
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

REAL TIME FUZZY CONTROLLER FOR QUADROTOR STABILITY REAL TIME FUZZY CONTROLLER FOR QUADROTOR STABILITY

CONTROL CONTROL

Pranav S. Bhatkhande
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2014 Pranav S. Bhatkhande

Recommended Citation Recommended Citation
Bhatkhande, Pranav S., "REAL TIME FUZZY CONTROLLER FOR QUADROTOR STABILITY CONTROL",
Master's Thesis, Michigan Technological University, 2014.
https://digitalcommons.mtu.edu/etds/758

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151508408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages

REAL TIME FUZZY CONTROLLER FOR QUADROTOR STABILITY CONTROL

By

Pranav S. Bhatkhande

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

c© 2014 Pranav S. Bhatkhande

This report has been approved in partial fulfillment of the requirements for the

Degree of MASTER OF SCIENCE in Electrical Engineering.

Department of Electrical & Computer Engineering

Report Advisor: Dr. Timothy C. Havens

Committee Member: Dr. Jeffery Burl

Committee Member: Dr. Yushin Ahn

Department Chair: Dr. D. Fuhrmann

For my family and friends

Contents

List of Figures . xi

Acknowledgments . xiii

Abstract . xvi

1 Introduction . 1

1.1 Quadrotor hardware and design . 1

1.2 Quadrotor dynamics . 3

1.3 State estimation filters . 3

1.4 Control system design . 4

1.5 Hardware implementation . 5

1.6 Motivation . 6

2 Quadrotor hardware and design . 7

2.1 Mechanical Parts and Motors . 7

2.2 Electronics and software . 8

2.2.1 Controller Boards . 8

2.2.2 Batteries and Power . 9

vii

2.2.3 Wireless and radio-frequency units 9

2.2.4 Ground-station software . 10

3 Quadrotor Dynamics . 11

4 State estimation filters . 17

4.1 Introduction . 17

4.2 Simplified two-state Kalman filter . 18

4.2.1 Terms and definitions . 18

4.2.2 Kalman filter Equations . 22

4.3 Filter processing challenges . 25

5 Control System Design . 27

5.1 Control Strategy Design . 27

5.1.1 Traditional control strategy . 27

5.1.2 PD Controller . 29

5.1.3 Control splitting . 30

5.1.4 Fuzzy control strategy . 30

5.1.4.1 Experimental Setup . 31

5.1.4.2 Generating training data 32

5.1.4.3 Learning controller from training data 32

5.2 Generalization of the controller training process 36

6 Hardware Implementation . 37

viii

6.1 Overview . 37

6.2 Challenges in hardware implementation 38

6.3 Implementation results on various platforms 39

6.3.1 Combination of APM 2.5 and Gumstix Overo Firestorm 40

6.3.1.1 Hardware and software architecture 40

6.3.1.2 Development process . 40

6.3.1.3 Results: Gumstix with UDP 42

6.3.1.4 Primary issues with this method 43

6.3.2 Pixhawk PX4 Controller Board . 43

6.3.2.1 Hardware and software architecture 43

6.3.2.2 Development process . 45

6.3.2.3 Results: Pixhawk . 48

6.3.3 Alternative implementation method 49

References . 51

A List of signals . 57

ix

x

List of Figures

3.1 ’Plus’ quadrotor frame—x-axis points forward, y-axis to the right, and

z-axis points down toward ground (into the paper in this figure) 12

5.1 Overall Control Loop . 28

5.2 Experimental (x,y,z) signals . 31

5.3 Surface view: Height controller . 34

5.4 Surface view: Pitch controller . 34

5.5 Surface view: Roll controller . 35

5.6 Surface view: Yaw controller . 35

6.1 Hardware Implementation . 41

6.2 Gumstix UDP Result . 41

6.3 Development Workflow - Pixhawk . 44

6.4 Pixhawk: Roll controller comparison . 47

6.5 Pixhawk: Pitch controller comparison . 47

xi

Acknowledgments

Thanks to my parents, without their support, this would not have been possible.

I would like to thank my adviser, Dr. Timothy C. Havens for providing the guidance,

advice and resources necessary to complete this report. Without his encouragement and

support, this would have been very difficult. Special thanks to everyone at the Intelligent

Robotics Lab for all the fun times. I would also like to thank my committee members,

Dr. Jeffery Burl and Dr. Yushin Ahn for providing excellent inputs in the making of this

report.

Lastly, I would like to thank all the members of the open-source UAV community.

xiii

Abstract

In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive

neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard

proportional-derivative (PD) controller and use the PD controller data to train the ANFIS

system to develop a fuzzy controller. We then propose and validate a method to implement

this control strategy on commercial off-the-shelf (COTS) hardware.

An analysis is made into the choice of filters for attitude estimation. These choices are

limited by the complexity of the filter and the computing ability and memory constraints of

the of the micro-controller. Simplified Kalman filters are found to be good at estimation of

attitude given the above constraints.

Using model based design techniques, the models are implemented on an embedded

system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers.

We evaluate the feasibility of the proposed control strategy in a model-in-the-loop

simulation. We then propose a rapid prototyping strategy, allowing us to deploy

these control algorithms on a system consisting of a combination of an ARM-based

microcontroller and two Arduino-based controllers. We then use a combination of the

code generation capabilities within MATLAB/Simulink in combination with multiple

open-source projects in order to deploy code to an ARM Cortex M4 based controller board.

xv

We also evaluate this strategy on an ARM-A8 based board, and a much less powerful

Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers

on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the

current hardware and make suggestions for hardware that we think would be better suited

for memory heavy controllers.

xvi

Chapter 1

Introduction

1.1 Quadrotor hardware and design

In Chapter. 2, we describe the quadrotor hardware and design. Quadrotors (also called

quadcopters) are flying vehicles with four vertically-mounted rotors that are typically found

in a “plus” or a “X” frame. The four arm-mounted motors provide four thrust vectors to

the system. The mechanical simplicity of the system is contrasted by the complexity of the

problem of controlling these systems. Being under-actuated, and having no redundancy,

the control problem is of utmost importance. Quadrotors have multiple uses; they’re highly

maneuverable and have the ability to reach places that might be dangerous to humans.

Quadrotors can also be used as remote sensor pods. In disaster areas, quadrotors can

1

provide a high quality information bridge between the disaster zone and the rescue teams.

