
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2013

EFFECTIVE FUNCTION CHOICE IN THE R SCRIPTING LANGUAGE EFFECTIVE FUNCTION CHOICE IN THE R SCRIPTING LANGUAGE

Trevor D. Fisher
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Copyright 2013 Trevor D. Fisher

Recommended Citation Recommended Citation
Fisher, Trevor D., "EFFECTIVE FUNCTION CHOICE IN THE R SCRIPTING LANGUAGE", Master's report,
Michigan Technological University, 2013.
https://digitalcommons.mtu.edu/etds/663

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFECTIVE FUNCTION CHOICE IN THE R SCRIPTING
LANGUAGE

By

Trevor D. Fisher

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2013

c©2013 Trevor D. Fisher

This report has been approved in partial fulfillment of the requirements for the degree
of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Adviser: Dr. Zhenlin Wang

Committee Member: Dr. Steven Carr

Committee Member: Dr. Saeid Nooshabadi

Committee Member: Dr. Qiuying Sha

Department Chair: Dr. Charles Wallace

To my mother, father, and little brother. Thank you for all of you support.

3

Abstract

This project examines the current available work on the explicit and implicit paral-
lelization of the R scripting language and reports on experimental findings for the
development of a model for predicting effective points for automatic parallelization to
be performed, based upon input data sizes and function complexity. After finding or
creating a series of custom benchmarks, an interval based on data size and time com-
plexity where replacement becomes a viable option was found; specifically between
O(N) and O(N3) exclusive. As data size increases, the benefits of parallel processing
become more apparent and a point is reached where those benefits outweigh the costs
in memory transfer time. Based on our observations, this point can be predicted with
a fair ammount of accuracy using regression on a sample of approximately ten data
sizes spread evenly between a system determined minimum and maximum size.

4

Chapter 1

Introduction

Due to its simplicity and ease of use, R has become a major tool in the fields of
data mining and scientific data processing. However, this simplicity comes at a cost
in performance. While R may be easy to learn and implement, and have heavily
optimized built in functions, its execution speed can be limited as function complexity
increases. The results of this are simulations and analysis that take days instead of
hours or minutes.

Current work on optimizing R through parallelization follows one of two paths.
The first is to use a fine grained, explicit approach, and parallelize specific functions
for execution in multicore CPU and/or GPU environments. Multiple libraries, and
projects such as R+GPU [7] and PLASMA/MAGMA [8] [9] focus on implementing
parallel versions of already available or common R functions in order to achieve higher
performance. With this method, individual function calls, which can take tremen-
dous amounts of time can be manually replaced with parallelized versions that can
perform the same calculations at a significant speedup. Overall, the script is executed
sequentially and individual functions take advantage of parallelization.

The advantage of this approach is that the individual functions can be fine tuned
to get the maximum use out of the hardware that they are being run on. The
disadvantage is the narrow focus of the individual projects. Only individual functions
are parallelized, and special function calls are needed. This means that in order to
take advantage of possible parallelization, researchers need to go through the process
of modifying their code to use the new functions. Along with this, there is also a lack
of flexibility. If a parallel version of a function is not available researchers either have
to write their own or are out of luck.

The second path focuses on coarse grained implicit parallelization. Rather than
explicitly parallelize individual functions, projects such as pR [12] focus on automati-
cally parallelizing entire scripts through limited applications of compiler analysis and
optimization, taking advantage of R’s simplicity which allows for some analysis that is
not possible using more complex languages such as C. Other projects such as fork [10]
and Rdsm [11] modify R to add MPI and multithreading directly into the language.

5

The upside of this implicit approach is that the parallelization is done automat-
ically or with the inclusion of a few new keywords. Rather than using parallelized
versions of specific functions, researchers can parallelize their scripts automatically,
possibly requiring only the inclusion of a set of directives in the code for the com-
piler. This allows for much more flexibility if explicitly parallelized functions are not
already available. The disadvantage of this is that automatic parallelization is still
a complicated subject, and while this process does not require researchers to rewrite
their code in the same way as explicit parallelization, it cannot produce the same
level of performance that an experienced programmer can.

6

Chapter 2

Goals

The goal of this project is to develop a model of R function execution time based
on data size, transfer time, and algorithm complexity that will allow for the effective
choice of when to replace a sequential R function with a parallel counterpart.

7

Chapter 3

Background

R is an open source implementation of the S programming language developed for
statistical data processing. It specializes in data manipulation and display, with many
built in graphics and data analysis functions. Along with this, it is easily expanded
with custom code packages available either on the Comprehensive R Archive Network
(CRAN) [1] or through individual development. Packages allow R users to develop
and make available code for functions and actions that are not part of the standard
R package and consist of R scripts and external code accessed through a built in
interface for several languages including C++ and FORTRAN.

R is an interpreted language and is designed to operate efficiently on vectors
and matrices. R being an interpreted language means that rather than having to
compile an R script before running it, the script is simply fed into an interpreter
that automatically converts it to bit code for execution. The advantage of this is
that scripts can be tested and run as they are being developed without the need
for recompilation. The downside is that being interpreted introduces bottlenecks to
execution time and speed. For many basic functions, the back end code is written in
heavily optimized C and FORTRAN, however functions developed externally are not
guaranteed to be so. R’s use of vector and matrix operations also allows for significant
code simplification through the avoidance of loops and the use of optimized code.

R has gained popularity as a statistical programming and calculating environment
due to this ease of use and expansion. It allows for a fairly inexperienced person to
create and use complicated functions in a simple manner and comes with many built
in options for the graphical display of data. Actions that can take tens of lines of
code in C can be performed with one simple line in R, and if the R base package does
not contain a required function, the CRAN contains hundreds of external packages
that could contain the necessary function.

One of the many areas of work on R is in parallel processing. While certain R
functions have been optimized to run as efficiently as possible on a standard processor,
it has no built in options for parallelization. This is where several external packages
come into play. Available on the Comprehensive R Archive Network [2], there are

8

several packages that add external parallel capability to the R language. Located in
the CRAN High-Performance and Parallel Computing in R section of the main CRAN
page, these packages range from individual functions that have been implemented
using an external parallel framework to expansions to the language that allow for
explicit parallelization. While there are multiple ways to achieve parallelism, this
project focused on the use of a GPU as a parallel processor. It is also possible to
achieve parallel execution on the CPU, but a study of that fell outside of the time
scope of this project.

Beginning in the 1980s, graphics processing units were introduced as a specialized
addition to computers designed specifically to handle the calculations involved in
graphical tasks. Driven by gamer’s demand for more graphical power, each generation
of GPUs were more powerful than the last. Finally, in 2006, NVIDIA recognized that
GPUs had essentially become large scale parallel processors that pretty much anyone
had access to and decided to capitalize on this by introducing CUDA and shifting
GPU design to a form more suitable for parallel code execution along with graphical
tasks.

Parallel code for execution on an NVIDIA GPU is written using CUDA C, parallel
computing platform based upon C. Each CUDA program is divided into two separate
parts. Host code which is executed on the CPU of the computer and device code which
is executed on the GPU. The host code is responsible for setting up and initializing the
CUDA environment, doing things such as determining what resources are available,
transferring data to and from the GPU for processing, and calling the device code
to get everything started. The device code is executed on the GPU and consists
of a kernel and any functions written to be called from within the kernel. CUDA
follows the single instruction, multiple data method of parallelism. This means that
parallelism is achieved by executing the same piece of code in parallel with the only
difference between individual executions being the piece of data being worked on.

Individual pieces of work are carried out by threads, which as explained above
each execute the same instruction on a unique piece of data. Threads are grouped
into blocks that can be one, two, or three dimensional depending on the needs of the
program, and blocks are in turn divided into a grid that can also be one, two, or three
dimensional. The number of threads per block and blocks per grid is specified by the
programmer in the host code, allowing for control of the exact execution conditions
of a given kernel.

9

Chapter 4

Related Works

As mentioned before, the parallelization of R can be split into two methods, fine
grained parallelization where individual functions are explicitly parallelized and coarse
grained parallelization where R scripts themselves are parallelized manually or au-
tomatically. Currently, the main focus of the work on parallelizing R is on actual
parallelization, either explicitly or via script analysis.

“Automatic Parallelization of Scripting Languages: Toward Transparent Desktop
Parallel Computing” [12] is one of the earliest works on the subject of automatically
analyzing and parallelizing R. The paper describes how the recent increase in the
amount of data being analyzed has created a need for transparent parallelization in
R and other scripting languages in order to handle analysis in a reasonable amount
of time. It puts forward a system called pR, which dynamically analyzes R script
code and automatically parallelizes portions of it for execution on multiprocessor
environments. As of the time of this publication, pR was more theoretical and was
limited to some function calls and for/while loops. Overall, a speedup of up to 25x
over base execution time of an R script was shown.

“Transparent Runtime Parallelization of the R Scripting Language” [13] continues
where the previous work left off. It describes the more recent progress on the pR
project, going into more detail and depth about what is possible and what has been
done than the last paper. While pR is more fleshed out in this paper, it still produces
a speedup of 25x at the best, as in the last paper. However, it still compares positively
to the results of similar projects such as the snow (Simple Network of Workstations
for R) package which allows for parallelization using a network of two workstations,
as its name suggests.

Finally, “Efficient Statistical Computing on Multicore and MultiGPU Systems”
[14] provides a view of current research into more fine grained parallelization. In
this case, rather than parallelizing the entire script, individual functions are explic-
itly parallelized to execute on multicore CPUs and GPUs; specifically the Pearson
correlation coefficient , the chi-squared distribution, and the unary linear regression
model. The user is given with the same standard R functions to use in the script, but

10

when executed the parallel version of the function is used rather than the standard
one. This provided varying speedups from 2x to 30x for those individual functions
depending on the data sizes and execution location.

11

Chapter 5

Methods

5.1 Coding

Data was gathered from seven functions; Sum, Squaresum, Cubesum, Vector Addi-
tion, Vector Sorting, Matrix Multiplication, and Matrix Transposition. These seven
functions were chosen for their simplicity of implementation and diversity of time
complexity. Each function was implemented in R as a function and a compiled byte-
code function, in C or C++ using Rcpp and/or the .Call function, and in CUDA
either by hand, or as an adaption of previously existing code. It was decided that
wherever possible, preexisting optimized code would be used in order to achieve the
best results. To that end, multiple sources and libraries were used, ranging from R
packages to the CUDA SDK provided by NVIDIA. Each non-native function is writ-
ten in either CUDA or C++ and integrated into R using either Rcpp or the .Call
function.

Integrating outside code into an R function can be done in several ways. In this
case the Rcpp and RcppArmadillo packages were used, along with the .Call function
wherever necessary. .Call is a built in R function designed as a way to call external
code precompiled into a shared object file from R. It is one of the most basic ways to
call external functions from R and comes with only the minimum amount of support.
It is up to the programmer to handle everything and make sure there are no problems.
It works by simply loading an externally compiled shared object file (.so) and in the
case of C/C++ choosing the desired function and passing it any arguments in the
form of pointers to R objects. As long as the code has been correctly compiled, .Call
will work. However, it is then the external code’s job to correctly interpret the R
objects, using functions provided by the R.h library, and carry out whatever actions
are necessary. Below is an example of the use of .Call and some of the possible code
modifications that were needed to handle R access.

R .so initialization functions

ex_init <- function() { dyn.load("ex.so")}

12

ex_cln <- function() { dyn.unload("ex.so")}

.Call to external function

ex_cpp <- function(vec, iter) {

Setup code here

.Call("ex_cpp", vec, iter, y)

Return code here

}

External Code

extern "C" SEXP ex_cpp(SEXP v, SEXP ret) {

int numElements = length(v);

int *vec = INTEGER(v);

double *retVal = REAL(ret);

*retVal = 1;

return R_NilValue;

}

On top is the R script for loading an external .so file into the R environment,
allowing access to any functions it may include. The initializing function must be
called before .Call is used to access one of the shared object’s functions and the
cleanup function should be called once the shared object is no longer needed. Next,
is the actual R script that uses .Call. Its use is fairly simple, requiring the function
name, and any arguments being passed in. Due to its simplicity, it is up to the
programmer to ensure that the correct arguments are being provided. Finally comes
the external code. In this case, it is C code, but calling CUDA functions follows the
same pattern. In order for .Call to recognize the function in the shared object, the
extern keyword must be used to extend the visibility of the function so that .Call
can access it. Next, the function return type is set to SEXP (S-Expression), the base
data type used by R, as are the function’s arguments. Each SEXP is passed to the
function as a pointer to a piece of data in the memory being use by R. Inside the
function, it is the programmer’s responsibility to use functions provided in R.h to
correctly unpack the SEXP variables into ones that can be used by the C function.
Finally, once any calculations are done, a value is returned. In this case, the result is
stored in one of the arguments and R NilValue is returned.

This is the method that was used to include all of the CUDA parallel function
benchmarks, as Rcpp is currently not capable of handling CUDA code. The same
process used in creating and calling the example C function is applied to the CUDA
host code which, along with the removal of extraneous code, was one of the two usual
modification needed to integrate benchmark code for use in R.

While the .Call method works and has an advantage in flexibility, it has the
undesirable property of being fairly complex. Since many R users are not actual
computer scientists, this put a limit on how much code could be exported to C/C++

13

functions. In order to simplify this, the Rcpp and RcppArmadillo packages were
created. The Rcpp package serves as in intermediate between external C/C++ code
and the .Call function, automating much of the code generation and compilation.
Using Rcpp, a user needs only have enough of a basic understanding of C/C++ to
write the function that they want.

Matrix Multiplication example C code using Rcpp

cppFunction(’

NumericMatrix ex_cpp(SEXP matA, SEXP matB) {

Rcpp::NumericMatrix a(matA);

Rcpp::NumericMatrix b(matB);

Rcpp::NumericMatrix ab(a.nrow(), b.ncol());

for(int i = 0; i < a.nrow(); i++) {

for(int j = 0; j < b.ncol(); j++) {

ab(i,j) = 0;

for(int k = 0; k < a.ncol(); k++) {

ab(i,j) += a(i,k)*b(k,j);

}

}

}

return ab;

}’

)

Above is an example of the use of Rcpp. In this example, rather than having to
use .Call, you simply call the cppFunction function of Rcpp and give it the code to
be used. This code can either be in the form of a separate string stored in another
R variable, or as in the case of this example, as is. The R environment treats the
code between the two apostrophes as one string which is passed into cppFunction.
cppFunction takes that string, and adds any necessary header files and declarations
before compiling the code and performing all of the functions done manually for the
.Call example. The end result is the ability to call ex cpp directly from the R prompt.
The programmer still needs to know a little bit about the R environment and data
types, but the whole process is far simpler than that of manually using .Call.

Along with the Rcpp package, the RcppArmadillo package is available. RcppAr-
madillo is an addition to Rcpp that adds wrappers for the Armadillo C++ linear
algebra library, a set of heavily optimized linear algebra functions. The following
code example shows the use of RcppArmadillo and a second method of using Rcpp
to generate a function.

Example Armadillo C code. This is for matrix multiplication.

code <- ’

14

arma::mat A = Rcpp::as<arma::mat>(a);

arma::mat B = Rcpp::as<arma::mat>(b);

arma::mat C = A * B;

return Rcpp::wrap(C);

’

Armadillo code compilation

ex_arma <- cxxfunction(signature(a="numeric",b="numeric"), code,

plugin="RcppArmadillo")

Rather than providing the code directly in the function call, here the code is stored
in the code variable. Next, cxxFunction is called. The example functions signature,
code, and external plugins used are passed in as an argument and as before, a function
is returned.

In the functions used in this project, .Call, Rcpp, and RcppArmadillo have all
been used where appropriate. C/C++ code is split between Rcpp code and .Call
based solely on when it was written and what the most efficient method was. As
stated before, for the parallel implementations of functions written using CUDA and
CUDA Thrust/CUBLAS, the .Call convention was exclusively used due to the need
for manual compilation.

