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x∗vc non-dimensional streamwise distance from the vortex centre
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x0 a virtual point upstream of the cylinder

x∗0 normalized x0 by diameter of the cylinder

Uw speed of propagation of the wake

U∗

w normalized Uw by free-stream speed

R equivalent radius

ψω stream function

ψ∗

ω normalized ψω by free-stream speed and diameter of the cylinder

ψω stream vector potentials associated with vω
ψh stream vector potentials associated with vh
ψω 2-D stream function corresponding to ψω

ψh 2-D stream function corresponding to ψh

(Ux, Uy) translational velocity of the dipole

λ wavelength of the oscillations of the cylinder

λ/D Non-dimensional wavelength of the oscillations of the cylinder

A amplitude of the oscillations of the cylinder

A/D Non-dimensional amplitude of the oscillations of the cylinder

Te period of the forced oscillation

Ts instantaneous period of vortex shedding for a non-oscillating cylinder

T̂s shedding period

Ŝt Strouhal number associated with R̂e
t̂ non-dimensional time

Utg tangential speed of the cylinder

Ux,m average horizontal speed

λg average of horizontal speed
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Symbols in Chapter 3

ρ density

P pressure

h a harmonic function

σ stress tensor

ρg body force

g Acceleration due to gravity

Û internal energy per unit mass

k thermal conductivity

Φ Viscous dissipation function

µ coefficient of dynamic viscosity

Cv specific heat at constant volume

T temperature

v velocity vector

p pressure divided by the density of the fluid

Ω control volume

S boundary surface

n unit vector normal to the boundary surface

I Identity matrix

φ velocity potential

β incompressibility factor

ω vorticity

ψ stream function

τ unit vector tangential to the boundary

b velocity at the boundary

Symbols in Chapter 4

∇φ solenoidal part of the computed vorticity

τ unit vector tangential to the boundary

c constant

Ω control volume

S boundary surface

vx tangential component of v

ωe vorticity values at nodes of each element
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Symbols in Chapter 5

Reosc Reynolds number at which oscillations start

Res separation Reynolds number

Revs Reynolds number at which a vortex street begins to shed

E width of the confining walls of the windwater tunnel

Lw length of the closed near-wake

umax maximum reverse velocity

Lwl wave-length of trail oscillation

u the wave speed

ωan the analytical vorticity

B amplitude of the wake oscillation

DW decay of the wake oscillation

Tt time span in which the wake oscillates

Tave average frequency of the wake oscillation

S1S2 power source

C1 − C4 capacitors

f shedding frequency of the wake

Ro Roshko number
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Abstract

The focus of the current dissertation is to study qualitatively the underlying physics of

vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible

viscous flow through the use of the KLE method. We carried out a long series of nu-

merical experiments in the cases of flow around the cylinder at low Reynolds numbers.

The study of flow at low Reynolds numbers provides an insight in the fluid physics and

also plays a critical role when applying to stalled turbine rotors. Many of the conclusions

about the qualitative nature of the physical mechanisms characterizing vortex formation,

shedding and further interaction analyzed here at low Re could be extended to other Re

regimes and help to understand the separation of the boundary layers in airfoils and other

aerodynamic surfaces. In the long run, it aims to provide a better understanding of the com-

plex multi-physics problems involving fluid-structure-control interaction through improved

mathematical computational models of the multi-physics process. Besides the scientific

conclusions produced, the research work on streamlined and bluff-body condition will also

serve as a valuable guide for the future design of blade aerodynamics and the placement of

wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive

workforce, supplies, and infrastructure.

After the introductory section describing the main fields of application of wind power and

hydrokinetic turbines, we describe the main features and theoretical background of the nu-

merical method used here. Then, we present the analysis of the numerical experimentation

results for the oscillatory regime right before the onset of vortex shedding for circular cylin-

ders. We verified the wake length of the closed near-wake behind the cylinder and analysed

the decay of the wake at the wake formation region, and then studied the St-Re relationship

at the Reynolds numbers before the wake sheds compared to the experimental data. We

found a theoretical model that describes the time evolution of the amplitude of fluctuations

in the vorticity field on the twin vortex wake, which accurately matches the numerical re-

sults in terms of the frequency of the oscillation and rate of decay. We also proposed a

model based on an analog circuit that is able to interpret the concerning flow by reduc-

ing the number of degrees of freedom. It follows the idea of the non-linear oscillator and

resembles the dynamics mechanism of the closed near-wake with a common configured

sine wave oscillator. This low-dimensional circuital model may also help to understand

the underlying physical mechanisms, related to vorticity transport, that give origin to those

oscillations.
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1. INTRODUCTION

The flow of fluids can be seen all around us, be it the natural environment or almost any

technical field. Meteorological phenomena, combustion processes, HVAC systems, pollu-

tion, and the numerous processes in the human body are some examples of fluid flow we

encounter almost everyday. The number of applications of fluid flow analysis is enormous:

breathing, blood flow, turbines, airplanes, ships, windmills, and engines to name a few,

making the analysis of flow one of the most important areas of research in the last half

century.

Mathematically, the flow of fluids is represented by the known Navier-Stokes equations, a

system of non-linear partial differential equations. These equations describe the conserva-

tion laws for mass, momentum, and energy for the flow of fluids concerned. The Navier-

Stokes equations present a challenging problem to mathematicians and engineers in finding

solutions related to proof of existence and finding accurate yet efficient numerical methods

with proper boundary conditions.

Solving the Navier-Stokes equations numerically is important because it can be used to

model many aspects of engineering analysis as well as academic interest. It offers an

attractive alternative to the expensive, and sometimes extremely difficult to implement,

experimental analysis of flow patterns.

1.1 Fluid structure interaction

One of the most important applications of the numerical solutions of these equations would

be the numerical modeling of Fluid-Structure Interaction (FSI). The non-linear dynamics

involved in such interactions provides insights into numerous engineering problems such as

the response of high rise buildings and bridges to strong winds, blood flow through arteries,

The material contained in this chapter is partly published in Energy for Sustainable Development 14

(2010) & 15 (2011). See Appendix A.1 for a copy of the copyright permission.
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vibrations in turbine blades, aerodynamic response characteristics of aircraft wings, ma-

rine hydrodynamics which includes modeling fluid flow interaction with marine systems,

offshore and coastal structures, underwater systems and structures, and the ever popular

aerodynamic modeling of automobiles. These phenomena manifest themselves at a wide

range of scales and present excellent opportunities for scientific discovery with a richness

of technical application.

An experimental analysis for some of the FSI problems might not always be the most at-

tractive prospect. The case of a wind turbine is a perfect example because of the enormity

of the surfaces involved. The economy of scales factors have driven companies to con-

sider rotors with diameters as large as 200 meters. Extrapolating experimental data from

wind tunnels in such cases is very complicated. Another interesting example would be the

modeling of bridges and high rise buildings and their interaction with high winds. Such

huge structures run the risk of stress-related failures due to FSI, and hence require a very

accurate modeling of flow patterns.

On the other extreme, problems of placing sensors on small-scale mechanisms with com-

plex roto-translational motion, like the Micro-Air-Vehicle modelled on insect flight, makes

experimental analysis extremely difficult. A numerical scheme seems like an attractive al-

ternative to experimental prototypes and should also help bring down the overall cost. But

a numerical solution comes with its own set of problems, starting with complex physics

involved in slender-body aeroelastic dynamics. The aeroelastic dynamics in slender bodies

depends not only on the characteristic modes of the body structure itself, but also on the

amplitude and frequency of the fluctuation of the aerodynamic forces. These forces are

strongly affected by the dynamics of the vortex-wake shed from the body, which itself de-

pends on the body’s oscillations. Vortex-induced vibration can lead to catastrophic failure

of engineering systems, as was clearly illustrated by the Tacoma Narrows Bridge disaster.

A resulting periodic vibration essentially depends on the work done by the fluid on the body

over a cycle. This is associated with the timing of the vortex dynamics because the induced

side force caused by the body motion significantly influences the net energy transfer [13].

A significant challenge in analyzing these systems is the fact that the vortex wake produced

by an oscillating body is very different from the classic Kármán vortex street, which would

translate into a complex fluctuating aerodynamic force. Many roto-translational mecha-

nisms have a dynamic control system reacting to structural responses to fluid flow as well

as varying loads, thereby optimizing efficiency and extending their lifetime. This con-

trol system would also have to be incorporated into the numerical model for an accurate

representation. The problem is no longer just an unsteady flow simulation, but a mul-

tiphysics problem involving non-linear structural dynamics as well as a dynamic control

system in addition to the fluid flow model. All of this, combined with the discretization

of complex geometries, makes it quite difficult to numerically solve the non-linear Par-

tial Differential Equations (PDEs) involved. Further complications may arise with time-
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marching integration of multiphysics problems. Adaptive variable-timestep/variable-order

Ordinary Differential Equations (ODE) algorithms provide a way to improve the efficiency

of time-marching schemes. But finding a way to combine those adaptive algorithms with

the discretization of the spatial PDE problem has proved to be difficult. An innovative

computational scheme to solve these problems was introduced in Ponta [6] known as the

Kinematic Laplacian Equation (KLE) method. The KLE method invloves a hybrid formu-

lation of the Navier-Stokes equations using velocity and vorticity as the primary variables,

rather than the conventional formulation in terms of pressure and velocity, and is a natu-

ral extension of the well-established vorticity-stream function methods. The emergence of

vorticity-velocity methods might be considered one of the most recent innovations in the

computational solution of time-dependent viscous flows. Even though the appearance of

what could be regarded as the first vorticity-velocity approach may be traced as early as

1976 [14], it is only during the last decade or so that a systematic research effort has been

applied to the development of this family of methods (see [6,15] for a complete list of refer-

ences). Compared with the classical formulation on primitive variables (velocity-pressure)

or with their vorticity-stream-function cousins, the vorticity-velocity methods present sev-

eral advantages.

The KLE algorithm solves the vorticity transport equation as an ODE problem in time with

input velocity solved from a modified Poisson’s equation in velocity, called the Kinematic

Laplacian Equation, at each spatial node. The input to solve the KLE is provided by in-

tegrating the vorticity at each time step. Thus, it creates an evolving scheme in which the

KLE provides the input for the ODE algorithm and vice-versa. Since time is the only it-

eration variable present, coupling the fluid analysis with other physical mechanisms (e.g.

structural response, control-system dynamics, etc.) becomes possible now by increasing

the number of the equations to the ODE system. The KLE also shows a substantial advan-

tage when coping with complex geometries because it allows, to a larger extent, the use of

unstructured meshes, which gives a more suitable meshing compared with structured-mesh

approaches. This is a very convenient feature for dealing with the complex aerodynamic

shape of wind-turbine blades, helicopter-rotor blades, insect wings, or other aerodynamic

surfaces.

1.2 An emerging field of application

This research is a small yet important part of the ongoing work towards the advancement

of computational mathematical models for complex multiphysics problems that involves

the fluid-structure-control interaction. This interaction makes its appearance in many en-

gineering applications, thus research in this field provides a better understanding of the

underlying physics.
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1.2.1 The wind power challenge

One such important engineering problem is the harnessing of wind power. The re-

emergence of wind as a significant energy source is now driven by the need to meet in-

creasing worldwide electricity demand and reduce the environmental impact caused by

the conventional electricity generation technologies. Thanks to technological innovations,

wind power is not only becoming less expensive on a large scale, but it is also one of the

cleanest ways to produce energy. Considerable progress in wind-power technology during

the last few decades has made it an important supplier of grid-connected electricity in the

big world energy picture. Nowadays, wind power is the most rapidly growing and most

widely utilized renewable energy technology, with a total of 159.2 GW installed world-

wide at the end of 2009, producing 340 TWh per year, which is about 2% of worldwide

electricity generation [16].

During the last decade, the global installation of wind power capacity has accelerated.

The wind industry mainly concentrates in Europe and the US, but it is emerging in China,

India, and Brazil. The global installed capacity grew from 14,604 MW to 84,934 MW in

the period of 2000-2007, which represents a compounded annual growth rate of 28.6%,

and an impressive rate of 482% over a period of only seven years [17].

There has been a spontaneous tendency in the wind-turbine industry to increase the size

of the state-of-the-art machine [18] and substantially reduce the cost of wind energy, see

Figure 1.1. Output power of these turbines range from 3.6 to 6 MW, with rotor diameters

up to 127 meters, see an example of a kind in Figure 1.2. Next-generation offshore tur-

bines with rotor diameters up to 200 meters have been suggested [19]. The technological

challenge in wind power nowadays is to develop a next generation of upscaled low-cost

turbines that may further reduce generation costs. If this generation of superturbines is

successfully developed, wind-energy costs would be reduced substantially.

Simultaneously, wind turbine design has followed the tendency to go to variable-speed

pitch-controlled turbines from fixed-speed stall-controlled turbines [21]. Wind turbines

available today show various innovative concepts combined with the verified technology

for both power electronics and generators [22]. One way to improve power output and op-

erational flexibility in Horizontal-Axis Wind Turbines (HAWTs) is to shroud the rotor into

a divergent duct. This concept is usually referred to as a Diffuser-Augmented Wind Turbine

(DAWT). The idea is to induce mass flow augmentation and increase power extraction by

accelerating the flow inside the duct and converting the downstream flow’s kinetic energy

into a pressure drop behind the rotor, which makes it possible to capture the airflow from a

stream tube which has greater area compared to that of the rotor itself [23].

Nevertheless, several technological challenges remain to develop wind power. Some are
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Figure 1.1. The wind-turbine upscaling phenomenon, [taken from DOE report 1]
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Figure 1.2. The REpower M5 5-megawatt turbine, with a rotor diameter of approximately 126

meters, [taken from Wikimedia Commons 20].

6



related to the aforementioned next generation of feasible upscaled turbines of cheaper con-

struction, transport, and deployment that may further reduce generation costs at utility scale

in both inland and offshore locations. Other challenges involve finding practical and eco-

nomical ways of harvesting wind energy at the small-scale level for isolated consumers or

for distributed-generation systems [24].

1.2.2 The particular problem of floating foundations

Current bottom-fixed technology is limited to water depths up to 50 m. In deeper waters,

support structures need to be more sophisticated. Long-term survivability of floating struc-

tures over many decades in the offshore oil industries and marine power inspired floating

support designs for giant off-shore wind turbines.

A floating structure must have the capability to support the wind turbine in a harsh off-shore

environment to support the weight with enough buoyancy; and to restrain heave motions

such as pitch and roll and keep them within tolerable limits. Under the unpredictable

environmental interference at sea, the platform dynamics may affect the reliability of the

turbine’s mechanical components, and complicate wake dynamics behind the rotor, which

are even worse if considered in a off-shore wind farm. Thus, changes in design philosophy

of a floating support to get a higher-standard compliant machine are required. Cost of such

platform are likely to dominate the cost tradeoffs [2] in terms of computational modeling,

field tests, manufacturing, and transportation to the site as for in-land wind turbines.

Hence, it is likely that the economics of deep-water wind turbines primarily depend on the

extra cost of the floating foundations and the power distribution system. These additional

costs are likely to be recouped by the increased energy production from high-speed off-

shore winds. There would also be an additional benefit in greater public acceptance of wind

power due to lower environmental and visual impact. Butterfield et al. [2] reported some

technical features that an optimum floating platform would embody by comparing several

available platform designs. They also studied the issues and limitations which would chal-

lenge and direct future designs of wind-turbine floating platforms. A prototype of a floating

platform will first be analysed for static stability, and the final design may be determined

by some other critical factors [see 2, Table 1].

Current floating offshore wind foundations are not yet at the commercial stage and have

a brief operational track record. Nevertheless, a preliminary feasibility analysis on the

economics becomes possible once we establish the platform topology. In 2004, an MIT

researcher, Paul D. Sclavounos, and his colleagues from NREL conducted a design called

the Tension Leg Platform in which they integrated a wind turbine with a floating structure

[25]. Several existing prototypes for offshore wind floating foundations, including those
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Figure 1.3. Alternative concepts for floating foundations for deep-water offshore Wind Turbines,

[taken from NREL report 2].

considered by MIT, NREL, and DOE, are classified into three general categories [2]:

1. Ballast Stabilized: Use ballast weights which are hung underneath a central buoyancy

tank to achieve stability, whereby a righting moment and high inertial resistance are

provided to restrain the pitch and roll and usually enough draft is provided to offset

heave motion. The left picture in Fig. 1.3 shows an example of this type of floating

platform called the Spar-buoy [26].

2. Mooring-Line Stabilized: Use mooring-line tension to achieve stability, the Tension

Leg Platform (shown in the center of Fig. 1.3) belongs in this category [26].

3. Buoyancy Stabilized: Use distributed buoyancy to achieve stability by the righting

moment from the weighted water plane area [27]. A barge using this principle is

shown on right in Fig. 1.3.

Other examples of floating foundations such as the semi-submersible TLP, the Dutch Tri-

floater, and the MIT Double Taut Leg Buoy are described in [2], together with details
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about the stability analysis and technical challenges on floating-foundation design. Some

critical aspects of design, and the feasibility of multiple floating turbines, are discussed in

Henderson and Vugts [28].

1.2.3 Wind-farm array efficiency

The idea of a wind farm is to locally concentrate wind turbines for electrical and com-

mercial purpose. The multiple turbines introduced in a wind farm are intended to increase

the total wind energy produced and lower the costs in repair and maintenance equipment

and labor. However, a great amount of technical issues are brought up involving the place-

ment of the turbines. One of the most significant problems is to improve the wind-farm

array efficiency (i.e. the ratio between the collective power generated by the wind mill and

the summation of the power that those same turbines would generate if they operated in

isolation), that is, how to determine the locations of the wind turbines in an efficient way

[29].

As we know, due to the terrain aspect, the wind resource may vary over a wind farm.

Additionally, the wind power extraction by the upwind wind turbines causes lower wind

speeds and introduces turbulent wake some distance downstream of the rotors. If wind

turbines were closely spaced, this interference would affect one another, reducing the power

output of the downwind turbines.

Extensive studies, both theoretical and experimental, indicate that interference due to the

interaction of neighbouring turbines increases rather rapidly when they are spaced within

10Dr (Dr is the rotor diameter). The number of turbines in the field is an important influ-

ence element on the array efficiency [30]. For instance, if we place an infinite number of

wind turbines with 10Dr apart, the array efficiency is limited to 60 percent. However, for

the case of a finite number of turbines, the array efficiency is much higher. Johansson and

Burnham [30] also shows the approximate efficiency of square arrays of array size from

2× 2 to 10× 10: for a specified array size, the wind-farm array efficiency grows substan-

tially as the turbine spacing increases from 4Dr to 9Dr; for a designed turbine spacing, the

wind-farm array efficiency drops rapidly as the array size grows.

Vortex dynamics can affect the wind-farm array efficiency and increase wake-induced fa-

tigue. The secondary-wake patterns may be produced by the merging of vortices initially

the size of the blade chord, and evolve into structures the size of the turbine itself. An pic-

ture taken by Christian Steiness, at the Horns Rev 1 offshore wind farm in the North Sea 14

kilometers west of Denmark, showed a good example of the turbulence wake effects behind

offshore wind turbines. This wake effects resulted from unique meteorological conditions

on 12 February 2008 at 1300 hours which created condensation of the humid air to make it
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visible behind the wind turbines [3].

The increase in size gets particularly intense when vortex coalescence occurs at high-

frequency, low-amplitude vibration of the shedding body [9]. This secondary wake transi-

tion phenomenon is critical in wind farm spacing design. For instance, the hyper–Kármán

vortex-street described in Chapter 2, section 2.2 could affect wind-farm array efficiency in

such a way that its bigger vortices (wider-spaced wake) survive longer in the field and have

a better chance of being advected onto the next row of turbines downstream. Thus, it is

important to study the physics of wake dynamics behind bluff bodies in wind application .

1.2.4 Ocean energy and hydrokinetic turbines

Most of the challenges mentioned above for wind-turbine applications are shared by an-

other emergent renewable-energy field. Like wind turbines, ocean energy technologies also

promise attractive non-polluting alternatives to reduce the current dependence on fossil and

nuclear-fuelled power plants to cope with the growing demand of electrical energy.

Ocean energy may be exploited in several ways such as Marine-current energy, Ocean ther-

mal energy conversion, Wave energy, and Tidal barrages [31]. In the short term, marine-

current energy and wave energy may be the most promising. The marine-current energy, in

particular, inherits a substantial benefit from the vast experience in the research and devel-

opment of wind turbines gained during the last decades in what, nowadays, is increasingly

known as hydrokinetic energy conversion. Both wave energy and marine current energy

convert the kinetic energy of moving water to power, without the impoundment or diver-

sion of conventional hydroelectric facilities based on dams or penstocks. and therefore

fall in the category of hydrokinetic energy conversion. Tidal barrages are similar to con-

ventional hydroelectric dams on land and use the potential energy from height differences.

OTEC is based on ocean water temperature differences and comprises thermodynamic de-

vices for power production, as in thermal power plants. Osmotic pressure differences, as

the name suggests, is based on a different principle than those mentioned earlier.

The whole hydrokinetic energy conversion system consists of four subsystems: the Hy-

drokinetic Conversion Device (HCD) itself; the support structure; the electric power con-

verter and transmission system; and the remote communication and control link [31]. Con-

ceptually, HCDs work in a similar way as wind energy conversion devices. In ocean-energy

deployment, hydrokinetic turbines can be flexibly arranged so that the energy extraction

from tidal and marine currents would basically be the same as a wind farm operates. An-

nual rated-power per square meter of rotor swept area of an HCD system at 2-3 m/s in water

may be four times energy contrast to a similarly rated-power wind turbine [32]. However,

the exploitation of this highly predictable energy source may be very costly.

10



Many different HCD technologies exist today at various levels of development, as shown

in 2006 data from the Carbon Trust for HCDs and wave-energy converters [4] It clearly

reflects the long-term process required to turn a proof-of-concept idea into a full-scale

prototype, and how many of the preliminary concepts do not survive the intermediate states

of development.

First-generation devices that use conventional engineering components would be the ex-

tension of the present prototypes. These early devices can reach a depth of 20 to 30 meters

and the rated-power might be in the range of 200 to 700 kWh [5]. After further RD&D, to

reach economical viability, increase operational lifetime, and minimize maintenance, the

second generation devices are expected within the next 10 years. These more advanced

devices introduce specialized components, and can be installed at sites of depths more than

40 meters, where the tidal current potential is more abundant [5].

Currently, there are several HCD technologies under development, especially for MCP ap-

plications [33,34]. As in wind-energy conversion, turbines are considered the system of

choice. However, some non-turbine systems have been proposed (mostly at the proof-of-

concept stage) and may become the innovative in this new technological field [35]. In spite

of this keen interest in novel concepts, the primary types of HCDs are still the two clas-

sical categories of rotating machinery: (a) Horizontal-Axis turbines, similar to a modern

wind turbine sniping a rotor perpendicular to the hub (axis), and (b) Cross-flow turbines,

whose axis could be oriented either horizontally or vertically. Wind energy developers are

quite familiar to these two types of HCDs. Besides, other turbine-based HCD systems are

categorized by Khan et al. [35] into 1) Gravitational-Vortex systems; 2) Cross-Flow tur-

bines, and 3)Venturi systems. Lago et al. [31] provides a summary of different categories

of HCDs and discusses the advances and trends in the field.