They can also help in automated inspection of infrastructure. These platforms can also

provide soldiers with high-quality, timely information in a combat situation. The low cost,

high maneuverability, and ease of manufacturing make these machines very interesting.

Quadrotors are under-actuated, i.e., they have four motors to control six degrees of freedom

(DOF). This makes the control difficult. In this report, we first briefly discuss the dynamics

of the quadrotor. For a detailed description of the system dynamics consult reference [1]. It

must be noted that the quadrotor dynamics here do not consider the coupling in very high

speed maneuvers—we are primarily in interested stable platforms for remote-sensing use.

There are two main issues in creating controllers for quadrotors. Unlike ground platforms,

there is a limitation on the amount of processing capability you can have on-board when

flying. This limit is addressed to some degree by many Commerical Off The Shelf (COTS)

controllers on the market today. Programming control algorithms within these limits of

memory space and processing capability is a challenge. The second issue is the highly

complex system dynamics involved when flying. Inertial Measurement Unit (IMU) noise

characteristics also introduce some challenges in the control design.

2

1.2 Quadrotor dynamics

In Chapter 3 the dyanmics of the quadrotor are explained. This chapter defines the dynamic

model used to create the fuzzy controller developed later. This model of for the quadrotor

dynamics is developed in[1]. This chapter describes and develops the mathematical relation

and also explains some challenges in create control algorithms for this platform.

1.3 State estimation filters

In Chapter. 4 we describe the filters we use to estimate the attitude of the vehicle. After we

look at the dynamics of the quadrotor system, we move on to figuring out the best possible

choice of attitude estimation algorithms. The APM 2.5 controller has an accelerometer and

a gyroscope. We investigate a simple implementation of the Kalman filter for estimating

the attitude of the device. We explain why the simple implementation is required to have

minimum impact on memory. The Pixhawk flight controller[2], operating on the NuttX

operating system h,as an open source implementation of an extended Kalman filter. We

also look at this implementation when the constraints on the memory are less strict.

3

1.4 Control system design

In Chapter 5 introduce our proposed control strategy. We discuss how we developed this

strategy using an ANFIS system[3]. We show that the ANFIS system is very useful in

creating fuzzy controllers when the dynamics of the system are well known. With the vast

amount of theory available for tuning PID controllers, a PD controller tuned to control the

dynamic system can be used to initially train the fuzzy controller. Tuning a quadrotor is a

difficult process when using PID controllers. In our experience with many commercially

available platforms, tuning the PID controller loop within the controller to achieve desired

performance is difficult. We hope to reduce the tuning problems with the proposed fuzzy

control strategy.

We make use of the ANFIS [3] in order to create our required fuzzy rule base. We use

the PD controller as the base for creating our initial controller rule base, however, we

propose that one any available and relevant data can be used. We hope, that by publishing

these results, people will be able to build their own controllers for a variety of custom

configurations with relative ease. In order to create a proof of concept of the strategy

working on embedded hardware, we decided to modify existing open-source projects and

tools and build our system on top of them.

4

1.5 Hardware implementation

Chapter 6 describes a prototype hardware implementation for a fuzzy controller developed

using the technique we developed in Chapter 5 This report also investigates a hardware

implementation of our proposed fuzzy controller on an ARM-based microcontroller. To

cut development time, we propose a method to rapidly develop fuzzy control algorithms

and then implement these algorithms on COTS ARM-based components. We show that

an enthusiast grade controller—the APM 2.5/APM 2.6—can be augmented to incorporate

the more complicated controller. A system is developed where these Arduino-Mega based

controllers can communicate over user datagram protocol (UDP) to ARM-based boards.

The ARM-based chips handle the heavy processing, while the Arduinos are used as end

actuators that provide the pulsewidth modulation (PWM) control signals.

We conclude by showing results of the fuzzy control strategy and comparing it with

a PD controller. We then show the viability of the hardware implementation and

hardware-in-the-loop simulator testing [4]. We perform testing on the Pixhawk flight

controller and state our results.

5

1.6 Motivation

The Intelligent Robotics Laboratory at Michigan Tech deals with a number of applications

of multirotors, where multiple sensor packages are taken into flight to collect data. It was

observed that with commercial off the shelf parts, putting together a flying configuration

is relatively easy; however when you start modifications to the frame design, or start

modifying the payloads, the dynamics of the vehicle change. Modeling these dynamics

becomes a challenging task. One approach is to design an optimal controller, however

doing so requires a full knowledge of the system dynamics. The other philosophy is to

design an adaptive controller, which can perform controlling action without knowing the

exact dynamic model of the plant. An ideal solution would probably use a hybrid of these

two approaches. The tuning problems that we faced when assembling our quadrotors was

the primary motivation of this fuzzy control design.

6

Chapter 2

Quadrotor hardware and design

In our experiments, we decided to use off the shelf parts to assemble our quadrotor. In this

section we document the decision process for our experiments.

2.1 Mechanical Parts and Motors

The mechanical parts required for the quadrotor are minimal, this makes the quadrotor an

ideal and low cost flying platform suitable for many purposes. We had to decide upon the

frame, propellers, speed controllers and other small parts in order to assemble the system.

We purchased a fiber glass frame from an online retailer (450mm wide, 55mm high), this

seemed to be a popular choice among the enthusiast quadrotor community. The frame is

7

made from glass fiber and is of reasonably strong construction, its low cost makes it an ideal

choice of experimental purposes. The propellers are chosen to be 8x4.5 inch propellers,

driven by Turnigy Aerodrive SK3 motors. The speed controllers are Turnigy Multistar.

2.2 Electronics and software

2.2.1 Controller Boards

In this report, we evaluate a number of controller boards for the purpose of implementing

a fuzzy controller. The boards are listed here in the order in which we evaluated them

� APM 2.5 Controller board [5]– The APM 2.5 controller is in essence an Arduino

Mega 2560 board fused with an IMU, and the ability to output PWM signals. On

board is a 3 axis gyroscope, 3 axis accelerometer, and has an additional barometric

sensor for sensing altitude, however we realized that barometers do not work well at

low altitude. This controller board has 32KB of memory, and 0.5 KB is used by the

system’s bootloader, it also has 2 KB of SRAM and 1KB EEPROM. This memory

limitation is crucial to note.

� Pixhawk PX4– The Pixhawk controller is an incremental upgrade from two boards,

the PX4FMU and PX4IO [2]. This board has a more powerful Cortex M4 processor

8

fused together with an IO board like the APM 2.5 controller capable of PWM signal

generation. A 6 axis accelerometer and gyroscope are also on-board.

