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Abstract 

An increased consideration of sustainability throughout society has resulted in a surge of 

research investigating sustainable alternatives to existing construction materials. A new 

binder system, called a geopolymer, is being investigated to supplement ordinary portland 

cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions 

inherent in its production. 

Geopolymers are produced from the alkali activation of a powdered aluminosilicate source 

by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally 

linked aluminosilicates. Geopolymers have shown great potential as a building 

construction material, offering similar mechanical and durability properties to OPC. 

Additionally, geopolymers have the added value of a considerably smaller carbon footprint 

than OPC. 

This research considered the compressive strength, microstructure and composition of 

geopolymers made from two types of waste glass with varying aluminum contents. Waste 

glass shows great potential for mainstream use in geopolymers due to its chemical and 

physical homogeneity as well as its high content of amorphous silica, which could 

eliminate the need for sodium silicate. However, the lack of aluminum is thought to 

negatively affect the mechanical performance and alkali stability of the geopolymer 

system. 
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Mortars were designed using various combinations of glass and metakaolin or fly ash to 

supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) 

reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) 

did not perform as well and remained sticky even after several weeks of curing, most likely 

due to the lack of Al which is believed to cause hardening in geopolymers. A moderate 

metakaolin replacement (25-38% by mass) was found to positively affect the compressive 

strength of mortars made with either type of glass.  

Though the microstructure of the mortar was quite indicative of mechanical performance, 

composition was also found to be important. The initial stoichiometry of the bulk mixture 

was maintained fairly closely, especially in mixtures made with fine glass. This research 

has shown that glass has great potential for use in geopolymers, when care is given to 

consider the compositional and physical properties of the glass in mixture design. 
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1. Introduction

1.1 Motivation 

Concrete, in one form or another, has been around since ancient Egypt and throughout 

history has played an integral role in the advancement of civilization.  Today, much of the 

nation’s infrastructure is still made of concrete because no other building material can offer 

the same ease of handling and economic benefit along with the dependable mechanical and 

durability properties that can be achieved with the right mixture design and materials. 

Since its development in the early 19th century, ordinary portland cement (OPC) has been 

the dominant choice in the global concrete market based on its reputation for producing a 

reliable and functional building material.  This success, however, comes at a cost.  The 

world-wide production of OPC is reported to be responsible for 5-8% of global 

anthropogenic carbon emissions annually (Scrivener and Kirkpatrick 2008). Efforts to 

reduce the carbon footprint of this heavily relied upon building material have been 

somewhat successful. However, much of the CO2 emitted during OPC production is 

inherent in the process and cannot be avoided.  This realization has led researchers toward 

developing alternative low-CO2 binders such as geopolymers. 

Geopolymers are based on the alkali activation of a powdered aluminosilicate source 

material with an alkali hydroxide solution that often contains pre-dissolved silica.  Concrete 

made with a geopolymer binder has been shown to perform equal to or better than OPC 

concrete in terms of mechanical and durability performance. Additionally, geopolymer 
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concrete has the added value of a considerably smaller carbon footprint, with reported CO2 

emission reductions of up to 80% as compared to OPC (Davidovits 1994; Duxson et al. 

2007). 

Thus far, the majority of research concerning geopolymers has been based on using fly ash 

or metakaolin as the main sources of silica (SiO2) and alumina (Al2O3). Upon initial 

investigation of geopolymers in this research, it was noted that most geopolymers require 

the use of sodium silicate in order to achieve quality performance.  It was further noted that 

one of the steps in the process of sodium silicate production is to first form a solid glass 

that is then “melted” to form sodium silicate, or waterglass.  This research initially 

examined the “activation” of waste glass by reacting it with NaOH in mild hydrothermal 

stirred conditions in the attempt to create low-CO2 sodium silicate for use in activating 

other geopolymers made of fly ash or metakaolin.  

However, it soon became apparent that a more efficient way to use the glass was as the 

source material rather than as a part of the activator.  This led to the investigation of glass 

as a source material for geopolymers and to the realization that most waste glass contains 

insufficient reactive Al for the formation of a non-water soluble geopolymer. This research 

has investigated a geopolymer system based primarily on the alkali activation of waste 

glass and the effects of increasing the naturally insufficient Al content through the addition 

of metakaolin or fly ash. 

It has been mentioned on many occasions that one of the biggest hurdles geopolymers face 

is the question of availability of aluminosilicate materials and the variability within the 
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materials that are available.  Research performed thus far has been focused on optimizing 

mixture conditions for a specific source material and as such has resulted in very specific 

data that in many ways is not applicable to other materials.  However, any step forward is 

important in the advancement of this technology and this research will hopefully lead to 

Si-rich materials such as waste glass being used as geopolymer source materials.  

A geopolymer binder system based on waste glass has the potential to: 

• Further reduce the carbon footprint of geopolymer cement by eliminating the need

for pre-dissolved silica in the form of sodium silicate in the activator solution

• Expand the compositional allowances of source materials for geopolymers to

include high silica waste materials

• Develop a dependable market for unsorted waste glass, which is currently an issue

in many countries, including the United States

1.2 Project goals 

Broadly speaking, the goal of this research was to investigate the products formed through 

the alkali activation of glass-based geopolymers activated by NaOH.  More specifically, 

this research sought to answer the following questions: 

1. What are the phases formed by the alkali activation of waste glass and how is the

microstructure and composition of these phases affected by the addition of

metakaolin as a source of alumina?

2. Is there a clear correlation between microstructure, composition and compressive

strength of glass-based geopolymers?

3. How does the bulk stoichiometry of the initial mixture compare to the actual

stoichiometry of the geopolymer formed?  What role does the degree of reaction

play in this relationship?
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4. Does the addition of metakaolin or fly ash adequately lower the stoichiometry of

the mixture to more acceptable ranges found in other geopolymers made of fly

ash or metakaolin and does this enhance the mechanical performance?

It should be noted, the purpose of this research is not to develop the best or strongest 

possible glass-based geopolymer, but rather to identify the characteristics of baseline glass 

geopolymers and to document and observe the changes that occur when an alumina source 

is introduced.   

The aforementioned goals were achieved through a series of tasks, beginning with a 

thorough review of the available literature, which covers all manner of geopolymers as 

well as silica chemistry and zeolite formation. Using information gathered from the 

literature review, representative materials were chosen; mixture designs were developed 

and microstructural characterization applied.  Three phases of experimental work were then 

carried out, described briefly below: 

• Phase I – Preliminary mixtures made of 100% high-Al glass were designed to

investigate the effects of NaOH concentration, glass fineness and curing

temperature.

• Phase II – Mixtures made of high-Al glass and varying replacement rates of

metakaolin and fly ash were designed to investigate the effects of adding in a

supplementary Al source.

• Phase III – Stoichiometric design-based mixtures using both high-Al glass and

low-Al glass with metakaolin as a supplementary Al source were designed to

apply the concepts learned in Phases I and II to a low-Al glass.

Material characterization investigation was performed at various ages of the mixtures that 

included scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) 
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analysis of polished sections, x-ray diffraction (XRD) measurements and degree of reaction 

calculations.  Compressive strength was also measured to determine a strength gain profile 

for the mortars that could be related to the microstructural information gathered. 

Isothermal and adiabatic calorimetry was also performed on select mixtures. 

1.3 Organization 

This dissertation is presented beginning with a literature review in Chapter 2 covering the 

relevant literature and general knowledge needed to understand this unique binder system. 

The final section in Chapter 2 includes a summary of relevant information from the 

literature review and how it was used to formulate the experimental plan. Chapter 3 covers 

the material selection process and various equipment and procedures used in the research 

as well as the mixture design and experimental approach for each of the phases listed 

previously. Chapter 4 covers the results and discussion of each of the three phases. Chapter 

5 summarizes the research project and offers conclusions and recommendations for future 

work. A brief introduction is included in each section to aid the reader in the direction of 

the work.  

Figures 2.2, 2.4, 2.7, 2.9, 2.10, 2.11 and 2.14 were drawn by artist Faye L. Christiansen, 

please see Appendix D for documentation of permission to print this material.

45 





2. Literature Review

The literature review is broken up into nine main sections with an introduction and 

explanation of relevancy to the project at the beginning of each major section.  Briefly, the 

sections are: 

2.1 Ordinary portland cement This section covers the necessary raw materials, 

production, hydration and environmental concerns 

regarding ordinary portland cement. 

2.2 Geopolymer cement This section presents an introduction to geopolymers 

including the history, recent developments and 

environmental impacts. A brief summary of the 

reported physical and durability properties of 

geopolymer binders is also presented. 

2.3 Geopolymerization This section discusses geopolymerization and 

includes a description of each step in the process 

based on current models.   

2.4 Source materials This section presents a discussion of the idyllic 

qualities of a successful source material as well as a 

review of metakaolin, fly ash and glass and how they 

perform in a geopolymer system. 

2.5 Activator solution This section provides a discussion of sodium 

hydroxide and sodium silicate as well as the effects 

changing the composition and form of the activator 

has on the kinetics of geopolymerization and the final 

product.  
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2.6 Mixture design stoichiometry This section explains basic mixture design principles 

and the currently accepted stoichiometric ranges as 

well as limits that exist based on the materials that 

are used.  

2.7 Synthesis parameters This section includes information on synthesis 

parameters such as water content and curing 

conditions. 

2.8 Characterization of binder This section covers the general microstructure and 

composition of fly ash and metakaolin geopolymers 

and discusses the relationship that has been reported 

to exist between microstructure and physical 

properties. 

2.9 Significance of literature review This section includes a summary of the literature 

review and a review of the experimental plan.

2.1 Ordinary portland cement (OPC) concrete 

Despite this research focusing on geopolymer cements, the literature review begins with a 

summary of basic facts and information on the current environmental situation of ordinary 

portland cement. Beginning on this note will not only clearly establish the motivation for 

pursuing research into the development of the geopolymer binder but will also help to 

highlight the fact these binders are based on two very different chemical systems.  

Note:  Cement chemistry has its own nomenclature where single letter abbreviations are 

used to represent various common oxides. Alternately, elemental abbreviations are 

typically used in geopolymer science to represent the same common oxides, as is the case 

in this dissertation. The most commonly used oxides are shown in Table 2.1. Additionally, 
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within this document, in reference to geopolymers, the oxide abbreviations will always 

signify molar concentrations or ratios unless otherwise specified.  

Table 2.1. Common oxides shown in cement chemist notation as well as geopolymer 
science. 

Oxide Common Names 
Cement Chemist 

Notation 

Geopolymer 

Science 

CaO lime, calcium oxide, calcia C Ca 
SiO2 silica, silicon oxide S Si 
Al2O3 alumina, aluminum oxide A Al 
Fe2O3 ferric oxide, iron oxide F Fe 
MgO magnesia, periclase M Mg 
K2O potassium oxide K K 
Na2O sodium oxide N Na 
SO3 sulfur trioxide S̄ 

CO2 carbon dioxide C̄ 

H2O water H H2O 

2.1.1 Production of ordinary portland cement 

“Portland cement constitutes one of the most important technological advances in 

the history of humanity” (Shi et al. 2011). 

Concrete, in one form or another, has been around for many, many centuries, with reports 

dating back to as far as the Egyptian civilization where gypsum mortars were used to 

construct the Pyramid of Cheops. In 1824, Joseph Aspdin invented an early version of the 

portland cement used today and since that time concrete made from ordinary portland 

cement (OPC) has dominated the construction industry, with an estimated 95% of all 

concrete used being made with OPC (Mindess et al. 2002).  
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Typical OPC concrete consists of portland cement, water, fine aggregate, coarse aggregate, 

and may contain chemical admixtures, supplementary cementitious materials (SCMs), and 

reinforcement in various combinations. Portland cement comes in the form of an anhydrous 

gray powder that gains strength upon mixing with water.  A basic understanding of the raw 

materials, production process and hydration of portland cement is important as it relates 

directly to the fresh and hardened properties of the concrete.  It will also be useful later on 

in this dissertation when comparing binder systems. 

There are five crucial elements necessary to produce the portland cement used today; 

calcium, silicon, aluminum, iron and calcium sulfate.  Calcium and silicon are most 

commonly provided in limestone, shale or clay, though other sources are also used 

depending on availability.  A blended powder made of raw materials containing these 

elements and others is transformed into portland cement through a series of processes 

outlined briefly below.  

1. Raw material processing – raw materials are ground and blended according to 

their oxide composition; great care is taken to ensure a consistent final product.  

Two methods for feeding this raw meal into the kiln exist: 

a. Wet process – the raw meal is blended with water to form a suspension 

that is fed into the cement kiln in the form of a slurry 

b. Dry process – the raw meal is blended dry and fed into the kiln as a 

powder 

2. Preheating/precalcining – the raw meal is preheated before it enters the kiln in a 

preheater or flash furnace; this equipment is most common in newer cement 

plants running on a dry process. 
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3. Heating in the kiln – cement kilns are typically in the form of a long, slowly

rotating cylindrical tube made of steel plates, lined on the inside with refractory

brick and set at a slight incline from the horizon.  At the lower end of the kiln, a

mixture of air and fuel are burned in a 2000°C flame set above the raw meal,

which forms an increasing temperature gradient from the top of the kiln to the

bottom.  As the raw meal passes slowly through the kiln, increasing steadily in

temperature, various chemical reactions occur at specific temperatures. A brief

summary of the kiln reactions follows:

a. 500 – 600°C – free water is driven off leading to clay decomposition

b. 700°C – carbon dioxide, CO2, and free lime, CaO, are released through the

calcination of calcium carbonate, CaCO3, in the limestone

c. 800°C – free lime reacts with silica from the decomposed clay to form

impure dicalcium silicate, or belite (C2S), aluminate (C3A) and ferrite

(C4AF) phases

d. 1300-1450°C – a partial liquid melt is formed from the aluminate and

ferrite phases, which acts as a flux for the formation of impure tricalcium

silicate, or alite (C3S), through the reaction of free lime and belite at

1450°C

4. Clinker cooler – nodules called clinker are formed in the kiln and cooled quickly

by cool air in the clinker cooler in order to maximize the reactivity of the cement

phases by hindering crystal growth

5. Final grinding – the cooled clinker are interground with calcium sulfate (CS̄ H2),

usually in the form of gypsum. The calcium sulfate is crucial to regulate set times

during cement hydration. The resulting powder is known as portland cement.

Through careful temperature control and stringent composition and fineness requirements, 

five main types of portland cement are produced and are specified through ASTM C150 

including various specialty blends that allow for air entrainment, increased sulfate 

resistance and lower heat of hydration (ASTM International 2009).  
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2.1.2 Hydration 

“An adequate understanding of the chemistry of hydration is necessary for a full 

appreciation of the properties of cements and concretes …” (Mindess et al. 2002). 

Hydration consists of a series of chemical reactions that occur between the five main phases 

of portland cement, shown in Table 2.2, and water. Each of the cement phases forms unique 

hydration products that in some cases go on to participate in further reactions with other 

phases or products. Hydration is a complicated, multi-step process, with many of the steps 

occurring concomitantly.  

Table 2.2. The five main phases and composition of a typical Type I portland cement 
(Mindess et al. 2002). 

Chemical 
Formula Chemical Name Common 

Name 
Cement 
Chemist 
Notation 

Wt % 

3CaO∙SiO2 tricalcium silicate alite C3S 55 
2CaO∙SiO2 dicalcium silicate belite C2S 18 

3CaO∙Al2O3 tricalcium 
aluminate aluminate C3A 10 

4CaO∙Al2O3∙Fe2O3 tetracalcium 
aluminoferrite ferrite C4AF 8 

CaSO4∙2H2O calcium sulfate 
dihydrate gypsum CS̄ H2 6 

All of the phases in portland cement play a role in hydration and are important in their own 

way but none so much as the calcium silicates, which make up the bulk of portland cement.  

The hydration of alite (and later belite) results in the formation of calcium silicate hydrate, 

or C-S-H gel, and calcium hydroxide, CH; C-S-H is responsible for the majority of strength 

in concrete. In general C-S-H is said to have a “degenerate clay structure,” (Mindess et al. 
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2002) and is mostly amorphous with a C/S ratio typically ranging between 1.5-2.0 and 

water content depending heavily on the extent of drying the paste has undergone. 

Hydration products are also formed from the other phases, which results in a complex 

multi-phase microstructure (Mindess et al. 2002). 

Hydration will continue until the reaction products take up all the space once occupied by 

the mixture water or until there are no unreacted cement particles available. The 

environment of the concrete during hydration is very important. Curing is the act of making 

available the water needed for hydration and keeping the concrete externally and internally 

at a temperature and relative humidity that allows hydration to continue for as long as 

possible. The presence of water during curing is particularly important to the structural 

resilience of C-S-H, and the extent to which hydration occurs has a direct effect on the 

strength and durability of the concrete.  

Some of the water that is consumed during hydration is chemically bound in the hydration 

products, while the rest remains among the hydration products forming a pore network 

upon evaporation. Pores exist in a variety of sizes based on factors such as the initial w/c 

(water-to-cement ratio) and curing conditions. Excess water (high w/c) leads to increased 

porosity which can lead to lower mechanical strength and decreased durability, where 

durability is defined as the concretes resistance to chemical and physical attack within its 

intended service environment. 
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2.1.3 Environmental concerns 

“The success of this material throughout the Twentieth Century can be attributed 

to its mechanical properties, cost-effectiveness, and overall performance 

(Fernández-Jiménez et al. 2006).”  

In an article entitled, “The Greening of The Concrete Industry,” Dr. Christian Meyer of 

Columbia University states that concrete is naturally an environmentally friendly building 

material and it is namely portland cement that gives concrete a bad name (Meyer 2009). 

Despite the worldwide success of OPC concrete, environmental concerns regarding carbon 

emissions related to OPC production have attracted negative attention, forcing the $150 

billion concrete industry (Scrivener and Kirkpatrick 2008) to try and add a touch of green 

to an otherwise gray material. 

Many attempts to improve the sustainability of concrete have been attempted. 

Unfortunately for the cement industry, however, most of the CO2 emissions from cement 

production are an inherent part of the current manufacturing process. The calcination of 

calcite, usually in the form of limestone emits a tremendous amount of CO2 as seen in 

Equation 1. 

CaCO3 (limestone) + heat → CaO (lime) + CO2 (Equation 1) 

In addition, combustion-related emissions resulting from maintaining a kiln temperature of 

nearly 2000°C are also unavoidable unless industry decides alite, which is formed at 

1450°C is not necessary, at which point a lower temperature could be used. This would 
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severely decrease the early strength gain and is unlikely to be easily accepted within the 

fast paced construction industry of today. Kiln feed preparation and finish grinding also 

require energy and fuel, which contribute to total CO2 emissions.  

Total carbon emissions from creating one ton of portland cement is estimated to be 

approximately 0.87 tons of CO2; where about 60% is process-related (limestone 

calcination) and 40% is combustion-related (Damtoft et al. 2008). CO2 is not the only 

greenhouse gas that is emitted by cement production; methane, nitrous oxide, sulfur 

hexafluoride, hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) are as well. 

Compared to other common building materials such as steel or wood, ordinary portland 

cement has a relatively low carbon footprint per ton produced (Hammond and Jones 2008). 

Table 2.3 shows the embodied energy and embodied carbon for the most common 

construction materials. However, the true atmospheric impact of OPC production is not 

realized until global production numbers are considered as well. 
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Table 2.3. Embodied energy and carbon for selected construction materials 
(Hammond and Jones 2008) 

Material 
Embodied energy 

(MJ/kg) 

Embodied carbon 

(kgC/kg) 

Portland cement (dry kiln) 3.3 0.196 

Portland cement (wet kiln) 5.9 0.248 

Concrete (general, 1:2:4) 0.95 0.035 

Precast concrete (general) 2 0.059 

Glass (general) 15 0.232 

Steel (general, 42.3% 

recycled content) 
24.4 0.482 

Timber (general) 8.5 0.125 

In 2011, 3.4 billion tons of portland cement were produced globally (van Oss 2012); this 

is said to account for 5-8% of total worldwide anthropogenic carbon emissions (Gartner 

2004; Scrivener and Kirkpatrick 2008; Sakulich 2011). Figure 2.1 shows the increase in 

global cement production since 1930. In 2011, the United States was the world’s third 

largest cement producer behind China and India (van Oss 2012).  
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Figure 2.1. Global cement production from 1930 to 2011 (van Oss 2012). 

For the last 40 years the cement industry has strived to improve the sustainability of its 

product through cement plant improvements, the widespread use of SCMs and blended 

cements to reduce the usage of OPC and even the development of alternative low-CO2 

cement systems. 

2.1.3.1 Cement plant improvements 

Following the 1970’s OPEC oil embargo, a great deal of research focused on improving 

the efficiency of kilns and raw material and cement processing equipment, including the 

advent of preheaters and pre-calciners, and improved efficiency of closed-circuit finish 

mills and clinker coolers (Gartner 2004).  Wet process plants transitioned to the dry process 

and installed preheater cyclones and/or pre-calciner vessels, which use recovered heat from 

the kiln and lower energy fuels to preheat the raw meal before it enters the kiln.  These 

plant additions have led to increased energy efficiencies and less time commitments per 
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many plants now use liquid and solid waste fuels, waste tires, biomass and other waste 

streams as fuel to heat the kilns. 

2.1.3.2 SCMs and blended cements 

Supplementary cementitious materials (SCMs) are often added to concrete as a partial 

portland cement replacement to enhance specific properties such as permeability, or to 

mitigate an ASR reaction, or for economic reasons. While SCM usage in the United States 

has become fairly commonplace and is quite readily accepted within the concrete industry, 

there still exist limits on the replacement rates of these materials in prescriptive 

specifications and standards. 

SCMs that contain a great deal of amorphous (non-crystalline) silica or aluminosilicate 

content are called pozzolans.  In a finely divided form and at high pH, these materials are 

very reactive; silica dissolves into solution and combines with CH from the hydration of 

the calcium silicates to form a secondary C-S-H phase, or C-A-H phase if aluminum is 

present.  A mixed phase called calcium aluminosilicate hydrate, C-A-S-H, is also 

sometimes formed.  SCMs that contain calcium in addition to silica and alumina are said 

to be latently hydraulic as well as pozzolanic.  

Since many SCMs are byproducts from other industrial processes, such as fly ash from 

coal burning power plants or slag from the iron industry, replacing OPC with these 

materials effectively cuts down on the carbon footprint of that mixture. SCM usage 

depends a great deal on the availability and proximity of the material to the ready-mixed 

plant or jobsite, as transportation costs can be very high and reduce the environmental or 
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economic advantage of using an SCM in the first place. Some of the more common SCMs 

are: 

• Class C or F fly ash (FA) 

• Granulated blast furnace slag (GBFS) or slag cement 

• metakaolin (MK) or other calcined clays 

• silica fume (SF) 

• rice husk ash (RHA) 

• diatomaceous earth 

• limestone dust 

2.1.3.3 Alternative cement systems 

Improvements in cement plant efficiency, the widespread use of supplementary 

cementitious materials (SCMs) to partially replace OPC in concrete mixtures and the 

introduction of waste materials such as tires or biomass for use as fuel in cement kilns are 

a few examples of the steps the cement industry has taken to enhance the sustainability of 

concrete (Damtoft et al. 2008). Despite these and other improvements, the truth of the 

matter is, as long as the binder system is based on the calcination of CaCO3, there is an 

inherent amount of CO2 that will be produced during production.  

Many types of alternative cements have been considered, including pozzolan-based 

cements, calcium sulfoaluminate-based cements or magnesium-based cements, but none 

of these have emerged as a realistic replacement for OPC (Gartner 2004).  Of all of the 
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possible alternative binders, the one that has shown the most potential due to its low carbon 

footprint and comparable performance to OPC is geopolymer cement. 

For a replacement cement system to be successful, it must be able to meet the current 

standards set forth by OPC.  In general, these can be summed up in four main points: 

1. Fresh properties (workability, air content, placeability, reliable set times, etc.)

2. Hardened properties (strength, durability, volume stability, etc.)

3. Environmental concerns (CO2 and other greenhouse gas emissions, natural

resource use, end of life issues, etc.)

4. Economy (OPC is an affordable material)

2.2 Geopolymer cement (GPC) concrete 

“Environmentally friendly, low-cost alkaline cements with similar or even better 

bonding properties are a promising alternative to portland cement” (Fernández-

Jiménez et al. 2006). 

A geopolymer is a binder formed from the alkali activation of an aluminosilicate source 

that behaves similar to or better than OPC in terms of mechanical performance and 

durability and possesses a markedly lower carbon footprint than OPC. Chemically, 

geopolymers are based on an entirely different system than OPC. While OPC is a hydraulic 

cement based primarily on the hydration of calcium silicates, GPC is based on the 

polycondensation of aluminosilicates by alkali activation and often contains very little 

calcium at all.  There are many different types of geopolymers that can be made from a 

variety of sources, each with their own set of unique properties. As was discussed with 

regard to OPC, the materials used, conditions of synthesis and subsequent curing can all 
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have an effect on the resulting reaction products, which in turn affect the fresh and hardened 

properties of the concrete. These and other considerations will be discussed in later sections 

of the literature review.  This section contains information on the classification, history and 

developments of GPC as well as a general overview of mechanical and durability 

performance. 

2.2.1 Classification 

Geopolymer cements fall under a class of binders commonly known as alkali-activated 

cements. Alkali-activated cements can be further classified into the following five groups 

based on the material being activated and the resulting reaction phases formed (Shi et al. 

2011; Shi et al. 2012): 

1. Alkali-activated slag-based cements

2. Alkali-activated pozzolan cements

3. Alkali-activated lime-pozzolan/slag cements

4. Alkali-activated calcium aluminate blended cements

5. Alkali-activated portland blended cements (hybrid cements)

Broadly, these alkali-activated cements can be divided into two main categories with regard 

to composition (Palomo et al. 1999).  The first is the activation of materials rich in silica 

and calcium (such as OPC, slag or class C fly ash) with mild alkaline solutions, which 

yields a calcium silicate hydrate (C-S-H) gel product (this would include #1,3,4,5 from the 

list above).  The second is the activation of materials rich in silica and alumina (such as 

metakaolin or Class F fly ash) with strong alkaline solutions, which yields a solid three-

61 



dimensional aluminosilicate matrix (this would include #2 from the list above). Only the 

latter category is considered in this research; this category is referred to as geopolymers. 

It should be noted that while “geopolymer” is a commonly used name for an alkali-

activated cement, other names include: inorganic polymers, alkali activated cements, low 

temperature aluminosilicate glass, geocements, zeocements, alkali-bonded ceramics, 

mineral polymers, hydroceramics, etc.  

Within the literature there is a fair amount of discussion on exactly what constitutes a 

geopolymer, with many believing that materials rich in calcium should not be called 

geopolymers (Fletcher et al. 2005). For example, since slag contains so much calcium, the 

resulting binder is a calcium silicate system, more similar to OPC than to any other system 

and therefore not a geopolymer under that definition (Provis 2009). Ukranian researcher, 

Krivenko, came up with a classification of various cements based on the composition of 

the initial materials and hydration products using his own terminology, shown in Table 2.4 

(Krivenko 2007). 

Table 2.4. Classification of various cements based on composition of hydration 
products (Krivenko 2007). 

Cement 
type OPC 

OPC 
alkaline 
cement 

Slag alkaline 
cement 

Fly ash alkaline 
cement 

Geo- 
cement 

Initial 
solid 
phase 

OPC 
clinker 

OPC clinker 
+ R2O 

Metallurgical 
slags + R2O 

Fly ash of best 
power stations 

(product of coal 
combustion) + R2O 

Clay + 
R2O 

Hydratio
n 

product 

0%   O-Al2O3-SiO2-H2O→    100% 
  100%         ←CaO-SiO2-H2O     0%  

*R2O – Na2O, K2O, Li2O
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Within this dissertation, the term geopolymer shall refer to a binder that is based on a silicon 

aluminum tetrahedral framework where the calcium content is decidedly less than silica 

and alumina combined, and activation is carried out with highly alkaline solutions.   

2.2.2 History and development 

The exact origin of alkali-activated cement technology is widely disputed, with some 

believing it was first used in ancient Egypt in the construction of the outer casings of the 

Great Pyramids (Davidovits 1987; Barsoum et al. 2006). Geopolymer technology seemed 

to disappear after that, reemerging in the 1930s when German scientist, Kuhl, experimented 

with ground slag powder and caustic potash and soda solutions to determine the reactivity 

of slag for use in portland cement concrete.  In 1940, a Belgian scientist named Purdon 

began experimenting with the cementitious properties of high-calcium metallurgical slags 

activated by alkali solutions made up of NaOH (Shi 2006).  

Research on these alkali activated slags, sometimes called Trief cements, continued for the 

next several decades until 1957, when Ukranian scientist and engineer, Victor Glukhovsky 

observed the similar hydraulic binding properties between alkali metals (Li, Na, K, Rb, Cs, 

Fr) and alkali earth metals (Ca, Mg) and the presence of sodium, potassium and calcium 

aluminosilicates alongside calcium compounds in nature.  Subsequent experimentation led 

to the realization the hydration products formed from combining alkali hydroxides and salts 

with aluminosilicate glasses and clays are similar to those of natural zeolites and micas 

(Krivenko 2007).  Base on these observations, Glukhovsky began research on alkali 

activated slag concrete that he called soil silicates or soil cements (Davidovits 2008; Shi et 
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al. 2011). He classified these binders into two groups, one containing “alkaline binding 

systems” and the other containing “alkali-alkaline-earth binding systems (Shi et al. 2011).” 

As stated previously, this classification is still considered today, with calcium being the 

deciding factor between the two groups. Glukhovsky later went on to develop a rough 

model for the alkali activation of aluminosilicates, which is the basis for today’s models of 

geopolymerization (Duxson et al. 2007; Shi et al. 2011): 

1. destruction-coagulation

2. coagulation-condensation

3. condensation-crystallization

During the 1970s, alkali-activated slag cements were used for many applications, such as 

agricultural, industrial, residential, transportation, mining, oil-well and sealing applications 

(Roy 1999). Around this same time, Dr. Joseph Davidovits, driven by the desire to find a 

building material with a high heat and fire resistance after a series of devastating fires in 

France, began experimentally reacting kaolinite powders with alkaline solutions (100-

150°C) to form hydroxysodalite (Davidovits 2002; Davidovits 2008). 

This research resulted in the development of a wide range of materials including fire-

resistant wood panels, low energy ceramic tiles, refractory items, high-tech resin systems 

and a binder for concrete (Davidovits 2002).  He named the resulting concrete binders 

“geopolymers” based on the idea that these new materials were “polymers resulting from 

geochemistry” (Davidovits 2002).  
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In the mid-1980s, Lone Star Industries, Inc. in Houston, Texas developed a 

portland/geopolymer blended cement called Pyrament® Blended Cement made out of very 

fine portland cement, blast furnace slag and metakaolin activated with potassium carbonate 

and retarded with citric acid.  This cement made history by reaching 6000 psi and 

withstanding the landing of a jet after just four hours of curing (Davidovits 1994; 

Davidovits 2008).  

In 1988, Davidovits organized the first-ever international conference on geopolymers, 

which attracted many scientists and sparked interest among researchers in a variety of 

disciplines including civil engineering, materials science, ceramics and chemical 

engineering. In 1994, Belgian scientist, Wastiels published an article citing the first 

documented use of fly ash in geopolymers, calling the resulting binder “fly ash based 

mineral polymers” (Wastiels et al. 1994). This development spurred another wave of 

research into using fly ash in geopolymer technology and was followed a few years later 

by the beginning of a series of four important articles concerning the alkaline activation of 

metakaolinite powder (Rahier et al. 1996; Rahier et al. 1996; Rahier et al. 1997; Rahier et 

al. 2003). To date, most of the geopolymer research performed has focused primarily on 

fly ash- or metakaolin-based systems. 

Over the past several decades, research on geopolymer cements and concretes has 

continued to steadily gain interest and popularity in academic and commercial circles, with 

many well-established research groups focusing primarily on this new technology. Some 

of the more prominent international groups are listed below: 
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• Geopolymer Institute – Saint-Quentin, France (J. Davidovits)

• Kiev National University of Civil Engineering and Architecture – Kiev, Ukraine

(V. Glukhovsky, P. Krivenko, et al.)

• Eduardo Torroja Institute (CSIC) – Madrid, Spain (A. Fernandez-Jimenez, A.

Palomo, et al.)

• University of Melbourne – Melbourne, Australia (J. van Deventer, J. Provis, P.

Duxson, et al.)

Additionally, three textbooks focused on geopolymer technology have also been published 

within the past seven years, attesting to the ever-increasing popularity of this sustainable, 

new binder system. The texts are: 

• Alkali-Activated Cements and Concretes (Shi et al. 2006)

• Geopolymers (Davidovits 2008)

• Geopolymers – Structure, processing, properties and industrial application (Provis

and vanDeventer 2009) 

There also currently exist several commercial companies creating geopolymer technology: 

CeraTech in the United States and Zeobond in Australia are two examples. Other 

applications of geopolymers currently being explored include the physical stabilization of 

mineralogical wastes such as contaminated top soil, fly ash, landfill leachate and mine 

tailings containing heavy metals (Van Jaarsveld et al. 1997; Duxson et al. 2007).  

2.2.3 Environmental impacts 

2.2.3.1 Carbon footprint 

One of the leading reasons why geopolymer concretes have gained such rapid popularity 

over the past few decades is due to the low carbon footprint associated with its production.  
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The elimination of the need for calcium carbonate carbonation as well as reduced kiln 

combustion requirements allow for estimated CO2 emission reductions of nearly 80% per 

ton of GPC produced as compared to OPC (Davidovits 1994; Duxson et al. 2007; Nowak 

2008; Van Deventer et al. 2010).  

Since fly ash is an industrial byproduct, it has reduced carbon emissions associated with it; 

CO2 emissions calculated for metakaolin based geopolymers are based on the CO2 emitted 

from the heat treatment necessary to make metakaolin from pure kaolin clay and the 

emissions associated with the production of the activator solution. It has been estimated 

that CO2 emissions for the production of both NaOH and sodium silicate solution are of a 

1:1 ratio, as in one ton of product results in one ton of CO2 released.  However, it has also 

been suggested that since NaOH is produced alongside with HCl in the chlor-alkali process, 

perhaps this total should be decreased for NaOH (Duxson et al. 2007).  

2.2.3.2 Utilization of waste materials 

Natural resources such as limestone, clay and shale, among other materials, are necessary 

for the production of portland cement.  While these materials are very common, issues 

associated with mining operations, pollution and land disturbance must be considered. 

Geopolymer cements possess the potential to utilize materials such as high LOI (loss on 

ignition) or high alkali fly ashes, which typically are landfilled because they cannot be used 

in OPC concrete. 

Increasing the sustainability of the alkaline activating solution in geopolymers would 

further lower the carbon footprint of the already low-CO2 binder.  There has been some 
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research looking into the development of low-CO2 activator solutions, using waste 

materials such as effluent from paper and poly-fiber industries (Deevasan and Ranganath 

2011). 

2.2.4 Performance 

In a 2001 article in Concrete International entitled, “Reducing the Environmental Impact 

of Concrete,” P. Kumar Mehta stated: 

“Except for blended portland cements containing mineral additions, no other 

hydraulic cements seem to satisfy the setting, hardening, and durability 

characteristics of portland cement-based products” (Mehta 2001). 

2.2.4.1 Mechanical performance 

In general, geopolymer cement concretes, have been shown to perform similarly to OPC 

concretes in terms of mechanical properties. However, just like OPC, each system must be 

tailored through source material and batching manipulation as well as curing conditions to 

generate a material with specific desired properties. The following is a cumulative list from 

the literature listing mechanical and physical properties that are common in most 

geopolymers (Duxson et al. 2007; Duxson et al. 2007; Sofi et al. 2007): 

• High early compressive strength without a compromise in ultimate strength

(Davidovits 1994; Fernández-Jiménez and Palomo 2003; Fernández-Jiménez et

al. 2006)

• High early flexural strength (Fernández-Jiménez et al. 2006)
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• Similar density to ordinary portland cement concretes of a similar strength design

(Sofi et al. 2007)

• Good adhesion properties to new and old concrete substrates as well as steel, glass

and ceramics (Xie and Xi 2001; Fernández-Jiménez and Palomo 2003)

• High surface definition that works well in molds

• Good pull out strength (Xie and Xi 2001; Fernández-Jiménez and Palomo 2003;

Fernández-Jiménez et al. 2006)

• Good bond with aggregate (Xie and Xi 2001; Fernández-Jiménez and Palomo

2005) 

2.2.4.2 Durability 

“More than any other technological aspect or engineering property, durability will 

be the factor that overrides all other technological drivers in determining the 

success or failure of geopolymer technology in the construction industry” (Duxson 

et al. 2007). 

In a 2013 report published by the American Society of Civil Engineers (ASCE), the United 

States infrastructure received a grade of “D+,” citing the need for a $3.6 trillion investment 

by 2020 (ASCE 2013). It is common for structures in the United States to be designed for 

a service life of 50 years, but require extreme repair or replacement at 20-30 years. This is 

a clear sign that long-term durability of OPC concrete is in many cases not adequate for its 

environment.   

As is the case with OPC, the durability of GPC has a great deal to do with the 

microstructure, where decreased porosity results in decreased permeability and therefore 

increased durability (Van Deventer et al. 2010). Davidovits claims geopolymer 

69 



permeability to be 10-9 cm/s (Davidovits 1994) as compared to OPC at 6x10-11 cm/s (Mehta 

and Monteiro 2006). However, the raw materials as well as mixture proportioning and 

curing conditions are very important when it comes to durability. The following is a 

cumulative list from the literature listing durability properties that are common in most 

geopolymers: 

• Fire resistance and low thermal conductivity (Davidovits 1989; Duxson et al. 

2007) 

• Thermal resistance up to 700-800°C (Duxson et al. 2007) 

• Good resistance to chemical attack from acids, salt (including seawater), sulfates 

and chlorides (Davidovits 1989; Palomo and Glasser 1992; Davidovits 1994; 

Davidovits 2002; Hardjito et al. 2004; Duxson et al. 2007; Fernández-Jiménez et 

al. 2007; Provis and vanDeventer 2009) 

• Toxic waste immobilization (Duxson et al. 2007) 

• Freeze-thaw durability (Davidovits 1994) 

• Lower heat of hydration than OPC  

• Low shrinkage and excellent dimensional stability (Davidovits 1994; Fernández-

Jiménez and Palomo 2003; Hardjito et al. 2004; Fernández-Jiménez et al. 2006) 

Further, geopolymers have been shown to significantly reduce the leaching of iron, cobalt, 

cadmium, nickel, zinc, lead, arsenic, radium and uranium (Davidovits 1994) (Davidovits 

et al. 1990; Fernández-Jiménez et al. 2004) as well as Cu and Pb (Van Jaarsveld et al. 

1999). 
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2.2.4.3 A note on ASR 

“… the durability of traditional Portland cement concrete is limited by a number 

of factors, most prominently the developments associated with the alkali-aggregate 

reaction” (Garcia-Lodeiro et al. 2007). 

To those working with ordinary portland cement concrete, terms like “alkalis” and 

“reactive silica” are cause for concern. However, this is not the case in geopolymers. 

Varying reports of geopolymers resistance to ASR have surfaced within the literature 

(Davidovits 1994; Provis and vanDeventer 2009). Low mortar expansion has been 

attributed to the fact that alkalis are tied up in the geopolymer framework, and so are not 

available to react with the silica (Li et al. 2006). Those systems with poor performance 

have been linked to the presence of Ca within the system, which can lead to the formation 

of expansive ASR gels (Garcia-Lodeiro et al. 2007). 

2.3 Geopolymerization 

Geopolymerization is the reorganization of amorphous aluminosilicates, by an alkali 

hydroxide or silicate solution, to form an amorphous to semi-crystalline three-dimensional 

matrix of tetrahedrally coordinated alumina and silica. Geopolymer cements are typically 

produced from a mixture of a powdered solid aluminosilicate source, such as fly ash or 

metakaolin and an “activating” solution usually consisting of an alkali hydroxide 

containing dissolved silica (where the alkali is usually sodium or potassium). 

Geopolymerization begins with dissolution, which is followed by the precipitation and 
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nucleation of an aluminosilicate gel that later hardens into a three-dimensional matrix of 

tetrahedral aluminosilicates (Duxson et al. 2007). 

Essentially, geopolymerization is to GPC as hydration is to OPC. Understanding 

geopolymerization is important in that it helps to illustrate the extreme differences between 

the OPC and GPC systems. Additionally, a fundamental understanding of 

geopolymerization is necessary to understand how changing the system parameters can 

affect the kinetics, microstructure and fresh and hardened properties. This is much like 

understanding how the hydration of OPC explains a great deal with regard to concrete 

performance. 

2.3.1 Silica chemistry and polymerization 

“As water is a unique liquid, so is amorphous silica a unique solid” (Iler 1979). 

Since geopolymer cements are based around the dissolution and polycondensation of a 

silica- based framework, it is important to understand the behavior of silica, which will be 

discussed in the following sections.   Ralph K. Iler is a pioneer in the world of silicate 

chemistry, authoring The Chemistry of Silica and The Colloid Chemistry of Silica and 

Silicates, which are commonly referenced in articles concerning alkali-activated cements 

(Iler 1955; Iler 1979). 
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Iler lists three main stages in the polymerization of silica (Iler 1979): 

1. polymerization  

2. growth 

3. gelation/precipitation 

However, it is important to note the “polymerization mechanism [of silica] is entirely 

different from that of any organic system” (Iler 1979).  It should also be noted that a 

‘silicone’ is an inorganic-organic polymer made of Si-O-Si bonds connecting organic 

groups (e.g., CH3, C2H6, C6H5). These are vastly different from the inorganic polymer 

bonds that make up geopolymers (e.g., Si-O-Si, Si-O-Al). 

2.3.2 Davidovits’ nomenclature 

Davidovits, who coined the term “geopolymer,” also established his own set of geopolymer 

terminology and while it is not used exclusively in current research, for reasons stated later, 

it is referenced commonly enough in the literature that it should be mentioned.  

Davidovits uses the following terminology for alkali silicates of varying compositions 

(Davidovits 2008): 

siloxo  -Si-O- unit involved in a poly(siloxo) (-Si-O-Si-O-) macromolecule 

siloxonate alkali-siloxo unit, the alkali being Na, K, Li, Ca 

silanol  -Si-OH side or end groups included in poly(siloxo) macromolecules 
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The condensation of two silanol groups (-SiOH + OHSi-) results in a siloxane group, Si-

O-Si through the following condensation reaction (Davidovits 2008): 

-SiOH + OHSi- → -Si-O-Si- + H2O (Equation 2) 

The following empirical formula is used to represent the aluminosilicate binder formed 

through alkali activation (Davidovits 1979; Davidovits 1991; Davidovits 2008): 

Mn[-(Si-O2)z-Al-O2-]n,wH2O (Equation 3) 

Where M refers to a monovalent cation (K+, Na+), n is the degree of polycondensation, z 

is 1, 2, 3 or higher, depending on the Si/Al ratio within the binder and w describes the 

amount of water present.  

