
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

SCALABLE APPROXIMATION OF KERNEL FUZZY C-MEANS SCALABLE APPROXIMATION OF KERNEL FUZZY C-MEANS

Zijian Zhang
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Engineering Commons

Copyright 2014 Zijian Zhang

Recommended Citation Recommended Citation
Zhang, Zijian, "SCALABLE APPROXIMATION OF KERNEL FUZZY C-MEANS", Master's report, Michigan
Technological University, 2014.
https://digitalcommons.mtu.edu/etds/761

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Engineering Commons

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Michigan Technological University

https://core.ac.uk/display/151508383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.mtu.edu%2Fetds%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.mtu.edu%2Fetds%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages

SCALABLE APPROXIMATION OF KERNEL FUZZY C-MEANS

By

Zijian Zhang

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

© 2014 Zijian Zhang

This report has been approved in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE in Computer Engineering.

Department of Electrical and Computer Engineering

 Report Advisor: Dr. Timothy C. Havens

 Committee Member: Dr. Laura E. Brown

 Committee Member: Dr. Saeid V. Nooshabadi

 Department Chair: Dr. Daniel R. Fuhrmann

Contents

List of Figures . vii

List of Tables . ix

Abstract . 1

1 Introduction . 2

1.1 Big Data . 3

1.2 K-Means . 4

1.3 Fuzzy c-Means . 6

1.4 Kernel Methods . 9

1.5 Challenges . 11

2 Related Work . 14

2.1 Sampling and non-iterative extension . 14

2.2 Distributed clustering . 16

2.2.1 Incremental clustering . 16

2.2.2 Divide and conquer . 18

2.3 Data transformation methods . 19

v

3 Kernel FCM . 20

3.1 Kernel Functions . 21

3.2 Kernel FCM . 22

3.3 Weighted KFCM . 24

4 Streaming KFCM Algorithm . 26

4.1 Meta-vectors . 28

5 Experiments . 34

5.1 Data sets . 35

5.1.1 2D15 . 35

5.1.2 2D50 . 35

5.1.3 MNIST . 36

5.1.4 Forest . 36

5.2 Evaluation criteria . 37

5.2.1 Adjusted Rand Index . 37

5.2.2 Purity . 37

5.2.3 Run time . 38

6 Conclusion . 41

Bibliography . 43

vi

List of Figures

1.1 Example of k-Means Algorithm on a Data Set Composed of Two Clouds . . 7

1.2 The Limitation of Crisp Clustering . 8

1.3 Membership Function of Crisp Clustering and Fuzzy Clustering 9

1.4 Projection by Polynomial Kernel . 11

1.5 Projection by RBF Kernel . 12

4.1 Streaming KFCM . 27

5.1 Synthetic data sets . 35

vii

viii

List of Tables

1.1 Important Acronyms and Notation . 10

3.1 Popular Kernel Functions . 22

5.1 Clustering Results* . 39

ix

Abstract

Virtually every sector of business and industry that uses computing, including financial

analysis, search engines, and electronic commerce, incorporate Big Data analysis into

their business model. Sophisticated clustering algorithms are popular for deducing the

nature of data by assigning labels to unlabeled data. We address two main challenges

in Big Data. First, by definition, the volume of Big Data is too large to be loaded into

a computer’s memory (this volume changes based on the computer used or available,

but there is always a data set that is too large for any computer). Second, in real-time

applications, the velocity of new incoming data prevents historical data from being stored

and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy

c-Means (stKFCM) algorithm, which reduces both computational complexity and space

complexity significantly. The proposed stKFCM only requires O(n2) memory where n is

the (predetermined) size of a data subset (or data chunk) at each time step, which makes this

algorithm truly scalable (as n can be chosen based on the available memory). Furthermore,

only 2n2 elements of the full N ⇥N (where N >> n) kernel matrix need to be calculated at

each time-step, thus reducing both the computation time in producing the kernel elements

and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even

with relatively very small n, can provide clustering performance as accurately as kernel

fuzzy c-means run on the entire data set while achieving a significant speedup.

1

Chapter 1

Introduction

The ubiquity of personal computing technology has produced an abundance of staggeringly

large data sets which may exceed the memory capacity of a computer (whether that computer

is a cell phone or a high-performance cluster). One way that these large data are produced

is streaming data, i.e., those that are presented to a system sequentially such that future data

cannot be accessed. These challenges stimulate a great need for sophisticated algorithms

by which one can elucidate the similarity and dissimilarity among and between groups in

these gigantic data sets.

Clustering is an exploratory tool in which data are separated into groups, such that the

objects in each group are more similar to each other than to those in different groups. Since

there are no labels given for the data set, clustering is an unsupervised learning problem.

2

The applications of clustering algorithms are innumerable. The best example should be

Google News. Articles on similar topic will be grouped into the same keyword everyday.

Amazon adopts clustering algorithms into their recommendation system. Many supervised

learning algorithms require clustering as a pre-step. Clustering is a common technique

widely used in pattern recognition, data mining, and data compression for deducing the

nature of a data set by assigning labels to unlabeled data. Clustering itself is a general task

to be solved and plenty of algorithms have been proposed for solving this problem such as

k-means, single-linkage clustering, and Gaussian-mixture-model clustering.

1.1 Big Data

The term Big Data usually refers to harnessing enoumous amount of data which are beyond

the capability of traditional computing tools and algorithms. Along with the explosion of

smartphones and wearable devices, every aspect of our lives, including behaviors, locations,

temperature, or even humidity, could be gleaned and become accessable for analysts. Schönberger

and Cukier argued a few revolutions for the age of Big Data in their book [1]. One of the

ascendancy they mentioned was that instead of sampling, human beings usher in, for the

first time, an era in which we are being capable of processing the entire dataset. Using more

complete and comprehensive data will allow us to dicover hidden patterns and correlations

which have never been revealed before.

3

The boosts brought by Big Data are remarkable. Soon exhaustively sequencing the DNA

and RNA of every individual cell in a tumor will become reality. Engineers at Google are

able to forecast the outbreak of winter flu weeks before CDC by looking at their more than

3 million search queries every day [2]. IBM employed Big Data on predicting the traffic

congestions in Lyon, France, which allows the traffic department to react in advance. In

2012, the World Economic Forum declared data as a new class of economic asset just like

gold [3]. The tide of Big Data has unpended areas as varied as sports, industry, and our

daily lives.

Formidable processing power as well as the plummeting of storage costs form the basis for

Big Data’s flourish. Yet the amount of information is growing incredibly fast. Today the

data we generate exceeds petabytes and is headed toward exabytes rapidly. As of 2013,

Facebook has more than 4.75 billion content items shared and 350 million photos are

uploaded every day [4]. The desire for space and computational power are exacerbated

by the swelling flood of data. Myriad approaches have been proposed to embrace the

upcoming challenges.

1.2 K-Means

The k-means algorithm is one of the most popular clustering algorithms due to its simplicity.