� Gumstix Overo Firestorm– The Gumstix is much closer to smart-phone hardware

rather than a flight controller board. It runs a dual core ARM-Cortex A8 chip, 512

Mb of RAM. We used the Gumstix in some hardware testing.

2.2.2 Batteries and Power

Two options are possible for delivering power to the quadrotor.

� Tethered Power– A tether is created between the vehicle and a power supply, this

solution is ideal for bench testing and flying indoors.

� Batteries– 3S, 2200mAH batteries power the quadrotor. The flying time possible

with these batteries is about 20 minutes.

2.2.3 Wireless and radio-frequency units

� Wireless Transmitter– A Futaba radio transmitter, receiver pair is used as the remote

control.

� Wireless data transmission– Wireless data transmission is possible over MAVlink[6].

9

The base station receives this data over serial at a baud rate of 57600bps

2.2.4 Ground-station software

� Qgroundcontrol[7]– Developed as an open-source project, Qgroundcontrol

implements MAVlink on the ground station. This tool helps calibrate sensors,

controller settings, and also provides options to debug sensor data.

� Mission Planner– Mission planner is similar to QgroundControl, we use this software

package mainly to perform tests with the stock Ardupilot software on the APM 2.5

flight controller.

10

Chapter 3

Quadrotor Dynamics

In this chapter, the dynamics of the quadrotor are explained. This model is based on the

model developed in [1]. We begin by deciding upon a dynamic system model for the

quadrotor system. The frame that is taken into consideration for developing our control

strategy is shown in Fig. 3.1. It must be noted that the z-axis is taken in the downward

direction—toward the ground or into the paper. This is especially important since it

follows the aerospace convention. The directions for the motors are also shown in Fig. 3.1.

Reference [1] explains the dynamics frame in more detail. We follow the same expressions

in [1] for rolling torque and pitching torque.

Consider the vehicle as shown in Fig. 3.1, the vehicle has a thrust in the upward direction,

the negative direction of the z axis. Let us denote the motor thrusts as Ti, the speed of each

11

X

Y1

2

3

4

Figure 3.1: ’Plus’ quadrotor frame—x-axis points forward, y-axis to the

right, and z-axis points down toward ground (into the paper in this figure)

motor as ωi, b is the lift constant, and i ∈ {1,2,3,4} represents the labels for the motors.

Hence, the thrust from each motor can be calculated as

Ti = bω2
i , i = 1, . . . ,4.

This upward thrust is opposed by the force of gravity acting in the downward direction, i.e.,

Fg = mg. So, for a vehicle of mass m, this is given by

Ft = mg−
4

∑
i=1

Ti.

In order to rotate or yaw the vehicle, the controller uses a pairwise difference in the thrust

of motors 1 and 3. In order to roll the vehicle, a correspondingly difference of force is input

to motors 2 and 4.

Consider r is the distance between the center of the airframe, as seen in Fig. 3.1. We now

12

define two torque values, τx and τy, as the rolling torque and pitching torque acting along

the x and y axis respectively:

τx = rb(ω2
4 −ω2

2); (3.1a)

τy = rb(ω2
1 −ω2

3). (3.1b)

Now, we consider the aerodynamic drag, denoted as D, that acts to oppose thrust. The drag

component corresponding to every Ti is denoted as Di. The factor k depends on factors

similar to the lift constant b. Thus, aerodynamic drag is defined as

Di = kω2
i .

This aerodynamic drag creates a reaction torque that acts to oppose the intended motion of

each of the motors. This reaction torque is given by

τz = D1 −D2 +D3 −D4. (3.2)

As can be seen, (3.1) and (3.2) describe the torque along each of the three axes of the

vehicle as a function of the motor speeds for each motor.

Given a torque vector

ξ = (τx,τy,τz)
T
,

13

the rotational equations of motion

Iȧ+a× Ia = ξ , (3.3)

where I is the inertia matrix and a is the angular velocity vector around each axis. I is

diagonal for an ideal quadcopter model,

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ixx 0 0

0 Iyy 0

0 0 Izz

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Now consider ωT as the motor speed vector, we define the matrix A as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b −b −b −b

0 −rb 0 rb

rb 0 −rb 0

k −k k −k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

14

We define ωT as

ωT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and γ as the thrust/torque vector

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑4
i=1 Ti

τx

τy

τz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We now combine A, γ and ωT in this relation,

ωT = A−1γ. (3.4)

The position is x, y and z. The pitch, roll and yaw angles are denoted as θr θp and θy. The

vehicle is under-actuated: it needs to generate a pitch angle θp to create a forward velocity.

Control over θp and θr enables control of the quadrotor. Modern enthusiast controllers like

APM 2.5 (Arducopter) output a state vector. Note that, in order to calculate the x, y, z

positions one has to calculate the appropriate rotation matrix ℜ. More can be read about

15

the dynamics of this vehicle in [1]. The final state vector of the vehicle is

x = (x,y,z,θr,θp,θy, ẋ, ẏ, ż, θ̇r, θ̇p, θ̇y), (3.5)

where (x,y,z,θr,θp,θy) is the 6 DOF pose of the vehicle (i.e., position and rotation) and

(ẋ, ẏ, ż, θ̇r, θ̇p, θ̇y) are the rates of change in each of the 6 DOF pose variables. In our

real-world system, the state vector is provided to the controller by an inertial measurement

unit (IMU) or some other collection of pose-estimate sensors[8].

16

Chapter 4

State estimation filters

4.1 Introduction

Kalman filters are widely used in top of the line enthusiast controllers. Thanks to improving

performance in low-powered micro-controller devices, it is now possible to implement

these filters on these power limited devices. Kalman filters significantly improve our

estimation of attitude, compared to raw sensor information. We will be looking at two

implementations of the Kalman filter algorithm[9]. [9] and the associated github page

sheds some light on how one could create an efficient Kalman filter algorithm for an IMU

unit. [10] has a good overview on how one could improve the low precision issues with

commercial, off the shelf, cheap IMUs. Kalman filters seem to be used extensively in

17

attitude estimation problems. In our experiments using the Kalman filter greatly improved

our estimate of attitude. The Pixhawk micro-controller toolchain [11] implements an

Kalman filter. We make some trade-offs between the memory efficiency of the filter and

its performance. We briefly describe a simplified version of the Kalman filter , and then go

over some performance metrics of this filter on embedded hardware.