Along with the two external functions (C/C++ and CUDA) used for timing, two
implementations of the R internal functions were tested; the base R function and
the bytecode compiled function. The base R function is either one provided directly
by R or written as an R script. The bytecode function is the result of running the
base R function through the R compiler package. In certain cases, this compilation is
reported to provide a speedup over a base R script by eliminating the need to interpret
the function on the go. These two functions are fairly simple to create compared to
the external functions, as shown below.

R example function

ex_r <- function(vec, iter) {

#Code Here

}

R bytecode example function

ex_bc <- cmpfun(ex_r)

In the above example, the first function is a pure R function. The call to function
creates an R function taking whatever arguments are listed in the call to function
and assigns the resulting function to ex r. The functions code goes between the two
curly bracers. Next, once an R function has been created, it is a simple matter of
passing that function into the cmpFun() function which will return the R bytecode
implementation. Either function can then be called using ex r and ex bc respectively.

15

5.2 Testing Methods

Initial planning for this project called for the determination of when to substitute
parallel functions to be based solely upon data size. In this case, data size is defined
as the number of elements in a matrix or vector. This choice was made to simplify
calculating data sizes as the actual object that stores data in R contains much more
book keeping data than its C or CUDA counterpart. Given a new function to check
for, the profiler would benchmark it’s performance using several data sizes and use
the results to predict when it would become profitable to introduce parallel functions.
However, based on the achieved results, it was decided that the focus should not
be solely on the data size, but also on the time complexity of the algorithm being
profiled. As the initial profiling proceed, it became apparent that data size was not
the sole factor in determining when the parallel code would surpass the performance
of its sequential counterpart. Our example of this would be the difference between
Sum and Matrix multiplication. For Sum, a simple O(N) operation, the overhead
associated with initializing and running a CUDA function overshadows any gains in
speed to be had from parallel execution, causing the sequential function to outperform
the parallel one in all tests. On the other hand, for Matrix Multiplication, an O(N3)
function, the advantage of parallel execution occurs so early on that it would be
practical to replace nearly every call with its parallel counterpart.

Each code option was tested using a variety of data sizes ranging from 100 ele-
ments, up to the maximum number of elements that could be used, constrained by
either memory limits or time. The chosen data sizes remained consistent within indi-
vidual function tests, but could not be as closely matched between different functions.
As viewable in the code section, the tests all consist of a similar R script that gener-
ates a random data set for testing use. Once that data set has been generated, each
benchmark is run and timed using R timing methods for a predetermined number of
iterations, with the the resulting timings being averaged out.

The exact limits on number of iterations and maximum data size were determined
by observing tests individually and gauging how much memory and time would be
needed for each run. The full results for the various benchmarks can be found in the
Data section, and all tests were run on the same system:

OS: ubuntu 12.04 LTS

Memory: 11.7 GiB

Processor: Intel Core i7 CPU 960 @ 3.20GHz x 8

OS Type: 64 bit

Graphics: GeForce GTX 570

CUDA Version: 4.2

Overall, each test was carried out using an R script similar to the following exam-
ple. Minor differences were necessary, but in general, each script followed the same
general pattern. First, the benchmarking function checks and waits fore 20 seconds if

16

the caller specified a wait. This is to allow the caller to lock the system to minimize
the need for system interrupts. Next, a loop is entered. Each iteration of the loop
corresponds to one of the data sizes being tested. Inside each loop, a random set
of data is generated and then fed to the benchmarks being tested, possibly multiple
times to ensure a more accurate timing result is returned. Once the timing of each
function is finished, the results are written out to a text file and the loop iterates to
the next data size. A more detailed example of this can be found in the Code chapter.

As mentioned before, external code was either written and compiled into a shared
object file outside of the timing script and then called, or written in the script and
compiled for use when the script was initially loaded, depending on the complexity
of the code and time it was written. Whether it was generated using Rcpp and R
package functions, or was compiled externally has no effect on the execution. Each
method results in a C function being compiled and called from inside R.

5.3 Regression and Prediction

Once testing was complete, the resulting timing data was analyzed and regression was
used to approximate the time complexity of each function. In the interest of finding
a minimum sample size to generate a close regression model of the time complexity,
the timing data was sampled in two ways; a naive method where sample size was
controlled by using only every nth element of the timing data, and a more advanced
method where the samples were selected so that their values were be as evenly spread
between the minimum and maximum values as possible. In order to generate a
regression model of a function, a number of samples equal to the degree of the time
complexity of the function are needed. Using the simple sample selection method,
this minimum size is detected by checking the resulting sample size before begining
the regression. For the even sample selection method, a sample size of at least two
plus the degree is guaranteed to be returned.

Naive sample selection. Simply taking every ith

element of data$DATA.SIZE.

for(i in 1:(length(data$DATA.SIZE)-1)) {

sequence <- seq(1, length(data$DATA.SIZE), i)

d_s <- data$DATA.SIZE[sequence]

}

Even sample selection. Complexity is the degree of the

time complexity of the function being examined. A

minimum of complexity samples are needed to generate

a regression model of a function.

for(i in (length(data$DATA.SIZE)-2):complexity) {

sequence <- sample_gen(data$DATA.SIZE, i)

17

d_s <- data$DATA.SIZE[sequence]

}

As shown, with the naive method, a simple loop is used to sample varying numbers
of elements from the data by selecting every nth element. The even sampling method
is more complex, but provides a more evenly spread sample.

Sample Selection Function

sample_gen(data_i, size): Generates a set of indices into

data_i that approximate a sample

with an even distribution of points

between the min and max values found

in data_i.

data_i: The set of data sizes associated with the timing results

size: The number of samples to be found between the first and

last sample

sample_gen <- function(data_i, size) {

Find the minimum and maximum data sizes

min <- data_i[1]

max <- data_i[length(data_i)]

Calculate a step size that will result in size number of

samples between min and max

step <- (max-min)/(size+1)

Calculate the next desired data size after the minimum

check_val <- min+step

Add the first index to retval

retval <- 1

Set the index used to add values to retval to 2

index_val <-2

Iterate through the available data sizes

for(u in 2:length(data_i)) {

As soon as the data size stored in data_i[u] is larger than

that found in check_val, add a new index to retval

if(data_i[u] > check_val) {

Determine if u-1 or u should be added to retval based on

which size stored in data_i is closer to the desired size

18

stored in check_val

if(abs(data_i[u-1]-check_val) < abs(data_i[u]-check_val)) {

retval[index_val] <- u-1

} else {

retval[index_val] <- u

}

Update index_val and check_val

index_val <- index_val+1

check_val <- check_val+step

}

if((size+1) < index_val) {

break

}

}

Finally, add the last index to retval and return it

retval[index_val] <- length(data_i)

return(retval)

}

Given the full set of input data sizes from the profiling results, the minimum and
maximum values are found. Next, the minimum is subtracted from the maximum
and divided by the number of intermediate samples desired plus one, producing a
data size step. This step, when added to the minimum value repeatedly, will result in
a series of data sizes evenly spaced between the minimum and maximum values. The
minimum sample size of this method is two, the first and last values available. This
was chosen as a minimum sample size for simplicity and to ensure that the regression
functions received at least two samples at a minimum. Initially, the calculated step is
added to the minimum value and the result is compared to the input data. The index
of the element closest to that result is recorded, the step value is added in again,
and the next index is found. This process repeats itself until either the total desired
number of samples is found or it becomes impossible to generate more samples due
to the contents of the input data. An example of this would be the dataset [100, 200,
500, 1000]. If a sample size of three is desired, the indexes [1, 3, 4] would be returned.
However, if a sample size of four were requested, the same indices [1, 3, 4] would be
returned due to the gap between elements three and four preventing an even spread.
Given a dataset [100 200 300 400 500 600 700 800 900 1000] on the other hand, and
[1, 4, 7, 10] would be returned by the same request. This limitation occasionally lead
to multiple samples of the same size with little difference in element choice between
them. In those case, when the results were being summarized, the values reported
for samples with identical data sizes were averaged together to reduce them to one
usable number.

19

Once each sample had been taken, R’s lm regression function was used to generate
a regression model based upon the data. Due to the nature of the polynomials being
approximated, a more advanced set of arguments were used with the lm function
provided by R in order to generate the appropriate curves.

data <- read.csv("filename.csv")

O(N log(N)) approximation for the Vector Sorting function

fit_r <- lm(data$R~data_m$DATA.SIZE*log(data_m$DATA.SIZE))

O(N) - O(N^poly_degree) fitting for the remaining functions

fit_r <- lm(data$R~poly(data_m$DATA.SIZE, poly_degree, raw=TRUE))

Each of the above examples follow the same general formula. In R, the lm func-
tion is used to carry out regression, requiring a formula and the data being worked
on as arguments. In these cases, the formula and data are one and the same. The
arguments to each function consists of a left hand side and a right hand side, sep-
arated by a ˜. In these cases, the left hand side is the same for both arguments;
data$R, the timing results for the R implementation of whatever function is being
analyzed. The right hand sides differ in that the first one is meant for modeling a
log based time complexity, in this case using the natural logarithm for simplicity,
while the second version is for specifying polynomial arguments. The first argument
can be read as the elements of data$R are the result of carrying out the function
x*log(x) on the corresponding elements of data$DATA.SIZE. The second argument
is slightly more complicated, using the poly function, but is read as the elements of
data$R are the result of carrying out a polynomial function of degree poly degree on
the corresponding elements of data$DATA.SIZE. The poly function, with the use of
the rawT̄RUE argument, generates a raw polynomial over the set of points found in
data$DATA.SIZE. Without the raw argument, the result will be an orthogonal poly-
nomial. The choice the set raw=TRUE was made for consistency simply because it
produced a more accurate model in all cases but Vector Sorting, where the differences
between the raw and orthogonal results were minimal.

A model of time complexity was generated for each of the four implementations of
each function. Those models were then used to generate a set of predicted execution
times based upon the full set of data sizes profiled for each function. The predicted
results were then analyzed to determine how close the model was to the actual data
by calculating the root mean squared error and maximum error values which were
recorded for each sample size. Finally, a quick check was made to find the approximate
point of intersection between the R, BC, and CPP regression models and the GPU
regression models to ad another indicator of how accurate they were.

20

Chapter 6

Results

6.1 Sum, Squaresum, and Cubesum

The Sum, Squaresum, and Cubesum functions are all versions of vector summation;
the process of summing the contents of a vector to produce one number. Sum, figure
6.1, is the simplest version, taking O(N) time, and simply iterating through a given
vector, adding each component to the sum. Squaresum, figure 6.2, and Cubesum,
figures 6.3 and 6.4, are modifications of Sum that take O(N2) and O(N3) time respec-
tively. All three external CUDA and C++ functions were coded using either CUDA
or the C++ Algorithm [5] library, with modifications to increase time complexity.
These three functions were created due to their simplicity and ease of modification
to allow for the study of the effects of different time complexities on execution time.

Overall, these three functions share similar code, with the only difference being
the number of iterations the sum function is run for.

As the plots show, as the time complexity increases from O(N) to O(N3), the
opportunity to achieve a speedup using function replacement appears. Shown in
figure 6.1, the GPU function is initially the slowest of the four implementations.
However, once a data size of twenty thousand elements is reached, the performance
of the C implementation drops below that of the GPU implementation. From that
point on, the GPU implementation executes faster than the C code. Throughout
the entire dataset, the R and Bytecode implementation both took similar amounts of
time and were the fastest implementations. In this case, the parallel functions poor
performance compared to R, BC, and C for the early data sizes is due to the time
needed to transfer data from the host device to the GPU and back again. In those
cases, the CPU can perform the entire calculation well before the parallel function
can transfer the data, process it, and transfer it back. The difference between the R
functions and the C function is simply caused by the fact that the R functions are
built on optimized C and FORTRAN libraries that perform the vector summation
more efficiently than the C implementation being used.

As the time complexity increases, the performance of the R, BC, and C implemen-

21

Figure 6.1: Sum

Figure 6.2: Squaresum

22

Figure 6.3: Cubesum

Figure 6.4: Cubesum: Adjusted

23

tations of the vector summation function degrades further. By figure 6.2, the parallel
function has pulled ahead even further and replacement becomes reliably profitable
starting at vectors of four hundred elements for the C implementation and two thou-
sand elements for the R and BC implementations. Up until those points, the C, R,
and BC functions execute faster. However, at those points, the benefits of parallel
execution begin to outweigh the costs of transfer times.

Finally, by figures 6.3 and 6.4, the parallel function begins outperforming the
sequential implementation quickly, starting at three hundred element vectors for the
C implementation, fifteen hundred element vectors for the R implementation, and
seventeen hundred element vectors for the BC implementation. However, by this
point the parallel function begins to show some signs of irregularity. As the plot
shows, at nineteen hundred elements, the performance of the parallel function levels
off and then jumps up at twenty three hundred elements. As shown in the Cubesum
Thread and Block Count table 9.8, this jump and leveling out is associated with a
change in the number of blocks being used by the CUDA kernel function that occurs
automatically as part of the function’s built in optimizations. At the point of the
jump, the number of blocks used by the CUDA kernel is increased to handle larger
data sizes. The following plateau is the result of the system taking similar amounts
of time to handle pieces of data that while different in size do not require another
increase in block size. A similar pattern is likely present in Singlesum and Squaresum,
but is not as apparent due to the larger spread of data sizes used and the lower time
complexity.

6.2 Vector Addition

Vector Addition is the process of adding two vectors, in this case of equal length,
together and returning the result as a third vector, taking O(N) time. The parallel
code for this is based on the code provided by the NVIDIA CUDA 4.2 SDK [3], with
modifications made to simplify its host code and interface with the R objects being
passed in, while the C++ and R code is hand written. In this case, the results for
Singlesum are supported as it is always better to use the R implementation of vector
addition. For all data sizes tested, it is simply faster to do this addition in R than it
is to transfer the vectors to the GPU, due to data transfer times between devices.

Figure 6.5 is significantly rougher than its counterpart, Singlesum. This is due
to the minimal amount of time necessary to carry out the function. The initial data
sizes are all small enough that it is possible to perform the addition in so little time
that it does not always register to the timing functions. However, the results still
show the same general trend found in Singlesum. For all data sizes, it takes longer
to transfer data from host memory to the device, perform the calculations, and than
transfer the data back than to perform the calculation sequentially. The most likely
cause of the nearly consistent gap between the R/bytecode and parallel function is
the lack of optimization in the CUDA function which simply generates one thread per

24

Figure 6.5: Vector Addition

vector element, rather than perform any tiling or memory optimizations. As with the
adjusted Cubesum plot, figure 6.4, the execution time of the parallel implementation
of this function shows sever regular irregularities in the form of occasional jumps in
execution time. Given the simplicity of the CUDA kernel and the way the host code
lays out the kernels grid and block structure, the cause of these jumps is currently
unknown.

6.3 Vector Sorting

The Sorting function takes as input an integer vector and sorts its elements into
ascending order taking O(Nlog(N)) time. This code is hand written using the CUDA
Thrust library [4] and the optimized C++ Algorithm library [5]. For sorting, it
becomes beneficial to swap over to the GPU implementation early on, after the vector
grows to a length of several hundred elements. While the performance increase is
not tremendous, it is there and in applications requiring large amounts of sorting,
replacement would be beneficial. As expected, as the time complexity approaches
O(N2), the benefits of parallel execution start to show up.