For a set of N feature vectors (or objects), the program will choose k cohesive cluster centers

4

randomly at the beginning. Each data point will be assigned to its nearest cluster center,

then the cluster centers will be recomputed. These steps are repeated until the algorithm

converges (and there are many ways by which convergence can be defined). The k-Means

algorithm is guaranteed to converge. The objective function of k-Means is defined as

J(u;v) =
n

Â
i=1

||xi �v

ui ||2, (1.1)

When we iteratively minimize J with respect to u, v is fixed, and vice versa. J is monotonically

decrease. So that the k-Means algorithm is coordinate descent on J.

The output of k-Means will be a partition matrix U 2 {0,1}N⇥k, a matrix of Nk values. Each

element uik is the membership of vector xi in cluster k; and the partition matrix element

uik = 1 if xi belongs to cluster k and is 0 otherwise. Figure 1.1 shows an illustration of

k-Means algorithm in two dimensional space. In (a), it gives us a visual view of the raw

data. We first initialize (k = 2) clusters randomly in (b). Each object will be assigned to

its nearest cluster center as showed in (c). In (d) we move the cluster centers to be the

mean of all objects that are assigned to them, then rerun the algorithm in (e). After the final

relocation of cluster centers, the cluster centers are located as shown in (f).

5

Algorithm 1: k-Means
Input: number of clusters – k; X = {x0,x1,x2, . . .}
Initialize cluster centers (v1,v2, . . . ,vk);
while max1< j<k||v j,new �v j,old||2 > e do

1 ui = argmin
j

||xi �v j||2

2 v j =
Ân

i=1 uixi

Ân
i=1 ui

1.3 Fuzzy c-Means

The k-Means algorithm aims to group the given data into hard partitions, which means each

data vector belongs to exactly one group. But groups in reality may not have well defined

boundaries. For example, retailers will find that customers may have favors on different

items to various degrees. Hard partitions won’t give us any useful insights in cases like

this. Looking at Figure 1.2, k-Means could be well deployed in case (a) because of the

clear boundary between two colors. But case (b) won’t fit any crisp clustering algorithms

since the color changes gradually. Such challenge has given birth to Fuzzy Clustering

which allows each object belongs to multiple groups to different degrees.

Fuzzy c-means (FCM) is analogous to the k-means algorithm with fuzzy partitions, which

gives more flexibility in that each object can have membership in more than one cluster.

The constraint on fuzzy partitions is that all the memberships of an object must sum to 1,

thus ensuring that every object has unit total membership in a partition: (Âk uik = 1). The

6

0 20 40
0

20

40

60

80

100
(a)

0 20 40
0

20

40

60

80

100
(b)

0 20 40
0

20

40

60

80

100
(c)

0 20 40
0

20

40

60

80

100
(d)

0 20 40
0

20

40

60

80

100
(e)

0 20 40
0

20

40

60

80

100
(f)

Figure 1.1: Example of k-Means Algorithm on a Data Set Composed of
Two Clouds

objective function of FCM is shown as below,

Jm(u;v) =
n

Â
i=1

c

Â
j=1

um
i j||xi �v j||2, (1.2)

The result is still a partition matrix U 2 [0,1]N⇥c, where the partition elements are now on

the interval [0,1]. The parameter m>1 is the fuzzifcation constant. Figure 1.3 shows the

membership functions of both crisp and fuzzy clustering on the example from Figure 1.2.

7

(a) (b)

Figure 1.2: The Limitation of Crisp Clustering

Assume we have 650 samples. Using 0 and 1 to represent black and white respectively.

Due to the fact that many of the datums do not belong exclusively to a well defined cluster,

the membership function follows a smoother line indicates that those datums could belong

to more than one clusters with different values of degrees. An absolute partition can hardly

be found in reality, fuzzy clustering is more appropriate in practice. Applications of FCM

are extensive. Search engines must be able to interpret fuzzy queries instead of particular

keywords. Social swarms are never completely isolated to each other. Researchers are also

interested in finding correlations between different clusters. Beside the result, FCM can

illustrate the relationship as well.

8

0 100 200 300 400 500 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Samples

M
em

be
rs
hi
p

0 100 200 300 400 500 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Samples

M
em

be
rs
hi
p

Figure 1.3: Membership Function of Crisp Clustering and Fuzzy Clustering

Algorithm 2: Fuzzy c-Means
Input: number of clusters – c; X = {x0,x1,x2, . . .}
Initialize cluster centers (v1,v2, . . . ,vk);
while max1<k<c||vk,new �vk,old||2 > e do

1 ui j =

"
c

Â
k=1

✓
||xi �v j||
||xi �vk||

◆ 2
m�1

#�1

2 v j =
Ân

i=1 u

m
i jxi

Ân
i=1 ui jm

1.4 Kernel Methods

The FCM (as well as the k-means) model is based on the assumption that the feature vectors

are grouped in similarly-sized hyperspheres. Kernel methods can overcome this limitation

9

Table 1.1

Important Acronyms and Notation

Acronym Definition

FCM fuzzy c-means
KFCM kernel FCM

stKFCM streaming KFCM
KPC kernel patch clustering [5]

RKHS reproducing kernel Hilbert space
Notation Definition

c or k number of clusters
N number of objects
n number of objects in data chunk
x feature vector 2 Rd

X set of x

X set of X , {X0, . . . ,Xt , . . .}
U partition matrix
ui ith column of U
v cluster center
w weight vector
fi kernel representation of xi, i.e., f(xi)
F set of f

k(xi,x j) kernel function, k(xi,x j) = fi ·f j
K kernel matrix, K = [k(xi,x j)], 8i, j

HK reproducing kernel Hilbert space imposed by K
dk(xi,x j) kernel distance, ||fi �f j||2

[i] set of integers, {1,2, . . . , i}

by projecting the vectors into a higher dimensional feature space where the patterns can be

discovered as linear relations [6]. Figure 1.4 and Figure 1.5 shows how polynomial and

RBF kernels apply on non-linearly separatable data respectively. By projecting to a higher

dimensional feature space, a linear pattern is dicovered.

Consider some non-linear mapping function f : x! f(x)2RDk where Dk is the dimensionality

of the higher-dimensional feature space created by the function f . For (most) kernel

algorithms, including kernel FCM, explicitly transforming x is not necessary. Instead, a

10

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

Feature 1

Fe
at

ur
e

2

(a) Original Data

−2000 −1000 0 1000 2000 3000 4000
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Feature 1

Fe
at

ur
e

2

(b) Polynomial Kernel

Figure 1.4: Projection by Polynomial Kernel

kernel matrix K is used, which consists of the pairwise dot products of the feature vectors

in a transformed high dimensional space HK; this space is called the Reproducing Kernel

Hilbert Space (RKHS). Using the kernel matrix is often computationally cheaper than

explicitly representing the coordinates in RKHS. More details about Kernel FCM will be

introduced in Chapter 3.

