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Abstract

This report discusses the calculation of analytic second-order bias techniques for the

maximum likelihood estimates (for short, MLEs) of the unknown parameters of the

distribution in quality and reliability analysis. It is well-known that the MLEs are

widely used to estimate the unknown parameters of the probability distributions

due to their various desirable properties; for example, the MLEs are asymptotically

unbiased, consistent, and asymptotically normal. However, many of these properties

depend on an extremely large sample sizes. Those properties, such as unbiasedness,

may not be valid for small or even moderate sample sizes, which are more practical in

real data applications. Therefore, some bias-corrected techniques for the MLEs are

desired in practice, especially when the sample size is small.

Two commonly used popular techniques to reduce the bias of the MLEs , are ‘pre-

ventive’ and ‘corrective’ approaches. They both can reduce the bias of the MLEs

to order O(n−2), whereas the ‘preventive’ approach does not have an explicit closed-

form expression. Consequently, we mainly focus on the ‘corrective’ approach in this

report. To illustrate the importance of the bias-correction in practice, we apply the

bias-corrected method to two popular lifetime distributions: the inverse Lindley dis-

tribution and the weighted Lindley distribution. Numerical studies based on the

xiii



two distributions show that the considered bias-corrected technique is highly recom-

mended over other commonly used estimators without bias-correction. Therefore,

special attention should be paid when we estimate the unknown parameters of the

probability distributions under the scenario in which the sample size is small or mod-

erate.
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Chapter 1

Introduction

In recent years, numerous distributions have been developed in the literature. The

main motivation of developing the new distribution is that researchers want to pro-

vide a better model to analyze the real data from different research areas. However,

in many cases, the poor performance of the distribution is due to inaccurate esti-

mates of the unknown parameters, not its inner properties. It is well-known that

the maximum-likelihood estimator (MLE) is the most popular one for estimating the

unknown parameter, due to its good properties. However, the MLE is biased in finite

sample space. Such bias may significantly affect the fitness of the distribution. This

observation motivates us to adopt some bias-corrected technique to reduce the bias

of the MLE from order O(n−1) to order O(n−2).
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In Chapter 2, we consider the one-parameter inverse Lindley distribution (shortly,

IL), which is applicable of modeling the upside-down bathtub shape data. We firstly

estimate the unknown parameter based on the MLE. Then we adopt a ‘corrective’

approach to derive the modified MLE that is bias-free to the second order. As com-

parison, an alternative bias-correction mechanism based on the parametric bootstrap

is considered in this chapter.

In Chapter 3, we focus on the two-parameter weighted Lindley distribution. This

distribution is useful for modeling survival data with different shapes, whereas its

MLEs are biased in finite samples. This motivates us to construct nearly unbiased

estimators for the unknown parameters. We consider a ‘corrective’ approach to derive

modified MLEs that are bias-free to second order. In addition, we adopt an alter-

native bias-correction mechanism based on the parametric bootstrap. Monte Carlo

simulations are conducted to compare the performance between the proposed and

two previous methods in the literature. The numerical evidence shows that the bias-

corrected estimators are extremely accurate even for very small sample sizes and are

superior than the previous estimators in terms of biases and root mean squared errors.

Finally, applications to two real data sets are presented for illustrative purposes.

In Chapter 4, We present our conclusions and discuss some future research. Due to

the importance of the bias-correction for the MLEs illustrated above, we should pay

special attention on estimating the unknown parameters of the lifetime distributions.

2



It is noteworthy that the considered bias-corrected technique can be easily applied to

other commonly used lifetime distributions, such as the weighted exponential distri-

bution and the three-parameter Lindley geometric distribution, which are currently

under investigation and will be reported elsewhere.

3





Chapter 2

The inverse Lindley distribution

2.1 Introduction

The Lindley distribution was originally introduced by Lindley [1] in the context of

Batesian statistics as a counter example of fiducial statistics. Its probability density

function (pdf) is given by

f(t; θ) =
θ2

θ + 1
(1 + t)e−θt, t > 0,

where the parameter θ > 0. It has been discussed by many authors in different

practical cases, such as Bayesian estimation [2] , loading-sharing system mode [3]

and stress-strength reliability model [4]. It deserves mentioning that the Lindley

5



distribution provides a flexible shape to model the lifetime data. However, the Lindley

distribution may perform poorly for fitting the non-monotone shapes data. This

motivates the researchers to develop a modified Lindley distribution discussed as

follows.

The inverse Lindley (for short, IL) distribution was originally proposed by [5]. The

random variable X is said to follow the IL distribution with the parameter θ, denoted

by X ∼ IL(θ). Its pdf can be written as

f(x; θ) =
θ2

1 + θ

(
1 + x

x3

)
exp

(
−θ
x

)
, x > 0, (2.1)

where the parameter θ > 0. The corresponding cumulative distribution function (cdf)

of the IL distribution is given by

F (x; θ) =

(
1 +

θ

1 + θ

1

x

)
exp

(
−θ
x

)
, x > 0. (2.2)

Figure 2.1 shows different shapes of the pdf of the IL distribution with different values

of θ. It can be seen from figure that the shape of the IL distribution can be upside-

down bathtub, right skewed and heavy-tailed. The flexibility of the shape is very

useful to model the survival data in practice.

