2006). “Concrete Microstructure, Properties, and  

 Materials.” The McGraw-Hill Companies, Inc., New York, NY. 

Moore, B., (2012). “Little Cedar Creek Bridge—Big Innovation,” ASPIRE, Spring, p. 27.  

 Available at http://www.aspirebridge.org [Cited April 20, 2012]. 

Naaman, Antoine E., 2010, Prestressed Concrete Analysis and Design, Third Edition, Technopress  

3000, Ann Arbor, MI. 

Nawy, E. G. (2010). Prestress Concrete : A Fundamental Approach. Upper Sadle River, NJ, 

Prentice Hall. 

Neville, A. M. (1970). Creep of Concrete: Plain, Reinforced, and Prestressed. New York, 

NY, American Elsevier Publishing Company, Inc. 

Nyland, E.M. (2009).  Early-Age Creep and Shrinkage Behavior of an Ultra-High Performance  

Concrete for Precast/Prestressed Concrete Applications. Houghton, MI: MS Thesis, Michigan 

Technological University. 

Peuse, E.J. (2008), Impact of Age at Thermal Treatment on the Mechanical Properties of an Ultra-High 

Performance Concrete. Houghton, MI: MS Thesis, Michigan Technological University. 

Ozyildirim, C., (2011) “Evaluation of Ultra-High-Performance Fiber-Reinforced Concrete,” 

Virginia Center for Transportation Innovation and Research, Report No. 

FHWA/VCTIR 12-R1, Federal Highway Administration, McLean, VA. 



76 
 

PCI (2010), PCI Design Handbook, Seventh Edition, Chicago, Precast Concrete Institute. 

Rouse, J. M., Wipf, T., Phares, B., Fanous, F., and Berg, O., (2011) Design, Construction, and  

Field Testing of an Ultra High Performance Concrete Pi-Girder Bridge, Iowa Highway 

Research Board (IHRB) Project TR-574, Iowa Department of Transportation. 

Royce, M.C., (2011) “Concrete Bridges in New York State,” ASPIRE, Fall, pp. 46–48. 

Available at http://www.aspirebridge.org [Cited November 23, 2011]. 

Shutt, C.A., (2009) “UHPC Joint Provides New Solutions,” ASPIRE, pp. 28–30.   

Wille, K., Naaman, A.E., and Parra-Montesinos, G.J., (2011), “Ultra-High Performance  

Concrete With Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way,” 

ACI Materials Journal, Vol. 108, No. 1, pp. 46–54. 

Wipf, T., Phares, B., Sritharan, S., Degen, B., and Giesmann, M., (2009) Design and Evaluation  

of a Single-Span Bridge Using Ultra-High Performance Concrete, Iowa Highway Research 

Board (IHRB) Project TR-529, Iowa Department of Transportation. 

Wollmann, G. P., R. B. Anderson, C.L. Roberts Wollmann, (2003). "Creep and Shrinkage 

Effects in Spliced Prestressed Concrete Girder Bridges." PCI JOURNAL 

(November - December): 92-105. 

 
 
  



77 
 

Appendix A - Prestress Losses Matlab Program  
% Chris Mullen – 11/20/2013 
% Timestep Prestress Losses for UHPC Beam 
  
clc 
fprintf('\t1 - Square\n\t2 - Bulb Tee\n\t3 - Pi Shaped\n>>'); 
Beam_Type = input('Beam Case:') 
  
if Beam_Type == 1; 
    b=12; 
    h=24; 
    A_g=288; 
    I_g=13824; 
    w_0=.3; 
    c_bottom=12; 
    L_ft=50 
    number_strands=10; 
    y_s=3.6; 
    w_deck=.958; 
    I_composite=74880; 
    C_composite=24.18; 
end 
if Beam_Type == 2; 
    A_g=495.7; 
    I_g=352516; 
    w_0=.540; 
    c_bottom=18.3; 
    L_ft=110; 
    number_strands=47; 
    y_s= 4.9; 
    w_deck=.958; 
    I_composite=604592; 
    C_composite=36.3;    
end 
  
if Beam_Type ==3; 
    A_g=861; 
    I_g=105730; 
    w_0=.932; 
    c_bottom=22.5; 
    L_ft=87; 
    number_strands=18; 
    y_s= 3.5; 
    w_deck=0 
    I_composite=I_g; 
end 
  
    L=L_ft*12; 
    M_0=w_0*L_ft^2/8; 
    M_deck=(w_deck*L_ft^2)/8; 
%*********Prestressing Steel Properties 
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    % .6 Inch Diamter Strands 
    %  270 Psi Stength 
    %number_strands=10; 
     