1.5 Challenges

The challenges in processing Big Data are twofold: the processing time can be long; and the

memory that is required to retain the data exceeds the capability for the giving specification.

Given a set of N objects, literal kernel FCM (KFCM) requires to store an N ⇥N kernel

11

−2 0 2
0

2

4

6

8

10

Feature 1

Fe
at

ur
e

2

(a) Original Data

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Feature 1

Fe
at

ur
e

2

(b) RBF Kernel

Figure 1.5: Projection by RBF Kernel

matrix K = [k(xi,x j)] = [f(xi) · f(x j)], i, j 2 [N], which poses challenges for processing

very large N. Although an abundance of research has been conducted on fuzzy clustering

algorithms for Big Data [5, 7–13], only a select few of these algorithms are appropriate for

kernel methods.

In this report, we devise an approximation of the KFCM algorithm for streaming data,

i.e., big data which could be viewed as data streams. We assess the performance of our

algorithm by comparing the partition matrix to that of the literal KFCM. Empirical results

demonstrate that our algorithm could provide similar results to the literal KFCM while

only requiring access to small data chunks. The memory requirement is reduced from

O(N2) to O(n2), where N and n are the size of the full data set and each subset data chunk,

respectively.

12

The algorithms and results from this report were published in [14].

13

Chapter 2

Related Work

To date, a substantial number of algorithms have been developed for clustering big data.

Roughly, these algorithms can be categorized into three classes: sampling, distributed

clustering, and data transformation algorithms.

2.1 Sampling and non-iterative extension

Sampling the data set is the most basic and obvious way to address big data. In sampling

methods, algorithms are run on a reduced representative sample, and then the sample

partition is non-iteratively extended to approximate the clustering solution for the remaining

data in the full data set. If the data are sufficiently sampled, there is only a small difference

14

between the result of the approximated partition and the result of clustering the entire

data set. Most sampling algorithms are also called extensible algorithms. The notion of

extensibility for FCM was introduced in [15]. Algorithms that produce an approximate

result of the full data set by first solving the problem using a sample set and then non-iteratively

extending the result on the full data set are referred to as extensible algorithms.

Sampling approaches can be further divided into two categories: random sampling and

progressive sampling. Progressive sampling schemes for FCM were well studied in [16].

The authors showed that progressive sampling is widely used in many clustering algorithms.

Sampling schedule and termination criteria are the most central components of any of these

approaches. The most well-known progressive sampling method is generalized extensible

fast FCM [17] which is the extension of [15]. In [15], the algorithm starts with statistics-based

progressive sampling and terminates with a representative sample that is appropriate to

capture the overall nature of the data set. Reference [17] extends this algorithm so that

it could be applied to more general cases. Instead of clustering numerical object data,

[18] and [19] extend the algorithm to attack the problem of clustering numerical relational

data. In kernel clustering, cluster centers are linear combinations of all the data points

to be clustered; hence, the sampling approaches mentioned previously are inappropriate.

The authors of [20] and [12] tackled the problem of kernel clustering by proposing a novel

sampling of the kernel matrix which results in significant memory savings and computational

complexity reduction while maintaining a bounded-error solution to the kernel k-means

and KFCM problem; although, the solutions in [12, 20] are not truly scalable to big data

15

as they require the loading of an N ⇥ n rectangular of the kernel matrix; hence, as N

grows, eventually there is a point at which the only loadable n becomes less than 1, thus

invalidating the scalability of the algorithm.

2.2 Distributed clustering

Distributed clustering algorithms can be classified into two types: incremental loading of

data subsets that can be fit into current memory capacity and divide-and-conquer approaches.

2.2.1 Incremental clustering

Algorithms in this category sequentially load small chunks or samples of the data, clustering

each chunk in a single pass, and then combining the results from each chunk. Representative

algorithms are proposed in [21] and [22]. In these approaches, the clusters are updated

periodically using information from both the incoming data and obsolete data.

Single pass FCM (spFCM) was proposed in [7]. This algorithm performs weighted FCM

(wFCM) on sequential chunks of data, passing clustering centers from each chunk onto the

next. At each time step, the algorithm clusters a union set consisting of data in the current

step and the cluster centers passed from previous step. The authors of [8] extend [7] by

incorporating more results from multiple preceding time steps and in [9], they propose an

16

algorithm that passes c weight values which are sums of membership values of the points

in the current subset onto next iteration. Another incremental algorithm called bit-reduced

FCM (brFCM) was proposed in [10]. This algorithm first bins the data and then clusters the

bin centers. The performance of brFCM highly depends on the binning strategy; brFCM

has been showed to provide very efficient and accurate result on image data. Havens et

al. extended spFCM and other incremental FCM algorithms to kernel clustering in [11],

although the results of these kernel extensions were disappointing overall.

Bradley introduced a data compression technique in [23]. This algorithm uses a buffer

to contain the current subset of data. The data are then compressed twice. In the first

compression, objects that are unlikely ever to move to other clusters are discarded. Those

objects are found by calculating the Mahalanobis distance between the object and the

cluster center. Those that fall within a chosen radius are then discarded. In the second

compression period, more cluster centers are introduced into the data set in order to find

more stable points. After these two compressions, the space will be filled with new data.

The algorithm will keep running until all the data have been processed. Farnstrom introduced

a special case of this algorithm [24] in which all the points in the buffer are discarded each

time.

Gupta uses evolutionary techniques to search for the global optimal solution to the sum

of the squares (SSQ) problem which is required to find cluster centers [25]. Each chunk

is viewed as a generation. The fittest cluster centers survive to the next generation; bad

17

centers are killed off with new ones selected. In kernel methods, no actual cluster centers

exist. Passing cluster centers to the next time step is unpractical. The author of [5]

presented Kernel Patching Clustering (KPC) algorithm. This algorithm selects approximate

pseudo-centers at each time step, merging them repeatedly until the entire data set has been

processed. Since the space complexity depends on only the size of chunks, algorithms of

this type are (usually) truly scalable.

2.2.2 Divide and conquer

Algorithms in this category cluster each chunk in sequence as well. But rather than passing

the clustering solution from one chunk onto the next, these algorithms aggregate the solutions

from each chunk in one final run. Due to this final run, most of the algorithms in this type

are not truly scalable. Online FCM (oFCM) was proposed in [13]. oFCM aggregates the

solutions from each data chunk by performing wFCM on all the resultant cluster centers.

Again, it was shown in [11], that the kernel extension of oFCM performed poorly. Reference

[26] views the problem of merging different results from disjoint data sets as the problem

of reaching a global consensus, while [27] assigns a weight to the cluster centers in each

chunk, and then performs LSEARCH on all the weighted centers retained. LSEARCH is

a local search algorithm that starts with an initial solution and then refines it by making

local improvements. Other algorithms like those proposed in [28] and [29] use special

initialization techniques to improve the accuracy of the k-means algorithm.