6
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Figure 2.1: Pdf of IL distribution with different values of θ.
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2.2 The maximum likelihood estimation

Suppose that X1, X2, · · · , Xn are observations of n independent units taken from the

IL distribution. The log likelihood function of θ is given by

l(θ; x) = 2n log(θ)− n log(θ + 1) +
n∑

i=1

log(1 + xi)− 3
n∑

i=1

log(xi)− θ
n∑

i=1

1

xi
, (2.3)

where x = (x1, x2, · · · , xn). The score function is given by

∂l

∂θ
=

2n

θ
− n

1 + θ
−

n∑
i=1

1

xi
.

Define x̄ =
∑n

i=1 xi/n. The MLE of θ, denoted by θ̂, can be easily obtained. Simple

algebra shows that,

θ̂ =
1− x̄+

√
1 + 6x̄+ x̄2

2x̄
. (2.4)

Since the MLE is biased to order O(n−1) in finite samples, we adopt a ‘corrective’

approach to reduce the bias of MLE to order O(n−2).

8



2.3 Bias-corrected MLE

Let l(τ) be the log-likelihood function with a p-dimensional vector of unknown pa-

rameters τ = (τ1, · · · , τp)′ based on a sample of n observations. The joint cumulates

of the derivatives of l(τ) are given by

κij = IE

[
∂2l

∂τi∂τj

]
, for i, j = 1, 2, · · · , p, (2.5)

κijl = IE

[
∂3l

∂τi∂τj∂τl

]
, for i, j, l = 1, 2, · · · , p, (2.6)

κij,l = IE

[(
∂2l

∂τi∂τj

)(
∂l

∂τl

)]
, for i, j, l = 1, 2, · · · , p, (2.7)

κlij =
∂κij
∂τl

, for i, j, l = 1, 2, · · · , p, (2.8)

respectively. It is assumed that the log-likelihood function is well behaved and regular

with respect to all derivatives up to and including the third order and that all of the

four equations given by (2.5)−(2.8) are of order O(n).

Let K = [−κij ] denote the Fisher’s information matrix of τ for i, j = 1, 2, · · · , p.

[6] show that when the sample data are independent but not necessarily identically

distributed, the bias of the sth element of τ̂s can be written as

Bias(τ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

κsiκjl
[1
2
κijl + κij,l

]
+O(n−2), s = 1, 2, · · · , p, (2.9)

9



where κij is the (i, j)th element of the inverse of Fisher’s information matrix. There-

after, [7] show that when all equations in (2.5)−(2.8) are of order O(n), equation

(2.9) still holds even if observations are not independent. They thus advocate the

following convenient form

Bias(τ̂s) =

p∑
i=1

κsi
p∑

j=1

p∑
l=1

[
κ
(l)
ij − 1

2
κijl + κij,l

]
+O(n−2), s = 1, 2, · · · , p, (2.10)

instead of equation (2.9). Define a
(l)
ij = κ

(l)
ij − 1

2
κijl for i, j, l = 1, 2, · · · , p. They also

show that the O(n−2) bias expression of τ̂ can be reexpressed as

Bias(τ̂ ) = K−1A · vec(K−1) +O(n−2),

where vec is an operator that creates a column vector from a matrix by stacking the

column vectors below one another, and

A =
[
A(1) | A(2) | · · · | A(p)

]
with A(l) =

[
a
(l)
ij

]
.

A bias-corrected MLE for τ , denoted by τ̂CMLE, can thus be constructed as

τ̂CMLE = τ̂ − K̂−1Â · vec(K̂−1),

where τ̂ is the MLE of the unknown parameter τ , K̂ = K |τ=τ̂ , and Â = A |τ=τ̂ . It

can be shown that the bias of τ̂CMLE will be of order O(n−2).

10



For our problem, we have the case of p = 1, that is, τ = θ. The derivatives of the

log-likelihood function of θ can be easily obtained as follows.

∂2�

∂θ2
= −2n

θ2
+

n

(1 + θ)2
,

∂3�

∂θ3
=

4n

θ3
− 2n

(1 + θ)3
. (2.11)

In addition, we have

K =

[
2n

θ2
− n

(1 + θ)2

]
,

k
(1)
11 = k111 =

4n

θ3
− 2n

(1 + θ)3
, (2.12)

A = a
(1)
11 =

2n

θ3
− n

(1 + θ)3
.

The bias-corrected estimator of the MLE for the IL distribution can be obtained as

θ̂CMLE = θ̂ − (θ̂3 + 6θ̂2 + 6θ̂ + 2)(θ̂ + 1)θ̂

n(θ̂2 + 4θ̂ + 2)2
. (2.13)

Note that, the bias-corrected estimator, θ̂CMLE has a simple closed-form expression.