4.2 Simplified two-state Kalman filter

4.2.1 Terms and definitions

We use a simplified version of the Kalman filter here. The idea is to avoid huge matrices.

We try to find a balance between performance with respect to accuracy in attitude estimates

and computation requirements on embedded hardware. Note here that with the Pixhawk,

it might be possible to implement an extended Kalman filter; however, this leaves us with

a very little memory left for the fuzzy controller. We use a simplified version of the filter,

implemented as published by tj-electronics [9], an open-source library [12].

We now briefly look at our simplied Kalman filter. The state here is defined by xk,

xk =

⎛
⎜⎜⎝

θ

θ̇b

⎞
⎟⎟⎠ ,

18

The term θ represents the angle, while the term θ̇b represents the gyroscopes’ drift over

time (bias). Assume that x̂k−1|k−1 is the previous state estimate, x̂k|k−1 is the a priori state

estimate, x̂k|k is the a posteriori error estimate.

F is our state transition model, F is applied to the previous state estimate, x̂k−1|k−1.

F =

⎛
⎜⎜⎝

1 −δ t

0 1

⎞
⎟⎟⎠ ,

B is the input matrix, and is defined as,

B =

⎛
⎜⎜⎝

δ t

0

⎞
⎟⎟⎠ ,

B is applied to the input of to the system, in this case, it is our measurement in deg/sec from

the gyroscope, this is expressed as θ̇k.

Now we assume that the true state of the system is defined by xk, where F is our state

transition matrix, B is our input matrix and θ̇k is the input and wk is the process noise. The

process noise wk is considered to have zero mean and co-variance Qk. Qk is defined as

Qk =

⎛
⎜⎜⎝

Qθ 0

0 Qθ̇b

⎞
⎟⎟⎠δ t.

19

Process noise is thus defined as,

wk ∼ N(0,Qk). (4.1)

We now define the state xk of the system.

xk = Fxk−1 +Bθ̇k +wk, (4.2)

We cannot observe the state xk, but we can make a measurement. zk is the measurement

made at a time k. True space now has to be mapped into the observed space, we do this

with H, our observation model. H is defined as

H =

(
1 0

)
.

When we make a measurement, we can only do so with a certain degree of certainty, this

is where we factor in the measurement noise. This measurement noise is considered to be

normal, with mean zero and variance L. The co-variance L is equal to the variance of vk.

20

This is defined as

L = var(vk). (4.3)

The measurement noise is thus defined as,

vk ∼ N(0,L). (4.4)

zk, the measurement made at time step k is thus expressed as

zk = Hxk + vk. (4.5)

Now let us define the a priori error estimate and a posteriori state estimate

e−k = xk − x̂k
−
, (4.6)

ek = xk − x̂k. (4.7)

Corresponding to these, the a priori and a posteriori error co-variance is then

P−
k = E[e−k e−T

k], (4.8)

21

Pk = E[ekeT
k]. (4.9)

These equations are defined as described in [13].

We then define the Kalman gain matrix, K. The use of the Kalman gain matrix will be

made clear later. Put briefly the Kalman gain determines the amount of trust we place on

our predicted state, or our measurement.

K =

⎛
⎜⎜⎝

K0

K1

⎞
⎟⎟⎠ .

4.2.2 Kalman filter Equations

The Kalman filter equations can be divided into two parts, the first stage is called the predict

stage, and this followed by the update stage.

In equation. 4.10, we predict the state at a further time-step.

x̂k|k−1 = Fx̂k−1|k−1 +Bθ̇k, (4.10)

22

we now project the error variance ahead in equation. 4.11

Pk|k−1 = FPk−1|k−1FT +Qk. (4.11)

The equations 4.11 and 4.10 together represent the prediction part of the process. We now

explain the update equations.

The measurement zk is made, this enables us to calculate the innovation, denoted by ỹk.

The observation matrix H maps the a priori state into the observed state, this is subtracted

from the measurement from the accelerometer or gyroscope, which results into a single

value for ỹk. Equation 4.12 defines this innovation,

ỹk = zk −H ˆxk|k−1. (4.12)

We now determine a quantity which defines how much we trust our measurement. If

the measurement noise increases, our innovation covariance increases, this makes our

measurement seem unreliable. The observation model, simply maps the a priori state into

observed space. We now update the innovation co-variance in equation 4.13.

Sk = HPk|k−1HT +L. (4.13)

23

The next step is to figure out the Kalman gain. When we have a very large value for

Sk it would mean that our measurements vary a lot, this would reduce our trust in our

measurements, and put more trust into our predicted state. Pk tells how much we expect

the state xk is expected to change. In order to change the estimate by a larger amount, one

would need a larger Kalman gain. This is more formally noted in equation4.14

Kk = Pk|k−1HT S−1
k . (4.14)

We then estimate the next state:

ˆxk|k = ˆxk|k−1 +Kkỹk. (4.15)

The error co-variance is updated as follows

Pk|k = (I −KkH)Pk|k−1. (4.16)

Equations 4.15 and 4.16 are called the update equations. This process is repeated thrice,

to find the roll, pitch and yaw for our system.

The open-source community contributes tremendously. For example, a certain set of

values for variances that work well for certain IMU’s are available [9]. After some testing

and experimentation, this filter is found to perform satisfactorily on the APM 2.5 flight

24

controller, and then Pixhawk flight controller[14]. [14] has published a modified version

of the same filter, and has included that in a experimental control system for the APM 2.5

flight controller. This serves as a good reference for building better filters.

4.3 Filter processing challenges

All filters on an embedded hardware need to be optimized for memory efficiency,

huge matrices declared as float’s or double’s consume memory that would be consider

unacceptable in many applications. The Gumstix Firestorm COM is capable of running an

extended Kalman filter and a fuzzy controller at the same time, without any performance

impact, the ARM Cortex-A8 architecture is found to be extremely adept to deal with

these challenges. The ARM Cortex-M4 processor and the ARM Cortex-M3 failsafe

co-processor on the Pixhawk boards can also run a extended Kalman filter, but these reduce

the amount of memory and processing capability available to other parts of the system,

most importantly, the control system. As it stands right now, the Pixhawk runs best with a

simple , less memory intense control system and a Kalman filter for attitude estimation. We

implement a fuzzy-attitude control system on the Pixhawk while using the Kalman filter,

we did this reducing the amount of membership functions in the input space, and using

the takagi-Sugeno inference system allowing us to eliminate membership functions in the

output space.