18

2.3 Data transformation methods

Algorithms of this sort transform data into other structures with the intention of making

the clustering process more efficient. Perhaps one of the earliest well-known clustering

algorithms for data streams is BIRCH [30], which transforms the entire data set into a

tree-like structure called a clustering feature (CF) tree. The leaves of the CF tree are then

clustered. PAM [31] transforms the data set into a graph structure, and then searches for a

minimum on the graph. CLARANS [32] is a variation of CLARA [31] and draws a sample

of the data set and applies PAM on the sample. The key difference between CLARA

and CLARANS is that CLARA draws the sample at the beginning of the search while

CLARANS draws it at each step of the search. The benefit of the CLARANS approach

over CLARA is that the search is not confined to a localized area.

While many of the algorithms mentioned in Chapter 2 produce high-quality partitions for

big data sets, unless noted, they are not appropriate for kernel clustering. The only (that

we know of) truly scalable approach to kernel fuzzy clustering is the spKFCM algorithm

proposed in [11, 33] and, as shown in [11], the spKFCM approach produces less-than-desirable

results for some data sets.

19

Chapter 3

Kernel FCM

The literal FCM algorithm can not deal with data in hyperspheres with different dimensions.

Kernel FCM will be adopted to address problems like this. Kernel methods always comprise

two steps: projecting the data into higher dimensional feature space and implementation of

learning algorithms to detect patterns. The explicit computation of each object in feature

space is infeasible. Since kernel FCM is based only on the Euclidean distance in feature

space, we could represent kFCM by using pairwise inner products of feature vectors in

the transformed high dimensional space. The function that performs this transition directly

from the inputs is known as the kernel function.

20

3.1 Kernel Functions

There are numerous kernel functions used in the literature such as linear forms, Polynomial

functions, and Radial Basis Function (RBF). Some popular kernel functions are shown in

Table 3.1. It is worth to mention that many kernel functions are the variation of RBF kernel.

The choise of kernel function highly depends on the task and domain knowledge. The right

kernel function should capture the similarity among data and also require significantly less

computation than explicit mapping to the feature space. For example, kernel FCM with

linear function (i.e., the Euclidean dot product) is the same as the literal FCM. It can extract

patterns only in hyperplanes, in contrast with the RBF function, which allows us to solve

problems in a transformed high-dimensional space. A good kernel function should have a

positive definite Gram Matrix, with the aim that the optimization problem will be convex.

But there are many kernel functions which are not positive definite and still work very well

in practice.

21

Table 3.1

Popular Kernel Functions

Category Definition

Linear Kernel k(x,y) = xT y+ c
Polynomial Kernel k(x,y) =

�
axT y+ c

�d

Gaussian Kernel(RBF) k(x,y) = exp
⇣
� ||x�y||2

2s2

⌘

Exponential Kernel k(x,y) = exp
⇣
� ||x�y||

2s2

⌘

Laplacian Kernel k(x,y) = exp
⇣
� ||x�y||

s

⌘

ANOVA Kernel k(x,y) = Ân
k=1 exp

⇣
�s

�
xk � yk�2

⌘

Sigmoid Kernel k(x,y) = tanh(axT y+ c)
Rational Quadratic Kernel k(x,y) = 1� ||x�y||2

||x�y||2+c

3.2 Kernel FCM

Kernel FCM (KFCM) can be generally defined as the constrained minimization of

Jm(U ;k) =
c

Â
j=1

n

Â
i=1

um
i j||fi �v j||2, (3.1a)

=
c

Â
j=1

n

Â
i=1

n

Â
k=1

⇣
um

i ju
m
k jdk(xi,xk)

⌘
/2

n

Â
l=1

um
l j

!
, (3.1b)

where U is a fuzzy partition, m> 1 is the fuzzification parameter, and dk(xi,xk)= k(xi,xi)+

k(xk,xk)� 2k(xi,xk) is the kernel-based distance between the ith and kth feature vectors.

The function k(xi,xk) = f(xi) ·f(xk) is the kernel function.

22

KFCM solves the optimization problem min{Jm(U ;k)} by computing iterated updates of

ui j =

"
c

Â
k=1

✓
dk(xi,v j)

dk(xi,vk)

◆ 1
m�1

#�1

, 8i, j, (3.2)

where the kernel distance between input datum xi and cluster center v j (in the RKHS) is

dk(xi,v j) = ||f(xi)�v j||2. (3.3)

The cluster centers v are linear combinations of the feature vectors,

v j =
Ân

l=1 um
l jf(xl)

Ân
l=1 um

l j
. (3.4)

Equation (3.3) cannot by computed directly, but by using the identity Ki j = k(xi,x j) =

f(xi) · f(x j), denoting ũ j = u

m
j /Âi |um

i j| where u

m
j = (um

1 j,u
m
2 j, . . . ,u

m
n j)

T , and substituting

(3.4) into (3.3) we get

dk(xi,v j) =
Ân

l=1 Ân
s=1 um

l ju
m
s jf(xl) ·f(xs)

Ân
l=1 u2m

l j

+f(xi) ·f(xi)�2
Ân

l=1 um
l jf(xl) ·f(xi)

Ân
l=1 um

l j

=ũ

T
j Kũ j + e

T
i Kei �2ũ

T
j Kei

=ũ

T
j Kũ j +Kii �2(ũT

j K)i, (3.5)

where ei is the n-length unit vector with the ith element equal to 1. This formulation of

23

KFCM is equivalent to that proposed in [34] and, furthermore, is identical to relational

FCM [35] if the kernel k(xi,xk) =
⌦
xi,x j

↵
is used [36].

Equation (3.5) shows the obvious problem which arises when using kernel clustering with

big data: the distance equation’s complexity is quadratic with the number of objects, i.e.

O(N2) (assuming the kernel matrix is precomputed). Furthermore, the memory requirement

to store K is also quadratic with the number of objects.

3.3 Weighted KFCM

Assume that each data point in X has a different weight, wi, which represents its influence

on the clustering solution. These weights can be applied to the KFCM objective at (3.1b)

by

Jm(U ;k) =
c

Â
j=1

n

Â
i=1

wium
i j||fi �v j||2, (3.6)

where it is now obvious how w 2 Rn, wi � 0, affects the solution of KFCM. Hence, the

only difference between KFCM and wKFCM is that the distance at (3.5) in the iterated

24

updates of (3.2) are computed with the weights included, i.e.,

dw

k (xi,v j) =
1

kw�u

m
j k

(w�u

m
j)

T K(w�u

m
j)+Kii

� 2
kw�u

m
j k

�
(w�u

m
j)

T K
�

i , (3.7)

where w is the vector of weights and � indicates the Hadamard product. The idea behind

wKFCM will be instrumental in our design of the proposed stKFCM algorithm.