Unducted horizontal-axis turbines have been the first HCDs deployed in bottom-fixed in-

stallations, followed by floating systems employing both vertical-and horizontal-axis tur-

bines. The actual tendency indicates that the first type of system is going to be preferred

in the short-term future for shallow water applications; floating systems are likely to be the

main type in the so-called second generation of deep water HCDs. Non-turbine systems

like the vortex-induced vibration, venturi, flutter vane, and fan belt, even though some of

them already tested at the prototype level, are likely to achieve the commercial stage after

the more classical turbine-based systems due to the innovative nature of their design.

The main challenge is not only extracting more energy per unit of rotor swept area, but

doing it in a more economic and environment-friendly way. That is, energy-conversion

efficiency alone is not as important as the overall cost-benefit relation of the HCD system

operation. Hence, as in wind turbine application, to model an effective computational

scheme for not only the HCD itself, but also others subsystems in whole hydrokinetic
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energy conversion system, is the way to go.

Current wind-turbine(hydrakinetic-turbine) blade technology based on composite lami-

nates is labor-intensive and requires a highly-qualified workforce, creating a critical bottle-

neck in terms of industrial workforce and infrastructure that hampers a rapid expansion of

wind-energy and ocean energy. It also poses a barrier to turbine upscaling by increasing

the cost of the rotor as turbine size increases.

The structural conception of today’s blades also poses huge challenges in terms of trans-

port logistics and crane capacity. Transportation cost increases as blades grow in length.

The risk of damage during transportation, and hence, the cost of insurance, also increases

with length. Moreover, while the rest of the turbine subsystems may be treated as modules

assembled on site, blades are one-piece monolithic components, substantially complicat-

ing transport logistics. Limitation in crane capacity is the other critical factor to take into

account during the turbine assembly phase. Thus, transport and lifting logistics may im-

pose a premature limit for turbine upscaling, even before the actual limits in blade length

for the current manufacturing technology are reached. Blades operate under a complex

combination of fluctuating loads, and huge size differences complicate extrapolation of

experimental data from the wind-tunnel to the prototype scale.

Even if catastrophic resonance is avoided by careful design of the blade-structure natu-

ral frequencies, moderate (but undesired) flapping and twisting would certainly affect the

energy-conversion efficiency of the rotor. Prolonged exposure to vibration would also com-

promise the blade’s operational life through fatigue. The sort of complex wakes mentioned

in previous sections have been observed at a wide range of scales, if they occur in the wake

of a blade, load peaks due to their irregularity may compromise its structural integrity.

From the scientific point of view, it is even more challenging to cope with the case of a blade

than the case of flow passing a cylinder (or any other bluff bodies) because, depending on

the angle of attack, the airfoil profile of the blade section may behave as a streamlined

body or as a bluff body. The picture is even more complex when operational factors, like

variation of the angle of attack in pitch-controlled machines are taken into account. In

stall-controlled machines, the inner part of the blade (which is in stall condition) actually

behaves as a bluff body, while the rest behaves as a streamlined one. The suitability of the

KLE method for accurate simulation of complex wakes would give our aeroelastic model

the capacity to capture these features.

Hence, computer models of fluid-structure interaction phenomena are particularly rele-

vant to the design and optimization of wind-turbines and hydrakinetic turbines. The wind-

turbine and hydrakinetic-turbine industry is increasingly using computer models for blade

structural design and for the optimization of its aerodynamics. But the complex interaction
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of physical processes that characterize the coupled aeroelastic problem still exceeds the

capacities of existing commercial simulation codes. The result is an industry that is cau-

tious with the introduction of new concepts in order to ensure reliability. Innovations are

likely to introduce changes in structural response and may possibly require different con-

trol strategies, which should be taken into account if the development of a new prototype

blade is considered. Research efforts within the established parameters of the composite-

laminate monolithic blade concept would not produce the breakthrough that is needed in

wind-power evolution. A better understanding of the underlying physics is needed in order

to introduce innovative concepts like modular blades and improved control strategies. This

is where the KLE plays a pivotal role owing to its ability to create a common framework

for modular integration of the aeroelastic model with the control system dynamics.

1.3 Dissertation goals

The aeroelastic dynamics in slender bodies depends not only on the characteristic modes

of the body structure itself, but also on the frequency and amplitude of the fluctuating aero-

dynamic forces. Vortex-induced vibration can lead to catastrophic failure of engineering

systems. A resulting periodic vibration essentially depends on the work done by the fluid

on the body over a cycle. This is associated with the timing of the vortex dynamics because

the induced side force caused by the body motion significantly influences the net energy

transfer [13]. A significant challenge in analyzing the aeroelastic problem in these sys-

tems such as wind turbine blades, air-plane rotors, is the fact that a vortex wake different

from the classic Karman vortex street can be produced by an oscillating body, which would

translate into a complex fluctuating aerodynamic force.

The focus of the current dissertation is to study qualitatively the underlying physics of

vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible

viscous flow through the use of the KLE method. We carried out a long series of numerical

experiments in the cases of flow around the cylinder at low Reynolds numbers. We verified

the wake length of the closed near-wake behind the cylinder and analysed the decay of the

wake at the wake formation region, and then studied the St-Re relationship at the Reynolds

numbers right before the wake sheds compared to the experimental data. Later, a theo-

retical model of the decay of the wake and a low-dimensional model for the fluid physics

are proposed. The study of flow at low Reynolds numbers provides an insight in the fluid

physics and also plays a critical role when applying to stalled turbine rotors. In the long run,

it aims to provide a better understanding of the complex multiphysics problems involving

fluid-structure-control interaction through improved mathematical computational models

of the multi-process. Besides the scientific conclusions produced, the research work on

streamlined and bluff-body condition will also serve as a valuable guide for the future de-
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sign of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines,

increasing the efficiency in the use of expensive workforce, supplies, and infrastructure.

1.4 Dissertation outline

Chapter 2 presents the theoretical basics of vortex-shedding and wake dynamics behind

bluff bodies, including the Kármán vortex street and wakes behind oscillating cylinders. In

sction 2.1, we present “The study of the velocity field using Helmholtz decomposition and

the evolution of eddy structures” and “vorticity profiles and decay law of the eddy structures

in the vortex street”; In section 2.2, we present three interesting aspects of the flow behind

oscillating bodies: 1) On the boundaries between vortex synchronization regions in the WR

map; 2) Formation of P+S vortex streets at low Reynolds number; 3) The formation of a

hyper–Kármán vortex-street. These are out of the numerical implementation of the KLE

method mentioned in chapter 4 and motivate the numerical experimentation on the wake

decaying law at the wake formation region around a cylinder at low Reynolds numbers,

which will be discussed in chapter 5.

In chapter 3 we present the mathematical basis of the solution of the incompressible viscous

flow and the theoretical basis of the KLE method. The first section 3.1 gives an introduc-

tion to the incompressible Navier-Stokes equations. The second section deals with some of

the more popular formulations of the Navier-Stokes equations modeling a viscous incom-

pressible flow of a homogeneous fluid in an inertial frame of reference, along with some

discussion on the issues of boundary conditions. To find a numerical solution to the Navier-

Stokes equations would be to decide upon the set of variables representing the equations

followed by a group of boundary conditions. The two main formulations of the Navier-

Stokes equations are of the primitive variable formulations and the non-primitive variable

formulations. Both have their own set of advantages and disadvantages, which shall be

discussed in brief, but in both cases the major problem and the oldest point of contention

are the boundary conditions.

Chapter 4 is concerned with the hybrid methods based on a Vorticity-Velocity approach to

solve the Navier-Stokes equations numerically and a robust mathematical computational

method: the KLE method. It starts with the introduction of the hybrid-method family: the

vorticity−velocity formulation of 2-D and of 3-D. The next section goes on to introduce

the KLE along with its variational formulation. The KLE method was first introduced by

F.L.Ponta in a paper [36]. It is a Vorticity−Velocity method which decouples the evolution

of vorticity from a velocity field from the spatial solution. Vorticity is advanced in time

by integrating a vorticity transport equation for which an initial velocity field is obtained

by solving the weak form of the KLE. The KLE in turn is solved using the vorticity field
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obtained by integrating of vorticity from the previous time step in time. The no-slip, no-

normal flow Boundary conditions for velocity required for solving the KLE are solved over

a sequence of two steps. This basically involves two integral projection in each time step

ensuring compatibility of the two fields at each step. Then it deals with the numerical

implementation of the KLE at the end.

In chapter 5 we present the analysis of the numerical experimentation results for the oscil-

latory regime right before the onset of vortex shedding for circular cylinders. We found a

theoretical model that describes the time evolution of the amplitude of fluctuations in the

vorticity field on the twin vortex wake, which accurately matches the numerical results in

terms of the frequency of the oscillation and rate of decay. We also proposed a model based

on an analog circuit that is able to interpret the concerning flow by reducing the number

of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the

dynamics mechanism of the closed near-wake with a common configured sine wave os-

cillator. This low-dimensional circuital model may also help to understand the underlying

physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Finally, chapter 6 presents the conclusions for this dissertation work as well as the outlook

for further work based on the analysis of the material presented in the previous chapters.
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2. VORTEX-SHEDDING AND WAKE DYNAMICS

BEHIND BLUFF BODIES

Wakes generated by bluff-bodies, particularly wakes behind cylinders, have been studied

by many researchers because they not only help to understand the underlying nature of tur-

bulent flows, providing insights into a widespread physical topic which makes appearances

in many scientific disciplines, but also in a variety of engineering applications. In a case

like a rotor blade where a body is subjected to a complex motion due to the intrinsic opera-

tion of a certain mechanism and external influence, as mentioned in chapter 1, section 1.2.3,

the challenge to study non-linear dynamics is still greater.

Other than the famous Kármán vortex street as seen in the case of uniform flow around a

stationary cylinder, oscillating cylinders produce some more complex patterns in the vortex

wakes. The dynamics of the vortex-wake shed from the body results in fluctuating aerody-

namic forces being exerted on the body itself. The frequency and amplitude of these forces

affect the aeroelastic dynamics together with the characteristic modes of the body struc-

ture. For example, Figure 2.17 shows a non-symmetric periodic wake behind an oscillating

cylinder with three vortices per cycle, and Figure 2.20 shows a non-synchronous wake with

a complex pattern of vortical structures being shed. These numerical results from Ponta and

Aref [10], computed with the KLE method, show favorable agreement with Williamson and

Roshko’s experimental observations [9]. In both cases the net impulse on the wake in each

cycle is zero, but the distributions of the instantaneous forces along the cycle are far from

regular.

2.1 The Kármán vortex street: a classic case-study

The famous theory on Kármán-Bénard vortex street was first published by Kármán in 1911,

although Prof. Bénard claimed priority for earlier experimental observation of the same

fluid phenomenon in 1908. A thorough and significant series of studies have since been

completed. A substantial portion of these investigations have been focused on experimental
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observation. Recently, however a lot more theoretical/numerical studies have been done.

Despite this, a single model that can clearly explain the physical mechanism of how a

vortex-street wake is formed has yet to be developed.

A classic case of study is the formation and development of the Kármán vortex street be-

hind a translating cylinder. The circular cylinder is known for the most universal geometry

in engineering applications, appearing in chemical, civil, mechanical, nuclear, and off-

shore engineering. More importantly, the flow around a circular cylinder shares most of its

characteristic features with the flow passing through many other types of bodies. Despite

the shape differences and the presence/absence of different sharp edges, all bluff bodies

have some similar characteristics in the disturbed flow regions around them. Even the flow

around airfoils and flat plates at high angles of incidence appear similar to flows around

bluff bodies. Both flows have a common characteristic known as eddy streets, that is, sim-

ilar vortex structures developed in the separated region behind bluff bodies [37]. Thus, the

research on flow around a bluff body such as a circular cylinder allows an opportunity to

generalize a physical phenomenon that can then be applied to many disciplines. Usually,

an array of alternating well-defined vortices can be found behind a circular cylinder at a

certain range of Reynolds numbers within the laminar regime. Depending on Reynolds

numbers, a Kármán vortex street produced in a steady stream behind a bluff-body sheds

periodically with different shedding frequencies. Studying the shedding frequency of the

wake and its affect on the bluff-body leads to a better understanding of the fluid dynamics

in bluff-bodies, and especially helps to explore the research on structural-fluid interaction.

Vortex-induced vibrations is a very important topic in the study of wake dynamics. It may

cause resonance, which is a significant consequence when the shedding frequency of a

vortex is close to that of the structure’s vibration.

Applying the Kinematic Laplacian Equation (KLE) method, described in chapter 4, Ponta

conducted numerical experiments to study the case of a circular cylinder in a fluid at rest,

given a sudden velocity and then maintained at that velocity. One of the meshes of tri-

quadrilateral elements used in his research is shown in Figure 2.1.

Ponta discussed some results at several Reynolds numbers which were computed numeri-

cally through the KLE method. Figure 2.2 illustrates the superimposition of vorticity iso-

lines and the solenoidal component of the velocity field vω at Re = 140. Vorticity isolines

plotted here were captured during one vortex-shedding cycle in steady flow around a cir-

cular cylinder. The velocity field is shown by arrows. The vorticity evolution due to the

influence of the eddy-structure defined by the streamlines of vω can be followed clockwise

from the bottom-left panel to complete the cycle [6]. Figure 2.3 presents a close-up view

of the last figure which shows the early stages in the process of vortex-formation. It shows

how the shear layers roll-up around the eddy-structures in vω.
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Figure 2.1. A Tri-quadrilateral finite element mesh used in a study by Ponta (lengths in diameters

of the circular cylinder), [Figure created by author from data in 6].

For the case of Re = 100, Ponta compared a experimental flow visualization of a Kár-

mán vortex street behind a cylinder from M. M. Zdravkovich with the numerical vorticity

field computed by the KLE method [6]. Both the flow visualization and the magnitude of

vorticity shown in the experimental photo are somewhat different than the results from the

numerical computation. Nevertheless, the shape of the vortices and more importantly the

spacing correspondence gives confidence in the accuracy of the numerical simulations.

For Re 50 < Re < 180, the measurement of the dominant frequency of vorticity fluc-

tuations, f , had been taken at a group of points along the vortex street. At these points

the Strouhal number, St = fD/U , was then computed. For all the points considered, the

dominant frequency was the same and clearly formed at the initial stages of wake forma-

tion. Unlike the frequency, the amplitude of the fluctuations displayed a transient state

before stabilized some distance downstream. A St versus Re relationship was plotted in

figure 2.4 and was confirmed with the experiments by Williamson [7].

2.1.1 The study of the velocity field using Helmholtz decomposition and the evolution

of eddy structures

F. L. Ponta discussed two issues [39] on this subject. The first was about the vorticity evo-

lution. The second was how to identify the eddy structures. To study what determines the

vorticity distribution, Ponta used the KLE method to simulate the flow passing through a

circular cylinder over 50 < Re < 180. Then, the vorticity was calculated by applying the

curl of the velocity field that was found using direct numerical simulations. However, it is

more challenging to study how to identify the structures of the eddies. The choice of frame
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Figure 2.2. ForRe = 140, the rearrangement of the eddies during one vortex-shedding cycle in the

wake behind a circular cylinder is shown using the vorticity isolines and the pattern of streamlines

of vω[Figure created by author from data in 6]. Sequence should be followed clockwise.

of reference strongly influences the topology of the velocity field [39]. Considering a towed

cylinder in an initially stationary fluid, an observer travelling with the cylinder would ob-

serve an incipient eddy structures near the bodies surface and the far wake would display

wavy streamlines without eddies. In comparison, if the observer were stationary, the nor-

mal eddy structure in a vortex street would be seen in the far wake and the vorticity near

the cylinder would become distorted. Batchelor [40], Plate 11 shows a very good example

of this. Thus, failing to choose a proper frame of reference would result in the conclusions

concerning the formation mechanisms. Furthermore, when the reference frame moves with

the cylinder, one may observe the eddies advecting downstream, initially at a low speed

zone near the cylinder and then accelerating downstream to the far wake where a steady

advection regime is achieved. To properly describe the streamline pattern, a desired frame

of reference must track every eddy as it accelerates downstream. However, this would com-

plicate the situation and result in strongly biased conclusions. Hence, the incompressible

velocity field was decomposed using a frame of reference that moved with the cylinder.

The velocity field can be written as follows: v = vω + vh. Here, vω is the solenoidal

component of v and has the same curl as v, while vh is the harmonic component. The
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Figure 2.3. For Re = 140, the vortex-formation during one vortex-shedding cycle in the wake

behind a circular cylinder is shown using vorticity isolines and the pattern of streamlines of vω,

[Figure created by author from data in 6].

two-dimensional vorticity transport equation, Eq 2.1, can be rewritten as in Eq 2.2. This is

due to vh, the harmonic component, having had no contribution to the diffusion of vorticity

and only influenced the advection process:

∂ω

∂t
= −v·∇ω + ν∇2ω, (2.1)

∂(∇× vω)
∂t

= −(vω + vh)·∇(∇× vω) + ν∇2(∇× vω). (2.2)
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Figure 2.4. Comparison of the numerical Strouhal number using the KLE method with

Williamson’s experimental measurements [7] for 50 < Re < 180.

The streamline pattern in vω defines the eddy structures and vh is assigned to advect these

eddy structures.

In Batchelor [40], Section 2.7, it is pointed out that, for prescribed velocity conditions, vh
can be uniquely determined on the boundary of the computational domain. In the numerical

simulations performed with the frame of reference having moved with the cylinder, Ponta

completed the evaluation right before any vorticity reaching the external boundary of the

working domain. Hence, the velocity on the solid surface was set to be zero and a stream

of uniform velocity was applied on the external boundaries. vh and vω = v−vh were both

determined uniquely. By analysing the streamline pattern in vω to study flow topology, the

issue of selecting a frame of reference can be circumvented.

The top and bottom image of Figure 2.5 show the superimposition of the instantaneous

velocity arrows of v and the superimposition of vω on the vorticity isolines in the far wake

respectively. As shown, the arrows of the velocity field vω are tangent to the isolines of

vorticity inside the eddy cores. That is, distribution of the vorticity does not change relative

to vω. This means, vh causes the advection of the full vortex structures downstream, while
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vω causes the advection of eddy structure vorticity internally. This helps to rearrange the

vorticity inside the vortex core [39]. Figure 2.5 also illustrates how the pockets of vorticity

advect beyond the confluence point and form the tails. Here, a confluence point is seen in

the streamlines of vω as a saddle point. The vortex cores, in the far wake, simply decays due

to a steady viscous effect as advected by vh downstream. The preceding explanation shows

a good consistency with observations in the experiments and confirms vh is the cause of

the advection in the far wake.
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Figure 2.5. For Re=100, upper panel shows the superimposition of vorticity isolines with pattern of

streamlines of v, while the lower panel presents the superimposition of vorticity isolines vω [Figure

created by author from data in 8].

Also, Ponta argued that vh determines the advection in the near wake. To verify this, Fig-

ure 2.3 shows the superimposition of vω streamlines and vorticity isolines with a sequence

of plots of the formation of vortex structures in the near wake. As shown, the rolling-up

of the shear layer of positive vorticity around the incipient eddy starts on the lower right

of the cylinder. This process will continue until vorticity all around the periphery of the

initial eddies reaches a roughly homogeneous distribution. It is noted that the vortex core
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has been formed while the outside of the eddy is still in the process of its development,

dissipating its vorticity into the surroundings.

Figure 2.2 shows the two main processes in the formation of the vortex street [39]. The

process of stretching of the eddy structures which was produced by the interactions of

neighbour vortices took place first in the shedding of the eddy structures. This results

in an S shape for the associated vorticity block which has been documented in multiple

experimental flow-visualization and computational simulations. The eddy was initially

connected to the separated shear layers that created it by having had rolled-up, but during

the rearrangement process, this connection was severed. Then, three nearly simultaneous

processes took place caused by the local advection due to vω combined with the forces of

viscous diffusion[39]: 1) the severed vorticity traces advected into the core of the vortex

and united with the vorticity of the core; 2) a new tail was formed by the traces of vortic-

ity which had fallen past the confluence point from the vortex core, which was visible in

the early stages of the evolution of the vortex street, as seen in Figure 2.5; 3) inside the

vortex core with vorticity isolines tangent to the arrows of the vω velocity, vorticity got

homogenized along the periphery.

When the rearrangement of the eddy structures was completed, the vortex street would be

fully formed. From this point on, the eddies decay under the steady viscous effect as the

vorticity was cancelled out by the interactions between eddy cores of opposing rotation.

2.1.2 Vorticity profiles and decay law of the eddy structures in the vortex street

The first vortex street structure theoretical model was derived by Kármán. This model

considered an ideal flow with the stability of point vortices staggered in two parallel rows.

For the arrangement to be stable, the space between the point vortices rows should be 0.281

times the streamwise separation between consecutive vortices in a given row. This ratio was

determined analytically [41,42]. When this was examined using real fluid eddy streets by

Bénard [43], it was found the rows of point vortices were further apart than analytically

predicted and continued to move further apart down the wake. Zdravkovich [37] found the

laminar eddy streets stability conditions varied relatively little in the spacing a in given row

compared with the variation between the rows. These tests imply the ratio calculated by

Kármán is primarily a function of the space between the rows. The spacing between the

vortices in the row appears to be strongly dependent on Re while the spacing between rows

appears to be independent of Re (see Zdravkovich [37], Sec. 3.8, where data on this ratio

from multiple sources is presented).

Improving on previous models Hooker [44] substituted the immutable point vortices with

eddies that have a Gaussian distributed vorticity, ω, which depends on the radial distance
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from the vorticity center. Diffusion effects can now be captured in the model and allow

the eddies to expand as it moves down stream. At the initial condition the infinite street of

vortices are modelled as point vortices that a subjected to viscous action. Immediately after

the initial condition the infinite velocities and pressures of the singular points disappear and

“the vortices commence to diffuse, thereby realizing a state of flow more in keeping with

those actually prevailing in any observed street.” Hooker’s results match the process of

diffusion and decay of the classical solution proposed by Lamb [45](Chap. XI, Art. 334a).

In Lamb’s solution, the vorticity spreads into the fluid as heat from an instantaneous line-

source would diffuse into an infinite medium. This so called Lamb-vortex model finds

the distributions of vorticity, ω and circumferential velocity , vθ. Both ω and vθ have a

functional relationship to the radial distance, r, and time, t

ω =
Γ

4 π ν t
e−r

2/4 ν t, (2.3)

vθ =
Γ

2 π r
(1− e−r

2/4 ν t), (2.4)

where ν the kinematic viscosity and Γ is the circulation of the original line vortex.

The overall vorticity enclosed within the radius r is

Γr =

∫ r

0

2 π r ω dr = Γ(1− e−r
2/4 ν t), (2.5)

and it can be shown the vorticity within a large radius is approximately equal to Γ for finite

values of time. The vorticity is only diffused by viscous action throughout the fluid but not

destroyed.