Davidovits named the amorphous to semi-crystalline 3D structures containing both Si and 

Al using the term poly(sialate); sialate is an abbreviation for alkali silicon-oxo-aluminate.  

Alternately linked SiO4 and AlO4 tetrahedra, connected by bridging oxygens make up the 

sialate network.  “Poly(sialates) consist of ring and chain polymers with Si4+ and Al3+ in 

IV-fold coordination with oxygen” (Davidovits 1991).  Nomenclature was also developed 

for each Si/Al ratio achieved (z = 1, 2, 3, >3) (Davidovits 2002; Davidovits 2008). A 

graphical depiction of these systems is shown in Error! Reference source not found..  

z = Si:Al = 1 sialate, poly(sialate)  (-Si-O-Al-O-) 

z = Si:Al = 2 sialate-siloxo, poly(sialate-siloxo)  (-Si-O-Al-O-Si-O-) 

z = Si:Al = 3 sialate-disiloxo, poly(sialate-disiloxo) (-Si-O-Al-O-Si-O-Si-O-) 

z = Si:Al >3 sialate link, poly(sialate-multisiloxo)  
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Figure 2.2. Schematic of sialate 
systems where z = 1 (top), 2 
(middle) or 3 (bottom) (Davidovits 
1994). 

Davidovits’ nomenclature is not generally accepted due primarily to the fact that it 

illustrates a one-dimensional framework, when in reality; the framework is three-

dimensional (Van Jaarsveld et al. 1997; Provis et al. 2005; Provis and vanDeventer 2009).  

Also causing debate is the fact it only accounts for integer Si/Al ratios (z = 1, 2, 3), which 

are rarely achieved (Fletcher et al. 2005).  

2.3.3 Current model of geopolymerization 

Since Glukhovsky’s early model of geopolymerization, many details of the reaction 

mechanisms have been revealed thanks to vigorous research from around the world and 

technological advances. Knowledge of zeolite synthesis, structural data from Magic Angle 
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Spinning – Nuclear Magnetic Resonance (MAS-NMR)  and Fourier Transform Infrared 

(FTIR) spectroscopy, and microstructural data from scanning electron microscopy (SEM) 

and compositional data from energy dispersive X-ray spectroscopy (EDS) have been 

particularly helpful.  As new knowledge has emerged regarding the reaction mechanisms, 

structure and composition of geopolymer cements, the model has evolved accordingly 

(Fernández-Jiménez et al. 2005; Duxson et al. 2007; Shi et al. 2011). Figure 2.7 illustrates 

one of the more recent models. 

Figure 2.3. Recent schematic model of geopolymerization (Shi et al. 2011). Reprinted 
by permission of Elsevier. See Appendix D for documentation of permission to reprint 
this material. 

It is important to note that while most models of geopolymerization depict a series of linear 

processes, this is not the case in reality.  Upon initial mixing, any number of processes can 
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and do occur simultaneously throughout geopolymerization and under specific parameters, 

some reactions occur so quickly they are considered to be spontaneous. 

It is believed by many, based upon NMR and SEM evidence, the mechanisms of 

geopolymerization as well as the final structure produced from different raw materials is 

basically the same and synthesis conditions mainly affect the kinetics of the reactions 

(Fernández-Jiménez et al. 2005; Duxson et al. 2007).  An explanation of the various steps 

in geopolymerization follows; this will be based on a simple system of metakaolin reacted 

with NaOH of a moderate concentration. Synthesis parameters such as the physical and 

compositional properties of the source material and activating solutions, mixture 

proportions, water content, curing conditions, etc. can have a significant effect on the 

reaction products as well as the kinetics (Fernández-Jiménez et al. 2005) and will be 

covered in future sections. 

2.3.3.1 Dissolution and hydrolysis 

The first step in geopolymerization is dissolution.  The dissociation of an alkali hydroxide 

in water is extremely exothermic and results in alkali metal cations (M+) and hydroxide 

anions (OH-) in aqueous solution.  When a powdered aluminosilicate source is introduced, 

negatively charged hydroxyl anions quickly adsorb onto positively charged Si+4 or Al+3 

cations at the particle surface where they are held in place by Si-O and Al-O covalent bonds 

(Duxson et al. 2007).  

Amorphous silica typically has an “open structure” on the surface where spaces between 

oxygen ions exist that are large enough for hydroxyl ions to fit (Iler 1979). The presence 
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of the adsorbed OH- ions weakens the covalent bonds in the source material until the Si+4 

or Al+3 ion is pulled away into solution. They are then quickly hydrolyzed with OH- ions 

to form Si-OH and Al-OH groups, which later lead to various species including [Si(OH)4] 

and [Al(OH)4]- monomers (Fernández-Jiménez and Palomo 2005). The removal of a Si or 

Al cation results in the exposure of other internally bound cations, which are then attacked 

by more hydroxyl ions. Figure 2.4 shows a schematic representation of silica dissolution. 

Figure 2.4. Schematic of silica dissolution in water containing hydroxyl ions, OH- 
(Iler 1979). 

While silica dissolves into solution, a concomitant deposition reaction also occurs where a 

very thin layer of amorphous soluble silica is deposited on any surfaces present, be they 

crystalline or amorphous.  However, at high pH, dissolution occurs much faster than 

deposition and the solution quickly becomes supersaturated with Si monomers (and Al 

monomers if present), which is desired. Figure 2.5 shows the increasing solubility of 

amorphous silica at increasing pH. 
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Figure 2.5. Solubility of amorphous 
silica vs. pH (Iler 1979). Reprinted by 
permission of John Wiley and Sons. 
See Appendix D for documentation 
of permission to reprint this material. 

The rate and extent to which dissolution occurs is very important when it comes to 

geopolymerization as it sets the tone for later reactions, faster dissolution typically leads to 

a faster set time and in some cases a higher compressive strength (Xu and Van Deventer 

2002). The greater the degree of reaction (α) that occurs, the more Si and Al is available to 

create reaction products, resulting in a denser matrix. 

Factors affecting the dissolution rates of aluminosilicate particles and the solubility of Si 

and Al include (Iler 1979; Oelkers et al. 1994; Swaddle et al. 1994; Xu and Van Deventer 

2000; Duxson et al. 2005; Fernández-Jiménez et al. 2005; Sagoe-Crentsil and Weng 2007; 

Li et al. 2011; Ryu et al. 2011): 

• pH of the dissolving solution

• particle size and surface area

• degree of crystallinity of the solid
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• presence of network modifiers such as Na+, Ca++  ions, etc.

• presence of dissolved Si and degree of undersaturation in solution

• previous mechanical, heat or water treatment of the solid particle

• temperature and pressure

• mixing time

2.3.3.1.1 Synchronous vs. incongruent dissolution 

The dissolution of Si and Al is not always synchronous, meaning Si and Al dissolve at 

different rates depending on the structure of the source material as well as system 

conditions such as pH (Xu and Deventer 1999; Xu and Van Deventer 2000; Fernández-

Jiménez et al. 2006).  Figure 2.6 shows this phenomenon occurring during metakaolin 

dissolution. Varying dissolution rates are most likely due to the fact that Al-O bonds are 

more easily broken than Si-O bonds (Duxson et al. 2005; Fernández-Jiménez et al. 2006). 
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Figure 2.6. Si and Al dissolved from metakaolin in 
solution at varying NaOH concentrations (Sagoe-
Crentsil and Weng 2007). Reprinted by permission 
of Springer. See Appendix D for documentation of 
permission to reprint this material. 

2.3.3.1.2 Network modifiers and impurities 

Precursor materials that contain higher quantities of network modifiers (i.e., alkali or alkali 

earth cations) typically are more easily dissolved as they often contain a higher than normal 

non-bridging oxygen (NBO) content within the particle and are more disordered than a 

more pure Si glass (Maekawa et al. 1990; Rees et al. 2005). Divalent alkaline earth cations 

enhance dissolution more than monovalent alkali cations, causing more damage when they 

are removed from the system by ion exchange of H+ for Na+ or Ca2+, mainly because the 

divalent cation has two bonds compared to the single bond on a monovalent cation (Duxson 

and Provis 2008).  

Incongruent dissolution has also been found to occur in sodium silicate glass, where alkali-

oxygen ionic bonds present in the precursor material are easily broken by the action of 
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water, leaving behind a corroded layer on the surface of the particles. The alkali ions 

released into solution serve to increase the pH of the solution which helps to break the 

stronger Si-O covalent bonds (Shi 2006). 

2.3.3.1.3 Speciation of monomers 

Once the Si and Al cations are removed to solution, they are affected by the system’s 

constant effort to reach equilibrium. The speciation of silica in solution is by no means 

simple.  In order to understand the solubility of silica and therefore the speciation of a 

system of both silica and alumina, it is first necessary to define the processes by which 

silica reaches equilibrium.  Silica in solution is extremely labile and very sensitive to 

changing conditions such as pH and solution concentration. Silica species can and do exist 

in many different forms in solution at equilibrium. However, the rapid dissolution of Si 

and Al monomers into solution and the fact that geopolymerization is a chaotic and 

dynamic process, do not allow for equilibrium to be reached. Silica in solution can be 

unpredictable and it is difficult to isolate the many variables that can influence its 

speciation at any given time since the system is constantly changing.   

Weng and Sagoe-Crentsil used Livage’s partial charge model (PCM) along with 

experimental data from NMR to determine the chemistry and speciation of dissolution, 

hydrolysis and condensation processes for a metakaolin-based geopolymer system. They 

found that in early stages, in low Si/Al systems (Si/Al ≤ 1), [Si(OH)4], also known as silicic 

acid, shown in Figure 2.7, is present in high quantities at low pH, but reacts to an increase 
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in hydroxyl ions in solution (increase in pH) through the reactions in Equations 4 and 5.  A 

graph of these speciation changes with regard to pH can be seen in Figure 2.8. 

Figure 2.7. Al(OH)4
- and Si(OH)4 

tetrahedrons.  

Si(OH)4 + OH- → (HO)3SiO- + H2O (Equation 4) 

(HO)3SiO- + OH- → (HO)2SiO2
2- + H2O (Equation 5) 

Figure 2.8. Distribution of monomeric Si anions 
vs. pH (Šefčík and McCormick 1997). Reprinted 
by permission of Elsevier. See Appendix D for 
documentation of permission to reprint this 
material. 

[(HO)2SiO2]2- and [(HO)3SiO]- were found to be the major Si species present at higher pH, 

which is the pH at which geopolymers are created.  This is important to note because 
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[(HO)2SiO2]2- species are less apt to polymerize as compared to [(HO)3SiO]- species 

(Fernández-Jiménez et al. 2006; Weng and Sagoe-Crentsil 2007).  The major Al species at 

high pH was found to be [Al(OH)4]-, however, in North and Swaddle’s research, no free 

[Al(OH)4]- was found in solution when the Si/Al ratio is very high, signifying that it 

condenses with other Si species quickly at high pH (North and Saddle 2000).   

Aside from monomeric species present in the solution, there are also oligomeric and 

polymeric species as well, containing various combinations of Si and Al.  These larger 

species are created through polycondensation reactions, which are covered in the next 

section. 

2.3.3.2 Polycondensation 

Solubility is a measure of the saturation concentration of a solute in a solvent.  Saturation 

occurs when the rate of dissolution and precipitation of a solute are equal, meaning that if 

more solute is added to the system, the dissolved concentration, or solution concentration, 

remains constant. Under certain conditions, such as very high pH, supersaturation is 

possible. Dissolution and precipitation are kinetic processes (i.e., time dependent) and are 

therefore measured by their rate. Geopolymerization requires a supersaturated solution of 

Si and Al monomers before condensation reactions will occur, which is the next step in 

geopolymerization. 

Condensation occurs when two or more OH- groups on two different monomers condense 

together to form an oxygen bond (also known as an oxygen bridge), thereby releasing a 
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molecule of water.  A basic condensation reaction between two silanol groups (SiOH) is 

shown below in Equation 6 and schematically in Figure 2.9.  

SiOH + HOSi- → -SiOSi- + H2O (Equation 6) 

Figure 2.9. Condensation reactions between monomers. 

Iler defines polymerization as “a linking together of monomer units to form a polymer of 

the same composition (Iler 1979).”  However, for polymerization to take place in this case, 

condensation must first occur. “Polymerization by a repeated condensation process” is 

technically called polycondensation (IUPAC 2012). However, polymerization, 

condensation and polycondensation are often used interchangeably within the literature. 

The polycondensation of two monomers yields a dimer. If another monomer is added it is 

called a trimer, etc. Dimers, trimers, etc. are considered to be low polymers, and 

collectively are called oligomers, shown in Figure 2.10, which Iler defines as particles less 

than 5nm in diameter (Iler 1979).  
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Figure 2.10. An example of a monomer (top left), dimer 
(top right), cyclic trimer (bottom left) and trimer (bottom 
right).  

The rapid polycondensation of monomers to form oligomers at high pH is also known as 

spontaneous homogenous nucleation. Davidovits states that geopolymerization “evolves 

through the condensation, step by step, from monomers to dimers, trimers and higher 

molecules, yielding the polymeric covalent bonding of poly(siloxonate) Si-O-Si-O-, 

poly(sialate) Si-O-Al-O, and poly(sialate-disiloxo) Si-O-Al-O-Si-O-Si-O” (Davidovits 

2008). At high pH in a supersaturated solution, polymerization occurs very rapidly, 

especially between aluminate and silicate species as compared to silicate species among 

themselves – so fast the reaction cannot usually be detected at room temperature. 

Small oligomers (or nuclei) provide surfaces where monomeric silica can be deposited and 

larger and larger oligomers form. At high pH, monomers can polymerize very quickly to 

1-2 nm sized particles; so fast that it is said to be spontaneous.  Large oligomers are 

sometimes called macromolecules or polymer molecules. When the diameter of a 
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macromolecule reaches between 1 and 1000 nm in at least one dimension, the molecule is 

considered to be a colloidal particle (McMurry and Fay 2001). Generally speaking, if the 

diameter of all of the species is less than 1 nm it is considered a solution, if the diameter is 

between 1 and 1000 nm and the system is still fluid it is called a sol; once it turns into a 

solid it is called a gel (McMurry and Fay 2001; IUPAC 2012). 

Silica tends to polycondense in such a way as to maximize the internal Si-O-Si bonds and 

minimize outer uncondensed OH groups.  This tendency results in ring structures such as 

the cyclic tetramer, which grow in size as more monomers are added.  These particles are 

made of anhydrous SiO2 inside and SiOH on the outside and tend to be spherical due to the 

ring structures inside (Iler 1979).  

At pH greater than 7, low polymers quickly grow to the size of colloids due to Ostwald 

ripening.  Ostwald ripening is the phenomenon of smaller particles dissolving and 

precipitating onto larger particles, resulting in more larger polymerized aluminosilicate 

species and less, smaller oligomeric species in the system (Fernández-Jiménez et al. 2006). 

While smaller crystals dissolve (due to their higher solubility), they form a local area of 

high concentration as compared to the areas around a larger particle. This concentration 

difference drives a precipitation reaction at the site of the larger crystal until the smaller 

crystal is completely dissolved and the solution concentration difference is eliminated.  If 

there exists a larger particle than the aforementioned, then the same thing will happen again 

(Pankow 1991). 
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2.3.3.2.1 Speciation of oligomers and polymers 

Early in the dissolution of an aluminosilicate material, both Si and Al monomers are present 

in solution.  Tetrahedral Al monomers [Al(OH)4]- take part in the  polycondensation of Si 

monomers in what is called isomorphic substitution.  The exact speciation of 

aluminosilicates in solution is very difficult to quantify without first stating the reaction 

parameters.  Varying dissolution rates and the presence or lack of soluble silica in solution 

at the start of mixing have a huge effect on the speciation at any given time.   

Condensation between aluminate and silicate species is favored kinetically over the 

condensation of just silicate species among themselves, even in very low Si/Al systems 

(Fernández-Jiménez et al. 2006; De Silva et al. 2007). Aluminum in solution will tend to 

not bond with other aluminum, but favor bonding with an Si monomer or other 

aluminosilicate species (Swaddle et al. 1994). This phenomenon is explained by 

Lowenstein’s avoidance principle, which states that Al-O-Al bonds are never 

thermodynamically favored in the case that both Al ions are tetrahedrally coordinated 

because the oxygen bridge between them is not stable (Lowenstein 1954). However, 

Australian researchers have found the presence of Al-O-Al bonding when Si/Al is very 

close to 1, such as when metakaolin alone is reacted with NaOH; the presence of soluble 

silica as well as a higher Si/Al typically do not ever result in the formation of Al-O-Al 

bonds (Duxson et al. 2005). MAS-NMR has also shown that Si-O-Al bonds are formed 

nearly 100-1000 times faster than Si-O-Si bonds, which could be why Al content affects 

the setting time (North and Saddle 2000). Higher alkalinity results in higher Al content, 
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which results in faster setting, this has been confirmed by calorimetry (Sagoe-Crentsil and 

Weng 2007). 

Weng et al. used the partial charge model (PCM) to determine that at high pH (10-14), 

[Al(OH)4]- tetrahedra are more likely to attract negatively charged OH- groups from other 

species than Si tetrahedra under the same conditions, which means Al species are more 

likely to be involved in condensation reactions due to the higher activity of the Al species. 

This is because [Al(OH)4]- was found to be the major Al species at pH 12-14 and has four 

hydroxyl groups where as the major Si species at this pH were [SiO2(OH)2]2- and 

[SiO(OH)3]-, which have two or three hydroxyl groups, respectively (Weng et al. 2005; 

Weng and Sagoe-Crentsil 2007).   

Condensation of [SiO2(OH)2]2- with [Al(OH)4]- yields small oligomers like dimers or 

trimers.  Condensation of [SiO(OH)3]- with [Al(OH)4]- yields an aluminosilicate which 

then will react with [Al(OH)4]- until all hydroxyl groups on the aluminate species are 

consumed, generally resulting in  larger oligomers or polymers.  So, in general, the 

concentration of [SiO(OH)3]- will determine the rate of formation of the geopolymer 

network, and the ratio of [SiO2(OH)2]2- to [SiO(OH)3]- depends on pH (Weng and Sagoe-

Crentsil 2007). 29Si MAS NMR spectra indicate that it may take up to five days for silicate 

condensation to complete, which coincides with PCM predictions (Sagoe-Crentsil and 

Weng 2007).  
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2.3.3.3 Gelation and precipitation 

In his book, Davidovits points out that a polymer is “a macromolecule with definite size 

and molecular weight” whereas a gel “designates an indefinite amorphous compound with 

unresolved dimension” (Davidovits 2008). There are many factors that play a role in 

determining if Si in solution will remain as a sol, aggregate together into a gel network or 

coagulate to form a precipitate, such as pH, temperature, concentration, etc. (Iler 1979).  

Figure 2.11 shows a two-dimensional model of the difference between a gel and precipitate. 

 

Figure 2.11. Two-dimensional schematic of a gel and 
precipitate after Iler (Iler 1979).  

“The difference between formation of microgel and formation of a precipitate is that in a 

microgel region the concentration of silica particles in the three-dimensional network is 

the same as in the surrounding sol but in the flocs or aggregates of a precipitate the 

concentration is higher than in the surrounding liquid” (Iler 1979). 

Crystal growth is usually defined in terms of two different phases, called nucleation and 

particle growth.  Nucleation occurs when molecules in a solution randomly come together 

in what is called an aggregate.  This can either occur at phase boundaries or on particle 
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surfaces, called heterogeneous nucleation, or it can occur spontaneously in solution, called 

homogenous nucleation. Particle growth occurs after enough molecules have come 

together to form a crystal.  In a highly supersaturated solution, nucleation occurs faster than 

particle growth, which can result in a colloid; whereas in a less supersaturated solution, 

particle growth occurs faster, which allows particles to grow larger.  The activity of the 

monomeric species has a great deal to do with wither gelation or precipitation occurs 

(Kallala et al. 1991). Heat can promote particle growth as well as very low concentrations 

of solvents in a solute (Harris 2007). If particles become larger than colloidal particles, 

they will tend to precipitate. 

pH has also been shown to have a significant impact on whether gelation of precipitation 

occurs, where aggregation tends to occur more at higher pH and gelation occurs more at 

lower pH (Fernández-Jiménez et al. 2006). The presence of dissolved Si will also affect 

whether a gel or a precipitate forms. Eventually the particles condense together to form an 

interconnected cage-like structure, where the lability of the ionic species within solution 

decreases until a solid three-dimensional matrix is formed (Fernández-Jiménez et al. 2006). 

“The initial setting of geopolymers will occur when the rate of dissolution is surpassed by 

the rate of condensation and precipitation of aluminosilicate species” (Duxson et al. 2005). 

Many factors can affect the time it takes for a continuous network to form such as the raw 

material processing conditions, composition of the solution and reaction conditions 

(Duxson et al. 2007). 
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2.3.3.4 Reorganization 

“The lability of the anionic silicate species present in alkaline solution means that 

the structures observed in solution are unlikely to be fully representative of the solid 

phases formed upon solidification (Provis et al. 2005).” 

The speciation in solution prior to polycondensation is important to understand because it 

will give clues about when set time will occur, etc. However, as per the quote above, initial 

concentrations and speciation are not necessarily indicative of the final composition of the 

reaction products. 

Once initial setting has occurred, the lability of the system typically allows reordering and 

reorganizing in the form of multiple stages, where the connectivity and therefore density 

of the network increase with each stage. Within the literature, these stages are typically 

referred to as “gels.” In general, the first gel is a metastable Al-rich gel, whose presence 

signals the initial set.  Al-O bonds have been found to break more readily than Si-O bonds, 

and so the Si/Al of this initial gel is generally around 1, which would mean alternating Si 

and Al tetrahedral with no Si-O-Si bonds formed (Fernández-Jiménez et al. 2006; Shi et 

al. 2011).  

Si-O-Si bonds are more thermodynamically stable than Si-O-Al bonds though, so over time 

as more and more Si-O bonds are broken and more Si comes into solution, the gel evolves 

into a more stable Si-rich gel, which is more similar in composition to the final product. 

The formation of this Si-rich gel typically triggers an increase in the mechanical properties 

92 



(Fernández-Jiménez et al. 2005; Fernández-Jiménez et al. 2006; Fernández-Jiménez et al. 

2006; Duxson et al. 2007; Weng and Sagoe-Crentsil 2007; Shi et al. 2011).   

The evolution from an Al-rich gel to a Si-rich gel infers that early reactions are most likely 

kinetically driven at first and then later toward thermodynamic stability. A threshold Si/Al 

value of 2 has been suggested as “the composition toward which different systems tend 

regardless of the initial conditions, possibly because it constitutes the most 

thermodynamically stable state” (Criado et al. 2008). The speed at which the Al-rich gel 

transforms to the Si-rich gel has been found to occur faster when higher reactive Al 

contents are available and usually result in a higher Si/Al ratio in the final product 

(Fernández-Jiménez et al. 2006).  

2.3.3.4.1 Magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy 

Davidovits was the first to use NMR technology to investigate the structure of metakaolin-

based geopolymers in the 1980s.  Since then, 27Al and 29Si MAS-NMR has become an 

important tool in investigating the structure of seemingly amorphous materials, such as 

geopolymers (Fernández-Jiménez et al. 2006; Kolouek et al. 2007).   

The following notation is used in 29Si MAS-NMR studies to describe the connectivity of 

Si with other Si and Al through O bonds: Qn(mAl), where 0 ≤ m ≤ n ≤ 4 and n is the 

coordination number of the silica center in question and m is the number of connections to 

Al. This notation was first brought about by Engelhardt and is commonly used to describe 

aluminosilicate systems such as glasses, zeolites, gels and minerals (Duxson et al. 2005). 

NMR studies have verified that in geopolymer gels, all silicon and aluminum sites are in 
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tetrahedral coordination which means n=4. Through analysis involving the Gaussian peak 

deconvolution of NMR spectra, a distribution and quantification of each of the Q4(mAl) 

species can be attained  (Duxson et al. 2005).  Figure 2.12 shows a two-dimensional model 

of the five possible tetrahedrally coordinated aluminosilicate species, providing 

Lowenstein’s aluminum avoidance principle holds true.   

Figure 2.12. Q4(mAl) units in aluminosilicates where m = 
4, 3, 2, 1, 0 from left to right. 

29Si NMR spectra supports the theory that an Al-rich gel is first developed which over time 

leads to a more Si-rich gel. This is evidenced by the fact that concentrations of Si(3Al), 

Si(2Al), Si(1Al) and Si(0Al) all increase over time, and the concentration of Si(4Al) goes 

down (Fernández-Jiménez et al. 2006). 

2.3.3.5 Hardening 

Syneresis, or the expulsion of a liquid from a gel, occurs as the gel network continues to 

condense, and the water that was initially consumed during dissolution is expelled, 

eventually leading to the hardening of the aluminosilicate matrix.  The expelled water 

exists in the pores of the gel, creating a bi-phasic system of water and aluminosilicate 

binder (Duxson et al. 2005).  There does exist some conflicting evidence regarding the 

presence of bound water in the system, but the majority of the literature reports that no 

bound water is present within the final product and that it just exists within the gel pores 

(Duxson et al. 2005). 8O MAS NMR has shown the final aluminosilicate product is made 
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up of cross-linked AlO4 and SiO4 groups with no non-bridging O groups, and only a few 

hydroxyl groups that most likely are just on the surfaces of the gel (Duxson et al. 2007). 

Figure 2.13 shows a schematic of a geopolymer activated with potassium activator 

solution. 

Figure 2.13. Schematic of the structure of K-based geopolymer (Davidovits 
1994). Figure courtesy of the Geopolymer Institute (www.geopolymer.org). 
Please see Appendix D for license information. 

2.3.3.6 Zeolite synthesis 

“Crystalline zeolites are the thermodynamically stable phases towards which the 

system should evolve with time” (Fernández-Jiménez and Palomo 2005). 

The similarity between geopolymer synthesis and zeolite synthesis has not gone unnoticed 

within the literature, and should be commented on (Granizo et al. 2002). Both geopolymers 

and zeolites can be formed under hydrothermal conditions, with water content and 

temperature dictating what exactly will be produced. 
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“Zeolites are porous tectoaluminosilicates with a complex framework of SiO4 and AlO4 

tetrahedra forming a regular system of interconnected cavities and channels of molecular 

dimensions (Engelhardt 1989).”  Sometimes referred to as molecular sieves, over 35 

natural zeolites have been discovered and over 100 synthetic zeolites have been produced 

from all manner of aluminosilicate materials (Davidovits 2008). In general, the Si:Al ratio 

varies from 1:1 to 6:1, and most natural zeolites occur through geological hydrothermal 

processes from (Na,Ca)-aluminosilicates like plagioclase or nepheline (Breck 1974; 

Swaddle et al. 1994; Davidovits 2008). The open structure of zeolites is usually filled by 

charge balancing cations like Na+ or K+ that are solvated, meaning water molecules 

surround them.  The presence of this water allows the cations to be mobile and allows for 

the possibility of ion exchange with other cations (Grutzeck and Marks 1999). 

Synthetic zeolites are formed from dilute solutions rich in SiO2, Al2O3, Na2O and H2O, at 

temperatures between 50-150°C (Breck 1974) and a pH greater than 13.  One common 

method of synthetic zeolite synthesis is the alkali leaching of silicates, where an 

aluminosilicate mineral is dissolved in an alkaline solution until an amorphous 

aluminosilicate gel forms.  Ageing and heat are often necessary for nuclei to appear and 

zeolite crystals can take anywhere from hours to days to form. Sometimes seeding is used 

to speed up this process. Factors that affect zeolite synthesis and the type of zeolite that is 

formed include alkalinity, temperature, reactivity of the silicon source and solid surfaces 

available (Madani et al. 1990). It has been observed in alkaline aluminosilicate solutions 

that smaller silicate species are more labile than larger species, and as such are able to 

reorganize themselves rapidly, which leads to faster crystal growth (Swaddle et al. 1994). 
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It is generally accepted that aluminosilicate gels created in geopolymerization could be 

considered zeolite precursors; one research group even calls geopolymer cements 

zeocements for just this reason (Fernández-Jiménez et al. 2007).  Increased water content 

(i.e., the H2O/Na2O ratio in zeolite synthesis is typically 5-10 times higher than in 

geopolymers (Davidovits 2008)) and high temperatures are the only real differences 

between the two processes; however, these differences are enough to result in completely 

opposite microstructures.  Zeolites are almost 100% crystalline under XRD and 

geopolymer cements are nearly 100% amorphous.  Table 2.5 shows the dramatic effects 

on the products created by changing these two synthesis parameters.  

Table 2.5. Products created through different synthesis parameters, after (Provis et 
al. 2005). 

Water content Low Temperature High Temperature 

Low Geopolymer Geopolymer or zeolite 

High Aluminosilicate gel Zeolite 

In general, it is considered that formation of zeolites involves a cyclic process of dissolution 

and precipitation, where meta-stable zeolite species are formed along the way toward a 

more stable final zeolite phase; this is in comparison with the internal reordering of the 

geopolymer gel (Swaddle et al. 1994). More solution available yields more zeolite 

formation, due to the increased ease of reorganization (Duxson et al. 2007).  

Within the geopolymer system, there is neither time nor space allowed for zeolitization to 

occur, and the result is the quick precipitation of the aluminosilicate product that is unable 

to reorganize itself into a crystalline structure due to steric hindrance and remains 
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amorphous upon hardening (Fernández-Jiménez and Palomo 2003; Fernández-Jiménez et 

al. 2005). 

Some believe that given enough time and the right conditions, the geopolymer gel would 

eventually depolymerize and reorganize itself to form zeolite crystals (Fernández-Jiménez 

and Palomo 2003; Palomo et al. 2004; Fernández-Jiménez et al. 2005; Fernández-Jiménez 

et al. 2006). In some cases amorphous products have been found to transition into partially 

crystalline products over time or in high synthesis temperatures (Duxson et al. 2007). 

Zeolite crystals are commonly found on the surfaces of geopolymers exposed to the 

atmosphere and in voids.  

2.3.3.6.1 Are geopolymers amorphous zeolites? 

“… the exact boundary between “crystalline” and “amorphous” materials is very 

difficult to determine” (Provis et al. 2005). 

It has been suggested that seemingly amorphous aluminosilicate geopolymers are in fact 

made of millions of nano-crystalline zeolite crystals embedded in an amorphous matrix 

and they are only considered amorphous due to the limitations of X-ray diffraction (XRD) 

(Provis et al. 2005). At the atomic to nanometric scale, zeolitic nanoscale structures have 

been found (Shi et al. 2011). Transmission electron microscopy (TEM) has shown that 

geopolymers are nanoparticulate, consisting of particles around 5 nm in diameter; likewise, 

high-resolution electron microscopy (HREM) has shown that this particulate phase 

contains distinct regions of short to midrange order (Provis et al. 2005).  

98 



Iler referencing Frondel, states that: 

“amorphous silica is not truly amorphous but consists of regions of local atomic 

order, or crystals of extremely small size, which by careful X-ray diffraction studies 

appear to have the cristobalite structure.  Nevertheless, by ordinary diffraction 

procedures this material gives only a broad band, with no multiple peaks as are 

ordinarily obtained with macroscopic crystals, and is referred to here as 

“amorphous.” (Iler 1979). 

2.4 Source materials 

“Though many macroscopic characteristics of geopolymers prepared from 

different aluminosilicate sources may appear similar, their microstructure and 

physical, mechanical, chemical and thermal properties vary to a large extent 

depending predominantly on the raw material from which they are derived” 

(Duxson et al. 2007). 

Since silica and alumina are the two most common elements in the Earth’s crust after 

oxygen, there are seemingly endless materials available for use in geopolymers. However, 

not all of these options are realistic and the success of the solid aluminosilicate source 

depends a great deal on the properties listed below, which mainly relate to ease of 

dissolution.  

• Reactive Si and Al content

• Amorphous or disordered structure

• Particle size and shape
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• Physical and compositional homogeneity 

• Hardness 

Reactive Si and Al content – Si and Al are the main network formers of the geopolymer 

matrix, so a generous amount of reactive Si and Al are crucial to success.  The rate at which 

these two elements become available can have a large impact on the kinetics of 

geopolymerization, as well as the fresh and hardened properties of the concrete. Depending 

on the phase, some Si and Al may not be available for reaction, such as in the case of 

crystalline phases like quartz and mullite in fly ash; therefore the (Si/Al)reactive is a more 

relevant number than (Si/Al)total and should be considered instead (Fernández-Jiménez et 

al. 2006). 

Amorphous or disordered structure – Amorphous (vitreous or glassy) phases are favored 

for geopolymer synthesis, since they dissolve easier and faster than crystalline phases due 

to the disorder of the structure, as shown in Figure 2.14. Increased dissolution leads to more 

Si and Al available in solution for polycondensation, which has been found to lead to higher 

compressive strengths (Fernández-Jiménez and Palomo 2003; Sofi et al. 2007). 
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Figure 2.14. Two-dimensional schematic of crystalline silica (left), glassy silica 
(middle) and binary silicate glass (right) (Hemmings and Berry 1988).  

In a study considering the dissolution rates of Si and Al of 16 different natural 

aluminosilicate minerals, it was found that samples with a framework silicate structure had 

the highest dissolution, as compared to others with more ordered ortho-, di-, ring, chain 

and sheet silicate structures (Xu and Deventer 1999; Xu and Van Deventer 2000). 

Calcined materials are also generally more reactive than their original crystalline 

counterparts, which tend to dissolve slower (Xu and Van Deventer 2002). The raw 

materials used and their subsequent processing have been shown to have a major impact 

on geopolymer properties such as setting behavior and workability as well as other 

chemical and physical properties (Madani et al. 1990; Palomo and Glasser 1992; Duxson 

et al. 2007). 
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Particle size and shape – The smaller, or more irregularly shaped the particle, the larger 

the specific surface area. The larger the surface area per unit volume of a particle that is in 

contact with the activating solution, the more dissolution will occur. Particle size, and 

therefore specific surface area, has a direct influence on the dissolution rate of a material, 

where smaller particles dissolve faster and have a higher solubility (Pankow 1991). In the 

case of a system with multiple sized particles, where dissolution rates will be different with 

each size, the dissolution rate is proportional to the specific surface area and the overall 

solubility is related to the particle size.  Iler observed a direct relationship between the 

radius of curvature of a particle and the solubility of that particle, where particles with the 

smallest positive radii have the highest solubility (Iler 1979).  In a system with coarser 

particles, reactions at the surface sometimes create a layer of reaction products around the 

particle preventing further reaction from occurring except through diffusion, which is very 

slow. 

It is important to note that increasing the specific surface area or surface irregularities of a 

material will also increase the water necessary to create a workable mixture. Aggregation 

of particles can also play a role in affecting the reactivity of a material.  Weng et al., found 

that aggregated metakaolin particles resulted in unreacted metakaolin which did not 

contribute to the overall geopolymer (Weng et al. 2005). 

Physical and compositional homogeneity – Materials that are physically and 

compositionally homogeneous tend to dissolve more evenly and result in a more uniform 

final product.  Heterogeneity within the source material can result in consistency issues 

due to variable and inconsistent dissolution rates.  Also, when physical and compositional 
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properties are unknown, producing a reliable and reproducible binder with predictable final 

properties can be difficult. 

Hardness – Hardness is important in systems where the source material is not fully reacted 

and the unreacted particles remain embedded in the final matrix (Xu and Van Deventer 

2000).  If these unreacted particles are too soft, they can act as defect points within the 

matrix leading to early failure.  However, particles that are hard can act as a 

microaggregate, in some cases adding strength to the matrix (Palomo and Glasser 1992). 

2.4.1 Material sources 

Many of the materials used in geopolymers are also employed in OPC concrete as 

supplementary cementitious materials (SCMs).  The requirements for a successful SCM 

and a geopolymer source material are very similar. Materials that have been used to 

produce geopolymers include: 

• Metakaolin

• Fly ash (Class F or C)

• Blast furnace slag

• Glass

• Silica fume

• Red mud

• Natural aluminosilicate minerals

• Kaolinite clay

• Natural pozzolans such as volcanic ash

• Mine tailings
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As stated previously, alkali activated cements can be separated into two groups based on 

the composition of the solid powdered material, with the deciding factor being the calcium 

content. A ternary diagram plotting typical Si, Al and Ca contents of several common 

materials that have been used to make geopolymer cements as well as OPC is shown in 

Figure 2.15.   

Figure 2.15. Typical composition of common solid materials used in 
geopolymer cements and OPC.  

Though many macroscopic characteristics of geopolymers prepared from different 

aluminosilicate sources may appear similar, their microstructure and physical, mechanical, 

104 



chemical and thermal properties vary to a large extent depending predominantly on the raw 

material from which they are derived (Duxson et al. 2007).  

Materials such as kaolinite (Davidovits 2008), naturally occurring aluminosilicate minerals 

(Xu and Van Deventer 2000; Xu and Van Deventer 2002), cement kiln dust (Babaian et al. 

2003; Buchwald and Schulz 2005), silica fume (Brew and MacKenzie 2007), natural 

pozzolans such as volcanic ash  (Varela et al. 2009) and red mud (Pan et al. 2003; Zhang 

et al. 2010) have also been explored.  

Due to their ample supply of available Si and Al, fly ash and metakaolin are the most 

commonly used aluminosilicate materials in geopolymer production today and are 

presented in more detail in the next section. Waste glass is also expanded upon at the end 

of the section. 

2.4.1.1 Metakaolin 

Metakaolin is produced from the heat treatment of kaolinite clay, Al2Si2O5(OH)4 through 

air calcination. Kaolinite is formed from the weathering of feldspars, tuffs or volcanic ashes 

over hundreds to thousands of years (Grutzeck and Marks 1999) and is classified as a 1:1 

dioctahedral phyllosilicate. This means it has a structure of 1:1 sheets of tetrahedral silica, 

SiO4 and octahedral alumina, AlO6 bound together by strong oxygen bonds (Sperinck et al. 

2011). Alumina substitution for silica in clays is known as isomorphous substitution, which 

occurs when an atom of a lower oxidation state replaces an atom of a higher oxidation state. 

Since the Al has a +3 charge on it, compared to the Si with a charge of +4, it must be 
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balanced with cations, usually Na+, K+, etc. (Pankow 1991). For this reason, cations are 

adsorbed onto the layers or edges of the clay (Palomo and Glasser 1992). 

When kaolinite is heated to above 500°C, hydroxyl ions are removed to form metakaolin 

(Grim 1968);  this can be done inexpensively in low tech kilns or furnaces. 

Dehydroxylation of the clay creates a structure that is distorted, made of irregular layers of 

Si and Al, with the Al moving into vacant sites in between the layers and changing from 

Al(VI) to Al(IV) in tetrahedral coordination (Grim 1968; Sperinck et al. 2011). Heating 

transforms the flat, hexagonal kaolinite particles to a dinner plate shape with an extremely 

high specific surface area. The median size is typically five microns or smaller but depends 

on the calcination temperature and time of the base kaolin (Duxson et al. 2007).  

The maximum heating temperature can affect the reactivity of the metakaolin formed; in 

comparing kaolin heated for 24 hours at 750°C, 2 hours at 850°C and 2 hours at 980°C, it 

was found that 750°C metakaolin (known as MK-750) was the most reactive (Madani et 

al. 1990; Palomo and Glasser 1992; Davidovits 2008). Higher temperatures or long 

calcination times sometimes result in the formation of mullite phases and segregated silica, 

which decrease the solubility of the metakaolin (Van Jaarsveld et al. 2002). While the heat 

treatment that clay undergoes has been found to greatly enhance the reactivity of the 

material, it also greatly increases the water demand (Provis et al. 2010). The rheology of 

mixtures containing metakaolin is unique due to the interlayer alkali attack upon initial 

mixing which increases the viscosity. Figure 2.16 shows the morphology of metakaolin 

particles, which tend to aggregate together. 
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Figure 2.16. Metakaolin particles (Steveson and 
Sagoe-Crentsil 2005). Reprinted by permission of 
Springer. See Appendix D for documentation of 
permission to reprint this material. 

Table 2.6 shows a typical composition of metakaolin. Typical impurities include titanium 

dioxide and muscovite, KAl2(Si3Al)O10(OH,F)2, neither of which has been found to effect 

geopolymerization. 

Table 2.6. Composition of a typical metakaolin by mass (Kosmatka 2011). 
Metakaolin 

SiO2 53% 
Al2O3 43% 
Fe2O3 0.5% 
CaO 0.1% 
SO3 0.1% 

Na2O 0.05% 
K2O 0.4% 

Total Na equivalent alkali 0.3% 
Loss On Ignition (LOI) 0.7% 

Hardness (kaolinite) 2-2.5 

Metakaolin is also an effective pozzolan for use in ordinary portland cement concrete, and 

has been shown to improve the pore structure of the concrete, which in turn increases the 

materials resistance to deleterious substances (Sabir et al. 2001). Other markets for 
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metakaolin include the food-processing industry, oil shale processing, ceramics, pozzolans 

and in geopolymers (Sperinck et al. 2011). Colored kaolinite is listed as a waste material 

(Kolouek et al. 2007). 

2.4.1.1.1 Metakaolin geopolymers 

The homogenous composition and uniform particle size and shape of the calcined clay 

result in a highly reactive material that freely contributes Si and Al to the geopolymer 

system. However, today metakaolin is most often used as a model material for research 

rather than in actual structural applications. This is due in part to the fact that unreacted 

particles following geopolymerization are thought to act as defect sites within the matrix 

due to their softness and the high water demand associated with the small, platy metakaolin 

particles (Duxson et al. 2007; Provis et al. 2010).  

Metakaolin geopolymers are generally not as strong as fly ash geopolymers (Duxson et al. 

2007). It is fairly commonplace, however, to mix metakaolin or kaolinite with another, less 

reactive precursor to create a successful geopolymer binder.  The synergy between 

metakaolin and other aluminosilicate sources is important and has been shown to enhance 

the properties of the binary geopolymer as compared to the single material on its own (Xu 

and Van Deventer 2000; Xu and Van Deventer 2002). A mixture of 100% metakaolin, M, 

and another of 50% metakaolin and 50% fly ash, FM, were compared and the FM mixture 

was found to reach a much higher compressive strength under the same synthesis 

conditions (Fernández-Jiménez et al. 2007). 
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During geopolymerization, it is believed the chemical attack starts on the outside of the 

metakaolin particles and then over time as the interlayers swell, Na+ and OH- ions fit in 

between the layers and continue dissolution there. If soluble silicate particles are present, 

however, they cannot usually fit inside the layers, which often leads to a decreased degree 

of reaction (Davidovits 2008). It has been found that metakaolin-based geopolymers made 

with a high amount of soluble silica in the activating solution often result in a more porous 

final product.  This is thought to be due to the fact that soluble silica hinders the 

reorganization of the initial gel products into a denser gel (Duxson et al. 2007). However, 

a subtle increase of the Si/Al ratio to around 3.0-3.8 through the addition of soluble silica 

in the activator solution (De Silva et al. 2007) typically leads to an increase in the Young’s 

modulus and mechanical strength (Duxson et al. 2007; Duxson et al. 2007; Provis 2009).  