25

Chapter 4

Streaming KFCM Algorithm

Consider a streaming data set X = {X1,X2, . . . ,Xt , . . .}, and its projection onto a set of

RKHSs HKt , such that F = {f1,f2, . . . ,ft , . . .} are the kernel representations of X , where

Ft =
�

f t
1,f t

2, . . . ,f t
n

, and f t
i = f (xt

i)2HKt . The goal of the proposed stKFCM algorithm

is to approximate the clustering solution of KFCM on X , while only having access to a

limited number of chunks of X up to some time t. The naive solution is to store all history

of X and run KFCM on all the samples. However, the memory requirement for storing the

kernel matrix K is O(N2), where N is the number of samples in the history; hence, KFCM

is not appropriate for big data, which all streaming data sets become at some point. The

proposed stKFCM algorithm only requires access to Xt and Xt�1 at time step t and only

requires O(n2) storage requirement, where n is the size of the data chunk Xt . Figure 4.1

illustrates the sub-matrices required by the stKFCM algorithm.

26

Figure 4.1: Streaming KFCM

The stKFCM algorithm only requires storage of two (n⇥ n) portions of the full (N ⇥N)

kernel matrix at each time-step. The sub-matrix Kt,t�1 is used to project the cluster centers

from time (t �1) into the RKHS imposed by the kernel matrix Kt .

In similar spirit to stKFCM, Havens proposed the streaming kernel k-means (stKKM)

algorithm in [37]. It provides accurate results for using kernel k-means with streaming

or incremental data. The main idea of this algorithm is to take the cluster centers Vt�1 =

{v

t�1
1 , . . . ,vt�1

c }, where v

t�1
i 2 HKt�1 , and project them into HKt (the RKHS produced by

Kt) as meta-vectors. We will explain meta-vectors in the following section, which proposes

stKFCM. Using these meta-vectors, information is passed from previous time steps into

the current time step. Then, at each time step, the data chunk Xt is clustered together with

the (appropriately weighted) meta-vectors. We now propose the use of meta-vectors to

27

approximate KFCM with the stKFCM algorithm.

4.1 Meta-vectors

Assume we are clustering not only the current data chunk Xt , but also a set of meta-vectors

A = {a1,a2, ...,an}, ai 2 HKt . The meta-vectors ai are linear combinations of all f t
i 2 Ft ;

i.e., a j = Ân
i=1 ai jfi, ai j 2 R.

Proposition 1. Let the partitions Ut and Ua denote fuzzy partition values of Xt and A,

respectively. Let w

Xt and w

a be the weights of Xt and A. Since the cluster centers are linear

combinations of the feature vectors, the cluster center v

t
c in the kernel feature space can be

written as

v

t
k =

n

Â
i=1

q̃t
ik, (4.1)

where

q

t
k =

0

BBBBBBBBBB@

wXt
1
�
ut

1k
�m

+Âc
j=1 a t

1 jw
a
j (u

a
jk)

m

wXt
2
�
ut

2k
�m

+Âc
j=1 a t

2 jw
a
j (u

a
jk)

m

. . .

wXt
n
�
ut

nk
�m

+Âc
j=1 a t

n jw
a
j (u

a
jk)

m

1

CCCCCCCCCCA

; (4.2a)

28

q̃

t
k =

q

t
k

|wXt � (ut
k)

m|+ |wa � (ua
k)

m| . (4.2b)

Proof. The meta-partition q̃

t at (4.2) is formed by representing the cluster center v

t
k as the

weighted linear sum of the data chunk Ft (i.e., Xt) and the meta-vectors A, and using the

fact that A is a linear sum of Ft itself. See [37] for a more detailed proof of a similar

proposition.

Now we show how to project the cluster centers produced at time t�1 (i.e., in HKt�1) to the

current time t. Note that this proposition is similar to that proposed in [37] for the use with

stkKM; however, it is important to note that the formulation of q̃k for KFCM clustering is

different from that of kernel k-means.

Proposition 2. A projection of v

t�1
k 2 HKt�1 into HKt can be computed by the optimization

over meta-vectors ak,

argmin
ak

||vt�1
k �ak||2 =

n

Â
i=1

a t
ikf t

i . (4.3)

Proof. The optimization has the closed form solution of

a t
k =

�
Kt��1 K(t,t�1)

q̃

t�1
k , (4.4)

29

K(t,t�1) = k(xt
i,x

t�1
j), i, j = 1, ...,n. (4.5)

Remark 1. The closed form solution for the weights a t
k at (4.4) is the solution to the

optimization under the squared Euclidean norm. The inverse operation in (4.4) is often

best replaced, in practice, with a pseudo-inverse, which we denote by (·)†. One could also

use a simple gradient descent to minimize the quadratic. Furthermore, this is only one way

to project the cluster center v

t�1
k into the current RKHS HKt . We imagine that an L1-norm

optimization could also find utility when a sparser solution for a t
k is desired.

The distances between the cluster center v

T
k and each of ai, f t

i , and an arbitrary feature

vector f(x) are computed as

||ai �v

t
k||2 = (a t

i)
T Kta t

i +(q̃t
k)

T Kt
q̃

t
k �2(a t

i)
T Kt

q̃

t
k; (4.6a)

||f t
i �v

t
k||2 = Kt

ii +(q̃t
k)

T Kt
q̃

t
k �2(Kt

q̃

t
k)i; (4.6b)

||f(x)�v

t
k||2 = k(x,x)+(q̃t

k)
T Kt

q̃

t
k �2k(x,Xt)q̃t

k. (4.6c)

These distances at (4.6) allow us to propose the stKFCM algorithm at Algorithm 3. The

algorithm has the following basic steps:

30

1. The KFCM solution is computed for the first data chunk;

2. The weights of each cluster center are computed as the sum of the partition elements

associated with each center;

3. The cluster centers are projected into the next time step;

4. The meta-partition q̃

t is computed;

5. The partition of the meta-vectors A is updated;

6. The partition of the feature vectors Xt is updated;

7. Optionally, the partition of the full data set X can be computed in one single-pass at

the end.

The stKFCM algorithm is essentially a single-pass algorithm that computes the KFCM

cluster solution of each Xt together with the weighted meta-vectors A, which are the

projected cluster centers from step t � 1. Hence, the (compressed) information from all

previous time-chunks is passed down through the meta-vectors A.

Remark 2. The important projection step at Line 3 of the stKFCM algorithm is equivalent

to taking the vectors v

t�1 (appended by n zeroes) represented in the RKHS of the kernel

matrix

Kt�1,t =

2

664
Kt�1 K(t�1,t)

K(t,t�1) Kt

3

775 ,

31

and using the Nystrom approximation to represent them in the low-rank approximation of

the kernel matrix computed as (and reordered such that the time t columns are first)

K̃t,t�1 =
h
Kt |K(t,t�1)

iT �
Kt��1

h
Kt |K(t,t�1)

i
.

Furthermore, it is known that the error kKt,t�1 � K̃t,t�1k2 ln+1 +O(N/
p

n), where ln+1

is the (n+ 1)th eigenvalue of Kt,t�1 [38]. Jin et al. [39] also showed that this error is

further bounded if there is a large eigengap, which is often the case for data sets that can

be partitioned into high-quality clusters. What this shows for the stKFCM algorithm is that

the projection error at each step is bounded; hence, the total error is bounded by the size

and number of data chunks used to complete the stKFCM process.