A maximum of vθ, using (2.4), will be given at a radius which satisfies

r2c
4 ν t

= 1.26, or rc = 2.245
√
ν t, (2.6)

The age of a vortex is then indicated by the radius of maximum vθ. Alternatively, the peak

value of ω (ωp =
Γ

4 π ν t
) can also be taken as an indicator of age.

Hooker [44] defined the core radius at the point of maximum velocity. The effect of the

viscous term on the fluid velocity is insignificant outside a given radius. For eddies in

water where t ≤ 30s, this radius is about 2 cm. Most of the vorticity will then remain

inside this radius for the 30 seconds being considered. Experimentally, Hooker formed
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a vortex street with constant longitudinal spacing a at 6.9 cm. Using Kármán’s stability

condition ratio of vortex rows spaced 0.281 times further apart than the distance between

consecutive vortices, would correlate to an initial point-vertex Kármán street with the rows

1.935 cm apart. At a point defined as P, Hooker replaced the ideal point vortex with a

viscous eddy determined by 2.4. The velocity field created by the point vortex at P was

then replaced with a field corresponding to its viscous counterpart. According to Hooker

“It was futile to replace any other vortex by the viscous form for each will be at a distance

greater than 4 cm from P and the diffusion term is negligible under these circumstances.

The velocity field of all the remaining diffuse vortices (excluding P) will be the same as

if they were concentrated as filaments at their original positions”. Because the velocity at

point P due to vortex P is zero, Hooker’s velocity distribution results in the same convection

speed for the complete vortex system due to mutual actions in the same way as Kármán’s

experiment. Therefore, the spacing of consecutive vortices in a given row is not effected

by diffusion and the apparent center of the vortices move away from the wake axis as time

increases. This apparent center does not coincide with the maximum vorticity but with the

point of zero velocity. The maximum vorticity is found at the point of initial concentration

in-line with each row of downstream vortices. According to Hooker, the points observed in

experiments were the zero velocity points around which the fluid appeared to circulate.

Comparing Hooker’s partially viscous theory to measurements, Timme [46] found a

favourable agreement for transverse and streamwise velocity profiles. Later Schaefer and

Eskinazi [47] made a similar comparison and confirmed the results. The downstream

widening of the two rows of vortices predicted by Hooker [44] roughly matched experimen-

tal measurements for t ≤ 30s. A second widening, which was not predicted by Hooker was

found some time after t=30 seconds. Hooker noted several considerations that may explain

the discrepancies between his theory and experiments:

(i) Real vortices are never filaments during the course of their existence.

(ii) In reality the vortices are of unequal ‘age’.

(iii) Street lengths are finite in reality.

Points (ii) and (iii) “are secondary effects provided that we consider a region of the street

at which the vortices have not spread sufficiently to intermingle” according to Hooker.

Naturally the next question is what happens once the eddies are able to intermingle. To

investigate this Green and Gerrard [48] pulled a cylinder along a tank at Re = 80 to produce

a eddy-street wake. Using an interferometer to visualize dimples on the water’s surface, it

was found that the mutual interaction of adjacent dimples induced displacement away from

the wake axis. The dimple’s depth is reduced and the radius is increased by the diffusion

of the eddies, which in turn is caused by viscous dissipation.
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The concept that the location of maximum velocity may define the viscous core border

was reconsidered in a theoretical study by Zdravkovich [37, Sec. 11.14]. The Radius of

influence would then extend to rc = 4.3
√
ν t. At the point rc, the difference between the

induced velocity due to a point vortex and a viscous vortex is within 1%. The velocity

distribution difference caused between a point vortex and a viscous vortex will introduce

an imbalance by reducing the induced velocity when the adjacent vortices are within the

viscous core of the observed vortex. Zdravkovich proposed a differential equation valid up

to the point where a second core in the other row reaches the observed vortex. This equation

would model the widening of the street as a function of this imbalance. According to [37],

“The path of vortices becomes continuously modified as they proceed downstream. The

strength of eddies is gradually reduced as the viscous cores overlap and the vortices of

opposite sign cancel each other. The mechanism of diffused vortex core interaction is little

understood at the present.”

The vorticity distribution is a function of the eddy structure and the time evolution. After

this the eddy is established in the vortex street [8]. A 3-D perspective view of a twelve-

vortex series vorticity distribution is seen in Figure 2.6(a). Here, the Kármán-street wake

for Re = 100 is shown with geometrical coordinates given in diameters of the cylinder, D,

centered at the origin (x∗ = x/D, y∗ = y/D). Vorticity is normalized by the free-stream

speed U and the cylinder diameter (ω∗ = ωD
U

).

(a) (b)

Figure 2.6. Panel (a): Three-dimensional perspective view of the vorticity distribution of a twelve-

vortex series in a Kármán-street wake for Re = 100. Panel (b): Lateral view of the same vorticity

distribution, [Figure created by author from data in 8].

The two tails phenomenon mentioned earlier is displayed here. The severed outer ap-

pendage is only seen in the first vortex, which is in the final stages of the rearrangement

process. This appendage is also seen weakly, in the second vortex but it is already partially

incorporated. The inner appendage manages to last further downstream.
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Figure 2.7. Elliptical ratio for several plane sections of the vortex core corresponding to horizontal

slicing planes located at 0.6, 0.7, 0.8 and 0.9 of ωp and best-fit line, [Figure created by author from

data in 8].

Despite the tails, the majority of the vorticity is enclosed in the core of each vortex. This

vorticity inside each core is responsible for the structure of the wake via its role as the

principal component of the induced velocity. This set of cores follow a Gaussian distri-

bution. Each core displays an elliptical boundary with the major axis aligned vertically,

normal to the inlet. The major to minor axis ratio (σy/σx) is constant and is maintained

as the vortex develops downstream. Ponta [8] has calculated σy/σx for several plainer

sections at 0.6, 0.7, 0.8 and 0.9 of the maximum vorticity (ωp). 0.6 ωp was selected as a

starting point of the section where the tails could be clearly seen. In other sections the

tails would have appeared as a peak of the upper end of the elliptical contour of the cross

section increasing and distorting the major-axis length. The evolution of σy/σx as the vor-

tex moves downstream can be seen in Figure 2.7. The curves of the various measurement

planes converge around a single uniform function, which when expressed as a best-fit line

is σy/σx = 3.365 10−5 (x∗)3 − 2.7 10−3 (x∗)2 + 5.38 10−2 x∗ + 0.961. Comparing

the vorticity profiles to a mathematically constructed set of Gaussian curves, which are a

function of the σy/σx ratio, a similar result is found.
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Going further, the underlying function that controls the rate of decay of the vortices was

discussed by Ponta [8]. A 3-D lateral view of a twelve-vortex series vorticity distribution is

seen in Figure 2.6 (b), this is the same data-set seen in Figure 2.6 (a). Based on observation

of this plain ω∗

p = ωp
D
U

follows a systematic decreasing law which must be related to some

vorticity distribution within the vortex cores. At about 15 diameters downstream of the

cylinder the vortex cores start to overlap. Even here, the law is still valid and consistent with

independent observations [48]. These observations were made using interferometric flow-

visualization which found the dissipation is almost negligible up to x/D = 15. Beyond

this a rapid dissipation is caused by the overlap of adjacent viscous eddy cores and the

cancellation of vorticity rotating in opposite directions.

Figure 2.8 shows the measurement of the decay of ω∗

p along the streamwise axis. The curve

is nearly a perfect hyperbola (ω∗

p = 19.579 (x∗ + 5.259)−1), also shown in Figure 2.8 [8].

This matches the decay law given by the Lamb’s solution from expressions 2.3) to (2.4,

where peak vorticity is given by

ωp =
Γ

4 π ν t
, (2.7)

when normalized by the cylinder diameter D and the free-stream speed U yields

ω∗

p = ωp
D

U
=

Γ

4 π ν t

D

U
. (2.8)

Since the speed of propagation of the wake is nearly constant, t = x−x0
Uw

can be defined.

Uw is the speed of propagation of the wake and x0 is a hypothetical point upstream of

the cylinder where the hyperbola can be imagined to have an origin. Now, (2.8) can be

rewritten in terms of the distance downstream (x) instead of t

ω∗

p =
Γ

4 π ν

D

U

Uw
x− x0

, (2.9)

when normalized by D and U yields

ω∗

p =
Re

4 π
Γ∗ U∗

w (x∗ − x∗0)
−1, (2.10)

where the normalized counter parts of the relevant variables are Γ∗ = Γ

D U
, U∗

w = Uw/U
and x∗0 = x0/D. Lamb’s solution proposes the vortices have a fixed amount of circulation

that dissipates as the vortex ages. Between x∗ ≈ 13 and x∗ ≈ 15, the sum of the circulation

can be calculated by direct integration of the vorticity contained in the eddy core. In this

28



14 16 18 20 22 24 26 28 30 32 34
0

0.2

0.4

0.6

0.8

1

 x
*

 ω
p

*

Figure 2.8. Decay of ω∗
p along the streamwise axis and best-fit hyperbola ω∗

p = 19.579 (x∗ +
5.259)−1, [Figure created by author from data in 8].
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downstream section the eddy core is in the early stages of the street before the cores start to

overlap but after the end of the rearrangement process. The limiting point of the integration

was selected as the closed streamline which passes through the confluence point. This

allows a well defined boundary of the vorticity core in the calculation. This calculation

was repeated for multiple cycles and the result was Γ∗ = 2.8± 0.02. A simple calculation

can be used to find the propagation speed, which was U∗

w = 0.88. Returning to the best fit

hyperbola from Figure 2.8 is

ω∗

p = 19.579 (x∗ + 5.259)−1. (2.11)

Equated to (2.10), the hyperbola above becomes

Γ∗ = 19.579
4 π

Re U∗
w

, (2.12)

which when solved results in Γ∗ = 2.796. This is essentially equal to the value of Γ∗

calculated by the integration of the cores. The amount of circulation contained in the cores

at the boundary of the vortex street determines the law of decay for the vortices along the

wake. This law closely matches Lamb’s implicit solution.

Continuing in this direction, to remain consistent with the Lamb solution the vorticity pro-

files of the cores should be Gaussian, despite the fact the plainer sections are elliptical as

opposed to circular. When (2.3) is rewritten in terms of an equivalent radius R = 2
√
ν t,

which was selected at the width of the two-dimensional circular Gaussian distribution, it is

found

ω =
Γ

π R2
e−r

2/R2

. (2.13)

Then (2.13) can be rewritten in terms of an elliptical Gaussian as opposed to a circular

Gaussian

ω =
Γ

π Rx Ry

e
−

(

x2

R2
x
+

y2

R2
y

)

, (2.14)

assuming Rx Ry = R2 = 4 ν t. That is, as long as the area under the Gaussian surface is

preserved.
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Figure 2.9. Panel (a): Comparison of the vorticity profiles in a cross-flow slicing plane for ten

consecutive vortices. y∗ indicates, as hitherto, the non-dimensional cross-flow distance taken from

the origin. Panel (b): Comparison of the vorticity profiles in a streamwise slicing plane for ten

consecutive vortices. x∗vc indicates the non-dimensional streamwise distance taken from the vortex

centre, [Figure created by author from data in 8].

In the derivation of (2.14), calculated values of Γ∗, U∗

w and the elliptical ratio σy/σx given in

Figure 2.7 were used. This expression is used to describe the vorticity profiles. The ratio of

Ry/Rx is expected to match the ratio of σy/σx. A comparison between the non-dimensional

vorticity profiles in plainer sections aligned to the cross-flow and the streamwise axis for a

row of ten consecutive vortices can be seen in Figure 2.9. Both the cores and the tails are

shown. The plainer sections pass through the peak vorticity at each vortex. The values de-

termined by direct numerical simulations are the circular points while the Gaussian curves

derived from (2.14) are represented by solid lines.

An important note on Figure 2.9, the Gausian curves are not fittings, but mathematically

constructed from the calculated parameters discussed above [8]. In Figure 2.8, the value

x∗0 = −5.259, representing the horizontal translation of the decay curve, is the only param-

eter taken from a curve fitting operation.

The Lamb-vortex model and the (ω − ψ) scatter-plots
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Due to the coincidence of the vω streamlines and the vorticity isolines, the advective term

in the vorticity transport equation is canceled out. This functional relationship F between

ω and the vω, represented by its associated stream function ψω, can be shown to be

ω = F (ψv), (2.15)

Based on what has been presented above, the vorticity is expected to evolve according to

the Lamb solution. The vorticity profiles inside the cores would also be expected to be

consistent with the Gaussian distribution of the Lamb-vortex model. The next logical step

is to assume ω is related to ψω by the corresponding functional relation. By integrating

(2.4), the stream function in the Lamb-vortex model can be found to be

ψ = − Γ

2 π

(
1

2
Ei

(
r2

4 ν t

)

+ log(r)

)

+ const. (2.16)

where the exponential integral function Ei is

Ei(−z) = −
∫

∞

z

e−z

z
dz , (z > 0). (2.17)

Here, (2.16) assumes an isolated circular vortex. This allows the isolines for ω and ψ to

be coincident. It is clear this assumption does not capture the true behavior in the Kármán

steet. In reality the vortices in question have overlapping elliptical cores and tails that form

due to escaping traces of vorticity. Despite this the core contains the bulk of the vorticity

which induces the dominant component of vω. The traces of vorticity that forms the tails

seem to dissipate with minimal impact to the wake structure. Even considering elliptical

vortex cores, the Lamb vortex functional relation is still valid. A change of coordinates by

the deformation in the wake axis may reproduce the elliptical shape and will not alter the

functional relation F .

To produce the ω − ψ scatter plot shown below, the values for ω and ψ are taken from

every point of a grid that covers the region of the wake in question. This gives a useful

representation of F . This technique was used by multiple researchers, including Flór and

van Heijst [49] to analyze the time and structure evolution of monopolar vortices, dipoles

and tripoles. Flór and van Heijst [49] described the flow where the reference point translates

with the dipole, this translation follows the path where the isolines of ω and ψ are coincident

and a discernible functional relation may exist. This path was determined by plotting ω
opposed to a transformed stream function ψ

′

= ψ − Ux y + Uy x, when the coordinate

(Ux, Uy) is the translational velocity of the dipole. In Ponta’s work, ψω is equivalent to the

32



transformed ψ
′

in the referenced work above. The incompressible velocity field v can be

decomposed and be re-written in terms of the velocity potentials:

v = vω + vh = ∇×ψω +∇×ψh, (2.18)

where the stream vector potentials associated with vω and vh are ψω and ψh respectively.

When applied to two dimensional cases, this reduces to another component given by the

stream vector potentials. The Poisson equation for related to ψω would then be

∇2ψω = −ω, (2.19)

This is satisfied within any harmonic component. In Ponta’s work, the stream function

associated with vω was evaluated independently. Then vω can be uniquely determined by

evaluating (2.19) using the same spatial discretization described earlier for the velocity field

and adding the constraint (2.20), where

∇×ψω = vω, (2.20)

In Figure 2.10 is a 3-D perspective view of ψω for the twelve-vortex wake at Re=100, shown

earlier in Figure 2.6 [8]. The Stream function is normalized by the free stream speed and

the cylinder diameter ψ∗

ω = ψω
D2

U
).

In Figure 2.11 is a scatter plot of ω∗ − ψ∗

ω for a ten-vortex wake where Re=100. Here

only the cores of the vortices are shown. The figure clearly shows the ω − ψ pattern for

the five negative and five positive vortices. Unlike [49] the normalization of the values of

ω and ψ were taken by a standard normalization based on the free stream speed and the

cylinder diameter as opposed to the respective maximums. The first and third of the five

vortex pairs from Figure 2.11, including cores and tails in this case, are depicted in Fig-

ures 2.12(a) and 2.12(b) respectively. The solid lines in this figure represent the theoretical

ω − ψ curve for a Lamb vortex in this position downstream of the origin. It is important

to note, these curves are not best fit curves but calculated results derived from (2.3) and

(2.16). The value of the circulation of the vortex was obtained by integrating the early

stages of the vortex street. The only fitted value that is used is the horizontal translation

of the ω − ψ curve which is the integration constant in (2.16). It is then seen that as the

vortices progress downstream, they diverge from the center and their cores overlap. This

then forces the ω∗ − ψ∗

ω pattern to widen. With this considered, the dominant structure is

still the ω − ψ functional relation described by the Lamb-vortex model.
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Figure 2.10. Three-dimensional perspective view of the ψω distribution corresponding to the

Kármán-street wake depicted in figure 2.6, [Figure created by author from data in 8]

Figure 2.11. ω∗ − ψ∗
ω scatter plot for a complete ten-vortex wake at Re = 100, [Figure created by

author from data in 8].
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(a)

(b)

Figure 2.12. ω∗ − ψ∗
ω scatter plots for the first and the third of the five vortex pairs in the wake

depicted in figure 2.11, [Figure created by author from data in 8]. The solid lines correspond to the

theoretical ω − ψ curve for a Lamb vortex located at the same distance downstream.
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2.2 Wake behind oscillating cylinders

The vortex wake patterns of two opposite vortices per shedding cycle are very limited. They

are basically different versions of a Kármán vortex street with varying ratio of spacings

between inter/intra rows. As known, an oscillating body produce a more complex vortex

wake different from the classic Kármán vortex street, which would translate into a complex

fluctuating aerodynamic force. A term “exotic wakes” has started being used for those

patterns. This system can be considered as a forced, non-linear oscillator.

One may consider the shedding frequency associated with the free stream velocity as the

system’s natural frequency and the frequency of oscillating body as an external forcing

frequency. A large number of combined frequencies can potentially be excited owing to

the non-linear coupling between the two oscillations mentioned. Several of them may be

related to new vortex wake patterns. Even in the cases of stationary vortex wake pattern, it

is more likely to have three rather than two vortices in the wakes for each shedding cycle.

Stationary wake patterns means that the configuration of the vortices produced does not

change between two subsequent cycles of oscillation and shedding. Given the assumption

of point vortices, these patterns have been thoroughly classified by [50].

A substantial amount of literature has been published on experimental research of vor-

tex wakes behind oscillating cylinders subject to oscillations either normal to or along the

uniform stream (see [51], among others). Besides these, there are more recent theoreti-

cal/numerical studies (see [52] for further references).

Numerous researchers have demonstrated and analyzed the occurrence of these complex

wakes behind circular cylinders that oscillate on a background flow (see [9,10,51,53,54],

among others). Williamson & Roshko (referred to as WR hitherto)[9] provide an experi-

mental bifurcation diagram for wakes produced by an oscillating cylinder.

WR constructed a map of vortex synchronization regions and the coordinates in the map

are, λ/D, the Non-dimensional wavelength, and A/D, Non-dimensional amplitude of

cylinder oscillations, where λ is the wavelength and A amplitude of oscillations. An al-

phanumeric code system was created by WR to describe the patterns of vortices shed in

various combinations comprising of single and paired vortices in each cycle. These sym-

bols have become a standard classification for these structures of the forced oscillation of

the cylinder. WR partitioned the map into different synchronization regions based on the

prevalence of patterns in the vortex wakes. They denoted these patterns by the alphanu-

meric code they had developed. For example a P+S would mean a shedding pattern com-

prising of an oppositely signed vortex pair and a single vortex per shedding cycle. Similarly

2P would mean two oppositely signed pairs and 2S would signify 2 single vortices being
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shed in each cycle. ‘S’ stands for a single vortex while ‘P’ for a pair of oppositely signed

vortices.

Several features in the Williamson & Roshko [9] vortex synchronization map were ratio-

nalized by Ponta & Aref [11] using physical arguments based on how the oscillating trajec-

tory followed by the body motion affects the timing of vortex shedding and re-arrangement.

Simulations as well as experiments suggest that the final wake configuration is produced by

a combination of splitting and merging. In the near-wake region, these processes change

the strength as well as the number and position of vortex structures that form the vortex

street (or whatever the final pattern is).

A particular detailed study at Re = 392 by WR reported that regions P+S and 2P dom-

inated the (λ/D, A/D) map vortex synchronization regions P+S and 2P. WR noted that

the boundary between those vortex synchronization regions depend on Re. Therefore at

Re > 300 a 2P region takes over some of P+S at Re > 300. Ponta performed numerical

experiments at Re < 300 exclusively [10] and found the 2P region starts shrinking or even

vanishes. It is difficult to determine the boundaries between the various regions experimen-

tally or even numerically since the theory driving them is still not as clear. Nevertheless,

Ponta proposed an argument to mark out boundaries on the WR map similar to the ones

already observed. This might help explain the shifting of regions with change in Re.

2.2.1 Boundaries marking vortex synchronization regions

WR saw that the (λ/D, A/D) map can accurately represent the synchronization regions

throughout the range of 300 < Re < 1000. For the same rang of Reynolds numbers, the

Strouhal number for a non-oscillating cylinder remains nearly constant. For Re > 300
the St–Re curve asymptotically approaches an approximate constant value of St = 0.2.

Thus, the natural frequency of the system in the oscillator analogy is largely fixed while

the forcing frequency alone varies. For a fixed Strouhal number equal to 0.20 within 300 <
Re < 1000, it is possible to correlate λ/D with the ratio of the time period of forced

oscillations (Te = λ/U ) and that of the shedding of vortices for a non-oscillating cylinder

(Ts = D/(U St)), via Te/Ts = St λ/D = 0.20 λ/D. This correspondence allows λ/D
to be considered as a scaled down Time period Te in terms of time period of the system’s

natural oscillation (which is the same as the period of shedding of a Kármán vortex street

in case of a non-oscillating cylinder).

However, according to Ponta’s numerical simulations for Re < 300, specifically for

Re = 140, the most studied case, the frequency at which the Kármán vortex street is shed

varies considerably with Reynolds number. For an oscillating cylinder moving upstream

with a constant horizontal the relative velocity of the cylinder varies thereby causing the
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cylinder Re to fluctuate. For Re < 300, a marked dependence of Strouhal number suggests

considerable variation in the time period of natural oscillation. Also, the amplitude at

which Re fluctuates is dependent on the non-dimensional parameters λ/D and A/D,

thereby changing all over the WR map [11].