    %Area of Individual Strand 
    A_strands=.216; 
    % Area of Prestressing Strand in beam 
    A_ps=number_strands*A_strands; 
    % Modulus of Steel 
    E_ps=28500; 
    %Ultimate Strength of Steel 
    f_u=270; 
    %Yield Strength of Steel 
    f_y=f_u*.9; 
    %Distance from strands to bottom of section 
    %y_s=3.6; 
    %Eccentricity of stands from centroid 
    e=c_bottom-y_s; 
%*********Input the timing of thermal treatment 
    TT=input('How many hours after release is thermal treatment 
applied? ') 
     
%*********Determination of Time Step 
figure; 
    %Assume element is loaded at 72 hours after casting 
i = 0; 
test_f_ps = zeros(1, length(1:1:87600)); 
test_td = zeros(1, length(1:1:87600)); 
   for t = 2:1:87600;     
       i = i + 1; 
%*********Determination of Modulus of Elasticity over Time 
   % Modulus of Elasticity as function of time, t, in hours 
     if t < TT    
        E_current=418.09*log(t+72)+5281.5; 
     else 
         E_current=8130; 
     end 
%****** Elastic Shortening at release 
  
    %Stress in steel before transfer 
    %jacking limit of .94 fy 
        f_jack = .94*f_y; 
     
    %Jacking Force 
        F_jack=f_jack*A_ps; 
  
    %Modular Ratio at Time step,n 
        n_p=E_ps/E_current; 
         
    % Elastic Shortening only acts oEGnnce at time of release 
        if t == 2; 
                    
    % Loss of prestress due to elastic shortening 
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            Delta_f_pES = (A_ps*f_jack*(I_g+e^2*A_g)-e*M_0*A_g)... 
                /(A_ps*(I_g+e^2*A_g)+(A_g*I_g/n_p)); 
              
       else 
             
            Delta_f_pES = 0; 
            
       end 
                 
    % Strand Stress after Elastic Shortening 
       if t == 2 
           f_initial=f_jack-Delta_f_pES; 
        
       else 
           f_initial=f_ps_current; 
               
       end 
% **********Long Term Losses 
  
% **********Steel Relaxation for given time step 
       if t== 2 
            
        Delta_f_pRE=f_initial*((log10(t)/45)*(f_initial/f_y-.55)); 
         
       else if f_initial/f_y > .55 
            
        Delta_f_pRE=f_initial*(((log10(t)-log10(t-
1))/45)*(f_initial/f_y-.55)); 
         
           else 
             Delta_f_pRE=0;   
           end 
       end 
     
% *********Losses Due to Creep and Shrinkage 
    % Determining Creep Strain at current time step 
    % Defining the Ambient Creep Curve 
    if t < TT   
         
        if t == 2 
             
            Creep_strain=(((t)/24)^.6/(4.069+((t)/24)^.6))*1713; 
        else 
             
            Creep_strain=(((t)/24)^.6/(4.069+((t)/24)^.6))*1713 -(((t-
1)/24)^.6/(4.069+((t-1)/24)^.6))* 1713; 
           
        end   
         
    else         
       if t == TT 
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           Creep_strain=1650-(((t-1)/24)^.6/(4.069+((t-
1)/24)^.6))*1713; 
       else 
     
         Creep_strain=0; 
       end 
    end     
    if t < TT 
     
         if t == 2 
       
            Shrinkage_strain=58.7*log((t)/24)+122; 
        
         else 
     
            Shrinkage_strain=(58.7*log((t)/24))+122-(58.7*log((t-
1)/24)+122); 
        
         end 
    else 
         
        Shrinkage_strain=0; 
    end 
        if Shrinkage_strain < 0 
             
            Shrinkage_strain=0; 
        else  
            Shrinkage_strain=Shrinkage_strain; 
        end 
%******* Loss of prestress due to creep and shrinkage 
        Delta_f_pCRSH=E_ps*((Creep_strain+Shrinkage_strain)/1000000); 
     
%******* Gross Loss for time step 
     
        Delta_f_psGross=Delta_f_pCRSH+Delta_f_pRE; 
     
%******* Determine change in concrete stress at strand level 
  
        
Delta_f_c=Delta_f_psGross*(A_ps/A_g)+(Delta_f_psGross*A_ps*e^2/I_g); 
%******* Determine the elastic rebound of steel 
     
        Delta_f_pRebound=Delta_f_c*(E_ps/E_current); 
         
        if t==1441 
             
            Delta_f_EG=n_p*((M_deck*12)*(C_composite-y_s)/I_composite); 
             
        else 
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            Delta_f_EG=0; 
        end 
     