Sometimes microstructural studies on pure metakaolin geopolymers can be difficult 

because it is hard to distinguish between unreacted metakaolin and the final geopolymer 

product (Palomo et al. 2004; Fernández-Jiménez et al. 2007). During dehydroxylation of 

kaolinite, the Al changes from VI-fold to IV-fold coordination. Reacted samples of 

metakaolin geopolymer contain mainly Al(IV) with trace amounts of Al(VI); any Al(VI) 

found in the Al MAS NMR spectra can be used to determine the amount of unreacted 

metakaolin (Barbosa et al. 2000; Duxson et al. 2005; Duxson et al. 2007). 

2.4.1.2 Fly ash 

Fly ash is an industrial byproduct from coal burning power plants. Its composition can vary 

greatly from source to source, but the majority of particles are in the form of amorphous 
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aluminosilicate spheres.  To truly understand the complexities of fly ash, the source 

material and process of formation must first be considered. 

Coal is formed through a process known as coalification.  Coalification occurs when plants 

and trees growing in swamps die and sink down to the bottom of the swamp, forming peat, 

which over time becomes buried and compressed by silt and sand.  Over millions of years, 

the water is squeezed out of the peat and sustained heat and pressure turn the peat into coal 

(ACF 2010). Coal deposits are usually found in beds or seams and are often separated by 

layers of shale, silt or sandstones. Additionally, coal can also contain clays, carbonates, 

sulphides and other oxides, which all serve to alter the composition of the fly ash. Coal can 

also contain a wide variety of embedded minerals containing elements such as iron, 

titanium, sulfur, phosphorous, boron, alkali metal and alkali earth cations (Provis 2009).   

There are four major types of coal found in the United States, all containing varying 

amounts of carbon; lignite, subbituminous, bituminous and anthracite (ACF 2010). Mined 

coal is pulverized into a very fine powder and mixed with hot air then inserted into a 

furnace where it is burned. The heat generated from the burning coal boils water in a boiler, 

creating steam.  The steam powers a spinning engine called a turbine, and a generator 

converts the mechanical energy from the spinning turbine into electric energy (ACF 2010). 

Each power station has its own burning conditions designed to optimize the electrical 

output.  Since the main purpose of burning coal is to produce electricity, the quality and 

consistency of the fly ash produced is not typically the main concern of the plant operator. 

Variations in composition and physical properties range widely depending on burning 
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conditions, the type of coal burned, cooling rate, etc. making fly ash notoriously 

heterogeneous in nature.  Impurities in the coal that are not burned or volatilized (clays, 

carbonates, sulphides, etc.) are carried away from the furnace in the form of airborne 

particles in the flue gas (Hemmings and Berry 1988). Close to 80% of the ash produced 

during combustion leaves the furnace in the flue gas and is typically collected using 

electrostatic precipitation. 

Individual fly ash particles differ from each other even when they come from the same 

power plant at the same time. Interparticle speciation is common on the macroscale, 

especially with particles containing high iron contents and those containing crystalline 

quartz.  Intraparticle speciation can also occur within individual particles containing iron.  

Iron rich particles can be separated using magnetic separation (Hemmings and Berry 1986). 

Mineralogically, fly ash contains a large volume of amorphous phases or glass due to rapid 

cooling, and some smaller quantities of crystalline phases such as quartz, mullite, hematite, 

TiO2, etc.  The glassy phase in fly ash is referred to as an aluminosilicate phase and is 

mainly a result of the melting of the clay impurities in the coal.  When hot, these impurities 

create a homogenous melt but when cooled, they separate into two main phases.  The two 

phases are a silica rich phase and an alumina rich phase.  The silica rich phase requires 

more time to cool before crystallizing than the alumina phase and so usually remains 

amorphous.   The alumina rich phase takes less time to crystallize and unless it is cooled 

extremely rapidly, will crystallize into mullite, which is common. This results in a decrease 

of the amount of reactive Al available for geopolymerization.  The time that a particle has 
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to cool depends on its size, time in the furnace and the method of quenching each power 

plant employs (Provis 2009). 

Table 2.7. Typical composition of Class F and C fly ashes 
by mass (Kosmatka and Wilson 2011). 

Class F Class C 
SiO2 52% 35% 

Al2O3 23% 18% 
Fe2O3 11% 6% 
CaO 5% 21% 
SO3 0.8% 4.1% 

Na2O 1.0% 5.8% 
K2O 2.0% 0.7% 

In the United States, fly ash is separated into two types, C and F, depending on composition. 

According to ASTM C618 – Standard Specification for Coal Fly Ash and Raw or Calcined 

Natural Pozzolan for Use in Concrete. Class F fly ash has a total sum of the silica, alumina 

and iron oxides of greater than 70% (ASTM International 2008). Class C fly ash is defined 

as having a silica, alumina and iron oxides sum of more than 50%.Generally Class F fly 

ashes have lower CaO contents and are the result of burning older anthracite or bituminous 

coal, which is found in the eastern United States; while class C ashes have a higher calcium 

content  and are the product of burning younger sub-bituminous or lignite coal, which is 

found more in the western United States.  Most ready-mix plants prefer Class C fly ash to 

Class F fly ash because of the increased calcium content, which can easily react with Si to 

form C-S-H.  ASTM C618 also limits the LOI content to 6%, but realistically, less than 

1% is desired for concrete subject to freeze-thaw conditions (ASTM International 2008; 

PCA 2011).   
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Economically, the cost of a ton of fly ash compared to a ton of portland cement is typically 

one half.  Due to the very fine spherical particle shape of fly ash, it has found great use in 

the concrete industry.  On average, builders use approximately 15-35% fly ash replacement 

in ordinary portland cement concrete mixtures by mass (NRC 2000). Ideal fly ashes for use 

in geopolymers may be available but they might not be geographically feasible to use or 

they might also be in high demand by OPC concrete manufacturers, so less ideal fly ash 

compositions must be considered. This includes ashes with high LOI or high alkali contents 

(Provis and vanDeventer 2009). If these unwanted fly ashes are not able to be used and are 

landfilled, issues with space problems, potential air pollution risks and contamination of 

water due to leaching could occur (Fernández-Jiménez and Palomo 2005). In 2007, 

approximately 72 million tons of fly ash were produced in the United States, but only 44% 

of that was used, mainly in concrete applications, the rest went to the landfill (ACAA). 

2.4.1.2.1 Fly ash in geopolymers 

“… the challenge of producing consistent geopolymer products from 

heterogeneous industrial waste sources such as fly ash requires a greater degree 

of characterization than is provided by an elemental composition analysis” 

(Duxson et al. 2007). 

Fly ash is often favored over metakaolin as a base for geopolymer because it is an industrial 

byproduct and therefore does not contribute any carbon emissions to a total carbon 

footprint. Fly ash geopolymer cements have also been found to have higher mechanical 
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and durability properties as compared to metakaolin geopolymer cements (Duxson et al. 

2007).  

The glassy phases of fly ash, consisting of silica and alumina, and sometimes calcia are 

readily dissolved in highly caustic solutions, and so despite its extreme variability, fly ash 

remains a prime material for use in geopolymer cement. It has been found the more vitreous 

(i.e., amorphous) phases present in the fly ash, the higher the degree of reaction during 

polymerization and the higher compressive strength (Fernández-Jiménez and Palomo 

2003). Crystalline or insoluble phases prevent the possibility of achieving a 100% degree 

of reaction; however, unreacted fly ash particles have been found to act as micro-aggregate 

embedded within the aluminosilicate matrix, in some cases adding strength to the system 

(Fernández-Jiménez et al. 2005).  

Some fly ash particles do not react at all, while others show signs of surface dimpling and 

others still are completely reacted, leaving behind just the outline of where it once was.  

This has been said to be due to differences in the fly ash properties per particle or to the 

fact that in some cases a hydration barrier (made of reaction product) prevents some 

particles from reaction, in a local manner, where pH is very important (Fernández-Jiménez 

et al. 2004).   

Rapid cooling in air and surface tension forces cause fly ash particles to maintain a 

spherical shape; these spheres can be solid, hollow (cenospheres) or filled with other 

spheres (plerospheres) (Diamond 1986). Figure 2.17 shows the morphology of fly ash 

particles typically range in size from 0.5 to 100 microns.  
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Figure 2.17. Morphology of fly ash particles 
(Steveson and Sagoe-Crentsil 2005). Reprinted by 
permission of Springer. See Appendix D for 
documentation of permission to reprint this 
material. 

The spherical nature of fly ash particles is particularly useful in a binder system, as it 

reduces both the yield stress and viscosity of the paste in shear (Provis et al. 2010). This 

“ball bearing effect” increases the workability of a mixture without an increase in water 

demand. The fineness is affected by the type of coal, degree to which the coal was 

pulverized before it was burned and also the burning process and power plant equipment 

(Fernández-Jiménez and Palomo 2003). Mechanicochemical activation in a vibratory mill 

has shown to further increase the reactivity of fly ash particles, where “more fracture 

damage, chemical and physical changes, and defects” were added, which led to more 

geopolymerization (Kumar et al. 2007; Temuujin et al. 2009). 

The spherical nature of the fly ash particles has also been helpful in understanding the steps 

of geopolymerization because evidence of reaction is easier to see on the particles as 

compared to other materials such as metakaolin, where it is more difficult to differentiate 

between the raw material and final product (Fernández-Jiménez et al. 2005). 
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Many successful GPC mixtures have been made using fly ash; however, in most cases, just 

one or several fly ashes were considered at a time and mixture optimization was a fairly 

lengthy process.  There has been little research reported on how to quickly identify the 

necessary material properties of a fly ash and design the activating solution accordingly. 

Compositional variability is an issue in mixture design and it is largely a process of trial 

and error to find the right design for a specific fly ash. 

2.4.1.3 Glass 

The first documented use of glass dates back to the Mesopotamian civilization of 3500 

B.C., from which archeologists have found handmade rustic glass beads.  Glass making 

technology has obviously advanced since then, with some modern plants capable of 

producing 700 bottles per minute (Glass Packaging Institute 2013). 

Today, glass production begins with virgin materials including sand, soda ash and 

limestone as well as cullet (broken glass). These materials and various additives are 

batched and heated to 1430-1540°C molded into the desired shape and cooled (Glass 

Packaging Institute 2013). Table 2.8 lists the main raw materials and their purpose in glass.
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Table 2.8. Raw materials and their purpose in glass production (Glass Packaging 
Institute 2013). 

Raw 

Material 

Elements 

Added 

Structural 

Role 
Purpose in Glass 

Sand or 

feldspathic 

sand 

SiO2, Al2O3 
Network 

former 
Backbone of glassy phase 

Soda ash Na2O Fluxing agent Adds fluidity and promotes melting 

Limestone, 

dolomite 
CaO, MgO 

Network 

modifier 
Adds durability to glassy phase 

Feldspar, 

nepheline, 

aplite 

SiO2, Al2O3, 

Na2O, K2O, 

CaO 

Intermediate 

formers 

Adds durability and increases 

viscosity and workability of melt 

Saltcake, 

gypsum 

SO3, Na2O, 

CaO 
Fining agent Source of SO2 gas and Na2O, CaO 

Carbocite, 

carbon 
C 

Reducing 

agent 

Reacts with fining agent to form 

SO2 gas in flint and amber 

Coloring agents are also sometimes added to glass to prevent ultraviolet rays from 

penetrating into the glass container and also is marketable for branding.  Decolorization is 

the introduction of selenium or cobalt to offset the yellow/green color in flint glass (Glass 

Packaging Institute 2013)(Glass Packaging Institute 2013)(Glass Packaging Institute 2013) 

(Glass Packaging Institute 2013).  Pyrite, iron oxide, iron scale and melite are sources of 

iron and sulfur used to make amber glass, non-toxic chrome oxide colors glass green, cobalt 

oxide colors glass blue, selenium colors glass red and nickel colors glass violet or brown 

(Glass Packaging Institute 2013).  
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Today, commercial glass falls into six major categories with soda-lime glass making up 

about 90% of all glass made in the United States (Burns 2012).  

1. Soda-lime glass

2. Lead glass

3. Borosilicate glass

4. Aluminosilicate glass

5. 96% silica glass

6. Fused silica glass

Table 2.9 shows the typical composition of soda-lime glass used primarily in bottle and 

packaging applications. 

Table 2.9. Typical composition of soda-lime glass 
by mass (Glass Packaging Institute 2013). 

Soda-lime glass 

SiO2 (%) 72% 

Al2O3 (%) 2% 

CaO (%) 12% 

Na2O (%) 13% 

Minors (%) 1% 

Hardness 5.5-6.5 

Most of the markets for waste glass involve the need for comminution (size reduction) and 

size separation.  Cullet used to make new glass can be as large as ¾ inch, however, in most 

other markets much smaller particle sizes are required. Crushed and ground glass particles 

have a varying shape depending on the size of the particle.  Particles larger than 1/10 inch 

have been known to be plate-like and smooth with sharp edges and are found to be quite 

friable.  Heavy gloves are usually necessary for handling these larger particles. Smaller 
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particles, <1.5mm, are typically subangular, with a more normal shape and are less friable 

and easier to handle. Crushed glass typically displays a conchoidal fracture resulting in 

sharp edges and smooth planes, but further grinding has been found to even out the particle 

shape (Polley et al. 1998). Figure 2.18 shows the morphology of finely ground glass 

particles. 

 
Figure 2.18. Typical morphology of soda-lime silica 
bottle glass (Cyr et al. 2012). Reprinted by 
permission of Springer. See Appendix D for 
documentation of permission to reprint this material. 

Mining and aggregate industry equipment is often used to crush glass because of its 

abrasive nature; this includes both compression and impacting devices.  The hammer mill 

has been used successfully with longer residence times leading to more rounded particle 

shape due to inter-particle attrition.  Grinding mills such as ball mills, vertically stirred 

mills, fluid energy and rotary mills are used to process the glass down to powder size.  The 

stirred attrition mill also works well to create rounded particles (Pascoe et al. 2001). 
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2.4.1.3.1 Recycling in the United States 

“Glass is 100% recyclable and can be recycled endlessly with no loss in quality or 

purity (Glass Packaging Institute 2013).” 

Since cullet, or broken glass, can be used to make new glass simply by melting it together 

with other virgin raw materials, the most obvious use for waste glass is to make new glass. 

In fact, glass manufacturers want to reuse glass cullet because it lowers the required melt 

temperature, which results in substantial savings in energy and fuel, and also cuts down on 

the raw materials needed (Glass Packaging Institute 2013). However, despite this 

seemingly simple recycling loop, waste glass recovery rates in the United States are 

surprisingly low. 

Total municipal solid waste (MSW) in the United States in 2010 was reported by the EPA 

to be 249.86 million tons of material, with glass making up about 4.6%. Of the 11.53 

millions tons of glass generated, only 27% was recovered. This follows a similar trend 

from the past twenty years, as shown in Figure 2.19 (US EPA 2010). Strict color and 

compositional requirements for cullet used to make new glass are the main cause of these 

low recovery rates. 
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Figure 2.19. Relationship between recovered and discarded glass in MSW from 
1960-2010.  Black represents discarded glass, green represents recovered glass (US 
EPA 2010). 

Post-industrial glass is collected directly from the manufacturing process and is easily used 

to make new glass since the producer of the waste is also the end market user and so can 

easily control the color and purity of the material, making it a closed loop system with no 

waste. In addition, glass collected through separated collection methods such as those 

employed at restaurants or bars or in states that have bottle deposits often yield glass that 

can quickly and inexpensively be made acceptable for glass recyclers.  A report by the 

Container Recycling Institute states that those states with mandated bottle deposit programs 

have an average glass recovery rate of 63%, which is much higher than that of the country 

as a whole (US EPA 2010; Glass Packaging Institute 2013), however, only ten states in the 

U.S. have bottle deposits: CA, CN, HI, IO, ME, MA, MI, NY, OR and VT.   

Glass collected through curbside or single stream recycling programs are another story 

(Stoklosa 2012). When glass is collected through a single-stream or curbside recycling 

program, maintaining these strict color and purity requirements becomes extremely 
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difficult. Post-consumer glass collected from these programs is often broken, laden with 

impurities and a mixture of many different colors and types of glass by the time it reaches 

the end of the sorting process at material recycling facilities (MRF). 

Color – Glass in the United States is produced in three main colors: flint, amber and green. 

Cullet used to make new glass must be well sorted by color because too much of the wrong 

color can lead to the glass appearing cloudy or slightly off color, which is not acceptable.  

Composition – Compositional impurities are also an issue with reusing cullet to make new 

glass. Specifically, any glass type or other material that melt at a higher temperature than 

the desired glass type can be detrimental to the glass production machinery (Glass 

Packaging Institute 2013). Contamination from these materials can result in damage to 

machines, quality fluctuations and the possibility of impurities (called stones) within the 

final product; which can also result in safety issues in the final product, especially if the 

contents are under pressure, such as champagne (Zeiger 2008).  Common contaminants 

include (Glass Packaging Institute 2013): 

• Ceramic cups, plates and pottery

• Clay garden pots

• Laboratory glass

• Crystal and opaque drinking glasses

• Mirrors

• Windshields and window glasses

• Heat-resistant ovenware (Pyrex or Visionware)

• Light bulbs

• Ceramic and wire caps for beer bottles
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• Lead collars from wine and champagne bottles

• Stones, gravel, dirt

• Metal caps, lids and neck rings

• Drinking glasses

• Hazardous glass containers (like acid containers)

Color sorting machines do exist, using optoelectronic sorting systems which can remove 

impurities like ceramics, stone, porcelain (CSP) or metals, sort by color and process the 

rejects for other uses. However, the time and high costs associated with this extra 

processing often deter MRFs from installing this equipment (Polley et al. 1998; Glusing 

and Conradt 2001; Zeiger 2008). 

In addition to materials processing costs, transportation costs also play a big role on 

whether or not glass is recycled since it is such a heavy material to transport. This is 

common in many recycling markets. There are only 48 glass manufacturing plants and 76 

cullet processors in the United States and so transportation costs to get the cullet to a 

recycler make glass recycling unfeasible in many locations (Polley et al. 1998; Glusing and 

Conradt 2001; Zeiger 2008; Glass Packaging Institute 2013). Glass is not recycled in 

Houghton, MI for this reason, as shown in Figure 2.20. 
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Figure 2.20. No glass sign at Waste Management in Houghton, MI. 

Most post-consumer glass that cannot be easily processed and sorted for glass making is 

typically used to make fiberglass insulation or as abrasive media for sand-blasting (Turner 

2013). However, these markets often have compositional limitations of their own and none 

are robust enough to handle all of the waste glass generated. Other markets include (IMP 

1994; Pascoe et al. 2001; US EPA 2010; Glass Packaging Institute 2013): 

• Decorative – countertops and flooring, tile and other decorative items 

• Landscaping 

• Construction – concrete pavements and parking lots, bead manufacturing (used in 

reflective paint for highways), brick manufacture, Glasphalt 

• Aggregate (base course for roads, land, drains, backfill, decorative) 

• Additive in clay bricks, plastics or paints 

• Adsorbent and cation exchange material 

• Filtration medium 

• Fractionators for matches and ammunition 

• Additive and flux in metal foundry work 
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• Hydroponic rooting medium

Efforts to include glass in OPC concrete as either a cement replacement or aggregate have 

been successful in some cases, but issues with ASR (alkali-silica reactivity), poor 

workability, high water demand and poor bonding with the OPC matrix are common and 

must be dealt with proactively (Meyer et al. 1996; Polley et al. 1998; Xie et al. 2003). 

While other Si-rich materials such as fly ash or silica fume have been shown to be very 

effective at mitigating ASR and enhancing durability in OPC concrete, waste glass is still 

considered an orphan material. This is because it possesses many desirable properties of 

an SCM but does not as of yet have a solid foundation of research and success to support 

its widespread use. 

2.4.1.3.1.1 Market longevity 

Glass packaging trends have changed over time with the preferences of society. The 60s 

and 70s saw an increase in glass production leading to a peak around 1980.  By 1985, 

however, aluminum and plastic containers and bottles had become more popular and glass 

production diminished as seen in Figure 2.19.  Since that time, glass generation in the MSW 

has remained fairly steady, with a slight decrease in the last 20 years (US EPA 2010).  It 

should be noted however, that EPA statistics are based on total mass and glass bottles today 

are about 50% lighter in weight than they were 50 years ago (Glass Packaging Institute 

2013), so these statistics do not necessarily represent consumer use of glass bottles or 

containers. 
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In 2000, the GPI reported a consumer return to glass due to safety concerns over other 

commonly used packaging materials such as plastic. In 1960, the United States Food & 

Drug Administration (FDA) gave glass the label Generally Recognized as Safe (GRAS); 

glass is the only packaging material to be given this designation (Glass Packaging Institute 

2013). According to a poll given by the GPI, consumers prefer to buy their food and drinks 

in glass bottles because when comparing glass, paper, metal and plastic packaging 

materials, glass ranked highest by far in highest quality, truest flavor, most pure and 

healthiest package (Glass Packaging Institute 2013). 

2.4.1.3.2 Glass in geopolymers 

To date there has been very little research on geopolymer systems based solely on waste 

glass. Research carried out in Greece reacted finely ground glass (<90μm) with 1M NaOH, 

but the activator solution was not nearly strong enough for adequate activation or strength 

gain (Karamberi et al. 2004). Others looked at using common natural clays and infusible 

glass cullet rejects, containing stones and ceramic pieces, in an attempt to make a 

geopolymer cement. By mixing the cullet with the clays in small amounts; strengths around 

30MPa were reached (Carvalho et al. 2008). Additional research considering glass as a 

component in geopolymers has also been recorded (Grutzeck and Marks 1999; Kourti et 

al. 2010; Hao et al. 2012; Lin et al. 2012). 

There has only been one reported account of the production of pure glass-based 

geopolymer cement, by Cyr et al. who used green bottle glass activated with NaOH and 

KOH. Due to the high Si content of the glass, sodium silicate was not included in the 
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activator solution, nor was any substantial source of Al, so final Si/Al ratios were reported 

to be around 20 based on the composition of the glass used. With regard to liquid/solid (l/s) 

ratio, it was found that higher l/s ratios resulted in lower compressive strengths (Cyr et al. 

2012). 

Moderate compressive strengths were reported when samples were cured at 60°C. 

However, samples cured at 40°C and stored in water were found to have 45% lower 

strength.  This was thought to be due to the leaching of alkalis, which was prevalent even 

after several weeks of submersion in distilled water.  The cause of this excessive leaching 

“was believed to be due to the lack of Al in the system, which would normally hold in the 

alkali cations in a charge balancing capacity.  The set times were also reported to be quite 

long, which again could be due to a lack of Al. “Higher Al content might be needed (by 

using a source of active aluminum) to improve the setting time at 20°C and stabilize the 

matrix and the alkalis for long-term durability (Cyr et al. 2012). 

Using SEM, microstructural characterization of the samples made with the finest glass (14 

μm) showed all the glass reacted after curing for 56 days and the geopolymeric products 

were compared to the gel produced during alkali-silica reactions in OPC. It was assumed 

that some C-S-H gel was produced as well from the calcium in the glass (Cyr et al. 2012). 

Based on the reaction products, Cyr et al. believe “it seems reasonable to classify the alkali-

activated glass cullet materials as geopolymers, since they are closer to FA- and MK-based 

geopolymers than calcium-based binders such as OPC and slag (Cyr et al. 2012).” 
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2.4.1.3.2.1 Glass as an activator 

“It would be interesting to use glass cullet as a precursor for geopolymerization of 

other types of geopolymers instead of waterglass, since the latter has a very 

negative environmental impact.  However, glass cullet would first need to be 

activated, by a preliminary dissolving process for instance” (Cyr et al. 2012). 

Researchers in Italy reacted ground glass cullet with NaOH in an attempt to extract soluble 

silica for use in sodium silicate or as a silica source for zeolite synthesis.  Variables they 

considered in this low energy treatment included temperature, pressure, molarity of the 

NaOH, liquid to solid ratio, grain particle size and reaction time.  The conditions at which 

the experiments were performed were more conducive to zeolite synthesis rather than 

geopolymerization, especially the l/s ratio, which was varied from 1.5 to 5 (much higher 

than in geopolymer synthesis). A plateau in silica extraction was found despite an increase 

in NaOH concentration and contact time. Increased temperature resulted in more silica 

extraction, as did smaller particle size (< 75 microns).  Through the use of a multi-stage 

reactor, over 75% of the silica in the glass was extracted into the liquid phase, which was 

found to be successful at creating zeolites after being combined with a sodium aluminate 

solution (Mavilia et al. 2001; Di Bella et al. 2003).  

The solid phase leftover from the reaction was found to be a combination of unreacted 

glass and calcium silicates.  SEM micrographs taken of the residue showed that some of 

the particles remained smooth or etched and solid, while others were pitted and covered in 

an extremely lightweight material with high macro-porosity and surface area.  The reason 
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for this is that as the Si goes into solution to form sodium silicate, insoluble calcium silicate 

remains as a porous coating on the glass particles.  After a certain time, or from agitation, 

this coating falls off and the new surface is attacked and the process repeated.  However, 

as the free alkalis in the system decrease, dropping the pH, the reaction eventually stops, 

leaving some particles unreacted.  The solid residue separated into an amorphous coarse 

phase, which had a very similar composition to the initial glass powder used, and a semi-

crystalline fine phase which had a lower SiO2 and Na2O composition and a higher CaO 

content (Mavilia et al. 2001; Mavilia and Corigliano 2001). 

2.5 Activator solution 

While water and possibly the inclusion of various admixtures act as the “activator” in OPC 

concrete, the alkali activating solution in geopolymers can vary greatly in terms of 

composition, where the concentration of alkalis, pre-dissolved Si, pH, viscosity, etc. can 

all influence the kinetics and resulting microstructure of the mixture. 

The activator solution has many roles to play in geopolymerization.  First, it provides a 

fluid in which transport reactions can occur. Second, the high pH of the system allows for 

rapid dissolution of the source material.  Third, the alkali cations present play a role in the 

structure of the final geopolymer by acting as a charge balancer for tetrahedrally 

coordinated Al.  Fourth, silica in solution can accelerate the geopolymerization process 

resulting in a faster setting time, higher compressive strength and often more uniform and 

homogenous microstructure. A balance of dissolution and polycondensation is required to 
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optimize the product and this is often managed through alterations to the activator solution 

(Bondar et al. 2011). 

The most basic form of activator solution is an alkali hydroxide such as NaOH or KOH. 

The type of activator used depends a great deal on cost and availability; sodium based 

chemicals are typically less expensive and more readily available than potassium based 

chemicals (Bondar et al. 2011). In many cases, pre-dissolved silica is added to the alkali 

hydroxide to form what is commonly known as waterglass, or sodium silicate, Na2SiO3. 

Sodium silicate not only provides extra Si to the system but it also provides it in a readily 

available manner, which affects the kinetics and therefore geopolymerization of the system. 

This is discussed later in this section. 

It should be noted that in some of the literature, the composition of the activator solution 

is presented as a formula such as 1.0Na2O∙Al2O3∙4SiO2. However, simply stating the molar 

content of Na does not necessarily reflect the [OH-] content of the solution, which is 

important with regard to pH and dissolution (Sagoe-Crentsil and Weng 2007).  

2.5.1 Sodium hydroxide 

Sodium hydroxide, also known as lye or caustic soda, is a commonly used in many 

industrial chemical processes and is produced using the chlor-alkali process, which 

involves the electrolysis of brine, NaCl, to create NaOH, HCl and H2 gas.  It is available 

commercially as a solution, a solid, or as pellets, flakes or beads, all of which have the 

same composition on a mass basis (Shi et al. 2006). 
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The role of sodium hydroxide in geopolymerization is to provide hydroxyl ions in solution, 

which work to dissolve the solid aluminosilicate powder, releasing Si, Al and other 

impurity ions into solution.  The dissociation of sodium hydroxide into Na+ and OH- ions 

in solution is extremely exothermic. An estimate of the heat released during dissolution of 

10 moles of NaOH into one liter or water is approximately 400 kJ, which is enough to 

increase the temperature of the water by close to 90°C (Provis 2009).  This rapid 

temperature increase makes necessary certain safety concerns when working with this 

caustic substance and requires safety considerations for mixing geopolymer cement outside 

a controlled laboratory.  

2.5.1.1 Activator concentration effects 

The purpose of the alkali hydroxide, as stated earlier, is to dissolve the source material. A 

minimum concentration of OH- ions are needed for dissolution and it has been found 

repeatedly in the literature that an increase in pH (OH- concentration) results in an increase 

in dissolution of the system (Li et al. 2011) which has also been linked to an increase in 

compressive strength (Xu and Van Deventer 2000; Hardjito et al. 2004; Palomo et al. 2004; 

Fernández-Jiménez and Palomo 2005; Ryu et al. 2011). 

In general, a low concentration is considered to be around 1M, a moderate concentration 

to be around 5-10M and a high concentration to be around 15M. If the NaOH concentration 

is too low, not enough dissolution will occur and therefore not enough reaction product 

will form to successfully link the system together (Murayama et al. 2002). On the other 

hand, too high a concentration sometimes results in a flash set due to a rim of reaction 
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products rapidly forming around the unreacted particles preventing further reaction.  Even 

if a flash set does not occur, the degree of reaction of the mixture is often lower with very 

high alkali concentrations due to faster setting (Provis and vanDeventer 2009). 

Additionally, excess OH- in solution can lead to a decrease in compressive strength due to 

depolymerization of more advanced polymerized species (Palomo et al. 1999). 

2.5.1.2 Effect of the type of cation 

Both Na- and K-based hydroxides have been used in geopolymer synthesis but NaOH is 

used most prevalently due to its low cost. NaOH has typically been found to result in better 

dissolution than KOH at the same molarity, while in most cases the compressive strengths 

are higher with KOH (Xu and Deventer 1999; Xu and Van Deventer 2000; Bondar et al. 

2011). Na+ cations in solution also typically result in a more ordered structure than K+ ions; 

this is thought to be because sodium cations are smaller in size, which allows them to 

navigate through the gel easier than the larger potassium cations (Duxson et al. 2007). 

Aluminosilicates formed through the reaction of silicate and aluminate species were found 

to increase as Si content and cation size increased. Though the charge on Na+ and K+ 

particles is the same, the size is different, and as such, Na+ cations have a higher affinity to 

form ion pairs with smaller silicate oligomers, whereas K+ ions prefer to pair with large 

silicate oligomers (McCormick et al. 1989; Hendricks et al. 1991). This reinforces the 

previously made claim that Na+ accelerates dissolution, while K+ accelerates gelation and 

condensation, which leads to more geopolymerization (Duxson et al. 2005).   
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2.5.2 Sodium silicate 

Sodium silicate, or waterglass, is believed to have been used as long as 5600 years ago in 

Ancient Egypt (Davidovits 2008). Today it is a very common industrial chemical used as 

an ingredient in cleaners, detergents, adhesives, binders, defloccullants, and to make 

precipitates, silicas, sols and gels (Iler 1979). There are two main processes for producing 

industrial grade sodium silicate Na2SiO3 (Na2O-SiO2): the furnace method and the 

hydrothermal method. The furnace method consists of fusing quartz sand (SiO2) and soda 

ash (sodium carbonate, Na2CO3) at high temperatures to create a solid glass that is later 

dissolved in water into a viscous liquid by high-pressure steam in an autoclave at between 

140-160°C (McDonald and LaRosa 2006; Shi 2006).  The hydrothermal process is a more 

direct process, which involves dissolving a siliceous material such as sand in a caustic 

alkali solution in an autoclave.  This method was originally developed to use with impure 

siliceous materials such as diatomaceous earth. However, the resulting sodium silicate does 

not possess the high purity necessary for applications such as detergents.  Use of this 

impure sodium silicate could be applicable for geopolymers, however (Davidovits 2008).  

The general formula for soluble silica is xSiO2:M2OzH2O, where x is the degree of 

polymerization, M2O is an alkali metal oxide (Na2O, K2O, Li2O), and z is the number of 

water molecules present. Liquid sodium silicate solutions can be expressed in composition 

by either the modulus, SiO2/Na2O or by the content of SiO2, Na2O or SiO2 + Na2O (Shi 

2006). In industry, sodium silicate is graded based on the weight ratio (WR), or modulus; 

commercial silicates typically have moduli between 1.5 and 3.2 (McDonald and LaRosa 

2006; Davidovits 2008). It should be noted the weight ratio (WR) is used in industry but 
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the molar ratio (MR) is used in geopolymer science and this document (i.e., MR is similar 

to WR for sodium silicate and is the molar ratio of SiO2 to Na2O). 

With a high modulus, the pH is very important in determining the stability of a sodium 

silicate solution with respect to turning into a gel. Stability increases with pH (Lawrence 

and Vivian 1961; Shi 2006; Davidovits 2008; Bondar et al. 2011) and a higher pH leads to 

a longer gelation time (Tognonvi et al. 2011). The pH range of most commercial sodium 

silicates is from 10.9-13.5.  Depending on the MR of the solution, and the dilution or extra 

alkali added, it will reach its own equilibrium consisting of different polymer species 

(Davidovits 2008). The speciation of the silica in solution at equilibrium depends a great 

deal on the modulus of the solution and the dilution or extra alkali added (Davidovits 2008). 

Through 29Si MAS NMR (nuclear magnetic resonance) spectroscopic analysis, 48 different 

aqueous silicate structures have been identified in concentrated alkaline solutions (Knight 

et al. 2007). 

Silica from sodium silicate, or soluble silica, can exist in well-polymerized species 

depending on such factors as the pH and modulus of the solution.  As the Si concentration 

in solution increases, more and more highly polymerized Si species are formed such as Q2, 

Q3 and Q4 (Criado et al. 2008).  However, when the pH of the system is increased too 

high, depolymerization can occur resulting in oligomers of less connected species such as 

Q0 or Q1 (McDonald and LaRosa 2006). As the molar ratio increases, the molecular weight 

and degree of polymerization also increases (Dent Glasser and Lachowski 1980). 
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In cases where Si dissolution is too slow to reach the required supersaturated solution 

necessary for condensation to occur, or if there is just not enough reactive network formers 

(Si, Al) available, extra Si is provided through the addition of pre-dissolved silica to the 

activating solution (Xu and Van Deventer 2000).  The presence of sodium silicate has been 

found to alter the kinetics of geopolymerization as well as other properties including the 

set time, microstructure and flexural and compressive strength of the final binder (Steveson 

and Sagoe-Crentsil 2005).  

Some researchers have made their own sodium silicate solutions by reacting amorphous 

silica fume in caustic NaOH or KOH solutions. Other types of reactive silica SiO2 used in 

geopolymer applications include (Davidovits 2008): 

Table 2.10. Reactive Si sources used to make sodium silicate activator solutions for 
geopolymers (Davidovits 2008). 

Type Content Size range Production 

Silica flour 100% crystalline SiO2 3-10 microns 
Finely ground pure 

quartz sand 

Fume silica 99.9% amorphous SiO2 0.05-0.1 microns 
Vapor phase 

hydrolysis 

Silica fume/ 

microsilica 

Roughly 89%+ amorphous 

SiO2 
0.05-1 microns 

Byproduct of 

silicon or 

ferrosilicon steels 

Rice husk 

ash 
85-90% amorphous SiO2 15-30 microns 

Ash from husk 

used for fuel in 

rice mills 

Rees et al. experimented with reacting Class F fly ash with anhydrous sodium silicate and 

found the amount of Si released was less than when the sodium silicate was in an aqueous 
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state.  This is thought to be because there are more non-bridging oxygens (NBO) present 

in the liquid, where sodium as well as water can occupy a network modifying site (Rees et 

al. 2005). 

It should also be noted there are possible health hazards associated with SiO2 nanoparticles 

and silicosis has been known to form from the inhalation of crystalline silica.  

Investigations into amorphous silica have deemed it safer but inhalation should still be 

avoided and caution should be taken either way (Davidovits 2008). 

2.5.2.1 Kinetic effects 

“The nature of the alkali activator plays an instrumental role in the kinetics, 

structure and composition of the gel initially formed” (Criado et al. 2008). 

When soluble silica is included in an activating solution, dissolution of the aluminosilicate 

continues as normal, releasing Si and Al monomers into solution where they quickly 

condense together once the system reaches supersaturation.  The time it takes to reach 

supersaturation, however, is greatly reduced due to the presence of the soluble silica in the 

form of more highly polymerized species (Xu and Deventer 1999).  

The rate of nucleation depends on the degree of supersaturation in solution and on 

nucleation triggers such as “undissolved particles, newly formed crystals or amorphous 

aluminosilicate particles, or any other solid-liquid interface” (Provis et al. 2005).  

Nucleation occurs much faster and more often when sodium silicate is present, which leads 

to the formation of a great number of nuclei that all remain very small due to limited space, 
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nutrients and growth; this eventually leads to the formation of a gel.  In activator solutions 

containing only an alkali hydroxide, there are very few sites for nucleation to occur and so 

those sites that do nucleate are given time to grow, forming larger particles and often 

leading to precipitation (Provis et al. 2005).   

The Al in the system also plays an important role in speeding up the condensation process 

especially when sodium silicate is present. During the dissolution of aluminosilicates, Al 

is typically released before Si and the initial Si/Al ratio of released monomers in solution 

is less than unity.  Al monomers preferentially react with other Si monomers, but as there 

are less Si monomers present than Al monomers and Al-O-Al bonds are not favored, the 

Al monomers will begin to condense with the more polymerized Si species from the 

sodium silicate (Bell 1999; Sagoe-Crentsil and Weng 2007). Since the soluble silica is well 

dispersed throughout the solution due to mixing, condensation reactions with Al occur 

rapidly and evenly throughout solution, rather than just in localized areas surrounding solid 

particles where Si is released slowly one monomer at a time. This leads to the 

aforementioned increased Al included in the system (Hajimohammadi et al. 2011). 

The early condensation reactions between Al monomers and soluble silica species act as a 

“jumpstart,” which spurs on subsequent reactions and decreases the time it takes for a gel 

to form.  As gelation and initial set time go hand in hand, systems containing soluble silica 

typically have shorter set times (Steveson and Sagoe-Crentsil 2005).  Reaction kinetics are 

not the only thing affected by the addition of soluble silica; the degree of reaction (α) as 

well as geopolymer product formation throughout geopolymerization and well after are 

also influenced (Criado et al. 2007).  
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2.5.2.2 Effects on reaction product phases 

Criado et al. reacted fly ash with activating solutions containing varying ratios of 

SiO2/Na2O and used XRD and Reitveld analysis to measure the gel, zeolite and vitreous 

(unreacted) phases present as well as the degree of reaction and compressive strength at 

various times following mixing.  The results clearly show the effects that adding sodium 

silicate to the activator solution can have on geopolymerization as shown in Figure 2.21 

and Figure 2.22.  Sample N did not contain any soluble silica and samples W15, W50 and 

W84 contained increasing quantities, respectively.   

Figure 2.21. Gel, zeolite and remaining vitreous phases for fly ash 
activated with various alkali activating solutions (Criado et al. 2007). 
Reprinted by permission of Elsevier. See Appendix D for documentation 
of permission to reprint this material. 
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Figure 2.22. Compressive strength of fly ash 
geopolymers activated with various activators over 
time (Criado et al. 2007). Reprinted by permission 
of Elsevier. See Appendix D for documentation of 
permission to reprint this material. 

At 180 days, sample W50 contained the largest gel content and yielded the highest 

compressive of all the samples, and likewise, sample W15 contained the lowest gel content 

and lowest compressive strength despite having a much higher degree of reaction.  

However, it can be seen from the figure the rate at which the gel forms, the rate of 

dissolution, and various other reaction kinetic are greatly affected by the soluble silica 

content.  In all cases, the vitreous content went down as the gel content went up, indicating 

reaction. However in the cases where high doses of silicate was added in (W50, W84), the 

vitreous content went down much slower since dissolution was hindered by the large 

saturation of ionic silica species.  

The maximum silica content is limited by the viscosity of the solution as the Si content 

goes up (Iler 1979). The viscosity of sodium silicate solutions is important when it comes 

to ease of mixing. Decreased pH and increased viscosity due to the excess of polymerized 
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silica species in solution can hinder the mobility of the system and often resulting in the 

incomplete dissolution of the precursor material (Fernández-Jiménez et al. 2006; Duxson 

et al. 2007; Sagoe-Crentsil and Weng 2007). 

The addition of soluble silica to the activating solution has been shown to increase the 

apparent structural stability of a geopolymer as well as to help prevent long term structural 

ordering from occurring (Duxson et al. 2007). EDS analysis of the final geopolymer also 

typically shows a higher Si/Al and Na/Al content when waterglass is included in the 

activator as compared to just NaOH (Fernández-Jiménez and Palomo 2005). Mixes 

containing soluble silica also yielded higher earlier compressive strengths and X-ray data 

showed there was no existence of crystalline phases except those originally found in the 

fly ash (Palomo et al. 1999) (Hardjito et al. 2004; Palomo et al. 2004). The microstructure 

is also typically more uniform when sodium silicate is present. 

2.5.3 Sodium Carbonate 

Sodium carbonate, or soda ash, can be acquired through the processing of natural sources 

containing sodium carbonate-bearing minerals generally found in shallow alkaline lakes. 

Synthetic soda ash can also be produced through the Solvay process and the waste materials 

from the ammonium chloride, New Asahi and caustic carbonation processes (Shi et al. 

2006). Commercially produced soda ash is sold based on the percentage of Na2O content.  

Sodium carbonate comes in two main forms, as light soda ash, or dense soda ash, depending 

on the bulk density of the material (Shi et al. 2006). The presence of CO3
2- in an activator 

made of NaOH and Na2CO3 was found to result in lower mechanical strengths, compared 
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to just NaOH or NaOH plus sodium silicate activators (Fernández-Jiménez and Palomo 

2005) although it is used in some applications successfully. 

2.5.4 Calorimetry 

Calorimetry used in conjunction with cements and concretes is performed typically to 

provide an indication of the elapsed time and heat expelled during various chemical 

reactions, and to signal the start and finish of the various stages in the hydration of OPC. 

The main reactions in geopolymerization are dissolution and polycondensation, speaking 

very simply, and these two phases being exothermic are visible using calorimetry 

techniques. A spike in heat evolution due to dissolution (often occurring so fast it is difficult 

to capture) followed by a period of induction or low heat evolution and then an acceleration 

of heat evolution again signaling a mass condensation that lowers slowly over time have 

been found in metakaolin, fly ash and slag-based geopolymers (Granizo et al. 2002; Puertas 

et al. 2003; Sagoe-Crentsil and Weng 2007; Weng and Sagoe-Crentsil 2007; Zhang et al. 