Considering the center of the cylinder moves as follows:

xcy(t) = U t, (2.21)

ycy(t) = A sin

(

2π
t

Te

)

= A sin

(

2π
t U

λ

)

. (2.22)

Then, the relevant velocities are

Vxcy(t) = U, (2.23)

Vycy(t) = 2π U
A

λ
cos

(

2π
t U

λ

)

. (2.24)

The maximum cylinder velocity along its trajectory is

Û = U

√

1 +

(

2π
A

λ

)2

, (2.25)

And the maximum associated Re is,

R̂e =
D

ν
U

√

1 +

(

2π
A

λ

)2

= Re

√

1 +

(

2π
A

λ

)2

. (2.26)

The difference between instantaneous period of vortex shedding, Ts, and its corresponding

value at maximum Re, with respect to, Te =
λ
U

, is
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∆ =
Ts − T̂s
Te

=
D
U St

− D

U Ŝt
λ
U

=
1/St− 1/Ŝt

λ/D
, (2.27)

Here T̂s is the period of shedding of vortices associated with R̂e and Ŝt is the Strouhal

number for that R̂e. Taking the experimental best–fit line of St–Re relation summarized

by Roshko [55],

St =

{
0.212 (1− 21.1/Re) , Re < 180
0.212 (1− 12.7/Re) , Re > 300,

(2.28)

substituting it into (2.27) and then using (2.26), it gives ∆ in terms of the Reynold’s number

and the parameters of the WR map:

∆ =







1

0.212 λ/D




(
1− 21.1

Re

)−1 −



1− 21.1

Re

√

1+(2π A/D
λ/D )

2





−1

 , Re < 180

1

0.212 λ/D




(
1− 12.7

Re

)−1 −



1− 12.7

Re

√

1+(2π A/D
λ/D )

2





−1

 , Re > 300,

(2.29)

Figure 2.13(a) is the map as presented by WR superimposed with several values of ∆ for

Re = 392. These ∆ are presented with the 0.001, 0.015 and 0.06 isolines and Re = 392
is the representative case for the Re range where the map is valid. As shown in the fig-

ure, these isolines coincide roughly with the boundaries of region P+S and region 2P [11].

Ponta suggested that, due to this coincidence, the boundaries of the vortex synchronization

regions might be related to fixed levels of fluctuation in the cylinder’s natural shedding fre-

quency. These frequency fluctuations are result of the varying relative velocity of cylinder

with respect to the fluid, owing to oscillatory motion.

Figure 2.13(b) presents the WR map but superimposed with several isolines of ∆ in the

case of Re = 140. The vortex synchronization region between the isolines of ∆ = 0.015
and ∆ = 0.06 (P+S region in the original WR map), after rotating down to the right in

the clockwise direction, occupies the previous 2P region. Furthermore, the region between

the isolines of ∆ = 0.001 and ∆ = 0.015, associated with previous 2P states, has shifted

down so much that it almost no longer occupies the region in which 2P patterns were seen

earlier. Hence, assuming that boundaries of the vortex synchronization region are related
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to isolines of ∆, it is possible to explain why at low Re P+S state replaces the 2P state

(which is no longer observed) [11]. Basically, the fluctuation of the shedding frequency

is too high for a 2P pattern, which for some reason is a lot more reactive to detuning than

P+S. Also, St reacts a lot more to changing Re at lower Reynolds numbers than at higher

ones. This argument seems to show some consistency with the thought that both 2P and

P+S have similar generation mechanisms, but a finer balance is required for a 2P wake

than that for P+S. Experiments by WR show that owing to strain on each vortex of P by

neighboring vortices a 2P wake is formed. Thus, it produces two vortex pairs in each cycle

instead of one pair. As shown, in the P+S wake, while positive as well as negative vortices

are present in the near wake region, one splits by stretching but the other recovers and does

not split producing only three vortices in each cycle. So for both 2P and P+S splitting of

vortices is fundamental to the formation of vortex wake structures, a finer synchronization

between negative and positive vorticity regions might be required making it more sensitive

to frequency and time scale variations.

As shown in figure 2.13, the boundaries between different synchronization regions can be

approximately grouped into two families: the circumferential family characterized by a

group of concentric-wise curves which appear to be roughly centred on the origin; and

the radial family which corresponds to another group of curves that expands radially from

the origin. Ponta and Aref [11] re-interpreted the boundaries between the synchronization

regions belonging to the circumferential family in terms of a new parameter that also mea-

sures the ratio between the period of the forced and the natural oscillations. But instead

of taking the wavelength λ as the characteristic length, Ponta and Aref suggested adopting

the length of the path for each cycle. Figure 2.14 shows the sinusoidal trajectory of the

oscillating cylinder. It alternates sectors where the motion is quasi-rectilinear (marked R

in the figure) with sectors with small radius of curvature where there are rapid changes for

the angle of the inflow (marked C).

The vortex shedding process developed alongside the R-sectors of the path behaves roughly

the same as a non-oscillating cylinder. On the other hand, as the inflow angle changes

rapidly at peaks and troughs of the C-sectors, points of separation change position inter-

rupting vortex shedding, which resumes alongside the following R-sector [11]. Hence, if

R-sectors are one half the length of the natural wavelength (i.e. the distance covered by a

non-oscillating cylinder in half a shedding cycle), shedding of a pair of equally-balanced

cumuli of vorticity will occur per cycle of forced oscillation. Two pairs of cumuli will be

shed if the length of the R-sector equals the double (instead of half), and so on. Ponta and

Aref [11] proposed a hypothesis that the vortex synchronization regions of the (λ/D,A/D)

map corresponding to trajectories with length of R-sector equal to an integral multiple of

half the natural wavelength define families of patterns of a common origin, namely, the

same number of primarily shed vorticity cumuli. Variations seen in patterns of vortices

belonging to the same family depend on the various processes that the primary vorticity

cumuli went through after shedding. Experimental observations confirmed this argument.
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(a)

(b)

Figure 2.13. Original (λ/D, A/D) map [9] with the numerical 0.001, 0.015 and 0.06 isolines of

∆ (a) Re = 392 (b) Re = 140. The Points of the parameters used in the numerical experiments are

also shown in (b), [taken from 10]. See appendix for permission.
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Figure 2.14. The sinusoidal trajectory of the oscillating cylinder, [Figure created by author from

data in 11].

42



Govardhan and Williamson [53] indicated that a 2P wake arises from splitting both vorticity

cumuli being shed, owing to the strain by the neighboring vortices. Therefore, it produces

two vortex pairs in each cycle instead of one pair. In the P+S wake, as explained earlier,

inspite of both positive and negative cumuli in the end only three vortices are produced in

each cycle. So, as mentioned before, splitting is fundamental to both 2P and P+S wake

formation, and even though the process of splitting is not the same for both, each involves

the shedding of two cumuli of vorticity of either sign in every cycle. Thus the two are

part of the same region as far as boundaries defined by the R-sector length hypothesis are

concerned.

The R-sector length depends on the overall length of the path for one cycle. Hence, Ponta

and Aref [11] defined a non-dimensional parameter LD = St L/D (where L is the path

length for one cycle) which is essentially the ratio between the non-dimensional path length

and the natural wavelength of the system given by St−1. The calculation of LD is simply

the integral of the sinusoidal path length along one cycle,

LD =
St

D

∫ Te

0

√

U2 +

(

2π U
A

λ
sin

(

2π
t U

λ

))2

Dt, (2.30)

introducing a non-dimensional time t̂ = t U/D as integration variable, it yields to

LD = St

∫ λ/D

0

√

1 +

(

2π
A/D

λ/D
sin

(

2π
t̂

λ/D

))2

Dt̂, (2.31)

which depends only on the parameters of the map λ/D and A/D.

Following a similar line of reasoning, Ponta &Aref proposed to re-interpret the boundaries

between the synchronization regions belonging to the radial family in terms of another

parameter that measures the level at which the natural frequency of shedding fluctuates

along the cycle induced by the variation of the cylinder speed. As the cylinder oscillates

while moving upstream with a constant velocity, it’s relative velocity is changing, and

hence the effective Re along it’s trajectory shows fluctuations with an amplitude which

is a function of λ/D and A/D. Hence, the fluctuation varies across the WR map, the

consequences of which can be seen in the sinusoidal motion of the cylinder represented by

equation 2.22 to equation 2.29.

Williamson and Brown [56] put forward an accurate series in powers of (1/
√
Re), St =

A + B/
√
Re + C/Re which could also be used to calculate the St-Re relationship. They

also compared different set of values for the coefficients according to several fits to numer-

ical and experimental data.
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Figure 2.15. (a), Vortex synchronization regions for cylinders oscillating normally in the plane

represented by amplitude and wavelength plane as seen in experiments by Williamson and Roshko

[9], see appendix for permission, (b), synthetic version of the WR map with boundaries defined by

the LD and ∆ isolines, [Figure created by author from data in 11].

Figure 2.15(a) presents the (λ/D, A/D) map of vortex synchronization regions for cylin-

ders oscillating normal to the stream, obtained via experiments by Williamson and Roshko

[9]. Figure 2.15(b) shows the synthetic version of the WR map where Ponta depicted the

LD isolines for 1, 2, 3 and 4, and the isolines of ∆ equal to 0.001, 0.015, 0.03 and 0.06 at

Re = 392 [11].

In summary, Ponta and Aref brought forward a physical explanation on the occurrence of

vortex patterns in the wake of cylinders undergoing forced oscillation. They have provided

a theoretical version of the experimental WR map in the non-dimensional (λ/D, A/D)

plane, based on the assumption that the boundaries of these regions are grouped into two

families of curves which are related with specific values of two non-dimensional parame-

ters.

The suggestion that the regions enclosed by boundaries of the circumferential family corre-

spond to families of patterns evolved from the same number of vorticity cumuli originally

shed during the cycle is consistent with WR experimental observations [11]. The 2P and

P+S wake patterns evolve from the splitting of two vorticity cumuli whose circulation is

balanced. The substantial agreement between the boundaries of the circumferential family
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on the experimental WR map and the distance traveled by the cylinder to produce inte-

ger numbers of vortices per cycle is significant. The vortex synchronization region with

a label of ‘No synchronized pattern observed’ in the WR map refers to the disruption of

the shedding process due to the variation in angle on the C-sector inflow before the com-

plete shedding of the cumuli. Thus, circulation in the cumuli in every shedding cycle of

the forced oscillation is not the same as the amount of vorticity due to normal shedding

from a non-oscillating cylinder. There, the cumuli are not balanced and undergo a series

of complicated merges and splits leading to non-repetitive patterns that resemble a chaotic

behavior on the oscillator analogy. The region in which WR saw coalescence into a large-

scale is highlighted with shades in Figure 2.15(a). First reported in Williamson & Roshko

[9], coalescence involves the merging of many small individual vortical structures shed at

high-frequency, low-amplitude vibration states. The small vortices coalesce into substan-

tially larger structures that arrange themselves into a huge, low-frequency vortex street of

the hyper-Kármán kind.

As aforementioned, in P+S and 2P wakes, splitting is the key to form structures of the

wake. However, the influence of oppositely signed vorticity regions required for 2P pat-

tern may need greater synchroneity making it respond more to time scale and frequency

fluctuations. Ponta and Aref also reported some numerical experiments conducted by mov-

ing the cylinder along a constant-speed trajectory instead of the sinusoidal one. Adding

a fluctuating component to the originally-constant horizontal motion, the cylinder keeps a

constant speed along its path. Thus, the fluctuation of the instantaneous Reynolds number

disappears. Even though the frequency and amplitude that produced the P+S wake for the

classical sinusoidal path remain the same, this constant-speed trajectory produced a sym-

metric wake where non-symmetrical splitting completely disappeared Ponta and Aref [11].

This result verifies the argument that the fluctuating velocities are key to the whole process

of splitting affecting its symmetry.

2.2.2 On P+S wakes forming at low Reynolds number

The various parameter sets shown in Figure 2.13(b) were explored by Ponta and Aref.

Among them, the clearest P+S arrangement was generated at point A1 at (λ/D = 7.5,

A/D = 1). In figure 2.16 [10], Ponta and Aref compare the vorticity field obtained by

KLE at A1 with a laser-fluorescene photograph, in the case of an oscillating cylinder at

Re = 140, λ/D = 6.07, and A/D = 0.5, courtesy Prof. Williamson in [10].

The non-dimensional vorticity field at point A1 is shown in Figure 2.17. It shows the suc-

cessive triplet structures as evolving downstream. Ponta and Aref have checked that adding

up the circulation of two vortices with a positive sign is exactly opposite the circulation of

the negative vortex, which yields to nearly zero circulation produced in one cycle. In close-
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Figure 2.16. Vorticity field shown in gray scale as obtained by KLE at Re = 140 compared with

a flow visualization by C. H. K. Williamson(courtesy Prof. Williamson in [10],see permission in

appendix), of a P+S wake of an oscillating cylinder for the same Re, [Figure created by author from

data in 10].
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Figure 2.17. Non-dimensional vorticity field obtained by KLE for a P+S wake with Re = 140,

λ/D = 7.5, and A/D = 1, [Figure created by author from data in 10].

up views of Figure 2.18,a sequence plot shows the non-dimensional vorticity field during

the course of splitting giving rise to the P+S pattern. It starts from the bottom-left panel and

follows clockwise. It is seen that the lower positive half of the near wake stretches breaking

away into two vortices due to the straining effect of the neighboring vortices. The upper

negative half, however, does begin to split, different from its positive counterpart. Most of

the vorticity that is shed stays together, forming a vortex strong enough to recover its tail

[10]. It takes longer to undergo the last process and complete the sequence.

The empty circles in Figure 2.13(b) show a P+S wake with a pattern not as strong as A1. As

an example, Figure 2.19 depicts a non-dimensional vorticity field representing a weak P+S

mode at point B (λ/D = 8.5,A/D = 1). Downstream, the pattern remains (P+S), since the

relatively weaker upper positive vortex remains independent of the stronger, lower, positive

vortex. The third vortex, however, dissipates quickly downstream [10].

Point C (λ/D = 8.5, A/D = 0.3) is in a region called ‘no synchronized pattern observed’,

lying way off the P+S region on the WR map. Its corresponding non-dimensional vorticity

field is shown with its disorganized vortex patterns in Figure 2.20, that is confirmed by

experimental observations.
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Figure 2.18. plot showing the sequence of events of the vortex splitting process producing a P+S

wake starting from the bottom left panel moving clockwise, [Figure created by author from data in

10].
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Figure 2.19. Non-dimensional vorticity field for a weak P+S wake with Re = 140 (λ/D = 8.5,

A/D = 1), [Figure created by author from data in 10].

Figure 2.20. Non-dimensional vorticity field for a chaotic wake with Re = 140 (λ/D = 8.5,

A/D = 0.3), [Figure created by author from data in 10].
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2.2.3 Secondary vortex streets and complex wakes

The generation of secondary vortex streets behind a bluff body was observed by numerous

researchers, both experimentally and numerically [57–63]. Taneda [62] used flow visual-

ization techniques to observe this phenomenon behind a stationary cylinder in a uniform

stream. He saw how primary Kármán streets started decaying downstream, while the sec-

ondary one showed scaled up vortex formation with a frequency less than that for the pri-

mary street. Matsui and Okude [60] studied secondary vortex street formation using flow

visualization along with hot-wire measurement techniques on acoustically-forced cylinder

wakes and found that the secondary street is formed when the primary streets merge. Forc-

ing the wake acoustically by a third or half the Kármán frequency led to a merging of every

two or every three vortices. Cimbala et al. [58] and Williamson and Prasad [63] worked on

secondary vortex street formation in unforced wakes. Aref and Siggia [57] and Meiburg

[61], did a numerical study of the secondary vortex street using sub-harmonic perturbations

applied to oppositely signed vortex blobs modelling the Kármán street. For both positive

and negative blobs merging could be seen showing how important it is for secondary vortex

streets to form. Inoue and Yamazaki [59] resorted to solving the Navier-Stokes numerically

and saw a merging by pairing phenomena in the wake of stationary cylinders in a uniform

stream on being perturbed by an in-line sinusoidal function. These cases with a forced

wake are in some ways analogous to a combined motion consisting of a cylinder moving

with a constant velocity with no component in the vertical direction and oscillating in-line.

One should note that in a lot of cases involving merging some kind of application of an

in-line fluctuation is present. In Ponta and Aref’s [10] study, in-spite of a stronger verti-

cal oscillation, the in-line oscillations (required to ensure that tangential velocity does not

change) leads to merging. They suggested that vortices undergoing a packing–unpacking

mechanism in the primary street could be because of the in-line fluctuation resulting in

an unstable Kármán array and hence triggering merging. The vertical component of os-

cillation is also important, since it results in the primary wake frequency to be set by the

vertically forced oscillation.

The processes of vortex interaction strongly depend on the kinematics of the body motion

such as changes in the parameters of the trajectory as shown in Ponta and Aref [10]. The

discussion was presented on how the pattern of vortices produced due to forced oscillations

were formed, shed and then evolved for a cylinder for Reynolds number less than 180 (the

approximate periodic laminar wake regime for Kármán street). The case ofRe = UD/ν =
140 was studied in details since it represents the above mentioned range showing various

vortex structure arrangements.

Figure 2.22 shows the vorticity plot for a wake behind a cylinder oscillating at the same fre-

quency as in Figure. 2.17 but following a trajectory that keeps the tangential speed constant.

This relatively subtle change in trajectory, gives a totally different pattern: two separated
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vortex units per shedding cycle were produced in the near-wake, arranging as a close-

packed Kármán vortex street. Then, the neighbouring vortices merge within either row,

forming the so called hyper-Kármán vortex-street having a set of larger vortices with dou-

ble the spacing and half the frequency of the original one. An extreme example of vortex

merging is the so-called vortex coalescence. The coalescence is to arrange many smaller

vortices that are formed by forced oscillations with higher frequencies into Kármán-like

vortex street [11]. This also corresponds to very frequent interruptions of the shedding pro-

cess due to the angle change in the inflow on the C-sectors. A lot of vorticity cumuli, after

advecting downstream, merge into larger Kármán-like structures.

The formation of a hyper–Kármán vortex-street

Ponta and Aref [10] moved the cylinder at constant relative speed to the fluid to decrease

the influence of the cylinders fluctuations in velocity. Tangential velocity of the cylinder

Utg is expressed as follows:

Utg =
√

V 2
x,cy + V 2

y,cy. (2.32)

If the vertical velocity is kept the same to maintain a constant period of forced oscillation,

the velocity component in the horizontal direction is adjusted for maintaining Utg constant

and equal to the free stream speed U by,

Vx,cy = U

√

1 +

(

2π
A

λ
cos

(

2π
t U

λ

))2

. (2.33)

Ponta and Aref [10] studied this phenomenon by using a constant-speed path at point A1

(λ/D = 7.5, A/D = 1) as shown in Figure 2.21. One cycle of this path is shown in Panel

(a) in which geometrical coordinates are based on the diameters. The solid line shows the

path following the cylinder’s centre while the dotted circles indicate its circumference. For

point A1 (λ/D = 7.5, A/D = 1), the average horizontal velocity Ux,m equals 0.789 of

the free stream velocity U . Panel (b) illustrates this path of the cylinder corresponding to a

frame of reference moving in the horizontal direction with constant velocity Ux,m.

Figure 2.22 depicts the non-dimensional vorticity field in the case of constant velocity men-

tioned above. As shown, it produces the wake with two single vortices in each shedding cy-

cle, with a closely packed, well defined Kármán vortex street arrangement. The wake goes

on for approximately 10 diameters downstream and, then produces a perfectly-symmetric
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Figure 2.21. (a), Path followed by the cylinder’s center at a constant speed for A1 (λ/D = 7.5,

A/D = 1). (b), Path of the cylinder when the reference frame moves horizontally with speed Uxm.

[Figure created by author from data in 10]
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Figure 2.22. Non-dimensional vorticity field obtained by KLE for the hyper-Kármán vortex-street

with Re = 140, λ/D = 7.5, and A/D = 1, [Figure created by author from data in 10].

and more regular vortex street. Compared to what we have seen in the formation of P+S

and 2P secondary wake, the change in the trajectory has made the asymmetric effect in the

splitting process disappeared. Thus, it provides a strong proof to Ponta and Aref [10]’s

hypothesis that the role of the fluctuations in velocity is key to vortex splitting, affecting

the primary wake’s symmetry.

The sequence of plots in Figure 2.23 shows the non-dimensional vorticity field at the time of

merging of vortices of the hyper–Kármán vortex-street. It starts from the bottom-left panel

moving clockwise. Two cycles of the oscillation produces a single completed loop. The

figure illustrates that two separate vortex units are produced in the near wake each shedding

cycle, that are arranged as a close-packed Kármán vortex street. This is then absorbed by

the subsequent pair giving rise to larger structures reducing the forced oscillation frequency

by half.

For the trajectory where the streamwise velocity is constant, Ponta and Aref used U as a

reference speed for Reynolds number as well as geometrical wavelength λ. The forced

oscillation in this case had a period λ = Te U . Therefore, the parameter λ/D can be

interpreted as a Non-dimensional geometrical wavelength or as a non-dimensional period

of forced oscillation (λ/D = Te U/D). However, for the path with constant-velocity

they used Utg for Re and the Non-dimensional period of the forced oscillation. Now the

geometrical wavelength has to be interpreted in terms of the average horizontal velocity

(λg = Te Uxm). Now the parameter λ/D can be interpreted in different ways. For instance,

if λ/D is interpreted as a non-dimensional period of the forced oscillation, the above case

stays at A1. But, if interpreted as a non-dimensional geometrical wavelength, they shift to

A2 in the WR map (empty square in figure 2.13(b)).
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Figure 2.23. plot depicting the vortex–merging mechanism producing the hyper-Kármán vortex-

street, [Figure created by author from data in 10]. The sequence starts at the bottom left panel

moving clockwise.
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3. NUMERICAL SOLUTION OF

UNSTEADY-FLOW PROBLEMS

3.1 Introduction of the Navier−Stokes equations

In a mathematical sense, Navier-Stokes equations are a system of 2nd order non-linear

Partial Differential Equations. These consist of three basic conservation equations:

1. Conservation of mass or the continuity equation

∂ρ

∂t
+∇·(ρv) = 0

where ρ is density of the fluid, v is velocity field and t is time.

2. Conservation of momentum

ρ
dv

d t
= ρg −∇P +∇·σ

where, P is pressure, σ is stress tensor, and ρg is body force.

3. Conservation of energy

ρ
d Û

d t
+ p(∇·v) = ∇·(k∇T ) +Φ

where Û is the internal energy per unit mass, k is the thermal conductivity, ν is the

kinematic viscosity and the function Φ represents energy dissipated due to viscous

effects.

This set of equations may completely define fluid motion allowing us to solve for various

flow quantities like pressure, velocity, temperature, and density. In the more general case

of the incompressible flow of Newtonian fluids, the density is considered constant and the

above equations reduce to
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1. Conservation of mass or the continuity equation

∇·v = 0 (3.1)

2. Conservation of momentum

ρ
dv

d t
= ρg −∇P + µ∇2v (3.2)

where µ is the coefficient of dynamic viscosity.

3. Conservation of energy

ρCv
dT

d t
= k∇2T +Φ (3.3)

where Cv is specific heat at constant volume.

3.2 Numerical Solution of the incompressible viscous flow

The following section deals with some of the more popular formulations of the Navier-

Stokes equations that models a homogeneous, viscous incompressible fluid flow in an in-

ertial frame of reference, along with some discussion on the issues of boundary conditions.

As mentioned before, for a homogeneous incompressible flow, the density remains constant

giving us a set of equations (Eq 3.1-3.3). These equations clearly imply the decoupling of

the momentum equation with the energy equation for the incompressible flow. The most

obvious advantage of this decoupling is that the momentum equation and the continuity

equation can now be solved independent of temperature to obtain the required velocity and

pressure field. This decoupling might seem like it makes things easier, but that is not the

whole picture, as will become clear in the subsequent discussion.