%******* Net Losses for time step 
     
        Delta_f_psNet=Delta_f_psGross-Delta_f_pRebound-Delta_f_EG; 
    
%****** Current Strand Stress  
     
         f_ps_current=f_initial-Delta_f_psNet; 
         test_f_ps(i) = f_ps_current; 
          
%****** Upward Deflection Based on Stand stress 
         
        Camber= -
(f_ps_current*A_ps*e*L^2/(12*E_current*I_g)+f_ps_current*A_ps*e*L^2/(24
*E_current*I_g)); 
         
        DL_Deflection = 5*w_0/12*L^4/(384*E_current*I_g); 
         
        if t>=60*24 
            
Deck_Deflection=5*w_deck/12*L^4/(384*E_current*I_composite);  
        else 
            Deck_Deflection=0; 
        end 
         
        Total_deflection=Camber+DL_Deflection+Deck_Deflection; 
         
        test_td(i) = Total_deflection; 
      
   end 
tt = 1 : 1 : 87600; 
         subplot(2,1,1) 
         plot(tt,test_f_ps,'-k','LineWidth',.5) 
         axis([0 87600 50 250]) 
         title('Ambient Cure Prestress Losses') 
         xlabel('Time - Hours') 
         ylabel('Strand Stress - ksi') 
          
         subplot(2,1,2) 
         plot(tt,test_td,'-k','LineWidth',.5) 
         axis([0 87600 -3 2]) 
         title('Ambient Cure Deflections') 
         xlabel('Time - Hours') 
         ylabel('Deflection (in)') 
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Appendix B – Results of Rectangular Beam 

 

Figure B.1 Prestress Losses and Deflections for Ambient Cured Rectangular Section 

 

 

Figure B.2 Strand Stress and Deflections for Rectangular Beam Thermally Treated at 48 Hours 
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Figure B.3 Strand Stress and Deflections for Rectangular Beam Thermally Treated at 30 Days 
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Table B.1 Select Results for Strand Stress and Deflections of Ambient Cured Rectangular Section 

Ambient Cure Results 

Time After 
Release 

Prestress 
Strand 

Stress (ksi) 

Deflection 
(inches) 

100 Hours 187.7   -1.08   

  BD AD BD AD 
60 Days 165.8 169.2 -0.808 -0.59 

10 Years 151.5   -0.408   

 

 

Table B.2 Select Results for Strand Stress and Deflections of Ambient Cured Rectangular Section 

Thermal Treatment @ 48 Hour 

Time After Release 

Prestress 
Strand 
Stress 
(ksi) 

Deflection 
(inches) 

100 Hours 161.8 -0.803 

Deck Placement BD AD BD AD 
60 Days 161.4 164.8 -0.797 -0.601 

10 Years 164.1 -0.5953 

 

 

Table B.3 Select Results for Strand Stress and Deflections of Ambient Cured Rectangular Section 

Thermal Treatment @ 30 Days 

Time After Release 

Prestress 
Strand 
Stress 
(ksi) 

Deflection 
(inches) 

100 Hours 187..7 -1.08 

Deck Placement BD AD BD AD 
60 Days 156.8 160.3 -0.764 -0.568 

10 Years 159.6 -0.563 
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Appendix C – Copyright Permissions 
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Appendix D – Sample Calculations 
Sample Calculation for Rectangular Beam - Ambient Conditions - 100 Hours After Release 

 

Section Properties [ PCI Design Handbook 7th Ed. , 3-44]  

Section - 12RB24 

Section Dimensions:  
 

Gross Section Area:  

 

Modulus of Elasticity at 
 current time step:  

Gross Moment of Inertia:  

Distance from N.A. to bottom face:  

 

Span:  

 

 

Eccentricity:  

Prestressing Properties 

10 .6 inch diameter 270 stands 

Area of Prestress:  

 
Ultimate Stress of Steel: 

 
Modulus of P/S steel: 

 
Modular Ratio: 

 

Moment due to beam weight:  

 
Yeild stress of steel: 

 
Jacking stress: 

t 100:=

b 12 in⋅:=
h 24 in⋅:=

Ag 288 in2
⋅:=

w0 .3
kip
ft

⋅:=

Eci 418.09ksi ln t 72+( )⋅ 5281.5ksi+ 7.434 103
× ksi⋅=:=

Ig 13824 in4
⋅:=

c2 12 in⋅:=

S 1152 in3
⋅:=

L 50 12⋅ in⋅ 600 in⋅=:=

r
Ig
Ag

6.928 in⋅=:=

ys 3.60in:=

e c2 ys− 8.4 in⋅=:=

Aps 10 .216⋅ in2 2.16 in2
⋅=:=

fu 270 ksi⋅:=

Eps 28.5 106
⋅ psi⋅:=

n
Eps
Eci

3.834=:=

fci 14 ksi⋅:=

MD
w0 L2

⋅

8
93.75 kip ft⋅⋅=:=

fpy .9 fu⋅ 243 ksi⋅=:=

fjack .94 fpy⋅ 228.42 ksi⋅=:=
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Losses From Elastic Shortening 