While Vector Sorting does not have a corresponding function in the Sum set, its
time complexity comes midway between Singlesum and Squaresum, and as figure
6.6 shows, there is a point where the parallel code overtakes the R and bytecode
functions. Specifically, this happens at vectors of size seven thousand for the C
implementation, one million for the R implementation, and nine hundred thousand for
the BC implementation. As before, the R and bytecode functions took approximately
the same time and up to a point were more efficient than their parallel counterparts.
Finally, the C function ended up being the slowest overall, again due simply to the fact

25

Figure 6.6: Vector Sorting

that R’s implementation is designed to handle sequential functions such as sorting as
efficiently as possible. In all cases, the plot shows a linear increase in processing time
as data sizes increase, with no bumps or irregularities. In this case, this is due to the
optimized nature of the functions used. The R and Bytecode functions are essentially
identical and the C and CUDA functions both use libraries designed to either be as
efficient as possible in the given circumstances.

6.4 Matrix Transposition

Matrix Transposition takes as input an NxN double matrix and generates its trans-
pose, taking O(N2) time. The external code for this is based on the NVIDIA CUDA
4.2 SDK example [3], again modified for simplicity and to interact with R. Matrix
transposition takes slightly longer to become beneficial, but the benefits are still ap-
parent.

As seen in figure 6.7, by O(N2) time complexity, the point of transition occurs
once the matrix size hits six thousand by six thousand for the C implementation,
and eight thousand by eight thousand for the R and BC implementations. In this
case, the cause of the spike in the plot of CPU timings at a matrix size of sixteen
thousand by sixteen thousand is currently unknown. At that point, the matrix takes
up approximately one point nine gigabytes of space on a system with eleven gigabytes
of memory. The fact that there is a similar, if smaller bump in the R and bytecode
timings at the same location appears to indicate that this is likely the work of the
system adjusting to the increase in the amount of memory being used at that point.
This feature is present in the data across multiple separate runs, ruling it out as being
caused by a system interrupt. Without a more thorough examination of the R base

26

Figure 6.7: Matrix Transposition

code, the exact cause is unclear.

6.5 Matrix Multiplication

Matrix Multiplication is exactly what its name suggests, taking two matrices as input,
it produces a third matrix that is the result of multiplying the two initial ones together,
taking O(N3) time. The code for this benchmark is the most complex of all of the
tests. As stated before, it was part of the GPUTools package and was chosen so
time was not wasted reinventing the wheel. Specifically, the external parallel code
uses the matrix multiplication code from the R GPUTools package [6], modified to
be compiled on its own, outside of its package. The original code can be found on
the GPUTools page of CRAN.

As figure 6.8 shows, the C implementation of the function has the worst perfor-
mance of the five functions tested, as expected, with the R and BC implementations
having much better performance and the GPU implementation being the fastest of
all. For matrix multiplication, replacement is a foregone conclusion. As figures 6.8
and 6.9 support, once the time complexity of a function reaches O(N3), the data sizes
where replacement becomes profitable become trivially small; in this case, immedi-
ately starting with the one hundred by one hundred element matrix size for both the
R and C implementations and at the two hundred by two hundred element matrix
for the BC implementation. For small data sizes, the execution time differences are
minimal, and for larger ones, the parallel multiplication code provides a clear benefit.
Again, the results from the Sum benchmarks are supported. As the CUDA function
used in this benchmark was designed to work with R from the start, it produces a
smooth timing result and as predicted outperforms the other three implementations.

27

Figure 6.8: Matrix Multiplication

Figure 6.9: Matrix Multiplication: Adjusted

28

6.6 Transfer Timing

Transfer Times is another modification of sum that only measures the times used to
transfer data back and fourth between R and the C++ code and between the system
and GPU devices. Full data can be found in the Data section of the report.

Initial results show that transfer time between R and C++ code make up a min-
imal part of function execution, taking so little time that it did not register using
the C++ time functions unless something interrupted the program, causing it to take
longer, resulting in the spikes in the data. This is due to the fact that data transfers
between R and C++ code consist simply of passing a pointer. The data is not copied
or moved unless absolutely necessary, so the transfer takes almost no time. On the
other hand, transfer times between the system and the GPU can take up varying
portions of the execution time based upon function time complexity and data sizes,
on average approximately seventeen percent of execution time for each data structure
that needs to be transferred, with some variance for individual data sizes.

Overall, what this means is that the only transfer time that affects the parallel
functions is that of transfers between the device and the host, which take up varying
portions of the functions execution time depending on the data size and the time
complexity of the parallel algorithm.

6.7 Profiling

As the previous section has shown, it is not always the case that a sequential R
function can be replaced with a parallel implementation to produce a useful speedup.
Functions with a time complexity of O(N) take so little time that the sequential
implementation outperforms any tested parallel implementation simply because of
the necessary data transfer times. As mentioned in the Background section, this
project only tested parallel execution using a GPU, so this may not hold true for
parallel execution on a CPU where data transfer times will be different. On the other
end of the spectrum, functions with a time complexity of O(N3) up are so complex
that the time lost to memory transfers to and from the GPU are more than made up
for by the speedup produced, so much so that it is practical to replace all sequential
functions of such a complexity with a parallel counterpart.

In between those two extremes is where there is the possibility of improving exe-
cution time by dynamically switching between parallel and sequential functions based
upon data sizes and computation complexity. While the results rarely show an execu-
tion time improvement outside of the double digits, the benefit of replacement would
come from instances where large amounts of data are being analyzed, rather than
in cases of individual bits. On a single piece of data, reducing the time a function
takes from minutes to seconds may be convenient, but it is hardly worth the amount
of effort that may be required to get that improvement. However, when going over
hundreds of gigabytes of data, automatically switching functions to use the most ef-

29

ficient one based on the size of the individual piece of data being used could save a
tremendous amount of time.

Given the benchmarking results, there is definitely the possibility of improving
the performance of R scripts through automatic function choice based upon data
sizes and time complexity. However, before this can be realized, there are still several
hurdles that need to be overcome. While it is possible to use the benchmark results
currently available to predict the performance of those specific functions based upon
data size, the differences between the squaresum and matrix transposition show that
time complexity is not the only factor in determining where the transition from se-
quential to parallel code should be. The desired end result of this work would be a
system that can analyze a given set of sequential and parallel functions and deter-
mine the points where one function should be replaced with another. However, at the
moment, the only way to do this wold be to actually run the function over various
pieces of data to generate a predictive dataset for that specific function. This process
can take an extended amount of time for some functions, and while it will allow fore
profitable speedups later on, not everyone may be willing to wait. To this end, the
next section discusses function time complexity modeling, performance prediction,
and sample requirements.

6.8 Regression

Once function profiling was completed, we moved on to regression and execution time
prediction. As explained in Methods, the timing data gathered for each function was
used to generate a series of models of each function’s time complexity. Two separate
sampling methods were tested before the even method was chosen due to its more
consistent results. The purpose of this modeling was to determine approximately
how many samples were necessary to generate an accurate model of each function’s
time complexity. Initial testing was done using the naive sampling method. When it
became apparent that this lead to unsatisfactory results, the even sampling method
was created and chosen as a way of generating a better set of samples. Based upon
the resulting observations, it was determined that the the overall required number
of sample timings needed to accurately approximate a functions time complexity
depends on two factors, the degree of a function’s time complexity and a function’s
regularity, and that at least ten samples were necessary to achieve an acceptable
result.

The first set of time complexity models examined were based upon the full data
sets gathered previously. Given access to all of the gathered data, the R regression
functions were able to consistently generate accurate approximations of the execution
times of each function. As shown in figures 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, and 6.16,
when given access to the full set of available data, it is possible to generate accurate
approximations of each function’s time complexity, with most deviations being the
result of irregularities in the data such as in figures 6.13 and 6.15 where execution

30

time spikes. As expected, given as much data as it was possible to generate in the
time available, the resulting models were fairly accurate.

Figure 6.10: Singlesum Prediction, 66 Elements

However, as sample size was reduced, data regularity begin to have a greater
effect on the resulting time complexity approximations. This does not mean that
generating an accurate model of time complexity requires a large amount of profiling
data, but it does mean that samples need to be chosen with care. An extreme example
of bad sample choice would be figure 6.17. Here, only two samples data sizes were
chosen, 100 and 20000 elements, and the results are noticeable. For the R and GPU
models, the two points chosen were both well below the average actual timing results,
producing models that underestimate the execution time of the R implementation
of vector addition and predict that the GPU implementation will take less time as
the data size increases, all the way down to zero seconds. For the BC and CPP
implementations, the chosen data sizes produce models that do the opposite and
overestimate the function’s execution time. Based on this and similar results, it was
determined that the most likely method of generating a usable model of function
execution time using regression would be to take a set of samples consisting of a
minimum and maximum data size and a set of data sizes spaced as evenly between
the two as possible.

In this case, the minimum and maximum data sizes were determined by what
timing data was available. In an actual implementation of a system for automatic ef-
fective function choice, these values would be determined based upon the limitations
of the available systems. The minimum, based upon a functions time complexity
would need to be a value that consistently results in an execution time that is mea-
surable by the system. for each of the tested functions, a data size of one hundred
elements was chosen for vector operations and ten thousand elements for matrix op-

31

Figure 6.11: Squaresum Prediction, 28 Elements

Figure 6.12: Cubesum Prediction, 24 Elements

32

Figure 6.13: Vector Addition Prediction, 46 Elements

Figure 6.14: Vector Sorting Prediction, 64 Elements

33

Figure 6.15: Matrix Transposition Prediction, 29 Elements

Figure 6.16: Matrix Multiplication Prediction, 10 Elements

34

Figure 6.17: Vector Addition Prediction, 2 Elements, Inaccurate Results

erations. In this case, that size was not always large enough, as shown by the timing
results for Vector Addition. The exact size necessary would depend on the system
being used, but could be determined easily by testing small data sizes until a suitable
value is found. The maximum data size on the other hand would be determined by
the amount of memory available on the system. More specifically by whichever is
smaller, main memory or the memory available on the GPU, since the data being
used needs to be able to fit on both devices. While an exact method of determining
the amount of available memory to use was not developed, a good starting point
would be as close to one half of the capacity as possible. If main memory is the
limiting factor, this leaves space for the system and anything else that needs it, and
for both main memory and GPU memory, this avoids the problems associated with
completely filling memory.

Given the available timing data, the even sample selection method was chosen
as it produced the closest approximation of the desired sampling method that was
available. With this method, a variety of sample sizes were tested, with a summary
of the results in table 6.1 which reports on the Normalized Root Square Mean Errors
of each function for various data sizes. The NRMSE is a measure of the difference
between the values predicted by the model of function time complexity and the ob-
served results, with values ranging from zero to one hundred percent. The lower the
value, the closer the predicted values are to the observed ones.

For the variety of sample sizes tested, most functions produced normalized root
mean squared errors of eight percent or less. Matrix Transposition produced slightly
higher values, but still stayed under twenty percent. Finally, Vector Addition pro-
duced much higher values ranging between one hundred and thirty eight point two
percent and five point nine percent. For NRMSE measurements, values below twenty

35

percent are acceptably accurate and below five percent are great. Larger values than
that indicate that the model does not accurately represent the available data. This
does not necessarily mean that the model is good or bad, just that it cannot produce
the same results as the profiling provided. The results for Vector Addition are a good
example of this. Looking at figure 6.13, the predicted results follow the same general
trend as the observed timing, but it is impossible for a polynomial of degree one to
accurately model the amount of variance that is found in the observed results.

Based upon the summary in table 6.1, it is apparent that the regularity of the
data provided as a sample is very important. The artificial complexity functions
Singlesum, Squaresum, and Cubesum produced the most regular data and this results
in the NRMSE of the resulting model being very low for any sample size; less than
two percent for the R, BC, and CPP implementations and less than ten percent for
the GPU implementations. The confirmation functions however provide more varied
results. Vector Sorting and Matrix Multiplication, both being fairly regular with only
a few highs and lows in their data both produced minimum and maximum NRMSE
values similar to the artificial complexity functions with only a few higher or lower,
and with higher standard deviations. The Matrix Transposition function, being the
next most regular produces minimum and maximum NRMSE values that are higher
than the previously mentioned functions, but still within the realm of acceptability.
Finally, the Vector Addition function produced the largest NRMSE values due to the
variance of it’s data.

6.9 Prediction Accuracy

Given the variance in the NRMSE of each function for the various sample sizes, the
next step taken was to examine the results of each regression and see how closely
each approximation came to the observed values when predicting where to swap se-
quential functions for their parallel counterparts. For each available sample size of
each function, the intersections between the R, BC, and CPP implementations and
the GPU implementation were found, in the tested data sizes and to the nearest in-
teger, and the absolute value of the difference between the observed and predicted
intersections was calculated. The results of this can be seen in figures 6.18 through
6.24 which show the R function results. Since these plots show the difference between
the predicted and observed points of intersection for each function implementation,
the closer a point is to zero the better. Finally, table 6.2 summarizes the resulting
differences from observed intersections for all functions and implementations, report-
ing the minimum, median, and maximum values alone with the standard deviation
of the differences found among the varying sample sizes.

Overall, some differences are to be expected when there is an intersection to find.
The observed points of intersection are based on a finite set of data sizes and represent
the first data size where the GPU implementation became consistently faster than the
R, BC, or CPP implementation. Given the gaps in between individual data sizes, even

36

Table 6.1: Regression Normalized Root Square Mean Error Summary
FUNCTION MIN MED MAX STD DEV
R
Singlesum 1.10% 1.10% 1.60% 0.11%
Squaresum 0.10% 0.10% 0.20% 0.03%
Cubesum 0.30% 0.30% 0.40% 0.04%
Vector Addition 77.90% 90.75% 138.20% 18.15%
Vector Sorting 0.60% 0.90% 4.60% 1.01%
Matrix Transposition 5.40% 5.98% 17.00% 2.86%
Matrix Multiplication 1.70% 1.75% 2.10% 0.16%
BC
Singlesum 1.30% 1.30% 2.10% 0.22%
Squaresum 0.20% 0.20% 0.20% 0.00%
Cubesum 0.30% 0.30% 0.50% 0.06%
Vector Addition 23.10% 24.20% 28.68% 2.03%
Vector Sorting 0.80% 1.20% 11.70% 2.75%
Matrix Transposition 0.65% 6.43% 10.30% 1.81%
Matrix Multiplication 1.00% 1.10% 1.40% 0.14%
CPP
Singlesum 0.90% 1.30% 1.50% 0.17%
Squaresum 0.20% 0.20% 0.20% 0.00%
Cubesum 0.70% 0.70% 0.90% 0.06%
Vector Addition 5.90% 6.15% 7.20% 0.41%
Vector Sorting 0.20% 0.40% 2.30% 0.53%
Matrix Transposition 0.71% 20.75% 33.80% 6.23%
Matrix Multiplication 1.00% 1.10% 1.30% 0.10%
GPU
Singlesum 4.60% 6.10% 7.20% 0.67%
Squaresum 6.20% 6.30% 7.80% 0.68%
Cubesum 7.10% 7.30% 9.00% 0.41%
Vector Addition 34.80% 41.00% 79.30% 11.85%
Vector Sorting 0.20% 0.40% 1.90% 0.47%
Matrix Transposition 3.26% 5.95% 7.30% 0.82%
Matrix Multiplication 4.40% 4.70% 5.20% 0.37%

37

if the predictions were perfect, the actual point of intersection still falls somewhere in
between the observed point and the previous data size. When examining the plots,
the data sizes being worked with and the variance in the differences should be taken
into account. As an example, for Matrix Multiplication a difference from observed of
fourteen thousand elements seems fairly large until you take into account that data
sizes of up to four hundred million elements were tested.