The first step in solving the Navier-Stokes equations in the numerical sense would be to de-

cide upon the set of variables representing the equations followed by a group of boundary

conditions. As known, the Navier-Stokes equations fall into two main categories of the for-

mulations: the primitive variable formulations and the non-primitive variable formulations.

Both possess their own set of advantages and disadvantages, which shall be discussed in

brief, but in both cases the major problem and the oldest point of contention are the bound-

ary conditions. It is mostly the pressure and vorticity which pose a problem since they do

not have what can be called an obvious physical representation at the boundaries.

3.2.1 Primitive variables

For incompressible viscous fluid, the most fundamental formulation of the Navier-Stokes

equations would be based on the pressure-velocity formulations. These are what are called
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the primitive variable formulations. The incompressible Navier-Stokes equations in the

form of the so-called primitive variables is written as

∂v

∂t
+ v·∇v = −∇p+ ν∇2v + g, (3.4)

∇·v = 0 (3.5)

where p = P/ρ, defined on a spatial domain Ω with the boundary S, is the pressure divided

by the constant fluid density; ν is the kinematic viscosity, and v is the velocity field. The

Navier-Stokes equations represented by the primitive variables can be called a mixed ellip-

tic parabolic equation being parabolic in time mainly because of the convective diffusive

term and elliptic in space due to the interaction between pressure and the conservation of

mass. To define this aforementioned problem completely, the equation needs to be sup-

plemented by a set of boundary conditions specifying it as an initial value boundary value

(IVBV) problem. The most common approach would be to start with the specification of

an initial value for v on Ω

v(x, t0) = v0(x), such that ∇·v0 = 0,where x ∈ Ω (3.6)

followed by specifying the velocity at the boundary

v(x, t) = vS(x, t), x ∈ S = b (3.7)

along with a global continuity condition obtained by volume integration of the continuity

equation and then using the Gauss theorem
∮

S

n·bdS = 0 (3.8)

where, n is a normal unit vector to the surface of the boundary. So in this simplest of

representations there is indeed no boundary condition for pressure, giving rise to a series

of problems which are still a topic of debate.

Solution strategies

As discussed above, understanding pressure is the main difficulty to solve the incompress-

ible Navier-Stokes equations numerically. Unlike velocity, pressure does not have any

explicit representation. There is no evolutionary pressure equation. The main reason is that

since we have assumed an incompressible condition, pressure now loses its thermodynamic

meaning and serves only as some kind of a Lagrange operator to ensure the incompress-

ibility condition. Since the pressure term is of elliptic character, the solution anywhere

would be influenced by the solution at every point in the domain. Physically this means

that the pressure waves travel at infinite velocity to all points in the domain for every time

step. In other words, the pressure has to adjust instantaneously throughout the domain to

account for any disturbance in order to maintain zero divergence of velocity. This leads to

the intricate coupling between the two variables. This statement is the driving factor for
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non-fractional approach or, in other words, the standard discretization approach. Thus a

numerical scheme with proper boundary conditions must be devised which can take into

consideration the implicit coupling between pressure and velocity and keeps the flow in-

compressible throughout the domain. At the same time, the pressure and velocity terms

can be decoupled in this method and velocity and solve for each separately to avoid having

to tackle the unwieldy simultaneous equations.

It is, in fact, possible to solve this set of equations simultaneously as a coupled system [64].

This is rarely seen in finite difference methods [64] due to the complex matrices obtained

as opposed to a regular block diagonal matrix. Though this method is more common in

finite element analysis, it does have its own set of difficulties, as mentioned by Glowinski

[65] arising from :

1. The equations are non-linear.

2. The continuity equation.

3. The coupling between the set of equations owing to the advection term and continuity

equation.

The divergence of the momentum equation obtained under the continuity condition gives

Poisson’s pressure equation, which is thought to be the most common approach to getting

rid of the continuity equation. This, along with other details, will be discussed in the

subsequent section.

The two main approaches in a pressure-velocity formulation are the fractional step and the

non-fractional step methods.

3.2.1.1 Non−fractional step methods

The major difference between the two approaches is that in non-fractional step methods

the velocity and pressure evolve simultaneously, whereas in the fractional step method the

convection part is treated separately from the pressure or incompressibility part. Eq 3.4 and

Eq 3.5 can be linearized by discretizing in time and neglecting the body forces to give

vn+1 − vn

△t +∇pn+1 = ν∇2vn+1 − vn·∇vn (3.9)

∇·vn+1 = 0 (3.10)
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where, v is the velocity vector and p is the pressure term

Rewrite Eq 3.9, it gives

[−△△△+ γI]vn+1 +∇pn+1 = g(vn) (3.11)

where, ν is the kinematic viscosity, I is an Identity matrix, γ = 1

ν△t
and g(vn) = γvn −

ν−1vn·∇vn

Here, a two-level scheme has been adopted, treating the pressure and viscous term implic-

itly and the non-linear advection term explicitly in time. There could be other methods in

time discretization such as a fully implicit scheme or even a semi-implicit scheme using

linearization techniques. It is widely accepted to use a higher order explicit scheme like the

Adams-Bashforth scheme for the non-linear advection term and a Crank-Nicolson scheme

for the linear terms. This can be followed by linearizing the advection term using a point

iteration scheme. There are many other higher order and more accurate schemes, but the

one mentioned in the above equations is just for explanatory purposes. As previously men-

tioned, a Poisson’s Equation is obtained from the divergence of the momentum equation

under the continuity condition. This gives us the following set of equations :

[−△△△+ γI]∇·vn+1 +∇pn+1 = g(vn) (3.12)

∇
2pn+1 = ∇·g(vn) (3.13)

Even though the above relation is obtained by the continuity equation, its solution does not

imply the incompressibility condition, all it shows is that [−△△△+γI]∇·vn+1 = 0. Therefore

it simply tells us that ∇·vn+1 is harmonic but not necessarily zero. However, Kleiser and

Schumann [66] showed that if divergence at the boundary is forced to zero

∇·vn+1 |S= 0 (3.14)

incompressibility should be ensured throughout the domain. This follows from the mean

value theorem/ extremum theorems of harmonic functions which means if some harmonic

function equals a constant at the surface completely enclosing a domain, its value will

be equal to that constant throughout the domain.This leads us to a BVP with two elliptic

equations

[−△△△+ γI]∇·vn+1 +∇pn+1 = g(vn)

∇
2pn+1 = ∇·g(vn) (3.15)

vn+1 |S= bn+1

∇·vn+1 |S= 0

along with the global constraint Eq 3.8 i.e.
∮

S
n·vSdS = 0. Here there are two boundary

conditions for v and none for pressure, which means that the above equations still have

to be solved simultaneously. So, it is imperative to look for some method to decouple
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the two equations by coming up with a legitimate boundary condition for pressure. As

mentioned in Quartapelle and Napolitano [67], Glowinksi and Pironneau devised a finite

element method based on an additional equation for the scalar velocity potential. Another

method was based on the influence matrix technique proposed by Kleiser and Schumann

[67]. Both these methods propose to implement the pressure boundary conditions using

an additional linear problem. This was followed by Quartapelle and Napolitano’s paper

on implementing integral Boundary conditions on pressure [67] which seemed to provide

a better physical interpretation owing to the elliptic nature of the Poisson’s equation for

pressure.

3.2.1.2 Fractional step methods

This method, first introduced by Chorin and Tenman, is one of the most widely used

methods for solving the Navier−Stokes equations of the primitive variable. Consider the

Navier−Stokes equations in the following form, with the body forces neglected:
∂v

∂t
+ v·∇v = −∇p+ ν∇2v

∇·v = 0 v |S= b (3.16)

The general procedure is to advance the velocity in time and approximate an intermediate

velocity from the first equation, without considering the pressure term. As already

mentioned, the pressure term in the above equation acts as a Lagrange multiplier to

enforce incompressibilty at every time-step, therefore, the calculated velocity will not be

divergence free. To obtain a velocity of divergence free, the calculated velocity is then used

to solve an elliptic equation by enforcing the incompressibilty condition. Subsequently

a pressure field is determined for that time step. In the intermediate step, the following

equation is obtained by avoiding completely the pressure term

v∗ − vn

△t = −(vn·∇)vn + ν∇2vn v∗ |S= bn+1 (3.17)

Obviously, as stated above, the velocity field v* would not be divergence free, which leads

to:

vn+1 − v∗

△t = −∇pn+1 (3.18)

∇·vn+1 = 0 (3.19)
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n·vn+1 |S= n·bn+1 (3.20)

Equation 3.18 can also be formulated as

v∗ = vn+1 +△t∇pn+1 (3.21)

where, ∇pn+1 is not the gradient of pressure but of some artificial scalar function propor-

tional to the unknown Pressure often referred to as the “Pseudo-pressure”. The quantity

vn+1 which is required the velocity field is actually the solenoidal component of v∗ and

not the real vn+1 as the tangential boundary condition is not necessarily met. The nor-

mal boundary value for velocity is a consequence of the above step being inviscid. So the

required velocity is calculated through the projection of the velocity v∗ onto a solenoidal

space. The basis for the above step is the helmholtz-hodge decomposition of the velocity

field (due to Ladyzhenskaya) which states that it is possible to decompose any vector field

as V = W + ∇φ where, W is solenoidal and n·W = 0 and φ is the potential function

with its gradient giving the irrotational component of V. The gradient term can be further

decomposed into ∇φ = ∇φ0 +∇h, where h is a harmonic function and φ0 |S= 0. This

leads to the vector V being decomposed into

V = W +∇φ0 +∇h (3.22)

Using this decompostion for the divergent v∗

v∗ = W +∇φ0 +∇h (3.23)

Adding and subtracting another harmonic function hB to the RHS of Eq 3.23

v∗ = [W +∇hB] + [∇(h− hB)] +∇φ0] n·∇hB = n·b (3.24)

Clearly [W +∇hB] represents vn+1 for an incompressible flow not satisfying the no-slip

condition for the second half step. Thus, vn+1 can be found using a projection of v∗ on the

divergence free space.

In order to calculate the velocity from Eq 3.18 and Eq 3.20, the divergence of Eq 3.18 is

substituted into Eq 3.19 to get the Poisson’s Equation for pressure also callled the PPE

−∇
2pn+1 =

−1

△t∇·v∗ (3.25)

Using Eq 3.20 along with the boundary condition v∗ |S= bn+1 the following boundary

condition for the PPE can be derived

n·∇pn+1 |S= 0 (3.26)

As soon as the pressure field is determined, the required velocity field can be determined

solving Eq 3.18 and Eq 3.20. The basic disadvantage here as mentioned before is that the

second half step ensuring the incompressibility condition is inviscid, thereby, able to ensure

only the normal component of the velocity boundary condition. This error is slightly qual-
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ified because the velocity boundary condition in the first half step is the no-slip condition.

There are methods that introduce the viscous component in the second half step. One such

method is mentioned in Quartapelle [66] in the form of a Crank-Nicholson scheme

v∗ − vn+1

△t = −(vn·∇)vn +
1

2
ν∇2vn v∗ |S= bn+1 (3.27)

vn+1 − v∗

△t = −∇pn+1 +
1

2
ν∇2vn+1 vn+1 |S= bn+1 (3.28)

The viscous term has second order accuracy but, like the non−fractional step schemes,

some complicated pressure condition must be used to enforce the incompressibility.

3.2.1.3 Artificial incompressibility

This method, first proposed by Chorin in 1967, allows analysts to take advantage of the

immense advances made in the analysis of compressible flow. The key of this method is

use a slightly modified version of the continuity equation in order to make it compressible

and, hence, solve it as an evolution equation in pressure. In order to achieve that, a time

derivative of the pressure term is added to the continuity equation giving
1

β

∂p

∂t
+
∂vi
∂xi

(3.29)

This was originally introduced for the steady state Navier−Stokes equations, so that, when

the steady state is achieved, the artificial compressibility term vanishes. Here “t” does not

represent the real physical time but an artificial “pseudo” time. This gives a mixed hyper-

bolic/parabolic form of equations, and many algorithms developed for similar compress-

ible flows could be used to solve these equations. For a steady state formulation Chorin

proposed a leap-frog time differencing scheme for pressure and a Dufort-Frankel space

differencing method for velocity at the regular grid points. Peyret and Taylor adopted the

staggered grid formulation explicit in time [68]. What this method implies on a physical

level is that pressure waves now travel at a finite speed depending on the incompressibility

factor β rather than instantaneously propagate to all points in the domain, thus the choice of

β is very important. The higher its value the closer the formulation will be to incompress-

ible flow. But at the same time, however, too high a value will tend to make the equation

stiff. But if β is too small then the propagation speed will be too slow which will effect

other factors like the viscous boundary layer, flow separation, etc which might prevent

convergence.

The iteration of the governing equations in the “pseudo” time continues until steady state

is achieved. Although because of the compressibility introduced in the continuity equation

this method was not preferred for unsteady flow, it has been proven successful for such
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flows as well [69]. The general idea for unsteady flows would be to use an iterative pro-

cedure using an artificial compressibility method for each physical time step, ensuring that

incompressibility is met at each step.

3.2.2 Non-Primitive variables

Given the importance of vorticity as a physical variable, especially in vortex dominated

flows, a vorticity-based formulation of the Navier-Stokes equations is a popular alterna-

tive to the primitive variable formulation. In such cases, it makes more sense to analyze

the flow based on vorticity, which has an extensively researched and understood transport

equation. The study of vortex generation at boundaries, along with its diffusion and advec-

tion are very important in analyzing flow seperation, drag etc. in vortex dominated flows.

Mathematically, owing to the vorticity ω being one order higher than the velocity v a vor-

ticity formulation implicitly gives a more accurate velocity field. Vorticity-based methods

also give a better estimate of the skin friction since they are based more on the shearing

process itself. For flows with high Reynold’s number the vorticity seems to be concen-

trated in the wake region, thereby, greatly reducing the computational domain. However,

this formulation is also plagued by its own set of problems. The kinematic problem for

the vorticity-velocity relation is overdetermined as it has both the Dirichlet and Neumann

boundary conditions prescribed, whereas the dynamic vorticity transport equation has no

boundary conditions for vorticity. Also, there does not seem to be any physical boundary

condition for the vorticity independant of the velocity boundary conditions.

The creation of vorticity can be owing to the no-slip boundary condition which causes a

torque and hence an angular velocity being imparted on the packets of fluid. This vorticity

creation at the boundary should be represented by the vorticity boundary conditions and

has been the general reasoning used to tackle this issue. Lighthill, one of the pioneers in

this approach, proposed a fractional step method starting with an arbitrary vorticity bound-

ary condition [70]. This gives rise to a velocity field which does not satisfy either of the

two velocity conditions. He then proposed adding a velocity potential to take care of the

normal flow, thereby getting slip velocity at the boundary. This slip velocity was called the

vortex sheet and said to represent the boundary vorticity. Chorin [70] proposed a similar

approach using the Prandtl boundary layer approximation. He basically split the Navier-

Stokes equations into a viscid and an inviscid part. The Euler equation is then solved to

give a slip velocity at the boundary. To get rid of this, vortex sheets are introduced and

the resulting vorticity field is then used to find the solution of the diffusion equation to get

the correct vorticity field at the desired time step. This formulation does not seem to sat-

isfy the no-slip boundary condition as well as the normal boundary condition for velocity

simultaneously and independent of the geometry.
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There have been many such models based on generation of vorticity at the boundary, but

there is an entirely different school of thought which believes that a vorticity creation

method does not fully explain vorticity interaction with solid boundaries. This led Quar-

tapelle and Valgriz [66] to introduce an integral constraint on the vorticity. This “non-local”

approach couples the vorticity everywhere in the domain to the boundary velocity. A sim-

ilar approach was adopted by Anderson [70] who suggested requiring the time derivative

of these integral constraints be made to vanish. These methods as per Quartapelle [66] are

the true representation of the vorticity diffusion and interaction with solid walls. These are

of course a kind of projection methods, where an initial “wrong” vorticity, based on an ar-

bitrary vorticity boundary value is “corrected” by projecting it onto the space of harmonic

functions. This is achieved by the integral condition. This Chapter deals with a particular

type of formulation called the non-primitive variable formulation and a brief overview of

solution strategies based on Quartapelle’s book [66] is given for both two and three dimen-

sional flows. The next Chapter covers hybrid formulation, also called the vorticity-velocity

formulation.

3.2.2.1 The Vorticity−Stream Function formulation for 2-D flows

One possible way to get around the problem of pressure boundary conditions is to eliminate

the pressure term entirely. This is exactly what is achieved in the Vorticity-Stream Function

formulation of the Navier-Stokes equations. In this version, the Navier-Stokes equations

are represented in terms of the vorticityω and the stream functionψ. So now the unknowns

are ω and ψ instead of u, v, p, reducing the number of unknowns by one. It also presents

the added advantage of automatically taking care of the incompressibility condition owing

to a property of the stream function. In two dimensions the above representation comprises

two scalar equations obtained as follows:

In two dimensions vorticity ω is a scalar given by

ω = ∇× v·k (3.30)

while the velocity is represented as the curl of a Stream-function ψ given by

v = ∇× ψ (3.31)

Equation 3.31 clearly implies that ∇·v = 0. Substituting Eq 3.31 in Eq 3.30 gives the

Poisson’s equation for the Stream-function

−∇
2ψ = ω (3.32)

Taking the curl of the momentum equation and using Eq 3.30, Eq 3.31 and ∇·v = 0 gives

the vorticity transport equation
∂ω

∂t
+ J(ω, ψ) = ν∇2ω (3.33)

where, J(ω, ψ) is the Jacobian matrix representing the curl of the advection term namely,

∇× [(v·∇)v].
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The Dirichlet and Neumann conditions for the above two equations are derived conditions

deduced by separately tackling the normal and tangential components of boundary condi-

tions of the velocity Eq 3.7 i.e. v |S= b. They are given by, ψ |S= a and ∂ψ
∂n

|S= b,
where, a =

∫ s

s1
n·bdS and b = −τ ·b given that s1 is any fixed point on the boundary

and τ is a unit vector tangential to the boundary. An initial condition for the vorticity can

also be derived using the definition of vorticity and the initial condition for velocity Eq 3.6

giving the following initial condition

ω |t=0= (∇× v0)·k (3.34)

Therefore the Navier-Stokes equations in the 2-D Vorticity-Stream Function formulation

can be written as
∂ω

∂t
+ J(ω, ψ)− ν∇2ω = 0

−∇
2ψ = ω (3.35)

ψ |s= a ,
∂ψ

∂n
|s= b

ω |t=0= (∇× v0)·k

Provided that

∇·v0 = 0

∂a(S, 0)

∂s
= n·v0 (3.36)

One of the problems with this kind of formulation is the nonlinear advection term which

also couples the vorticity and stream function variables. The other important issue is the

overspecification of ψ owing to both Dirichlet and Neumann conditions present as opposed

to the underdetermined problem for ω with no boundary condition specified for it. The

nonlinear terms can be dealt with using the standard linearizing techniques for non-linear

equations. Some of the ways in which the problem of the boundary conditions is tackled

are discussed below.

3.2.2.2 Biharmonic formulation

One way to avoid the boundary value problem for vorticity is to eliminate the vorticity term

from the transport equation. This is achieved by substituting the Poisson’s equation for the

Stream Function into the vorticity transport equation resulting in the following equation

∂2∇2ψ

∂t
− ν∇4ψ + J(∇2ψ, ψ) = 0

ψ |S= a ,
∂ψ

∂n
|S= b (3.37)
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where, ψ0 is the solution of the Dirichlet problem

−∇
2ψ0 = (∇× v0)·k , ψ0 |S= a(S, t) (3.38)

Where v0 and a as before satisfy the solenoidal and the compatibility condition and k is the

unit vector in the Z direction. Since the equation is fourth order elliptic, the specification

of both dirichlet and Neumann conditions no longer make it overspecified.

3.2.2.3 Coupled formulation in Vorticity and Stream Function

Another method to eliminate problems associated with the overdetermined problem is to

solve Eq 3.36 as a coupled equation in Vorticity and Stream Function even in the absence of

the non-linear term. This is achieved by a unique coupling through the boundary conditions

by associating one boundary condition with the transport equation and the other with the

Poisson’s equation. This can be written as

∂2∇2ψ

∂t
− ν∇4ψ + J(∇2ψ, ψ) = 0 such that ψ |S= a

−∇
2ψ = ω such that

∂ψ

∂n
|S= b (3.39)

The spatial discretization for both these methods can be done by any of the three meth-

ods, namely, finite elements, finite differences, or spectral methods. Inspite of no direct

implementation of the integral constraint, the couple formulation still satisfies the nonlocal

character of vorticity. Hence further fortifying the idea of an integral condition on vorticity.

3.2.2.4 Uncoupled formulation using vorticity integral conditions

To split the two terms in the Vorticity-Stream Function formulation, it becomes necessary

to determine supplementary conditions for vorticity to account for its lack of boundary

conditions. Quartapelle and Valz-Cris [66] came up with an integral constraint on vorticity
∫

ωηdΩ =

∮

(a
∂η

∂n
− bη)dS (3.40)

giving the following set of linearized equations

(−△△△+ γ)ω = f,

∫

ωηdΩ =

∮

(a
∂η

∂n
− bη)dS (3.41)

−∇
2ψ = ω, ψ |S= a

Where η is any harmonic function defined in the domain Ω. This is a semi-implicit dis-

cretization in time with ω ≡ ωn+1 and ψ ≡ ψn+1 at the new time step tn+1. One of the

ways to implement the integral conditions and solve the uncoupled equations is based on

utilizing the linearity of the above formulation. It consists of decomposing the vorticity

transport equation using the principle of superposition. The split formulation can be repre-
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sented as

ω(x) = ω0(x) +

∮

ω‘(x; ζ‘)λ(ζ‘)dS(ζ ′) (3.42)

where, ω0 and, ω‘ are the solutions to

(−△△△+ γ)ω0 = f ω0 |S= 0 (3.43)

(−△△△+ γ)ω‘ = 0 ω‘(x; ζ‘) = δ(s− ζ‘) (3.44)

for any ζ‘ ∈ S and δ is the Dirac Delta function over the boundary

The value of the boundary function can then be evaluated by imposing on ω the integral

constraint Eq 3.40 with respect to all harmonic functions on the boundary which are the

solution to the following problem

−∇
2η = 0 such that η(x; ζ) = δ(s− ζ) for any ζ ∈ S (3.45)

And finally come up with a linear equation of the type Gλ = β

where, the value of the matrix G is of the form
∫
ω(x; ζ‘)η(x; ζ)dΩ and can be calculated

and stored in the beginning.