 

Initial Prestressing Force 

 

Time Dependent Losses 

Steel Relaxation 
 

 

Creep and Shrinkage Losses 

 

 
Strain in Concrete due to creep: 

Concrete Strain due to shrinkage:  

Loss of P/S due to Creep and  
Shrinkage: 

 

 
Gross P/S Losses: 

Change in Conc. Stress:  

 Gain in Prestress: 

∆f pES
Aps fjack⋅ Ig e2 Ag⋅+



⋅ e MD⋅ Ag⋅−

Aps Ig e2 Ag⋅+



⋅

Ag Ig⋅ Eci⋅

Eps
+

12.7 ksi⋅=:=

finitial fjack ∆f pES− 215.72 ksi⋅=:=

thours 100:=

∆f pRE finitial
log 100( )

45
⋅

finitial
fpy

.55−








⋅ 3.238 ksi⋅=:=

tdays
thours

24
4.167=:=

εcr
tdays( ) .6

4.069 tdays( ) .6
+

1713⋅ 627.868=:=

εsh 58.7 log tdays( )⋅ 122+ 158.382=:=

∆f pCRSH Eps
εcr εsh+( )
1000000

⋅ 22.408 ksi⋅=:=

∆f psGross ∆f pCRSH ∆f pRE+ 25.646 ksi⋅=:=

∆f c ∆f psGross
Aps
Ag

⋅
∆f psGross Aps⋅ e2

⋅

Ig
+ 0.475 ksi⋅=:=

∆ f_rebound ∆f c n⋅ 1.821 ksi⋅=:=
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Change in Prestress due to Deck Placement 

Weight of Deck:  

Moment Caused by Deck Weight:  

 Thickness of Slab: 

 

Effective Flange Width : ACI 8.12.2 

 

 
Area of Precast Section: 

Area of Deck Section:  

Area of Composite Section:  

Centroid of Composite Section:  

Moment of Inertia Precast:  

Composite Moment of Inertia: 

 

Elastic Gain Due to Deck  
Placement:  

 

Current Steel Stress:  

wdeck .958
kip
ft

:=

Mdeck
wdeck L2

⋅

8
299.375 kip ft⋅⋅=:=

Hslab 8in:=

Span 50ft:=

EFW min .25 Span⋅ 16 Hslab⋅ 32in+, 
115in 32in−

2
115in 32in−

2
+





32in+, 





115 in⋅=:=

Apc 288in2
:=

Adeck 115in 8⋅ in 920 in2
⋅=:=

Acomposite Apc Adeck+ 1.208 103
× in2

⋅=:=

Ccomposite
12in Apc⋅ 24in 4in+( ) Adeck⋅+ 

Acomposite
24.185 in⋅=:=

Ipc 13824in4
:=

Icomposite Ipc Apc Ccomposite 12in−( )2
⋅+





EFW Hslab
3

⋅

12
Adeck

Hslab
2

24in Ccomposite−( )+








2

⋅+






+

... 7.488 104
× in4

⋅=:=

EG n
Mdeck( ) Ccomposite ys−( )⋅

Icomposite
⋅ 3.786 ksi⋅=:=

∆ f_ps_net ∆f psGross ∆ f_rebound− EG+ 27.611 ksi⋅=:=

fps_100hours finitial ∆ f_ps_net− 188.109 ksi⋅=:=
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Deflections  

 

 

 

Deflections caused by deck to not act on girder until 60 days 

Results from Sample Calculation: 

 

From Results Obtained during Analysis: 

Ambient Cure rectangular beam at 100 hours:   

Camber
fps_100hours Aps⋅ e⋅ L2

⋅

12 Eci⋅ Ig⋅

fps_100hours Aps⋅ e⋅ L2
⋅

24 Eci⋅ Ig⋅
+











− 1.495− in⋅=:=

∆ dl
5 w0⋅ L4

⋅

384 Eci⋅ Ig⋅
0.411 in⋅=:=

∆ deck
5 wdeck⋅ L4

⋅

384 Eci⋅ Icomposite⋅
0.242 in⋅=:=

∆ T Camber ∆ dl+ 1.084− in⋅=:=

∆ 1.08− in:=∆ 1.08− in:=
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