32

Algorithm 3: Streaming Kernel Fuzzy c-Means (stKFCM)
Input: number of clusters – c; fuzzifier – m; X = {X0,X1,X2, . . .}; kernel – k
Compute K0 = k(X0,X0)

1 U0 =KFCM(c,m,K0)
q̃

0
c = u

0
c/|u0

c |, c = 1, . . . ,k
for t = 1,2, . . . do

Kt = k(Xt ,Xt), K(t,t�1) = k(Xt ,Xt�1)
for k = 1 to c do

2 wk = |qt�1
k |

3 a t
k = (Kt)†K(t,t�1)

q̃

(t�1)
k

ua
ik = 1, if i = k, else ua

ik = 0, Ut = [0]n⇥c

while any ua
i j or ut

i j changes do

4 Compute q̃

t
k with (4.2)

for i, j = 1, . . . ,c do

5 ua
i j =

2

4
c

Â
k=1

dk(ai,vt

j)

dk(ai,vt
k)

! 1
m�1

3

5
�1

where dk(ai,vt
j) is computed with (4.6a)

for i = 1, . . . ,n, j = 1e, . . . ,c do

6 ut
i j =

2

4
c

Â
k=1

dk(xt

i,v
t
j)

dk(xt
i,v

t
k)

! 1
m�1

3

5
�1

where dk(xt
i,v

t
j) is computed with (4.6b)

Compute q̃

t
k with (4.2)

7 Optional extension: The partition of the full data set X is computed by the following steps.
for i = 1, . . . ,N, j = 1, . . . ,c do

ui j =

2

4
c

Â
k=1

dk(xi,vt

j)

dk(xi,vt
k)

! 1
m�1

3

5
�1

where dk(xi,vt
j) is computed by (4.6c).

33

Chapter 5

Experiments

We evaluated the performance of our algorithm on data sets for which ground truth exist. In

these experiments, we compared the hardened partition from the proposed stKFCM to the

the recently proposed Kernel Patch Clustering (KPC) [5], as well as the KFCM partition

run on the whole data set. We present results for different chunk sizes, from 0.0001N to

0.5N. The value of the fuzzifier m was fixed at 1.7. The experiments on the 2D15 and 2D50

were run on a Intel Core 2 Duo core processor with 4 GB of memory. Results of MNIST

and Forest data set were generated by a quad-core CPU with 32 GB of memory. The results

are expressed as the mean and standard deviation over 100 independent experiments, with

random initializations and random data sample ordering.

34

Figure 5.1: Synthetic data sets

5.1 Data sets

5.1.1 2D15

This synthetic data set is composed of 5,000 2-dimensional vectors. As shown in Fig. 5.1(a),

it is obvious that 15 clusters are preferred in this data set. We used an RBF kernel with width

of 1 on this data set.

5.1.2 2D50

This data set consists of 7,500 2-dimensional vectors with 50 clusters preferred. An RBF

kernel with a width of 1 was used.

35

5.1.3 MNIST

These data were collected from 70,000 28⇥ 28 images of handwriting digits from 0 to 9

by the National Institute of Standards and Technology (NIST). We normalized the value of

each pixel to the unit interval and organized the pixels column-wise into a single 784-dimensional

vector. Therefore, this data set is composed by 70,000 784-dimensional vectors with 10

clusters preferred. An inhomogeneous polynomial kernel with degree of 5 was used in our

experiment.

5.1.4 Forest

This data set is composed of 581,012 cartographic variables that were collected by the

United States Geological Survey and United State Forest Service (USFS) data. There are

10 quantitative variables and 44 binary variables. These features were collected from a

total of 581,012 30⇥ 30 meter cells of the forest, which were then determined to be one

of 7 forest cover types by the USFS. We normalized the features to the unit interval by

subtracting the minimum and then dividing by the subsequent maximum. We used the

RBF kernel with a width of 1.

36

5.2 Evaluation criteria

5.2.1 Adjusted Rand Index

Rand index is one of the most popular comparison indices of measuring agreement between

two crisp partitions of a data set. It is the ratio of pairs of agreement to the number of

pairs. The Adjusted Rand Index (ARI) we are using here is a bias-adjusted formulation

developed by Hubert and Arabie [40]. The result is a number between 0 and 1 where 1

indicates perfect match. In order to compute ARI, we first harden the fuzzy partition and

then compare it with the ground-truth partition.

5.2.2 Purity

Purity, also called clustering accuracy, is an external validation measure to evaluate the

quality of the clustering solution. The purity of each cluster is given by the ratio between

the amount of right assignments in this cluster and the size of the cluster. The purity of the

clustering solution is then expressed as a weighted sum of the individual purities. Thus, the

purity is a real number between 0 and 1. The larger the purity, the better the performance.

37

5.2.3 Run time

Our algorithm could be used either as an approximation for unloadable data or acceleration

for loadable data. Thus, time consumption is a crucial criteria. We compared times to

compute the partition matrix with different chunk size as well as to KFCM run on the

entire data set. All the times are recorded in seconds.

Table 5.1 contains the results of our experiments. On the 2D15 and 2D50 data sets, both

KPC and stKFCM are successful at finding the preferred partitions. However, the stKFCM

shows better results than KPC on the 2D50 data set, equaling the performance of KFCM

down to the 2% chunk size. Furthermore, stKFCM is much faster than KPC at small

data chunk sizes for 2D15 and 2D50. This is because the KFCM iterations at each chunk

converge faster with the stKFCM algorithm. Note that KPC is faster than stKFCM for

larger chunks; this is because of the inverse calculation at Line 3 of stKFCM. Both KPC

and stKFCM produce very good speedup over KFCM at small data chunk sizes, while still

producing partitions nearly equivalent to the literal KFCM.