The stream function in the above form exists only for flow in two dimensions, so the

vorticity-Stream function formulation is rather difficult to implement for a three dimen-

sional flow. Also, the vorticity is now a vector with two tangential components on the

boundary. The solenoidal property of the vorticity is no longer implied by its definition

but needs to be enforced. It will be shown in the next chapter that the divergence of the

vorticity vector in three dimensions can be enforced to be equal to zero by the following

two boundary conditions

∇·ω |S= 0 (3.46)

∇·ω |t=0= ∇·(∇× v0) (3.47)

But the real problem starts with the boundary conditions for the three dimensional “equiv-

alent” for the stream function for which different schemes involving different vector po-

tentials have been developed, each having its own set of boundary conditions and its own

set of elliptic equations to solve. But each method needs a set of boundary conditions for

the vector function to ensure its unique solution. Apart from having to solve such complex

equations with often debatable boundary conditions, these methods are also not well suited

for a variational approach which often turns out to be computationally very expensive. On

account of these issues with the three dimensional approach another method has begun to

garner interest. This new approach, called the hybrid methods, uses a Vorticity-Velocity
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formulation of the Navier-Stokes equations and seems to be quite well suited to both two

dimensional and three dimensional flows. This method will form the basis of this research

and shall be covered in the next chapter.
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4. THE HYBRID-METHOD FAMILY AND THE

KLE

4.1 Hybrid methods

These methods are based on hybrid formulations in terms of the primitive variable, velocity,

and the non-primitive variable, vorticity. They are well suited for two-dimensional as well

as three-dimensional flows. Some of the advantages of Vorticity-Velocity (ω, v) formula-

tions compared to the classical formulation with primitive variables or with non-primitive

Vorticity-Stream Function methods [6] are:

1. Vorticity is a relevant physical variable which has been extensively studied and its

distribution is of immense importance. The velocity is perhaps the most important

physical variable which completely defines the kinematical problem at hand, and the

fact that they are related by a simple elliptic equation makes this approach all the

more advantageous.

2. The velocity field can be supplemented by a unique set of boundary conditions as

opposed to a vast number of boundary conditions necessary for a unique solution of

the stream vectors or the velocity potentials.

3. The non-inertial terms caused by an accelerating reference frame are introduced into

the flow solution through the initial and boundary conditions, without having to do

anything extra to evaluate those non-inertial terms.

4. Relative ease of implementing vorticity conditions at infinity as compared to that for

pressure.

But hybrid formulation also has some disadvantages too. As already mentioned, the issue

with this method is the over-determined kinematic problem and the underdetermined dy-

namic problem. The unsteady problem in three dimensions has six unknowns compared to
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the four in primitive variable methods.The general formulation can be written as
∂ω

∂t
+∇× (ω × v) = ν∇2ω (4.1)

∇·v = 0 (4.2)

ω = ∇× v (4.3)

Many methods involve a Poisson’s equation obtained from the curl of Eq 4.3 and utilizing

Eq 4.2 to give

∇
2v = −∇× ω (4.4)

The major problem here is ensuring the divergence condition as well as the curl of velocity.

As mentioned before, the zero divergence of velocity can be ensured throughout the domain

by enforcing it on the boundary. But now the solenoidal property for the vorticity also has

to be ensured, which can be done in the following way.

It gives the following diffusion by taking the divergence of the transport equation:

∂(∇·ω)

∂t
= ν∇2(∇·ω) (4.5)

Imposing the boundary condition ∇·ω |S= 0 on the divergence of vorticity, along with

the obvious initial condition ∇·ω |t=0= ∇·(∇× v0), should give a unique solution to the

diffusion equation for ∇·ω, i.e. ∇·ω = 0 therefore, the solenoidal property is confirmed.

Gatski [71] has classified the solution strategies into method A and method B. Method A

“utilizes” the continuity equation Eq 4.2 and the curl Eq 4.3 as the kinematic equations to

solve and Eq 4.1 as the dynamic transport equation. Method B comprises of solving Eq 4.1

and Eq 4.4.

Fasel [14] was among the first to publish numerical results of this method. He used the

normal component of the Poisson equation for velocity and the tangential derivative of

the continuity equation along with the vorticity transport equation. The boundary condi-

tion, in addition to the usual velocity condition, was simply the above-mentioned Poisson’s

equation on the boundary. Like this, many formulations based on a derived vorticity condi-

tion were formulated. Since none of these conditions are genuine constraints, many authors

have solved the governing equations without using any vorticity boundary conditions what-

soever. This has led to the use of an integral constraint on the vorticity rather than a local

boundary condition.

Since most of the methods do not ensure a solenoidal vorticity field by virtue of the bound-

ary conditions [72], many authors have resorted to using a projection method to ensure the
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solenoidal property of vorticity. Of course, as shown by Wu, et al. [73], the non-solenoidal

vorticity can be used to solve for a solenoidal velocity field. However, to find a vorticity

field that is solenoidal, the vorticity is decomposed by the Helmholtz theorem to get the

Poisson equation,

∇
2φ = ∇·ω0 (4.6)

where, ∇φ is the solenoidal part of the computed vorticity. Once ∇φ is solved for from

the above equation, the non-solenoidal vorticity can be projected onto the solenoidal field

using the relation

ω = ω0 −∇φ

The next section deals with some of the formulations of the vorticity−velocity methods as

presented in [66]

4.1.1 Hybrid methods in three dimensions

Using the boundary and the initial conditions mentioned above for vorticity along with the

definition ∇× v = ω, the 3-D Vorticity−Velocity formulation can be represented as

∂(∇·ω)

∂t
− ν∇2(∇·ω) = 0 ω |t=0= ∇× v0

∇
2v = −∇× ω vS = b ∇·vS = 0 (4.7)

n·ω |S= n·∇ |S ×b ∇·ω |S= 0

Given the compatibilty conditions
∮
n·bdS = 0, ∇·v0 = 0, n·bt=0 = n·v0 |S

The above formulation can be solved numerically by a semi-implicit discretization in time

and a spectral method with spatial discretization. The lack of boundary values for vortic-

ity can be taken care of by the influence matrix technique as introduced by Daube [74].

This will be briefly introduced in the next section for two dimensional flows along with a

temporal discretization scheme to linearize the formulation before resolving it in space.

An uncoupled formulation using an integral constraint can be given as follows,

∂(∇·ω)

∂t
− ν∇2(∇·ω) = 0 ω |t=0= ∇× v0

∫

∇× ω·ηdΩ =

∮

(n× b·∇× η + n·b∇·η)dS (4.8)

n·ω |S= n·∇ |S ×b ∇·ω |S= 0

∇
2v = −∇× ω vS = b

Where, η is a harmonic vector field defined by the following problem,

−∇
2η = 0, n× η |S= 0 (4.9)

The problem here is the implementation of the the integral constraint in a variational form.

The culprits are the boundary conditions n·ω |S= n·∇S×b and ∇·ω |S= 0 which cannot
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be used together in a variational formulation.

4.1.2 Equations in two dimensions

As shown in the 2-D Vorticity−Stream Function formulation, the vorticity is now a scalar

variable given by ω = ∇× v·k giving the following set of governing equations

(
∂ω

∂t
− ν∇2ω)k +∇× (ωk × v) = 0, ωt=0 = ∇× v0·k (4.10)

∫

ωdΩ =

∮

τ ·bdS (4.11)

−∇
2v = ∇ω × k ∇·v |S= 0 v |S= b (4.12)

Provided the compatibility conditions
∮
n·bdS = 0, ∇·v0 = 0, n·bt=0 = n·v0 |S are met.

Here τ is a unit vector tangential to the boundary.

As before, a semi-implicit dicretization can be performed by first discretizing the advection

term explicitly, followed by the diffusion terms solved by an implicit scheme such as the

Crank-Nicolson scheme.

This gives the following linearized time dicretized formulation,

(−∇
2 + γ)ωn+1 = f, in Ω

−∇
2vn+1 = ∇ω × kn+1 v |S= b (4.13)

∇× vn+1 = ωkn+1

∮

S

bn+1
·ndS = 0

Just as for the primitive variable formulation, an influence matrix technique that is devised

by Kleiser and Schumann can be used for the Vorticity-Velocity formulation as well.

Solving these methods numerically, as with the three dimensional case, has not been free of

problems for both the finite element method and the finite difference method. The integral

constraint does offer a better representation of vorticity diffusion and its interaction with

solid boundaries, there is an inclination towards using such constraints. Several innovative

techniques like the staggered discretization of vorticity by Napolitano and Pascazio [66]

have resulted in avoiding certain problems related to a doubly singular influence matrix

in the above linear equation. The following sections describe how these problems can be

solved by a new method belonging to the hybrid family.
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4.2 The Kinematic Laplacian Equation method

The Kinematic Laplacian Equation(KLE) method was first introduced by Ponta [36]. It

is a Vorticity−Velocity based method which decouples the evolution of vorticity from the

spatial solution of a velocity field. Vorticity is advanced in time by integrating a vorticity

transport equation for which an initial velocity field is obtained from the solution of the

weak form of the KLE method. The KLE in turn is solved using the vorticity field obtained

by integrating the vorticity in time from the previous time step. The no-slip, no-normal flow

boundary conditions for velocity required for solving the KLE are solved over a sequence

of two steps. This basically involves two integral projection in each time step ensuring

compatibility of the two fields at each step. Greater detail is presented in the following

sections which are taken from a paper on KLE by F.L. Ponta [75].

4.2.1 The Constant-Curl Laplacian Equation

As stated in Ponta and Jacovkis [76], the idea behind using a Laplacian was to come up

with a simple linear PDE along the lines of a potential flow equation, however, which could

account for rotational effects as seen in turbines as well. This lead to a Kinematic equation

for solving time dependant flows over slender bodies with no flow separation under the

assumption of incompressible flow and a constant curl.The following vector relation can

be used to get the Laplacian of the velocity field

∇2v = ∇·∇v = ∇(∇·v)−∇× (∇× v). (4.14)

The first and second terms can be ignored on account of the incompressibility and constant

curl condition.Thus, the Laplacian ∇2v = 0 can be solved numerically under the incom-

pressibility condition and the constant curl constraint. i.e. ∇·v = 0 and ∇×v = c, where

c is a constant.

This earlier version of KLE called the constant curl Laplacian equation (CCLE) [76], had

a narrow field of application owing to the constraint of no flow separation. Nevertheless,

CCLE was quite successfully used in the study of wind turbine blades [75].

4.2.2 A generalized Laplacian (ω, v) method: The KLE

As mentioned previously, the KLE can be solved to get the spatial distribution of vor-

ticity and velocity. It is a more general PDE expression than the CCLE, not limited to
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non-separated flows. Consider a vorticity velocity formulation for a 3-D Navier–Stokes

equation for incompressible viscous flow. Provide a domain with a solid boundary S and a

far field external boundary Ω. Therefore in a non-inertial reference frame,

∂ω

∂t
= −v·∇ω + ν∇2ω + ω·∇v (4.15)

If the velocity field is known at a particular time step then the above equation can be written

as
∂ω

∂t
= −v·∇(∇× v) + ν∇2(∇× v) + (∇× v)·∇v (4.16)

This can be integrated in time to solve for ω at each node using an ODE solver using the

vorticity and velocity field evaluated from the previous time step. However, the vorticity

field calculated is not compatible with the instantaneous boundary conditions, and the fol-

lowing Laplacian equation is applied to solve for the correct vorticity and velocity fields in

the spatial domain:

∇2v = ∇D −∇× ω (4.17)

∇·v = D (4.18)

∇× v = ω (4.19)

As explained in Ponta [36], the KLE is basically a solution of the weak form of Eq 4.17

under the simultaneous imposition of the expansion rate and the curl of the velocity i.e. the

vorticity field. Eq 4.18 and Eq 4.19 give these constraints.

Sections 2.4 to 2.7 of Batchelor [40] gives a good explanation of the physical significance of

the two constraints. Most hybrid methods simultaneously solve Eq 4.17 and Eq 4.16 under

the ∇·v = 0 constraint i.e. incompressibility. The KLE, however, as mentioned earlier

solves Eq 4.17 independent of the vorticity transport equation. Therefore the vorticity

distribution given by Eq 4.19 can be used as a second constraint along with the rate of

expansion given by Eq 4.18 to solve for the velocity field in space. For a brief validation,

consider the decomposition of the velocity field into three orthogonal components: the

irrotational component vD with zero divergence, the solenoidal component vω with no

vorticity and the harmonic component vh. Given the no-normal flow at the boundary along

with the vorticity distribution, the above mentioned decomposition i.e. v = vD + vω + vh
has a unique solution [40]. Equation 4.18 and Eq 4.19 can be used to solve for vD and vω
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as

∇·v = ∇·vD = D (4.20)

∇× v = ∇× vω = ω (4.21)

For vh substitute the above mentioned decomposition in to Eq 4.16,

∇2(uh + vD + vω) = ∇2vh +∇(∇·vD)−∇× (∇× vω)

= ∇D −∇× ω, (4.22)

Substituting Eq 4.20 and Eq 4.21 in Eq 4.22 gives,

∇2vh = 0 (4.23)

This Laplacian equation gives the solution for vh. Therefore the KLE ensures a complete

and unique solution of the velocity field.

A solution method based on two consecutive solutions of the KLE is used: the first un-

der free-slip and the second under no-slip boundary conditions on the solid surface. This

method yields to imposition of the no-normal flow and no-slip velocity boundary conditions

on S, together with the correspondingly compatible boundary conditions on the vorticity.

The algorithmic sequence explained below [36,75] is iteratively performed at each time

step within an iterative time integration performed by an adaptive variable-stepsize ODE

solver for incompressible flow.

1. The vorticity is advanced in time by integrating Eq 4.16 in time at each node in space

to get an initial vorticity field ω̃n field. Since velocity from the (n− 1)st time step is

used to get vorticity for step n, this field is not compatible with the velocity boundary

conditions.

2. Enforce homogeneous conditions ω̃n at the boundary surface to get ω̃n0 . This is done

by imposing a zero boundary value for vorticity at each node on the boundary.

3. Applying the no normal flow velocity boundary conditions and setting ∂vx
∂n

= 0 on the

solid boundary, Eq 4.17 i.e. the KLE is solved for ~vn under the 2 constraints given

by Eq 4.18 and Eq 4.19 using ω̃n0 as the vorticity field. Here vx is the tangential

component of v.

4. Using this ~vn the vorticity field is again calculated as ωn = ∇ × ~vn, only this time

both boundary conditions i.e. the no slip condition v.τ = 0 and the no-normal flow

v.n = 0 are applied on S. This ωn can be seen as a vorticity field produced as an

effect of the slip induced in the previous step, somewhat like the vorticity creation

methods [77–79].
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5. Using the above calculated vorticity field ωn a fixed velocity field vn is computed as

a solution to the KLE using both constraints and the two boundary conditions i.e. the

no slip condition and the no normal flow.

For the velocity boundary condition on the far field external boundary S∞, the correspond-

ing Dirichlet conditions are applied.

The above algorithm clearly shows the vorticity in time and velocity in space approach of

KLE. The momentum equation is solved in step 1 itself. Steps 2-5 consist of solving the

KLE for each time step to get the spatial distribution of velocity, compatible with both the

vorticity distribution as well as the velocity boundary conditions. Setting vorticity equal to

zero at boundary is consistent with the free slip boundary condition for velocity in step 2

and finally as in vorticity creation methods, the no slip condition of step 4 gives the final

vorticity field responding to the slip induced in step 3. It can be seen that the two solutions

from KLE, each of which is based on a different set of boundary conditions taking care of

the vorticity boundary conditions also. These two integral projections on the velocity field

ensure a vorticity compatible with the boundary conditions of velocity in each time step.

This decoupling between the vorticity evolution and the solution to get velocity distribution

along with the compatible vorticity distribution, makes it possible to solve problems with

different constitutive relations using this method since the physics involved in any such

relation is independent of the spatial solution of KLE. It also becomes much simpler to

implement the variational formulation since the PDE system now does not depend either

on time or the constitutive relations, but is simply a set of kinematic equations. Since

this method is integral and not limited to just the boundary data for calculating boundary

vorticity, it does seem to have a somewhat better physical interpretation then the other

vorticity generation methods [66].

4.2.3 Variational formulation of the KLE method

A variational form of Eq 4.17 can be written using the Galerkin method [75] as follows,
∫

Ω

(∇·∇v)·δv dΩ = −
∫

Ω

(∇× ω)·δv dΩ, (4.24)

where δv is a virtual, arbitrary velocity field on Ω that is set to zero where ever Dirichlet

conditions are applied. The next step would be to integrate the left hand side of Eq 4.24 by

parts and using the divergence theorem to get, δv vanishes on S∞,
∫

Ω

∇v : ∇δv dΩ−
∫

S

n·∇v·δv dS =

∫

Ω

(∇× ω)·δv dΩ. (4.25)
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The no slip (as well as the free slip) and no normal flow boundary conditions ensure that

δv = 0, thereby reducing Eq 4.25 to:
∫

Ω

∇v : ∇δv dΩ =

∫

Ω

(∇× ω)·δv dΩ. (4.26)

The Laplacian operator also has an equivalent minimization formulation which gives for

the variational form of KLE the following functional,

Π =

∫

Ω

1

2
∇v : ∇v dΩ−

∫

Ω

(∇× ω)·v dΩ. (4.27)

To impose the constraints in Eq 4.18 and Eq 4.19, the penalty method was used over other

possible schemes. A brief explanation on why it is preferred over other more rigorous

alternatives can be found in [6]. The penalty terms according to the two constraints given

by Eq 4.18 and Eq 4.19 are added to Eq 4.27 giving the modified functional Π̃ as,

Π̃ = Π +

∫

Ω

αD

2
(∇·v)2 +

αω
2
(∇× v − ω)·(∇× v − ω) dΩ (4.28)

Where the penalty constants are given by αω and αD, the stationary of Π̃ with respect to v

can be written as,

δΠ̃ =

∫

Ω

∇v : ∇δv − (∇× ω)·δv + αD(∇·v)(∇·δv)

+ αω(∇× v − ω)·(∇× δv) dΩ = 0. (4.29)

Reordering the above equation gives,
∫

Ω

∇v : ∇δv + αD(∇·v)(∇·δv) + αω(∇× v)·(∇× δv) dΩ =
∫

Ω

(∇× ω)·δv + αωω·(∇× δv) dΩ, (4.30)

Equation 4.30 gives the variational formulation for KLE for incompressible flow, with

Eq 4.18 and Eq 4.19 as the constraints. As mentioned before, this variational form can

be solved by a spatial discretization using finite elements or spectral methods.

Even though in previous paragraphs the KLE was referred to as a “vorticity-in-

time/velocity-in-space split approach,” this is more a general description of its time-

space/vorticity-velocity uncoupled nature than a strict definition of its algorithmic structure.

Strictly speaking, time-marching splitting or fractional-step methods replace simultaneous

processes by sequential steps as a means to increase efficiency [80]. Split may be by di-

mensions (e.g. a three-dimensional process split into three one-dimensional substeps), or

by physics (e.g. advection on one fractional step, pressure adjustment on another, and dif-

fusion on a third). For the hydrodynamic equations, the advantage of splitting-by-process

is that the nonlinear advection process can be treated by a different algorithm than pressure

adjustment, which in turn can be different from diffusion. The latter two each involve a

linear solution. The advective step is usually advanced explicitly and the adjustment of

fields is integrated implicitly. A typical example of this technique is the very successful

AB3CN (third-order Adams-Bashforth/Crank-Nicholson) three-step scheme (see Sherwin

and Karniadakis [81],Thompson et al. [82], among others). Besides its advantages, splitting
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also has some drawbacks, mostly related with consistency and the treatment of boundary

conditions (see Boyd [80], Sec. 13.1–13.4). The choice of appropriate boundary condi-

tions is quite important in minimizing the splitting error, as shown by Karniadakis et al.

[83], where high-order pressure boundary conditions are found to be the key to achieve the

accuracy in time of the splitting scheme.

Contrarily, there is no splitting whatsoever in the KLE method. All terms in the physical

problem are solved simultaneously during time integration of the vorticity field, and all

the spatial components of the velocity are solved together by the KLE. Since the KLE

is an entirely Kinematic equation with the entire physics concerned with any of the non-

linearities and complex constitutive relations limited to the time integration schemes, it

favors modeling complex flow problems like non-Newtonian flows or turbulent flows, etc.

Since it is also a universal vector equation, basically any field represented by this relation

can be solved for as long as the divergence and curl of that field has a solvable transport

equation. Also, since the vector relation is independent of the time iteration process, other

processes such as heat transfer or chemical processes can be coupled with the KLE method

by simply joining the required relation to the existing ODE system. So basically just the

source term to the KLE is changed to solve different physical problems.

4.3 Numerical implementation of the KLE method

This section deals with the numerical implementation of the KLE by applying a spectral

element method to discretize Eq 4.30 in space along with a predictor-corrector time inte-

gration scheme. The spatial discretization scheme used here is a two-dimensional isopara-

metric spectral element with a high order Lagrangian polynomial to interpolate solutions

within the element. An isoparametric element was chosen because of the complex differ-

ential equations involved and the complexity of the intended surfaces to be modeled. The

main advantage of this element is that the integration has to be performed over the “par-

ent” element which represents a normalized domain in terms of a local co-ordinate system

varying between +1 and -1. This makes it easier to implement any numerical technique.

An isoparametric element uses the same Lagarange polynomial (shape functions) to inter-

polate the unknown variable within the elements as the ones used to map the global to local

coordinates. Figure 4.1 shows an example of a nine-node isoparametric quadrilateral ele-

ment on its natural system of coordinates, i.e. (r,s) based on the biquadratic interpolation

functions. A quadrilateral element is comparable to linear elememts because it has high

convergence rate and the ability to reduce the skin error on curvilinear boundaries. Nev-

ertheless, the implementation of the KLE method may use other discretization techniques.

For Ponta’s experimentation, the spectral element method is used for the KLE which will

be discussed in the following section.
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Figure 4.1. A two-dimensional nine node isoparametric element in its natural coordinate system

along with a graphical representation of three of its nine interpolation functions i.e nodes 3, 8 and

9, [Figure created by author from data in 6].
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4.3.1 The Spectral-element method for KLE

The general trend in finite element methods had been to use Lagrange polynomials of a

particular order as shape functions. The total number of elements was increased in order

to improve the accuracy. This is called an h-type finite element method. For sufficiently

smooth problems these methods converge at an algebraic rate with the error being pro-

portional to 1

Np+1 where N is the number of degrees of freedom and p is the order of the

Lagrange polynomial [84]. Another approach would be to follow the h-type discretiza-

tion with an increase in the order of the interpolating polynomial within each element to

improve accuracy. Again, for sufficiently smooth solutions this would give an exponen-

tial convergence rate [84]. These are called the p-type methods. The spectral method is a

particular implementation of the p-version of an hp finite element method.

The spectral-element method was introduced some twenty years back [85,86]. Its main

purpose was to tackle complicated domains which the spectral methods were not able to

handle. As shown in Henderson and Karniadakis [87], this h − p type of method was

capable of local refinements, and where thus good dealing with the complex geometries

and meanwhile preserved the high convergence rates seen in spectral methods. Owing to

the h−p discretization, a high accuracy can be achieved for fewer nodes, making it a highly

memory-minimizing method [80].

Mostly the Legendre or Chebyshev polynomials are used by the spectral element meth-

ods in order to come up with suitable basis functions. The same points are used for the

interpolation functions as for the numerical integration within the elements. These collo-

cation points are called the Gauss-Legendre-Lobatto (GLL) quadrature points. This leads

to diagonal mass matrices making the system more efficient.