So it is easily computed. It should be noted that θ̂CMLE is a bias-corrected MLE of

θ to order O(n−1) and that its bias is of order O(n−2), because IE
[
θ̂CMLE

]
= θ +

O(n−2).

11



2.4 Simulation studies

In this section, we conduct Monte Carlo simulations to compare the performance of

the MLE, bias-corrected MLE, and bootstrap estimator. Let “ θ̂MLE ”, “ θ̂CMLE ”, “

θ̂BOOT ” stand for the MLE, bias-corrected MLE, and bootstrap estimator. Generate

the data from IL distribution by the following algorithm:

step 1. Generate U ∼ Uniform (0, 1),

step 2. Generate V ∼ 1/Exponential (θ),

step 3. Generate W ∼ 1/Gamma (shape = 2, scale = 1/θ),

step 4. If U ≤ θ/(θ + 1), then X = V , otherwise, let X = W .

We draw random samples of size n = {8, 11, 14, · · · , 125}, with the parameter

θ = {0.1, 0.5, 1, 5, 7.5, 15}. The replications of simulation studies are based on

M = 20, 000, and the replications of bootstrap are B = 5, 000. We calculate the

average bias of each estimator and its root mean squared error(RMSE), given by

Bias(θ̂est) =
1

M

M∑
i=1

(
θ̂esti − θ

)
and RMSE(θ̂est) =

√√√√ 1

M

M∑
i=1

(
θ̂esti − θ

)2
,

where θ̂est is an estimator of the parameter θ. Figure 2.2 depicts the bias versus the

sample size n for a certain value of θ. Figure 2.3 represents the RMSE versus the

sample size n for a fixed value of θ. Some conclusions from the two figures can be

drawn as follows.

12



(i) The MLE of θ is positively biased, indicating that the MLE on average over-

shoots the target parameters θ, and the average of the MLE gets decreasing as

the sample size n is increasing .

(ii) The CMLE of θ clearly outperforms the MLE under the same scenario above

and these corrected estimators provide substantial bias-correction, especially for

the small or moderate sample sizes.

(iii) The bias of the MLE is increasing, when the parameter θ gets larger, as shown

in Figure 2.2. When the sample size n gets larger, the bias and RMSE of

each estimator decrease and the magnitude of reduction becomes smaller. This

is expected because most estimators in statistical theory perform better with

increasing n. Therefore, one can only expect that the performances of all the

estimators become closer with increasing n in terms of biases and RMSEs.

(iv) The reductions in biases and RMSEs of each estimator are very substantial

even for small sample sizes. For instance, when n = 9, θ = 0.1, Bias(θ̂CMLE)=

0.000352, Bias(θ̂BOOT)= 0.000692, Bias(θ̂MLE)= 0.006804123, RMSE(θ̂CMLE)=

0.0227, RMSE(θ̂BOOT)= 0.0229, RMSE(θ̂MLE)= 0.0244.

13
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Figure 2.2: Average bias of the considered estimate of θ versus n for θ =
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Figure 2.3: RMSE of the considered estimate of θ =
{0.1, 0.5, 1, 1.5, 7.5, 15}.
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2.5 Concluding remarks

In this chapter, we have studied the MLE for the unknown parameter of the inverse

IL, which is positively biased in finite samples. We have proposed the bias-corrected

estimator, the CMLE, which reduces the bias of the MLE from order O(n−1) to order

O(n−2). Numerical evidence shows that the bias-corrected estimator is strongly rec-

ommended over other commonly used estimators without bias-correction, especially

when the sample size is small or moderate.
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Chapter 3

Bias-corrected maximum likelihood

estimation of the parameters of the

weighted Lindley distribution

3.1 Introduction

The Lindley distribution was originally introduced by [1] in the context of Batesian

statistics as a counterexample of fiducial statistics. Its probability density function

(pdf) is given by

f(t; θ) =
θ2

θ + 1
(1 + t)e−θt, t > 0,

17



where the parameter θ > 0. Since the distribution was proposed, it has been over-

looked in the literature partly due to the popularity of the exponential distribution in

the context of reliability analysis. Nonetheless, it has recently received considerable

attention as a lifetime model to analyze survival data in the competing risks analysis

and stress-strength reliability studies; see, for example, [8], [9], [10], [11], [12], among

others. [8] provide a nice overview of various statistical properties of the Lindley

distribution. Furthermore, they argue that the Lindley distribution could be a better

lifetime model than the exponential distribution using a real data set.