25

Chapter 5

Control System Design

5.1 Control Strategy Design

5.1.1 Traditional control strategy

To stabilize the quadrotor system, the typical strategy is to have three PID control loops

that continuously measure the current pitch, roll and yaw; given by (θr, θp, θy) and the

change in the respective quantities (θ̇r, θ̇p, θ̇y) relative to some desired pose. The request

for the change in attitude is by the user in the form of remote control commands, by a

radio, or predefined flight-plan[15]. Tuning the parameters is a very difficult task, for this

under-actuated system. Although it might be theoretically possible to analytically tune

27

Figure 5.1: Overall Control Loop

the gains of the PD controller for the quadrotor, reforming this analysis for every new

configuration of the quadrotor becomes difficult and tedious. Modified tuning techniques

can also be used to tune the PD controller [16]. In our application, the PD controller is

tuned using classical tuning methods for optimal response as described in [1]. Figure. 5.1

shows the overall control loop.

28

5.1.2 PD Controller

As noted in chapter 3, section 3, we need to control the roll, pitch, yaw; stated as

(θr,θp,θy), and (θ̇r, θ̇p, θ̇y). We define the Proportional gain values for roll, pitch, yaw

as (Kpr
,Kpp

,Kpy
) and derivative gain values as (Kdr

,Kdp
,Kdy

). Note that a feedforward

constant C is added to the altitude controller to balance the weight of the quadrotor against

the force of gravity given as

C =

√
mg

4b
. (5.1)

The control equations are

τx = Kpr
(θ̂r −θr)+Kdr

(ˆ̇θr − θ̇r); (5.2a)

τy = Kpp
(θ̂p −θp)+Kdp

(ˆ̇θp − θ̇p); (5.2b)

τz = Kpy
(θ̂y −θy)+Kdy

(ˆ̇θy − θ̇y); (5.2c)

T = KpZ
(Ẑ −Z)+KdZ

(Z − Ż)+C. (5.2d)

29

5.1.3 Control splitting

The outputs generated by the four controllers above are split among the four motors. This

is called control splitting. Let the contribution of each be denoted by fr, fp, fy and fz

respectively for roll, pitch, yaw and altitude.

ω1 = fp + fy + fz (5.3a)

ω3 =− fp + fy + fz (5.3b)

ω2 =−1(− fr − fy + fz) (5.3c)

ω4 =−1(fr − fy + fz) (5.3d)

Note that the output of the altitude controller is added equally to all motors. This allows

the roll and pitch of the vehicle. This control splitting block is the same for both the PD

controllers and the Fuzzy controller desribed in section 5.1.4. In Fig. 5.1 we show the

placement of the control splitting block.

5.1.4 Fuzzy control strategy

In this section, we develop a fuzzy control strategy to control the quadrotor described

in Sec. 3. We propose a strategy based on the ANFIS system[3]. We first set up an

30

0 2 4 6 8 10 12 14 16 18 20
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Reference Signal: Z

−1

−0.5

0

0.5

1

1.5

2
Reference Signal: Y

−1

0

1

2

3

4

5
Reference Signal: X

Time offset: 0

Figure 5.2: Experimental (x,y,z) signals

experiment, collect data from this experiment and then create a controller from the training

data obtained. The derived controller is used to control the quadrotor.

5.1.4.1 Experimental Setup

The goal of the experiment is to create a closed loop scenario, in which we can test control

algorithms against the approximate dynamics model described in Sec. 3. We define x, y

and z coordinates, the (x,y,z) is where we could like our quadrotor to go. In the absence

of Radio Control (RC) commands, these serve as a good replacement. For illustration,

31

consider Fig. 5.2; here we keep the value of x constant and request changes in the y and z

coordinates. Various input conditions are simulated.

5.1.4.2 Generating training data

We first log data from the experiment set up above. The experiment is first run for the z

controller, in this case, we first train the system to go from a height of 0 to a maximum step

height, thus simulating the step response. We log data for z, dz and rpm change due to the

z controller. A similar process is repeated for the attitude control and yaw control of the

vehicle. Data logged from this process is then fed into the ANFIS system.

5.1.4.3 Learning controller from training data

ANFIS combines a neural network with fuzzy logic and thus achieves a learning

mechanism for a fuzzy rule base. It is widely regarded as an universal estimator [17].

We propose that the controller only has to learn once, in a simulation or a hardware-in-loop

test, and the code deployed to the embedded hardware would perform well compared to a

PD or PID controller. [18] follows a similar training procedure on similar training data. In

this effort, we collect training data from the above experiment and feed it into the ANFIS

system [3]. The follow parameters are used in the ANFIS system:

32

� number of inputs: 2

� number of outputs: 1

� number of rules: 25

� type of membership functions: Gaussian Bell functions

� fuzzy inference system: Sugeno

� intersection: product

� union: max

� defuzzification : weighted average

Figures 5.3–5.6 show the surface views for the four learned controllers. The ANFIS system

has the ability to leverage neural networks and fuzzy rules to create a fuzzy inference

system. We do this for all our sets of the training data, and create the rule bases for our

controllers.

While ANFIS systems are very good at producing high quality fuzzy rule bases (as

a universal estimator), they are computationally complex. However, hybrid learning

algorithms [19] could be used to produce good control rule bases more efficiently.

33

−6
−4

−2
0

2

−3

−2

−1

0

1

2

−150

−100

−50

0

50

100

150

200

250

300

Z

dZ

fz
(r

p
m

)

Figure 5.3: Surface view: Height controller

-0.3

−0.2

−0.1

0
0.1

0.2

−0.15
−0.1

−0.05
0

0.05
0.1

0.15

−100

−50

0

50

100

Pitch

dPitch

fp
 (

rp
m

)

Figure 5.4: Surface view: Pitch controller

34

−0.05

0

0.05

−0.05

0

0.05

−150

−100

−50

0

50

100

150

Roll

dRoll

fr
 (

r
p

m
)

-0.1

Figure 5.5: Surface view: Roll controller

0

0.2
0.3

0

−50

0

50

Yaw
dYaw

fy
(r
p
m
)

-0.1

0.1

0.2

0.3

0.4

0.1

0.4
0.5

0.6

Figure 5.6: Surface view: Yaw controller

35

5.2 Generalization of the controller training process

As we explain in the previous section, we developed a fuzzy control strategy to stabilize

the vehicle. We used the PD controller data as our training data, and validated this idea

by giving new sets of goals not present in the training data. This proves the viability

of this method. However, in the absence of control data, we could still hypothesize that

developing an ANFIS derived fuzzy controller is possible simply by manually creating

training data. We illustrate this idea further in the report when we create a realization of a

’proof-of-concept’ controller on an ARM-based micro-controller. We will be developing a

controller that takes two inputs, the current roll, and the change in roll request; the output

of this controller will be the attitude command sent to the vehicle.