2012). Oddly, there is very little heat produced when a sol turns to a gel (Iler 1979). Figure 

2.23 shows a schematic of geopolymerization based on metakaolin activated by NaOH. 
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Figure 2.23. Schematic of geopolymer synthesis kinetics: based on metakaolin 
activated by NaOH (Zhang et al. 2012). Reprinted by permission of Elsevier. See 
Appendix D for documentation of permission to reprint this material. 

A linear relationship exists between compressive strength and heat released for metakaolin 

geopolymers reacted with sodium silicate but this is not found to be true for fly ash (Provis 

et al. 2005).  

Calorimetry measurements have been very useful in monitoring the steps of 

geopolymerization and the effects of activator concentration. If the dissolution rate is too 

slow to reach the necessary supersaturation in solution for precipitation to occur, the heat 

peak usually associated with polycondensation and setting does not occur and the sample 

remains plastic. If the activator concentration is too high, the polycondensation peak does 

not occur, this is thought to be because at very high pH, [SiO2(OH)2]2- is the main species 

present and is not favored for condensation  (Granizo et al. 2002; Weng and Sagoe-Crentsil 

2007). 
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Figure 2.24 shows the influence of varying the activator sources on the heat evolved during 

the alkali activation of metakaolin.  It is obvious from the calorimetry curves, the kinetics 

of geopolymerization are affected despite the fact the stoichiometry of the activator 

solution is the same in all three samples. 

Figure 2.24. Influence of different Si sources on 
calorimetry curves for metakaolin activation 
(Sagoe-Crentsil and Weng 2007). Reprinted by 
permission of Springer. See Appendix D for 
documentation of permission to reprint this 
material. 

2.6 Mixture design stoichiometry 

Mixture design for geopolymers generally begins with the consideration of two molar 

stoichiometric ratios: Si/Al and M+/Al where M+ is either Na or K.  However, the presence 

of soluble silica or calcium, the alkalinity of the activator solution as well as the water 

content and curing conditions have all been found to influence geopolymerization and so 

must be considered in mixture design. 
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Depending on the source material and activator solution employed, various stoichiometric 

ranges have been suggested for geopolymers. In his patent for mineral polymers made of 

metakaolin, Davidovits outlines the following oxide-mole ratios (Davidovits 1979) shown 

in Table 2.11. Alternately, a Si/Al ratio of approximately 1.8-2.0 is considered to be 

adequate for metakaolin by other groups (Duxson et al. 2005; Fernández-Jiménez et al. 

2006). 

Table 2.11. Proposed oxide-mole ratios for mineral 
polymers made of metakaolin (Davidovits 1979). 
(Na2O,K2O)/SiO2 0.20 – 0.28 

SiO2/Al2O3 3.5 – 4.5 (about 4.0) 

H2O/(Na2O, K2O) 15 – 17.5 

(NA2O,K2O)/Al2O3 0.8 – 1.20 (about 1.0) 

Rowles et al. considered a variety of mixtures with stoichiometric Si/Al and Na/Al ratios 

ranging from Si/Al from 1-3 and Na/Al from 0.5-2 with Si/Na ranging from 1, 1.5 and 2. 

The highest compressive strength, and also the most uniform microstructure, was found at 

Si:Al:Na of 1.5:1.0:1.29. Rowles et al. stated that compressive strength is dependent on 

both Si/Al and Na/Al (Rowles and O'Connor 2003).  

Duxson, et al. specified a range of Si/Al of 1-5 and Na/Al ratio of close to 1 for 

geopolymers used in the construction industry, since geopolymers with compositional 

ratios outside of these ranges are very possible, but not realistic to be used as binders in the 

construction industry.  The Na/Al ratio of close to 1 was further described as being 

necessary to achieve “optimal mechanical and durability performance” (Duxson et al. 

2007). 
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There have been various other suggestions as well, but the bulk of the literature 

recommends a system of Si/Al = 2-5 and Na/Al = 1. 

2.6.1 The role of Al 

“… it is absolutely indispensable for a certain amount of Al to be initially present 

in the system for the first bonds to form” (Fernández-Jiménez et al. 2006). 

Since the two main ratios used for mixture design both include Al, it is safe to say that Al 

plays a very important role in geopolymer success and it is therefore necessary to explain 

the role that Al plays with relation to Si and alkali cations. Essentially, alumina can only 

occur in tetrahedral coordination with tetrahedral silica if a monovalent alkali cation (Na+ 

or K+) is available to balance the charge.  

Solutions made of simply alkali silicates (Si and Na) do not harden on their own except in 

cases of extreme drying and are usually water soluble to some degree, however alkali 

aluminosilicates have a very low solubility, and because of this, aluminum is thought to be 

the mechanism for which irreversible hardening occurs in geopolymers.  While this main 

idea is considered true, unknowns exist in terms of how to control the release of available 

alumina during geopolymerization, which is very important as alumina is thought to have 

an effect on the rate, stoichiometry and reaction progress in geopolymerization (Duxson et 

al. 2007). These and other issues are considered in the following sections. 
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2.6.2 Na/Al 

The ratio of alkali (sodium or potassium) to alumina has been found to be very important 

to the success of a geopolymer mixture. These cations are believed to exist in a solvated 

state in between openings in the matrix (Barbosa et al. 2000) and are included in the final 

aluminosilicate matrix in a charge balancing capacity; ideally the available Na/Al ratio will 

be as close to unity as possible.  

It has been found that in pure aluminosilicate gels synthesized under basic conditions, only 

an equal amount of Al and Na will be included in the gel at higher pH (Fernández-Jiménez 

et al. 2006). This is shown in Figure 2.25.  Additionally, Na NMR MAS does not show Na 

associated with non-bridging oxygen, meaning the Na is only associated with Al as a 

charge balancer (Duxson et al. 2005).
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Figure 2.25. pH vs. Al2O3/K2O molar ratio in 
aluminosilicate gels (Fernández-Jiménez et al. 
2006). Reprinted by permission of Elsevier. See 
Appendix D for documentation of permission to 
reprint this material. 

Despite this basic theory and evidence supporting the ratio of Na/Al = 1, it has been noted 

the need for 1:1 charge balancing is stronger in crystalline aluminosilicate structures like 

zeolites as compared to amorphous systems as their “less-ordered nature allows variation 

from strict tetrahedral geometry and therefore allows alternative methods of charge 

compensation [for Al]” (Provis et al. 2005; Steveson and Sagoe-Crentsil 2005). 

2.6.2.1 Na/Al < 1 

Should excess Al exist in the system, it has been found to remain in the pore solution as 

aqueous [Al(OH)4]- (Duxson et al. 2005)(Duxson et al. 2005)(Duxson et al. 2005)(Duxson, 

Lukey et al. 2005). Na+ ions have also been found in the pore solution with aqueous Al in 

an attempt to maintain charge neutrality (Duxson et al. 2005). A very low M+/Al ratio may 

also affect the setting if an insufficient amount of Al is not present in the matrix (Davidovits 

1979). 
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2.6.2.2 Na/Al > 1 

In systems with initial Na/Al > 1, the final composition of geopolymer product typically 

remains at around 1, however other phases such as crystalline Na2CO3 have been found to 

form. This indicates that “the charge-balancing positions will be filled preferentially to the 

formation of carbonate crystals in the absence of excess alkali cations” (Provis et al. 2005). 

These deleterious carbonates can lead to expansion, cracking, efflorescence or a loss in 

strength (Davidovits 1979; Rahier et al. 1997; Duxson et al. 2005; Provis 2009), but have 

been found to be less common when the samples are well cured (Barbosa et al. 2000). 

In very high Si/Al systems (Si/Al = 20) where the Na/Al is also very high, Na+ ions present 

in the pore solution have been found to be easily leached away from the hardened product 

in water (Cyr et al. 2012). In fly ash samples reacted with NaOH and sodium silicate, where 

the modulus went down to 1.0, tabular crystals were found which are believed to be sodium 

silicate hydrates: Na2O∙SiO2∙5-9H2O, which are very soluble in water and can dissolve 

easily in the moisture from the air, weakening the structure (Xie and Xi 2001). 

2.6.3 Si/Al 

“Recent surveys have shown that the Si/Al ratio of the aluminosilicate gel obtained 

from the alkali activation of fly ashes depends heavily on the chemical composition 

of the starting material, nature and concentration of alkali activator, synthesis 

temperature and thermal curing time” (Fernández-Jiménez et al. 2006). 
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The optimal Si/Al ratio in the final product is related to the bulk Si/Al in the initial products 

through the degree of reaction. General trends relating to Si/Al ratio show that increasing 

the Al content speeds up the kinetics of reactions thereby decreasing the set time 

(Kovalchuk et al. 2007), while increasing the Si content during geopolymerization leads to 

an increase in mechanical performance (Fernández-Jiménez et al. 2006; De Silva et al. 

2007). 

Fletcher et al. investigated geopolymers with varying Si/Al ratios from 0.5-300 by starting 

with metakaolin and then adding amorphous Al2O3 or SiO2.  The H2O:Na2O ratio was held 

constant while the H2O/SiO2 and H2O/Al2O3 changed.  Samples were cured for 1 hour at 

40°C and then 90°C overnight (Fletcher et al. 2005). Low Si/Al geopolymers (Si/Al= 0.5 

≤ 2) were found to have very low compressive strengths and a great deal of crystalline 

phases present in XRD analysis.  On the other hand, extremely high Si/Al systems (Si/Al 

> 24) were found to develop elastic-like properties, with failure mechanisms occurring in 

the form of deformation rather than brittle failure. It should be noted that in all of the 

Fletcher et al. work, the Si/Al or Na/Al ratio of the final product was not measured nor was 

the degree of reaction, only nominal starting molar ratios were given (Fletcher et al. 2005). 

The amount of Si and Al incorporated into the final matrix is dependent on a number of 

variables, one of the most important being the release rate of each component. 

2.6.3.1 Si release rate 

A study on the effect of silica availability on geopolymerization was performed on three 

mixtures made of sodium aluminate mixed with different ratios of geothermal silica and 
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sodium silicate. Geothermal silica is relatively slow to release Si as compared to sodium 

silicate, where the Si is available immediately and polymerized already. A relationship 

between the availability of Si and the Al content in the geopolymer gel was found, where 

more readily available Si resulted in more Al incorporated into the matrix. This is believed 

to be due to the fact that nucleation sites occur where Si and Al meet. This means that in 

the geothermal silica mixture, where the Si must first dissolve, nucleation will only occur 

in the area surrounding the dissolving particle, whereas when sodium silicate is present, 

nucleation sites can occur as soon as the sodium aluminate dissolves and anywhere in 

solution.  

Spatially Resolved Fourier Transform Infrared (SR-FTIR) microscopy shows samples 

containing sodium silicate are more homogenous than those containing geothermal silica, 

indicating that more nucleation occurred in the former.  This explains why the geothermal 

silica mixture results in a more Si-rich gel, because the gel forms near the Si particles, 

creating a Si-rich environment.  When Si is ubiquitous in solution, the concentration 

gradients are nearly nonexistent and so a more even distribution of Si and Al is formed 

(Hajimohammadi et al. 2011). 

2.6.3.2 Al release rate 

“The absolute amount of available aluminum and the rate of its release throughout 

reaction not only affect final strength, but other properties in the wet and hardened 

states including setting characteristics, flexural strength, acid resistance, 

microstructure, and strength development profile” (Duxson and Provis 2008). 
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The effect of the release rate of Al on geopolymer gel formation was analyzed on two 

alumina sources combined with amorphous silica; one containing a combination of NaOH 

and amorphous alumina and the other just sodium aluminate, representing a rapid Al 

release. The sodium aluminate mixture resulted in a higher Al incorporation into the final 

product; a faster set time and more homogenous gel.  High early strength was also noted 

However, due to repressed Si dissolution from the high Al content in solution, further 

strength increase was not measured.  In the amorphous alumina system, it was found that 

silica dissolution occurred faster and more thoroughly leading to slower strength 

development initially, but more strength gain over time due to continued Si incorporation.  

This geopolymer was more heterogeneous, containing both Al-rich phases as well as later 

Si-rich phases (Hajimohammadi et al. 2010). 

2.6.4 Degree of reaction 

As stated earlier, mixtures are typically designed based on the stoichiometric amounts of 

Si, Al and Na in each mixture component; whether or not the desired Si/Al or Na/Al ratio 

is realized depends on the degree of reaction as well as other factors such as impurities that 

may take up the Si, Al or Na to form phases other than aluminosilicate gel. 

The degree of reaction, α, is simply the percentage by weight of the source materials that 

have dissolved or reacted during geopolymerization.  If α = 100% that means complete 

dissolution has occurred. Any value below 100% signifies the presence of unreacted source 

materials with in the matrix.  Degree of reaction measurements are typically performed on 

pastes, where the paste is ground into a powder, weighed and then continuously stirred in 
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dilute HCl (1:20)  for three hours to dissolve the aluminosilicate gel or zeolites that have 

formed but leave the unreacted particles alone.  It has been shown that typically a great 

deal of the reaction occurs within the first few hours of mixing (Granizo et al. 2002; Palomo 

et al. 2004; Fernández-Jiménez et al. 2005) and more unreacted source material is typically 

found when soluble silica is added due to a decreased pH and more viscous solution. The 

degree of reaction was also found to increase with increased curing time (Fernández-

Jiménez et al. 2006). 

2.6.4.1 Impurities 

Impurities in an aluminosilicate source such as calcium or iron can cause changes in setting 

time, workability, strength and shrinkage due to the side reactions that can occur with these 

impurities.  

Calcium – Many of the aluminosilicate source materials used in geopolymer systems also 

contain small to moderate amounts of calcium.  The form in which the Ca is present, the 

pH of the system and the available soluble Si in solution are all influential on the behavior 

of calcium within the system and will help to dictate what phases are formed (Temuujin et 

al. 2009). Calcium in the system will most often form C-S-H hydrated gel or precipitate as 

Ca(OH)2.  In the case of calcium hydroxide precipitation, the pH of the system is lowered, 

which can decrease dissolution of the Si and Al source materials (Iler 1979; Yip et al. 2005; 

Yip et al. 2008). 

In general, those systems where both C-S-H and an aluminosilicate gel are present have 

been found to set faster and yield higher compressive strengths early on as compared to 
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geopolymers with no C-S-H (Bondar et al. 2011). However, some of the literature reports 

lower long term strength due to there being less time for dissolution to occur (Sofi et al. 

2007). It has been proposed this is because the C-S-H acts as a microaggregate within the 

geopolymeric matrix (Yip et al. 2005). However, in some cases, the final reaction products 

consist of an aluminosilicate gel with Ca-rich phases dispersed within (Granizo et al. 2002; 

Guo et al. 2010). Research into hybrid geopolymer-portland cements is ongoing and 

includes investigating the compatibility of C-S-H and N-A-S-H gels (Shi et al. 2011). 

Iron – Iron has been found to react similarly to calcium and has been shown to precipitate 

out of solution even faster than Al and Si, so it is assumed that both Fe and Ca will react 

very quickly in solution to form C-S-H phases or crystalline iron oxide phases, which will 

decrease the OH- concentration and therefore the pH, which effects dissolution (Duxson et 

al. 2007). 

Organics – Organic compounds have been found to both retard silica dissolution by 

adsorbing onto the surface or to accelerate dissolution by pulling away soluble silica 

monomers from the surface and creating soluble species (Iler 1979). 

2.7 Synthesis parameters 

Aside from the physical and compositional characteristics of the source material and 

activator, other important factors effecting GPC include (Xie and Xi 2001; Fernández-

Jiménez and Palomo 2003; Kovalchuk et al. 2007): 

• Water content

• Workability and flow
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• Water to solids ratio 

• Curing conditions 

• Time  

• Temperature 

• Moisture conditions 

2.7.1 Water content 

The role of water in GPC is very important in that it acts as a transport for chemical 

reactions to occur and allows for adequate workability of the final product.  

Dissolution consumes water; therefore water must be available in such a quantity so as to 

allow for the presence of a solution amid rapid dissolution. Ideally this solution will reach 

supersaturation quickly, which will then lead to condensation, where water is expelled back 

into the system to be reused for dissolution. However, if the water content is too low, all 

of the water will get used up in dissolution reactions before condensation can occur, 

effectively ending the geopolymerization process and resulting in a material with a very 

low degree of reaction (Steveson and Sagoe-Crentsil 2005; Criado et al. 2010). 

Syneresis is the process by which a gel expels water.  In the case of geopolymers, syneresis 

leads to a bi-phasic gel structure, where the two phases are the final aluminosilicate product 

and water. The water is not chemically bound to the aluminosilicate product but rather 

exists alongside of it. Most of the available literature agrees with this theory, however, 

there is some conflict on this point, suggesting the presence of both bound and unbound 

water existing within the pore network as well as the framework structure (Duxson et al. 

2005).  
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The bi-phasic gel structure in geopolymers is different than in an OPC system, where 

during hydration some of the water is chemically bound within the reaction products. In 

OPC concrete, mixture water can be broken up into three main groups; evaporable water, 

chemically bound water and gel pore water.  For weeks after mixing, hydration reactions 

continue to use up the water in the pore network to create new reaction products thereby 

reducing the pore volume over time.  This is not the case for geopolymers, as the water is 

not consumed in the reaction, but rather expelled during condensation, which makes a low 

water/binder ratio crucial to producing a non-porous material (Kumar et al. 2007).  

Despite the different behavior of water in OPC and GPC, the water/binder ratio is very 

important in both systems when it comes to fresh and hardened concrete properties. 

Abrams Law, which states the compressive strength of an OPC concrete is a function of 

the water/cement (w/c) ratio has also been found to be true for GPC concretes (Kosmatka 

and Wilson 2011), and so water demand must also be considered when designing a mixture 

(Barbosa et al. 2000; Hardjito et al. 2004; Hardjito and Rangan 2005; Steveson and Sagoe-

Crentsil 2005; Steveson and Sagoe-Crentsil 2005; Sofi et al. 2007). 

Since the source materials for geopolymerization are often very finely divided, water 

demand can be an issue.  This has been found to be the case especially with metakaolin 

(Fernández-Jiménez et al. 2006). Duxson, et al. suggests a H2O/Na2O ratio of 11 but 

depending on the fineness and specific surface area of the source material, this is not always 

possible (Duxson et al. 2005). 
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2.7.2 Curing conditions 

“… water is a key element in alkaline activation reactions, curing regime humidity 

has an obvious effect on the structural and mechanical properties of AAFA pastes, 

mortars and concretes” (Kovalchuk et al. 2007). 

2.7.2.1 Time and temperature 

Geopolymers have been found in most cases to reach much higher strengths when curing 

is done at mild hydrothermal temperatures (40-85°C) as compared to ambient conditions 

(20°C) (Palomo et al. 2004; Kovalchuk et al. 2007). Additionally, thermally cured 

geopolymers have been found to have a higher Si/Al ratio, which is thought to be the cause 

for the increased strength (Palomo et al. 2004; Fernández-Jiménez et al. 2006). 

In some cases, very high temperature curing (>100°C) has resulted in lower mechanical 

properties, which is thought to be due to degradation of the gel (Palomo et al. 2004). 

Increased temperature curing has also been known to increase the long-range ordering of 

the aluminosilicate, sometimes resulting in small pockets of zeolites (Duxson et al. 2007).  

Higher temperatures and prolonged curing were thought to break down the granular 

structure, which causes shrinkage and dehydration (Van Jaarsveld et al. 2002; Guo et al. 

2010).  

Within the literature, many researchers have noted that a higher temperature cure for a 

short time and a lower temperature cure for a longer time often yield the same results 

(Davidovits 1979; Palomo et al. 1999; Xie and Xi 2001; Van Jaarsveld et al. 2002; 
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Fernández-Jiménez and Palomo 2003; Hardjito et al. 2004; Palomo et al. 2004; Rovnanik 

2010; Deevasan and Ranganath 2011). 

It has also been noted that fly ash geopolymers that have been allowed to “rest” for up to 

60 minutes before curing have not resulted in a decrease in compressive strength (Hardjito 

et al. 2004). This bodes well for precast applications, where there is often a delay between 

mixing and curing. 

2.7.2.2 Relative humidity 

Relative humidity has also been found to be important during curing.  Specimens cured in 

high relative humidity were found to have a denser microstructure and higher Si/Al content 

than those cured in ambient conditions with a lower relative humidity (Criado et al. 2010).  

Curing at high temperatures and low relative humidity has also been shown to result in 

cracking due to rapid water evaporation. 

Kovalchuk et al. explored the effect curing conditions had on compressive strength for 

three different setups; curing in covered molds, dry curing and steam curing. It was found 

that curing in covered molds, where mixture water was available, resulted in the highest 

compressive strength (Kovalchuk et al. 2007). A similar test by Criado et al. yielded similar 

results, where a higher relative humidity led to a much higher degree of reaction and 

increased mechanical strength (Criado et al. 2010). Van Jaarsveld et al. recorded the 

opposite results, citing the possibility that “the saturated atmosphere in the bags resulted in 

conditions more suitable to the formation of slightly weaker bonds” (Van Jaarsveld et al. 

2002). 
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Undesirable curing conditions can sometime lead to carbonation, which reduces the pH 

and leads to retarding of the activation and decreased strength gain.  This can be avoided 

by using a high relative humidity or by raising the curing temperature from 45°C to 65°C 

(Kovalchuk et al. 2007). The diffusion coefficient of CO2 in air is ten times higher than in 

water and can occur rapidly with alkaline bases through the following equation: 

CO2 + 2KOH (NaOH) → (NaOH) K2CO3 (Na2CO3) + H2O (Equation 7) 

2.8 Characterization of geopolymer binder 

Since the purpose of this research is a study of the microstructure and composition of these 

new binders, current knowledge on the microstructure of other similar geopolymers is 

presented which is helpful in terms of a starting point for the examination of glass-based 

binders.  

2.8.1 Microstructure 

In general, the microstructure of both fly ash- and metakaolin-based geopolymers has been 

found to be made of “rounded growths with bridging between them,” which vary in size, 

packing density and the amount of bridging material present (Steveson and Sagoe-Crentsil 

2005). More specifically, metakaolin geopolymers are typically homogenous resulting 

from a higher degree of reaction. Fly ash geopolymers, on the other hand, are more 

heterogeneous due to the presence of unreacted fly ash particles embedded in the matrix 

(Duxson et al. 2007; Fernández-Jiménez et al. 2007). 
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2.8.1.1 Effect of Si availability on microstructure 

The Si/Al of the system as well as the presence of sodium silicate have been found to have 

a large impact on the microstructure. It should be noted that an increase in the Si/Al ratio 

of a geopolymer typically comes about through the addition of soluble silica, which means 

the Si is coming first from the soluble silica and second from monomeric dissolution of the 

source material.  

With regard to microstructure, it has been found that low Si/Al systems (Si/Al ≤ 1) 

generally produce a matrix consisting of many tiny precipitates densely packed together 

containing large interconnected pores Alternately, the microstructure of high Si/Al systems 

(Si/Al ≥ 3) is typically more uniform where individual particles are difficult to distinguish 

and the porosity consists of small, isolated pores (Fletcher et al. 2005; Steveson and Sagoe-

Crentsil 2005).   

2.8.2 Composition 

The structure of the final matrix consists of Si and Al tetrahedra connected through oxygen 

bridges with monovalent cations (Na+ or K+) existing within the cage-like structure in a 

charge-balancing capacity for the tetrahedrally coordinated trivalent Al cations within the 

matrix.  The final product is sometimes called N-A-S-H, or sodium aluminosilicate hydrate 

and generally has the formula Na2O∙Al2O3∙2SiO2∙nH2O (Shi et al. 2011). Depending on the 

constituents available within solution, an ASR, N-A-S-H, C-S-H or C-A-S-H gel could 

precipitate. Davidovits suggests calling the hardened structure a “solid solution” 

(Davidovits 2008) as opposed to a gel (Duxson et al. 2007). Typical Si/Al ratios of the 
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geopolymer are around 1.5-2, but the presence of sodium silicate can easily increase this 

ratio to around 2.5-2.7 or higher (Fernández-Jiménez and Palomo 2003; Palomo et al. 

2004). 

2.8.3 Relationship to mechanical properties 

“The microstructure and chemical composition of the reaction products have been 

found to have direct effects on the mechanical behavior and durability of a mix” 

(Fernández-Jiménez et al. 2007).   

Throughout the literature it is widely agreed upon that increased homogeneity within the 

microstructure of a geopolymer corresponds directly to good mechanical performance 

(Rowles and O'Connor 2003). Porosity follows the same trend, where those samples 

containing large interconnected pores have poor strength and those containing small, 

isolated pores exhibit higher strength. It has also been noted repeatedly within the literature, 

the presence of soluble silica in the activator is usually responsible for a homogenous 

microstructure containing small pores (Steveson and Sagoe-Crentsil 2005). 

In general, as the Si/Al ratio increases, the microstructure becomes more homogenous, with 

a less aggregated look (Palomo et al. 2004; Steveson and Sagoe-Crentsil 2005; De Silva et 

al. 2007) and this typically relates directly to increased mechanical strength.  However, at 

a certain point, the homogeneity and glassiness of the matrix continues to increase without 

an increase in mechanical strength, which implies there is a limit beyond which adding 

more soluble silica does not promote strength gain. 
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The presence of unreacted particles embedded in the geopolymer matrix can also be linked 

to the mechanical performance, where softer particles such as metakaolin result in 

decreased strength and harder particles such as fly ash result in higher strength (Fernández-

Jiménez et al. 2006).  Mixtures activated with sodium silicate often contain more unreacted 

particles due to the increased setting and limited lability of the particles due to the 

polymerized Si species which results in lower dissolution (Duxson et al. 2005).   

2.8.3.1 Interfacial transition zone (ITZ) 

SEM microscopy has shown there is very little evidence that an ITZ (interfacial transition 

zone) exists between embedded objects and the ground matrix (Fernández-Jiménez and 

Palomo 2005).  This could explain the increased bonding and mechanical properties, as the 

ITZ present in OPC concrete is well known as a point of weakness due to its increased 

porosity and high proportion of CH compared to C-S-H.  

2.8.4 X-ray diffraction 

Since geopolymer cements are for the most part amorphous, typically displaying a diffuse 

halo peak at around 27-29 2θ, Cu Kα (3.05-3.30 Å) (Davidovits 2008), X-ray diffraction 

(XRD), a measure of the crystalline phases of a solid, is not entirely helpful in determining 

the atomic structure.  XRD is useful, however, in identifying the small bits of crystalline 

material that are often found embedded in the bulk matrix, such as muscovite, titania, 

quartz or corundum from fly ash that were not reacted as well as zeolites (discussed in 

Section 2.3.3.6) that may have formed (Fernández-Jiménez and Palomo 2003; Davidovits 

2008). 
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2.8.4.1 Zeolites found in geopolymers 

Different zeolites are produced based on the source material and activator solution used as 

well as synthesis conditions such as the water content and curing time and temperature 

(Duxson et al. 2007). Small pockets of zeolites have been found in geopolymer systems 

with high water contents and/or low Si/Al ratios, or in situations where very high 

temperature curing was involved. Zeolites are also commonly found in evacuated air voids 

or on fracture surfaces exposed to moist air (Fernández-Jiménez et al. 2007).  

Overall it has been found that zeolite formation tends to take place when just NaOH is used 

to activate the aluminosilicate and no sodium silicate is involved (Fernández-Jiménez et al. 

2007). Fernandez-Jimenez et al. reported the more crystalline a geopolymer is (i.e. reacted 

with NaOH as compared to sodium silicate), the better it performs in terms of durability 

(Fernández-Jiménez et al. 2007). 

Zeolites found in fly ash geopolymers include herschelite (also called chabazite-Na), 

hydroxysodalite, or faujasite (zeolites X and/or Y) (Palomo and Glasser 1992; Fernández-

Jiménez and Palomo 2003; Palomo et al. 2004; Fernández-Jiménez and Palomo 2005; 

Fernández-Jiménez et al. 2005; Provis et al. 2005). Philipsite has been found in metakaolin 

geopolymers and Zeolite A is formed when NaOH is added to metakaolin at 80-100°C 

(Breck 1974). 
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2.9 Significance of literature review 

2.9.1 Obstacles in industry acceptance 

“Geopolymers are not necessarily a product competing with OPC, but rather a 

technology, which may be utilized by cement producers to offer a broader range of 

cementitious products to the market” (Duxson and Provis 2008). 

Ordinary portland cement concrete is reliable, easy to work with and economical. However, 

as long as limestone or some other form of CaCO3 is used as the primary source of calcium 

and as long as the construction industry and society in general insists on high early 

strengths, OPC will remain connected to a substantial carbon footprint. 

Geopolymers have an inherently lower carbon footprint than OPC, have the potential to 

use high volumes of waste products and when mixed correctly, are capable of excellent 

mechanical and durability performance. As is the case with any new technology, however, 

there are still matters that require further consideration and research.  The following is a 

list of obstacles geopolymers face on the road toward acceptance by the concrete and 

construction industries: 

1. Safety and ease of use

• The causticity of the activating solution presents safety issues with regard to

mixing and placement.

• A one-step method of mixing similar to OPC concrete is not presently available

for low-Ca geopolymers.

• Geopolymers usually require a thermal cure, which limits the application to

mainly precast members (Fernández-Jiménez and Palomo 2003).
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• Changing production and distribution infrastructure currently in place may be 

expensive or difficult. 

2. Activator solution 

• The production of NaOH and sodium silicate are one of the main contributors to 

CO2 emissions associated with GPC (Van Deventer et al. 2010). 

• More environmentally friendly sources of alkali silicates are needed (Sutter 

2010). 

3. Source materials 

• There are a vast variety of materials rich in Si and Al out there that are currently 

being landfilled, more work is needed to determine which of these materials could 

be successful in a geopolymer application and what type of activation is necessary 

for each. 

• Metakaolin-based geopolymers are not generally considered for structural or 

construction applications due to the lower strengths and high water demand of the 

particles; metakaolin also requires an initial heat treatment, which contributes to 

carbon emissions and fuel requirements. 

• Fly ash is extremely heterogeneous in nature, which diminishes the 

reproducibility of a mix and makes it difficult to predict performance behavior.  

The long-term availability of this byproduct is also unknown. 

• Much research is focused on specific source materials, yielding little data that can 

be easily applied to other materials. 

4. Performance and reproducibility 

• If GPC is to ever compete with OPC in the global market, progress must be made 

toward improving the reproducibility and predictability of this binder.   

• Many long-term performance properties (durability) have not yet been determined 

(Van Deventer et al. 2010). 

• Issues regarding variable set time and performance in relation to curing 

temperatures have been reported (Scrivener and Kirkpatrick 2008). 
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• Compressive strength loss resulting from alkali leaching can be a problem in 

systems low in reactive Al (Cyr et al. 2012). 

5. Further understanding 

• More understanding of the role of Ca and Fe in geopolymer systems is necessary 

– this would allow materials with a wider composition range to be considered. 

• Relationship between bulk chemistry and geopolymer chemistry as related 

through the degree of reaction (Duxson et al. 2007). 

• Very little research regarding aggregate interactions in geopolymer cements has 

been done (Duxson et al. 2007). 

• Methods for controlling the rate of Al release (Duxson et al. 2007). 

• Microstructural characterization and compositional analysis on a wide range of 

geopolymers made from various source materials will help to strengthen the 

understanding of the relationship between microstructure and performance. 

• The role of water in geopolymers (Duxson et al. 2007). 

6. Communication and acceptance 

• There exists a lack of communication and trust between academia and industry 

that must be overcome. 

• Geopolymers lack a uniform nomenclature, and as such thorough research on this 

material is difficult  

• The development of a database is needed to unite all of the current research on 

these materials (Roy 1999). 

• Words like “alkalis” and “reactive silica” strike fear in the heart of concrete 

contractors, when in geopolymer science they represent necessary and desirable 

mixture components. 

• A general acceptance of this new material within the concrete industry will be 

difficult, as OPC has a monopoly on the market, and is deeply entrenched within 

the concrete industry.  

• “This lack of practical acceptance of the technology is rooted in the necessarily 

conservative nature of the construction industry, coupled with the very different 
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chemistry of geopolymers when compared to OPC and related binders” (Duxson 

et al. 2007). 

7. Standards and specifications

• There are no current standards for geopolymer cement (Roy 1999).

• Prescriptive regulatory standards currently in place have been designed with OPC

in mind and must be altered to allow the use of new materials (Hooton 2008).

Despite the aforementioned obstacles, geopolymers still possess a great deal of potential 

for creating a more sustainable future for the concrete industry.  Many of the obstacles 

mentioned are not necessarily negative problems that need to be solved, but rather are 

representations of research and experimentation that need to be investigated. 

The needs most directly addressed by this research include: 

• Increasing the data available on the relationship between microstructure,

composition and performance of glass-based geopolymers.

• Expanding the acceptable range of source material composition to include Si-rich

materials like waste glass.

• The elimination of sodium silicate, which cuts down on greenhouse gas emissions

associated with production.

2.9.2 Glass as a source material 

As discussed in previously, waste glass possesses nearly all of the desirable properties of a 

successful source material, including the following: 

• Physically and compositionally

• Glass has a very high amorphous Si content, which dissolves quickly and

easily in basic solutions
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• Glass possesses a hearty dose of Na, which plays an important role in the 

network formation when Al is present 

• Glass possesses a moderate Ca content, which has been shown to improve 

compressive strength in sodium-aluminosilicate systems  

• The presence of monovalent and divalent alkali cations such as Na+, K+, 

Ca2+ and Mg2+ break up the silica network, making dissolution easier 

(Duxson and Provis 2008) 

• The composition of waste glass is relatively uniform and homogenous 

when it comes from the same source 

• Glass is hard, which is important in the case of incomplete dissolution 

• Nearly all of the elements used in glass production have been successfully 

bound in geopolymer matrices, including boron, which is found in Pyrex, 

a common contaminant in waste glass (Provis and vanDeventer 2009; Van 

Deventer et al. 2010) 

• Environmentally 

• Glass is a waste product, which means a smaller carbon footprint for the 

resulting GPC 

• The high Si content in glass eliminates the necessity for sodium silicate, 

further lowering the carbon footprint and simplifying the system 

• Geopolymers offer a great opportunity to divert a valuable material from 

the landfill and cut down on the use of natural resources 

A comparison of glass with the two most common materials used in geopolymer 

technology today, metakaolin and fly ash, based on the important properties of a source 

material listed in Section 2.4.1 is shown below in Table 2.12.
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Table 2.12. Comparison of fly ash, metakaolin and glass based on important 
properties of a source material. A single X represents adequacy and two Xs 
represent substantial. 

Fly Ash Metakaolin Glass 

Reactive Si X X XX 

Reactive Al X XX 

Amorphous or disordered structure X XX XX 

Particle size and shape XX X XX 

Physical and compositional homogeneity XX X 

Hardness X XX 

All three of the materials compared have most of the desirable properties. However, in the 

case of fly ash the lack of physical and compositional homogeneity cannot necessarily be 

remedied, as interparticle and intraparticle speciation is inherent within the material.  The 

same is true for metakaolin, in that hardness cannot be enhanced.  The property that glass 

lacks, reactive Al, however, can be remedied through the addition of an alumina source to 

the mixture.   

2.9.3 Supplemental alumina 

As explained within the literature review, most source materials used to make geopolymers 

require the addition of predissolved silica in the activator solution to reach the necessary 

Si/Al ratio fast enough for geopolymerization to occur. In the case of glass-based 

geopolymers, the glass itself is a substantial source of silica, and has the potential to create 

the desired Si/Al ratio without the need for soluble silica. This is important because the 

production of sodium hydroxide and sodium silicate are the main contributors to CO2 

emissions associated with geopolymer cement (Duxson et al. 2007).   
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However, while glass has more than ample silica available for reaction, most waste glass 

is severely lacking in reactive alumina.  Despite the fact that even geopolymers with fairly 

high Si/Al ratios have been shown to perform well (Fletcher et al. 2005; Idir et al. 2011; 

Cyr et al. 2012), a thorough review of the literature has resulted in the conclusion that the 

presence of Al is necessary to form a stable, non-soluble matrix with an acceptable set time 

and good mechanical performance (Fernández-Jiménez et al. 2006). Additionally, the 

presence of Al plays an extremely important role in balancing the Na+ ions in solution and 

keeping them held within the final matrix. 

2.9.4 Stoichiometry 

The Al content of a geopolymer, or more specifically, the Si/Al and Na/Al molar ratios, 

have been shown to affect the set time, compressive strength and microstructure of the 

subsequent binder; where in most cases the presence of Al can drastically improve the 

performance of the geopolymer (Fernández-Jiménez et al. 2006).  

Much of the literature available on geopolymers readily lists the stoichiometric molar ratios 

(Si/Al, Na/Al, Si/Na) of the source materials and activating solution, but fails to report on 

the actual stoichiometric molar ratios reached within the reaction products. Many authors 

assume, surprisingly, these ratios will be the same. This is of course a very weak 

assumption, as many factors play a role in how the various elements will combine together, 

such as the presence of Ca in the system, pH, soluble silica, etc.; not to mention the supreme 

importance the degree of reaction of the source materials plays.  
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This issue of initial and final stoichiometry is at the heart of this research.  Simply put, 

glass by itself contains very high Si/Al and Na/Al ratios.  Insufficient Al in the system has 

been found to lead to excess alkalis in the pore solution that can lead to deleterious 

carbonation on the surface as well as the formation of a water-soluble sodium silicate phase 

oozing out of the mortars in the case of extremely high Si/Al. 

Considering the bulk stoichiometry of waste glass (very high Si and low Al) and NaOH 

activator (high Na), a supplementary source of Al must be added to combat the 

aforementioned issues by bringing the stoichiometric ratios of Si/Al and Na/Al down to 

more acceptable ratios. From the literature and structural studies of Si-Al tetrahedrally 

coordinated systems, it is known that an acceptable Si/Al range is usually between 2-5 and 

ideally the Na/Al ratio of a system will be 1, where each tetrahedrally coordinated Al3+ 

cation is charge balanced with a corresponding Na+ cation within the structure.  

However, simply adding Al into the system does not necessarily imply that acceptable 

stoichiometric ratios will be reached. This research project would be easy and quite 

straightforward if the final stoichiometry matched the initial stoichiometry, but that is not 

the case. The bulk stoichiometry is obviously very important to obtaining a desirable 

reaction stoichiometry although other variables are also important and so the success of the 

“Al intervention” relies heavily upon the following issues: 

• Rate of dissolution and degree of reaction 

o Does the supplementary Al source dissolve first?  Slowly? Rapidly? Does 

it remain unreacted? How much of the supplementary Al dissolved? 
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o How much of the Si and Na from glass dissolved? How fast did it 

dissolve? 

o What other elements are present in solution? Ca, Fe, etc. 

• Formation of reaction product phases 

o What phases form first? Do these phases change as further dissolution and 

polycondensation occur? 

o Does C-S-H form first to use up all of the Ca and some of the Si in the 

system?  Does a hybrid sort of C-A-S-H (calcium-aluminum-silicon-

hydrate) phase form? 

o Does a typical N-A-S-H (sodium-aluminum-silicon-hydrate) phase form 

that includes all of the Al and Na available? 

2.9.5 Plan 

Based on the literature, it is predicted that the sustainability of geopolymer cements can be 

further improved on by reacting waste glass and metakaolin with sodium hydroxide, 

eliminating the need for sodium silicate. The goal of this research is not necessarily to 

optimize a glass-based geopolymer cement design, but rather to observe the effects that 

introducing a supplementary alumina source will have on the kinetics of 

geopolymerization, the resulting microstructure and selected performance properties of the 

final product.   

Based on the presented discussion of geopolymers, glass for use in geopolymers, and the 

stoichiometric ratios that must be considered, specific research questions were identified: 

1. What are the phases formed by the alkali activation of waste glass and how is the 

microstructure and composition of these phases affected by the addition of 

metakaolin as a source of alumina? 
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2. Is there a clear correlation between microstructure, composition and compressive

strength of glass-based geopolymers?

3. How does the bulk stoichiometry of the initial mixture compare to the actual

stoichiometry of the geopolymer formed?  What role does the degree of reaction

play in this relationship?

4. Does the addition of metakaolin or fly ash adequately lower the stoichiometry of

the mixture to more acceptable ranges found in other geopolymers made of fly

ash or metakaolin and does this enhance the mechanical performance?

It should be noted once again, the purpose of this research is not to develop the best or 

strongest possible glass-based geopolymer, but rather to identify the characteristics of 

baseline glass geopolymers and to document and observe the changes that occur when an 

alumina source is introduced.
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3. Materials and Experimental Methods

Chapter 3 provides details on the material selection process and characterization of those 

materials, as well as information and procedures outlining the methods used in this 

research. At the end of the chapter are three sections outlining the approach for each phase 

of testing. Actual details on the materials used as well as information on the mixture design 

and development for the mortars in each phase and the details of the experimental data 

collection plan are included in Chapter 4.  

3.1 Materials selection and characterization 

Material characterization of the source materials consisted of the following: 

• Particle morphology using both secondary electron and backscatter electron

imaging on the FEI XL-40 Environmental Scanning Microscope (ESEM)

• Compositional analysis by X-ray fluorescence (XRF) to obtain the elemental

oxide analysis

• Powder X-ray diffraction (XRD) to get a baseline spectra for each material

3.1.1 Glass 

In the world of recycling, it is widely known that compositionally pure materials are the 

most desirable, and those that contain impurities are often discarded due to high costs 

associated with sorting.  The same holds true for glass, and since different types of glass 

are not labeled with a different number like plastics, various types of glass often get 

intermingled together during the recycling process.  Single stream waste collection systems 
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or curbside recycling programs yield a mixture of glass types, colors and impurities.  This 

is the type of glass that will most likely be available for use in geopolymers. Part of the 

draw of this market is that color and compositional impurities should not have much of an 

influence on the success of the binder.  However, it is important to realize the source of the 

waste glass can have a large impact on the composition, which must still be considered in 

mixture design. 

Due to safety and handling issues associated with crushing and grinding local waste glass 

to the fineness required for this research, as shown in Figure 3.1, and a desire to use truly 

recycled materials, consumer source (CS) waste glass was obtained from Vitro Minerals, 

a leading glass processer in the United States. Consumer source glass powders are made 

from 100% recycled glass.
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Figure 3.1. Waste packaging glass being crushed in a jaw crusher (left) and a 
gyratory crusher (right). Wrappers, cap rings, etc. are quite easy to remove by 
sieving once the glass gets down to a certain size. 

Three different glasses were obtained from Vitro Minerals and analyzed by XRF for the 

elemental oxide composition, shown in Table 3.1. The glasses were labeled based on the 

alumina concentration, where HA means high-Al, MA means medium-Al and LA means 

low-Al. Also shown is the typical composition of soda-lime glass, which makes up the bulk 

of glass in the municipal solid waste stream. 
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Table 3.1. Composition of glasses from Vitro Minerals as determined by X-ray 
fluorescence (XRF) and typical soda-lime glass (Glass Packaging Institute 2013). 