In a recent paper, [13] introduce the two-parameter Weighted Lindley (shortly LW)

distribution as follows. The random variable X is said to follow the WL distribution

with parameters θ and c, denoted by X ∼ WL(θ, c), if its pdf can be written as

f(x; θ, c) =
θc+1

(θ + c)Γ(c)
xc−1(1 + x)e−θx, x > 0, (3.1)

where the parameters θ > 0, c > 0, and

Γ(c) =

∫
∞

0

yc−1e−y dy, c > 0,

is the complete gamma function. The WL distribution can be viewed as a mixture

18



of two gamma distributions: one with shape parameter c and scale parameter θ,

denoted by Gamma(c, θ), the other with shape parameter c + 1 and scale parameter

θ, Gamma(c+1, θ). This property can be used to generate random samples from the

WL distribution. The corresponding cumulative distribution function (cdf) of the

WL distribution is given by

F (x; θ, c) = 1− (θ + c)Γ(c, θx) + (θx)ce−θx

(θ + c)Γ(c)
, x > 0, θ, c > 0, (3.2)

and the hazard rate function of the WL distribution is given by

h(x; θ, c) =
θc+1xc−1(1 + x)e−θx

(θ + c)Γ(c, θx) + (θx)ce−θx
, x > 0, θ, c > 0,

where

Γ(a, b) =

∫
∞

b

xa−1e−x dx, a > 0, b ≥ 0,

is the upper incomplete gamma function.

It is widely known that the maximum likelihood method is often adopted to estimate

the unknown parameters of a statistical model because the maximum likelihood esti-

mators (MLEs) have many appealing properties; for example, they are asymptotically

unbiased, consistent, and asymptotically normally distributed, etc. It should be noted
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that most of those properties heavily rely on the large sample size condition, which

indicates that they, such as unbiasedness, may not be valid for a small or even mod-

erate sample size; see [14]. As shown by [13], the MLEs of the WL distribution are

positively biased on average in finite samples, i.e. the expected value of the estimators

exceeds the true value of the parameters. Later on, besides the maximum likelihood

method, [15] consider other estimation methods, such as the method of moments

estimation (MME), ordinary least-squares estimation (OLSE), and weighted least-

squares estimation (WLSE) methods. The numerical evidence they present shows

that all of the estimators under consideration are positively biased in finite samples.

For this reason, it has become standard practice to develop nearly unbiased estimators

for the WL distribution. To the best of our knowledge, such bias-corrected estimators

have not yet been fully explored for the WL distribution in the literature. In this

paper, we adopt a ‘corrective’ approach to derive modified MLEs that are bias-free to

second order. Here, the ‘corrective’ approach means that the bias-correction can be

achieved by subtracting the bias (estimated at the MLE of the parameter) from the

original MLE. As can be seen in the simulation study, the proposed estimators are

extremely accurate even for very small sample sizes and are far superior than the pre-

vious estimators in terms of biases and root mean squared errors. Additionally, they

have simple closed-form expressions, which means they are quite attractive because

they are easy to compute for practitioners. Indeed, such a bias-correction technique

has been applied successfully for parameter estimation in other distributions; see, for
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example, [16], [17], [18], [19], [20], [21], and references cited therein.

As an alternative to the analytically bias-corrected MLEs mentioned above, we con-

sider the bias-corrected MLEs through Efron’s bootstrap resampling because the

bootstrap estimator is also second-order correct. Note that the bootstrap estimator

does not require analytical derivation of the bias function and that the bias-correction

is performed numerically. We here refer the interested readers to [22], [23], [24], [25],

to name just a few. It deserves mentioning that another analytically bias-corrected

MLEs can be developed based on a ‘preventive’ approach introduced by [26]. This

approach can also reduce the bias of the MLEs to order O(n−2), whereas it involves

modifying the score vector of the log-likelihood function prior to solving for the MLEs,

and thus, this approach is not simply attempted in this paper.

The remainder of this paper is organized as follows. In Section 3.2, we briefly discuss

point estimation by the maximum likelihood method for the WL distribution. In

Section 3.3, we adopt a ‘corrective’ approach to derive modified MLEs that are bias-

free to second order. In addition, an alternative bias-correction mechanism based

on Efron’s bootstrap resampling is also considered. In Section 3.4, Monte Carlo

simulations are conducted to compare the performance between the proposed and

two previous methods; MLE and MME. In Section 3.5, applications to two real data

sets are presented for illustrative purposes. Finally, Section 3.6 concludes the paper.
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3.2 Maximum likelihood estimation

Suppose that X1, X2, · · · , Xn are observations of n independent units taken from the

WL distribution. The log-likelihood function of θ and c is given by

l(θ, c) = n
[
(c+ 1) log(θ)− log

(
Γ(c)

)− log(θ + c)
]
+ (c− 1)

n∑
i=1

log(xi)

+
n∑

i=1

log(1 + xi)− θ
n∑

i=1

xi. (3.3)

The score functions are thus given by

∂l

∂θ
(θ, c) = n

[
c+ 1

θ
− 1

θ + c

]
−

n∑
i=1

xi,

∂l

∂c
(θ, c) = n

[
log(θ)− 1

θ + c
− ψ(c)

]
+

n∑
i=1

log(xi),

where ψ(x) = (d/dc) log Γ(c) is the digamma function. The MLEs θ̂ and ĉ of the

unknown parameters θ and c can be easily obtained by putting the two equations

above equal to 0. [13] show that the MLEs of θ and c are, respectively, given by

θ̂ =
−ĉ(x̄− 1) +

√[
ĉ(x̄− 1)