36

Chapter 6

Hardware Implementation

6.1 Overview

In this chapter, we discuss the hardware implementation of the fuzzy controller we derived

earlier in the report. We attempted the implementation on a variety of micro-controllers,

we summarize the implementation, and then suggest our best case implementation. We go

further and then suggest a hardware specification that we think would be optimal for this

fuzzy controller design. Fuzzy controller design is an important aspect of this report.

37

6.2 Challenges in hardware implementation

Fuzzy controllers are fundamentally more complex to implement, most enthusiast grade

microcontrollers work on Arduino-based boards. Top of the line Arduino Boards do not

have the ability to implement a fuzzy controller; this limitation is due to the memory and

the processor architecture. Our initial experiments on the APM 2.5 (Arduino-Mega derived

flight controller) showed that the APM 2.5 board failed to implement the fuzzy controller

due to heavy memory restrictions and the lack of hardware floating point.

To address this, we first attempted an implementation on the Raspberry Pi. The Pi performs

well with a single fuzzy controller (e.g., the height controller), but struggles to keep up

when all four controllers are implemented. The Gumstix system was found to be better

performing; this is due to it being a dual core chip, in addition to that it is also clocked

higher.

Due to lack of direct interfacing between Arduino Uno and the Gumstix, a method

of communication must be decided upon. The method of communication between the

Arduino and the Gumstix is decided upon to be User Datagram Protocol (UDP). The

reasons for this is as follows. The GPIO pins of the Gumstix can only read and write logical

values, they are not useful for sending IMU information. The MATLAB implementation for

both microcontrollers supports UDP; hence, UDP is decided upon for its universal nature

38

and fast processing.

We also used the Pixhawk controller for validating our models. To use the Pixhawk, we

had to deploy code to the Pixhawk controller using model based design techniques. This

process, however was slightly more involved. Pixhawk [2], has developed a toolchain

[11]. We then used a wrapper [14] originally written for the px4fmu version 1.x boards,

and ported that to work with version 2.x boards. This wrapper code is then added to the

simulink model, and the generated code is built using make, cross-compiled using arm-gcc,

and then uploaded to the flight controller. We discuss this solution in depth further.

Programming various types of microcontrollers in various languages leads to a huge

development overhead. This time can be cut down by a rapid prototyping strategy. We

use a strategy based on that proposed in [20]. Similar strategies are used in automobiles for

programming Electronic Control Units [21].

6.3 Implementation results on various platforms

In this section, we test implementation of the fuzzy control algorithm on various hardware

platforms.

39

6.3.1 Combination of APM 2.5 and Gumstix Overo Firestorm

6.3.1.1 Hardware and software architecture

The Gumstix overo micro-controller is an ARM-Cortex A8 based system. This

micro-controller is supported from Simulink as a Simulink target. This allows us to

follow a strategy similar to [21]. The APM 2.5 controller is a modified version of the

Arduino-Mega 2560 micro-controller platform. The Gumstix can run multiple operating

systems, including a minimal implementation of Linux. The APM 2.5 controller runs a

modified Arduino environment.

6.3.1.2 Development process

A workflow [21] is developed to implement the control algorithm on hardware. First,

we develop the control algorithm in Matlab/Simulink. We generate C/C++ code using

code generation capabilities within Matlab. After the code is generated, the native code

is exported to the microcontrollers. The build system for Arduinos required modification

to be used with Arducopter [22]. The Gumstix code was generated directly from Matlab.

Note that with this process, three microcontrollers are programmed to perform various

tasks. These are listed as below and illustrated in Fig. 6.1. More can be read about such a

40

ARM Board (Gumstix)

UDP

Arduino + Ethernet

 Shield

Serial

APM 2.5/ APM 2.6

Figure 6.1: Hardware Implementation

0 10 20 30 40 50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

30

Time

R
P

M
 R

eq
ue

st

UDP Packet Loss Issue

Packet loss

Figure 6.2: Gumstix UDP Result

strategy in [20].

1. Gumstix Overo FIRESTORM– heavy processing, filtering, processing fuzzy

41

controller;

2. Arduino UNO– basic relay between APM 2.5 [22] and Gumstix microcontroller;

3. Arduino Ethernet Shield– UDP packet bridge between Gumstix and Arduino.

A custom built Arduino Board with an onboard IMU (APM 2.5) [22] generates the Yaw,

Roll, and Pitch, and the difference in all those quantities per time step. These data are

sent to the Arduino UNO board, and the Arduino UNO board acts as a relay between the

APM controller and the Gumstix Microcontroller. We use the Arduino Ethernet Shield to

transfer the data from the APM to the Arduino. The Arduino then sends the data via UDP to

the Gumstix microcontroller. The Gumstix microcontroller returns the control data via the

reverse loop, enabling us to send commands to the APM controller. The APM controller is

connected to the speed controllers. Figure 6.1 shows this process.

6.3.1.3 Results: Gumstix with UDP

In order to get an estimate of performance of this controller, we set up a model in the

loop test. Fuzzy controllers for roll, pitch, yaw and height were first deployed to the

Gumstix board. The host computer was set up to simulate the Quadrotor plant. The model

used for this plant is the same model as described here [1]. Zero-order hold blocks were

used to carry out the necessary analog to digital conversion in Simulink. The controller

performance was found to be very close to the performance achieved using a continuous

42

time simulation. However, UDP introduces packet-loss. This packet loss in shown in

Fig. 6.2. The more powerful dual core ARM Cortex A8 processor however is able to

process the four fuzzy controllers without any issues. The processor usage in this case

is always less than ten percent. This result is expected, as the Gumstix has support for

hardware floating point, and is clocked around 1GHz.

6.3.1.4 Primary issues with this method

Quadrotors need a very high rate of PWM channel update, the inner loop of many

commercial quadrotors, also called the rate controller, operates at 250Hz or above. The

transport delay introduced by UDP between the ARM processor, and the APM 2.5

controller do not make this a viable option. This points to the requirement of a custom

hardware module, we discuss this later.