All three fuzzy clustering algorithms produce partitions that do not match well to the

ground-truth for the MNIST and Forest data sets (which is also the case of k-means and

other similar crisp partitioning algorithms). This does not alarm us as there is a big

difference between classification and clustering results; i.e., classification uses user-supplied

38

Table 5.1

Clustering Results*

KFCM KPC [5] stKFCM

Data set Purity ARI Time

(secs)

n Purity ARI Time (secs) Purity ARI Time (secs)

50% 0.94 (0.03) 0.91 (0.05) 4.0 0.94 (0.04) 0.91 (0.06) 30
2D15 25% 0.94 (0.04) 0.91 (0.05) 2.0 0.93 (0.04) 0.90 (0.05) 9.3

N = 5,000 0.95 0.91 5.5 10% 0.94 (0.04) 0.91 (0.05) 1.05 0.93 (0.04) 0.89 (0.05) 1.6
c = 15 (0.04) (0.05) 5% 0.93 (0.04) 0.90 (0.06) 0.77 0.92 (0.04) 0.88 (0.05) 0.73
d = 2 2% 0.91 (0.04) 0.89 (0.05) 1.1 0.92 (0.04) 0.89 (0.05) 0.42

1% 0.88 (0.05) 0.85 (0.07) 1.2 0.88 (0.18) 0.85 (0.19) 0.09
50% 0.85 (0.03) 0.84 (0.04) 31 0.88 (0.03) 0.83 (0.04) 126

2D50 25% 0.88 (0.03) 0.82 (0.04) 15 0.88 (0.03) 0.82 (0.04) 36
N = 7,500 0.92 0.84 56 10% 0.87 (0.03) 0.82 (0.03) 8.8 0.87 (0.03) 0.82 (0.04) 6.8

c = 50 (0.02) (0.04) 5% 0.85 (0.03) 0.79 (0.03) 6.2 0.88 (0.03) 0.84 (0.04) 2.9
d = 2 2% 0.82 (0.03) 0.75 (0.04) 5.8 0.88 (0.02) 0.84 (0.03) 1.7

1% 0.79 (0.03) 0.72 (0.04) 6.8 0.79 (0.27) 0.77 (0.24) 6.2
10% 0.20 (0.01) 0.038 (0.0007) 689 0.19 (0.03) 0.037 (0.0013) 4488
5% 0.20 (0.01) 0.039 (0.0040) 112 0.27 (0.02) 0.035 (0.015) 1460

MNIST 2% 0.20 (0.01) 0.038 (0.0057) 46 0.26 (0.02) 0.037 (0.015) 415
N = 70,000 0.20 0.027 ** 1% 0.20 (0.02) 0.036 (0.0103) 24 0.23 (0.01) 0.044 (0.0121) 193

c = 10 (0.01) (0.00) 0.5% 0.20 (0.02) 0.033 (0.011) 14 0.20 (0.01) 0.0401 (0.0107) 69
d = 784 0.2% 0.16 (0.01) 0.023 (0.013) 14 0.23 (0.01) 0.047 (0.0094) 14

0.1% 0.18 (0.02) 0.016 (0.0103) 19 0.24 (0.01) 0.045 (0.0007) 15
0.05% 0.18 (0.02) 0.011 (0.0067) 33 0.23 (0.02) 0.043 (0.0098) 94
0.02% 0.16 (0.01) 0.0051 (0.0037) 61 0.22 (0.02) 0.033 (0.0105) 60

Forest 0.2% 0.52 (0.01) 0.0014 (0.022) 121 0.51 (0.02) 0.019 (0.019) 1122
N = 581,012 0.52 0.03 ** 0.1% 0.52 (0.01) 0.0010 (0.025) 81 0.51 (0.01) 0.017 (0.019) 333

c = 7 (0.03) (0.03) 0.05% 0.51 (0.01) 0.0078 (0.024) 60 0.50 (0.01) 0.015 (0.027) 118
d = 54 0.02% 0.52 (0.03) 0.0089 (0.023) 57 0.49 (0.00) 0.0011 (0.0006) 43

0.01% 0.51 (0.02) 0.0018 (0.0087) 65 0.49 (0.00) 0.00 (0.00) 29
*Mean and standard deviation over 100 independent trials. **Timing information inappropriate for MNIST
and Forest data as these experiments were performed on a high-performance computing cluster.

labels (a.k.a. ground truth), while clustering aims to find natural groupings. Hence, these

results simply tell us that the natural groupings in these two data sets (as produced by

c-means partitioning) do not match well to the ground truth labels. The aim of our proposed

algorithm is to approximate the partitions of the KFCM for large data sets. And both KPC

and stKFCM succeed at that for the MNIST data. The stKFCM algorithm exceeds the

performance of KFCM for all chunk sizes, except for 0.02%, while KPC meets or exceeds

the KFCM performance for chunk sizes > 0.5%; clearly, the stKFCM outperforms the KPC

algorithm for the MNIST data. We have seen this behavior, i.e., the sampled algorithm

exceeding the performance of the literal algorithm, in other studies [12, 20] and attribute it

39

to the influence of outliers or noise on the literal algorithm. This hypothesis has not been

proved.

On the Forest data, both KPC and stKFCM struggle to match the performance of KFCM

(run on the entire data set) in terms of the ARI criteria; however, in terms of Purity both

KPC and stKFCM perform fairly, with KPC having a slight edge here. We believe that this

is caused by the fact that the classes in the Forest data have very unbalanced numbers of

samples; two of the seven classes, Spruce-Fir and Lodgepole Pine, comprise greater than

85% of the data set. Hence, the KPC and stKFCM algorithms, which sequentially operate

on small samples of the data set, can be presented with samples that are comprised mostly

of these two classes.

Overall, these results are very pleasing as they show that stKFCM, even with very small

data chunk sizes, achieves clustering performance near to that of KFCM run on the entire

data set. Furthermore, the projection method used in stKFCM shows better performance

than the medoid method used by KPC, even showing better run-time for some data sets.

40

Chapter 6

Conclusion

Big data analysis has become very pertinent. It creates many wonderful opportunities but

is accompanied by numerous big challenges. As digital devices pervade everyday life

and generate petabyte scale datasets, both memory space and computational resources are

important considerations in real life applications. Algorithms that could reconcile these

requirements are highly desired.

Kernel Fuzzy c-Means is nearly infeasible with Big Data since both its computational

complexity and space requirement are quadratic. Hence, computers to-date are incapable

of using KFCM with Big Data. Challenges in exploring Big Data arise not only from

their sheer quantity but also from inaccessable future data in real-time applications. In

this paper, we proposed the stKFCM algorithm that significantly reduces both the memory

41

requirement and computational complexity for performing KFCM clustering. By splitting

data into sequencial pieces, we effectively reduce the space complexity from O(N2) to

O(n2), where n is the size of a small data chunk at each time step. Smaller size of data

also accelerate the convergence of the algorithm (as long as n is not too small). Empirical

results show that stKFCM achieves accurate results while only requiring access to a very

small portion of the kernel matrix.

In the future, we will examine how we can better represent and pass on the information from

previous data chunks, including using hybrids of random sampling and projection methods.

We will also look at other methods of projection, with a focus on overall clustering performance.

We plan to further improve the speed and efficiency of our algorithm by investigating how

it can be deployed on multicore processors, GPUs, and cloud-based architectures, taking

advantage of massively parallel computing.

42

Bibliography

[1] M. Schönberger and K. Cukier, Big Data: A Revolution That Will Transform How We

Live, Work, and Think. Eamon Dolan/Houghton Mifflin Harcourt, 2013.

[2] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and

L. Brilliant, “Detecting influenza epidemics using search engine query data,” Nature,

2009.

[3] T. W. E. Forum, “Personal data: The emergence of a new asset class,” 2012.

[4] Facebook, Ericsson, and Qualcomm, “A focus on efficiency: A whitepaper from

facebook, ericsson and qualcomm,” 2013.