]2
+ 4ĉ(ĉ+ 1)x̄

2x̄
≡ η(ĉ), say, (3.4)
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where x̄ is the sample mean and ĉ is the solution of the nonlinear equation

n

[
log

(
η(c)

)− 1

η(c) + c
− ψ(c)

]
+

n∑
i=1

log(xi) = 0. (3.5)

3.3 Bias-corrected MLEs

3.3.1 A corrective approach

For ease of exposition and without loss of generality, let l(τ) be the log-likelihood

function with a p-dimensional vector of unknown parameters τ = (τ1, · · · , τp)′ based

on a sample of n observations. The joint cumulants of the derivatives of l(τ) are given

by

κij = IE

[
∂2l

∂τi∂τj

]
, for i, j = 1, 2, · · · , p, (3.6)

κijl = IE

[
∂3l

∂τi∂τj∂τl

]
, for i, j, l = 1, 2, · · · , p, (3.7)

κij,l = IE

[(
∂2l

∂τi∂τj

)(
∂l

∂τl

)]
, for i, j, l = 1, 2, · · · , p, (3.8)

κlij =
∂κij
∂τl

, for i, j, l = 1, 2, · · · , p, (3.9)
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respectively. It is assumed that the log-likelihood function is well behaved and regular

with respect to all derivatives up to and including the third order and that all of the

four equations given by (3.6)−(3.9) are of order O(n).

Let K = [−κij ] denote the Fisher’s information matrix of τ for i, j = 1, 2, · · · , p.

[6] show that when the sample data are independent but not necessarily identically

distributed, the bias of the sth element of τ̂s can be written as

Bias(τ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

κsiκjl
[1
2
κijl + κij,l

]
+ O(n−2), s = 1, 2, · · · , p, (3.10)

where κij is the (i, j)th element of the inverse of Fisher’s information matrix. There-

after, [7] show that when all equations in (3.6)−(3.9) are of order O(n), equation

(3.10) still holds even if observations are not independent. They thus advocate the

following convenient form

Bias(τ̂s) =

p∑
i=1

κsi
p∑

j=1

p∑
l=1

[
κ
(l)
ij − 1

2
κijl + κij,l

]
+O(n−2), s = 1, 2, · · · , p, (3.11)

instead of equation (3.10). Define a
(l)
ij = κ

(l)
ij − 1

2
κijl for i, j, l = 1, 2, · · · , p. They also

show that the O(n−2) bias expression of τ̂ can be reexpressed as

Bias(τ̂ ) = K−1A · vec(K−1) +O(n−2),

where vec is an operator that creates a column vector from a matrix by stacking the
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column vectors below one another, and

A =
[
A(1) | A(2) | · · · | A(p)

]
with A(l) =

[
a
(l)
ij

]
.

A bias-corrected MLE for τ , denoted by τ̂CMLE, can thus be constructed as

τ̂CMLE = τ̂ − K̂−1Â · vec(K̂−1),

where τ̂ is the MLE of the unknown parameter τ , K̂ = K |τ=τ̂ , and Â = A |τ=τ̂ . It

can be shown that the bias of τ̂CMLE will be of order O(n−2).

For our problem, we have the case of p = 2, i.e., τ = (θ, c)′. Before adopting the

above ‘corrective’ approach to bias-corrected MLEs, we need the following higher-

order derivatives of the log-likelihood function of θ and c in (3.3). Simple algebra
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shows that

∂2l

∂θ2
= −n(c + 1)

θ2
+

n

(θ + c)2
= k11,

∂2l

∂θ∂c
=
n

θ
+

n

(θ + c)2
= k12,

∂2l

∂c2
=

n

(θ + c)2
− nψ′(c) = k22,

∂3l

∂θ3
=

2n(c+ 1)

θ3
− 2n

(θ + c)3
= k111,

∂3l

∂θ2∂c
= − n

θ2
− 2n

(θ + c)3
= k112,

∂3l

∂θ∂c2
= − 2n

(θ + c)3
= k122,

∂3l

∂c3
= − 2n

(θ + c)3
− nψ′′(c) = k222,

where ψ′(c) and ψ′′(c) are the first and second derivatives of ψ(c), respectively. Of

particular note is that the higher-order derivatives do not involve the sample data

and thus are equal to their expectations given above. In addition, we have

k
(1)
11 =

∂k11
∂θ

= k111, k
(1)
12 =

∂k12
∂θ

= k112, k
(1)
22 =

∂k22
∂θ

= k122,

k
(2)
11 =

∂k11
∂c

= k112, k
(2)
12 =

∂k12
∂c

= k122, k
(2)
22 =

∂k22
∂c

= k222.
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To implement the ‘corrective’ approach, we obtain the elements of A(1):

a
(1)
11 = k

(1)
11 − 1

2
k111 =

n(c + 1)

θ3
− n

(θ + c)3
,

a
(1)
12 = a

(1)
21 = k

(1)
12 − 1

2
k112 = − n

2θ2
− n

(θ + c)3
,

a
(1)
22 = k

(1)
22 − 1

2
k122 = − n

(θ + c)3
.