Figure 6.18: Singlesum Differences

For Singlesum, figure 6.18 the observed results were that there was no intersection
between either the R or BC implementations and the GPU implementation and an
intersection somewhere around twenty thousand elements for the CPP implementa-
tion. For R and BC, the predicted results were correct. No intersection was found.
However, the predicted results also indicated that there was either no intersection be-
tween the CPP and GPU implementation, the majority of the results, or that there
was an intersection at a much higher data size than expected in a few instances. The
predicted results for Vector Addition, figure 6.19, on the other hand were exactly the
same as the observed results, despite the high degree of inaccuracy reported by the
NRMSE. No intersections between the R, BC, and CPP implementations and the
GPU implementation.

For Vector Sorting, figure 6.20, the calculated intercepts between the R, BC, and
CPP implementations and the GPU implementations were fairly regular for most
sample sizes, with a few increases in difference at the smaller sample sizes.

As the degree of the time complexity of the functions increases further, the result-
ing differences begin to change. Both Squaresum, figure 6.21, and Matrix Transposi-
tion, figure 6.22 show significantly more variance in the difference between expected
and predicted intersections, but show a general trend of either a leveling out of or a
decreasing of differences as sample size increases.

38

Figure 6.19: Vector Addition Differences

Figure 6.20: Vector Sorting Differences

39

Figure 6.21: Squaresum Differences

Figure 6.22: Matrix Transposition Differences

40

Figure 6.23: Cubesum Differences

Figure 6.24: Matrix Multiplication Differences

41

Finally, the results of the functions with the highest time complexities, Cubesum
and Matrix Multiplication show even more variance. Cubesum, given its larger sam-
ple size, exhibits a very irregular plot, while Matrix Multiplication, with its smaller
sample size is slightly more regular, but is still far from perfect.

Table 6.2: Summary of Differences
FUNCTION MIN MED MAX STD DEV
R
Singlesum 0.00 0.00 0.00 0.00
Squaresum 161.00 2000.00 2281.00 696.74
Cubesum 1.00 9.50 53.00 14.16
Vector Addition 0.00 0.00 0.00 0.00
Vector Sorting 995627.00 999872.60 7049989.00 1585270.44
Matrix Transposition 25215215.50 32227443.50 45529804.00 6198733.23
Matrix Multiplication 3467.00 10129.75 14346.00 4677.06
BC
Singlesum 0.00 0.00 0.00 0.00
Squaresum 8.00 2000.00 2997.00 885.05
Cubesum 15.00 70.50 103.00 17.17
Vector Addition 0.00 0.00 0.00 0.00
Vector Sorting 895630.00 899874.00 6514824.00 1533151.32
Matrix Transposition 20615306.00 29084161.00 46009942.00 7535456.10
Matrix Multiplication 19933.00 23368.50 26800.00 2932.33
CPP
Singlesum 20000.00 20000.00 296581.00 49791.12
Squaresum 458.00 1268.00 1640.00 311.04
Cubesum 67.00 79.00 300.00 68.71
Vector Addition 0.00 0.00 0.00 0.00
Vector Sorting 2582.00 6857.00 6894.00 1098.48
Matrix Transposition 808835.33 3745195.50 36000000.00 13875004.73
Matrix Multiplication 3621.00 8483.50 10000.00 2517.30

Looking back at the results, there are several noticeable patterns. The accuracy
of each prediction appears to either increase as sample size increases or to reach
a plateau where the difference between observed and predicted intersections stays
approximately the same between samples. However, in several cases, the accuracy
suddenly drops again for the full sized sample, as seen in figure 6.22, or continually
decreases as sample size increases as seen in figure 6.24. These two results are both
the result of the sensitivity of regression modeling to the input data.

In the case of Vector Sorting, the large variances are caused by the nature of the
model. Since Vector Sorting has a time complexity of O(Nlog(N), the function used
to model its timing results is log based. This, coupled with the fact that early on

42

the models of the R and GPU execution times are close to parallel means that small
changes introduced by taking different sample sizes, causing different elements to be
chosen, produce large changes in the resulting point of intersection. The difference
between figure 6.25, created using a sample size of six, and figure 6.26, created using
a sample size of seven is tremendous. Both figures show a close up of the predicted
intersection between the R and GPU implementations of Vector Sorting and clearly
show the asymptote around zero caused by the nature of the log function that is not
clearly shown when examining the full set of sample sizes. With smaller sample sizes,
the general location of the point of intersection switches between the type founds in
figure 6.25 and figure 6.26. As the sample size increases, the results constantly follow
figure 6.25 which produces an intersection at almost the same point each time that is
slightly closer to the observed value than the intersections produced by models like
6.26. However, as sample size increases from seventeen to sixty four, the intersection
type jumps to that of figure 6.26, causing the observed increase in the difference
between figure 6.27 and figure 6.28.

Figure 6.25: Vector Sorting A

In the case of Matrix Multiplication, the continuous increase in difference between
observed and predicted point of intersection is also the result of small changes in the
model as the sample size is increased. The Matrix Multiplication tests were run on
matrices ranging in element count from ten thousand elements to four hundred mil-
lion elements. What this means is that small changes in the model as the number of
samples increases produce large changes in the actual predicted points of intersection.
What look like minor differences between models created using different sample sizes
result in noticeable changes in the point of intersection between the R and GPU im-
plementations. In this case, it just so happens that those changes cause the difference
between the expected and observed points of intersection to increase.

43

Figure 6.26: Vector Sorting B

Figure 6.27: Vector Sorting, 17 Element Sample

44

Figure 6.28: Vector Sorting, Full Sample

6.10 Summary

Overall, two measures of accuracy were used to try and determine what an acceptable
sample size would be for regression modeling. First, the Normalized Root Mean
Squared Error was examined, and while there was some variance in the NRMSE
between the maximum possible sample size for each function and the minimum, it
was never large enough to suggest that a large sample was necessary. While the exact
sample size that produced the minimal NRMSE for each function was not exact
between implementations, a sample size of approximately nine elements on average
appears to produced minimal values quite often. However, since there is rarely a large
difference between the minimum and maximum NRMSE, with Vector Addition being
the exception, the minimum data size to produce an accurate approximation would
appear to be a function’s degree plus either two or three.

Next, the difference between the predicted and observed points of intersection
between the R, BC, and CPP implementations of each function and the GPU im-
plementation were examined. This produced a much different set of results than the
NRMSE analysis. Given that the observed points of intersection are based off of a
limited data set and are only approximations based upon where the GPU implemen-
tation was observed to begin performing faster than the other implementations, some
variance was to be expected. This can be seen in figures 6.18 through 6.24 and in
table 6.2, where as sample size increases, in most cases the differences between the
observed and predicted results begin to either stabilize at a set of similar values or
decrease towards the expected value. Based upon the provided plots, it appears that
a sample size of at least ten elements is needed before the accuracy of the predicted
points of intersection begins to level out.

45

Based upon this data, it is therefore recommended that a sample of at least ten
data sizes, evenly spaced between a system dependent minimum and maximum be
taken when preparing to perform regression modeling of a function. Relying only
upon the NRMSE, a number of samples equal to one plus the degree of the function
would appear to be all that is needed to create an accurate model. However, when
the resulting differences between the predicted and observed intersections are taken
into account that number is too small.

46

Chapter 7

Future Work

While the initial goal of this project was to implement a modified form of the R
bytecode compiler that dynamically replaced sequential functions with parallel coun-
terparts, it quickly became apparent that this was not feasible within the available
time constraints. Based upon the gathered data, this would be the next step. Given
a description of the time complexity of a sequential function and a parallel counter-
part, the R bytecode Compiler could be modified to dynamically replace sequential
functions with their parallel counterparts based upon data sizes compared to time
complexity. Depending on implementation, this choice could either be based upon a
static set of rules based upon current data or on a set of benchmarks run during the
installation of the modified compiler package.

Once profiling data has been gathered, it becomes a matter of approximating the
time complexity of a function using regression. The complexity in this action comes
from gathering a set of profiling data of sufficient size and regularity that an accurate
regression can be made using the approximation. While the work in this paper only
scratches the surface of this topic, current results wold seem to indicate that a sample
of at least ten data points is needed to generate an accurate model of a function. The
next step would be to continue to investigate various methods of data sampling to see
if the process can be simplified further, and to implement a profiling function that
can gather this data with minimal input from the user.

47

Chapter 8

Conclusion

This project, Effective Function Choice in the R Scripting Language began as an
investigation into the effectiveness of automatically parallelizing the R scripting lan-
guage by replacing sequential functions with parallel counterparts. In order to test
this possibility, several benchmarks were created or modified and measured. Sum,
Squaresum, and Cubesum were created as a control to be used to measure the results
of different time complexities and data sizes on code that was as identical as possible.
Following that, Vector Addition, Vector Sorting, Matrix Transposition, and Matrix
Multiplication were chosen as real world examples of the time complexities found
in the Sum benchmarks. Finally, Load Times was created to examine data transfer
times.

After the benchmarking was complete, it became apparent that there is an interval
between O(N) and O(N3) exclusive where an R scripts execution time could be
improved by function replacement. At O(N), for our functions, data transfer times for
parallel CUDA functions are longer than the time needed to sequentially perform the
desired calculations, and at O(N3) Time complexities replacement becomes beneficial
so early on that it is basically a given that it should occur. Between those two
extremes, the exact point where function replacement can provide an improvement
in performance varies based on exact time complexity and data sizes.

Once the benchmarking results were gathered, they were used to begin a study
into the best methods of generating approximations of each function’s time complexity
using regression. Various sample sizes were tested to determine what effect sample size
and choice have on the accuracy of the predicted results. Both the Normalized Root
Mean Squared Error and difference between expected and observed intercepts were
examined. In the end, the NRMSE analysis suggesting a sample size per function of
time complexity plus between two and three samples at a minimum, due to the limited
variance found associated with sample size. The difference analysis on the other
hand showed that for samples where the difference between predicted and observed
intersections was going to level off, a minimum ten samples would be recommended.

48

Chapter 9

Data

9.1 Introduction

This section contains the raw data gathered for each benchmark. Each table is
split into several sections. INPUT is the number of elements in the data struc-
ture being used. OUTPUT is the number of elements in the returned data struc-
ture. CALC.COUNT is the approximate number of calculations done to produce
the results. The final four sections are the timing results for each benchmark, R,
BC(bytecode), CPP, and GPU. Each time is reported in seconds unless otherwise
noted. If a result is not available, it will be labeled with N/A. The only reason that
this will happen is if obtaining that result would have taken an inordinate amount of
time. Any timing results of zero are the result of the action being measured taking
so little time that the timing functions could not return a result.

GPU transfer time is a recording of the time needed to transfer data for the
sum benchmark from main memory to the GPU and back. GPU transfer timing is
divided into four sections. TOTAL.ELAPSED is the total elapsed time in seconds
spend performing memory transfers. TO.DEVICE and TO.HOST are the sub times
spent transferring data specifically to the GPU or back to main memory respectively.
FUNCTION.ELAPSED is the average time previously found for each execution of
the Sum function on the GPU.

CPP transfer time is a recording of the time needed to transfer data for the sum
benchmark from R to the external C code. TRANSFER.TIME is the time necessary
to pass the data pointer to the C code and back to R again.

49

T
ab

le
9.

1:
S
in

gl
es

u
m

T
im

in
g

R
es

u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
C

P
P

G
P

U
10

0
1

10
0

3.
91

E
-0

06
0.

00
E

+
00

0
0.

00
E

+
00

0
4.

16
E

-0
04

20
0

1
20

0
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

25
E

-0
05

6.
45

E
-0

05
30

0
1

30
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
32

E
-0

05
40

0
1

40
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

2.
58

E
-0

04
50

0
1

50
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

6.
45

E
-0

05
60

0
1

60
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

5.
33

E
-0

04
70

0
1

70
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

5.
02

E
-0

04
80

0
1

80
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

1.
76

E
-0

05
90

0
1

90
0

0.
00

E
+

00
0

0.
00

E
+

00
0

1.
95

E
-0

06
3.

32
E

-0
05

10
00

1
10

00
0.

00
E

+
00

0
0.

00
E

+
00

0
0.

00
E

+
00

0
2.

58
E

-0
04

20
00

1
20

00
0.

00
E

+
00

0
0.

00
E

+
00

0
5.

00
E

-0
04

6.
64

E
-0

05
30

00
1

30
00

0.
00

E
+

00
0

0.
00

E
+

00
0

1.
25

E
-0

04
1.

56
E

-0
05

40
00

1
40

00
0.

00
E

+
00

0
0.

00
E

+
00

0
1.

56
E

-0
05

3.
32

E
-0

05
50

00
1

50
00

0.
00

E
+

00
0

0.
00

E
+

00
0

5.
02

E
-0

04
6.

64
E

-0
05

60
00

1
60

00
0.

00
E

+
00

0
0.

00
E

+
00

0
7.

81
E

-0
06

2.
68

E
-0

04
70

00
1

70
00

6.
25

E
-0

05
0.

00
E

+
00

0
1.

56
E

-0
05

5.
33

E
-0

04
80

00
1

80
00

0.
00

E
+

00
0

0.
00

E
+

00
0

5.
00

E
-0

04
6.

25
E

-0
05

90
00

1
90

00
0.

00
E

+
00

0
0.

00
E

+
00

0
1.

29
E

-0
04

5.
35

E
-0

04
10

00
0

1
10

00
0

3.
91

E
-0

06
0.

00
E

+
00

0
3.

32
E

-0
05

5.
33

E
-0

04
20

00
0

1
20

00
0

1.
95

E
-0

06
1.

95
E

-0
06

2.
91

E
-0

04
2.

85
E

-0
04

30
00

0
1

30
00

0
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

78
E

-0
04

6.
43

E
-0

04
40

00
0

1
40

00
0

2.
50

E
-0

04
0.

00
E

+
00

0
9.

36
E

-0
04

6.
46

E
-0

04
50

00
0

1
50

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

1.
00

E
-0

03
6.

66
E

-0
04

60
00

0
1

60
00

0
1.

95
E

-0
06

1.
95

E
-0

06
1.

02
E

-0
03

6.
66

E
-0

04

50

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

70
00

0
1

70
00

0
5.

02
E

-0
04

2.
50

E
-0

04
1.

29
E

-0
03

4.
20

E
-0

04
80

00
0

1
80

00
0

3.
13

E
-0

05
1.

56
E

-0
05

1.
42

E
-0

03
7.

15
E

-0
04

90
00

0
1

90
00

0
1.

95
E

-0
06

1.
25

E
-0

04
1.

87
E

-0
03

9.
34

E
-0

04
1e

+
05

1
1e

+
05

2.
52

E
-0

04
1.

56
E

-0
05

2.
00

E
-0

03
9.

34
E

-0
04

2e
+

05
1

2e
+

05
1.

43
E

-0
04

6.
64

E
-0

05
4.

12
E

-0
03

1.
33

E
-0

03
3e

+
05

1
3e

+
05

1.
60

E
-0

04
2.

87
E

-0
04

5.
69

E
-0

03
1.

50
E

-0
03

4e
+

05
1

4e
+

05
6.

66
E

-0
04

3.
32

E
-0

04
7.

67
E

-0
03

4.
10

E
-0

03
5e

+
05

1
5e

+
05

4.
28

E
-0

04
6.

78
E

-0
04

9.
54

E
-0

03
3.

00
E

-0
03

6e
+

05
1

6e
+

05
8.

05
E

-0
04

4.
34

E
-0

04
1.

13
E

-0
02

3.
17

E
-0

03
7e

+
05

1
7e

+
05

7.
46

E
-0

04
9.

36
E

-0
04

1.
31

E
-0

02
3.

94
E

-0
03

8e
+

05
1

8e
+

05
1.

00
E

-0
03

1.
00

E
-0

03
1.

47
E

-0
02

4.
67

E
-0

03
9e

+
05

1
9e

+
05

1.
25

E
-0

03
1.

13
E

-0
03

1.
67

E
-0

02
5.

03
E

-0
03

1e
+

06
1

1e
+

06
1.