High Al (HA) Medium Al (MA) Low Al (LA) Soda-lime Glass 

SiO2 60.25 63.42 70.60 72 

Al2O3 12.19 8.63 0.49 2-3 

Fe2O3 0.31 0.69 0.09 - 

TiO2 0.89 0.35 0.06 - 

CaO 21.72 17.43 9.81 13 

SO3 0.01 0.13 0.23 - 

P2O5 0.04 0.03 0.01 - 

MgO 3.01 2.18 4.13 - 

Na2O 0.87 5.84 14.30 12 

K2O 0.08 0.30 0.07 - 

MnO2 0.01 0.03 0.01 - 

BaO 0.00 0.05 0.00 - 

SrO 0.03 0.03 0.01 - 

LOI 0.59 0.89 0.19 - 

Since this research is aimed at considering waste glass from the post-consumer waste 

stream as opposed to the post-industrial waste stream, the two glasses with the widest 

variance in composition were chosen to represent the two ends of this spectrum. This 

includes the HA glass containing high Al and low Na contents and the LA glass containing 

low Al and high Na contents. The HA glass is double-recycled, as it originally came from 

the post-consumer waste stream before going to a glass recycling plant that specializes in 

making fiberglass insulation. The LA glass is made primarily of bottle glass and windshield 

glass – namely soda-lime glass.  Both glasses are 100% amorphous and contain no 
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crystalline silica (Turner 2012).  The specific gravity of all the glass is 2.50 and the 

hardness is 5.5, as reported in the MSDS (material safety data sheets). The glasses were 

obtained in various finenesses. Figure 3.2 shows the morphology and conchoidal fracture 

surfaces of the glass under secondary electron imaging and Figure 3.3 shows the shape and 

particle size array of both the HA and LA glasses under backscatter electron imaging. Both 

of the glasses shown are of similar fineness. 

Figure 3.2. Morphology of glass particles shown in 
secondary electron imaging. 
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Figure 3.3. Glass shown in polished sections under secondary electron imaging: 
LA500 (top) and HA500 (bottom). 

3.1.2 Supplementary alumina sources 

As stated previously, the Si/Al and Na/Al ratios of glass in general are much higher than 

what is typically considered acceptable for geopolymers made of fly ash or metakaolin. 

Since fly ash and metakaolin both possess a significant amount of alumina, they were 

considered as a supplementary alumina source along with kaolin clay, red mud and reagent 

grade sodium aluminate. Table 3.2 lists the criteria for selecting the supplementary alumina 

sources used in this research.  
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Table 3.2. Criteria used for selecting a supplementary alumina source. A single X 
represents a good rating in that category, with XX representing a great rating and no 
X representing a poor rating. 

Material Compositional 
homogeneity Availability Reactivity Prior

success 
Low 
cost 

Environ-
mental 

Kaolin 
clay XX X X X 

Metakaolin XX X XX X X 

Fly ash X X XX X XX 

Red mud XX 

Sodium 
aluminate XX X XX 

The following is an explanation of why each material was or was not chosen for use in this 

research: 

• Kaolin clay was ruled out due to the fact it is typically not very reactive upon

mixing (Xu and Van Deventer 2003).

• Red mud is a byproduct of the Bayer process, which is the process in which Al is

removed from bauxite (aluminum ore) (Pan et al. 2003; Zhang et al. 2010). Red

mud contains a great deal of iron, which is of yet an unknown with regard to

geopolymerization, and is difficult to obtain unless locally available in an area

where bauxite processing is performed, such as Louisiana.

• A number of research projects have used reagent grade sodium aluminate as an

alumina source for reaction with Si-rich materials although sodium aluminate can

be fairly expensive and has high energy emissions associated with its production

(Phair and Van Deventer 2002; Brew and MacKenzie 2007; Hajimohammadi et

al. 2008; Gluth et al. 2012).

• Despite the fact that metakaolin has a very high water demand, it was chosen

based on its homogenous composition, high reactivity and prior success as a

model material in geopolymer research.

• Fly ash was also considered based on its prior success in geopolymers, despite its

heterogeneous composition.
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Table 3.3 shows the composition of the metakaolin and fly ash used in this research as 

determined by XRF. A discussion of how replacement levels of fly ash or metakaolin were 

decided on is included in Chapter 4. 

Table 3.3. Composition of metakaolin and fly ash by mass as 
determined by X-ray fluorescence (XRF). 

Metakaolin Fly ash 

SiO2 52.60 39.2 

Al2O3 42.86 20.3 

Fe2O3 1.20 8.12 

TiO2 1.69 1.24 

CaO 0.10 14.3 

SO3 0.01 3.22 

P2O5 0.09 0.56 

MgO 0.15 3.53 

Na2O 0.05 5.84 

K2O 0.57 1.10 

MnO2 0.01 0.04 

BaO 0.03 1.15 

SrO 0.02 0.54 

LOI 0.62 1.19 

3.1.2.1 Metakaolin 

PowerPozz high reactivity metakaolin was used.  PowerPozz is derived from purified 

kaolin clay, and contains less than 2% quartz SiO2. The specific gravity is 2.60 and the 

hardness is 2.5 as reported from the vendor. Figure 3.4 shows the morphology of tiny 

(5 micron) metakaolin particles under secondary electron imaging on the left, as well as 
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aggregated flocs of particles under backscatter electron imaging on the right. Figure 3.5 

shows the general shape of the platy metakaolin particles. 

Figure 3.4. Morphology of metakaolin particles as shown in a powder mount in 
secondary electron imaging (left) and flocs of particles in a polished section in 
backscatter electron imaging (right). 

Figure 3.5. Metakaolin in polished section in backscatter electron imaging. Flocs of 
particles can clearly be seen on the right. 

3.1.2.2 Fly ash 

A Class C fly ash was chosen based on its high alumina and alkali contents. The high alkali 

content (Na2O(eq) = 6.6) renders this fly ash unusable in portland cement applications due 

to the increased likelihood for alkali silica reaction to occur if reactive aggregate is present 

in the concrete. The specific gravity of the fly ash is 2.56. Figure 3.6 shows the spherical 
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morphology of the fly ash particles in a polished section under backscatter electron 

imaging. It is clear from the different brightness intensities visible in the images that many 

phases are present within and among the fly ash particles. Cenospheres, plerospheres and 

solid particles are all visible as well.  

Figure 3.6. Fly ash in polished section in backscatter electron imaging. 

3.1.3 Activator solution 

Reagent grade sodium hydroxide from Spectrum Laboratories was used in the form of solid 

flake, as shown in Figure 3.7.  The composition of the NaOH is 77.48% Na2O and 22.53% 

H2O. NaOH has a molecular weight of 39.997 grams per mole and a specific gravity of 

2.13 at 20°C (Shi 2006).  
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Figure 3.7. NaOH flake pellets prior 
to solution preparation. 

3.1.4 Sand 

Two types of sand were used to produce the mortars. Washed, oven dried and sieved sand 

from Superior Sand and Gravel in Hancock, Michigan was used in Phase I. ASTM graded 

Ottawa sand was used in Phases II and III(ASTM International 2012). Ottawa sand was 

also used in the sample preparation of vacuum impregnated polished section samples. A 

backscatter electron micrograph showing the interface between the sand embedded in 

epoxy (top) and sand embedded in geopolymer (bottom) is shown in Figure 3.8. It is clearly 

easy to distinguish between the two Si-rich materials.  
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Figure 3.8. Backscatter electron image of the interface between 
Ottawa sand embedded in epoxy (top) and sand embedded in 
geopolymer (bottom). 

3.2 Mixture design and development 

Mortars and pastes were considered in this research in order to efficiently use the materials 

available and to better monitor the mixing process in smaller batches. Mortars were made 

in all three phases; paste samples were taken before the sand was added for degree of 

reaction measurements and XRD spectra.  

There are many variables to consider when formulating a mortar mixture design, especially 

when a specific mixture design procedure does not already exist. While there is a great deal 

of literature available regarding geopolymer cements, very few divulge all details with 

regard to mixture design, development and mixing procedures.  For this reason, a fair 

amount of trial and error was necessary to determine a proper mixture design and 

procedure.  
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When designing a geopolymer, consideration must be given to the following issues, 

covered in the following sections: 

1. Stoichiometry

2. Mixture proportioning and water content

3. Mixing procedure

4. Curing conditions

3.2.1 Stoichiometry 

Due to the fact that numerous source materials exist that could be used for geopolymer 

creation, and the fact the activating solution can be altered by increasing or decreasing the 

Na2O or SiO2 content, it seems that mixture design based on stoichiometry would not have 

any restrictions.  This is not the case, however, if one first considers that previous research 

has resoundingly concluded that a Na/Al ratio of near unity is ideal for all geopolymers. 

Beginning with a solid/activator ratio to achieve an adequate workability gives an idea of 

how much solid will be used per unit of mortar. Once the solid content is decided on, the 

activator must be added achieving a Na/Al ratio near unity, or whatever the desired 

stoichiometry is. There are other parameters that can be changed such as the water content, 

which affects the pH of the activator. In some cases, where sodium silicate is added, the Si 

content will change with the activator. However, viscosity and pH limit the amount of 

predissolved silica that can be included in the activator solution, which puts a maximum 

on how much Si can be contributed to the system through the activator. 

There are essentially two cases for the Na/Al ratio if unity is not reached: 
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1. In the case that Na/Al is >>1, excess Na can create soluble sodium silicate phases 

or sodium carbonates on the surface of the material. 

2. In the case that Na/Al is << 1, Al present in solution will not be able to be 

included in the structure due to the lack of electric neutrality and therefore the 

Si/Al ratio will suffer, which as been shown to affect set time, microstructure, 

mechanical performance, etc. 

In the case of waste glass, situation 2 is most likely not a problem as an ample amount of 

Na is available immediately from the activating solution as well as from the dissolving 

glass and the only source of Al is from the metakaolin. 

Figure 3.9 illustrates the maximum Si/Al and Na/Al ratios in a system activated by 10M 

NaOH where metakaolin replaces an example waste glass (of the same composition of 

soda-lime glass) incrementally by mass. Obviously, adding Al to the system will affect 

both the Si/Al and Na/Al ratio at the same time, decreasing both ratios as more alumina is 

added to the system. 

 

 
Figure 3.9. Theoretical stoichiometry of soda-lime glass-
metakaolin geopolymer activated with 10M NaOH.  
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The Si/Al and Na/Al ranges studied in this research changed with each mixture since each 

source material (glass, metakaolin, fly ash) all contributed varying amounts of silica and 

alumina and sodium in the system came from NaOH as well as from the glass and fly ash. 

3.2.2 Mixture proportioning and water content 

The baseline mixture proportions used in this research were originally based off those used 

by Cyr et al. in their research on waste glass geopolymers (Cyr et al. 2012). Cyr used a 

ratio of sand to glass of 3:1 and a ratio of 2:1 for glass to activator solution by mass. This 

was found to create a workable mixture when coarser glass was used, however when the 

finer glasses were used, and especially when the metakaolin was introduced, the water 

demand precluded using the desired activator ratio while maintaining a workable mixture. 

When not enough liquid was available, the result was the formation of tiny balls that were 

nearly impossible to consolidate, and more water had to be added. An example of these 

balls is shown in Figure 3.10. 
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Figure 3.10. Balls formed in mixture with 
not enough liquid present. 

Water content is a very important parameter in mixing glass geopolymers, or all 

geopolymers for that matter.  Enough water for dissolution and ionic transport is necessary 

to react all of the material, however too much water will result in a porous microstructure, 

which decreases physical properties and durability. 

The water/solids (w/s) ratio used in this research is based on the following definitions, after 

Hardjito et al. (Hardjito et al. 2004): 

• Water – mass of water in NaOH flake and solution and extra water for mixing

• Geopolymer solids – mass of glass, metakaolin or fly ash plus the Na2O in sodium

hydroxide flake

188 



Admixtures to aid in decreasing the water demand and increasing the workability of the 

mixtures were considered but the limited amount of literature regarding their effect on 

various geopolymer systems has suggested the extremely high alkalinity of the mixture 

decreases their effectiveness and so they were avoided (Puertas et al. 2003; Hardjito et al. 

2004; Provis et al. 2010). 

It was a difficult decision to decide whether to base the water content on a constant w/s 

ratio or on a consistent mortar flow, since replacing glass with various other materials had 

a drastic effect on the water demand; metakaolin increased the water demand and fly ash 

decreased it. Figure 3.11 shows the difference between a 100% metakaolin mixture (left) 

and 100% glass mixture (right) both containing the same amount of activator and water by 

mass. The decision on how to address the water content is addressed in Chapter 4 for each 

phase. 

Figure 3.11. Visible difference in water demand for 100% 
metakaolin (left) and 100% glass (right) activated with 
the same amount of activator, water and source material 
by mass. 
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3.2.3 Mixing procedure 

Figure 3.12. Benedict Laboratory and mortar mixing room. 

Distilled water was used to create the NaOH solutions, which were prepared at least 24 

hours in advance of mixing to allow time for cooling and equilibrating. Extra mixing water 

was also prepared so that it would reach room temperature in time for mixing. 

The mortars were prepared by first pre-blending the dry ingredients in a 20-quart all-

purpose Hobart mixer for 2 minutes, then adding the activator slowly over one minute. The 

mixture was allowed to mix for 3 minutes, at which time the extra water, if any, was added. 

The extra water was not mixed with the activator solution in order to allow the full effect 

of the NaOH to work on dissolving the source materials. Mixing was continued for an 

additional four minutes at which time the mixer was stopped and a small container of paste 

was collected, if necessary, for degree of reaction measurements and powder XRD spectra 

collection. The mixer was started back up and the sand was added slowly over two minutes 

and the entire mixture was allowed to mix for an additional six minutes. 

3.2.3.1 Fresh properties 

Following the mixing, the temperature was taken three times by a MiniTemp gun and 

recorded.  Fresh mortar flow was measured in accordance with ASTM C1437 – Standard 
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Test Method for Flow of Hydraulic Cement Mortar using a drop table and the diameter 

recorded in four places (ASTM International 1999). Unit weight was measured using three 

tared coffee cups. The flow table test and unit weight cups are shown below in Figure 3.13. 

  
Figure 3.13. Flow table test (left) and unit weight setup (right). 

3.2.3.2 Cylinder preparation 

Following the fresh property tests, 2x4 inch plastic cylinders were filled in two lifts, with 

1.5 minutes of vibration on a vibration table in between each lift, as shown in Figure 3.14, 

to help with consolidation and remove entrapped air.  The tops were struck flat and the 

specimens put into sealed containers for curing. The molds were prepared with a thin layer 

of WD40 around the inside, which was used as a mold release agent. 
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Figure 3.14. Molds after vibration on vibration table. 

3.2.4 Curing and demolding 

Discussions on the exact temperatures chosen for curing in each phase are found in later 

sections. Unless otherwise noted, all of the specimens were cured in sealed containers with 

open water available at the designated temperature for 24 hours.  Following thermal curing 

for 24 hours, the specimens were demolded and then kept at a constant temperature 76°F 

(24°C) and 95-100% relative humidity in sealed boxes with water available until they were 

ready to be tested. Figure 3.15 shows the internal and external setup for maintaining the 

desired curing conditions. 
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Figure 3.15. Internal (left) and external curing (right) conditions used to 
maintain desired curing conditions. 

It should be noted that in some cases, especially with those mixes containing metakaolin, 

the bottom perimeter of the some of the specimens seemed to stick in the mold.  This can 

be seen in Figure 3.16 below. Rubber end caps were used in compression testing. 

Figure 3.16. Specimen damage during demolding in 
samples containing metakaolin. 
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3.3 Microstructural characterization 

In many cases, the seminal factor in the determination of the success of a construction 

material is measured first and foremost by its compressive strength, but as anyone who has 

spent time learning about concrete will know, it is not just about strength at the end of the 

day. The failure mechanism of concrete structures is hardly ever due to a lack of 

compressive strength, but rather due to unexpected loading or, more commonly, material 

related distress caused by the ingress of water carrying deleterious substances.  For this 

reason, the focus of this research has been on the microstructure, crystallographic phases 

present in the final geopolymer and their morphology, as well as the chemical composition 

of the reaction products formed from geopolymerization.  Compressive strength was also 

measured to ensure the mortars formed were sound and to explore the link between 

microstructure, composition and mechanical performance. 

Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) 

were used to observe the morphological and compositional variations in phases between 

the various mixtures.  Analysis was performed both by secondary electron imaging on 

fractured surfaces as well as backscatter electron imaging on polished sections.  

It should be mentioned that NMR is a commonly used tool in investigating the internal 

structure of geopolymers, however, this research focuses more on microstructure and 

composition. 
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3.3.1 Sample preparation 

Sample preparation is the first step toward microstructural analysis and a very important 

one. If the samples are not properly prepared, the accuracy of analysis by ESEM or EDS 

systems will suffer. 

It has been shown in the literature the geopolymerization reaction can be stopped by 

bathing samples in acetone, C3H6O, which acts as a desiccant, (Fernández-Jiménez et al. 

2005) but in this research, the samples were vacuum impregnated on the desired day of 

testing in order to stop the reaction. Three sample preparation procedures were used in this 

research: 

Powder mounts – Powder mounts were prepared by blowing powder samples onto double-

sided carbon tape covered aluminum stubs and then sputter coating in carbon. The 

morphology of the source materials was analyzed with secondary electron imaging. 

Fractured surfaces – Morphological investigation of the hardened geopolymers was 

performed on fractured surfaces at various ages. Mortar samples from compressive strength 

testing were chosen and pushed onto aluminum pin stubs covered in double-sided carbon 

tape, as shown in Figure 3.17, and then sputter coated with carbon to enhance the 

conductivity and reduce charging of the sample during analysis.  
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Figure 3.17. Fracture surface specimen preparation prior to (left) and after (right) 
carbon coating. 

Polished sections – Mortar samples from compression testing were collected and sound 

non-friable sample pieces were chosen for analysis. Vacuum impregnation was employed 

in order to assure the integrity of the sample was maintained since some of the samples had 

significant porosity. If the pore system was not filled with epoxy resin, the samples may 

have deteriorated during further sample preparation or analysis. 

Several different methods for preparing polished sections were employed depending on the 

shape of the mold used. Water was not employed in any of the methods due to the high 

leachability of alkalis (Na+, K+, etc.) in water. Instead, kerosene was used as a cooling and 

grinding aid. The general procedure for polished section sample preparation is outlined 

below: 

1. Samples were first fit into 1 ¼” diameter plastic molds, shown in Figure 3.18, or 

billet sized boxes, shown in Figure 3.19. The billet-sized boxes were made with a 

glass slide on the bottom of the box. 
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Figure 3.18. Circular sample molds filled with 
samples prior to vacuum impregnation. 

2. The extra space surrounding the sample within the mold was filled with Ottawa 

sand, as shown in Figure 3.19, which helped to create an even grinding and 

polishing surface and also helped to avoid too much relief in the sample during 

polishing. 

   

Figure 3.19. Billet boxes filled with samples, then graded Ottawa sand.  

3. The molds were then vacuum impregnated with Epoxy Technology Epo-Tex 

epoxy and hardener resin in a Logitech 1430 Vacuum Impregnation System, as 

shown in Figure 3.20. It was found that using epoxy resin colored with 

fluorescent dye made the polishing process easier by enhancing the contrast 

between the sample and epoxy. 
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Figure 3.20. Vacuum impregnation system. 

4. Upon impregnation, the samples were cured overnight in a sealed container with

Drierite (anhydrous calcium sulfate).

5. After demolding the following day, the samples were ground with 60 grit SiC to

ensure the sample was exposed and also to ensure parallel edges. A stereo-optical

microscope was used to verify the sample was indeed exposed. Different methods

were used depending on the shape of the sample.

a. The rectangular samples were fit into a thin section machine, shown in

Figure 3.21, using the glass side to attach onto the vacuum chuck. The top

of the sample was ground flat so that when flipped it would also attach to

the vacuum chuck and the glass slide could be ground off.  Further

grinding was also necessary to ensure that all of the samples in the mount

were exposed.

Figure 3.21. Thin section machine used for grinding into samples and 
samples exposed. 
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b. The circular samples were first ground flat on 60 grit silica carbide (SiC) 

pressure backed adhesive mineralogical paper on a Diamond Pacific 

grinding wheel, using kerosene as the cooling liquid, as shown in Figure 

3.22. The samples were ground until the mortar was exposed and the top 

and bottom were parallel. 

 

Figure 3.22. Diamond Pacific grinding wheel, 
used for holding pressure sensitive adhesive 
backed mineralogical papers. 

6. Next, the samples were hand lapped on mineralogical paper stuck to glass plates 

with pressure sensitive adhesive backing and using kerosene as a lubricant. The 

samples were lapped successively on 120, 240, 400, 600 and 1000 grit SiC 

papers, with a thorough rinsing in clean kerosene in between each series.  

7. Final polishing was performed on a Buehler Ecomet polishing wheel, shown in 

Figure 3.23. A series of 9, 6, 3, 1 and ¼ μm diamond pastes were used to polish 

the samples. Each grit size was used on a separate platen, covered with a nylon 

cloth, with diamond paste and kerosene, and a polishing speed of 250 rpm. The 

samples were cleaned in an ultrasonic cleaner for 4 minutes, rinsed with clean 

kerosene and blown off with clean moisture-free canned air in between each grit 

change to prevent contamination of the polishing papers and to make sure that 

coarser grit was not transferred to finer polishing platens. 
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Figure 3.23. Beuhler Isomet used 
to do the finer polishing with 
diamond paste media on nylon 
cloths. 

8. When the samples were adequately polished and thoroughly cleaned with clean 

kerosene, they were dried in an oven overnight. Figure 3.24 shows the polishes 

midway through polishing. 

  
Figure 3.24. Polished sections prior to carbon sputter coating. 

9. Next, the samples were sputter coated with carbon to account for the lack of 

conductivity in Si-based minerals. 
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Polished sections were also made of the source materials, where epoxy resin was mixed 

together with each source material, mounted in a circular mold and polished just like the 

samples mentioned above. These samples were used to verify the composition of the source 

materials as a standard to compare the composition of unreacted particles to. 

3.3.2 Electron microscopy 

Electron microscopy was carried out on FEI XL-40 Environmental Scanning Microscope 

(ESEM), as shown in Figure 3.25.  

Figure 3.25. ESEM and inside the ESEM. 

3.3.2.1 Secondary electron imaging 

Secondary electron imaging of fracture surfaces allowed the surface microstructure and 

topographical details of the geopolymer to be resolved. The density and uniformity of the 

geopolymer was visible as well as the presence of unreacted particles and zeolites that had 

formed. Secondary electron imaging was done at a working distance of 15mm and 15kV. 

3.3.2.2 Backscatter electron imaging 

Polished sections allowed for backscatter electron imaging, which confirmed the presence 

of multiple phases, including unreacted particles. A working distance of 10mm was used. 
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BSE also helped to resolve the assemblage of phases within each sample as well as the size 

and shape of unreacted particles. 

3.3.2.3 Energy dispersive X-ray spectroscopy 

Compositional analysis was performed using energy dispersive X-ray spectroscopy on the 

various phases and unreacted particles shown. The composition of the phases present was 

measured and unreacted particles were verified based on their composition, as shown in 

Table 3.4, Table 3.5 and Table 3.6. Fly ash particles were not analyzed due to the broad 

range of compositions of individual particles. EDS was performed at 10mm WD with 15kV 

beam and a spot size of 4.8, to ensure adequate counts per second (CPS) and a dead time 

of 20-25%.  

Quantitative phase analysis was performed using silicon as a beam current reference 

standard for ZAF correction. Analysis on the Si was done for 40 seconds live time and the 

beam correction factor (BCF) saved and applied to the analysis of the geopolymer sample, 

also done for 40 seconds live time. The background was manually removed from the raw 

spectra and the resulting peaks analyzed against a suite of mineral standards. The un-

normalized pure element cation results were then converted to cation oxides, normalized 

and converted to molar ratios. The analyses of the metakaolin particles are all quite similar 

to the XRF results as shown in Table 3.4.
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Table 3.4. EDS analysis on metakaolin particles as compared to XRF 
measurements. 

XRF MK01 MK02 MK03 MK04 MK05 MK06 

Si/Al 2.1 2.1 2.1 2.0 2.1 2.1 2.2 

Na/Al 0.0 0.2 0.1 0.0 0.1 0.0 0.0 

Na/Si 0.0 0.1 0.1 0.0 0.1 0.0 0.0 

Ca/Si 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

It is obvious from Table 3.5 that while most of the HA glass particles are close in 

composition to the bulk chemistry measured by XRF, there are some particles containing 

very low Al contents. 

Table 3.5. EDS analysis on HA500 particles as compared to XRF measurements. 
XRF HA01 HA02 HA03 HA04 HA05 HA06 

Si/Al 8.4 161.9 8.6 8.5 198.7 7.9 8.1 

Na/Al 0.1 36.3 0.0 0.2 33.6 0.2 0.0 

Na/Si 0.0 0.2 0.0 0.0 0.2 0.0 0.0 

Ca/Si 0.4 0.1 0.3 0.3 0.1 0.3 0.4 

As shown in Table 3.6, the LA glass particles all possess very high Si/Al and Na/Al ratios, 

similar to or higher than the XRF bulk chemistry. These particles should be easy to identify 

by EDS due to the extremely high ratios.  

Table 3.6. EDS analysis on LA500 particles as compared to XRF measurements. 
XRF LA01 LA02 LA03 LA04 LA05 LA06 

Si/Al 244.5 371.1 299.4 796.3 248.8 272.3 250.9 

Na/Al 48.0 75.0 51.3 150.9 38.8 46.0 64.8 

Na/Si 0.2 0.2 0.12 0.2 0.2 0.2 0.3 

Ca/Si 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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3.4 Powder X-ray diffraction (XRD) 

Geopolymers are typically considered to be amorphous but in some cases, small-localized 

areas of crystalline phases often identified as zeolites have been known to form.  Powder 

X-ray diffraction (XRD) on the source materials as well as on the hardened geopolymer at 

various ages demonstrated the formation of crystalline phases and the halo shift when 

different source materials were used. XRD was performed on a Scintag X2 Advanced 

Diffraction System using a continuous scan from 5-75° at 2°/minute, shown in Figure 3.26.  

 
Figure 3.26. Powder X-ray diffraction (XRD) machine. 

The XRD pattern collected for the raw source materials are shown here for reference in 

Figure 3.27, Figure 3.28 and Figure 3.29.  
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Figure 3.27. Powder X-ray diffraction pattern for HA600 glass used in Phases I and 
II. 

It can be seen from Figure 3.27 the HA600 glass used was completely amorphous with a 

halo centered around 27 degrees. 

Figure 3.28. Powder X-ray diffraction pattern for metakaolin used in all Phases. 

The XRD pattern for the metakaolin indicates a halo centered around 22-23 degrees with 

major peaks indicating the presence of quartz. Metakaolin commonly has small crystalline 

impurities of quartz, muscovite, titanium dioxide or iron oxide. 
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Figure 3.29. Powder X-ray diffraction pattern for fly ash used in Phase II. 

The XRD pattern for the fly ash indicates a subtle halo centered around 30 degrees with 

peaks indicating the presence of quartz. Fly ash commonly has crystalline impurities in the 

form of quartz, mullite or iron-rich phases. 

3.5 Degree of reaction 

The degree of reaction is a measure of the dissolved/reacted source material as a function 

of time and was measured on paste to avoid the affects of the graded sand in the experiment. 

The degree of reaction (α) at a given age following mixing can be very useful with regard 

to determining the composition of geopolymers.  The procedure to determine the amount 

of unreacted source material in the final geopolymer was based on the work of Criado et 

al. and others (Granizo et al. 2002; Fernández-Jiménez et al. 2006; Criado et al. 2007; 

Criado et al. 2010) and is as follows: 

1. Paste samples were collected during mortar mixing prior to the addition of the

sand and were cured under the same conditions as the corresponding mortars.
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Paste samples were typically approximately 50 grams and were cured in plastic 

bags or small plastic containers. 

2. At predetermined ages, the hardened paste was ground into a powder with a 

mortar and pestle and separated into approximately 1-gram samples with great 

care taken to obtain an accurate mass. 

   
Figure 3.30. Cured paste samples (left), paste sample being crushed by mortar 
and pestle (center) and various pastes ground into powders in preparation of 
degree of reaction experiments (right). 

3. Each 1-gram sample was then added to approximately 200 mL of 1:20 HCl 

solution in a beaker and stirred on a magnetic stirrer plate for 3 hours, as shown in 

Figure 3.31. Acid attack with 20:1 HCl by volume dissolves the aluminosilicate 

gel and/or zeolites that have formed, leaving the unreacted particles unaffected.   

  

Figure 3.31 Degree of reaction setup for acid attack (left) and filtration (right).  

4. Following stirring, the solution was vacuum filtered in a Buchner funnel, as 

shown in Figure 3.31, washed with distilled water and put into a labeled crucible 

along with the ashless filter paper that was used in order to make sure all of the 

sample was collected.  
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5. The samples were then placed in an oven at 60-100°C overnight and the next day 

the samples were moved to a Thermolyne 22 muffle furnace where they were 

heated to 1000°C for 24 hours, as shown in Figure 3.32. 

   
Figure 3.32 Degree of reaction tests following calcination in muffle 
furnace. 

The degree of reaction is determined through the weight loss measurement outlined below 

in Equation 8 (Fernández-Jiménez et al. 2006). Each test was repeated twice. 

α =  (1 – Mfinal/Minitial)*100    (Equation 8) 

3.6 Calorimetry 

Calorimetry is useful in concrete research in that it identifies differences in reaction kinetics 

between various mixtures. 

3.6.1 Adiabatic calorimetry 

A Grace AdiaCal was used to collect adiabatic calorimetry data for selected mortars. 

Following the mixing of the mortars, 4x8 inch plastic cylinders were filled half way with 

each mortar and vibrated for 30 seconds before being closed and put into the AdiaCal for 

measurement. The AdiaCal recorded temperature data for 180 hours. Figure 3.33 shows 

the Grace AdiaCal collecting data on geopolymer mortars. 
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Figure 3.33. Grace AdiaCal collecting calorimetry data on geopolymer mortars. 

It should be noted that adiabatic calorimetry involves curing at ambient temperatures and 

so the information collected was not indicative of the actual reactions occurring as the 

specimens were all thermally cured at higher temperatures. However, the Grace AdiaCal 

was useful in demonstrating the differences in reaction kinetics between various mixtures. 

3.6.2 Isothermal calorimetry 

Isothermal calorimetry measures the evolution of heat flow through a sample and has been 

very useful in monitoring the steps of geopolymerization and the effects of various 

activators. This information, coupled with other data such as Si/Al and microstructural 

changes characterizes the processes taking place during geopolymerization. Isothermal 

calorimetry was carried out in cooperation with Dr. Karl Peterson and PhD student Mr. 

Alireza Dehghan at the University of Toronto. Figure 3.34 shows the ICal that was used in 

this research as well as the inside of the equipment. 
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Figure 3.34. Isothermal calorimeter at University of Toronto. 

Mortar materials were first heated to 60°C and then mixed inside an oven. The materials 

should be 60°C prior to being put in the isothermal calorimeter in 100g sample sizes. 

3.7 Compressive strength 

While the focus of this research was not on attaining the highest compressive strength, it 

was important to verify the binders being studied were indeed capable of adequate 

mechanical performance and also to make correlations between microstructure, 

composition and mechanical performance.  Compressive tests were performed on 2x4 

cylinders in 2-inch end caps in accordance with ASTM C39/C39M – 11a Standard Test 

Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM 
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International 2011). Figure 3.35 shows the test set up for compressive strength testing. A 

Material Testing System (MTS) machine was used to test the compressive strength of the 

specimens at various ages in each phase.   

As specified by ASTM C39, compressive strength was measured on an 810 Material Test 

System (MTS) material testing system, using a constant loading rate of 35 pounds per 

second (156 kN/s). Specimens were cylindrical with a 2:1 aspect ratio. Compressive 

strength was measured at various ages after mixing. The test procedure consisted of first a 

rate controlled loading and then a deflection controlled stop. The specimens were measured 

for diameter and height and weighed as per ASTM C39.  

 
Figure 3.35. Compressive 
strength testing set up on the 
Material Testing System 
(MTS) machine. 
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3.8 Approach for each phase 

3.8.1 Phase I 

One of the overall goals of this project was to contribute to the currently limited knowledge 

on the performance of waste glass in geopolymer cement.  The first phase of this research 

involved basic mixture design and development of 100% glass-based geopolymer 

mixtures. The high-alumina glass was used. Three main variables were investigated: 

1. Fineness of the glass

2. Concentration of NaOH activator

3. Curing temperature

For these preliminary mixtures, compressive strength was measured at 7, 28 and 201 days. 

At 28 days, fracture surfaces were analyzed and at 201 days polished sections were 

analyzed and the phases measured for composition. 

It was hypothesized the finest glass, highest NaOH concentration and highest curing 

temperature would result in the most uniform microstructure and corresponding highest 

mechanical strength. 

3.8.2 Phase II 

In phase II, mixtures were designed using the mixture parameters from Phase I that yielded 

the highest 28-day compressive strength: the finer glass activated with 10M NaOH and 

cured at 80°C for 24 hours.  
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Again, the high alumina glass was used. In an attempt to decrease the Si/Al and Na/Al 

ratios down to levels that are more commonly accepted within geopolymer stoichiometry 

(Si/Al = 2-5 and Na/Al = 1) (Rahier et al. 1996; Rowles and O'Connor 2003; Duxson et al. 

2005; Duxson et al. 2005), additional reactive alumina was added through metakaolin and 

a Class C fly ash as a partial glass replacement. Five mixtures were used, considering 

metakaolin and fly ash replacements of 25 and 50% of the glass to provide Al to the system. 

The purpose of these mixtures was to observe and measure the effects of increasing the 

available reactive alumina in the system and to analyze the early synergy between glass 

and metakaolin and glass and fly ash. Also, as one of the underlying goals of this research 

was to gather general information on glass-based geopolymers, early age data was gathered 

in this phase. Compressive strength, degree of reaction, powder X-ray diffraction and SEM 

secondary electron analysis on fracture surfaces was performed at 1, 3 and 7 days. Longer-

term analysis was also considered at 179 days including polished sections analyzed by 

ESEM and EDS, degree of reaction and compressive strength. 

3.8.3 Phase III 

Using the results of Phases I and II, Phase III consisted of a new set of mortars designed 

using the high-Al glass as well as a very low-Al glass and metakaolin as the sole 

supplementary alumina source. The mixture designs were based purely on initial 

stoichiometric molar ratios with the goal of exploring glass-based geopolymers that possess 

stoichiometric ratios similar to those accepted for fly ash and metakaolin geopolymers.  
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The purpose of this phase was to apply the knowledge learned in Phases I and II to a low-

Al glass. Six mixtures were made using metakaolin as the alumina source, and using 

stoichiometric Na/Al ratios of 1 and 2 to determine how much metakaolin replacement was 

used. Keeping in mind the highest compressive strength in Phase II had a Na/Al ratio of 

very nearly 1 in bulk stoichiometry. Additionally, the two highest mixtures from Phase II 

using the high-Al glass were also made up as well as a 100% metakaolin mixture for 

reference. All of the samples were cured at 60°C in order to coordinate with isothermal 

calorimetry measurements. 

Compressive strength was measured at 1, 3, 7, 14 and 28 days, while degree of reaction 

and SEM and EDS work on polished sections were conducted at 14 and 28 days. At 28 

days, powder XRD readings and fracture surfaces were analyzed as well. In addition, 

adiabatic calorimetry and isothermal calorimetry at 60°C were carried out on all of the 

mixtures. 

The six mixtures had surprisingly low compressive strengths based on previous data 

recorded, and so the three mixtures containing the low-alumina glass were reproduced and 

cured at 80°C. Data up to 14 days was collected and it was found that increasing the curing 

temperature had a significant impact on the mortars, as discussed in Chapter 4 and 5. 

In addition, two ternary mixtures were also made, containing glass, metakaolin and fly ash. 

The intent was to counter the high water demand of the metakaolin with the low water 

demand of the fly ash in the hopes of coming up with a mixture that had adequate 

uniformity and density of microstructure while still supplying an adequate supply of Al to 
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the system. When the high Al glass was used, a 25% MK and 25%FA substitution resulted 

in Na/Al of 2. When the low Al glass was used, the same replacements yielded a bulk 

Na/Al of 1. 
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4. Results and Discussion

This research was performed in three main stages.  The results of each phase are presented 

in a separate major subsection of this chapter including information on the mixture design 

and corresponding bulk stoichiometry as well as results and discussion covering each type 

of analysis performed. At the end of each major section is a summary of the discussion for 

the entire phase and at the conclusion of the chapter is a cumulative discussion of the results 

of the entire project. 

The main focus in each phase is on the compressive strength, microstructure and 

composition of the mortars; in some cases additional testing was employed to help 

understand trends or just to provide additional information on the mixtures.  

Compressive strength, of course, is very important in concrete and material performance is 

linked to the microstructure. It should be noted there has been little research on the 

microstructure or composition of glass geopolymers. Additionally, most microstructural 

studies of geopolymers have been conducted on fracture surfaces, where actual measured 

compositional data is either not reported or inaccurate due to the lack of a prepared flat, 

polished section. 

The relationship between compressive strength and microstructure is important and the 

microstructure is affected by the bulk composition of the material. With regard to 

composition, four main molar ratios were considered for each mortar. The Si/Al and Na/Al 

molar ratios are the most commonly considered with Si/Al often being connected to 
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compressive strength and Na/Al relating to the balance between Na+ ions and tetrahedrally 

coordinated aluminum in the matrix. Additionally, the Na/Si and Ca/Si ratios were 

considered. The Na/Si ratio is often considered when a sodium silicate activator is used; 

though sodium silicate is not used in these mortars, glass does possess an extremely high 

Si content and so the Na/Si ratio was measured. The effect of calcium in geopolymer 

mixtures has been documented in the literature with calcium often precipitating out as 

Ca(OH)2 or C-S-H gel. The ratio of Ca/Si in the geopolymer could help to determine how 

the calcium in these mixtures behaves.  

4.1 Phase I 

The first phase of testing began with an exploration of how to mix glass-based geopolymers 

and address issues such as water demand, curing time, safety precautions associated with 

using caustic chemicals, etc. Through structured trial and error, an acceptable mixture 

design was developed and a testing regime was organized for considering the affects of 

glass particle size, activator concentration and curing temperature on the ease of mixing, 

compressive strength, microstructure and composition of phases formed.  

Particle size, activator concentration and curing temperature are commonly manipulated 

variables within a geopolymer mixture design and therefore were chosen for Phase I. 

Mixture parameters comparable to those employed in making fly ash or metakaolin 

geopolymers were selected to see if glass-based systems responded in a similar manner as 

other geopolymer source materials.  
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Compressive strength was measured at 7 and 28 and again at 201 days.  At 28 days, fracture 

surface samples were prepared and analyzed using secondary electron imaging to assess 

the general nature of the microstructure of the glass geopolymers. At 201 days, a polished 

section of each mortar was prepared for backscatter electron imaging and quantitative 

microanalysis by EDS to determine the composition of the phases present. 

4.1.1 Mixture design 

Two particle sizes were chosen from the available high-Al glasses, to represent a fine and 

a coarse fraction of ground glass.  The finer glass was called HA-600 and had a median 

particle size of 3-4 μm. The coarser glass was called HA-100 and had a median particle 

size of 15-20 μm.  The particle size of the glass is very important as it has a direct impact 

on the rate and extent of dissolution, where smaller particles dissolve more rapidly (Iler 

1979).   

Two NaOH concentrations were chosen, 5M and 10M. The research of Cyr et al. indicated 

the highest compressive strengths of glass geopolymers were obtained at 5 and 10M 

concentrations (Cyr et al. 2012), these are also common concentrations used with other 

types of geopolymers as well, though most activator solutions also include dissolved silica. 

Rattanasak et al. also found that 10M was an optimal activator concentration when 

activating fly ash (Rattanasak and Chindaprasirt 2009). 

Curing was performed at two temperatures, 40°C and 80°C, which represent a fairly 

common range of curing temperatures for geopolymers. The samples were heat cured for 

24 hours and then stored in ambient curing conditions until the time of testing; relative 
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humidity was kept at 90-100% at all times to try to avoid any shrinkage or cracking due to 

drying. A moderate curing time of 24 hours was chosen to allow adequate time for reaction 

to occur while staying in the bounds of what may be realistic for precast members. Much 

of the published research performed on geopolymers allows for long-term curing of several 

weeks or even months; this may result in increased strength although it seems very 

unrealistic for real world construction applications. Ambient curing conditions were not 

considered in this research as they most always lead to a very low degree of reaction and 

therefore strength (Cyr et al. 2012). 

Four mixtures were designed and two curing temperatures used, for a total of eight different 

geopolymer mortars to be tested, as shown in Table 4.1. 

Table 4.1. Explanation of mixture ID for mortars in Phase I. 
Mixture 

ID Glass size NaOH concentration 
(mol/L) 

Curing temperature 
(°C) 

F.5.80 HA-600 5 80 

F.5.40 HA-600 5 40 

F.10.80 HA-600 10 80 

F.10.40 HA-600 10 40 

C.5.80 HA-100 5 80 

C.5.40 HA-100 5 40 

C.10.80 HA-100 10 80 

C.10.40 HA-100 10 40 

4.1.1.1 Stoichiometry 

Mortars were prepared using a baseline 3:1:0.5 ratio of sand to glass to activator solution 

by mass, respectively. Washed, dried and sieved Superior Sand and Gravel 2NS sand was 
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used. The relevant molar ratios of the unreacted geopolymer mixtures are shown in Table 

4.2. 

Table 4.2. Molar ratios of the unreacted source 
materials and activator solution in Phase I mixtures. 
Mixture ID Si/Al Na/Al Na/Si Ca/Si 

F.5 8.39 0.99 0.12 0.39 

F.10 8.39 1.61 0.19 0.39 

C.5 8.39 0.99 0.12 0.39 

C.10 8.39 1.61 0.19 0.39 

For all four mixtures, the Si/Al and Ca/Si ratios remained the same as the same type and 

weight of glass was used in each mortar and only the particle size was changed. The Na/Al 

and Na/Si molar ratios changed as the activator concentration changed. Figure 4.1 shows 

the relationship between the Si/Al and Na/Al molar ratios for each mixture; each point on 

the graph refers to two mixtures, as shown in the legend. 

Figure 4.1. Si/Al vs Na/Al molar ratios for mixtures in Phase I. A dashed line at 
Na/Al =1 is shown since that is widely accepted as an optimum ratio for 
geopolymers. 
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4.1.1.2 Fresh properties 

All four mixtures were easy to mix and consisted of a light gray/brown colored paste that 

was lighter in color than typical OPC mortars. The water content and flow varied between 

each mixture as would be expected based on the changing variables. Increasing the 

concentration of the NaOH from 5M to 10M led to an increase in activator viscosity, which 

required more water as did an increase in glass fineness require more water. The water 

content was adjusted as necessary to reach a workable mixture that could be well 

consolidated. Flow was measured but was found not to be a universal indication of 

workability, as some mixtures with lower flow still exhibited good workability after 

consolidation on the vibrating table. 