The elements of A(2) are

a
(2)
11 = k

(2)
11 − 1

2
k112 = − n

2θ2
− n

(θ + c)3
,

a
(2)
12 = a

(2)
21 = k

(2)
12 − 1

2
k122 = − n

(θ + c)3
,

a
(2)
22 = k

(2)
22 − 1

2
k222 = − n

(θ + c)3
− n

2
ψ′′(c).

The matrix of A can thus be written as

A =
[
A(1) | A(2)

]

= n

⎡
⎢⎢⎣

c+1
θ3

− 1
(θ+c)3

− 1
2θ2

− 1
(θ+c)3

− 1
2θ2

− 1
(θ+c)3

− 1
(θ+c)3

− 1
2θ2

− 1
(θ+c)3

− 1
(θ+c)3

− 1
(θ+c)3

− 1
(θ+c)3

− 1
2
ψ′′(c)

⎤
⎥⎥⎦ .

(3.12)
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The Fisher information matrix for the WL distribution is given by

K = n

⎡
⎢⎢⎣

c+1
θ2

− 1
(θ+c)2

−1
θ
− 1

(θ+c)2

−1
θ
− 1

(θ+c)2
− 1

(θ+c)2
+ ψ′(c)

⎤
⎥⎥⎦ . (3.13)

The bias of the MLE of the WL parameters (θ, c)′ is given by

Bias

⎛
⎜⎜⎝

θ̂

ĉ

⎞
⎟⎟⎠ = K−1A · vec(K−1

)
+O(n−2).

The bias-corrected estimators of the MLEs of the WL distribution can be obtained

as ⎛
⎜⎜⎝

θ̂CMLE

ĉCMLE

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

θ̂

ĉ

⎞
⎟⎟⎠− K̂−1Â · vec(K̂−1

)
, (3.14)

where K̂ = K |θ=θ̂,c=ĉ and Â = A |θ=θ̂,c=ĉ. Note that the bias-corrected estimators

in (3.14) have simple closed-form expressions, which means they are quite attrac-

tive because they are not computationally burdensome. It should be noted that

(θ̂CMLE, ĉCMLE)′ is a bias-corrected MLE of (θ, c)′ to order O(n−1) and that its bias

is of order O(n−2), i.e., IE
[
θ̂CMLE

]
= θ + O(n−2) and IE

[
ĉCMLE

]
= c + O(n−2). As

one would expect, θ̂CMLE and ĉCMLE have superior finite-sample behavior relative to

θ̂ and ĉ, respectively, whose biases are of order O(n−1).
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3.3.2 A bootstrap approach

As an alternative to the analytically bias-corrected MLEs mentioned above, we here

consider the Efron’s [27] bootstrap resampling method for deriving the bias-corrected

MLEs. Let y = (y1, · · · , yn)′ be a random sample of size n from the random variable Y

with distribution function F . Let η = t(F ) be a function of F known as a parameter

and η̂ = s(y) be an estimator of η. In Efron’s bootstrap resampling, we choose a

large number of pseudo-samples y∗ = (y∗1, · · · , y∗n) from the sample y and calculate

the corresponding bootstrap replicates of η̂, say η̂∗ = s(y∗). Thereafter, the empirical

distribution of η̂∗ is used to estimate the distribution function of η̂. If F belongs to a

parametric family which is known and has finite dimension, Fη, we can then obtain

a parametric estimate for F by using a consistent estimator for Fη̂. The bias of the

estimator η̂ = s(y) can be written as

BF (η̂, η) = IEF

[
s(y)

]− η̂(F ), (3.15)

where the subscript F denotes that expectation is taken with respect to F . The

bootstrap bias estimate is obtained by replacing F , from which the original sample

was obtained, by Fη̂. Hence, the bias can be written as

BFη̂
(η̂, η) = IEFη̂

[η̂]− η̂.
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For N bootstrap samples generated independently from the original sample y, we

calculate the corresponding bootstrap estimates (η̂∗(1), · · · , η̂∗(n)). When N is getting

larger, the expected value EFη̂
(η̂) can be approximated by

η̂∗(·) =
1

N

N∑
i=1

η̂∗(i).

The bootstrap bias estimate, obtained from the N replicates of η̂, is thus BFη̂
(η̂, η) =

η̂∗(·) − η̂. The second-order bias-corrected MLEs of the WL distribution can be ob-

tained as

ηB = η̂ −BFη̂
(η̂, η) = 2η̂ − η̂∗(·). (3.16)

Note that the estimator ηB shall be called the constant bias-corrected MLE since it

approximates the function by a constant; see [28].

3.4 Simulation studies

In this section, we carry out Monte Carlo simulations to compare the performance

between the proposed and two previous methods in the literature. The WL random

variables are generated using the acceptance-rejection algorithm:

Step 1. Generate u1, · · · , un for Uniform(0, 1);
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Step 2. If ui ≤ p = θ/(θ+c)(ui > p), generate xi from Gamma(c, θ) (Gamma(c+1, θ)).