13
E

-0
03

1.
13

E
-0

03
1.

90
E

-0
02

7.
93

E
-0

03
2e

+
06

1
2e

+
06

2.
66

E
-0

03
2.

32
E

-0
03

3.
76

E
-0

02
1.

03
E

-0
02

3e
+

06
1

3e
+

06
3.

72
E

-0
03

3.
75

E
-0

03
5.

65
E

-0
02

1.
50

E
-0

02
4e

+
06

1
4e

+
06

4.
81

E
-0

03
5.

00
E

-0
03

7.
47

E
-0

02
1.

96
E

-0
02

5e
+

06
1

5e
+

06
6.

31
E

-0
03

6.
00

E
-0

03
9.

33
E

-0
02

2.
45

E
-0

02
6e

+
06

1
6e

+
06

7.
67

E
-0

03
7.

33
E

-0
03

1.
13

E
-0

01
2.

90
E

-0
02

7e
+

06
1

7e
+

06
8.

86
E

-0
03

8.
71

E
-0

03
1.

31
E

-0
01

3.
38

E
-0

02
8e

+
06

1
8e

+
06

9.
94

E
-0

03
9.

95
E

-0
03

1.
50

E
-0

01
5.

73
E

-0
02

9e
+

06
1

9e
+

06
1.

10
E

-0
02

1.
10

E
-0

02
1.

77
E

-0
01

6.
43

E
-0

02
1e

+
07

1
1e

+
07

1.
21

E
-0

02
1.

26
E

-0
02

1.
97

E
-0

01
7.

17
E

-0
02

1.
1e

+
07

1
1.

1e
+

07
1.

37
E

-0
02

1.
34

E
-0

02
2.

17
E

-0
01

7.
86

E
-0

02
1.

2e
+

07
1

1.
2e

+
07

1.
49

E
-0

02
1.

45
E

-0
02

2.
37

E
-0

01
8.

59
E

-0
02

51

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

1.
3e

+
07

1
1.

3e
+

07
1.

60
E

-0
02

1.
60

E
-0

02
2.

56
E

-0
01

9.
25

E
-0

02
1.

4e
+

07
1

1.
4e

+
07

1.
75

E
-0

02
1.

75
E

-0
02

2.
77

E
-0

01
9.

97
E

-0
02

1.
5e

+
07

1
1.

5e
+

07
1.

86
E

-0
02

1.
86

E
-0

02
2.

95
E

-0
01

1.
06

E
-0

01
1.

6e
+

07
1

1.
6e

+
07

1.
95

E
-0

02
1.

99
E

-0
02

3.
16

E
-0

01
1.

14
E

-0
01

1.
7e

+
07

1
1.

7e
+

07
2.

11
E

-0
02

2.
07

E
-0

02
3.

36
E

-0
01

1.
20

E
-0

01
1.

8e
+

07
1

1.
8e

+
07

2.
20

E
-0

02
2.

21
E

-0
02

3.
56

E
-0

01
1.

28
E

-0
01

1.
9e

+
07

1
1.

9e
+

07
2.

33
E

-0
02

2.
36

E
-0

02
3.

75
E

-0
01

1.
35

E
-0

01
2e

+
07

1
2e

+
07

2.
44

E
-0

02
2.

49
E

-0
02

3.
95

E
-0

01
1.

42
E

-0
01

2.
1e

+
07

1
2.

1e
+

07
2.

58
E

-0
02

2.
60

E
-0

02
4.

14
E

-0
01

1.
49

E
-0

01
2.

2e
+

07
1

2.
2e

+
07

2.
71

E
-0

02
2.

78
E

-0
02

4.
34

E
-0

01
1.

56
E

-0
01

2.
3e

+
07

1
2.

3e
+

07
2.

83
E

-0
02

2.
81

E
-0

02
4.

54
E

-0
01

1.
64

E
-0

01
2.

4e
+

07
1

2.
4e

+
07

2.
95

E
-0

02
2.

97
E

-0
02

4.
73

E
-0

01
1.

71
E

-0
01

2.
5e

+
07

1
2.

5e
+

07
3.

07
E

-0
02

3.
09

E
-0

02
4.

93
E

-0
01

1.
78

E
-0

01
2.

6e
+

07
1

2.
6e

+
07

3.
20

E
-0

02
3.

20
E

-0
02

5.
13

E
-0

01
1.

85
E

-0
01

2.
7e

+
07

1
2.

7e
+

07
3.

33
E

-0
02

3.
35

E
-0

02
5.

33
E

-0
01

1.
91

E
-0

01
2.

8e
+

07
1

2.
8e

+
07

3.
43

E
-0

02
3.

48
E

-0
02

5.
52

E
-0

01
1.

98
E

-0
01

2.
9e

+
07

1
2.

9e
+

07
3.

58
E

-0
02

3.
58

E
-0

02
5.

72
E

-0
01

2.
05

E
-0

01
3e

+
07

1
3e

+
07

3.
72

E
-0

02
3.

66
E

-0
02

5.
93

E
-0

01
2.

12
E

-0
01

52

T
ab

le
9.

2:
S
q
u
ar

es
u
m

T
im

in
g

R
es

u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
C

P
P

G
P

U
10

0
1

10
00

0
1.

95
E

-0
06

7.
81

E
-0

06
7.

81
E

-0
06

3.
50

E
-0

04
20

0
1

40
00

0
2.

58
E

-0
04

5.
02

E
-0

04
2.

91
E

-0
04

6.
66

E
-0

04
30

0
1

90
00

0
2.

68
E

-0
04

6.
64

E
-0

05
6.

25
E

-0
04

9.
92

E
-0

04
40

0
1

16
00

00
6.

46
E

-0
04

2.
85

E
-0

04
1.

73
E

-0
03

1.
25

E
-0

03
50

0
1

25
00

00
6.

78
E

-0
04

3.
50

E
-0

04
2.

43
E

-0
03

1.
14

E
-0

03
60

0
1

36
00

00
8.

67
E

-0
04

8.
38

E
-0

04
3.

94
E

-0
03

1.
67

E
-0

03
70

0
1

49
00

00
1.

25
E

-0
03

8.
71

E
-0

04
5.

13
E

-0
03

1.
93

E
-0

03
80

0
1

64
00

00
1.

06
E

-0
03

1.
25

E
-0

03
6.

87
E

-0
03

1.
69

E
-0

03
90

0
1

81
00

00
1.

33
E

-0
03

1.
00

E
-0

03
8.

26
E

-0
03

2.
51

E
-0

03
10

00
1

10
00

00
0

1.
93

E
-0

03
1.

42
E

-0
03

1.
06

E
-0

02
2.

67
E

-0
03

20
00

1
40

00
00

0
5.

98
E

-0
03

5.
55

E
-0

03
4.

19
E

-0
02

4.
35

E
-0

03
30

00
1

90
00

00
0

1.
23

E
-0

02
1.

19
E

-0
02

9.
42

E
-0

02
6.

99
E

-0
03

40
00

1
16

00
00

00
2.

07
E

-0
02

1.
93

E
-0

02
1.

68
E

-0
01

9.
00

E
-0

03
50

00
1

25
00

00
00

3.
15

E
-0

02
3.

09
E

-0
02

2.
61

E
-0

01
1.

15
E

-0
02

60
00

1
36

00
00

00
4.

51
E

-0
02

4.
35

E
-0

02
3.

77
E

-0
01

1.
36

E
-0

02
70

00
1

49
00

00
00

6.
08

E
-0

02
5.

99
E

-0
02

5.
12

E
-0

01
2.

60
E

-0
02

80
00

1
64

00
00

00
7.

96
E

-0
02

7.
83

E
-0

02
6.

70
E

-0
01

2.
97

E
-0

02
90

00
1

81
00

00
00

9.
93

E
-0

02
9.

83
E

-0
02

8.
49

E
-0

01
3.

33
E

-0
02

10
00

0
1

10
00

00
00

0
1.

22
E

-0
01

1.
21

E
-0

01
1.

05
E

+
00

0
3.

73
E

-0
02

20
00

0
1

40
00

00
00

0
4.

77
E

-0
01

4.
72

E
-0

01
4.

19
E

+
00

0
1.

07
E

-0
01

30
00

0
1

90
00

00
00

0
1.

07
E

+
00

0
1.

06
E

+
00

0
9.

40
E

+
00

0
3.

09
E

-0
01

40
00

0
1

16
00

00
00

00
1.

89
E

+
00

0
1.

87
E

+
00

0
1.

67
E

+
00

1
4.

14
E

-0
01

50
00

0
1

25
00

00
00

00
2.

95
E

+
00

0
2.

92
E

+
00

0
2.

61
E

+
00

1
7.

69
E

-0
01

60
00

0
1

36
00

00
00

00
4.

24
E

+
00

0
4.

23
E

+
00

0
3.

76
E

+
00

1
9.

36
E

-0
01

53

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

70
00

0
1

49
00

00
00

00
5.

78
E

+
00

0
5.

75
E

+
00

0
5.

12
E

+
00

1
1.

33
E

+
00

0
80

00
0

1
64

00
00

00
00

7.
54

E
+

00
0

7.
52

E
+

00
0

6.
67

E
+

00
1

1.
65

E
+

00
0

90
00

0
1

81
00

00
00

00
9.

54
E

+
00

0
9.

50
E

+
00

0
8.

46
E

+
00

1
1.

87
E

+
00

0
1e

+
05

1
10

00
00

00
00

0
1.

18
E

+
00

1
1.

17
E

+
00

1
1.

04
E

+
00

2
2.

57
E

+
00

0

54

T
ab

le
9.

3:
C

u
b

es
u
m

T
im

in
g

R
es

u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
C

P
P

G
P

U
10

0
1

10
00

00
0

6.
43

E
-0

03
4.

06
E

-0
03

1.
23

E
-0

02
7.

49
E

-0
02

20
0

1
80

00
00

0
3.

09
E

-0
02

2.
20

E
-0

02
9.

39
E

-0
02

1.
21

E
-0

01
30

0
1

27
00

00
00

7.
99

E
-0

02
5.

91
E

-0
02

3.
12

E
-0

01
2.

57
E

-0
01

40
0

1
64

00
00

00
1.

63
E

-0
01

1.
26

E
-0

01
7.

36
E

-0
01

4.
12

E
-0

01
50

0
1

12
50

00
00

0
2.

91
E

-0
01

2.
23

E
-0

01
1.

43
E

+
00

0
6.

18
E

-0
01

60
0

1
21

60
00

00
0

4.
50

E
-0

01
3.

67
E

-0
01

2.
47

E
+

00
0

8.
62

E
-0

01
70

0
1

34
30

00
00

0
6.

81
E

-0
01

5.
59

E
-0

01
3.

93
E

+
00

0
1.

13
E

+
00

0
80

0
1

51
20

00
00

0
9.

67
E

-0
01

7.
99

E
-0

01
5.

84
E

+
00

0
1.

45
E

+
00

0
90

0
1

72
90

00
00

0
1.

32
E

+
00

0
1.

12
E

+
00

0
8.

29
E

+
00

0
1.

85
E

+
00

0
10

00
1

10
00

00
00

00
1.

73
E

+
00

0
1.

49
E

+
00

0
1.

14
E

+
00

1
2.

31
E

+
00

0
11

00
1

13
31

00
00

00
2.

24
E

+
00

0
1.

94
E

+
00

0
1.

51
E

+
00

1
2.

69
E

+
00

0
12

00
1

17
28

00
00

00
2.

81
E

+
00

0
2.

49
E

+
00

0
1.

97
E

+
00

1
3.

21
E

+
00

0
13

00
1

21
97

00
00

00
3.

50
E

+
00

0
3.

11
E

+
00

0
2.

50
E

+
00

1
3.

73
E

+
00

0
14

00
1

27
44

00
00

00
4.

29
E

+
00

0
3.

86
E

+
00

0
3.

12
E

+
00

1
4.

36
E

+
00

0
15

00
1

33
75

00
00

00
5.

18
E

+
00

0
4.

65
E

+
00

0
3.

85
E

+
00

1
5.

04
E

+
00

0
16

00
1

40
96

00
00

00
6.

18
E

+
00

0
5.

59
E

+
00

0
4.

65
E

+
00

1
5.

65
E

+
00

0
17

00
1

49
13

00
00

00
7.

33
E

+
00

0
6.

63
E

+
00

0
5.

58
E

+
00

1
6.

37
E

+
00

0
18

00
1

58
32

00
00

00
8.

60
E

+
00

0
7.

80
E

+
00

0
6.

66
E

+
00

1
7.

09
E

+
00

0
19

00
1

68
59

00
00

00
9.

97
E

+
00

0
9.

11
E

+
00

0
7.

80
E

+
00

1
7.

96
E

+
00

0
20

00
1

80
00

00
00

00
1.

15
E

+
00

1
1.

06
E

+
00

1
9.

16
E

+
00

1
8.

01
E

+
00

0
21

00
1

92
61

00
00

00
1.

32
E

+
00

1
1.

22
E

+
00

1
1.

07
E

+
00

2
8.

00
E

+
00

0
22

00
1

10
64

80
00

00
0

1.
51

E
+

00
1

1.
39

E
+

00
1

1.
21

E
+

00
2

8.
00

E
+

00
0

23
00

1
12

16
70

00
00

0
1.

71
E

+
00

1
1.

58
E

+
00

1
1.

38
E

+
00

2
8.

94
E

+
00

0
24

00
1

13
82

40
00

00
0

1.
92

E
+

00
1

1.
78

E
+

00
1

1.
57

E
+

00
2

8.
99

E
+

00
0

55

T
ab

le
9.

4:
V

ec
to

r
A

d
d
it

io
n

T
im

in
g

R
es

u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
C

P
P

G
P

U
10

0
10

0
10

0
0.

00
E

+
00

0
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

28
E

-0
02

20
0

20
0

20
0

5.
00

E
-0

04
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

05
E

-0
02

30
0

30
0

30
0

6.
25

E
-0

05
0.

00
E

+
00

0
1.

95
E

-0
06

6.
17

E
-0

02
40

0
40

0
40

0
0.

00
E

+
00

0
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

07
E

-0
02

50
0

50
0

50
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

6.
37

E
-0

02
60

0
60

0
60

0
0.

00
E

+
00

0
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

07
E

-0
02

70
0

70
0

70
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

6.
09

E
-0

02
80

0
80

0
80

0
6.

25
E

-0
05

0.
00

E
+

00
0

1.
56

E
-0

05
6.

37
E

-0
02

90
0

90
0

90
0

1.
95

E
-0

06
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

11
E

-0
02

10
00

10
00

10
00

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
12

E
-0

05
6.

39
E

-0
02

20
00

20
00

20
00

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

6.
08

E
-0

02
30

00
30

00
30

00
0.

00
E

+
00

0
0.

00
E

+
00

0
0.

00
E

+
00

0
6.

31
E

-0
02

40
00

40
00

40
00

0.
00

E
+

00
0

0.
00

E
+

00
0

7.
81

E
-0

06
6.

07
E

-0
02

50
00

50
00

50
00

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
12

E
-0

05
6.

04
E

-0
02

60
00

60
00

60
00

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
13

E
-0

05
6.

14
E

-0
02

70
00

70
00

70
00

0.
00

E
+

00
0

7.
81

E
-0

06
1.

33
E

-0
04

6.
09

E
-0

02
80

00
80

00
80

00
0.

00
E

+
00

0
0.

00
E

+
00

0
7.

81
E

-0
06

6.
07

E
-0

02
90

00
90

00
90

00
0.

00
E

+
00

0
0.

00
E

+
00

0
3.

12
E

-0
05

6.
10

E
-0

02
10

00
0

10
00

0
10

00
0

5.
02

E
-0

04
0.

00
E

+
00

0
2.

83
E

-0
04

6.
09

E
-0

02
11

00
0

11
00

0
11

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

1.
29

E
-0

04
6.