[5] S. Fausser and F. Schwenker, “Clustering large datasets with kernel methods,” in Proc.

Int. Conf. Pattern Recognition, Nov. 2012, pp. 501–504.

[6] J. S. Tayler and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge

University Press, Cambridge, UK, 2004.

43

[7] P. Hore, L. O. Hall, and D. B. Goldgof, “Single pass fuzzy c means,” in Fuzzy Systems

Conferences, 2007.

[8] P. Hore, D. B. Goldgof, and L. O. Hall, “Creating streaming iterative soft clustering

algorithms,” in NAFIPS ’07 Annual Meeting of the North American, 2007.

[9] P. Hore, “A fuzzy c means variant for clustering evolving data streams,” in IEEE

International Conference on Systems, Man and Cybernetics, 2007.

[10] S. Eschrich, J. Ke, L. O. Hall, and D. B. Goldgof, “Fast accurate fuzzy clustering

through data reduction,” IEEE Trans. Fuzzy Systems, vol. 11, pp. 262–269, April

2003.

[11] T. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, and M. Palaniswami, “Fuzzy c-means

algorithms for very large data,” IEEE Trans. Fuzzy Systems, vol. 20, no. 6, pp.

1130–1146, 2012.

[12] T. Havens, R. Chitta, A. Jain, and R. Jin, “Speedup of fuzzy and possibilistic c-means

for large-scale clustering,” in Proc. IEEE Int. Conf. Fuzzy Systems, Taipei, Taiwan,

2011.

[13] P.Hore, L. O. Hall, D. B. Goldgof, and W. Cheng, “Online fuzzy c means,” in NAFIPS,

2008.

[14] Z. Zhang and T. Havens, “Scalable approximation of kernel fuzzy c-means,” in IEEE

International Conference on Big Data, 2013, pp. 161–168.

44

[15] N. Pal and J. Bezdek, “Complexity reduction for "large image" processing,” IEEE

Trans. Syst., Man, Cybern, vol. 32, no. 5, pp. 598–611, Oct 2002.

[16] F. Provost, D. Jensen, and T. Oates, “Efficient progressive sampling,” Fifth KDDM,

ACM Press, no. 23-32, 1999.

[17] R. J. Hathaway and J. C. Bezdek, “Extending fuzzy and probabilistic clustering to

very large data sets,” Computation Statistics Data Analysis, 2006.

[18] J. C. Bezdek, R. J. Hathaway, J. Huband, C. Leckie, and R. Kotagiri, “Approximate

clustering in very large relational data,” International Jounal of Intelligent Systems,

vol. 21, pp. 817–841, 2006.

[19] L. Wang, J. C. Bezdek, C. Leckie, and R. Kotagiri, “Selective sampling for

approximate clustering of very large data sets,” International Jounal of Intelligent

Systems, vol. 23, pp. 313–331, 2008.

[20] R. Chitta, R. Jin, T. Havens, and A. Jain, “Approximate kernel k-means: Solution to

large scale kernel clustering,” in Proc. ACM SIGKDD Conf. Knowledge Discovery

and Data Mining, 2011, pp. 895–903.

[21] F. Can, “Incremental clustering for dynamic information processing,” ACM Trans. Inf.

Syst, vol. 11, no. 2, pp. 143–164, 1993.

[22] F. Can, E. Fox, C. Snavely, and R. France, “Incremental clustering for very large

45

document databases initial marian experience,” Inf. Sci, vol. 84, no. 1-2, pp. 101–144,

1995.

[23] P. S. Bradley, U. Fayyad, and C. Reina, “Scaling clustering algorithms to large

databases,” in the Fourth International Conference on Knowledge Discovery and Data

Mining, 2000, pp. 51–57.

[24] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering algorithms revisited,”

ACM SIGKDD Explorations, vol. 2, pp. 51–57, 2000.

[25] C. Gupta and R. Grossman, “Genic: A single pass generalized incremental algorithm

for clustering,” in SIAM Int. Conf on Data Mining, 2004.

[26] P. Hore, L. O. Hall, and D. B. Goldgof, “A cluster ensemble framework for large data

sets,” in Systems, Man and Cybernetics, 2006.

[27] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data

streams: Theory and practice,” IEEE Trans. Knowl. Data Eng, vol. 15, no. 3, pp.

515–528, Jun 2003.

[28] N. Ailon, R. Jaiswal, and C. Monteleoni, “Streaming k-means approximation,” in

NIPS, 2009.

[29] B. Bahmani, B. Mosesley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable

k-means++,” VLDB Endowment, vol. 5, no. 7, pp. 622–633, 2012.

46

[30] T. Zhang, R. Ramakirshnan, and M. Livny, “Birch: An efficient data clustering

method for very large databases,” in ACM SIGMOD Int Conf. Manag. Data, 1996,

pp. 103–144.

[31] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster

Analysis. John Wiley and Sons, 1990.

[32] R. Ng and J. Han, “Clarans: A methods for clustering objects for spatial data mining,”

IEEE Trans. Knowl. Data Eng, vol. 14, no. 5, pp. 1003–1016, Oct 2002.

[33] T. C. Havens, J. C. Bezdek, and M. Palaniswami, Computational Intelligence:

Revised and Selected Papers from IJCCI 2010. Berlin: Springer, 2012, vol. 399,

ch. Incremental Kernel Fuzzy c-Means, pp. 3–18.

[34] Z. Wu, W. Xie, and J. Yu, “Fuzzy c-means clustering algorithm based on kernel

method,” in Proc. Int. Conf. Computational Intelligence and Multimedia Applications,

Sept. 2003, pp. 49–54.

[35] R. Hathaway, J. Davenport, and J. C. Bezdek, “Relational duals of the c-means

clustering algorithms,” Pattern Recognition, vol. 22, no. 2, pp. 205–212, 1989.

[36] R. Hathaway, J. Huband, and J. C. Bezdek, “A kernelized non-euclidean relational

fuzzy c-means algorithm,” in Proc. IEEE Int. Conf. Fuzzy Systems, 2005, pp.

414–419.

47

[37] T. Havens, “Approximation of kernel k means for streaming data,” in 21st

International Conference on Pattern Recognition, 2012.

[38] P. Drineas and M. W. Mahoney, “On the nystrom method for approximating a gram

matrix for improved kernel-based learning,” J. Machine Learning Research, vol. 6,

pp. 2153–2175, 2005.

[39] R. Jin, T. Yang, Y. F. Li, and Z. H. Zhou, “Improved bounds for the nystrom

method with application to kernel classification,” IEEE Trans. Info. Theory, vol.

10.1109/TIT.2013.2271378, 2013.

[40] L. Hubert and P. Arabie, “Comparing partition,” J. Class, vol. 2, pp. 193–218, 1985.

48

	SCALABLE APPROXIMATION OF KERNEL FUZZY C-MEANS
	Recommended Citation

	noBinding_embedded.pdf