For ease of notation, let “β̂CMLE”, “β̂BOOT”, “β̂MLE”, and “β̂MME” stand for the

corrective MLE, bootstrap MLE, MLE, and MME of the unknown parameter β for

β = θ, c, respectively. [9] show that the MMEs of θ and c are given by

θ̂MME =
−ĉMME(x̄− 1) +

√[
ĉMME(x̄− 1)

]2
+ 4x̄ĉMME(ĉMME + 1)

2x̄
, (3.17)

and

ĉMME =
−b(x̄, s2) +

√[
b(x̄, s2)

]2
+ 16s2

[
s2 + (x̄+ 1)2

]
x̄3

2s2
[
s2 + (x̄+ 1)2

] , (3.18)

respectively, where b(x̄, s2) = s4 − x̄(x̄3 + 2x̄2 + x̄ − 4s2) with x̄ and s2 being the

sample mean and biased sample variance. Following the similar scenario of [9], we

draw random samples of size n = 10, 20, · · · , 100 with parameters θ = 0.5, 2 and

c = 0.5, 1, 2. The number of Monte Carlo replications is M = 5, 000 and the number

of bootstrap replications is B = 1, 000 for each combination of (n, θ, c). Hence, each

combination entails a total of 50 million replications.

In each simulation, to assess the performance of the methods under consideration, we

calculate the average bias and root mean squared error (RMSE) of an estimator βest

of the parameter β, which are defined as

Bias(β̂est) =
1

M

M∑
i=1

(
β̂est
i − β

)
and RMSE(β̂est) =

√√√√ 1

M

M∑
i=1

(
β̂est
i − β

)2
,
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respectively. Figures 3.1 and 3.2 depict the biases of the simulated estimates of θ and

c against the sample sizes. The corresponding RMSEs of the simulated estimates of

θ and c are also displayed in Figures 3.3 and 3.4, respectively. The four figures reveal

important information.

(i) The MLEs and MMEs of θ and c appear positively biased, indicating that the

MLEs and MMEs on average overshoot the target parameters θ and c, partic-

ularly when the sample size is small. We also observe that in each simulation,

the MLE outperforms the MME in terms of bias and RMSE.

(ii) Note that the CMLEs and BOOTs of θ and c clearly perform better than the

MLEs and MMEs under the same scenario above and that these corrected esti-

mators provide substantial bias-correction, especially for the small or moderate

sample sizes. Consequently, we may treat them as better alternatives of the

MLEs and MMEs for θ and c for the case in which bias is a concern.

(iii) When n gets larger, the bias and RMSE of each estimator decrease and the

magnitude of reduction becomes smaller. This is expected because most esti-

mators in statistical theory perform better with increasing n. Therefore, one

can only expect that the performances of all the estimators become closer with

increasing n in terms of biases and RMSEs.

(iv) The reductions in biases and RMSEs of each estimate are very substan-

tial even for small sample sizes. For instance, when n = 10, θ = 2,
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and c = 1, Bias(θ̂CMLE)= −0.0322, Bias(θ̂BOOT)= 0.0809, Bias(θ̂MLE)=

0.7397, Bias(θ̂MME)= 1.1015, Bias(ĉCMLE)= −0.0247, Bias(ĉBOOT)=

0.0733, Bias(ĉMLE)= 0.3454, Bias(ĉMME)= 0.5595; RMSE(θ̂CMLE)= 1.0652,

RMSE(θ̂BOOT)= 1.5704, RMSE(θ̂MLE)= 1.6863, RMSE(θ̂MME)= 2.1653,

RMSE(ĉCMLE)= 0.4890, RMSE(ĉBOOT)= 0.7706, RMSE(ĉMLE)= 0.7810,

RMSE(ĉMME)= 1.0396.

(v) The proposed estimator CMLE consistently outperforms the bootstrap esti-

mator BOOT in terms of bias and RMSE. In particular, the bootstrap bias-

correction procedure may lead to an increased RMSE, as shown in Figures 3.3

and 3.4. For example, when θ = 2 and c = 2, the RMSE of the bootstrap

estimator is larger than that of the MLE for n ≤ 20, . Hence, the corrected

estimators proposed in this paper should be preferred for the WL distribution,

instead of the ones via the bootstrap.

3.5 Real data examples

In this section, we illustrate the practical application of the proposed bias-corrected

estimators for the WL distribution using two real data sets with one involving a small

sample and the other with a moderate sample.
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Figure 3.1: Average bias of the considered estimate of θ.
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Figure 3.2: Average bias of the considered estimate of c.
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Figure 3.3: RMSE of the considered estimate of θ.
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Figure 3.4: RMSE of the considered estimate of c.
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Example 3.1 We shall now analyze a data set on the lifetime failure of an elec-

tronic device. The data were used by [29] as an illustration of the additive Burr XII

distribution. Later on, the data were further analyzed by [9] for comparing different

estimation methods for the WL distribution. The data are given in Table 3.1.