20
E

-0
02

12
00

0
12

00
0

12
00

0
3.

91
E

-0
06

1.
95

E
-0

06
1.

43
E

-0
04

6.
09

E
-0

02
13

00
0

13
00

0
13

00
0

0.
00

E
+

00
0

3.
13

E
-0

05
2.

68
E

-0
04

6.
15

E
-0

02
14

00
0

14
00

0
14

00
0

2.
50

E
-0

04
0.

00
E

+
00

0
7.

23
E

-0
05

6.
05

E
-0

02
15

00
0

15
00

0
15

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
16

E
-0

04
6.

10
E

-0
02

56

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

16
00

0
16

00
0

16
00

0
1.

56
E

-0
05

0.
00

E
+

00
0

1.
43

E
-0

04
6.

12
E

-0
02

17
00

0
17

00
0

17
00

0
0.

00
E

+
00

0
3.

91
E

-0
06

2.
83

E
-0

04
6.

06
E

-0
02

18
00

0
18

00
0

18
00

0
5.

00
E

-0
04

0.
00

E
+

00
0

3.
48

E
-0

04
6.

10
E

-0
02

19
00

0
19

00
0

19
00

0
7.

81
E

-0
06

3.
91

E
-0

06
1.

60
E

-0
04

6.
08

E
-0

02
20

00
0

20
00

0
20

00
0

0.
00

E
+

00
0

5.
00

E
-0

04
5.

72
E

-0
04

6.
15

E
-0

02
30

00
0

30
00

0
30

00
0

0.
00

E
+

00
0

1.
95

E
-0

06
4.

28
E

-0
04

6.
41

E
-0

02
40

00
0

40
00

0
40

00
0

2.
54

E
-0

04
2.

50
E

-0
04

7.
25

E
-0

04
6.

32
E

-0
02

50
00

0
50

00
0

50
00

0
3.

91
E

-0
06

2.
58

E
-0

04
8.

13
E

-0
04

6.
15

E
-0

02
60

00
0

60
00

0
60

00
0

3.
13

E
-0

05
6.

64
E

-0
05

1.
06

E
-0

03
6.

17
E

-0
02

70
00

0
70

00
0

70
00

0
5.

08
E

-0
04

7.
58

E
-0

04
1.

32
E

-0
03

6.
21

E
-0

02
80

00
0

80
00

0
80

00
0

8.
02

E
-0

03
1.

76
E

-0
05

2.
24

E
-0

03
6.

22
E

-0
02

90
00

0
90

00
0

90
00

0
1.

37
E

-0
04

9.
57

E
-0

05
1.

86
E

-0
03

6.
27

E
-0

02
1e

+
05

1e
+

05
1e

+
05

6.
64

E
-0

05
7.

23
E

-0
05

1.
99

E
-0

03
6.

49
E

-0
02

2e
+

05
2e

+
05

2e
+

05
7.

70
E

-0
03

5.
76

E
-0

04
3.

84
E

-0
03

6.
38

E
-0

02
3e

+
05

3e
+

05
3e

+
05

3.
13

E
-0

03
4.

67
E

-0
04

5.
18

E
-0

03
6.

54
E

-0
02

4e
+

05
4e

+
05

4e
+

05
1.

00
E

-0
03

1.
50

E
-0

03
7.

28
E

-0
03

6.
67

E
-0

02
5e

+
05

5e
+

05
5e

+
05

2.
79

E
-0

03
1.

27
E

-0
03

9.
62

E
-0

03
7.

41
E

-0
02

6e
+

05
6e

+
05

6e
+

05
2.

39
E

-0
03

1.
40

E
-0

03
1.

06
E

-0
02

6.
98

E
-0

02
7e

+
05

7e
+

05
7e

+
05

7.
02

E
-0

03
2.

05
E

-0
03

1.
30

E
-0

02
7.

05
E

-0
02

8e
+

05
8e

+
05

8e
+

05
3.

26
E

-0
03

2.
14

E
-0

03
1.

48
E

-0
02

7.
21

E
-0

02
9e

+
05

9e
+

05
9e

+
05

2.
89

E
-0

03
2.

08
E

-0
03

1.
82

E
-0

02
7.

86
E

-0
02

1e
+

06
1e

+
06

1e
+

06
4.

45
E

-0
03

2.
52

E
-0

03
1.

81
E

-0
02

7.
36

E
-0

02

57

T
ab

le
9.

5:
V

ec
to

r
S
or

ti
n
g

T
im

in
g

R
es

u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
C

P
P

G
P

U
10

0
10

0
20

0
1.

95
E

-0
06

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
19

E
-0

03
20

0
20

0
46

1
0.

00
E

+
00

0
0.

00
E

+
00

0
1.

95
E

-0
06

3.
34

E
-0

04
30

0
30

0
74

4
1.

56
E

-0
05

6.
25

E
-0

05
1.

95
E

-0
06

3.
38

E
-0

04
40

0
40

0
10

41
1.

95
E

-0
06

0.
00

E
+

00
0

0.
00

E
+

00
0

3.
22

E
-0

04
50

0
50

0
13

50
1.

25
E

-0
04

2.
50

E
-0

04
1.

56
E

-0
05

8.
30

E
-0

04
60

0
60

0
16

67
3.

91
E

-0
06

7.
81

E
-0

06
6.

25
E

-0
05

4.
28

E
-0

04
70

0
70

0
19

92
1.

25
E

-0
04

1.
25

E
-0

04
1.

95
E

-0
06

7.
13

E
-0

04
80

0
80

0
23

23
1.

95
E

-0
06

3.
91

E
-0

06
3.

32
E

-0
05

8.
55

E
-0

04
90

0
90

0
26

59
1.

56
E

-0
05

1.
56

E
-0

05
2.

58
E

-0
04

8.
57

E
-0

04
10

00
10

00
30

00
6.

25
E

-0
05

0.
00

E
+

00
0

3.
32

E
-0

05
7.

13
E

-0
04

20
00

20
00

66
03

5.
16

E
-0

04
5.

16
E

-0
04

6.
64

E
-0

04
5.

00
E

-0
04

30
00

30
00

10
43

2
2.

83
E

-0
04

2.
83

E
-0

04
4.

34
E

-0
04

1.
25

E
-0

03
40

00
40

00
14

40
9

2.
60

E
-0

04
3.

22
E

-0
04

1.
00

E
-0

03
1.

03
E

-0
03

50
00

50
00

18
49

5
5.

84
E

-0
04

6.
46

E
-0

04
1.

27
E

-0
03

1.
64

E
-0

03
60

00
60

00
22

66
9

8.
34

E
-0

04
3.

34
E

-0
04

1.
42

E
-0

03
1.

67
E

-0
03

70
00

70
00

26
91

6
7.

09
E

-0
04

6.
78

E
-0

04
1.

97
E

-0
03

1.
86

E
-0

03
80

00
80

00
31

22
5

4.
34

E
-0

04
4.

28
E

-0
04

2.
01

E
-0

03
1.

48
E

-0
03

90
00

90
00

35
58

9
9.

67
E

-0
04

8.
09

E
-0

04
2.

16
E

-0
03

2.
05

E
-0

03
10

00
0

10
00

0
40

00
0

9.
84

E
-0

04
8.

75
E

-0
04

2.
42

E
-0

03
2.

00
E

-0
03

11
00

0
11

00
0

44
45

6
1.

00
E

-0
03

9.
38

E
-0

04
3.

00
E

-0
03

2.
03

E
-0

03
12

00
0

12
00

0
48

95
1

1.
00

E
-0

03
1.

00
E

-0
03

3.
07

E
-0

03
2.

57
E

-0
03

13
00

0
13

00
0

53
48

2
1.

02
E

-0
03

1.
04

E
-0

03
3.

83
E

-0
03

2.
33

E
-0

03
14

00
0

14
00

0
58

04
6

1.
53

E
-0

03
1.

13
E

-0
03

4.
00

E
-0

03
2.

93
E

-0
03

15
00

0
15

00
0

62
64

2
1.

20
E

-0
03

1.
16

E
-0

03
4.

03
E

-0
03

2.
87

E
-0

03

58

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

16
00

0
16

00
0

67
26

6
1.

29
E

-0
03

1.
65

E
-0

03
4.

66
E

-0
03

2.
69

E
-0

03
17

00
0

17
00

0
71

91
8

1.
33

E
-0

03
1.

33
E

-0
03

4.
93

E
-0

03
3.

13
E

-0
03

18
00

0
18

00
0

76
59

5
1.

68
E

-0
03

2.
18

E
-0

03
5.

06
E

-0
03

3.
14

E
-0

03
19

00
0

19
00

0
81

29
7

1.
46

E
-0

03
1.

43
E

-0
03

5.
32

E
-0

03
3.

16
E

-0
03

20
00

0
20

00
0

86
02

1
1.

86
E

-0
03

2.
25

E
-0

03
5.

44
E

-0
03

3.
67

E
-0

03
30

00
0

30
00

0
13

43
14

2.
48

E
-0

03
2.

25
E

-0
03

8.
93

E
-0

03
5.

00
E

-0
03

40
00

0
40

00
0

18
40

83
3.

50
E

-0
03

3.
98

E
-0

03
1.

20
E

-0
02

6.
16

E
-0

03
50

00
0

50
00

0
23

49
49

4.
88

E
-0

03
5.

00
E

-0
03

1.
51

E
-0

02
7.

93
E

-0
03

60
00

0
60

00
0

28
66

90
6.

01
E

-0
03

6.
03

E
-0

03
1.

83
E

-0
02

9.
26

E
-0

03
70

00
0

70
00

0
33

91
57

7.
28

E
-0

03
7.

41
E

-0
03

2.
20

E
-0

02
1.

05
E

-0
02

80
00

0
80

00
0

39
22

48
8.

15
E

-0
03

8.
59

E
-0

03
2.

56
E

-0
02

1.
20

E
-0

02
90

00
0

90
00

0
44

58
82

9.
70

E
-0

03
9.

19
E

-0
03

2.
83

E
-0

02
1.

36
E

-0
02

1e
+

05
1e

+
05

50
00

00
1.

04
E

-0
02

1.
09

E
-0

02
3.

23
E

-0
02

1.
49

E
-0

02
2e

+
05

2e
+

05
10

60
20

6
2.

29
E

-0
02

3.
00

E
-0

02
6.

80
E

-0
02

2.
93

E
-0

02
3e

+
05

3e
+

05
16

43
13

7
3.

58
E

-0
02

3.
52

E
-0

02
1.

06
E

-0
01

4.
30

E
-0

02
4e

+
05

4e
+

05
22

40
82

4
5.

67
E

-0
02

4.
91

E
-0

02
1.

45
E

-0
01

5.
78

E
-0

02
5e

+
05

5e
+

05
28

49
48

6
6.

25
E

-0
02

6.
29

E
-0

02
1.

83
E

-0
01

7.
22

E
-0

02
6e

+
05

6e
+

05
34

66
89

1
8.

49
E

-0
02

7.
72

E
-0

02
2.

21
E

-0
01

8.
58

E
-0

02
7e

+
05

7e
+

05
40

91
56

9
9.

26
E

-0
02

9.
20

E
-0

02
2.

61
E

-0
01

1.
00

E
-0

01
8e

+
05

8e
+

05
47

22
47

2
1.

11
E

-0
01

1.
05

E
-0

01
3.

02
E

-0
01

1.
15

E
-0

01
9e

+
05

9e
+

05
53

58
81

9
1.

22
E

-0
01

1.
29

E
-0

01
3.

39
E

-0
01

1.
27

E
-0

01
1e

+
06

1e
+

06
60

00
00

0
1.

43
E

-0
01

1.
43

E
-0

01
3.

81
E

-0
01

1.
43

E
-0

01
2e

+
06

2e
+

06
12

60
20

60
3.

22
E

-0
01

2.
90

E
-0

01
7.

94
E

-0
01

2.
80

E
-0

01
3e

+
06

3e
+

06
19

43
13

64
4.

86
E

-0
01

4.
52

E
-0

01
1.

22
E

+
00

0
4.

20
E

-0
01

59

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

4e
+

06
4e

+
06

26
40

82
40

6.
55

E
-0

01
6.

22
E

-0
01

1.
66

E
+

00
0

5.
60

E
-0

01
5e

+
06

5e
+

06
33

49
48

51
8.

35
E

-0
01

8.
25

E
-0

01
2.

10
E

+
00

0
7.

02
E

-0
01

6e
+

06
6e

+
06

40
66

89
08

1.
02

E
+

00
0

9.
94

E
-0

01
2.

54
E

+
00

0
8.

45
E

-0
01

7e
+

06
7e

+
06

47
91

56
87

1.
19

E
+

00
0

1.
18

E
+

00
0

3.
00

E
+

00
0

9.
83

E
-0

01
8e

+
06

8e
+

06
55

22
47

20
1.

37
E

+
00

0
1.

38
E

+
00

0
3.

46
E

+
00

0
1.

12
E

+
00

0
9e

+
06

9e
+

06
62

58
81

83
1.

57
E

+
00

0
1.

57
E

+
00

0
3.

92
E

+
00

0
1.

28
E

+
00

0
1e

+
07

1e
+

07
70

00
00

00
1.

75
E

+
00

0
1.

76
E

+
00

0
4.

41
E

+
00

0
1.

42
E

+
00

0
2e

+
07

2e
+

07
14

60
20

60
0

3.
74

E
+

00
0

3.
67

E
+

00
0

9.
14

E
+

00
0

2.
84

E
+

00
0

3e
+

07
3e

+
07

22
43

13
63

8
5.

90
E

+
00

0
5.

80
E

+
00

0
1.

40
E

+
00

1
4.

27
E

+
00

0
4e

+
07

4e
+

07
30

40
82

40
0

8.
01

E
+

00
0

8.
10

E
+

00
0

1.
90

E
+

00
1

5.
70

E
+

00
0

5e
+

07
5e

+
07

38
49

48
50

1
1.

04
E

+
00

1
1.

04
E

+
00

1
2.

40
E

+
00

1
7.

12
E

+
00

0
6e

+
07

6e
+

07
46

66
89

07
6

1.
26

E
+

00
1

1.
27

E
+

00
1

2.
92

E
+

00
1

8.
55

E
+

00
0

7e
+

07
7e

+
07

54
91

56
86

3
1.

52
E

+
00

1
1.

48
E

+
00

1
3.

42
E

+
00

1
9.

96
E

+
00

0
8e

+
07

8e
+

07
63

22
47

19
9

1.
75

E
+

00
1

1.
75

E
+

00
1

3.
95

E
+

00
1

1.
14

E
+

00
1

9e
+

07
9e

+
07

71
58

81
82

6
1.

98
E

+
00

1
1.

99
E

+
00

1
4.

49
E

+
00

1
1.

28
E

+
00

1
1e

+
08

1e
+

08
80

00
00

00
0

2.
24

E
+

00
1

2.
24

E
+

00
1

5.
00

E
+

00
1

1.
42

E
+

00
1

60

T
ab

le
9.

6:
M

at
ri

x
T

ra
n
sp

os
ti

on
T

im
in

g
R

es
u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
C

P
P

G
P

U
10

0
x

10
0

10
0

x
10

0
10

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

1.
02

E
-0

01
20

0
x

20
0

20
0

x
20

0
40

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

0.
00

E
+

00
0

6.
10

E
-0

02
30

0
x

30
0

30
0

x
30

0
90

00
0

0.
00

E
+

00
0

1.
00

E
-0

03
0.

00
E

+
00

0
6.

20
E

-0
02

40
0

x
40

0
40

0
x

40
0

16
00

00
0.

00
E

+
00

0
2.

00
E

-0
03

2.
90

E
-0

02
6.