As mentioned at the beginning of this chapter, in this particular analysis an isoparametric

element is used with the Lagrangian polynomials as interpolating functions for the solution.

The variational formulation for the KLE using the Galerkin method, shown in the previous

chapter, is used to solve for the velocity field at the nodal points. The nodes are at the

GLL points. For higher order elements using the GLL points in place of the regular equi-

spaced points is more economical [88]. Giraldo [89], through experiments has shown that

for higher order interpolating polynomials (in excess of 4) the solution results for Gauss

Legendre and GLL quadrature are comparable.

As shown in Ponta and Jacovkis [75], the finite-element discretization of the velocity field
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and its gradient can be represented as,

v =

[
vx
vy

]

= H·Ue, ∇v =








∂vx
∂x
∂vx
∂y
∂vy
∂x
∂vy
∂y







= B·Ue, (4.31)

where H is the interpolation-function, B it’s derivative and Ue is the array of discretized

velocity at nodes of each element,

81



Ue =












v1x
v1y
v2x
...

vNGL
2

x

vNGL
2

y












, H =

[
h1 0 h2 · · · hNGL

2

0

0 h1 0 · · · 0 hNGL
2

]

, (4.32)

B =









∂h1

∂x
0 ∂h2

∂x
· · · ∂hNGL2

∂x
0

∂h1

∂y
0 ∂h2

∂y
· · · ∂hNGL2

∂y
0

0 ∂h1

∂x
0 · · · 0 ∂hNGL2

∂x

0 ∂h1

∂y
0 · · · 0 ∂hNGL2

∂y









, (4.33)

where NGL = p+ 1 is the number of nodes of the Gauss-Lobatto interpolation.

The elements of Eq 4.33 are given by,
[

∂hk

∂x
∂hk

∂y

]

= J−1
·

[
∂hk

∂r
∂hk

∂s

]

, k = 1, . . . , NGL2, (4.34)

where J is the Jacobian operator which relates the natural to the local coordinate derivates,

J =

[
∑NGL2

k=1

∂hk

∂r
xk

∑NGL2

k=1

∂hk

∂r
yk

∑NGL2

k=1

∂hk

∂s
xk

∑NGL2

k=1

∂hk

∂s
yk

]

, (4.35)
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and (xk, yk) the local coordinates of the nodes. The divergence of the velocity field is given

by

∇·v = m·B·Ue, m =
[
1 0 0 1

]
, (4.36)

and the curl of the velocity ωz (the only non-zero component of the curl), is obtained as,

∇× v = r·B·Ue, r =
[
0 −1 1 0

]
. (4.37)

Similarly for vorticity,

ω = Hω·ω
e, ∇× ω =

[
∂ω
∂y

−∂ω
∂x

]

= Bω·ω
e, (4.38)

where ωe gives the vorticity values at nodes of each element calculated by integrating in

time the vorticity transport equation, and as shown for velocity Hω and Bω are the vorticity

interpolation-functions and their derivatives respectively,

ωe =








ω1

ω2

...

ωNGL
2







, Hω =

[

h1 h2 · · · hNGL
2
]
, (4.39)

Bω =

[
∂h1

∂y
∂h2

∂y
· · · ∂hNGL2

∂y

−∂h1

∂x
−∂h2

∂x
· · · −∂hNGL2

∂x

]

. (4.40)

For the finite element analysis, first each element can be thought of as a discretized subdo-

main (Ωe). Therefore if Eq 4.30 is considered at each Ωe and the corresponding discretized

values of the velocity and vorticity fields are substituted for, the following equation is ob-

tained,

δUeT
· (Ke

L +Ke
D
+Ke

ω)
︸ ︷︷ ︸

Ke

·Ue = δUeT
· (Re

L +Re
ω)

︸ ︷︷ ︸

Re

·ωe, (4.41)

where

Ke
L =

∫

Ωe

BT
·B dΩ =

∫ 1

−1

∫ 1

−1

BT
·B |J| drds,

Ke
D
=

∫ 1

−1

∫ 1

−1

αD BT
·mT

·m·B |J| drds,

Ke
ω =

∫ 1

−1

∫ 1

−1

αω B
T
·rT ·r·B |J| drds,

Re
L =

∫ 1

−1

∫ 1

−1

HT
·Bω |J| drds,

Re
ω =

∫ 1

−1

∫ 1

−1

αω B
T
·rT ·Hω |J| drds,

δUe gives the array of values at nodes of each element for the arbitrary δv.
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Figure 4.2. A tri-quadrilateral finite element mesh derived from an unstructured triangular mesh,

[Figure created by author from data in 6].

The arrays and the matrices of Eq 4.41 are assembled for each element to give the following

global system,

K·Ue = R·ω. (4.42)

As mentioned earlier, a quadrilateral element has high convergence rate and reduces the

skin error on circular boundaries. At the same time triangular elements make it easier to

change mesh density in a more smooth and gradual manner and are also more suitable for

unstructured meshing [75,76]. Thus the domain was first dicretized using triangular ele-

ments which was subsequently converted to a quadrilateral mesh, by dividing each triangle

into three quadrilaterals. This can be seen in Figure 4.2.

An important advantage of this “tri-quadrilateralization” is a process called static conden-

sation of internal nodes, see in Figure 4.3. These nodes lying inside the triangle though

used for elemental integration are not used while assembling the final global structure ma-

trices. These are later recovered from the values obtained by the solution of the external

nodes.

To establish an equation for this condensation, as shown in [90], the system Ke
·Ue =

Re
·ωe are partitioned as,

[
Ke
aa Ke

ab

Ke
ba Ke

bb

]

·

[
Ue
a

Ue
b

]

=

[
Re
a

Re
b

]

·ωe (4.43)

where a is for the degrees of freedom 1–24 of the velocity at nodes 1–12 and b is for the

degrees of freedom 25–38 of the velocity at nodes 13–19. The second row of the above

equation gives,

Ue
b = (Ke

bb)
−1
·Re

b
︸ ︷︷ ︸

Re
b

· ωe − (Ke
bb)

−1
·Ke

ba
︸ ︷︷ ︸

Ke
ba

·Ue
a, (4.44)
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Figure 4.3. The internal topology of a tri-quadrilateral element. Quadrilateral elements (I)–(III)

are the nine-node isoparametric elements, [Figure created by author from data in 6]. 1–19 is the

in-triangle global numbering of the nodes.
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substituting this into the first row of Eq 4.43 and reordering,
(
Ke
aa −Ke

ab·(K
e
bb)

−1
·Ke

ba

)

︸ ︷︷ ︸

Ke

·Ue
a =

(
Re
a −Ke

ab·(K
e
bb)

−1
·Re

b

)

︸ ︷︷ ︸

Re

·ωe, (4.45)

This is the condensed form. Assembling the arrays and matrices of Eq 4.44 and Eq 4.45

gives the following global condensed system,

K·Ua = R·ω, (4.46)

Ub = Rb·ω −Kba·Ua, (4.47)

The static condensation process reduces almost 40% in the size of the global system to be

solved and also leads to a better condition number of the global structure matrices. This

is in accordance with the Schur complement method, where the condensed matrix forms

the Schur complement for the in-triangle nodes of the original system. As mentioned

earlier none of the structure matrices depend on the physics of the problem, in this case

the vorticity or the time, they can be calculated and stored and used over and over again

as required. Since KK is positive definite and symmetric, it is factorized by the Cholesky

decomposition method and the factor (triangular) so obtained can be used to solve for Ua.

One problem with spectral element methods is that the loss of the exponential convergence

and also the higher accuracy in case of singularities like shock in compressible flow [91].

This is often seen while interpolating non-smooth functions (abrupt changes in boundaries

and forces etc.) using high order polynomials.

Evaluating the right-hand side of the vorticity transport equation

As shown in Ponta and Jacovkis [75], for the two-dimensional implementation of the inte-

gration procedure in time, the vorticity transport Eq 4.16 can be written in a more conve-

nient way as follows,

∂ω

∂t
= F (ω, t) = ∇× (ν ∇·∇v − v·∇v) . (4.48)

The RHS of Eq 4.48 is solved for by carrying out the respective curl, divergence and gradi-

ent operations on the discretized counterpart of u as found by the KLE algorithm previously

explained. Since, for the spectral-element case, the Gauss-Lobatto points are the same as

the nodes,therefore, for those lying on the inter-element boundaries, an average of the val-

ues from elements sharing those boundaries can be used.

The weight of each Gaussian point depends on the mesh geometry and is calculated during

assembly. So the arrays for the differential operators are assembled at the same time as

the Finite element matrices. Those arrays perform the differential operations on any vector
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or tensor field, as a dot product with the corresponding discrete solution of that field. For

instance, the discrete form of the curl of the velocity field ∇×v is given by the dot product

Curl·U. Thus, the discrete form of Eq 4.48 is written as,

F(ω, t) = Curl· (ν Div −Uadv) ·Grad·U, (4.49)

where Grad gives the gradient, Div the divergence of Grad, Curl the curl vector and Uadv

is obtained by reordering U to perfrom the dot product v·∇v in the advective term.

Since none of them depend on the vorticity field or time, they can be, as with the structure

matrices, calculated and stored for further use. For the time integration Adams-Bashforth-

Moulton predictor-corrector (ABM-PECE) solver with multivariable order and adaptive

stepsize is used and the results show that it is highly efficient for this application.

The adaptive time step solver for KLE

As the name suggests, the adaptive time step solver technique receives the response from

the calculated variables and then the initial or intermediate values modify themselves to the

next refined value. The adaptive stepsize techniques are employed to control the accuracy

of the simulations and to enhance their efficiency to provide stable steady state or transient

solutions. The adaptive time-step algorithms usually use the values of approximate local

truncation error or some of them are even based on some kind of “Thumb Rule”. In some

of the standard algorithms, user is required to specify the accuracy requirement on local

truncation error which is compared with computed values of the same which should be

within accepted accuracy or tolerance range [92].

As mentioned in a previous section, a very robust implementation of the Adams-Bashforth-

Moulton predictor-corrector (ABM-PECE) solver with adaptive stepsize control has been

used with KLE successfully. The solver ODE113 in MATLAB, which is based on ABM-

PECE, is used for the numerical experiments on vortex dynamics presented in this thesis.

The MATLAB code ODE113 was derived from the well-known code STEP [93]. For more

explanation about code STEP, see the original research paper by L.F. Shampine and M.K.

Gordon. ODE113 is the modification to the code STEP and it is a variable step-size, vari-

able order and compiled using ABM-PECE method with local extrapolation. The modified

divided difference form of the interpolating polynomials is used in this method. It means

when step size is constant, they are just normal backward differences. The acceptance or

rejection of the time step is largely dependent upon the local error estimate which is noth-

ing but the difference between the two corrector formula of two consecutive orders. This

local error estimate is calculated and compared using the inbuilt checking criteria, before

the final evaluation in the PkECk+1E method. Thus, a rejected time step only requires one

functional evaluation. The order from 1 to 12 can be altered in this code [94].
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5. NUMERICAL EXPERIMENTATION

5.1 Wake dynamics behind bluff bodies at low Re

Many regular and irregular flow patterns have been experimentally observed in the de-

velopment and decay of the disturbed flow structures behind circular cylinders. These

experiments have studied the separation of bubbles at low Re; Reosc, the Re above which

oscillations are always found; and the wake frequency. Of principal importance in these

studies are the measures used to minimize influencing parameters such as turbulence, sur-

face roughness, wall blockage, i.e. These effects are particularly important at the ends of

the cylinder.

Division of laminar flow regimes

It is desired to determine a range of Re that a given characteristic flow will exist. A well

defined boarder of a given region is not possible due to unaccounted disturbances in the

flow. The laminar flow region between 0 and 200 is typically divided into three regimes

[37]. The first regime is a non-separation or creeping flow regime at 0 < Re < 4 to 5.

A creeping flow is cleanly attached to the circumference of the cylinder and a steady and

symmetric laminar shear layer does not form a visible wake. The transition to the second

regime begins with Res, Res is the Re at which the boundary layers separate. Various

sources have estimated Res to be between 4.3 for a low D/B [95] and up to 9.6 for the

case of D/B = 0.12 [96], B is the channel width. The second regime is defined by steady

separation or closed near-wake at 4 to 5 < Re < 30 to 48. These separated free shear layers

meet downstream at the confluence point where a reverse velocity along the axis of the

closed near-wake is formed. The reverse velocity is normally one order of magnitude lower

than the free stream velocity. At Reosc, around 30 to 48, the closed near-wake becomes

unstable and a sinusoidal oscillation of the shear layers is formed at the confluence point.

This phenomenon is considered as the transition into the 3rd regime, a periodic laminar

flow regime. The transition continues up to Revs around 45 to 65 where the free shear

The material contained in this chapter is original and in preparation for publication
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layers begin to roll up into vortices. When Re is greater than Revs, the near wake forms a

periodic eddies street and sheds into downstream. This phenomenon continues to around

Re = 200. In this work the second closed near-wake regime and the transition to the

third or periodic laminar regime were studied. Flows around circular cylinders at low Re

have already been thoroughly studied experimentally, primarily by Camichel et al. [97],

Camichel and Teissié-Solier [98], Taneda [12 99] and later by Coutanceau and Bouard [96]

and Gerrard [100].

Geometry of closed near-wake

As Re increases beyond Res, the shear layers become separated and then merge down-

stream to form a symmetric steady and closed near-wake. Zdravkovich [37] defined the

Re range for this regime at 5 < Re <40 and observed a steady separated region in the form

of a laminar closed near-wake. Williamson [101] observed the recirculation regions down-

stream of the body and a pair of symmetrically placed vortices on either side of the wake

which grow with Re. Williamson [101] however defined the region as Re < 49.

By coating a cylinder with condensed milk, Taneda [12] has been able to visualize the flow

in this regime. At Re = 28.4, Figure 5.1 shows the boundary of the recirculating region

located between the separated shear layers. In Figure 5.2, the experiment is repeated at

Taneda’s [12], defined upper limit for the steady flow, Re=41. Here tiny irregular gathers

which appeared on the boundary of the recirculating region can be seen before they die

out further downstream. Far Downstream from the gathers, a sinusoidal oscillation can

be seen, implying the start of the transition to periodic laminar flow. Camichel et al. [97]

photographed a remarkable evolution in the topologies of the near-wake for Re between 20

and 40. This series of photos captures the elongation and destruction of the initial closed

near-wake. Then a new near-wake is accomplished by a secondary separation of the free

shear layers. This new near-wake is then filled with dye as the separated shear layers

converge and merge. Finally when Re = 40, a steady near-wake is maintained. If the

assumptions from Föppl [102] were correct, an increase in Re would have increased the

size of the original eddies rather than destructing them as was shown in Camichel’s results.

The length of the closed near-wake has been measured by various authors. Coutanceau and

Bouard [96] eliminated the effect of wall blockage by extrapolating results to an infinitely

wide channel. This length is taken as the distance from the downstream end of the bluff

to the end of the bubble. A pressure gradient along the channel, converging or diverging,

could have a significant effect on the ratio of Lw to D, as proposed by Honji [103]. The

empirical relationship is shown as a linear function of Re,

Lw
D

= 0.05×Re, for4.4 < Re < 40 (5.1)
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Figure 5.1. Closed near-wake behind circular cylinder at Re=28.4 [taken from 12].

Figure 5.2. Closed near-wake behind circular cylinder at Re=41 [taken from 12]
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Figure 5.3. Comparison of the wake length computed numerically with Taneda’s experimental

data.

Where Lw is the length of the closed near-wake.

The shape of the closed near-wake boundary is dependent on Re. In an experiment by

Thom [104], a cusped short near-wake was formed for Re < 7.4 and the maximum width

was located between the separation points. When Re = 7.4, the widest point moved

downstream but did not pass the centres of recirculating cores. Unlike the rest of the near-

wake boundary, the portion of the near-wake behind the maximum width is scalable to the

length of the near-wake for the range 20 < Re < 40 [96].

The ratio of streamwise distance, eddy center to cylinder, and transverse distance, eddy

center to near-wake axis was measured at D/E of 0, 0.04 and 0.12 by Grove et al. [105]

and Coutanceau and Bouard [96]. These were then scaled to the diameter of the cylinder.

From this it was seen, the streamwise distance increased linearly with Re. A surprising

feature of the closed near-wake regime can be seen in the streamlines displaced by the

cylinder. Thom [104] and Homann [106] reported that these streamlines do not follow

the shape of the closed near-wake boundaries but rather they diverge further away from

the cylinder. To quantify this phenomenon, two streamlines that were observed an initial

distance apart became displaced and separated downstream. It was also noted that the

transverse displacement of streamlines decreases with increasing Re but the location of

maximum displacement moves further downstream. The sensitivity of the wake length to

the blockage ratio can be seen by observing the separate curves developed by Thom [104]

and Homann [106].

Figure 5.3 shows the numerically computed Lw from the KLE method with respect to Re.

It shows a favourable agreement with the experimental measurements by Taneda [12].
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Closed near-wake instability

Many researches have been done on the cases whenReosc ≥ Re ≤ Revs. The wake oscilla-

tion in the near-wake starts at Reocs and continues right before the onset of the wake sheds

at Revs. Some values of the Reosc, which are widely scattered depending on the experi-

mental set-ups even when the blockage effect are negligible, are reported by Taneda [12],

Coutanceau and Bouard [96], Gerrard [100], Kovasznay [107], Roshko [55] and Nishioka

and Sato [108]. These Reosc are 30, 34, and 33 from flow visualization and 40, 40, and 48
from hot-wire measurements. The higher values of Reosc from the latter may be owing to

the sensitivity of a single hot wire to a periodic change in the direction of velocity. Kovasz-

nay [107] also reported that same value of Reosc was found with increasing or decreasing

the velocity, which indicates Reosc has no hysteresis effect.

It was Camichel et al. [97] who first observed the initiation of the near-wake instability

over 30 ≤ Re ≤ 60. Secondary separations of the free shear layers were developed from

the boundary of the near-wake with transverse displacement of the trail. These secondary

separations stop the meeting of the free shear layers at the confluence point downstream.

Coutanceau and Bouard [96] agreed that the onset of transverse oscillation of the near-

wake indicates that the trail become unstable. For the sequences of 15 ≤ Re ≤ 20, the

elongated gathers at the end of the near-wake are longer than the shortened near-wake.

The gathers are alternately formed on both sides of the near-wake [97]. However, there is

another observation on this phenomenon. Taneda [12] wrote that “the gathers first appear

from Re > 35 near the downstream end of the near-wake border-line, move towards the

rear end of the near-wake, tremble there for a while and die away.” Taneda also stated that

the sinusoidal oscillation of the trail takes place before the formation of the gathers and

he believed the former induced the latter. Later, Gerrard [100] also observed the gathers

appear periodically which produces a wavy trail. He pointed out the elongated twin bubbles

become unstable and the appearance of the gathers carries away circulation into the wake.

This is because the circulation within the bubbles is no longer balanced by diffusive transfer

and it will be taken away from by the convective action of the gathers. According to

Gerrard’s work [100], both the spiky gather downstream and the one pointing into the

bubble behind the body elongate in their directions respectively. The latter travels towards

the body and a circulating motion is executed around the vortex attached to the body. The

arm of the gather folds back towards the wake axis and this double layer oscillates but does

not develop into a vortex street.

The oscillation is initiated by a noticeable change in pressure distribution. This adverse

pressure gradient causes a separation and a characteristic inflection point to appear as re-

ported by Coutanceau and Bouard [96]. This process was experimentally measured at

Re=40 by Grove et al. [105] and confirmed by experiments by Thom [104] and Homann

[106].
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Other than aforementioned, some puzzling discoveries on the near-wake instability were

also reported. Thom [109] observed the oscillation of elastic wires with large amplitudes

in water for Re far below Reosc. Camichel and Teissié-Solier [98] triggered the near-wake

instability at Re < Reosc by plucking the wire and later this was suppressed by viscous

damping. The full sequence of the development of the wake were presented and the appear-

ance of a steady closed near-wake behind a stationary cylinder at Re = 44 was reported.

The trail became undulating due to the impulse and gathers form alternately at the end of

the near-wake. As the oscillation of the near-wake becomes settled, the waviness of the

trail becomes weaker until the re-establishment of a stable and straight trail. Taneda [12]

carried out similar experiments and measured the wave-length of trail oscillation Lwl at a

distance of 20D downstream of the cylinder, or non-dimensionally

D

Lwl
= f × D

U − u
(5.2)

where u is the wave speed.

According to Taneda [12], the excitations are damped for Re ≤ 30; the self-excited oscil-

lations are sustained for 30 < Re < 45; and for Re > 45, the self-excitation oscillations

form eddies along the trail.

5.2 Decay of wake oscillations at low Re numbers

In this section, we will discuss numerically the wake behind bluff bodies(circular cylinders)

at Re low enough to have steady wake flow with the main characteristic of its oscillation.

Presented here are the analysis of the numerical results that demonstrate the wake oscil-

lation at low Re range of 30-44, which is the oscillatory regime right before the onset of

vortex shedding for circular cylinders. We will also introduce a theoretical mode resem-

bling a oscillator to explain the decay of wake oscillation. A novel low-dimensional model

is introduced to describe the formation, development and decay of the closed near-wake

at low Re. Later, the St-Re relationship of Re 16-47 compared to Camichel’s experiments

will discussed.
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Figure 5.4. The unstructured triangular mesh used in KLE evaluation.
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Figure 5.5. The closer view of the mesh above.

5.2.1 Numerical results

The velocity and vorticity field was solved with a steady two-dimensional flow around a cir-

cular cylinder by applying the aforementioned KLE method. The experiments were carried

out on unstructured meshes of different widths(15D-50D, spaced very 5D) in order to ex-

clude the blockage effect because of the boundary of the flow domain(size of the meshes).

The mesh of 25D width is shown in Figure 5.4. It is an unstructured triangular mesh with

4633 nodes and 9028 triangles. Figure 5.5 gives a closer view of the denser plateau with

two “cones”. The front cone is centred at the origin and the rear cone is centred at 80D.

This is the reason why 80 seconds was chosen as the period of the perturbation in the ve-

locity boundary condition. In such case, we can perform the evaluation of the vorticity on a

denser region that plays a significant role in the wake development and propagation while

limiting computational cost, especially for low Re cases. The numerical study of blockage

effects remains unsolved, which could be more important as the Re goes to the lower end

of the range.

When the flow first passes around the cylinder, it introduces a sudden change in the ve-

locity, thus vorticity, in the vicinity of the cylinder during the generation of the wake. To

diminish the abrupt disturbance produced and get a more stable field of vorticity, a modified

velocity boundary condition was developed. That is, once the velocity of the free uniform

flow increase from 0 to 1 in a very short time, small perturbations of certain percentile were
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Figure 5.6. The modified velocity boundary profile.

imposed on the original value every 80 seconds, such as 1%,5%, 10% and 50% increase in

the velocity boundary condition. The modified velocity boundary conditions with 1%,5%,

10% increment are relatively weak when interacting with the wake from the previous pe-

riod. The resulting blended wake tends to damp itself quickly to what it was produced by

the uniform free flow. Thus, in order to obtain a well-defined and steady blended wake,

some other perturbations have been tested. It was found that the one with 50% increment

gives better results. All the numerical results presented in this chapter is based on this

50% increment in velocity, see its profile in Figure 5.6. Here, a word “Event” is used to

described the wake propagation of the disturbed flow downstream for every complete pe-

riod. For instance, the wake propagation in the course of the first 80 seconds is named

“First-Event”, “Second-Event” for the second 80 seconds, and so on.