5 11 21 31 46 75 98 122 145
165 196 224 245 293 321 330 350 420

Table 3.1

The time to failure of 18 electronic devices

The point estimates for the WL distribution are provided in Table 3.2. Note that the

bias-corrected estimates of θ and c are smaller than the MLEs and MMEs, especially

for estimating c. This would justify that estimation by the maximum likelihood and

method of moments are overestimating both θ and c. Figure 3.5 depicts the WL

density given by (3.1) evaluated at different estimates of θ and c in Table 3.2. It

can be seen from Figure 3.5 that given the small sample size, the shape of densities

based on the MLE and MME may be misleading and that correction for bias in

the estimation for the WL distribution should be extremely important in real data

analysis.

Estimate θ c
MLE 0.00726 0.27681
MME 0.01060 0.83755
CMLE 0.00554 0.03536
BOOT 0.00621 0.11136

Table 3.2

Point estimates of θ and c for Example 3.1.
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Figure 3.5: Estimated fitted density functions of the lifetime failure of an
electronic device for Example 3.1.

Example 3.2 The data set is given by [30] on the failure stresses (in GPa) of 65

single carbon fibers of length 50mm. The data were recently used as an illustrative

example for the WL distribution by [9]. The data are presented in Table 3.3.

1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 1.764 1.807
1.812 1.840 1.852 1.852 1.862 1.864 1.931 1.952 1.974 2.019
2.051 2.055 2.058 2.088 2.125 2.162 2.171 2.172 2.180 2.194
2.211 2.270 2.272 2.280 2.299 2.308 2.335 2.349 2.356 2.386
2.390 2.410 2.430 2.431 2.458 2.471 2.497 2.514 2.558 2.577
2.593 2.601 2.604 2.620 2.633 2.670 2.682 2.699 2.705 2.735
2.785 3.020 3.042 3.116 3.174

Table 3.3

The failure stresses (in GPa) of 65 single carbon fibers of length 50mm.

The point estimates of θ and c obtained by all the considered methods are summarized

in Table 3.4. It is worth pointing out that all the estimations are obviously different,

39



which indicates that even when the sample size is moderate, the bias correction is

still necessary because it contains useful information. Figure 3.6 contains the WL

density given by (3.1) evaluated at the point estimates of θ and c in Table 3.4. Note

that the estimated density obtained from the MLE is too peaked and the CMLE

and BOOT density estimates are almost overlapping and less peaked than the two

previous estimates in the literature.

Estimate θ c
MLE 12.82271 28.08819
MME 13.28780 29.13167
CMLE 12.23304 26.78033
BOOT 12.28989 26.88698

Table 3.4

Point estimates of θ and c for Example 3.2.
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Figure 3.6: Estimated fitted density functions of the failure stresses (in
GPa) of 65 single carbon fibers of length 50mm for Example 3.2.
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3.6 Concluding remarks

In this chapter, we have adopted a ‘corrective’ approach to derive simple closed-

form expressions for the second order biases of the MLEs of the parameters that

index the weighted Lindley distribution. The biases of the proposed estimators are

of order O(n−2), whereas for the MLEs they are of order O(n−1), indicating that the

newly proposed estimators converge to their true value considerably faster than those

of the MLEs. In addition, we have also considered an alternative bias-correction

mechanism through Efron’s bootstrap resampling. The numerical evidence shows

that the proposed estimators are quite attractive because they outperform those of

the MLE and MME in terms of bias and RMSE. It deserves mentioning that unlike

the bias-corrected MLEs via the bootstrap, the proposed estimators are available

in closed form and are thus easy to compute without requiring data resampling.

Consequently, the proposed bias-corrected estimators are strongly recommended over

other estimators without bias-correction, especially when the sample size is small or

moderate, which is often encountered in the context of reliability analysis.
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Chapter 4

Concluding remarks and future

work

The main goal of this report is to illustrate the importance of the bias-correction of

the MLEs of the probability distributions, especially when the sample size is small

or moderate. It has been shown that the fitted distributions based on the MLEs and

bias-corrected MLEs can be significantly different for both the one-parameter inverse

Lindley distribution and the two-parameter weighted Lindley distribution. We thus

have a preference of the considered bias-corrected technique, because it reduces the

bias of the MLE from order O(n−1) to order O(n−2), indicating that the bias-corrected

estimator converges to the true value faster than the one based on the MLE. Moreover,

the considered technique can be easily implemented in practical situations as long as
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the MLE of the unknown parameter is available.

Recently, numerous distributions have been developed in the literature. The main

motivation of these new distributions is that researchers want to provide a better fit for

the real-data applications. In this report, we have shown that the poor performance

of a distribution maybe due to inaccurate estimators of the unknown parameters,

rather than the inner properties of the distribution. Consequently, special attention

should be paid when we apply a distribution to analyze the real data in practice. In

an on-going work, we study the application of the bias-corrected technique to some

other commonly used lifetime distributions, such as weighted exponential distribution

[31] and the three-parameter Lindley geometric distribution[32], which are currently

under investigation and will be reported elsewhere in the near future.
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