Table 4.3 shows the fresh properties measured for the mixtures in Phase I including the 

water/solids ratio. The mixture containing the finest glass and highest activator 

concentration also reached the highest temperature immediately after mixing, indicating 

that perhaps dissolution was occurring more quickly in that mixture. 

Table 4.3. Fresh properties and water/solids ratio of the mixtures in Phase I. All 
reported values are based on the average of three measurements. 
Mixture 

ID 
Water/solids 

ratio Percent flow (%) Temperature 
(°F) 

Unit weight 
(g/mL) 

F.5 0.479 45% 75.50 2.20 

F.10 0.445 38% 82.50 2.22 

C.5 0.451 98% 72.50 2.22 

C.10 0.411 69% 74.50 2.24 

222 



4.1.2 Compressive strength  

4.1.2.1 Early age strength through 28 days 

Compressive strength at 7 and 28 days is shown in Figure 4.2. At 7 days, none of the 

mixtures had very high compressive strengths, with mixtures F.10.80, F.5.80 and C.10.80 

being the highest. However, several of the mixtures gained a substantial amount of strength 

in the following weeks. 

The mixture made using the finer glass and higher activator concentration and cured at a 

higher curing temperature, F.10.80, yielded the highest compressive strength at 28 days. 

This is not unexpected as smaller particle size, higher OH- concentration in the activator 

and higher curing temperatures are all parameters conducive to increasing the rate of 

dissolution and polycondensation, which has been linked to higher compressive strength 

(Fernández-Jiménez and Palomo 2003; Sofi et al. 2007). The mixture containing the 

coarser glass, lower NaOH concentration and lower curing temperature yielded the lowest 

compressive strength; this was not unexpected based on the literature.  
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Figure 4.2. Seven and 28 day compressive strength of Phase I mortars made of 
100% HA glass. Each data point is the average of two cylinders. Error bars were 
calculated from the standard error, SD/√n, where SD is standard deviation and n is 
the sample size. 

Table 4.4 lists the mortars in order of maximum average strength at 28 days as well as the 

mixture parameters used to make that mortar to aid in identifying trends among the 

parameters. Based on the 28-day compressive strength of the mortars tested, it appears that 

fineness had the most prominent effect on performance, followed by curing temperature 

and then activator concentration. 
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Table 4.4. Mixtures listed in order of maximum average compressive strength at 28 
days. The relevant mixture parameters are also listed to aid in identifying trends 
and the dominant parameter bolded. 

Mixture 
ID Rank Compressive 

strength (psi) 
Glass 

fineness 

NaOH 
concentration 

(mol/L) 

Curing 
temperature 

(°C) 
F.10.80 1st 8262 F 10 80 

F.5.80 2nd 5486 F 5 80 

F.10.40 3rd 5254 F 10 40 

C.10.80 4th 2987 C 10 80 

F.5.40 5th 2157 F 5 40 

C.5.80 6th 2124 C 5 80 

C.10.40 7th 1431 C 10 40 

C.5.40 8th 1091 C 5 40 

4.1.2.2 Later age strength through 201 days 

Compressive strength through 201 days is shown in Figure 4.3. From 28 to 201 days several 

interesting changes occurred:  

225 



• The strength of F.10.80 and F.5.80 both decreased, with F.10.80 dropping 

substantially from the highest compressive strength at 28 days, losing nearly 3,000 

psi in strength.  

• The strength of F.10.40 and C.10.40 both increased substantially as compared to 

the other mixtures. 

 
Figure 4.3. Compressive strength of Phase I mortars made of 100% HA glass through 
201 days. Data points for 7 and 28 days are based on the average of two cylinders; 
data for 201 days is based on one cylinder. Error bars were calculated from the 
standard error, SD/√n, where SD is standard deviation and n is the sample size. 

The 201-day compressive strengths are listed in Table 4.5 in order of maximum 

compressive strength. The relevant mixture parameters are also listed to easily see which 

properties yielded the higher results and the dominant parameters are bolded
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Table 4.5. Mixtures listed in order of maximum compressive strength at 201 days. 

Mixture 
ID Rank Compressive 

strength (psi) 
Glass 

fineness 

NaOH 
concentration 

(mol/L) 

Curing 
temperature 

(°C) 
F.10.40 1st 10196 F 10 40 

C.10.40 2nd 6729 C 10 40 

F.10.80 3rd 5607 F 10 80 

F.5.80 4th 5217 F 5 80 

C.10.80 5th 3995 C 10 80 

F.5.40 6th 3714 F 5 40 

C.5.40 7th 3409 C 5 40 

C.5.80 8th 2917 C 5 80 

At 201 days, the mixtures made of the finer glass and higher NaOH concentrations (F.10) 

still yielded the highest compressive strengths overall. However, there was a reversal in the 

effect of the curing temperature as compared to the 28-day results. It is interesting to note 

that both mixtures under the F.80 conditions decreased in compressive strength at later 

ages. Both the F.10.80 and F.5.80 mixtures lost strength, though the F.5.80 mixture could 

have been due to statistical variance. It is unknown exactly when the strength reversal in 

mixture F.10.80 occurred. 

Alternately, the F.10.40 and C.10.40 mixtures both showed a more significant increase in 

compressive strength from 28 to 201 days than any of the other mixtures. This implies that 

despite lower strengths at 28 days, mixtures made with a higher concentration activator 

solution and cured at a lower temperature follow a late strength gain profile. This could be 

because the higher activator concentration allows for more dissolution to occur initially, 
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which may make available ample geopolymer species for more polycondensation and 

sustained strength gain over longer periods of time. 

Sustained strength gain, of course, is a desirable property in concrete. However in today’s 

fast paced construction industry, the delay before this strength is gained may not be 

acceptable. Mixture C.10.40 had a fairly low 28-day strength before reaching significant 

strengths at 201 days, while the F.10.40 mixture had a more acceptable compressive 

strength at 28 days.  

4.1.3 Microstructural analysis 

Electron microscopy on both fracture surfaces and polished cross sections illuminated 

differences between the microstructures of the eight mortars and revealed clues related to 

mechanical performance and reaction mechanisms. 

4.1.3.1 Fracture surface analysis 

The microstructures of all eight mortars were analyzed by secondary electron imaging on 

28-day old fracture surfaces. The most notable observation while comparing these mixtures 

was the difference between mortars made with finer glass and those made with coarser 

glass. Regardless of the NaOH concentration and curing temperature, the microstructure 

of mixtures containing the finer glass consistently appeared more continuous and less 

aggregated than those made with the coarser glass. This is shown in Figure 4.4 where 

micrographs are organized in a manner so as to easily compare the effect of the glass 
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fineness on the microstructure. Mixtures containing the finer glass are shown on the left 

and corresponding mixtures containing the coarser glass are shown on the right. 

In comparing the mortar with the highest (F.10.80) and lowest compressive strength 

(C.5.40) at 28 days, the difference in matrix continuity is even more apparent, as shown in 

Figure 4.4. The F.10.80 mixture appears to be one continuous, monolithic matrix while the 

C.5.40 mixture appears pieced together, with large voids visible and no real continuity. The 

relationship between the continuity of the matrix and compressive strength has been 

observed in other geopolymers as well (Rowles and O'Connor 2003) though it is often also 

linked to the amount of soluble silica in the activator solution and there is none in these 

mixtures. Generally, higher Si/Al ratios result in more continuous microstructure, with the 

Si/Al ratio increase due to the presence of soluble silica (Steveson and Sagoe-Crentsil 

2005; Steveson and Sagoe-Crentsil 2005).
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F.5.80 C.5.80 

  
F.5.40 C.5.40 

  
F.10.80 C.10.80 

  
F.10.40 C.10.40 

Figure 4.4. Secondary electron imaging of fracture surfaces at 28 
days, showing the finer glass mixtures on the left and the 
corresponding coarser glass mixtures on the right. 

. 
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Figure 4.5. Microstructural comparison of the highest compressive strength mortar 
(left), F.10.80, and the lowest compressive strength mortar (right), C.5.40, at 28 days. 

Unreacted glass particles were also quite prevalent in fracture surface imaging, as shown 

in Figure 4.6. The conchoidal fracture is typical of glassy breaks. 

Figure 4.6. Unreacted glass particles as seen under secondary electron imaging. 
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4.1.3.2 Polished cross section analysis 

Polished cross sections were analyzed using backscatter electron imaging on 201-day old 

mortar samples. Aside from the obvious difference in residual glass particle size between 

the mixtures, there was also a very clear distinction between the microstructure of the 

mixtures using the fine and coarse sized glass. Figure 4.7 shows a backscatter image of all 

eight mortars, again organized to illustrate the microstructural difference between mixtures 

containing fine (left) and coarse (right) glass. The mixtures containing the finer glass 

typically possessed finer microstructural details, where the coarse mixtures appeared 

blockier and contained large regions of homogenous phases often surrounding unreacted 

glass particles.
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F.5.80 C.5.80 

F.5.40 C.5.40 

F.10.80 C.10.80 

F.10.40 C.10.40 
Figure 4.7 Backscatter electron imaging of polished sections at 201 
days, with the finer glass mixtures on the left and the corresponding 
coarser glass mixtures on the right. 
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In the mixtures using the fine glass, a very narrow reaction rim was visible around the 

unreacted glass particles but the bulk of the microstructure was fairly uniform and 

continuous, with any voids present being very small. The dissolution glass typically begins 

with the removal of monovalent and divalent cations from the surface, followed by 

aluminum if present, and then silica (Oelkers and Gislason 2001). This reaction rim could 

be remnant of this, as a hydrated glass layer is known to exist between the pristine glass 

and outer gel phase formed, the thickness of this rim has been linked to corrosion rates as 

controlled by diffusion (Grambow and Muller 2001).  

On the other hand, the mixtures made using the coarse glass did not show this reaction rim, 

but rather were surrounded by a continuous layer of geopolymer product. It is common in 

the dissolution of glass that a gel product is formed that readsorbs to the surface of the 

glass, forcing the reaction to become diffusion controlled (Litvan 1984). The border 

between the unreacted glass particle and the product appeared completely continuous and 

large voids or cracks appeared larger in these mixtures, occurring between where the 

reaction products did not contact each other. A closer look at the area surrounding an 

example of unreacted glass particle in each matrix is shown in Figure 4.8 for comparison.
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Figure 4.8. Comparison of reaction rim around a glass particle in the fine 
(left) and the coarse (coarse) glass mixtures. 

The reaction product formed around the coarse glass particles appears similar to how C-S-

H (calcium silicate hydrate) forms around and in place of the reacting cement particle once 

hydration reactions become mainly diffusion controlled. The outline of the shape of the 

original glass particle is still visible in the matrix, similar to how a Hadley grain is visible 

in the microstructure of OPC concrete after hydration, as shown in Figure 4.9. 

Figure 4.9. Microstructure of OPC concrete, showing C-
S-H forming around unhydrated cement grains (Diamond 
2004). Reprinted by permission of Elsevier. See Appendix 
D for documentation of permission to reprint this material. 
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The bulk microstructure of the mixtures made with fine glass consisted of a web-like 

appearance, with very small voids of less than 1μm, as shown in Figure 4.10. 

Figure 4.10. A larger image showing the microstructure of the F.5.80 mixture. Note 
the webbed look of the bulk matrix of the finer glass mixtures. 

The bulk microstructure of the mixtures made with the coarse glass consisted of a 

significantly more cracking than the fine glass mixtures, as shown in Figure 4.11. This 

could be due to the improved particle packing of the smaller particles, leaving less large 

voids that need to be filled with geopolymer product in order to connect the entire matrix 

together. Also of note is the curved shape of the cracks as they seem to form between the 

layer of reaction product surrounding the glass particles and the rest of the bulk matrix, 

indicating a weaker zone in that area. These curved cracks are similar to the autogenous 
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shrinkage cracks found in OPC concrete, but also could be in part due to sample 

preparation. 

 
Figure 4.11. A larger image of the microstructure of the C.5.80 mixture. 

The difference in microstructure between the fine and coarse glass mixtures could indicate 

the reaction occurring in both mixtures is similar in that reaction products form around the 

glass particles, but the voids in the finer glass microstructures are smaller due to the smaller 

size of the glass particles and greater number of particles present in the mixture. 

Another explanation could be that dissolution of the fine glass particles occurs very rapidly 

creating a supersaturated solution, which then undergoes polycondensation to form a more 

homogenous matrix either through gelation or precipitation. In coarse glass mixtures, 
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dissolution occurs much slower due to the lower specific surface areas of the particles and 

so layers of reaction product form around the glass particles, forcing the reaction to become 

diffusion controlled creating the airtight boundary between the unreacted glass and the 

reaction layer but also leaving voids between the particles. 

The mixture with the highest 28-day strength that ended up with a drastic strength decrease 

at 201 days, F.10.80, appeared to have a dense, continuous microstructure. The two 

mixtures that had the highest strength at 201 days, F.10.40 and C.10.40, both showed a 

great deal of geopolymer product surrounding the unreacted particles. However the 

presence of more voids contradicted with the aforementioned relationship between 

continuity of microstructure and mechanical performance, indicating the composition of 

the products must also play an important role in physical properties. 

4.1.4 Phase composition 

Using backscatter electron imaging to identify varying elemental intensities and phases 

present within the microstructure, the elemental composition of the geopolymer reaction 

product was identified by EDS microanalysis. A minimum of six spots were analyzed on 

each mixture and statistics on the EDS analysis of each mixture can be found in Appendix 

A. Table 4.6 shows the mixtures listed in order of maximum 201-day compressive strength 

and the resulting average molar ratios in the geopolymer product measured through EDS 

microanalysis.  
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Table 4.6. Average measured molar ratios of the mixtures ordered in terms of 
maximum compressive strength at 201 days. 

Mixture ID Rank Compressive 
strength (psi) Si/Al Na/Al Na/Si Ca/Si 

F.10.40 1st 10196 9.15 2.95 0.33 0.41 

C.10.40 2nd 6729 15.01 11.65 0.77 0.31 

F.10.80 3rd 5607 9.02 5.48 0.63 0.34 

F.5.80 4th 5217 9.37 2.06 0.22 0.45 

C.10.80 5th 3995 16.05 7.20 0.46 0.28 

F.5.40 6th 3714 9.34 2.20 0.24 0.42 

C.5.40 7th 3409 13.70 7.94 0.59 0.21 

C.5.80 8th 2917 13.99 7.80 0.56 0.26 

The average Si/Al, Na/Al, Na/Si and Ca/Si molar ratios of each mixture are shown graphed 

against compressive strength at 201 days in Figure 4.12. It can be seen that no clear trends 

exist between compressive strength and molar ratios as measured by EDS other than to 

note the obvious differences in Si/Al and Na/Al ratios between the fine and coarse glass 

mixtures. 
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Figure 4.12. Molar ratios of all eight mixtures as a function of compressive strength at 
201 days. No clear trends exist other than the divide between mixtures made with fine 
glass and those made with coarse glass. 

Figure 4.13 shows the similarities among mixtures made with fine glass (shown in blue), 

as well as mixtures made with coarse glass (shown in green), where both the Si/Al and 

Na/Al ratios are generally higher for mixtures made with coarse glass. 
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Figure 4.13. Si/Al and Na/Al molar ratios as a function of compressive strength. 
The fine and coarse mixtures are separated by different colored markers as shown 
in the legend. 

The Si/Al ratio is very consistent among the mixtures containing the fine glass (9.02-9.37), 

with more variance and higher numbers overall in the mixtures containing the coarse glass 

(13.7-16.05). 

The Na/Al ratio was lower in the mixtures containing fine glass, perhaps indicating further 

reaction of the glass (2.06-5.48), where increased reaction would make more Al available 

to balance the Na, lowering the ratio. The Na/Al ratio was much higher in the coarse glass 

systems (7.20-11.65) and particularly high in the C.10.40 mixture, which was the mixture 

that had a large increase in terms of compressive strength from 28 to 201 days. The Na/Al 

ratio is also much higher in the mixture that had a decrease in compressive strength from 

28 to 201 days (F.10.80) as compared to the other mixtures made of fine glass. 

Figure 4.14 shows the Na/Si and Ca/Si ratios for both the fine glass mixtures (blue) and 

the coarse glass mixtures (green). The Na/Si ratios were generally lower for the fine glass 
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mixtures, with the exception of F.10.80, and higher in the coarse glass mixtures. This 

indicates further dissolution where more Si was made available. Alternately, the Ca/Si 

ratios of the fine glass mixtures were typically higher than that of the coarse glass mixtures, 

with the exception of F.10.80, which was a bit lower. Moderate calcium contents in 

geopolymers have been shown to result in an increase in compressive strength as compared 

to mixtures containing little to no calcium. 

Figure 4.14. Na/Si and Ca/Si molar ratios as a function of compressive strength. 
Different colored markers, as shown in the legend, separate the fine and coarse 
mixtures. 

With regard to the relationship between actual measured stoichiometry and bulk 

stoichiometry of the unreacted materials, it was clear the finer glass mixtures more closely 

resembled the bulk stoichiometry. Figure 4.15 shows how closely the Si/Al ratio of the fine 

glass mixtures resembles the bulk Si/Al ratio of 8.69 as compared to the coarse glass 

mixtures. 
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Figure 4.15. Comparison of the Si/Al ratio of the coarse and fine glass mixtures and 
the bulk Si/Al ratio of the mixtures, shown as a line at 8.39. 

Figure 4.16 shows the same is true for the Na/Al ratio, where for the most part the Na/Al 

ratio of the finer glass mixtures more closely resembled the bulk Na/Al ratio. It is 

interesting to note the extremely high Na/Al ratio point is the C.10.40 mixture, which 

possessed a very high compressive strength at 201 days. It is unknown why this is since 

most of the literature is adamant that a Na/Al ratio of close to unity will give optimum 

mechanical performance. 
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Figure 4.16. Comparison of the Na/Al ratio of the coarse and fine glass mixtures and 
the bulk Na/Al ratio of the mixtures, shown as a line at 0.99 and 1.61. 

Figure 4.17 shows that for the most part the same was true for the Na/Si ratio, with the 

exception of the C.10.40 mixture again, which had a very high Na/Si ratio. The F.10.80 

mixture also had a high Na/Si ratio as compared to the other fine glass mixtures. 

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000

M
ol

ar
 r

at
io

Compressive strength

Na/Al (C)

Na/Al (bulk 5M)

Na/Al (F)

Na/Al (bulk 10M)

244 



 
Figure 4.17. Comparison of the Na/Si ratio of the coarse and fine glass mixtures and 
the bulk Na/Si ratios of the mixtures, shown as lines at 0.12 and 0.19. 

Figure 4.18 shows differing results, where the Ca/Si ratio was lower than the bulk 

stoichiometry for the coarse glass mixtures but close for the fine glass mixtures. This was 

the only ratio that resulted in a lower actual ratio as compared to the bulk ratio. This could 

indicate that Si was preferentially dissolved in the coarse glass mixtures or that a calcium-

rich phase such as Ca(OH)2 or C-S-H formed which kept the calcium levels in the bulk 

matrix low. 
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Figure 4.18. Comparison of the Ca/Si ratio of the coarse and fine glass mixtures and 
the bulk Ca/Si ratio of the mixtures, shown as a line at 0.39. 

4.1.5 Discussion of Phase I 

As stated previously, aside from an exploration into making glass geopolymer, the main 

goals of this phase were to explore the effects of glass fineness, activator concentration and 

curing temperature on the compressive strength, microstructure and composition of phases 

present in the geopolymer. 

4.1.5.1 Fineness of glass 

In general, the glass fineness seemed to have the most impact on the compressive strength, 

microstructure and phase composition, with rather clear divides existing in each set of data 

separating mixtures made with fine glass and those made with coarse glass. 

With regard to compressive strength, it seems it is not just one parameter, such as glass 

fineness, that dictates which mixtures will behave strongest, but rather a combination of 

parameters. At 201 days, mixtures made with 10M NaOH and cured at 40°C performed 
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better than all other mixtures, with both the fine and coarse glass mixtures performing well, 

indicating that important relationships exist between the various parameters. 

With regard to microstructure however, the fineness of the glass had a clear impact on the 

microstructure, with a more uniform, continuous matrix forming in the fine glass mixtures 

and a more aggregated, heterogeneous matrix in the coarse glass mixtures. Also of note 

was the presence of the very thin reaction rim around the unreacted glass particles in the 

fine glass mixtures as compared to the smooth encapsulation of the glass particles by the 

surrounding reaction products in the coarse glass mixtures. This most likely indicates a 

surface reaction was occurring that later became diffusion controlled (Rajmohan et al. 

2010), rather than widespread dissolution followed by precipitation or gelation via 

homogeneous nucleation within the bulk matrix. The great disparity between these two 

types of microstructures speaks to different reactions occurring, or at the very least, the 

same reaction occurring on a vastly different size scale. 

Regarding phase composition, again, a fairly clear line was drawn between the fine and 

coarse glass mixtures, with Si/Al and Na/Al ratios being much lower in the fine glass 

mixture and higher in the coarse glass mixtures. Since both of these ratios are dependent 

on Al content, this indicates that more Al was included into the fine matrix, which leads 

one to believe that all things being equal, more glass was dissolved in the fine glass 

matrices. Degree of reaction experiments were not conducted in this phase but the presence 

of very large unreacted particles in the matrix of the coarse glass mixtures indicates that a 

large portion of glass particles was not reacted. 
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The stoichiometry of the geopolymers was very similar to that of the bulk unreacted 

materials in the fine glass mixtures. However, the Si/Al and Na/Al ratios were significantly 

higher in the coarse glass mixtures. 

4.1.5.2 Activator concentration 

With regard to activator concentration, it was found that overall, a higher activator 

concentration resulted in higher compressive strengths both at 28 and 201 days. This 

contradicts the work of Cyr et al., who found that a concentration of 5M performed better 

than 10M (Cyr et al. 2012). Other research has not defined a clear choice in terms of 

activator concentration, with a variety of results being put forth indicating the optimum 

activator concentration depends heavily on other variables. 

Also of note is the fact that most other geopolymers made of fly ash or metakaolin also 

include sodium silicate in the activator, which changes the kinetics, often lowering the 

degree of reaction since a great deal of Si is provided from the activator. In glass 

geopolymers, all of the Si and Al network formers come from the glass or other source 

materials, so dissolution is key and therefore a higher concentration is needed to provide 

more hydroxyl ions for dissolution. This could explain why the higher activator 

concentration was found to result in higher compressive strength in this research. 

Another observation to note is the importance of the Na/Al ratio with regard to excess 

sodium present in the hardened mortar. Consider the C.5.80 mixture as an example. Even 

though the unreacted bulk Na/Al ratio for the C.5.80 mixture was 0.99, the actual Na/Al 

ratio was upwards of 8. This means there was nearly eight times as much sodium measured 
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in the geopolymer as aluminum. This excess sodium has been known to migrate to the 

surface and form carbonates in the atmosphere. This was observed in several samples 

stored in plastic cups where white fibers grew on the surface of the geopolymer as shown 

in Figure 4.19. 

 
Figure 4.19. White growth on the surface of the C.5.80 mortar during storage. 

Powder X-ray diffraction confirmed the white growth was crystalline sodium carbonate 

hydrate, as shown in Figure 4.20. The Na/Al ratio is of great concern when it comes to 

using glass in geopolymers, and was one of the driving factors of this research. Phases II 

and III address this issue of excess sodium in glass geopolymers. 
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Figure 4.20. Powder X-ray diffraction pattern and identification for the white 
growth found on the C.5.80 geopolymer surface in Figure 4.19. 

4.1.5.3 Curing temperature 

The effects of the curing temperature were interesting in Phase I in that curing at 40°C for 

24 hours resulted in enhanced strength gain over time as compared to mixtures cured at 

80°C. Similar mixtures cured at 80°C for the same amount of time not only stagnated in 

compressive strength past 28 days, but actually lost strength.  

Severe strength loss in geopolymers is not common within the literature. Under conditions 

of very high temperatures, crystallization of the geopolymer could occur leading to a loss 

in strength, or if the samples were stored in water, leaching could occur, which has been 

shown to lead to a strength loss (Cyr et al. 2012).  However, the sample F.10.80 was not 

kept under either of those conditions and it is unknown why the strength decrease was so 

substantial. Higher curing temperatures typically lead to a higher degree of dissolution 
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initially, but could also indicate a quicker buildup of reaction products around the 

dissolving species, preventing further reaction. However, that does not account for a loss 

in strength, nor was this layer of reaction products around unreacted glass found in 

microstructural analysis. 

4.1.5.4 Main points of Phase I 

• Fineness had the greatest impact on compressive strength, microstructure and 

composition, most likely due to the resulting increase in rate and extent of 

dissolution. More dissolution releases more Si and Al species to make more 

geopolymer. More geopolymer formed means less voids and a denser matrix, which 

physically contribute to increased compressive strength. 

• Fineness is not, however, the dominant parameter as evidenced by the C.10.40 

mixture, which reached the second highest compressive strength of all the mixtures 

at 201 days and was made with coarse glass. 

• Since dissolution is necessary to free the network formers in a mixture not 

containing soluble silica, a higher activator concentration yields superior 

mechanical strength as it causes more dissolution to occur. 

• Higher temperature curing leads to higher early strengths, while lower temperature 

curing results in lower early strength but a more sustained increase in compressive 

strength over time. 

• In all of these cases, it is important to note there is a synergy between the various 

parameters, where it is not necessarily one single parameter than dictate a mortar 
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performance but rather the combination of parameters that is most important. It is 

clear that relationships between the various mixture parameters exist that are more 

powerful than any one individual parameter. 

• There did not appear to be any clear trends between molar composition of the 

geopolymer and compressive strength aside from the general differences having to 

do with the fineness of the glass used. 

• There did not appear to be any clear correlation between microstructure and 

compressive strength since several mixtures appearing to have a lot of voids and 

cracks behaved better than other more uniform mixtures The overall continuity of 

the fine glass mixtures did result in higher compressive strengths overall according 

to the fracture surface at 28 days. 

• The F.10.80 mixture should be investigated further to determine the cause for the 

strength decrease from 28 to 201 days. 

4.2 Phase II 

The second phase of testing considered a new set of mortar mixtures that addressed the 

issue of too much sodium and not enough aluminum in glass geopolymers. Phase II 

explored the effects of replacing selected amounts of glass with metakaolin or fly ash, 

effectively increasing the aluminum content in the mixtures and decreasing the Si/Al and 

Na/Al ratios to more generally acceptable stoichiometric ratios (i.e. Si/Al = 2-5, Na/Al = 

1). 
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As in Phase I, compressive strength, microstructure and phase composition were the most 

important characteristics considered. Special attention was paid to investigating the 

geopolymers at early ages of 1, 3 and 7 days in addition to several later ages. Compressive 

strength was measured at 1, 3, 7, 107 and 179 days. Samples were prepared and analyzed 

using secondary electron imaging at 1, 3 and 7 days to assess the microstructure of the 

various geopolymers. At 179 days, a polished cross section of each mortar was prepared 

for backscatter electron imaging and EDS microanalysis was used to obtain quantitative 

compositional information on the phases present. In addition, Phase II also considered 

degree of reaction measurements at 1, 3, 7 and 179 days as well as powder X-ray diffraction 

at 1, 3 and 7 days. Adiabatic calorimetry was also performed on the mixtures containing 

glass and metakaolin to get a general look at the kinetics of reaction between various 

mixtures. 

4.2.1 Mixture design 

Mortars were prepared using the high-Al (HA) glass and 25% and 50% replacements of 

metakaolin or fly ash by mass. Replacement rates past 50% were not considered, as the 

purpose of this research was to explore glass-based geopolymer systems. 25% and 50% 

were chosen as replacement rates because they offered an acceptable range of Si/Al and 

Na/Al ratios as seen in Figure 4.21. Other research has explored binary systems of 

metakaolin coupled with another source material and this combination has often been 

found to yield geopolymers that perform better than those based on a single source material. 

The synergy between metakaolin and other source materials is a unique one and was 

explored as well. 
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Based on the 28-day compressive strength results in Phase I and general trends from the 

literature regarding optimal synthesis parameters, the finer glass, HA600 was activated 

with 10M NaOH and cured at 80°C for 24 hours. Five mixtures were designed as shown 

in Table 4.8. Mixtures were named according to the amounts of each source material used, 

where 75HA25MK means 75% HA glass, 25% metakaolin by mass. 

Table 4.7. Mixture ID for mortars in Phase II, with percentages given by 
mass. 

Mixture  ID HA-600 glass (HA) Metakaolin (MK) Fly ash (FA) 

100HA 100% 0% 0% 

75HA25MK 75% 25% 0% 

50HA50MK 50% 50% 0% 

75HA25FA 75% 0% 25% 

50HA50FA 50% 0% 50% 

4.2.1.1 Stoichiometry 

Mortars were prepared using a baseline 3:1:0.5 ratio of sand to glass to activator solution 

by mass, respectively. Graded Ottawa sand was used as the fine aggregate. The relevant 

molar ratios of the unreacted bulk geopolymer are shown in Table 4.8. For all five mixtures, 

the molar ratios changed since the glass, metakaolin and fly ash all supplied varying 

amounts of Si, Al, Na and Ca. 10M NaOH was used as the activator in all mixtures.
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Table 4.8. Molar ratios of unreacted source materials 
and activator solution of Phase II mixtures. 
Mixture ID Si/Al Na/Al Na/Si Ca/Si 

100HA 8.39 1.61 0.19 0.39 

75HA25MK 4.99 0.97 0.19 0.30 

50HA50MK 3.48 0.69 0.20 0.21 

75HA25FA 6.56 1.53 0.23 0.39 

50HA50FA 5.19 1.46 0.28 0.39 

Figure 4.21 shows the relationship between the Si/Al and Na/Al molar ratios of the bulk 

stoichiometry in the five mixtures considered in this phase. It should be noted the 

unreactive fraction of the fly ash was not calculated.  

 
Figure 4.21. Si/Al vs Na/Al molar ratios for mixtures in Phase II. A dashed line at 
Na/Al =1 is shown since that is widely accepted as an optimum ratio for geopolymers. 

4.2.1.2 Fresh properties 

Varying the components of the mortars not only affected the molar ratios of the mixtures 

but also the water demand and color as well. Figure 4.22 shows the color difference 
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between the five mortars, with more metakaolin leading to a more yellow/oranges color 

and more fly ash just turning the mortar browner.  

Figure 4.22. Phase II mixtures, from left to right: 100HA, 75HA25MK, 50HA50MK, 
75HA25FA, and 50HA50FA. 

The sheet-like structure of the metakaolin particles significantly increased the water 

demand when it replaced the glass. Alternately, the spherical particles of the fly ash 

drastically reduced the water demand when they replaced the more angular shaped glass 

particles. Water content was adjusted as needed to achieve an adequate workability and 

similar flow. Flow was found not to be a universal indication of workability, as some 

mixtures with lower flow still exhibited good workability after consolidation on the 

vibrating table. The presence of metakaolin also served to make the mixture sticky, whereas 

the presence of fly ash increased the fluidity making the mixture more liquid. 

Fresh properties and water/solids ratio for each mortar are shown in Table 4.9. The two 

mixtures containing metakaolin had a higher temperature immediately after mixing than 

the rest of the mixtures after mixing, perhaps indicating a reaction beginning early. Also of 

note was the presence of a crackling sound during mixing and for several minutes after. 
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Table 4.9. Fresh properties and water/solids ratio of the mixtures in Phase II. All 
reported values are based on the average of three measurements. 

Mixture ID 
Water/solids 

ratio 

Percent Flow 

(%) 

Temperature 

(°F) 

Unit weight 

(g/mL) 

100HA 0.504 77% 73.00 2.06 

75HA25MK 0.540 59% 77.00 2.04 

50HA50MK 0.617 56% 77.00 2.02 

75HA25FA 0.504 77% 73.50 2.03 

50HA50FA 0.464 63% 73.50 2.04 

4.2.2 Compressive strength 

4.2.2.1 Early age strength through 7 days 

Compressive strength results through 7 days are shown in Figure 4.23. Several mixtures 

had very high compressive strengths at 1 day, with the 75HA25MK mixture reaching more 

than 5000 psi at 24 hours. In nearly all cases, there was a slight decrease measured in 

compressive strength from 1 to 7 days. 
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Figure 4.23. Compressive strength through 7 days for mixtures in Phase II. Each data 
point is the average of three cylinders. Error bars were calculated from the standard 
error, SD/√n, where SD is standard deviation and n is the sample size. 

The 100HA mixture reached past 3500 psi at 1 day and did not gain much more 

compressive strength through 7 days. In Phase I, a similar mixture was made using the 

HA600 glass, 10M NaOH and 80°C curing temperature. This mixture achieved slightly 

less than 3000 psi at 7 days. The difference in strength between the two phases can be 

attributed to the difference in aggregate. Washed sand was used in Phase I and Ottawa sand 

in Phase II, and a higher water/solids ratio was used in Phase II (0.504 as compared to 

0.445).  

The 50HA50MK mixture did not perform well, not even achieving 1000 psi even after a 

week. The fly ash mortars behaved respectably, with the 75HA25FA mixture gaining more 
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strength at 1 day than the 50HA50FA mixture. The 75HA25MK and 75HA25FA mixtures 

both exhibited a strength loss over 7 days. 

4.2.2.2 Later age strength through 179 days 

Unlike in Phase I, all the mortars kept the same rank in terms of maximum compressive 

strength from day 1 through 179 with no strength loss measured other than a minimal loss 

within the first week. Figure 4.24 shows the compressive strength of the mixtures through 

179 days.  

Figure 4.24. Compressive strength of Phase II mixtures through 179 days. Each data 
point is the average of three cylinders. The 107-day measurements were taken on a 
Baldwin compression-testing machine. Error bars were calculated from the standard 
error, SD/√n, where SD is standard deviation and n is the sample size. 

At 179 days, the 75HA25MK mixture still had the highest compressive strength overall, 

followed by the 100HA mixture and then the mixtures containing fly ash. The mixture 
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containing 50% metakaolin still exhibited extremely low compressive strengths, crumbling 

apart easily upon fracture. This could be due to a higher water/solids ratio, where the extra 

water left behind a low-density microstructure upon drying and hardening.  

4.2.3 Microstructural analysis 

Electron microscopy on both fracture surfaces and polished cross sections helped illustrate 

the differences between the microstructures of the five mortars and revealed clues related 

to mechanical performance and reaction mechanisms. 

4.2.3.1 Fracture surfaces at 1, 3 and 7 days 

Microstructural analysis by way of secondary electron imaging on carbon coated fracture 

surfaces was performed.  Figure 4.25 shows the bulk fracture surface of the five mixtures 

at 1, 3 and 7 days for the purpose of comparison. 
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1 day 3 days 7 days 

   
100HA 

   
75HA25MK 

   
50HA50MK 

   
75FA25MK 

   

50HA50FA 
Figure 4.25. Secondary electron imaging of Phase II fracture surfaces at 1 day 
(left), 3 days (middle) and 7 days (right). 
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The microstructure of the 100HA and 75HA25MK mixtures, which yielded the highest 

compressive strengths (see Figure 4.24), appeared continuous and homogenous, with 

angular voids most likely remnant of unreacted glass particles that were pulled out during 

sample preparation. In comparing the micrographs from day 1 through 7, it appears the 

matrix may become slightly denser over time although there is no apparent strength gain 

during this time. 

The microstructure of the 50HA50MK mixture appeared to be composed of aggregated 

pieces of reaction product intermingled with unreacted glass and metakaolin and zeolites 

rather than a monolithic structure as was found in the other mixtures. The aggregated 

microstructure was similar to that found in low Si/Al systems (Si/Al = 1.15, 1.4) in other 

research investigating the Si/Al ratio of metakaolin geopolymers (Duxson et al. 2005). It 

is important to note that many of the other microstructural studies considering composition 

often include sodium silicate in the activator solution, which is different from this situation 

where network formers available for polycondensation must first be dissolved. 

The microstructure of the mixtures containing fly ash appeared continuous for the most 

part, with partially or unreacted fly ash and glass particles present. Voids similar to those 

found in the 100HA and 75HA25MK mixtures were also found, most likely remnant of 

particles lost during sample preparation or compressive strength testing. Despite the 

continuity and apparent density of the microstructure, the lower compressive strengths 

developed through one week speak to the importance of composition with regard to 

mechanical performance. This is addressed in later sections. 
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4.2.3.1.1 Unreacted particles 

Upon closer examination, all the mortars revealed the presence of unreacted source 

material particles embedded within the bulk matrix of the geopolymer.  This does not 

coincide with data from Cyr et al., who reported 100% dissolution of the glass after 56 days 

with no unreacted particles visible in the microstructure. It is important to note that 

prolonged curing was employed in that research, which would have most likely led to a 

further extent of dissolution. However, even in ordinary portland cement concrete, 

unreacted cement particles are quite common even after many years of curing.  

From fracture surface analysis by secondary electron imaging, examples of platy unreacted 

metakaolin particles and partially reacted spherical fly ash particles are shown in Figure 

4.26. Examples of unreacted glass particles can be seen in Figure 4.6.
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Figure 4.26. Unreacted metakaolin particles (top) and partially reacted fly ash 
particles (bottom) as shown in secondary electron imaging. 

4.2.3.1.2 Zeolites 

Secondary electron imaging on fracture surfaces also revealed the presence of 

morphologically crystalline phases. Geopolymers are thought by many to be the 

amorphous analogues to zeolites (Duxson et al. 2005), where both can be synthesized in 

similar conditions, with zeolites requiring higher temperatures, more time and a high 

liquid/solid environment.  

Crystalline phases were found in all of the mixtures in Phase II, particularly in the 

50HA50MK mortar. Examples of the large quantity of cubic structures found in the 

50HA50MK mixture are shown in Figure 4.27. Similar structures in the literature have 
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been identified as Zeolite A have been found in other similar mixtures (Palomo and Glasser 

1992; Fernández-Jiménez et al. 2007). The large quantity of crystalline phases in this 

mixture could be due to the higher water/solids ratio, where the excess water available may 

have allowed for more organization of the network forming species to occur which led to 

crystalline phase formation rather than amorphous geopolymer formation. 

Figure 4.27. Examples of the widespread cubic structures found in the 
50HA50MK mixture at 3 days. 

In the other mixtures, most of the crystalline phases were found within air voids or holes 

left behind from unreacted particles as shown in Figure 4.28. It is unknown if these phases 

exist within the matrix or if they just form on the surface in air or in voids.
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Figure 4.28. Morphologically crystalline phases found growing on the surface of 
voids in 100HA (left) and 50HA50FA (right) mixtures. 

Figure 4.29 shows examples of the variety of crystalline structures found in each of the 

mortars. It is clear that different types of phases have formed in each mortar based on the 

varying crystal form and shape. 
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100HA  

  
75HA25MK 50HA50MK 

  
75HA25FA 50HA50FA 

Figure 4.29. Secondary electron images of crystalline phases found in each of the 
mortars in Phase II. 

4.2.3.2 Polished cross section analysis 

Polished cross sections of each mortar were analyzed using backscatter electron imaging 

on carbon-coated sections at 179 days. This analysis further elucidated the differences in 
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the microstructure of the mortars, as shown in Figure 4.30, where a micrograph of the bulk 

matrix in each mortar is shown for comparison. 

 

 

100HA  

  
75HA25MK 50HA50MK 

  
75HA25FA 50HA50FA 

Figure 4.30. Backscatter electron imaging of Phase II mortars at 179 days.  
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The 100HA mortar showed a continuous and uniform geopolymer microstructure 

embedded with small, unreacted glass particles.  Most of the glass particles had a very thin 

reaction rim around them, as shown in Figure 4.31; this reaction rim was not found in the 

other mixtures. However, it was found in the mixtures in Phase I made with the fine glass, 

HA600. 

  
Figure 4.31. Backscatter electron images of the reaction rim around glass particles 
in the 100HA matrix. 

The 100HA microstructure was the most continuous of all of the mortars, interrupted only 

by embedded glass particles in some areas. Other areas showed the presence of a higher 

intensity phase interspersed with the darker bulk matrix. The differences between these 

two regions of microstructure are shown in Figure 4.32. 
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Figure 4.32. Micrographs of 100HA showing areas of uniform homogeneity 
interrupted only by embedded glass particles (left) and areas exhibiting multiple 
phases (right) as shown by the varying brightness levels under backscatter electron 
imaging. 

The 75HA25MK mixture yielded the highest compressive strength, yet appeared less 

continuous in both secondary and backscatter analysis than the 100HA and 75HA25FA 

mixtures. Embedded glass particles did not have the reaction rim around them, 

characteristic of a fine glass mortar, nor were any unreacted metakaolin particles identified 

within the matrix. Again, several phases seemed to be visible within the matrix, as shown 

in Figure 4.33. Once again, the fact a less continuous microstructure resulted in a higher 

compressive strength, speaks to the importance of composition. The 75HA25MK mixture 

did possess the bulk Na/Al molar ratio closest to unity, which many consider to be the 

optimal value for Na/Al. 
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Figure 4.33. Micrographs of 75HA25MK showing areas exhibiting multiple phases 
as shown by the varying brightness levels under backscatter electron imaging. 
Unreacted glass particles did not have a reaction rim around them as in the HA100 
mixture. 

The 75HA25FA mixture also appeared to consist of multiple phases, as shown in Figure 

4.34. Despite the fairly continuous microstructure, the compressive strength of this mixture 

was lower than the 100HA and 75HA25MK mixtures. Fly ash and unreacted glass particles 

appeared well embedded in the mixture with a very narrow rim of reaction product visible 

around the glass particle, remnant of the coarse glass mixtures of Phase I. 

  
Figure 4.34. Micrographs of 75HA25FA showing areas exhibiting multiple phases as 
shown by the varying brightness levels under backscatter electron imaging. 

Both the 50HA50FA and 50HA50MK mixtures indicated a less dense microstructure, with 

the 50HA50MK mixture being very disjointed with a great quantity of unreacted glass and 
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metakaolin particles as illustrated by the scattered black areas where no product was 

present, only epoxy. No real geopolymer was visible though there must have been some 

reaction occurring to hold the mortar together. Unreacted metakaolin and glass particles 

were identified using EDS microanalysis.  

The 50HA50FA microstructure showed many more unreacted fly ash particles than the 

75HA25FA mixture, which was expected because it contained more fly ash. Similar to the 

100HA and 75HA25Mk mixtures, the 75HA25FA mixture also had areas where multiple 

phases or densities appeared to be present, as shown in Figure 4.35.  

Figure 4.35. Micrographs of 50HA50FA showing areas exhibiting multiple phases as 
shown by the varying brightness levels under backscatter electron imaging. 