6.3.2 Pixhawk PX4 Controller Board

6.3.2.1 Hardware and software architecture

The Pixhawk system relies heavily on open-source software contributions and open-source

hardware. Pixhawk, combines two previous generation components into one single fused

43

Model Development

(Simulink)

C/C++

Code from Simulink

arm-gcc 4.6.x

pixhawk build system

make

target configurations

I/O wrapper

Code Generation

USB/ Serial

Pixhawk

Figure 6.3: Development Workflow - Pixhawk

product. The Pixhawk system thus consists of one Pixhawk flight management unit

(px4fmu), and one Pixhawk input output board (px4io). The px4fmu consists of a 32-bit

ARM Cortex M4 processor running at 168MHz, supplemented by a secondary ARM

Cortex M3 failsafe co-processor unit. The px4io unit consists of interfacing circuitry

between the ARM-M4 module and the PWM channels, LED and other miscellaneous

hardware interfaces and parts. We now describe the software stack for this board briefly.

The board runs on Real Time Embedded Operating System (RTOS)- NuttX [23][24]. This

is an operating system with a small data footprint and provides some important features

required here. Firstly, it provides for the standard C/C++ library implementation on the

Pixhawk hardware, in addition to this, it also provides a minimal Virtual File System (VFS)

and support for multiple hardware devices.

44

6.3.2.2 Development process

In Fig. 6.3, we illustrate our work flow in developing models for this particular controller.

The process is equivalent to hand-writing C++ code on top of the Pixhawk toolchain,

however, we speed up the process by developing our models in Simulink. A proper build

system with a Simulink supported target does exist at the time of this writing for deploying

code directly to the controller. The process is used as a workaround method to custom

writing control algorithms on the Pixhawk controller.

In [2], we note the process used to develop wrapper code in Simulink for the Pixhawk. We

then employ a process similar to [21] to develop our fuzzy control algorithm. The limitation

imposed by available memory space, and the lack of useful altitude feedback, permits only

the attitude controller to be implemented on the Pixhawk controller.

The wrapper allows correct port mapping between the controller and the tags in Simulink.

The control algorithm has two main parts to it.

� Rate Controller– Type: Proportional-Integral-Derivative (PID), this controller

operates as that ’fast inner loop’ and operates 250Hz. This rate controller consists of

three-parallel PID controllers. Using the ANFIS technique, it would be possible to

make this controller as a fuzzy controller, however, we observed that the processing

overhead of executing the fuzzy controller at over 250Hz significantly reduces system

45

performance.

� Attitude Controller– Type: ANFIS derived fuzzy controller, Takagi Sugeno, this

controller operates as the ’outer loop’, its purpose is to maintain a set attitude for

the vehicle. We illustrate the performance of this controller further in this section.

Input, output signals for the fuzzy attitude controllers are listed below,

� Control inputs for roll controller– (θr, ch1).

� Control inputs for pitch controller– (θp,ch2).

� Controller output– For both controllers, normalized roll and pitch request.

We mimic the strategy we developed earlier in order to create the training data for this

attitude controller. We setup a simulation of the dynamic system, sensors and control

system with the basic open-source PD controller available from [11]. In order to create

this proof of concept, we set one input to be the roll request channel (channel 1) on the

remote transmitter, and the second input to the be the current roll of the vehicle. A similar

process is developed for controlling the pitch. The inputs to the pitch controller are the

pitch request channel (channel 2) and the pitch obtained from the IMU. We follow the

North, East, Down (NED) frame as before. The roll and pitch are provided by the 6DoF

accelerometer within the Pixhawk controller.

46

0 10 20 30 40 50 60
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

C
o

n
tr

o
lle

r
O

u
tp

u
ts

Attitude Controller Output Comparison: Roll

PD Controller

Fuzzy Controller

Small differences in control output

Figure 6.4: Pixhawk: Roll controller comparison

0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

C
o
n
tr

o
lle

r
O

u
tp

u
ts

Attitude Controller Output Comparison: Pitch

Differences in response

Figure 6.5: Pixhawk: Pitch controller comparison

47

6.3.2.3 Results: Pixhawk

Results are indicated in figure Fig. 6.5 and Fig 6.4. These figures indicate the differences in

the attitude request from each of the parallel controllers. The comparison here is between

the PD controller found in the open-source variant of the control algorithm found in [11].

The attitude controller seen here sends commands to the rate controller. The rate controller

is connected to the control splitting block, similar to the model developed earlier. The only

difference being that the output of this control splitting block is now sent a PWM signal

generation mixer block on-board the Pixhawk controller.

The results indicate the satisfactory performance of the controller.

Deviations for the desired response are denoted. This data is in response to manually

manipulating the radio channels for roll and pitch on the Futaba transmitter. The vehicle

is first made to roll in the positive and negative direction, then followed by a positive pitch

and a negative pitch.

A similar method can be followed for creating a rate-controller and then a rate-attitude

controller processing multiple fuzzy controllers. Evaluating these at 250Hz caused issues.

This is one the bottlenecks that we should see go away with improving controller hardware,

the hardware already exists (for example: Gumstix Overo), however, an initiative like

Arduino Tre[25] (combining a fast 1GHz processor with the Arduino eco-system) is

48

necessary to successfully implement memory intensive fuzzy controllers.

6.3.3 Alternative implementation method

Another method proposed here is the implementation of the fuzzy controller as a look-up

table. It could be argued that in essence, post the tuning process, the fuzzy controller

behaves like a look-up table. Some literature survey leads has some conclusive evidence

that this will work[26][27]. A post survey analysis leads to the conclusion that a non-linear

mapping is created between the input space and the output space, this seems to be a viable

solution if implemented correctly. Our results of trying to implement the look-up table

based fuzzy controller on the Pixhawk lead us to some interesting results. Due to the

complexity of a look-up table, the implementation becomes more memory intensive, which

slows the controller down. In our experiments, we saw that the ARM Cortex M4 processor

is able to process fuzzy controllers well. We thus decided not to implement the controller

using multiple look-up tables. However, this method is worth mentioning. Cases that have

a weaker processor, but more memory, might benefit from it.

49

References

[1] P. I. Corke, Robotics, Vision & Control: Fundamental Algorithms in Matlab. Springer,

2011.

[2] pixhawk.org, “Pixhawk developer homepage.” http://pixhawk.org/dev/

start.

[3] J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,” Systems, Man

and Cybernetics, IEEE Transactions on, vol. 23, no. 3, pp. 665–685, 1993.