Every time when the perturbation is applied, the blending of the previous wake and the

initiation of the wake resulting from the perturbation at the alternation of the previous

event and the current event needs some time to become settled and stabilized. This is

very important to be noted when post-processing analysis was performed. As shown in the

mesh, it is 300 diameters into the downstream which gives some limitation on how long

we can actually run the experiment with the concern that the wake would reach the rear

boundary of the computational domain creating interference and transferring back to the

wake. This means, in order to ensure the accuracy, the runs need to be stopped before the

wake reach the end of the mesh. Hence, with 80 seconds for an event, 200 seconds for the

whole run is on the safe side. Discarding the first event, and the incomplete third event

on the vorticity field, a proper “time window” on the second event was chosen to analyse

the rate of decay and the frequency. The time window is confined within time span in the

course of the second event.

In the experiments, the vorticity is computed at three different locations with numerical

“probes” at 1.3D, 16D, 28D(D, the diameter of the cylinder) downstream. As shown in
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Figure 5.7 through Figure 5.21, it is clear that the wake oscillations fall into a sinusoidal

pattern “bounded” by two exponential decaying lines defined by the peaks values of the

vorticity. The oscillations at three locations for a specified Re show consistency in physical

characteristics. The oscillations are damping out as time goes by with different decay and

they oscillate under similar frequency. As Re increases, the viscous effect becomes weaker,

and the oscillation tends to damp slower and survives further with time.
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Figure 5.7. Comparison of numerical results and theoretical model for wake oscillation at Re=30:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.8. Comparison of numerical results and theoretical model for wake oscillation at Re=31:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.9. Comparison of numerical results and theoretical model for wake oscillation at Re=32:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.10. Comparison of numerical results and theoretical model for wake oscillation at Re=33:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.11. Comparison of numerical results and theoretical model for wake oscillation at Re=34:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.12. Comparison of numerical results and theoretical model for wake oscillation at Re=35:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.13. Comparison of numerical results and theoretical model for wake oscillation at Re=36:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.14. Comparison of numerical results and theoretical model for wake oscillation at Re=37:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.15. Comparison of numerical results and theoretical model for wake oscillation at Re=38:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.16. Comparison of numerical results and theoretical model for wake oscillation at Re=39:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.17. Comparison of numerical results and theoretical model for wake oscillation at Re=40:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.18. Comparison of numerical results and theoretical model for wake oscillation at Re=41:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.19. Comparison of numerical results and theoretical model for wake oscillation at Re=42:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.20. Comparison of numerical results and theoretical model for wake oscillation at Re=43:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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Figure 5.21. Comparison of numerical results and theoretical model for wake oscillation at Re=44:

(a), probe locates at 1.3(cylinder diameter) downstream; (b), probe locates at 16(cylinder diameter)

downstream; (c), probe locates at 28(cylinder diameter) downstream.
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To analyse this phenomenon quantitatively, a theoretical model was proposed which will

be described as oscillations with exponential amplitude. The theoretical model describes

the time evolution of the amplitude of the vorticity fluctuations on the twin vortex wake.

The theoretical results accurately match the numerical results in terms of the frequency of

the oscillation and rate of decay as shown in Equation 5.3.

ωan = B × exp(DW × Tt + i× 2× π

Tave
× (Tt − const)) (5.3)

where ωan is the theoretical vorticity, B is the amplitude of the wake oscillation, DW is the

decay of the wake oscillation, Tt is the time span in which the wake oscillates, Tave is the

average frequency of the wake oscillation, const is a constant.

B, see table 5.1, describes the amplitude of the oscillations in the wake in the theoretical

model. It varies from case to case, even differs at different points probed for the same Re

number. It could be related to the amount of accumulated vorticity when the perturbation

triggered because viscous effect in the diffusion of vorticity dominates in the flow at low

Re.

Table 5.1

Amplitude B at different probes locations x

Re x = 1.3 x = 16 x = 28

30 33.41940439 625.8083656 654.2342962
31 21.48207125 506.7704403 541.0094479
32 18.48217369 260.5465109 344.5422445
33 14.73228879 145.5609316 238.0137998
34 9.232344941 76.29319975 122.6927107
35 7.57326927 41.56710986 59.99637707
36 4.666406929 24.84206273 29.85190741
37 3.069072808 14.46383661 15.24253645
38 2.038386928 9.573784102 7.915212202
39 1.37479717 5.83624069 4.713889986
40 0.961566957 3.609322955 2.738504395
41 0.668891745 2.095127199 1.364125795
42 0.469752514 1.79467465 1.20628421
43 0.330397295 1.076437968 0.567538207
44 0.228914681 0.678878196 0.350339504

This aforementioned function is a product of a decaying exponential and a sine or cosine,

in which the envelops of the oscillations are given by exponential decaying. τ = −1/DW
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Figure 5.22. Rate of decay at the closed near-wake for Re=30-44.

is called the time constant which gives us an idea how long it will take for the wake oscil-

lations to disappear. Ideally, as Tt → ∞, the enveloping function exp(−Tt/τ) → 0.

Figure 5.22 shows the rate of decay of the wake oscillation at all the probe locations over

the range of 30 < Re < 44. It presents a linear functional relationship of Re and the

rate of decay, giving a best-fit line RaDe = 0.0053262 × Re − 0.24237. Note that RaDe

are negative values. As Re increases, the magnitude of RaDe decreases, which means the

decaying of the wake oscillations slow down.

Thus, we argue that:

(i) The frequency of wake oscillation is determined by the condition of the flow, not the

frequency of the perturbation (even some people get confused about this phenomenon

and attribute these oscillations to the action of the perturbation itself).

(ii) When actually the energy oscillated with this oscillation seems to come from the flow

itself. As if we were talking about kicking an active oscillator.

(iii) Both the characteristic frequency and the rate of decay of this oscillator seem to be

directly related with the condition of the flow, especially, the Re and the topological

distribution of the vortex structures in the wake.

5.2.2 Theoretical Low-dimensional Model

Building a Low-Dimensional Model (LDM) for various fluid systems has been of much

interest. A LDM is is used to capture the essential features of the behavior vortex shedding
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and resolve multiple relevant degrees of freedom using a relatively simple model. This

becomes an important technique to investigate in fluid dynamics, for both laminar and

turbulent flows in nature and technology. The modeling of an LDM frequently starts from

the experimental observations concerning the comparison between complex fluid motions

and apparently simple Navier-Stokes equations. An LDM is derived with a fewer number

of degrees of freedom from a system of non-linear fluid equations. The output of an LDM

may not always have direct relationship to the experimental results. However, it provides

a good chance to capture the basic physical mechanism qualitatively. Further, LDMs can

usually explain the core dynamics to a certain extent, which is believed to be the main

feature of the fluid motion [110].

The use of a proper orthogonal or Karhumen- Loéve decomposition (POD) was first in-

troduced by Lumley [111]. This technique has been adopted in both experimental and nu-

merical data to capture the kinetic energy of the system often better than any other method

[112]. There is additional benefit in the models ability to order the modes by decreasing

average energy content. With the POD technique, a LDM can be derived by performing a

Galerkin projection of the Navier-Stokes equations onto a particular basis of spatial eigen-

functions. A group of ODEs are yielded to describe the behavior of the fluid system in time

of the expansion coefficients [113].

The POD technique has been used to investigate many different fluid systems. Aubry et al.

[114] reported its use to construct a LDM of a specific turbulent flow to study the coherent

structures at turbulent boundary layer. Later, many researchers such as Sanghi and Aubry

[115], Podvin and Lumley [116], Berkooz et al. [117],Sirovich [118], and Podvin [119],

Sirovich and Zhou [120], Zhou and Sirovich [121], presented work on near-wall turbulence

and channel flows [112]. Moehlis et al. [122] started a study of LDM of plane Couette flow

and Smith et al. [123] continued this project for such flow in minimal flow unit based on

the earlier work mentioned above. Ahuja et al. [124] studied the case of fluid dynamics of

the vortices at leading edges of an airfoil when pitched up rapidly. In this study, an airfoil

at various angles of attack was numerically modeled in a two-dimensional incompressible

flow. The model developed is an approximation of balanced truncation that is applicable

to large systems.Venturi et al. [125] extended POD to noisy (noncoherent) flows. In this

study a new compact expansion of a random flow field into stochastic spatial modes was

applied to unsteady laminar flow around a circular cylinder. Bailon-Cuba and Schumacher

[126] developed a LDM for turbulent Rayleigh-Bénard convection in a Cartesian cell with

square domain. This was done by the projection of the Boussinesq equations onto a finite

set of empirical eigen-functions. These functions were obtained from a POD combing the

velocity and temperature fields.

Another approach to construct a LMD for the dynamics of transitional flows is called “im-

pressionistic models” Rempfer [113]. These models are in the form of sets of ODEs, the

solutions from which approximately capture certain aspects of the flow dynamics. Baggett
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and Trefethen [127] showed some examples of such LDM representing the transition in

linearly stable flows.

One hypothesis is that we could find an equivalent oscillator with a theoretical formula

that could match this behavior, and with a circuital layout that matches the topological

structure of the vorticity distribution of the wake in such a way that the exchange of the

vorticity within the different elements explains the oscillations. The Low Dimensional

Model proposed in this work is not based on the any method aforementioned, but borrows

the basic idea to propose a model based on an analog circuit that is able to interpret the

concerning flow by reducing the number of degrees of freedom. It follows the idea of the

non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with

a common configured sine wave oscillator, the Twin-T oscillator as shown in figure 5.23.

This kind of oscillator uses two “T” RC circuits operated in parallel. Here, R represents

resistors and C is for capacitors. The R-C-R “T” circuit acts as a low-pass filter while the

C-R-C “T” circuit operates as a high-pass filter. When bridged together, these circuits are

tuned at the desired oscillating frequency. In the C-R-C branch of the Twin-T oscillator, the

signal is advanced, and that in the R-C-R branch is delayed. When x=2, they may cancel

one another under frequency of f = 1

2πRC
[128].
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Figure 5.24 shows the two-dimensional sketch of the fluid dynamics model at the closed

near-wake behind a cylinder at low Re. Two symmetric vortex “bubbles” are shown in

different colors for the negative and positive vorticity. It is assumed this fluid system is in

a stable state.

In Figure 5.24, wiring diagram symbols are used to describe this fluid system and the same

parameters are mapped in the electrical circuit shown in Figure 5.25. S1 and S2 represent

the power source, locating at the each side of the cylinder where the flow separation starts.

C1 through C4 are for capacitors used. R1 through R4 are for the resistance. In this anal-

ogy, it is proposed that current is an anolog for vorticity, electric capacitance is an anolog

for ciculation and elecric potential (voltage) is an anolog for gradient of vorticity. When

the flow separation is initiated, the resulting vorticity forms two vortex cores of opposite

signs behind the cylinder and the accumulation process of the vorticity is similar to how a

capacitor collects electric current, represented by C1 and C2 as shown in the Figure 5.24.

The flow resistance during this process is represented by R1 and R2 respectively in Fig-

ure 5.24. At the wake axis where the vorticity of different signs meet, the dotted line in

Figure 5.24, the disturbed flow experiences a cancellation of vorticity, in other words, flow

resistance denoted as R3; at the same time, C3 is assumed to maintain the stability of this

fluid system. As for R4 and C4, these parameters represent the flow resistance and vorticity

beyond the confluence point in the closed near-wake, which will become more important

as Re increases. The wake axis is represented by the “Ground” in the electrical circuit.

The output of analog circuit, a sine wave, resembles the wake oscillation in the actual fluid

system.
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Figure 5.24. Vortex Oscillator model.
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Figure 5.25. Diagram of the vortex oscillator model.

5.3 Re–St relationship

It has been challenging question to understand the Strouhal−Reynolds number relation-

ship over almost a century. The extensive measurements during the past five decades have

advanced the study of the Strouhal − Reynolds relationship in the case of flow around

bluff-bodies in laminar regime. It was Roshko [55] who first introduced the parameter

Ro = St×Re = f×D2

ν
versus Re, where f is the shedding frequency, D is the characteristic

length of the body, and the Ro is the Roshko number. According to Roshko’s work, a linear

least-squares fit for the Ro−Re plot was found and the resulting functional relationship of

St-Re is given in terms of 1/Re as follows:

St = A− B

Re
(5.4)

There have been a large number of fitting curves of this St-Re relationship published after

Roshko’s work. However, there was little agreement among these studies. A controversy
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about the nature and locations of several discontinuities observed in the data was largely

resolved with Williamson’s measurement [129]. It was found that, if parallel shedding is

obtained by manipulating the boundary conditions at the end of the cylinder, a continuous

St-Re curve throughout the laminar range (49 < Re < 178) can be made. Now, this

specific St-Re curve is considered to be universal and it represents measurements for the

case of purely two-dimensional vortex shedding [7].

Later, Fey et al. [130] reported a functional relationship of St versus 1/
√
Re which is visu-

ally straight for the cases of laminar flow. At about the same time, Williamson and Brown

[56] showed a new St-Re relationship of the same parameters for the cylinder wake, which

showed one order of magnitude less error than the traditional St versus 1/Re curves. Lord

Rayleigh suggested that a Taylor’s expansion of 1/Re can be used to express St [131]. Fol-

lowing this idea, a series expansion in terms of 1/
√
Re were proposed by [56] as follows:

St = (A+ B/
√
Re+ C/Re+ ...) (5.5)

The parallel-shedding St-Re data in the laminar flow regime obtained by Williamson [129]

was used in the least-squares fitting with the use of truncation in Eq 5.5 upto the first

two terms. A comparison was made with the traditional two-term fitting in functional

relationship of St − 1/Re. Compared to the traditional 1/Re − fit, a more favourable

agreement to the parallel-shedding St-Re data was found with the
√
Re− formula [129].

To interpret the St-Re relationship, Williamson and Brown [56] proposed a physical con-

nection of two length scales. First, the wake width (L∗), and second, the vorticity-thickness

of the separated shear layers (δw) were used to interpret the 1/
√
Re − fit. The constant

term A in the
√
Re-formula was interpreted with the physical shape/size of bluff bodies and

the subsequent terms of 1/
√
Re are interpreted with the thickness of the separated shear

layers.

Multiple theoretical models have been developed for the StRe number relationship. A phe-

nomenological model for vortex-street formation initiated by a bluff body was developed

by Ahlborn et al. [132], where the mass, momentum and energy balances were analyzed.

This method defined the correlation between the drag coefficients, Re and the Strouhal

number. A two-parameter formula St = 1/(A + B/Re) was developed by Roushan and

Wu [133]. The observations of the vortex street structure in this work was done with the

experiments in flowing soap films.

In the preceding work by Ponta and Aref [134], it was proposed that the empirical St−Re is

natural and can be derived from an elucidation of the mechanism of vortex formation. This
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observation can be done numerically with the estimation of the vorticity transport terms.

To achieve this, the diameter of the bluff body, D, was adopted as the characteristic length

scale which would then govern the concerning physical processes. This method resulted

in a model that had a good correlation to the traditional 1/Re-fit. Going further Ponta

[135] replaced D as the measure of the characteristic length with the shear layers thickness.

This change in how the vorticity diffusion is governed during the vortex-formation process

resulted in a model that fits the 1/
√
Re-fit.

However, the Strouhal-Reynolds number relationship at low Re, over the range ofRe < 49,

have not yet been widely studied. Camichel and Teissié-Solier [98] measured the frequency

of the artificially excited near-wake forRe < Reosc. Their result shows the relationship of a

non-dimensional Strouhal number, St = f ∗ D
U

verse Re for Re > Reosc. The experimental

data was obtained from the self-excited near-wake oscillations. The disturbed cylinder

produced a temporary periodic near-wake down to Re = 20. Camichel and Teissié-Solier

[98] found an even more effective way to destabilize the near-wake down to Re = 10.

The opening of a valve at the side of the water tunnel produced a transverse disturbance

across the test section and triggered the near-wake instability. He reported the forced and

natural St− Re curve, which showed that the result obtained by artificial excitation of the

near-wake merged smoothly into the curve obtained by the self-excited near-wake.

Following Roshko’s idea, we study St-Re Relationship numerically over the range of 16 <
Re < 47 and make a comparison to Camichel’s experiments. In Camichel’s experiment,

he reported the St-Re relationship down to Re = 10 approximately. The comparison made

is for 16 < Re < 47 because the St values at 10 < Re < 16 are not consistent with those

at the rest Re in this range. This could be due to his experiment set-ups. Figure 5.26 shows

the comparison of St× Re verse Re with Camichel’s experiment. As shown in the figure,

the numerical result fits in a linear line, which is visually the offset of Camichel’s data with

the best fit lines of StRe = 0.13704 × Re − 0.87349 for the numerical data and StRe =
0.134 × Re − 1.1747 for Camichel’s. These two best-fit lines are almost parallel, which

indicates the frequencies of the wake oscillations at low Re follow a consistent tendency

with respect to the change of Re. The tendency observed in our numerical experiments

is consistent and repetitive for all the probing points and over a range of different mesh

designs (i.e., no grid dependence was observed). The offset shown in this figure could

be attributed to Camichel’s experimental set-up. It is known that blockage effects may

offset the shedding frequency curve. Unfortunately, the description of the measurement

techniques at the time when Camichel’s study was performed is limited, and there is a lack

of more recent data in the available literature. Further analysis of this topic would require

acquisition of new data by modern techniques.
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Figure 5.26. Comparison of StRe vs Re with Camichel’s experiment at Re = 16− 47.
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6. CONCLUSIONS

In this dissertation we studied the underlying physics of vortex-shedding and wake dynam-

ics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the

KLE method. We carried out a long series of numerical experiments in the cases of flow

around the cylinder at low Reynolds numbers. As it was mentioned above, these studies of

flows at low Reynolds numbers provide an insight in the fluid physics which plays a criti-

cal role on phenomena connected to stalled wind-turbine rotors. Many of the conclusions

about the qualitative nature of the physical mechanisms characterizing vortex formation,

shedding and further interaction analyzed here at low Re could be extended to other Re

regimes and help to understand the separation of the boundary layers in airfoils and other

aerodynamic surfaces. A better understanding of the complex multi-physics problems in-

volving streamlined and bluff-body conditions will also serve as a valuable guide for the

future design of blade aerodynamics and the placement of wind turbines and hydrokinetic

turbines, increasing the efficiency in the use of expensive workforce, supplies, and infras-

tructure.

After the introductory section describing the main fields of application of wind power and

hydrokinetic turbines, we described the main features and theoretical background of the

numerical method used here. Then, we presented the analysis of the numerical experi-

mentation results for the oscillatory regime right before the onset of vortex shedding for

circular cylinders. We verified the wake length of the closed near-wake behind the cylin-

der and analysed the decay of the wake at the wake formation region, and then studied

the St-Re relationship at the Reynolds numbers before the wake sheds compared to the

experimental data. We found a theoretical model that describes the time evolution of the

amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately

matches the numerical results in terms of the frequency of the oscillation and rate of decay.

We also proposed a model based on an analog circuit that is able to interpret the concerning

flow by reducing the number of degrees of freedom. It follows the idea of the non-linear

oscillator and resembles the dynamics mechanism of the closed near-wake with a common

configured sine wave oscillator. This low-dimensional circuital model may also help to un-

derstand the underlying physical mechanisms, related to vorticity transport, that give origin

to those oscillations.
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In Chapter 5, we presented the analysis of the numerical results for the oscillatory regime

right before the onset of vortex shedding for circular cylinders. The decay of wake oscil-

lation behind circular cylinder in a 2-D steady flow for low Re was successfully reported.

In the numerical experiments performed, we found that the wake oscillations fall into a

sinusoidal pattern “bounded” by two exponential decaying lines defined by the peaks val-

ues of the vorticity. The oscillations at three locations for a specified Re show consistency

in physical characteristics. The oscillations are damping out as time goes by with differ-

ent decay and they oscillate under similar frequency. As Re increases, the viscous effect

becomes weaker, and the oscillation tends to damping slower and survives further down-

stream. This fluid phenomenon is also successfully studied quantitatively. We found a

theoretical model that describes the time evolution of the amplitude of fluctuations in the

vorticity field on the twin vortex wake, which accurately matches the numerical results in

terms of the frequency of the oscillation and rate of decay as shown in Eq 5.3. The rate of

decay of the wake oscillation at all the probe locations over the range of 30 < Re < 44
is also presented. It is a linear functional relationship of Re and the rate of decay, giving

a best-fit line RaDe = 0.0053262 × Re − 0.24237. Note that RaDe are negative values.

As Re increases, the magnitude of RaDe decreases, which means the decaying of the wake

oscillations slow down.

We verified the wake length of the closed near-wake behind the cylinder and analysed the

decay of the wake at the wake formation region, and then studied the St-Re relationship at

the Reynolds numbers before the wake sheds compared to the experimental data. The St-

Re Relationship over the range of 16 < Re < 47 is studied numerically and a comparison

to Camichel’s experiments is made. As shown in Figure 5.26, the numerical result fits

in a linear line, which is visually the offset of Camichel’s data with the best fit lines of

StRe = 0.13704×Re− 0.87349 for the numerical data and StRe = 0.134×Re− 1.1747
for Camichel’s. These two best-fit lines are almost parallel, which indicates the frequencies

of the wake oscillations at low Re follow a consistent tendency with respect to the change

of Re. The tendency observed in our numerical experiments is consistent and repetitive for

all the probing points and over a range of different mesh designs (i.e., no grid dependence

was observed).

We also proposed a model based on an analog circuit that is able to interpret the concerning

flow by reducing the number of degrees of freedom. It follows the idea of the non-linear

oscillator and resembles the dynamics mechanism of the closed near-wake with a common

configured sine wave oscillator. This low-dimensional circuital model may also help to

understand the underlying physical mechanisms, related to vorticity transport, that give

origin to those oscillations. Figure 5.24 shows the two-dimensional sketch of the fluid

dynamics model at the closed near-wake behind a cylinder at low Re. Two symmetric

vortex “bubbles” are shown in different colors for the negative and positive vorticity. It

is assumed this fluid system is in a stable state. In Figure 5.24, wiring diagram symbols

are used to describe this fluid system and the same parameters are mapped in the electrical
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circuit shown in Figure 5.25. In this analogy, it is proposed that current is an anolog for

vorticity, electric capacitance is an anolog for circulation and electric potential (voltage) is

an anolog for gradient of vorticity. The output of analog circuit, a sine wave, resembles the

wake oscillation in the actual fluid system.

As an outlook for future work, a deeper study of the low dimensional model based on

the electrical analogy would be interesting. With LDM, it is possible to characterize both

the rate of decay and the frequency of the wake oscillations (Re-St relationship), and the

mechanisms of the underlying physics.
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