Figure 4.36 shows backscatter electron images of unreacted or partially reacted fly ash 

particles found in the 50G50FA mixture.  Fly ash often contains crystalline or unreactive 

particles, many of them rich in iron; those particles rich in iron often show up as very bright 

spots on a backscatter electron image. 
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Figure 4.36.  Unreacted and partially reacted fly ash particles in mortars 
containing fly ash. 

Unlike in the fracture surface analysis, zeolites were very difficult to identify in polished 

cross section analysis. This could be because in most cases, they form on the interior of 

voids or they were lost during the polishing required to prepare the sample.  

4.2.4 Phase composition 

As shown in Figure 4.37, the microstructure of several of the mortars varied considerably 

from local area to area. In general, the brighter areas had a higher calcium content than the 

darker areas. This is consistent since calcium is a heavier element than silicon and therefore 

shows up brighter under backscatter electron imaging due to its higher intensity. 
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Figure 4.37. 100HA showing multiple phases present. The micrograph on the right 
is a blow up of a center section of the micrograph on the left. 

Using backscatter electron imaging to identify varying elemental intensities and phases 

present within the microstructure, the elemental composition of the geopolymer reaction 

products were identified by EDS microanalysis. To understand the general relationship 

between phase composition and compressive strength, microanalysis on the most prevalent 

bulk phase present was performed.  

Table 4.10 shows the mixtures listed in order of maximum average compressive strength 

at 179 days and the resulting average molar ratios in the geopolymer product measured 

through EDS microanalysis. A minimum of six spots were analyzed on each mixture; 

statistics on the EDS analysis of each mixture can be found in Appendix B. There was 

inadequate geopolymer product visible in the 50HA50MK mixture to analyze. 
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Table 4.10. Average measured bulk molar ratios ordered in terms of maximum 
average compressive strength at 179 days. 

Mixture ID Rank Compressive 
strength (psi) Si/Al Na/Al Na/Si Ca/Si 

75HA25MK 1st 6367 3.87 0.83 0.24 0.44 

100HA 2nd 5163 7.75 1.03 0.23 0.51 

75HA25FA 3rd 3688 7.11 1.54 0.32 0.61 

50HA50HA 4th 2234 5.32 1.91 0.64 0.66 

50HA50MK 5th 1473 - - - - 

The average Si/Al, Na/Al, Na/Si and Ca/Si molar ratios of each mixture are shown graphed 

against compressive strength at 179 days in Figure 4.38. Several trends can be seen 

between compressive strength and molar ratios as measured by EDS.  

 
Figure 4.38. Molar ratios of Phase II as a function of compressive strength.  

The Si/Al and Na/Al molar ratios are graphed in Figure 4.39 for clarity. There appears to 

be a trend in Si/Al versus compressive strength up to a certain point. The Na/Al ratio is 

related to the compressive strength with the lower Na/Al ratio having the higher the 
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compressive strength. However, once the Na/Al ratio dropped below 1, the trend of Si/Al 

and compressive strength ended. Rowles et al. has reported that compressive strength 

depends both on the Si/Al and Na/Al ratio (Rowles and O'Connor 2003) and it has been 

well documented within the literature, the optimum Na/Al ratio for geopolymers is 1 and 

the Si/Al ratio is more arbitrary. It is also well known there are innumerable variables that 

can affect compressive strength in a mortar, including both chemical and physical. It is 

believed this anomaly within the Si/Al trend is simply due to the interaction between the 

various other variables at play. 

 
Figure 4.39. Si/Al and Na/Al ratios of the mixtures in Phase II versus compressive 
strength. 

The Na/Si and Ca/Si molar ratios are graphed alone in Figure 4.40 for better viewing. The 

Na/Si and Ca/Si ratios both decreased as compressive strength increased. 
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Figure 4.40. Na/Si and Ca/Si ratios of the mixtures in Phase II versus compressive 
strength. 

The calculated bulk and actual measured molar ratios for all of the mixtures were quite 

similar as shown in the radar graphs in Figure 4.41 and Figure 4.42. 
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Figure 4.41. Bulk vs actual molar ratios for the 100HA 

mixture (top) and 75HA25MK mixture (bottom). 
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Figure 4.42. Bulk vs actual molar ratios for the 75HA25FA 

mixture (top) and 50HA50FA mixture (bottom). 

4.2.5 Degree of reaction, α 

Geopolymer mixtures are typically designed based on the stoichiometric amounts of Si, 

Al, Na, etc. in the source materials; whether or not the desired Si/Al ratio, etc. is realized 

or not depends on the degree of reaction (α) as well as the content of nonreactive phases 
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(i.e. mullite, quartz, etc. in fly ash). The bulk stoichiometry reported is not necessarily the 

same as what is measured in the bulk geopolymer formed; depending on the degree of 

reaction, whether or not incongruent dissolution occurred and what phases formed, these 

stoichiometries could differ. This was found to be the case in Phase II, where incomplete 

dissolution occurred and since most of the mixtures contained two source materials; it was 

impossible to determine the actual dissolution of each material. 

The results of the degree of reaction experiments through 7 days on pastes from Phase II 

are shown in Figure 4.43. Each data point is the average of two tests. The degree of reaction 

stayed fairly constant after 1 day with all mixtures showing similar levels of reaction with 

the exception of the 50HA50MK mixture, which was lower. This lower α is believed to be 

due to the higher water content of the mixture, where more water diluted the hydroxyl ions 

in solution leading to less dissolution. The literature has reported that typically a great deal 

of the reaction occurs within the first few hours of mixing (Granizo et al. 2002; Palomo et 

al. 2004; Fernández-Jiménez et al. 2005) and that seems to be the case here as well. 
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Figure 4.43. Degree of reaction results for the first seven days in Phase II. Each data 
point is the average of two tests. Error bars were calculated from the standard error, 
SD/√n, where SD is standard deviation and n is the sample size. 

Figure 4.44 shows α through 179 days. It is clear there was not any major increase over 

that time and none of the mixtures reached 100%, which was reinforced by the presence of 

unreacted glass particles in the matrix observed during electron microscopy.  However, 

there was strength gain past 1 day, which indicates there must have been microstructural 

change taking place, perhaps reorganization or further syneresis. 

 
Figure 4.44 Degree of reaction versus age through 179 days. Each data point is the 
average of two tests. Error bars were calculated from the standard error, SD/√n, 
where SD is standard deviation and n is the sample size. 

4.2.6 Powder X-ray diffraction 

Powder X-ray diffraction data was collected for all of the mixtures in Phase II at 1, 3 and 

7 days after mixing. Quantitative XRD was not performed in this research; the goal of 

collecting XRD spectra was to observe if there were any general trends between 

microstructure or compressive strength and crystallinity. The pattern showing the presence 
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of any progression in crystallinity from 1 to 7 days, with 1 day in blue, 3 days in red and 7 

days in light blue, are shown in Figure 4.45, Figure 4.46, Figure 4.47, Figure 4.49 and 

Figure 4.50. 

 
Figure 4.45. X-ray diffraction patterns for the 100HA mixture at 1 (blue), 3 (red) and 7 
(light blue) days. 

It was expected to see the 100HA mixtures having the least crystallinity of all of the 

mixtures over the first week of curing, since the glass is 100% amorphous to begin with.  
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Figure 4.46. X-ray diffraction patterns for the 75HA25MK mixture at 1 (blue), 3 (red) 
and 7 (light blue) days. 

When metakaolin replaced 25% of the glass, the resulting XRD patterns were very similar. 

Several very small peaks were evident in the pattern that were not present in the 100HA 

pattern. The lack of crystalline peaks in XRD and lack of unreacted particles visible in the 

polished cross sections indicate the metakaolin was most likely dissolved.  
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Figure 4.47. X-ray diffraction patterns for the 50HA50MK mixture at 1 (blue), 3 (red) 
and 7 (light blue) days. 

When 50% of the glass was replaced with metakaolin, the crystallinity increased 

substantially as shown in Figure 4.47. There was no peaked halo as in the 100HA and 

75HA25MK mixtures but rather a subtle hump. Some of the crystalline peaks coincide 

with peaks present in the raw metakaolin pattern indicating unreacted metakaolin in the 

geopolymer mortar, and additional peaks new to this material indicate the presence of new 

crystalline phases. This is further evidenced by the widespread presence of 

morphologically crystalline phases visible on the fracture surfaces of the 50HA50MK 

mixture. Figure 4.48 shows the peak identification for the sample at 7 days, calcium 

aluminum silicate hydrate was identified. 

 

 

284 



 
Figure 4.48. Phase identification for 50HA50MK mixture at 7 days. Calcium 
aluminum silicate hydrate. 

 

 
Figure 4.49. X-ray diffraction patterns for the 75HA25FA mixture at 1 (blue), 3 (red) 
and 7 (light blue) days. 
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The 75HA25FA mixture exhibited a similar pattern as the 100HA and 75HA25MK 

mixtures, with a peaked halo centered at around 30°. Crystalline peaks were also present. 

Figure 4.50. X-ray diffraction patterns for the 50HA50FA mixture at 1 (blue), 3 (red) 
and 7 (light blue) days. 

The 50HA50FA mixture exhibited more crystallinity than the 75HA25FA mixture as 

shown in Figure 4.50.  The peaked halo was still present at around 30° but taller crystalline 

peaks were visible with some corresponding to crystalline peaks in the fly ash and others 

representing new phases. 

Both the 50HA50MK and 50HA50FA mixtures had the lowest compressive strength and 

the most crystalline phases present under XRD measurements. This relationship between 

crystallinity and compressive strength has been noted within the literature with a decrease 
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in strength usually associated with an increase in crystalline phases, typically identified as 

zeolites (Fernández-Jiménez et al. 2007). 

4.2.7 Adiabatic calorimetry 

Three of the mixtures in Phase II, 100HA, 75HA25MK and 50HA50MK, were measured 

on the AdiaCal at room temperature as shown in Figure 4.51 to learn if differences in 

reaction kinetics existed. In both cases where metakaolin was included, the temperature 

spiked higher than when just glass was included.  The mixture with the highest compressive 

strength, shown in dark blue, also had the most delayed second temperature peak, which is 

usually considered to represent polycondensation (Zhang et al. 2012). The mixture not 

containing any metakaolin had a very steady temperature but still resulted in substantial 

strength, indicating that calorimetry results do not necessarily indicate compressive 

strength but rather just indicate that different reactions or reaction rates are occurring 

between mixtures.
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Figure 4.51. Adiabatic calorimetry curves for mixtures 100HA, 75HA25MK and 
50HA50MK. Values shown represent the value measured every 30 seconds. 

The water/solids ratio also affects the magnitude of the peaks measured on adiabatic 

calorimetry; this is discussed further in Phase III results. 

4.2.8 Discussion of Phase II 

As stated previously, the goal of Phase II was to discern if stoichiometric molar ratios can 

be decreased to more widely accepted geopolymer levels through the addition of 

metakaolin or fly ash as a partial glass replacement and if by doing so mechanical 

performance would improve. Phase II also investigated the behavior of the mortars at early 

ages of 1, 3 and 7 days. Additionally, degree of reaction experiments were conducted to 

see if they are helpful in explaining the changes in compressive strength, microstructure 

and composition of phases. Adiabatic calorimetry was also performed on selected mixtures 

in an exploratory context. 
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Since a goal in Phase II was lowering the stoichiometric ratios to realistic levels through 

the addition of alumina, the results will be presented for each type of alumina replacement 

followed by general trends across all of the mixtures. 

4.2.8.1 100HA 

The purpose of the 100HA mixture was to act as a reference to compare with the other 

mixtures where aluminum was supplemented with metakaolin or fly ash. This mixture was 

essentially explored in Phase I, under the name F.10.80. However, an increase in the 

water/solids ratio and a different type of aggregate apparently had a moderate impact on 

the mortar as the strength was higher earlier and no decrease in strength over time was 

measured, instead compressive strength continued to increase all the way to 179 days. This 

indicates the strength loss in the F.10.80 mixture in Phase I may have been an anomaly or 

experimental error. 

Microstructurally, the 100HA mixture appeared similar to the mixtures using fine glass in 

Phase I, with the same reaction rim visible in the polished section images. It is interesting 

to note the reaction rim was not present in any of the other mixtures in Phase II. Also of 

note is the subtle difference between the stoichiometric ratios of the F.10.80 mixture and 

the 100HA mixture; the Si/Al ratio in the 100HA mixture was a bit lower than the F.10.80 

mixture and the Na/Al ratio quite a bit higher in the F.10.80 mixture. The 100HA mixture 

reached a Na/Al ratio of near unity. This is interesting data since the two ratios are not 

moving together, this implies that more than just the Al content changed between the 

mixtures, or the Al did not change and the Si and/or Na did.  
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The degree of reaction of 100HA indicated that a great deal of the reaction occurred in the 

first day (i.e., > 90%) with no clear increase in the degree of reaction at later ages. Strength 

continued to increase at later ages, which indicates reorganization or syneresis occurring. 

Adiabatic calorimetry did not indicate any significant increase in temperature at, which 

was unexpected as typically there is at least a temperature increase during dissolution. This 

may not have been captured on the calorimeter due to experimental conditions. Also, there 

was not a temperature spike later on representing polycondensation. High compressive 

strength was still reached despite the lack of calorimetric changes, either indicating slow 

reactions or non-exothermic ones. Iler stated there is no heat generated when a sol turns to 

a gel and that could be the case here (Iler 1979). 

4.2.8.2 75HA25MK 

The fact the 75HA25MK mixture reached the highest strength of all the mixtures in Phase 

II, performing better than the 100HA mixture is attributed to the addition of Al to the 

system through the metakaolin. Significant compressive strength was reached at just 1 day 

and continued to increase over time. The microstructure of the 75HA25MK mixture was 

not the most uniform or continuous despite having the highest strength. There were no 

unreacted metakaolin particles visible in the matrix.  However glass particles were present, 

minus the reaction rim found in the 100HA mixture. 

Stoichiometrically, this was the only mixture to achieve a Na/Al ratio of below unity, 

indicating there was more than adequate Al available in the system to bind the alkalis. The 

Si/Al ratio was substantially lower than the other mixtures, which did not go along with 
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the noted trend between Si/Al and compressive strength. This is most likely due to the 

interaction of other variables, specifically the relationship between Si/Al and Na/Al 

(Rowles and O'Connor 2003). However, the Si/Al and Na/Al ratios did agree with the range 

suggested by other geopolymer researchers of 2-5 for Si/Al ratio and Na/Al of 1. 

The 75HA25MK mortar had the highest degree of reaction, which is most likely attributed 

to the metakaolin particles, which are known to dissolve easily in basic solutions. The 

similarities between the XRD patterns of the 100HA and 75HA25MK mixtures confirmed 

the idea of the metakaolin dissolving completely. The degree of reaction of the 

75HA25MK mixture was in line with the other four mixtures that performed well, not 

resulting in any increase over time past 1 day. This indicates strength is gained through 

reorganization or syneresis. 

Adiabatic calorimetry indicated the mixture had a spike in the temperature, which occurred 

nearly three days after mixing. This likely is dissolution continuing to occur during that 

time and the spike represented a supersaturated solution beginning to condense together. 

However, the degree of reaction did not change much from 1 to 3 days. 

4.2.8.3 50HA50MK 

The 50HA50MK mixture performed surprisingly poor, showing very low compressive 

strength even through 179 days. At 179 days the compressive strength began to show an 

increase but in the world of concrete six months is a little long to wait for adequate 

compressive strength.  
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The microstructure of the mixture was primarily unreacted glass and metakaolin particles, 

which could clearly be seen in the polished cross section. From the fracture surface analysis 

it appeared that reaction product had formed. The reaction product appeared very 

aggregated with perhaps only thin layers forming around the mostly unreacted particles, 

serving to hold them together into a mass but providing no real strength. 

The low Na/Al ratio of the bulk materials implies that Al would exist in the pore solution 

of the mortar; however this does not seem likely since such a high quantity of unreacted 

materials were present in the microstructure. The poor performance could be attributed to 

the higher water content of the mixture, where the higher water content resulted in the 

dilution of the activator solution, negatively affecting the degree of reaction. This is 

supported by the lower degree of reaction as determined through experimentation. 

However, this still does not account for the 70% of the glass and/or metakaolin that was 

reported to have reacted.  

It is postulated that in a liquid-rich environment, crystalline zeolites formed instead of 

geopolymer product. This would explain the large quantity of zeolites seen in the fracture 

surface images, the lack of geopolymer product seen in the polished cross section analysis 

and the very crystalline XRD spectra collected. Zeolites were not visible in the polished 

section analysis, whether it was because they were too small and too easily damaged during 

sample preparation or because they did not exist within the matrix but rather just on the 

surfaces and in air voids. If so, the higher water content most likely resulted in a higher 

porosity, offering more surface area for zeolites to grow. 
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The measured adiabatic calorimetry curve appeared very similar to the 75HA25MK 

mixture except the second peak occurred much sooner, at around 24 hours after mixing as 

opposed to 72 hours. This could indicate a restrictive reaction layer formed around the 

glass early on, which prevented further reaction. 

4.2.8.4 75HA25FA 

The microstructure of the 75HA25FA mixture appeared quite continuous but had lower 

strength, which speaks again to the importance of composition and the relationship between 

composition and microstructure. Unreacted glass and fly ash particles existed but appeared 

well embedded within the matrix. The geopolymer had a higher Na/Al ratio and higher 

Si/Al ratio with the Si/Al ratio being similar to that recorded for the 100HA mixture.  

The degree of reaction appeared to be similar to the other mixtures so it was not for a lack 

of dissolution occurring. It is possible that different ratios of materials dissolved, where as 

in the 75HA25MK mixture, perhaps all of the metakaolin dissolved, but in the 75HA25FA 

mixture not all of the fly ash dissolved and instead glass did. This would lead to a higher 

Si/Al ratio as opposed to the metakaolin mixture.  Additionally, XRD spectra indicated a 

mainly amorphous mortar similar to the 100HA and 75HA25MK mixtures that performed 

well in terms of mechanical strength. 

4.2.8.5 50HA50FA 

The 50HA50FA mortar achieved very low compressive strengths despite the continuity of 

the matrix. There were a great deal of unreacted fly ash particles present in the 
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microstructure, which would lead one to believe the degree of reaction was lower. 

However, measurement of the degree of reaction indicated this mixture was similar to other 

mixtures. The microstructure did appear less continuous than the 75HA25FA mixture.  

Stoichiometrically, the Si/Al ratio was higher, Na/Al was nearly 2 and the Na/Si ratio was 

higher than the other mixtures indicating that more Na was available in the system. The 

Ca/Si ratio was also elevated.  

4.2.8.6 Main points 

• There was no strength reversal for any of the mortars as there was in Phase I, even

when curing conditions and activator concentrations were the same.

• The 100HA mixture performed very well. However, the 75HA25MK mixture had

the highest compressive strength, lowest Si/Al and Na/Al ratios, implying the most

Al present in the mixture. An improvement over the 100HA mixture indicates the

metakaolin had a positive effect on the mortar by adding more aluminum into the

system.

• The water/solids ratio plays a role in degree of reaction as evidenced in the

50HA50MK mixture.

• The physical nature of the microstructure alone is not always indicative of the

mechanical performance.

• Apparently there exists a limit at which adding more metakaolin will weaken the

matrix and result in very little geopolymer product forming. This could be due to
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the increased water demand, which also creates more porosity in the matrix or 

increase zeolite formation. 

• The 75HA25FA mixture had low strength despite a continuous microstructure once 

again alluding to the fact there is not necessarily a clear-cut relationship between 

physical microstructure and physical performance. 

• Overall, there was a trend between compressive strength Na/Al, Si/NA and Ca/Si 

between all four mixtures. However, Si/Al exhibited one anomaly. 

• Metakaolin causes a spike in temperature during curing as shown by adiabatic 

calorimetry curves. 

• The molar ratios of the mixtures were very similar to the bulk molar ratios. 

4.3 Phase III 

The third phase of testing applied the lessons learned in Phases I and II to a geopolymer 

system based on extremely low-Al glass. Metakaolin was used as the alumina source 

because it performed better in Phase II than did the fly ash. It was of interest to see if there 

exist limits on how much metakaolin can be used in place of glass or if the 50HA50MK 

mixture in Phase II was an anomaly. Six mortars were made, three using the low-Al glass, 

two using the high-Al glass, and one made simply of metakaolin for reference. The 

replacement rates of the glass were based on stoichiometric ratios, namely the Na/Al ratio.  

As in Phases I and II, compressive strength, microstructure and phase composition were 

the main properties considered. Compressive strength was measured at 1, 3, 7, 14 and 28 

days. Samples were prepared and analyzed using secondary electron imaging at 28 days to 
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get a general idea of the microstructure of the various geopolymers. At 14 days, a polished 

section of each mortar was prepared for backscatter electron imaging and EDS 

microanalysis was used to obtain quantitative compositional information on the phases 

present. In addition, Phase III also considered degree of reaction measurements at 14 and 

28 days as well as both adiabatic and isothermal calorimetry for all six mixtures. 

4.3.1 Mixture design 

Both the HA and LA glasses were used in this phase. To keep particle size from being a 

variable, a slightly coarser version of the HA600 from Phase I was used, called HA500 and 

LA500. The vender reported the median size to be 6-7 μm. Additionally, Blaine fineness 

as measured at the University of Toronto showed the fineness of the two glasses to be very 

similar, with LA500 having a Blaine fineness of 4470 cm2/g and HA500 having a Blaine 

fineness of 4390 cm2/g.  

The mixtures were designed based on stoichiometric Na/Al ratios. A baseline 100LA 

mixture was considered as well as two more mixtures with metakaolin replacements 

adequate to decrease the Na/Al ratio from nearly 85 down to 1 and 2. A baseline mixture 

of 100HA was considered as well as the 75HA25MK mixture from Phase II (Na/Al = 1). 

A sixth baseline mixture of 100% metakaolin was also included.  

The six mixtures designed are shown in. Table 4.12. Mixtures were named according to 

the amounts of each source material used, where 75HA25MK means 75% HA glass, 25% 

metakaolin by mass. 
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Table 4.11. Mixture ID for mortars in Phase III, with percentages given by 
mass. 

Mixture  ID HA500 glass 
(HA) 

LA500 glass 
(LA) 

Metakaolin 
(MK) 

100LA 0% 100% 0% 

62LA38MK 0% 62% 38% 

37LA63MK 0% 37% 63% 

100HA 100% 0% 0% 

75HA25MK 75% 0% 25% 

100MK 0% 0% 100% 

The six mixtures in Phase III were cured at 60°C for 24 hours.  This curing temperature 

was chosen for several reasons. Firstly, the long-term results from Phase I indicated that 

curing at 40°C for certain mixtures brought about a steady increase in compressive strength 

over time while curing at 80°C resulted in higher early strength. So, a temperature of 60°C 

was chosen to see if both short term and longer-term strength gain could be obtained. 

Another reason for this was the isothermal calorimeter available for testing at the 

University of Toronto had a limit of 60°C and out of a desire to coordinate the calorimetry 

measurements with actual curing conditions, the curing temperature was chosen to be 

60°C.  

Because of this lower curing temperature, early compressive results showed very low 

strengths and high quantities of unreacted source materials in the microstructure as 

compared to the 50HA50MK mixture in Phase II. To see if the LA glasses could indeed 

gain early strength given a higher curing temperature, the three LA mixtures were repeated 

and cured at 80°C this time. 
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Compressive strength through 14 days was measured as well as degree of reaction 

measurements at 14 days. In addition, microstructural and compositional analysis was also 

carried out at 14 days on fracture surface and polished sections for comparison. The 

information and discussion of the comparison between these mixtures and those 

corresponding mixtures cured at 60°C is in Section 4.3.7. 

Additionally, since water content has been shown to have an impact on the performance 

and properties of glass geopolymers, two additional ternary mixtures were made using 50% 

of each type of glass, 25% metakaolin and 25% fly ash by mass. The metakaolin increased 

the water demand, while the fly ash decreased it, resulting in a very workable mixture. 

Compressive strength through 14 days and degree of reaction measurements at 14 days are 

available as well as microstructural and compositional data analysis via secondary and 

backscatter electron imaging and adiabatic calorimetry curves. The information on the 

ternary mixtures is in section 4.3.8. 

4.3.1.1 Stoichiometry 

Mortars were prepared using a baseline 3:1:0.5 ratio of sand to glass to activator solution 

by mass, respectively. Graded Ottawa sand was used. Mixture designs were based around 

manipulating the Na/Al ratio. Three of the mixtures contained only one source material so 

the molar ratios of those mixtures could not be changed. The relevant molar ratios of the 

bulk geopolymer are shown in Table 4.12. For all six mixtures, all of the molar ratios 

changed.  
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Table 4.12. Molar ratios of unreacted source materials and 
activator solution of Phase III mixtures. 

Mixture ID Si/Al Na/Al Na/Si Ca/Si 

100LA 244.50 85.17 0.35 0.15 

62LA38MK 6.52 1.98 0.30 0.10 

37LA63MK 3.70 0.99 0.27 0.07 

100HA 8.39 1.61 0.19 0.39 

75HA25MK 4.99 0.97 0.19 0.30 

100MK 2.08 0.43 0.20 0.00 

Due to the extremely high ratios in the 100LA mixture, Figure 4.52 shows the Si/Al and 

Na/Al molar ratios graphed without the 100LA mixture. It is interesting to note that both 

the 75HA25MK mixture and 37LA63MK mixture have a bulk Na/Al ratio of 1.0 and 

varying Si/Al ratios. The Na/Al ratio of the 100MK ratio was well below 1.0. 

 
Figure 4.52. Si/Al vs Na/Al of the mixtures in Phase III, not including 100LA 
mixture, so other molar ratios could be better viewed. A dashed line at Na/Al 
=1 is shown since that is widely accepted as an optimum ratio for geopolymers. 
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4.3.1.2 Fresh properties 

All of the mixtures in Phase III were made with a water/solids ratio of 0.55 with the 

exception of the 100MK mixture, which was higher at 0.733; this was necessary to reach a 

consistency that could be adequately consolidated into the cylinder molds. The 0.55 was 

chosen from Phase II based on the desire to keep the water/solids ratio constant. The flow 

of each mixture changed fairly drastically due to the constant water/solids ratio but it was 

found the flow was not necessarily representative of the workability of the mixture. The 

addition of large quantities of metakaolin increased the water demand. However, the 

mixtures were all still properly consolidated. 

Table 4.13 lists the water/solids ratio and measured fresh properties for the mixtures in 

Phase III. It was interesting to note the mixtures all exhibited a crackling sound during 

mixing and after for several minutes. Additionally, there appears to be a trend with regard 

to temperature immediately after mixing and the amount of metakaolin in each mixture, 

where the temperature increases with metakaolin content. 

Table 4.13. Fresh properties of Phase III mixtures cured at 60°C. All of the values 
reported are the average of three measurements. 

Mixture ID 
Water/solids 

ratio 

Percent Flow 

(%) 

Temperature 

(°F) 

Unit weight 

(g/mL) 

100LA 0.550 93% 78.67 2.04 

62LA38MK 0.550 38% 81.50 2.06 

37LA63MK 0.550 0% 85.83 1.94 

100HA 0.550 107% 78.67 1.99 

75HA25MK 0.550 63% 81.00 2.09 

100MK 0.733 30% 85.50 2.06 
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The 100LA mixture bubbled upon consolidation and there was initial concern the top of 

the cylinders would be porous. However, the cylinders were adequate after curing. In fact, 

the 100LA mixture secreted a very viscous liquid through 14 days of curing. The exudate 

was sticky and extremely slippery, which is a sign of alkalis present. Figure 4.53 shows the 

shiny exudate at 14 days on a cylinder of the 100LA mortar as compared to the other 

mixtures. 

 
Figure 4.53. A depiction of how wet the low-Al glass was even after 14 days of 
curing as compared to the other mixtures. 

The mixtures containing metakaolin appeared to have more entrapped air than the mixtures 

without, which is odd given all of the mixtures contained the same amount of water except 

100MK. The higher metakaolin content mixtures were more difficult to consolidate and 

great care had to be taken to avoid large areas of entrapped air. The consistency of these 

mixtures was similar to wet sand. 
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4.3.2 Compressive strength 

Compressive strength of all six mixtures through 28 days is shown in Figure 4.54. It is 

clear the three mixtures containing varying amounts of the LA glass and 100% metakaolin 

did not obtain very high strengths, even at 28 days. As was the case in Phase II, the mixtures 

made with HA glass and a moderate amount of metakaolin performed quite well. At 60°C 

curing, the 100HA mixture performed better than the 75HA25MK mixture, which was the 

opposite as in Phase II. Additionally, the 1 day compressive strength of the 100HA and 

75HA25MK mixtures were much higher in Phase II where curing was carried out at 80°C; 

though it should be noted that Phase II was made using a finer glass and slightly lower 

water/solids ratio as well. 

 
Figure 4.54. Compressive strength through 28 days for mixtures in Phase III cured 
at 60°C. Each data point is the average of three cylinders. Error bars were 
calculated from the standard error, SD/√n, where SD is standard deviation and n is 
the sample size. 
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As stated previously, the 100LA mixture had a very wet appearance and secreted a sticky, 

viscous liquid. This was wiped off of the cylinders prior to compressive strength testing. 

Also of note is the difference between the interior and exterior of the 100LA cylinder upon 

breaking. This is shown in Figure 4.55 following a compression test where it can clearly 

be seen the exterior of the cylinder is a lighter white color and the interior is a darker gray 

color and appeared slightly damp and sticky. One reason for this prolonged stickiness could 

be attributed to the lack of Al in the system. Aluminum in the geopolymer systems has 

been credited with allowing hardening to occur and also helps speed up set times. 

Figure 4.55. 100LA mixture after compression testing showing color differences 
between interior and exterior of cylinder at 14 days. The interior still appeared 
and felt damp and slimy despite being very dense. 
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4.3.3 Microstructural analysis 

Electron microscopy on both fracture surfaces and polished cross sections helped to show 

the differences between the microstructures of the six mortars and revealed clues related to 

mechanical performance and reaction mechanisms. 

4.3.3.1 Fracture surface analysis 

Microstructural analysis by way of secondary electron imaging on carbon coated fracture 

surfaces was performed. Figure 4.56 shows the bulk fracture surface of the six mixtures at 

28 days for the purpose of comparison. 
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100LA 100HA 

62LA38MK 75HA25MK 

37LA63MK 100MK 
Figure 4.56. Secondary electron imaging of Phase III fracture surfaces at 28 days. 
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Based on the fracture surfaces it appears the 100HA and 62LA38MK mixtures resulted in 

the densest most continuous microstructures, but fracture surfaces can be deceiving. Much 

more information is revealed in the next section covering polished cross section analysis. 

4.3.3.2 Polished cross section analysis 

Polished cross sections were analyzed using backscatter electron imaging on carbon-coated 

surfaces at 14 days. This analysis further elucidated the differences in the microstructure 

of the mortars, as shown in Figure 4.57 where a bulk matrix image of each mixture is shown 

for comparison.
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100LA 100HA 

62LA38MK 75HA25MK 

37LA63MK 100MK 
Figure 4.57. Polished cross sections of Phase III mortars at 14 days. 

Beginning with the LA500 mixture, the microstructure was unique and exhibited signs of 

severe shrinkage, as shown at a decreased magnification in Figure 4.58. The paste 
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separated from the aggregate particles in many places and cracking occurred throughout. 

The cracks within the matrix did not seem to occur around the interface of the unreacted 

glass particles but rather through them, indicating a very strong bond between the glass 

particles and the matrix; this can be seen in the microstructure. 

Figure 4.58. Micrograph illustrating the extensive cracking in the 100LA 
mixture at 14 days. 

The 100LA matrix itself was extremely continuous, the most continuous of all of the 

mixtures analyzed. This smooth, dense continuous microstructure is indicative of a high Si 

content. Within the matrix, two main phases were visible, that of the continuous 

geopolymer that formed and what appeared to be unreacted glass particles as verified by 

EDS microanalysis. Within the continuous matrix, the very faint outlines of angular 

particles were visible indicating where reacted glass particles once were. 
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In addition, several randomly distributed bright particles, like the one shown in Figure 4.59 

were found. EDS microanalysis found these particles were made of mainly Si and alkalis 

(Na+ and K+). This could be a crystalline form of sodium silicate and most likely formed 

because there is very little aluminum to tie up the alkalis.  

 
Figure 4.59. Bright crystalline phase found embedded in 100LA 
mixture consisting of mainly Si, and a small amount of Al and 
alkalis. 

The 62LA38MK mixture was remnant of the 50HA50MK mixture in Phase II, where 

significant void space (epoxy-filled) existed amongst unreacted metakaolin and glass 

particles. Since some strength was present there was obviously some geopolymer that 

formed to hold the mortar together, but little could be detected and when it was, it was too 

porous to analyze. Another possibility could be the geopolymer product existed as zeolites 

and a thin reaction layer around the unreacted particles holding them together but not 

giving any strength. A similar microstructure was found in the 37LA63MK mixture, except 
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the metakaolin particles seemed more frequent and also smaller indicating that perhaps the 

smaller metakaolin particles in the 62LA38MK mixture reacted completely. Neither of 

these mixtures developed appreciable strength. 

The 100MK mixture, which gained very little strength (practically crumbled when 

handled) also had the highest water/solids ratio and appeared like a fuzzy sweater under 

backscatter electron imaging. The metakaolin particles ranged from very small to large 

flocs as shown in Figure 4.60. The presence of these large flocs is likely what causes the 

low compressive strength. 

 
Figure 4.60. Micrograph illustrating the large flocs of metakaolin particles present 
within the 100MK matrix at 14 days. 
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The microstructure of the mixtures in Phase III is quite different from those found in Phase 

II; even for the two mixtures using HA glass that were essentially the same as in Phase II, 

100HA and 75HA25MK. The differences between Phase II and Phase III HA mixtures 

include the water/solids ratio, curing temperature and mean glass particle size. The 

microstructure of the 100HA mixture was interesting and remnant of the mixtures in Phase 

I made with the coarse glass. Layers of reaction product were tightly intermixed in and 

around the unreacted glass particles, with voids existing where reaction layers failed to 

reach each other. This does not seem like it would be strong, but it is and is the strongest 

mixture of Phase III. This is much different than results from Phase II when the dotted 

reaction rim was visible in the 100HA mixture.  

The 75HA25MK mixture appeared much more continuous than the 100HA mixture and 

did not show the layer of reaction products around the glass particles but resulted in a lower 

compressive strength. No unreacted metakaolin particles were visible. Glass particles were 

well embedded into the matrix without the presence of the reaction rim present in 100HA 

glass mixtures or the layer of reaction product in Phase I.  

4.3.4 Phase composition 

Using backscatter electron imaging to identify varying elemental intensities and phases 

present within the microstructure, the elemental composition of the geopolymer reaction 

products were identified by microanalysis. A minimum of six analyses were performed on 

each mixture and statistics on the EDS analysis of each mixture can be found in Appendix 

C.  
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Table 4.14 shows the mixtures listed in order of maximum 201-day compressive strength 

and the resulting average molar ratios in the geopolymer product measured through 

microanalysis. It should be noted the 62LA38MK, 37LA63MK and 100MK mixtures did 

not react enough to produce adequate volumes of geopolymer to measure and only 

unreacted particles were visible in cross section. 

Any trends between molar ratio and compressive strength were difficult to discern based 

on the vast differences between the molar ratios of the 100LA mixture and the other 

mixtures as well as the fact that three did not form enough geopolymer to measure. 

Table 4.14. Average bulk molar ratios ordered in terms of maximum compressive 
strength at 14 days 

Mix ID Rank 
Compressive 

strength 
(psi) 

Si/Al Na/Al Na/Si Ca/Si 

100HA 1st 2208 9.43 2.59 0.32 0.38 

75HA25MK 2nd 1440 3.56 1.19 0.34 0.21 

100LA 3rd 876 193.55 49.59 0.25 0.16 

37LA63MK 4th 535 - - - - 

62LA38MK 5th 373 - - - - 

100MK 6th 206 - - - - 

The calculated bulk and actual measured molar ratios for all of the mixtures were fairly 

close except in the 100LA mixture where the ratios were off by quite a bit. Radar graphs 

illustrating the comparison between actual and bulk molar ratios are shown in Figure 4.61 

and Figure 4.62. 
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Figure 4.61. Bulk vs actual molar ratios for 
the 100LA mixture. 
 

  

Figure 4.62. Bulk vs actual molar ratios for the 100HA mixture (left) and 75HA25MK 
mixture (right). 

4.3.5 Degree of reaction, α 

Figure 4.63 shows the degree of reaction measurements for Phase III at 14 and 28 days. 

Nearly all of the mixtures in Phase III obtained 60-80% degree of reaction at 14 days and 

only the 100HA mixture, which originally was the lowest, increased substantially from 14 
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to 28 days. This was also the mixture that obtained the highest strength. This was overall 

lower than in Phase II mixtures except for the 50HA50MK mixture, which was similar.  

 
Figure 4.63. Degree of reaction results from Phase III mortars cured at 60°C. 

4.3.6 Calorimetry 

4.3.6.1 Adiabatic calorimetry 

Adiabatic calorimetry was performed on three mixtures, made entirely of LA500 glass and 

varying amounts of water, to assess the calorimetric effects of changing the water/solids. 

The results are shown in Figure 4.64 and indicate that a higher initial temperature was 

reached as water content was decreased, but after that not much was different and the 

mixtures behaved about the same through 150 hours. A higher temperature was reached at 

lower water/solids ratio. The first peak in calorimetry is known to be due to dissolution. 

However, this peak had passed by the time the calorimetry measurements began, 20-30 

minutes after initial mixing. More water present in the mixture could dilute the activator 

solution leading to less dissolution. 

0%

20%

40%

60%

80%

100%

0 7 14 21 28

α 
(%

)

Age (days)

100LA

62LA38MK

37LA63MK

100HA

75HA25MK

100MK

314 



 
Figure 4.64. Adiabatic calorimetry curves measured for LA500 glass with three 
different water/solids ratios. 

Figure 4.65 shows the adiabatic calorimetry curves for all six mixtures in Phase III. The 

37LA63MK mixture showed the highest peak reading a temperature of over 95°C. This 

may have been thought to be the 100MK mixture. However, the water/solids ratio of that 

mixture was higher and from Figure 4.64 it can be seen that a lower temperature peak is 

caused by a higher water/solids ratio. Also, the 62LA38MK mixture had a moderate 

temperature. The two 100% glass mixtures both showed much lower, longer peaks with 

the 75hA25MK being more similar to those mixtures but just a bit higher, most likely due 

to the metakaolin. It was also observed in Phase II that a higher temperature is reached 

when the mixtures include metakaolin; this is also true in this case as well. 
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Figure 4.65. Comparison of all six mixtures in Phase III. 

4.3.6.2 Isothermal calorimetry 

Figure 4.66 shows the isothermal calorimetry curves for the six mixtures in Phase III. 

Calorimetry was conducted at 60°C and has yielded interesting results, especially as 

compared to the adiabatic calorimetry curves for the same mixtures cured in ambient 

temperatures. 

There are clear differences between the shape of each curve as measured by adiabatic or 

isothermal calorimetry, but among all of the curves, the length of reaction is the opposite 

of what was expected. It was expected that curing at higher temperatures would speed up 

the rate of reaction significantly and that under ambient conditions, the reactions would 

appear more drawn out with less significant heat peaks. 

It is clear that the opposite was true, where the reaction at 60°C clearly continued for a 

longer period of time. This most likely indicates that less reaction occurs at lower 
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temperatures than at higher temperatures, which is often evidenced by the extremely low 

temperatures found in ambiently cured geopolymers with little calcium content. 

The delayed peak of the 62LA38MK mixture was interesting, especially since the 

microstructure of this mixture showed a lot of unreacted metakaolin and glass with little 

geopolymer product visible. Further studies concerning the calorimetry of glass 

geopolymers should be explored. 

Figure 4.66. Isothermal calorimetry curves for all six mixtures cured at 60°C for 72 
hours. 

4.3.7 Curing at 80°C 

An additional investigation was carried out on three LA mortars cured at 80°C for 24 hours. 

Fresh properties are shown in Table 4.15; they were very similar to the initial mixtures 

cured at 60°C. 
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Table 4.15. Fresh properties of Phase III mixtures cured at 80°C. All of the values 
reported are the average of three measurements. 
Mixture 

ID 
Water/solids 

ratio 
Percent Flow 

(%) 
Temperature 

(°F) 
Unit weight 

(g/mL) 
100LA-80 0.550 120% 85.83 2.05 

62LA-80 0.550 51% 89.17 2.09 

37LA-80 0.550 0% 96.17 1.95 

4.3.7.1 Compressive strength 

Compressive strength was measured at 1, 3, 7, 14 and 28 days and compared to the results 

from the corresponding mortars cured at 60°C. The results for each of the three mixtures 

are shown in Figure 4.67, Figure 4.68 and Figure 4.69. 

Figure 4.67. Comparison of the compressive strength measured for the 60°C and 
80°C curing regimes through 28 days for the 100LA mixture. Each data point is the 
average of three cylinders.  

There was a substantial increase of compressive strength in the 100LA mixture when the 

curing temperature was increased to 80°C. However, the compressive strength profiles of 
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the two mixtures seem to be converging with the lower cured mixture gaining strength and 

the higher cured mixture losing strength. 

 
Figure 4.68. Comparison of the compressive strength measured for the 60°C and 
80°C curing regimes through 14 days for the 62LA38MK mixture. Each data point 
is the average of three cylinders.  

The most substantial compressive strength increase between 60°C and 80°C curing 

conditions occurred in the 62LA38MK mixture. At one day, the compressive strength 

increased from 250 psi to nearly 3000 psi. This is a drastic improvement, though no further 

strength gain had been measured at 14 days. 
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Figure 4.69. Comparison of the compressive strength measured for the 60°C and 
80°C curing regimes through 14 days for the 37LA63MK mixture. Each data point 
is the average of three cylinders.  

Among the 37LA63MK mixture there was not a very significant increase in strength as 

compared to the other mixtures. Both mixtures appear to be continuing to gain strength 

through 14 days. 

In addition to the comparison of 60°C or 80°C curing for 24 hours, samples of the six 

original mortars in Phase III were also cured at 60°C for 72 hours to see if increasing the 

curing time would result in a substantial compressive strength increase. The combination 

of all three curing regimes is shown in Figure 4.70. It is clear for the LA mixtures, the 

higher temperature curing resulted in higher compressive strength; this is also true for the 

HA mixtures if one considers the results of samples cured during Phase I and II. There was 

very little effect on the 37LA63MK mixture when cured under different conditions. 
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Figure 4.70. Comparison of Phase III mixtures at 14 days under various curing 
regimes. 