40
E

-0
02

50
0

x
50

0
50

0
x

50
0

25
00

00
3.

00
E

-0
02

1.
00

E
-0

03
2.

00
E

-0
03

6.
50

E
-0

02
60

0
x

60
0

60
0

x
60

0
36

00
00

3.
00

E
-0

02
3.

00
E

-0
03

3.
00

E
-0

03
6.

60
E

-0
02

70
0

x
70

0
70

0
x

70
0

49
00

00
3.

20
E

-0
02

4.
00

E
-0

03
4.

00
E

-0
03

6.
90

E
-0

02
80

0
x

80
0

80
0

x
80

0
64

00
00

3.
50

E
-0

02
6.

00
E

-0
03

7.
00

E
-0

03
7.

30
E

-0
02

90
0

x
90

0
90

0
x

90
0

81
00

00
3.

60
E

-0
02

8.
00

E
-0

03
8.

00
E

-0
03

9.
90

E
-0

02
10

00
x

10
00

10
00

x
10

00
10

00
00

0
3.

80
E

-0
02

1.
00

E
-0

02
1.

20
E

-0
02

7.
30

E
-0

02
20

00
x

20
00

20
00

x
20

00
40

00
00

0
7.

10
E

-0
02

4.
20

E
-0

02
5.

80
E

-0
02

1.
60

E
-0

01
30

00
x

30
00

30
00

x
30

00
90

00
00

0
1.

40
E

-0
01

1.
07

E
-0

01
1.

35
E

-0
01

2.
03

E
-0

01
40

00
x

40
00

40
00

x
40

00
16

00
00

00
2.

38
E

-0
01

2.
00

E
-0

01
2.

51
E

-0
01

3.
59

E
-0

01
50

00
x

50
00

50
00

x
50

00
25

00
00

00
3.

84
E

-0
01

3.
40

E
-0

01
4.

17
E

-0
01

5.
23

E
-0

01
60

00
x

60
00

60
00

x
60

00
36

00
00

00
6.

27
E

-0
01

5.
97

E
-0

01
6.

60
E

-0
01

6.
45

E
-0

01
70

00
x

70
00

70
00

x
70

00
49

00
00

00
8.

76
E

-0
01

8.
15

E
-0

01
9.

64
E

-0
01

8.
96

E
-0

01
80

00
x

80
00

80
00

x
80

00
64

00
00

00
1.

21
E

+
00

0
1.

23
E

+
00

0
1.

39
E

+
00

0
1.

00
E

+
00

0
90

00
x

90
00

90
00

x
90

00
81

00
00

00
1.

58
E

+
00

0
1.

55
E

+
00

0
1.

73
E

+
00

0
1.

26
E

+
00

0
10

00
0

x
10

00
0

10
00

0
x

10
00

0
10

00
00

00
0

1.
96

E
+

00
0

1.
95

E
+

00
0

2.
14

E
+

00
0

1.
59

E
+

00
0

11
00

0
x

11
00

0
11

00
0

x
11

00
0

12
10

00
00

0
2.

45
E

+
00

0
2.

37
E

+
00

0
2.

79
E

+
00

0
2.

19
E

+
00

0
12

00
0

x
12

00
0

12
00

0
x

12
00

0
14

40
00

00
0

3.
11

E
+

00
0

3.
13

E
+

00
0

3.
44

E
+

00
0

2.
11

E
+

00
0

13
00

0
x

13
00

0
13

00
0

x
13

00
0

16
90

00
00

0
3.

67
E

+
00

0
3.

64
E

+
00

0
3.

86
E

+
00

0
2.

47
E

+
00

0
14

00
0

x
14

00
0

14
00

0
x

14
00

0
19

60
00

00
0

4.
25

E
+

00
0

4.
17

E
+

00
0

4.
71

E
+

00
0

3.
13

E
+

00
0

15
00

0
x

15
00

0
15

00
0

x
15

00
0

22
50

00
00

0
4.

88
E

+
00

0
4.

94
E

+
00

0
5.

36
E

+
00

0
3.

41
E

+
00

0

61

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
R

B
C

C
P

P
G

P
U

16
00

0
x

16
00

0
16

00
0

x
16

00
0

25
60

00
00

0
6.

39
E

+
00

0
6.

42
E

+
00

0
9.

97
E

+
00

0
3.

72
E

+
00

0
17

00
0

x
17

00
0

17
00

0
x

17
00

0
28

90
00

00
0

6.
48

E
+

00
0

6.
46

E
+

00
0

6.
84

E
+

00
0

4.
33

E
+

00
0

18
00

0
x

18
00

0
18

00
0

x
18

00
0

32
40

00
00

0
7.

30
E

+
00

0
7.

17
E

+
00

0
8.

29
E

+
00

0
4.

28
E

+
00

0
19

00
0

x
19

00
0

19
00

0
x

19
00

0
36

10
00

00
0

8.
04

E
+

00
0

8.
02

E
+

00
0

8.
80

E
+

00
0

4.
72

E
+

00
0

20
00

0
x

20
00

0
20

00
0

x
20

00
0

40
00

00
00

0
9.

51
E

+
00

0
9.

46
E

+
00

0
1.

13
E

+
00

1
5.

26
E

+
00

0

62

T
ab

le
9.

7:
M

at
ri

x
M

u
lt

ip
li
ca

ti
on

T
im

in
g

R
es

u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

R
B

C
A

R
M

A
C

P
P

G
P

U
10

0
x

10
0

10
0

x
10

0
10

00
00

0
9.

34
E

-0
04

7.
36

E
-0

04
4.

02
E

-0
04

2.
33

E
-0

02
8.

98
E

-0
04

20
0

x
20

0
20

0
x

20
0

80
00

00
0

6.
19

E
-0

03
5.

98
E

-0
03

5.
08

E
-0

03
1.

87
E

-0
01

1.
00

E
-0

03
30

0
x

30
0

30
0

x
30

0
27

00
00

00
1.

83
E

-0
02

1.
83

E
-0

02
1.

79
E

-0
02

6.
29

E
-0

01
2.

01
E

-0
03

40
0

x
40

0
40

0
x

40
0

64
00

00
00

4.
20

E
-0

02
4.

22
E

-0
02

4.
16

E
-0

02
1.

52
E

+
00

0
2.

43
E

-0
03

50
0

x
50

0
50

0
x

50
0

12
50

00
00

0
8.

27
E

-0
02

8.
12

E
-0

02
8.

10
E

-0
02

2.
97

E
+

00
0

4.
00

E
-0

03
60

0
x

60
0

60
0

x
60

0
21

60
00

00
0

1.
43

E
-0

01
1.

41
E

-0
01

1.
39

E
-0

01
5.

25
E

+
00

0
5.

67
E

-0
03

70
0

x
70

0
70

0
x

70
0

34
30

00
00

0
2.

25
E

-0
01

2.
24

E
-0

01
2.

24
E

-0
01

8.
37

E
+

00
0

7.
74

E
-0

03
80

0
x

80
0

80
0

x
80

0
51

20
00

00
0

3.
42

E
-0

01
3.

43
E

-0
01

3.
42

E
-0

01
1.

26
E

+
00

1
1.

00
E

-0
02

90
0

x
90

0
90

0
x

90
0

72
90

00
00

0
4.

97
E

-0
01

4.
93

E
-0

01
5.

03
E

-0
01

1.
84

E
+

00
1

1.
32

E
-0

02
10

00
x

10
00

10
00

x
10

00
10

00
00

00
00

7.
46

E
-0

01
7.

12
E

-0
01

7.
17

E
-0

01
2.

45
E

+
00

1
1.

97
E

-0
02

63

T
ab

le
9.

8:
C

u
b

es
u
m

T
h
re

ad
an

d
B

lo
ck

C
ou

n
t

V
ec

to
r

S
iz

e
T

h
re

ad
C

ou
n
t

B
lo

ck
C

ou
n
t

10
0

12
8

1
20

0
25

6
1

30
0

25
6

2
40

0
25

6
2

50
0

25
6

2
60

0
25

6
3

70
0

25
6

3
80

0
25

6
4

90
0

25
6

4
10

00
25

6
4

11
00

25
6

5
12

00
25

6
5

13
00

25
6

6
14

00
25

6
6

15
00

25
6

6
16

00
25

6
7

17
00

25
6

7
18

00
25

6
8

19
00

25
6

8
20

00
25

6
8

21
00

25
6

9
22

00
25

6
9

23
00

25
6

9
24

00
25

6
10

64

T
ab

le
9.

9:
V

ec
to

r
A

d
d
it

io
n

T
h
re

ad
an

d
B

lo
ck

C
ou

n
t

T
h
re

ad
s

B
lo

ck
s

M
u
lt

ip
ro

ce
ss

or
s

L
oa

d
T

h
re

ad
s

B
lo

ck
s

M
u
lt

ip
ro

ce
ss

or
s

L
oa

d
10

0
1

1
1

15
00

0
59

10
1

20
0

1
1

1
16

00
0

63
11

1
30

0
2

1
1

17
00

0
67

12
1

40
0

2
1

1
18

00
0

71
12

1
50

0
2

1
1

19
00

0
75

13
1

60
0

3
1

1
20

00
0

79
14

1
70

0
3

1
1

30
00

0
11

8
20

2
80

0
4

1
1

40
00

0
15

7
27

2
90

0
4

1
1

50
00

0
19

6
33

3
10

00
4

1
1

60
00

0
23

5
40

3
20

00
8

2
1

70
00

0
27

4
46

4
30

00
12

2
1

80
00

0
31

3
53

4
40

00
16

3
1

90
00

0
35

2
59

4
50

00
20

4
1

10
00

00
39

1
66

5
60

00
24

4
1

20
00

00
78

2
13

1
9

70
00

28
5

1
30

00
00

11
72

19
6

14
80

00
32

6
1

40
00

00
15

63
26

1
18

90
00

36
6

1
50

00
00

19
54

32
6

22
10

00
0

40
7

1
60

00
00

23
44

39
1

27
11

00
0

43
8

1
70

00
00

27
35

45
6

31
12

00
0

47
8

1
80

00
00

31
25

52
1

35
13

00
0

51
9

1
90

00
00

35
16

58
6

40
14

00
0

55
10

1
10

00
00

0
39

07
65

2
44

65

T
ab

le
9.

10
:

G
P

U
T

ra
n
sf

er
T

im
in

g
R

es
u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

T
O

T
A

L
.E

L
A

P
S
E

D
T

O
.D

E
V

IC
E

T
O

.H
O

S
T

F
U

N
C

T
IO

N
.E

L
A

P
S
E

D
10

0
1

1
6.

76
E

-0
04

8.
17

E
-0

06
1.

05
E

-0
05

4.
16

E
-0

04
20

0
1

1
6.

45
E

-0
05

8.
38

E
-0

06
1.

13
E

-0
05

6.
45

E
-0

05
30

0
1

1
1.

33
E

-0
04

8.
74

E
-0

06
1.

08
E

-0
05

3.
32

E
-0

05
40

0
1

1
5.

18
E

-0
04

8.
62

E
-0

06
1.

10
E

-0
05

2.
58

E
-0

04
50

0
1

1
6.

25
E

-0
05

9.
14

E
-0

06
1.

11
E

-0
05

6.
45

E
-0

05
60

0
1

1
1.

33
E

-0
04

9.
04

E
-0

06
1.

12
E

-0
05

5.
33

E
-0

04
70

0
1

1
2.

68
E

-0
04

9.
31

E
-0

06
1.

14
E

-0
05

5.
02

E
-0

04
80

0
1

1
3.

32
E

-0
05

9.
31

E
-0

06
1.

14
E

-0
05

1.
76

E
-0

05
90

0
1

1
3.

91
E

-0
06

9.
62

E
-0

06
1.

17
E

-0
05

3.
32

E
-0

05
10

00
1

1
2.

85
E

-0
04

1.
11

E
-0

05
1.

52
E

-0
05

2.
58

E
-0

04
20

00
1

1
6.

64
E

-0
05

1.
11

E
-0

05
1.

29
E

-0
05

6.
64

E
-0

05
30

00
1

1
1.

29
E

-0
04

1.
24

E
-0

05
1.

46
E

-0
05

1.
56

E
-0

05
40

00
1

1
1.

33
E

-0
04

1.
35

E
-0

05
1.

56
E

-0
05

3.
32

E
-0

05
50

00
1

1
2.

60
E

-0
04

1.
48

E
-0

05
1.

72
E

-0
05

6.
64

E
-0

05
60

00
1

1
2.

68
E

-0
04

1.
63

E
-0

05
1.

93
E

-0
05

2.
68

E
-0

04
70

00
1

1
2.

68
E

-0
04

1.
73

E
-0

05
1.

97
E

-0
05

5.
33

E
-0

04
80

00
1

1
2.

68
E

-0
04

1.
85

E
-0

05
2.

12
E

-0
05

6.
25

E
-0

05
90

00
1

1
1.

35
E

-0
04

1.
99

E
-0

05
2.

25
E

-0
05

5.
35

E
-0

04
10

00
0

1
1

1.
35

E
-0

04
2.

12
E

-0
05

2.
33

E
-0

05
5.

33
E

-0
04

20
00

0
1

1
5.

66
E

-0
04

3.
10

E
-0

05
3.

59
E

-0
05

2.
85

E
-0

04
30

00
0

1
1

1.
27

E
-0

04
4.

12
E

-0
05

4.
87

E
-0

05
6.

43
E

-0
04

40
00

0
1

1
5.

72
E

-0
04

6.
06

E
-0

05
6.

21
E

-0
05

6.
46

E
-0

04
50

00
0

1
1

3.
22

E
-0

04
6.

28
E

-0
05

7.
31

E
-0

05
6.

66
E

-0
04

60
00

0
1

1
5.

80
E

-0
04

7.
98

E
-0

05
8.

66
E

-0
05

6.
66

E
-0

04

66

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
T

O
T

A
L

.E
L

A
P

S
E

D
T

O
.D

E
V

IC
E

T
O

.H
O

S
T

F
U

N
C

T
IO

N
.E

L
A

P
S
E

D
70

00
0

1
1

3.
22

E
-0

04
9.

67
E

-0
05

1.
03

E
-0

04
4.

20
E

-0
04

80
00

0
1

1
1.

62
E

-0
04

1.
04

E
-0

04
1.

09
E

-0
04

7.
15

E
-0

04
90

00
0

1
1

2.
91

E
-0

04
1.

14
E

-0
04

1.
25

E
-0

04
9.

34
E

-0
04

1e
+

05
1

1
3.

32
E

-0
04

1.
25

E
-0

04
1.

35
E

-0
04

9.
34

E
-0

04
2e

+
05

1
1

7.
46

E
-0

04
2.

46
E

-0
04

2.
59

E
-0

04
1.

33
E

-0
03

3e
+

05
1

1
1.

00
E

-0
03

3.
38

E
-0

04
3.

63
E

-0
04

1.
50

E
-0

03
4e

+
05

1
1

1.
13

E
-0

03
4.

12
E

-0
04

4.
53

E
-0

04
4.

10
E

-0
03

5e
+

05
1

1
1.

57
E

-0
03

4.
74

E
-0

04
4.

99
E

-0
04

3.
00

E
-0

03
6e

+
05

1
1

1.
17

E
-0

03
5.

44
E

-0
04

5.
78

E
-0

04
3.

17
E

-0
03

7e
+

05
1

1
1.

86
E

-0
03

6.
15

E
-0

04
6.

28
E

-0
04

3.
94

E
-0

03
8e

+
05

1
1

1.
49

E
-0

03
6.

61
E

-0
04

7.
38

E
-0

04
4.

67
E

-0
03

9e
+

05
1

1
1.

81
E

-0
03

7.
57

E
-0

04
7.

97
E

-0
04

5.
03

E
-0

03
1e

+
06

1
1

2.
00

E
-0

03
8.