[4] Z. Bo, X. Bin, Z. Yao, and Z. Wei, “Hardware-in-loop simulation testbed for

quadrotor aerial vehicles,” in Control Conference (CCC), 2012 31st Chinese,

pp. 5008–5013, 2012.

[5] A. Team, “Apm 2.5 specifications and board overview.” http://copter.

ardupilot.com/wiki/apm25board_overview/.

[6] Mavlink, “Mavlink source page.” https://github.com/mavlink/mavlink.

51

[7] “Qgroundcontrol source page.” https://github.com/mavlink/

qgroundcontrol.

[8] S. Weiss, M. Achtelik, M. Chli, and R. Siegwart, “Versatile distributed pose

estimation and sensor self-calibration for an autonomous mav,” in Robotics and

Automation (ICRA), 2012 IEEE International Conference on, pp. 31–38, May 2012.

[9] TKJElectronics, “Tkj-electronics, blog post on kalman filters.” http://copter.

ardupilot.com/wiki/apm25board_overview/.

[10] P. Zhang, J. Gu, E. Milios, and P. Huynh, “Navigation with imu/gps/digital

compass with unscented kalman filter,” in Mechatronics and Automation, 2005 IEEE

International Conference, vol. 3, pp. 1497–1502 Vol. 3, 2005.

[11] pixhawk.org, “Pixhawk toolchain.” http://pixhawk.org/dev/toolchain_

installation.

[12] TKJElectronics, “Kalman filter library, tkjelectronics.” https://github.com/

TKJElectronics/KalmanFilter.

[13] G. B. G. Welsh, “An introduction to kalman filter.” http://www.cs.unc.edu/

~welch/kalman/kalmanIntro.html, July 2006.

[14] A. Polak, “Px4 development kit for simulink.” http://

polakiumengineering.org/, 2014 Feb.

52

[15] I. Dikmen, A. Arisoy, and H. Temeltas, “Attitude control of a quadrotor,” in Recent

Advances in Space Technologies, 2009. RAST ’09. 4th International Conference on,

pp. 722–727, 2009.

[16] P. M. Meshram and R. Kanojiya, “Tuning of pid controller using ziegler-nichols

method for speed control of dc motor,” in Advances in Engineering, Science and

Management (ICAESM), 2012 International Conference on, pp. 117–122, 2012.

[17] O. Lutfy, S. B. M. Noor, and M. Marhaban, “A genetically trained simplified anfis

controller to control nonlinear mimo systems,” in Electrical, Control and Computer

Engineering (INECCE), 2011 International Conference on, pp. 349–354, 2011.

[18] G. E. M. Mahfouz, M. Ashry, “Design and control of quad-rotor helicopters based

on adaptive neuro-fuzzy inference system,” International Journal of Engineering

Research and Technology, vol. 2, December 2013.

[19] A. Al-Hmouz, J. Shen, R. Al-Hmouz, and J. Yan, “Modeling and simulation of

an adaptive neuro-fuzzy inference system (anfis) for mobile learning,” Learning

Technologies, IEEE Transactions on, vol. 5, no. 3, pp. 226–237, 2012.

[20] R. Toulson, “Advanced rapid prototyping in small research projects with

matlab/simulink,” in Industrial Electronics, 2008. ISIE 2008. IEEE International

Symposium on, pp. 1–7, 2008.

53

[21] S.-H. Seo, S.-W. Lee, S.-H. Hwang, and J. W. Jeon, “Development of platform

for rapid control prototyping technique,” in SICE-ICASE, 2006. International Joint

Conference, pp. 4431–4435, 2006.

[22] P. Wallich, “Arducopter parenting,” Spectrum, IEEE, vol. 49, no. 12, pp. 26–28, 2012.

[23] “Nuttx.” http://nuttx.org/.

[24] “Nuttx source page.” https://github.com/PX4/NuttX.

[25] Arduino, “Arduino tre.” http://arduino.cc/en/Main/

ArduinoBoardTre#.Uysc7dxWqzA.

[26] Y. Jiang, X. Zhang, T. Zou, and G. Cao, “A novel 3-d fuzzy logic controller

design using table look-up scheme,” in Computer Application and System Modeling

(ICCASM), 2010 International Conference on, vol. 4, pp. V4–388–V4–393, Oct 2010.

[27] P. Albertos, M. Olivares, and A. Sala, “Fuzzy logic based look-up table controller with

generalization,” in American Control Conference, 2000. Proceedings of the 2000,

vol. 3, pp. 1949–1953 vol.3, 2000.

[28] TKJElectronics, “Arduino example sketch, kalman

filter.” https://github.com/TKJElectronics/

Example-Sketch-for-IMU-including-Kalman-filter/blob/

master/IMU6DOF/MPU6050/MPU6050.ino.

54

[29] A. Visioli, “Tuning of pid controllers with fuzzy logic,” Control Theory and

Applications, IEE Proceedings -, vol. 148, no. 1, pp. 1–8, 2001.

[30] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling,

estimation, and control of quadrotor,” Robotics Automation Magazine, IEEE, vol. 19,

no. 3, pp. 20–32, 2012.

[31] M. Santos, V. López, and F. Morata, “Intelligent fuzzy controller of a quadrotor,”

in Intelligent Systems and Knowledge Engineering (ISKE), 2010 International

Conference on, pp. 141–146, 2010.

[32] B. Yu, X. Dong, Z. Shi, and Y. Zhong, “Formation control for quadrotor swarm

systems: Algorithms and experiments,” in Control Conference (CCC), 2013 32nd

Chinese, pp. 7099–7104, 2013.

55

Appendix A

List of signals

Signal Name Description Units

ch1 Control Input - Roll normalized, unitless

ch2 Control Input - Pitch normalized, unitless

ch3 Control Input - Thrust normalized, unitless

ch4 Control Input - Yaw normalized, unitless

ch5 Control Input- Mode Selector normalized, unitless

roll Attitude - Roll degrees

pitch Attitude - Pitch degrees

This list is continued on the next page.

57

yaw Attitude - Yaw degrees

p Angular Velocity deg/sec

q Angular Velocity deg/sec

r Angular Velocity deg/sec

phi Euler Angle rad

theta Euler Angle rad

psi Euler Angle rad

58

	REAL TIME FUZZY CONTROLLER FOR QUADROTOR STABILITY CONTROL
	Recommended Citation

	RealTimeFuzz14.pdf