4.3.7.2 Microstructural analysis 

Polished cross sections of each LA mixture considered is shown in Figure 4.71 next to the 

corresponding mixture cured at 80°C for comparison.
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100LA – 60°C 100LA – 80°C 

62LA38MK – 60°C 62LA38MK – 80°C 

37LA63MK – 60°C 37LA63MK – 80°C 
Figure 4.71. Polished sections of the mortars cured at 60°C compared to those 
cured at 80°C in Phase III. 
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There was not much change observed between the microstructures of the 100LA mixtures 

cured at 60°C or 80°C. The paste was still extremely uniform with glass particles well 

embedded and it was still shrunken away from the aggregate and cracked quite severely. 

Likewise, the 37LA63MK mixture did not appear much different under the different curing 

temperatures. 

However, there was a substantial and interesting change in the microstructure of the 

62LA38MK mixture as evidenced in Figure 4.71 and by the drastic increase in compressive 

strength between 60°C and 80°C curing. Figure 4.72 shows a low magnification 

micrograph of the microstructure in question. The microstructure is really quite interesting 

as unreacted glass particles present appear to have a thick layer of reaction product 

surrounding them but there is a fairly wide space between this and the rest of the matrix. 

This phenomenon is shown magnified in Figure 4.73. 

Additionally, though the large spaces exist between the unreacted glass and matrix, the 

shrinkage cracking as seen in the 100LA mixture was not present. 
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Figure 4.72. Microstructure of 62LA38MK mixture cured at 80°C shown 
under backscatter electron imaging. 

 

  
Figure 4.73. Magnified regions of 62LA38MK mixture cured at 80°C showing 
unreacted glass particles and reaction layer separated by space between matrix and 
glass.  
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4.3.7.3 Phase composition 

Table 4.19 shows the molar ratios of the LA mixtures cured at 80°C as calculated by 

microanalysis. Each value presented is the average of 6 areas analyzed by microanalysis. 

Additional data on the microanalysis can be found in Appendix C. Obviously the addition 

of 38% metakaolin drastically lowered the Si/Al and Na/Al ratios.  

Table 4.16. Average bulk molar ratios ordered in terms of maximum compressive 
strength at 14 days. 

Mix ID Rank Compressive strength 
(psi) Si/Al Na/Al Na/Si Ca/Si 

62LA38MK 1st 3016 3.76 1.12 0.26 0.07 

100LA 2nd 1815 151.23 40.17 0.25 0.14 

37LA63MK 3rd 684 - - - - 

Figure 4.74 shows the bulk and actual molar ratios for the 100LA and 62KLA38MK 

mixtures. In both cases, the bulk Si/Al and Na/Al ratios were higher than the measured 

actual Si/Al and Na/Al ratios. 
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Figure 4.74. Bulk vs actual molar ratios for the 100LA mixture cured at 80°C (left) 
and the 62LA38MK mixture cured at 80°C (right). 

Figure 4.75 shows a comparison of the Si/Al and Na/Al molar ratios in the bulk 100LA 

mixture and those measured in the mixtures cured at 60°C and 80°C. The Si/Al ratios in 

both of the mortars were less than that calculated for the bulk, with the lower curing 

temperature showing a higher Si/Al ratio. The trends seen with the Si/Al ratio were very 

similar to those found with the Na/Al ratio. 

Figure 4.75. Si/Al and Na/Al ratios comparing the bulk stoichiometry of the 
100LA mixture and those measured for mortars cured at 60°C and 80°C. 

0
50

100
150
200
250

Si/Al

Na/Al

Na/Si

Ca/Si

Bulk 100LA-80C

Actual 100LA-80C

0
2
4
6
8
Si/Al

Na/Al

Na/Si

Ca/Si

Bulk 62LA38MK-80C

Actual 62LA38MK-80C

0

50

100

150

200

250

300

Si/Al Na/Al

Actual 100LA-60C

Actual 100LA-80C

Bulk 100LA

326 



Figure 4.76 shows a comparison of the Na/Si and Ca/Si molar ratios in the bulk 100LA 

mixture and those measured in the mixtures cured at 60°C and 80°C. The Na/Si ratio in 

both of the mortars were nearly the same, lower in both cases than the bulk. Likewise, the 

Ca/Si ratio was quite similar in all three cases. 

 
Figure 4.76. Na/Si and Ca/Si ratios comparing the bulk stoichiometry of the 100LA 
mixture and those measured for mortars cured at 60°C and 80°C. 
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Degree of reaction results comparing the 60°C and 80°C cured mixtures can be seen in 
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and dissolution than simply curing temperature. Overall, the degree of reactions measured 

were lower than those found in Phase II, except the 50HA50MK mixture. 

Figure 4.77. 14 day degree of reaction results from Phase III mortars containing LA 
glass cured at 60°C versus 80°C. 
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Table 4.18 shows the molar ratios of the unreacted geopolymer in the ternary mixtures. As 

shown, the Na/Al ratios are near 1 and 2 and the Si/Al and Na/Al ratios fall near to the 

range most accepted for geopolymers. 

Table 4.18. Molar stoichiometry of unreacted source materials and activator solution of 
ternary mixtures. 

Mixture ID Si/Al Na/Al Na/Si Ca/Si 

50HA25MK25FA 4.12 0.98 0.24 0.29 

50LA25MK25FA 6.16 2.02 0.33 0.16 

Figure 4.78 shows the Si/Al and Na/Al graphed against each other for the ternary mixtures. 

 
Figure 4.78. Si/Al vs Na/Al of the ternary mixtures, 50LA25MK25FA and 
50HA25MK25FA. 
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to note the mixtures all exhibited a crackling sound during and after mixing for several 

minutes. Both of the ternary mixtures had very similar fresh properties and the mixtures 

were hard to tell apart. The workability of the mixture was really nice, providing easy 

consolidation without the liquid-nature sometimes found in the glass-only mixtures. 

Table 4.19. Fresh properties of the ternary mixtures. Values reported are the average of 
three measurements. 

Mixture ID Water/solids 
ratio 

Percent 
Flow (%) 

Temperature 
(°F) Unit weight (g/mL) 

LA-FA-MK 0.550 91% 88.50 2.06 

HA-FA-MK 0.550 94% 88.50 2.14 

4.3.8.1 Compressive strength 

Compressive strength was measured at 1, 3, 7 and 14 days and the results are shown Figure 

4.79. Based on the previous results it was expected the mixture made with the HA glass 

would perform better than the LA glass.
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Figure 4.79. Comparison of the compressive strength measured for the ternary mixtures. 
Each data point is the average of three cylinders. Error bars were calculated from the 
standard error, SD/√n, where SD is standard deviation and n is the sample size. 

4.3.8.2 Microstructural analysis 

Figure 4.80 shows the microstructures of the two ternary mixtures. The mixture made from 

the HA glass was denser and more uniform, with glass particles well embedded within the 

matrix. The LA ternary mixture showed more voids but was fairly homogenous. Unreacted 

fly ash particles were visible in both mixtures. 
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Figure 4.80. Polished sections of the 50LA25MK25FA mixture (left) and the 
50HA25MK25FA mixture (right). 

Figure 4.81. 50LA25MK25FA mixture showing rim of reaction products 
around unreacted glass particles, but in this case the cracks are through the 
particle rather than around it indicating a stronger matrix. 
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4.3.8.3 Phase composition 

Table 4.20 shows the molar ratios of the ternary mixtures as calculated by EDS 

microanalysis. Each value presented is the average of 6 spots analyzed by EDS 

microanalysis. Additional data on the microanalysis can be found in Appendix C. It is 

interesting to note the Na/Al ratio was the same in both ternary mixtures.  

Table 4.20. Average bulk molar ratios ordered in terms of maximum compressive 
strength at 14 days. 

Mix ID Rank Compressive 
strength (psi) Si/Al Na/Al Na/Si Ca/Si 

50HA25MK25FA 1st 1539 3.60 1.31 0.35 0.23 

50LA25MK25FA 2nd 1055 4.36 1.31 0.27 0.13 

The actual measured molar ratios were lower than the bulk ratios as shown below in Figure 

4.82. 

  
Figure 4.82. Bulk vs actual molar ratios for the 50LA25MK25FA mixture (left) 
and the 50HA25MK25FA mixture (right). 
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4.3.8.4 Degree of reaction 

Figure 4.83 shows the degree of reaction of the ternary mixtures at 14 days. The degree of 

reaction measured was not as high as those measured in Phase II but a slightly coarser glass 

was used. Unreacted fly ash and glass particles were visible within the microstructure of 

both mortars but no metakaolin was visible. 

Figure 4.83. Degree of reaction results at 14 days for the ternary mixtures. 

4.3.8.5 Adiabatic calorimetry 

Adiabatic calorimetry curves for the ternary mixtures are shown in Figure 4.84. The curves 
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Figure 4.84. Adiabatic calorimetry curves of ternary mixtures. 

4.3.9 Discussion of Phase III 
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mixtures is the presence of a lot of metakaolin, which was also true for the mixture 

50HA50MK in Phase II. It appears there exists a threshold where too much metakaolin 

prevents adequate reaction from occurring under the mixture parameters of this research. 

From degree of reaction measurements it appears that seemingly adequate amounts of 

dissolution occurs, so it most likely could be one of several scenarios at work: 

a. Not enough water was available to meet the water demand of the metakaolin. Since 

dissolution consumes water, a solution might never form to allow polycondensation 

reactions to occur. 

b. Too much water was added to account for the water demand of the metakaolin. The 

presence of the water diluted the activator solution leading to less or slower 

dissolution. Since a supersaturated solution is necessary for polycondensation to 

occur, the more water present means more Si and Al species must go into solution 

to reach the point of supersaturation. Sedimentation of the metakaolin in mixtures 

with too much liquid has also been suggested, which serves to lower compressive 

strength due to large regions of soft, unreacted metakaolin particles (Rahier et al. 

1997). These were observed in all of the mixtures mentioned here. 

c. The presence of too much water could also lead to zeolite formation as opposed to 

geopolymer products. Zeolites do not contribute strength to geopolymers 

(Fernández-Jiménez et al. 2007). 

It is true that many mixtures made entirely out of metakaolin have been reported in the 

literature, but those mixtures are nearly always activated with a solution containing 

dissolved silica. The dissolved silica serves to shorten the time it takes for the mixture to 
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reach supersaturation and for polycondensation to occur, requiring less dissolution, which 

consumes less water. It is well known that mixtures made from 100% metakaolin are very 

tricky to work with (Provis et al. 2010). 

4.3.9.2 100LA 

The 100LA mixture was an interesting in that mortars cured at 60°C produced a physical 

release of sticky exudate ripe with alkalis. Increasing the curing temperature served to 

eliminate this stickiness but the mortars still maintained a sticky, malleable feel to them, 

especially on the interior. This has been reported for geopolymers with very high Si/Al 

ratios, where failure is actually ductile rather than brittle (Fletcher et al. 2005; Songpiriyakij 

et al. 2010). The microstructure of the 100LA mortars was also interesting as the matrix 

was beautifully continuous and dense. However, that came at an apparent cost of extreme 

shrinkage. 

The presence of the ITZ (interfacial transition zone) in OPC concrete is often a source of 

weakness, where large amounts of crystalline CH or ettringite crystals weaken the 

structure. The zone between the paste and the aggregate in the 100LA mixtures was a void 

where nothing but epoxy was present at many interfaces. All of these voids served to 

weaken the mortar. 

Even when the 100LA mixture was cured at 80°C, the presence of the reaction rim found 

in the mixtures in Phase I made of fine glass and in the 100HA mixture in Phase II was not 

found. In metakaolin geopolymers, an aluminum-deficient rim around metakaolin particles 

due to the preferred release of aluminum over silicon. The fact that this rim was not found 

337 



around glass particles in the 100LA could be due to the lack of aluminum to be 

preferentially removed (Duxson et al. 2005) 

4.3.9.3 62LA38MK 

Upon adding 38% metakaolin to the mortar cured at 60°C, the same thing that happened to 

the mixtures in 4.3.9.1 occurred where no real geopolymer formed, only unreacted particles 

were visible in cross section. However, a 20°C increase in curing temperature for 24 hours 

resulted in adequate geopolymer to create a fairly homogenous microstructure and nearly 

12 times the compressive strength at 1 day. 

The microstructure of this stronger mortar was very interesting. A layer of reaction product 

formed around the unreacted glass particle and that whole system was separated away from 

the rest of the paste forming voids in the outline of the original glass particle indicating the 

particle was shrinking. 

4.3.9.4 HA mixtures 

In Phase III two of the mixtures from Phase II were reproduced with the main differences 

being a lower curing temperature, slightly coarser glass and slightly higher water/solids 

ratio. The 100HA mixture in Phase III had a higher compressive strength than the 

75HA25MK mixture, which was opposite of when the mixtures were cured at 80°C.  The 

microstructure of the 100HA mixture was quite different between the two phases as well, 

with the microstructure in Phase II appearing very continuous and a narrow reaction rim 

visible around the residual unreacted glass particles. In Phase III, the microstructure was 
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less continuous and a layer of reaction product was visible around the particle. This could 

be attributed to the change in curing temperature or the glass particle size or a combination 

of the two. 

It seemed when looking at the 75HA25MK and 62LA38MK mixtures, the binary mixtures 

containing glass and metakaolin both responded readily to an increase in curing 

temperature both in terms of compressive strength and also microstructure. Curing 

temperature seems to have a large impact on the rate of strength gain as well as the actual 

amount of strength gained. This stands to reason since there is no sodium silicate involved 

in glass, all of the Si and Al available must come from dissolution. Increased temperature 

accelerates the dissolution process, creating a supersaturated mixture sooner and provides 

more Si and Al species for condensation reactions. The mixtures containing a small 

amounts of metakaolin, in particular, seemed to react the strongest to an increase in curing 

temperature in Phase III. Both the LA glass mixtures containing 38% metakaolin and the 

HA mixture containing 25% metakaolin from Phase II performed better when cured at 

60°C as compared to 80°C, indicating the presence of metakaolin in moderate quantities 

favors higher curing temperatures. 

4.3.9.5 Ternary mixtures 

As stated previously, the ternary mixtures were expected to perform well due to 

overcoming the water demand obstacle of the metakaolin. However, no increased 

compressive strength was found and actually, compressive strengths were lower than the 
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100HA mixture and 75HA mixture, which seems to imply the addition of the fly ash to the 

mixture caused a decrease in desired properties.  

4.3.9.6 Main points 

• The mixture made of 100% LA glass resulted in sticky mortar not conducive at all for

real world applications. Increasing the curing temperature from 60°C to 80°C solved

that problem, for the most part, though the interior still remained slightly tacky.

• The microstructure of the LA glass mixture was extremely continuous however

extensive cracking and shrinkage were prevalent.

• The addition of 38% metakaolin and curing at 80°C resulted in an improved

microstructure that gained 3000 psi at 1 day, as opposed to the microstructure when

cured at 60°C.

• Mixtures containing 63% and 100% metakaolin showed nearly 70% degree of reaction

but did not produce adequate geopolymer for any strength gain or microstructure.

• It seems there is a threshold at which adding more metakaolin is not helpful; this could

be due to stoichiometry but most likely is due to mixing. Excess metakaolin stiffens

the mixture. This requires either excess water for mixing that leads to dilution of the

activator solution or, when water is kept at a proper level, inadequate solids dissolution

resulting from an inadequate liquid phase. Water reducers or superplasticizers could be

useful. Also, sodium silicate is also usually used in the activator solution, which

changes the kinetics and gives the mixture a jumpstart toward polycondensation (Provis

et al. 2010).
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• The ternary mixtures had excellent workability but they did not perform as well as was

expected.

4.4 Project goals addressed 

At the beginning of this document, four questions were listed as goals of this research. 

Here, they will be addressed in the following sections using the results from all three phases 

of research. 

4.4.1 What are the phases formed by the alkali activation of waste glass and how is 

the microstructure and composition of these phases affected by the addition 

of metakaolin as a source of alumina? 

Two types of glass were considered in this research containing vastly different 

compositions. The HA glass had a little over 12% aluminum oxide by weight and as it 

turned out, when reacted with 10M NaOH, resulted in a dense, strong geopolymer. 

Depending on the variables of the mixture, varying strengths and microstructures were 

created but overall, the HA glass performed very well as a source material for geopolymers. 

Phase I showed that by altering the fineness of the glass and curing temperature, the 

strength gain profile could also be altered, where fine glass and higher curing temperatures 

resulted in higher early strength while fine or coarse glass cured at lower temperatures 

showed more sustained strength gain over time. With regard to compressive strength of fly 

ash geopolymers, it is typical to gain high early strength followed by a steady but slow 

climb in further strength gain after a few days (Fernández-Jiménez and Palomo 2003). 
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The bulk Si/Al ratio of this HA glass was 8.39 for all mixtures and the measured Si/Al ratio 

of the resulting geopolymer was quite similar to this bulk number when fine glass was 

used. Coarse glass resulted in a bit higher Si/Al ratio over all, most likely due to decreased 

dissolution. With regard to Na/Al ratio, the same trends held true for fine and coarse glass. 

The addition of alumina to the HA glass changed the bulk Si/Al and Na/Al ratios and the 

resulting measured ratios changed along with the bulk ratios. In general, the resulting molar 

ratios of the geopolymer were very similar to the bulk molar ratios. Microstructure 

development was found to be an interesting investigation and the correlation of 

microstructure and compressive strength was not nearly as clear as it was initially thought 

to be. 

The microstructure of the geopolymer seemed to be more affected by the physical 

properties of the supplementary alumina source than by the composition of that source, 

which brings the importance of mixture design and degree of reaction to the forefront. 

Despite the best of intentions, for the mixtures containing a lot of metakaolin, the physical 

limitations of reacting that much metakaolin with NaOH were reached and the reaction 

stunted. 

Since dissolution consumes water, it is safe to assume that finding an adequate water/solids 

ratio is more complicated than just reaching a certain workability or flow. Water in a 

geopolymer mixture is not chemically bound within the reaction products, but rather exists 

alongside them in gel pores. This is different than the case with OPC, where some water is 

chemically bound in the calcium-silicate-hydrate (Provis and vanDeventer 2009). Despite 
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this fundamental difference, the water/binder ratio in both OPC and GPC is very important 

when it comes to fresh and hardened concrete properties. In both systems, a high 

water/solids ratio can result in increased porosity, which has been linked to lower 

compressive strength (Hardjito and Rangan 2005; Steveson and Sagoe-Crentsil 2005). 

As evidenced by the HA5050MK mixture (and others in Phase I and III), a mixture 

designed for a workable flow and optimal composition does not in any way signify that a 

quality geopolymer will be produced. As in life, the various variables in a mixture must be 

in sync with each other for success to be obtained.  

The other glass used, LA had an incredibly high Si/Al and Na/Al molar ratio, thus mortar 

made of just the glass retained the high Si/Al and Na/Al ratios, thought a little bit less. The 

result was a mortar that literally oozed a silica gel rich in sodium as evidenced by the 

slippery texture. Upon higher temperature curing this oozing problem was solved but in 

both cases, the microstructure appeared very shrunken away from the fine aggregate 

particles resulting in only moderate compressive strength. 

When metakaolin was added to this glass in moderate amounts, i.e. 38% and cured at 80°C, 

the microstructure was improved as was the compressive strength and molar ratios. 

However, this mixture was still inferior to the mixtures made with the HA glass indicating 

that further manipulation of the LA glass must be carried out for it to be successful. 
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4.4.2 Is there a clear correlation between microstructure, composition and 

compressive strength of glass-based geopolymers? 

As stated in the previous section, for the mixtures studied here, there was not so much a 

correlation between microstructure, composition and compressive strength but rather a 

dependency. Compressive strength depends on both microstructure and composition. The 

microstructure also depends on the composition, as an adequate amount of network formers 

and a good balance of Na And Al must be present to create a decent microstructure. 

It is true the physical properties of the microstructure have a large impact on compressive 

strength, but this research also showed the composition of the geopolymer formed also 

played a role. For example, if a geopolymer of the optimal composition created a porous 

microstructure, compressive strength will be sacrificed due to the high percentage of voids. 

Likewise, if a geopolymer of not ideal composition managed to create a dense 

microstructure, a certain amount of strength would be gained based on the continuity of 

the microstructure, but not optimized. So, the composition and microstructure seem to go 

hand in hand and only will result in substantial compressive strength when both are in 

harmony with each other. 

4.4.3 How does the bulk stoichiometry of the initial mixture compare to the actual 

stoichiometry of the geopolymer formed?  What role does the degree of 

reaction play in this relationship? 

The bulk stoichiometry of the initial mixture as compared to the geopolymer formed was 

quite similar in most cases, especially when the finer glass was used. However, the role of 
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degree of reaction was not as important as was originally thought. Even in the mixtures 

that did not produce enough geopolymer, nearly 60-70% degree of reaction was reached, 

which was adequate to create a geopolymer in other mixtures. Clearly other factors play a 

more important role in realizing the bulk stoichiometry of a mixture than simply the degree 

of reaction. It appears that decent dissolution can occur without polycondensation. 

4.4.4 Does the addition of metakaolin or fly ash adequately lower the 

stoichiometry of the mixture to more acceptable ranges found in other 

geopolymers made of fly ash or metakaolin and does this enhance the 

mechanical performance? 

The addition of metakaolin or fly ash to the HA and LA glass geopolymers did lower the 

stoichiometry of the mixture to more acceptable ranges. However, this did not ensure an 

increase in mechanical performance. In moderate amounts, the metakaolin did result in an 

increase in mechanical performance but the fly ash, despite reducing the Si/Al and Na/Al 

ratios, did not result in an increase of compressive strength as compared to the baseline 

glass geopolymer, indicating that as stated previously, the synergy between the various 

mixture parameters is incredibly important. 
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5. Conclusions

It should be noted again, the purpose of this research was not to develop the best or 

strongest possible glass-based geopolymer, but rather to identify the characteristics of 

baseline glass geopolymers and to document and observe the changes that occur when an 

alumina source was introduced.   

Three main areas of interest were considered in this research with regard to glass-based 

geopolymers: compressive strength, microstructure and composition. It is important to note 

that while the strength and composition can be measured, the microstructure is a subjective 

matter, born of observation. The conclusions for these three areas are presented in bullet 

form. 

5.1 Compressive strength 

• Adequate compressive strengths were reached in the mixtures made with the fine

HA glass and when a moderate amount of metakaolin was introduced

• Curing temperature seemed to have a direct impact on both early and later age

compressive strength

o Higher curing temperatures resulted in higher initial strengths as shown in

all Phases of the project

o Lower curing temperatures resulted in more substantial strength gain at

later ages, as shown in Phase I

• Rate of strength gain varied depending on the parameters of the mixture

o Some mortars gained a great deal of strength in one day, typically when

higher curing temperature or finer glass was used
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o Others gained it slower over time, typically when lower curing 

temperatures or coarser glass was used 

o Most mortars resulted in a general strength gain over time 

• 10M NaOH appears to result in higher compressive strength in glass based 

geopolymers, probably because sodium silicate is not included, and dissolution 

must occur for geopolymerization to occur 

• Finer glass resulted in higher compressive strengths in general 

• Glass containing more Al within the glass resulted in higher compressive 

strengths than glass containing no Al, that was supplemented with Al from other 

sources 

• Adding 25% metakaolin resulted in the highest compressive strength in Phase II. 

o There was an anomaly with regard to this mixture and Si/Al ratio in that it 

did not follow the trend 

• Water appeared to play a role in compressive strength, with lower strengths 

typically associated with higher water contents 

o However, even in fly ash mixtures where less water was present, more 

strength was not necessarily found 

o The amount of water in a mixture must be optimized so there is enough for 

dissolution and for a solution to exist, but not so much that it will create a 

lot of extra porosity 

5.2 Microstructure 

• The microstructure of the glass only mixtures varied significantly based on glass 

particle size 

o Fine glass mixtures resulted in a more uniform, continuous structure and a 

thin reaction rim visible around the particles, indicating dissolution into 

solution 

o Coarse glass mixtures resulted in a ring of reaction products circling the 

unreacted glass particles 
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 When these rings met each other, a dense matrix was formed.

However, this was not always the case and sometimes holes

existed between each component

• In all mortars, unreacted particles existed, whether they were glass, fly ash or

metakaolin, 100% degree of reaction was not reached.

• When metakaolin or fly ash was included, the continuity of the matrix appeared to

decrease as compared to when 100% glass was used

• Microstructure was in some part related to compressive strength, in that a more

continuous microstructure often resulted in higher compressive strength, but not

always

• A uniform, continuous microstructure with minimal porosity resulted in a stronger

matrix in general, but it was also found that composition plays a big role

• Unreacted metakaolin particles tend to flocculate together creating large areas of

weakness in the matrix

• Unreacted fly ash particles were present sometimes because it was an unreactive

or crystalline phase but sometimes the reaction just did not penetrate through and

the outer walls of a plerosphere, for example, were reacted away leaving the inner

species

• Fracture surfaces revealed the presence of zeolites

o It seemed the mixtures with higher water content also resulted in more

zeolites

o Different types of zeolites were found in different mixtures

• The microstructure of the low-Al glass mixtures had significant cracking and

shrinkage

5.3 Composition 

• In general, the composition of the geopolymer that formed was quite similar to

that of the bulk stoichiometry
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• In particular, the molar ratios were quite close when the glass was in a finer form, 

most likely due to increased dissolution 

• The glasses that were made with the coarse glass were found to have a higher 

Si/Al and Na/Al ratio, probably due to the fact that less glass and, therefore, less 

Al was dissolved 

• In Phase II a clear trend between compressive strength and Na/Al, Na/Si and 

Ca/Si ratios was found, where decreasing molar ratios corresponded to increasing 

compressive strength 

• A trend between Si/Al was found to a certain point with Si/Al increasing with 

increasing compressive strength. However, there was an anomaly with the 

75HA25MK mixture where a lower Si/Al ratio resulted in a higher compressive 

strength 

• Many of the mixtures possessed multiple phases interspersed together with 

calcium being the main differing element 

• Extremely high Si/Al and Na/Al ratios can be lowered to more reasonable levels 

with the addition of metakaolin or fly ash 

5.4 Variability 

Glass is a viable material for use in geopolymers. However, variability has proven to be a 

bigger issue than was originally thought. The source of the glass will dictate the 

composition of that glass. It is true that in this research two broad ends of the spectrum 

were analyzed. However, the glass that contained aluminum definitely performed better 

overall than the glass without even when supplemented with Al. 

When dealing with a recycled material, variability is most always an issue. It is possible 

that glass could be a consistent composition if it is gathered from the same source each 

time and if that sources has a steady stream of input glasses. Glass would most likely offer 
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a more reliable material stream than fly ash but from this research it is very clear the 

composition of the glass must be known and the mixture parameters adjusted appropriately. 

Since the degree of reaction for both types of glass seemed to be fairly consistent, one 

possibility would be to measure the average composition of various glass streams and then 

blend them as needed to reach a desired composition. If mixture parameters can be adjusted 

to allow for maximum dissolution possible, chances are this resulting geopolymer will be 

of a known and consistent composition. 

5.5 Soluble silica 

A great deal of the literature available on geopolymers is based on mixtures activated with 

soluble silica in conjunction with a high pH solution. The presence of soluble silica has 

been shown repeatedly to improve the homogeneity of the microstructure, increase the 

Si/Al ratio and improve mechanical properties (Fernández-Jiménez and Palomo 2005). 

However, this research and an increasing amount of other research are based upon the alkali 

activation of Si-rich materials without the inclusion of soluble silica (Brew and MacKenzie 

2007; Hajimohammadi et al. 2008; Songpiriyakij et al. 2010; Cyr et al. 2012; Gluth et al. 

2012). 

High-Si source materials activated by an alkali hydroxide can easily achieve the Si/Al 

ratios reached in mixtures containing soluble silica, but it is clear that despite the 

stoichiometric similarities between these mixtures, the kinetics, reaction mechanisms and 

degree of reaction are quite different. 
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Soluble silica offers pre-dissolved, pre-polymerized Si species, which allows the solution 

to reach supersaturation very quickly, which results in polycondensation and a continuous 

microstructure. Mixtures not containing soluble silica must first undergo dissolution to the 

point of supersaturation, which can take a much longer time, and as such concentration 

gradients are present throughout the solution that cause precipitation to occur rather than 

gelation, which can results in a less homogenous microstructure. 

The homogeneity of the microstructure plays an important role in the mechanical 

performance of a binder based on the simple principle that smaller voids create a stronger 

matrix than larger voids, such as those often found in mixtures activated with alkali 

hydroxide only. 

From this research, it can be seen that strong, homogenous microstructures can be obtained 

through the activation of Si-rich glass by sodium hydroxide without the presence of soluble 

silica. However, the Si/Al ratio of many of these mixtures was outside the bounds of Si/Al 

ratio normally quoted as optimal for geopolymers. Other research has also shown that 

activating high-Si materials results in an optimal Si/Al ratio much higher than is typical. 

Fletcher et al. and Songpiriyakij et al., in separate research projects, both found an optimal 

Si/Al ratio to be around 16 for reacting Si-rich materials without the presence of soluble 

silica (Fletcher et al. 2005; Songpiriyakij et al. 2010). Both groups also noted the failure 

mechanism switched from brittle to ductile at this point as well.  For both of these mixtures 

the corresponding Na/Al ratio was 5 and 3, respectively, though Songpiriyakij et al. noted 

that strength increased in nearly all mixtures when Na/Al and Na/Si ratios decreased toward 

1. 
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This creates a difficult situation in terms of mixture design for Si-rich source materials 

activated with an alkali hydroxide. Higher mechanical performance and more uniform 

microstructures are found with higher Si/Al and lower Na/Al but Na is necessary for 

dissolution since no soluble silica is present. It was for this reason Na/Al molar ratios of 1 

or 2 were used as a basis for mixture design in this research.  When the Na/Al ratio is 

predefined between the metakaolin, which provides all of the Al, and the activator, which 

provides most of the Na, then the Si/Al ratio can be adequately increased through the 

inclusion of a Si-rich source material such as glass. So, optimal stoichiometry of 

geopolymers made from the activation of Si-rich materials with alkali hydroxide most 

likely will be different than those made with soluble silica which may mean a different 

range of optimal molar ratios should be defined for these mixtures. 

5.6 Mixture parameters 

The synergy between various mixture parameters such as curing temperature and time, 

activator concentration, properties of the source materials, water/solids ratio, mixing time, 

consolidation methods, etc. is incredibly complex and important. This is not to say that 

designing optimized glass based geopolymers is not impossible, on the contrary, based on 

this research it is believed that it is very possible to design high quality glass geopolymers. 

However, vigorous testing is required that would cover all of these variables in various 

combinations. It would be important to determine which parameters are the ones with the 

most impact on the mixture, for example in this research, increasing the curing temperature 

from 60°C to 80°C had a substantial effect on microstructure, compressive strength and 

composition. 
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5.7 Environmental 

Geopolymers made of glass have a significantly smaller carbon footprint than ordinary 

portland cement and have the potential to utilize vast quantities of waste materials. Glass-

based geopolymers also have the potential to produce a quality alternative binder capable 

of reaching high strengths at only 24 hours, as well as to create a stable market for waste 

glass. This will help to relieve pressure from the municipal waste stream and put a valuable 

material to good use. Further, the high Si and Na contents that waste glass offers, without 

the addition of sodium silicate, allow for activation with just an alkali hydroxide, further 

lowering the carbon footprint of the binder. 

5.8 Recommendations for future work 

While geopolymers are a potentially low-CO2 alternative concrete, there still remains much 

work to be done before wide-scale commercial applications can be considered. The 

following is a brief list of recommendations for future work:  

• Since the degree of reaction did not increase for the most part past day 1,

reorganization within the matrix must have occurred, which could have included

the formation and depletion of intermediate phases. Compositional phase analysis

at various times throughout curing including at or before 1 day could help to

understand these changes.

• Likewise, observation of polished cross sections prepared at various times during

curing could allow observation of changes in the microstructure. Fracture surfaces

can be very misleading as they show only the surface of the material; the interior

of the matrix and the presence of layers of hydration products, unreacted particles

and different phases is extremely helpful in understanding how the geopolymer

was formed.
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• Investigation of other Al-rich materials as possible aluminum sources such as red

mud, sodium aluminate, salt cake, spent potliner or waste water from Al

refineries.

• Durability testing on the mortars or concrete to ensure the compressive strength

measured in this research is stable. This could include leaching tests of mortars in

water to determine if the presence of Al is indeed tying up the excess alkalis.

• Rigorous testing of variables such as glass fineness, activator concentration,

curing time and temperature to develop trends for each of these variables and for

the various combinations of them.

• Experimentation with a more complete spectrum of glass compositions as well as

blended glasses.

• Experimentation with water reducers or superplasticizers for use with high

metakaolin replacements to reduce the water demand.

• Experimentation with various fly ashes and glass to determine how the two

materials react together and if composition of the fly ash plays a big role in

success.

• Investigation into the effects of the water/solids ratio on performance could help

to develop an acceptable range of water/solids ratio in geopolymers.
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A. Appendix A 

A.1 Microanalysis results for Phase I 

Table 5.1. Microanalysis of phases found in F.5.80, which measured 4th in order of 
maximum compressive strength at 201 days. The results are based on 6 analyses. 

Bulk  Average 
Standard 

deviation 
Minimum Maximum 

Si/Al 8.39 9.4 0.3 8.8 9.8 

Na/Al 1.0 2.1 0.7 1.1 3.1 

Na/Si 0.1 0.2 0.1 0.1 0.3 

Ca/Si 0.4 0.5 0.0 0.4 0.5 

Table 5.2. Microanalysis of phases found in F.5.40, which measured 6th in order of 
maximum compressive strength at 201 days. The results are based on 6 analyses. 

Bulk   Average Standard deviation Minimum Maximum 

Si/Al 8.4 9.2 0.9 7.4 10.0 

Na/Al 1.0 3.0 0.6 2.3 4.0 

Na/Si 0.1 0.3 0.1 0.2 0.4 

Ca/Si 0.4 0.4 0.1 0.3 0.5 

Table 5.3. Microanalysis of phases found in F.10.80, which measured 3rd in order of 
maximum compressive strength at 201 days. The results are based on 6 analyses. 

Bulk   Average Standard deviation Minimum Maximum 

Si/Al 8.4 9.0 0.9 7.8 10.2 

Na/Al 1.6 5.5 2.7 3.4 10.6 

Na/Si 0.2 0.6 0.4 0.4 1.4 

Ca/Si 0.4 0.3 0.1 0.2 0.4 
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Table 5.4. Microanalysis of phases found in F.10.40, which measured 1st in order 
of maximum compressive strength at 201 days. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 9.2 0.9 7.4 10.0 

Na/Al 1.6 3.0 0.6 2.3 4.0 

Na/Si 0.2 0.3 0.1 0.2 0.4 

Ca/Si 0.4 0.4 0.1 0.3 0.5 

Table 5.5. Microanalysis of phases found in C.5.80, which measured 8th in order 
of maximum compressive strength at 201 days. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 14.0 3.0 10.1 17.6 

Na/Al 1.0 7.8 1.5 5.8 9.7 

Na/Si 0.1 0.6 0.1 0.5 0.7 

Ca/Si 0.4 0.3 0.0 0.2 0.3 

Table 5.6. Microanalysis of phases found in C.5.40, which measured 7th in order 
of maximum compressive strength at 201 days. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 13.7 2.1 11.8 17.7 

Na/Al 1.0 7.9 1.3 6.6 9.7 

Na/Si 0.1 0.6 0.1 0.4 0.7 

Ca/Si 0.4 0.2 0.1 0.0 0.3 
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Table 5.7. Microanalysis of phases found in C.10.80, which measured 5th in order 
of maximum compressive strength at 201 days. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 16.1 3.4 11.5 21.1 

Na/Al 1.6 7.2 0.8 6.2 8.0 

Na/Si 0.2 0.5 0.1 0.4 0.5 

Ca/Si 0.4 0.3 0.0 0.3 0.4 

Table 5.8. Microanalysis of lighter phase found in C.10.40, which measured 2nd 
in order of maximum compressive strength at 201 days. The results are based on 
6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 15.0 0.7 13.7 15.7 

Na/Al 1.6 11.7 1.6 9.5 13.8 

Na/Si 0.2 0.8 0.1 0.7 0.9 

Ca/Si 0.4 0.3 0.0 0.3 0.3 

Table 5.9. Microanalysis of dark phase found in C.10.40, which measured 2nd in 
order of maximum compressive strength at 201 days. The results are based on 3 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 15.5 1.3 14.1 16.4 

Na/Al 1.6 13.0 4.1 10.5 17.7 

Na/Si 0.2 0.8 0.2 0.6 1.1 

Ca/Si 0.4 0.3 0.0 0.3 0.3 
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B. Appendix B 

B.1 Microanalysis results for Phase II 

Table 5.10. Microanalysis of dark phase found in 100HA, which measured 2nd in 
order of maximum compressive strength at 179 days. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 7.8 3.9 9.0 10.6 

Na/Al 1.6 1.0 0.7 0.7 1.9 

Na/Si 0.2 0.2 0.2 0.1 0.2 

Ca/Si 0.4 0.5 0.0 0.4 0.6 

Table 5.11. Microanalysis of dark and light phases found in 100HA, which 
measured 2nd in order of maximum compressive strength at 179 days. 2 spots 
each of the darker and lighter phase were analyzed. 

Darker phase Lighter phase 

Si/Al 8.8 7.8 11.3 9.5 

Na/Al 5.1 3.3 4.2 3.3 

Na/Si 0.6 0.4 0.4 0.4 

Ca/Si 0.4 0.3 0.8 0.5 

Table 5.12. Microanalysis of dark phase found in 75HA25MK, which measured 
1st in order of maximum compressive strength at 179 days. The results are based 
on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 5.0 3.9 2.0 3.6 5.8 

Na/Al 1.0 0.8 0.5 0.8 1.4 

Na/Si 0.2 0.2 0.1 0.1 0.3 

Ca/Si 0.3 0.4 0.3 0.2 0.9 
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Table 5.13. Microanalysis of dark phase found in 75HA25MK, which measured 
1st in order of maximum compressive strength at 179 days. 2 spots each were 
analyzed of the darker and lighter phases. 

Darker phase Lighter phase 

Si/Al 4.0 5.6 4.3 5.1 

Na/Al 1.6 1.9 2.7 2.9 

Na/Si 0.4 0.3 0.6 0.6 

Ca/Si 0.2 0.3 0.4 0.7 

Table 5.14. Microanalysis of dark phase found in 50HA50MK, which measured 
5th in order of maximum compressive strength at 179 days. 2 spots of unreacted 
metakaolin were confirmed with EDS. 

Bulk Unreacted metakaolin 

Si/Al 3.5 2.2 2.3 

Na/Al 0.7 1.6 1.3 

Na/Si 0.2 0.7 0.6 

Ca/Si 0.2 0.0 0.0 

Table 5.15. Microanalysis of dark phase found in 75HA25FA, which measured 
3rd in order of maximum compressive strength at 179 days. The results are based 
on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 6.6 7.1 3.3 8.4 10.1 

Na/Al 1.5 1.5 1.0 0.9 2.8 

Na/Si 0.2 0.3 0.2 0.1 0.3 

Ca/Si 0.4 0.6 0.3 0.4 1.1 
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Table 5.16. EDS analysis of dark phase found in 50HA50FA, which measured 
4th in order of maximum compressive strength at 179 days. The results are based 
on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 5.2 5.3 2.9 3.7 8.7 

Na/Al 1.5 1.9 1.0 1.5 2.8 

Na/Si 0.3 0.6 0.5 0.3 0.5 

Ca/Si 0.4 0.7 0.4 0.4 1.4 
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C. Appendix C 

C.1 Microanalysis results for Phase III 

Table 5.17. Microanalysis of phases found in 100LA cured at 60°C. The results are 
based on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 244.5 193.6 92.8 163.0 319.3 

Na/Al 85.2 49.6 33.6 46.9 88.0 

Na/Si 0.4 0.3 0.1 0.3 0.3 

Ca/Si 0.2 0.2 0.0 0.1 0.2 

Table 5.18. Microanalysis of phases found in 62LA38MK cured at 60°C. The results 
are based on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 6.52 - - - - 

Na/Al 1.98 - - - - 

Na/Si 0.30 - - - - 

Ca/Si 0.10 - - - - 

Table 5.19. Microanalysis of phases found in 37LA63MK cured at 60°C. The results 
are based on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 3.70 - - - - 

Na/Al 0.99 - - - - 

Na/Si 0.27 - - - - 

Ca/Si 0.07 - - - - 
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Table 5.20. Microanalysis of phases found in 100HA. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 8.4 9.4 4.1 9.7 12.8 

Na/Al 1.6 2.6 1.5 2.9 4.1 

Na/Si 0.2 0.3 0.1 0.3 0.3 

Ca/Si 0.4 0.4 0.0 0.4 0.4 

Table 5.21. Microanalysis of phases found in 75HA25MK. The results are based on 
6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 5.0 3.6 1.8 1.7 6.4 

Na/Al 1.0 1.2 0.7 0.7 2.0 

Na/Si 0.2 0.3 0.1 0.3 0.4 

Ca/Si 0.3 0.2 0.1 0.2 0.3 

Table 5.22. Microanalysis of phases found in 100MK. The results are based on 6 
analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 2.08 - - - - 

Na/Al 0.43 - - - - 

Na/Si 0.20 - - - - 

Ca/Si 0.00 - - - - 
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C.2 Microanalysis results for mortars cured at 80°C 

Table 5.23. Microanalysis of phases found in 100LA cured at 80°C. The results are 
based on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 244.5 151.2 64.5 129.0 241.5 

Na/Al 85.2 40.2 26.5 41.7 68.0 

Na/Si 0.4 0.3 0.1 0.3 0.3 

Ca/Si 0.2 0.1 0.0 0.1 0.2 

Table 5.24. Microanalysis of phases found in 62LA38MK cured at 80°C. The results 
are based on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 6.5 3.8 2.1 2.5 7.2 

Na/Al 2.0 1.1 0.7 0.9 2.2 

Na/Si 0.3 0.3 0.1 0.2 0.4 

Ca/Si 0.1 0.1 0.0 0.0 0.1 

Table 5.25. Microanalysis of phases found in 37LA63MK cured at 80°C. The results 
are based on 6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 3.70 - - - - 

Na/Al 0.99 - - - - 

Na/Si 0.27 - - - - 

Ca/Si 0.07 - - - - 
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C.3 Microanalysis results for ternary mixtures 

Table 5.26. Microanalysis of phases found in LA-FA-MK. The results are based on 
6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 6.2 4.4 1.6 4.5 6.0 

Na/Al 2.0 1.3 0.7 1.4 2.1 

Na/Si 0.3 0.3 0.1 0.3 0.4 

Ca/Si 0.2 0.1 0.0 0.1 0.1 

Table 5.27. Microanalysis of phases found in HA-FA-MK. The results are based on 
6 analyses. 

Bulk Average Standard deviation Minimum Maximum 

Si/Al 4.1 3.6 1.3 3.3 5.0 

Na/Al 1.0 1.3 0.8 1.2 2.8 

Na/Si 0.2 0.4 0.1 0.3 0.6 

Ca/Si 0.3 0.2 0.0 0.2 0.3 
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