00
E

-0
04

8.
42

E
-0

04
7.

93
E

-0
03

2e
+

06
1

1
3.

59
E

-0
03

1.
53

E
-0

03
1.

51
E

-0
03

1.
03

E
-0

02
3e

+
06

1
1

5.
26

E
-0

03
2.

23
E

-0
03

2.
26

E
-0

03
1.

50
E

-0
02

4e
+

06
1

1
6.

86
E

-0
03

2.
93

E
-0

03
2.

88
E

-0
03

1.
96

E
-0

02
5e

+
06

1
1

8.
51

E
-0

03
3.

62
E

-0
03

3.
60

E
-0

03
2.

45
E

-0
02

6e
+

06
1

1
9.

35
E

-0
03

4.
24

E
-0

03
4.

26
E

-0
03

2.
90

E
-0

02
7e

+
06

1
1

1.
10

E
-0

02
5.

04
E

-0
03

4.
94

E
-0

03
3.

38
E

-0
02

8e
+

06
1

1
2.

13
E

-0
02

5.
65

E
-0

03
1.

30
E

-0
02

5.
73

E
-0

02
9e

+
06

1
1

2.
50

E
-0

02
6.

38
E

-0
03

1.
57

E
-0

02
6.

43
E

-0
02

1e
+

07
1

1
2.

74
E

-0
02

7.
08

E
-0

03
1.

73
E

-0
02

7.
17

E
-0

02
2e

+
07

1
1

5.
48

E
-0

02
1.

40
E

-0
02

3.
48

E
-0

02
1.

42
E

-0
01

3e
+

07
1

1
8.

14
E

-0
02

2.
09

E
-0

02
5.

20
E

-0
02

2.
12

E
-0

01

67

T
ab

le
9.

11
:

C
P

P
T

ra
n
sf

er
T

im
in

g
R

es
u
lt

s
IN

P
U

T
O

U
T

P
U

T
C

A
L

C
.C

O
U

N
T

T
R

A
N

S
F

E
R

.T
IM

E
10

0
1

1
0.

00
E

+
00

0
20

0
1

1
0.

00
E

+
00

0
30

0
1

1
0.

00
E

+
00

0
40

0
1

1
0.

00
E

+
00

0
50

0
1

1
0.

00
E

+
00

0
60

0
1

1
0.

00
E

+
00

0
70

0
1

1
0.

00
E

+
00

0
80

0
1

1
0.

00
E

+
00

0
90

0
1

1
0.

00
E

+
00

0
10

00
1

1
0.

00
E

+
00

0
20

00
1

1
6.

25
E

-0
05

30
00

1
1

7.
81

E
-0

06
40

00
1

1
0.

00
E

+
00

0
50

00
1

1
1.

95
E

-0
06

60
00

1
1

0.
00

E
+

00
0

70
00

1
1

0.
00

E
+

00
0

80
00

1
1

0.
00

E
+

00
0

90
00

1
1

5.
00

E
-0

04
10

00
0

1
1

0.
00

E
+

00
0

20
00

0
1

1
0.

00
E

+
00

0
30

00
0

1
1

0.
00

E
+

00
0

40
00

0
1

1
0.

00
E

+
00

0
50

00
0

1
1

1.
95

E
-0

06
60

00
0

1
1

0.
00

E
+

00
0

68

IN
P

U
T

O
U

T
P

U
T

C
A

L
C

.C
O

U
N

T
T

R
A

N
S
F

E
R

.T
IM

E
70

00
0

1
1

0.
00

E
+

00
0

80
00

0
1

1
3.

91
E

-0
06

90
00

0
1

1
0.

00
E

+
00

0
1e

+
05

1
1

0.
00

E
+

00
0

2e
+

05
1

1
0.

00
E

+
00

0
3e

+
05

1
1

0.
00

E
+

00
0

4e
+

05
1

1
0.

00
E

+
00

0
5e

+
05

1
1

0.
00

E
+

00
0

6e
+

05
1

1
0.

00
E

+
00

0
7e

+
05

1
1

0.
00

E
+

00
0

8e
+

05
1

1
0.

00
E

+
00

0
9e

+
05

1
1

0.
00

E
+

00
0

1e
+

06
1

1
0.

00
E

+
00

0
2e

+
06

1
1

0.
00

E
+

00
0

3e
+

06
1

1
0.

00
E

+
00

0
4e

+
06

1
1

0.
00

E
+

00
0

5e
+

06
1

1
0.

00
E

+
00

0
6e

+
06

1
1

0.
00

E
+

00
0

7e
+

06
1

1
3.

12
E

-0
05

8e
+

06
1

1
0.

00
E

+
00

0
9e

+
06

1
1

0.
00

E
+

00
0

1e
+

07
1

1
1.

95
E

-0
06

2e
+

07
1

1
0.

00
E

+
00

0
3e

+
07

1
1

0.
00

E
+

00
0

69

Chapter 10

Code

10.1 Timing Script

Below is an example of the timing scripts used, including examples of both Rcpp and
.Call function usage.

Necessary R Packages

library(Rcpp)

library(inline)

library(compiler)

library(mail)

R example function

ex_r <- function(vec, iter) {

#Code Here

}

R bytecode example function

ex_bc <- cmpfun(ex_r)

Example Armadillo C code. This is for matrix multiplication.

code <- ’

arma::mat A = Rcpp::as<arma::mat>(a);

arma::mat B = Rcpp::as<arma::mat>(b);

arma::mat C = A * B;

return Rcpp::wrap(C);

’

Armadillo code compilation

ex_arma <- cxxfunction(signature(a="numeric",b="numeric"), code,

plugin="RcppArmadillo", verbose=TRUE)

Matrix Multiplication C code

cppFunction(’

NumericMatrix matmul_cpp(SEXP matA, SEXP matB) {

Rcpp::NumericMatrix a(matA);

70

Rcpp::NumericMatrix b(matB);

Rcpp::NumericMatrix ab(a.nrow(), b.ncol());

for(int i = 0; i < a.nrow(); i++) {

for(int j = 0; j < b.ncol(); j++) {

ab(i,j) = 0;

for(int k = 0; k < a.ncol(); k++) {

ab(i,j) += a(i,k)*b(k,j);

}

}

}

return ab;

}’

)

Example RCPP function. This is for vector addition.

cppFunction(’

NumericVector ex_cpp(SEXP vecA, SEXP vecB) {

Rcpp::NumericVector a(vecA);

Rcpp::NumericVector b(vecB);

Rcpp::NumericVector ab(a.size());

for(int i = 0; i < a.size(); i++) {

ab(i) = a(i) + b(i);

}

return ab;

}’

)

External .Call initialization and cleanup functions

ex_init <- function() { dyn.load("ex.so")}

ex_cln <- function() { dyn.unload("ex.so")}

External .Call to C function

ex_cpp <- function(vec, iter) {

Setup code here

.Call("ex_cpp", vec, iter, y)

Return code here

}

External .Call to CUDA example function

ac_gpu <- function(vec, iter) {

Setup code here

.Call("ex_gpu", vec, iter, y)

Return code here

}

Example benchmarking code

ex_bench <- function(init=100, goal=1000, step=100, reps=10, wait=TRUE) {

71

If necessary, give the user 20 seconds to lock the computer

if(wait) {

tmp <- proc.time()[3]

while((proc.time()[3]-tmp) <= 20) {}

}

Iterate through sizes that are multiples of N, used for Artificial

Complexity testing. If this was not used, the loop was removed.

The elements iterated through have to be hard coded, but this was

just for simplicity.

for(it in seq(0.01, 1, by=0.01)) {

Write output to the R benchmark csv file

output <- "INPUT,OUTPUT,CALC.COUNT,N.FACTOR,ELAPSED\n"

cat(output, file="ex_bench_r.csv", append=TRUE)

Iterate through the desired vector sizes. This changes

depending on whether multiple vectors, or matrices are

used.

for(i in seq(init, goal, by=step)) {

Create a random vector

A <- sample(5, i, replace=TRUE)

Next, time the execution of one of the example

functions

start <- proc.time()[3]

ex_r(A, as.integer(floor((it*i)*i*i)))

average <- proc.time()[3]-start

If desired, repeat the timing multiple times for better

accuracy

if(reps > 1) {

for(j in c(1:(reps-1))) {

start <- proc.time()[3]

ex_r(A, as.integer(floor((it*i)*i*i)))

average <- (average+(proc.time()[3]-start))/2

}

}

Format the results and write them to the csv file.

The exact output from this was changed to accommodate

the varying test outputs.

input <- toString(i)

out <- toString(1)

ccount <- toString(i)

nfac <- toString(as.integer(floor((it*i)*i*i)))

elapsed <- toString(average)

output <- c(input, ",", out, ",", ccount, ",", nfac, ",", elapsed, "\n")

cat(output, file="ex_bench_r.csv", append=TRUE)

rm(A)

print(toString(i/(goal/it)))

}

72

Repeat the process for the bytecode, CPP, and CUDA functions

}

}

10.2 CUDA and C/C++ Code

Below is an example of external function code, for both CUDA and C/C++ functions.

// CUDA Library

#include<CUDA.h>

// R Libraries

#include <R.h>

#include<Rinternals.h>

#include<Rmath.h>

#include<R_ext/BLAS.h>

// C sorting

#include<vector>

#include<algorithm>

#include<numeric>

#include<math.h>

// sum: Sequential sum code

int sum(int *v, int l) {

int retVal = 0;

for(int i = 0; i < l; i++) {

retVal += v[i];

}

return retVal;

}

// vecCopy: Copies size elements from in to out

void vecCopy(int *in, int *out, int size) {

for(int i = 0; i < size; i++) {

out[i] = in[i];

}

}

// Parallel vector reduction

__global__ void reduce(int *idata, int *odata, int numElements, int iter) {

extern __shared__ int temp[];

unsigned int i = threadIdx.x;

unsigned int j = blockDim.x*blockIdx.x;

for(int x = 0; x < iter; x++) {

// Handle parallel reduction where the full block is involved.

if(numElements-j > blockDim.x) {

// Load elements into shared memory

73

temp[i] = idata[i+j];

__syncthreads();

// Sum the block’s contents

for(unsigned int stride = blockDim.x>>1; stride > 0; stride >>=1) {

__syncthreads();

if(i < stride) {

temp[i] += temp[i+stride];

}

}

}

// Handle parallel reduction on the final, incomplete block

else {

// Load elements into shared memory

if(i+j < numElements) {temp[i] = idata[i+j];}

else {temp[i] = 0;}

__syncthreads();

// Sum the block’s contents

for(unsigned int stride = blockDim.x>>1; stride > 0; stride >>=1) {

__syncthreads();

if(i < stride && i+j+stride < numElements) {

temp[i] += temp[i+stride];

}

}

}

__syncthreads();

}

// Write the results back to output

if(i == 0) {

odata[blockIdx.x] = temp[i];

}

}

extern "C" SEXP ac_gpu(SEXP v, SEXP i, SEXP ret) {

// Error checking

int numElements = length(v);

if(numElements <= 1) {

return R_NilValue;

}

// Data and memory setup

const int memSize = numElements*sizeof(int);

int *temp = INTEGER(v);

int *iter = INTEGER(i);

int *h_idata = (int *)malloc(memSize);

vecCopy(temp, h_idata, numElements);

int *h_odata = (int *)malloc(memSize);

int *d_idata, *d_odata;

cudaMalloc((void**)&d_idata, memSize);

74

cudaMalloc((void**)&d_odata, memSize);

// Copy input data to device

cudaMemcpy(d_idata, h_idata, memSize, cudaMemcpyHostToDevice);

// Loop over the data until a single value has been returned

bool flip = false;

while(numElements > 1) {

int i = 0;

int g = 0;

// Calculate the block size

for(i = 2; i <= 256; i <<=1) {if(numElements < i){break;}}

// Calculate the grid size

if(numElements % i == 0) {

g = ((int)floor(numElements/i));

} else {

g = ((int)floor(numElements/i))+1;

}

dim3 grid(g, 1), block(i,1);

// Run the kernel

if(flip) {reduce<<<grid, block, i*sizeof(int)>>>(d_odata, d_idata,

numElements, *iter);}

else {reduce<<<grid, block, i*sizeof(int)>>>(d_idata, d_odata,

numElements, *iter);}

// Update the control variables for the next iteration

numElements = g;

flip = !flip;

}

// Retrieve the results

if(!flip) {

cudaMemcpy(h_odata, d_idata, memSize, cudaMemcpyDeviceToHost);

} else {

cudaMemcpy(h_odata, d_odata, memSize, cudaMemcpyDeviceToHost);

}

// Copy the result into the return variable

int *retVal = INTEGER(ret);

*retVal = (int)h_odata[0];

// Cleanup

free(h_idata);

free(h_odata);

cudaFree(d_idata);

cudaFree(d_odata);

// Return the nil value

return R_NilValue;

}

75

// singlesum_cpu

// Sequential sum on the cpu

extern "C" SEXP ac_cpp(SEXP v, SEXP i, SEXP ret) {

// Initialize data

int numElements = length(v);

int *vec = INTEGER(v);

int *iter = INTEGER(i);

std::vector<int> temp(numElements);

for(int i = 0; i < numElements; i++) {

temp[i] = vec[i];

}

// Sum vec using accumulate from the algorithm library

// and store the result in the return variable

int *retVal = INTEGER(ret);

int average = std::accumulate(temp.begin(), temp.end(), 0);

for(int i = 1; i < *iter; i++) {

average = std::accumulate(temp.begin(), temp.end(), 0);

}

*retVal = average;

// Return a nil value

return R_NilValue;

}

76

Bibliography

[1] The Comprehensive R Archive Network : http://cran.us.r-project.org/

[2] CRAN High-Performance and Parallel Computing in R: http://cran.r-
project.org/web/views/HighPerformanceComputing.html

[3] CUDA 4.2 SDK : https://developer.nvidia.com/cuda-toolkit-42-archive

[4] CUDA Thrust Library : http://docs.nvidia.com/cuda/thrust/

[5] C++ Algorithm Library : http://www.cplusplus.com/reference/algorithm/

[6] GPUTOOLS : http://cran.r-project.org/web/packages/gputools/index.html

[7] R+GPU : http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/

[8] PLASMA: http://icl.eecs.utk.edu/plasma/

[9] MAGMA: http://icl.eecs.utk.edu/magma/

[10] fork : http://cran.r-project.org/web/packages/fork/index.html

[11] Rdsm: http://cran.r-project.org/web/packages/Rdsm/index.html

[12] Xiaosong Ma; Jiangtian Li; Samatova, N.F., ”Automatic Parallelization of
Scripting Languages: Toward Transparent Desktop Parallel Computing,” Par-
allel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-
tional , vol., no., pp.1,6, 26-30 March 2007 doi: 10.1109/IPDPS.2007.370488

[13] Jiangtian Li, Xiaosong Ma, Srikanth Yoginath, Guruprasad Kora, and Nag-
iza F. Samatova. 2011. Transparent Runtime Parallelization of the R Script-
ing Language. J. Parallel Distrib. Comput. 71, 2 (February 2011), 157-168.
DOI=10.1016/j.jpdc.2010.08.013 http://dx.doi.org/10.1016/j.jpdc.2010.08.013

[14] Yulong Ou; Bo Li; Hailong Yang; Zhongzhi Luan; Depei Qian, ”Efficient Sta-
tistical Computing on Multicore and MultiGPU Systems,” Network-Based In-
formation Systems (NBiS), 2012 15th International Conference on , vol., no.,
pp.709,714, 26-28 Sept. 2012 doi: 10.1109/NBiS.2012.89

77

	EFFECTIVE FUNCTION CHOICE IN THE R SCRIPTING LANGUAGE
	Recommended Citation

	tmp.1392663876.pdf.w8CmU

