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Abstract1 
Determination of combustion metrics for a diesel engine has the potential of providing 

feedback for closed-loop combustion phasing control to meet current and upcoming 

emission and fuel consumption regulations. This thesis focused on the estimation of 

combustion metrics including start of combustion (SOC), crank angle location of 50% 

cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak 

pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), 

mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude 

(PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism 

for characterization of combustion rates and more recently in-cylinder pressure has been 

used in series production vehicles for feedback control. However, the intrusive 

measurement with the in-cylinder pressure sensor is expensive and requires special 

mounting process and engine structure modification. As an alternative method, this work 

investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 

diesel engine. So the transfer path between the accelerometer signal and the in-cylinder 

pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder 

pressure signal and the combustion metrics can be accurately estimated - recovered from 

accelerometer signals. The method and applicability for determining the transfer path is 

critical in utilizing an accelerometer(s) for feedback.  

Single-input single-output (SISO) frequency response function (FRF) is the most 

common transfer path model; however, it is shown here to have low robustness for 

varying engine operating conditions. This thesis examines mechanisms to improve the 

robustness of FRF for combustion metrics estimation. First, an adaptation process based 

on the particle swarm optimization algorithm was developed and added to the single-

input single-output model. Second, a multiple-input single-output (MISO) FRF model 

1 The material contained in this section is planned for submission as part of a journal article and/or 
conference paper in the future. 
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coupled with principal component analysis and an offset compensation process was 

investigated and applied. Improvement of the FRF robustness was achieved based on 

these two approaches. Furthermore a neural network as a nonlinear model of the transfer 

path between the accelerometer signal and the apparent heat release rate was also 

investigated.  

Transfer path between the acoustical emissions and the in-cylinder pressure signal was 

also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI 

diesel engine. The acoustical emissions are an important factor in the powertrain 

development process. In this part of the research a transfer path was developed between 

the two and then used to predict the engine noise level with the measured in-cylinder 

pressure as the input. Three methods for transfer path modeling were applied and the 

method based on the cepstral smoothing technique led to the most accurate results with 

averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a 

linear model for engine noise level estimation was proposed with the in-cylinder pressure 

signal and the engine speed as components.  



1 
 

 

Chapter 1  

Introduction1 

1.1 Background  

Diesel engines have a wide spread use in automobiles, medium and heavy duty trucks, 

locomotives, construction equipment, and power generation due to its unique 

combination of fuel economy, reliability, durability, and affordability [2]. A Diesel 

engine ignites the fuel through increasing the working gas temperature as a result of 

combustion. Fuel is injected to the combustion chamber late in the cycle near the top 

dead center. The combustion of the fuel transforms the fuel’s chemical energy to sensible 

(thermal) energy in the working gas and generates high cylinder pressure which develops 

torque through the crank-slider mechanism by applying a force on the pistons to move 

and transmit the energy to the crankshaft. Diesel engines have the advantage of high fuel 

economy. In comparison to the spark ignition engines, diesel engines are 30-35% more 

fuel efficient than similar-size gasoline engines [3].  

Diesel engine introduces significant carbon dioxide benefits, but regulations remain 

concerned with the nitrogen oxide (NOx) and particulate (PM) production [4]. In the 

1970s, the U.S. Environmental Protection Agency (EPA) and other organizations 

initiated regulations with respect to the diesel emissions [5]. In both North America and 

1The material contained in this section is planned for submission as part of a journal article and/or 
conference paper in the future.
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Europe, the major challenges are in PM and NOx control for the legislation to be 

introduced in 2005 (EuroIV), 2007 (US ’07), 2008 (Euro V), and 2010 (US ’10) [6]. 

The future wide spread usage of diesel engine for power supply can only be realized if 

their exhaust emissions meet the increasingly stringent emissions legislation.  

For a further reduction of engine-out emissions, closed-loop control of the combustion 

process has been a focus for engine research and development [7, 8, & 9]. Open-loop 

operation based on calibration maps which are conservatively set based upon laboratory 

operation can give a quick response and is relatively easy to control. However, the open 

loop cannot adapt to the changes caused by the condition variations such as injector aging 

and fuel quality [8].  In comparison, closed-loop control considers the condition changes 

in the control mechanism and enables operation closer to the optimum fuel consumption 

and emissions target. Combustion metrics detected or estimated through a sensor 

provides feedback information to control the combustion process. In-cylinder pressure 

waveform is the most commonly used signal which provides the information for engine 

combustion control [10-12]. Many other combustion metrics, CA50, SOC, and PPCL, 

which characterize the phase of combustion process, can be obtained based on the 

derivations of the in-cylinder pressure signal. These combustion metrics are taken as the 

feedback to the Engine Control Unit (ECU) to adjust the start of injection (SOI), pilot 

main timing and split, EGR level, boost level, fuel quantity, etc. Then the desired 

combustion phasing can be reached. Combustion phasing was found to affect exhaust 

emissions, thermal efficiency, and power output [13, 14]. One representative combustion 

phasing metric is the ignition delay, which is the time difference between the SOI and 

SOC [14,15].  

Moreover, additional disadvantages of diesel engines associated with the diesel 

combustion process are the noise and vibration levels. Due to the compression ignition 

process of diesel engines, the high compression ratio and the high cylinder pressure 

causes higher vibration and noise than gasoline engine. The in-cylinder pressure directly 

acts on the cylinder chamber walls, piston, and piston head which can be transmitted 
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through the engine block to the block surface and the engine mount (REF). Also vibration 

can be introduced to the mechanical systems of the diesel engine by the piston movement 

which is driven by the in-cylinder pressure. This noise will radiate from the engine block 

due to the vibration. Therefore, the in-cylinder pressure can be considered as the main 

source of the engine vibration and noise radiation [16, 17 , &18]. The relationship 

between the diesel engine noise level and the in-cylinder pressure signal was studied in 

this thesis. Based on the quantified relationship between the two, the engine noise level 

can be estimated with the in-cylinder pressure signal as the input.  

1.2 Studies of interest 

Two scenarios were studied in this thesis. First, the transfer path on a 9L I6 diesel engine 

between cylinder pressure and engine vibration signal as calculated with tri-axil block 

mounted accelerometers was modeled. Combustion metrics were estimated based on the 

transfer path with the vibration signal as the input. Second, the transfer path between the 

in-cylinder pressure and engine noise level as measured with microphones was studied on 

a 1.9L TDI diesel engine. From this, the engine noise level was estimated with the in-

cylinder pressure and speed as the input. 

1.2.1 Transfer path between engine vibration signal and combustion 
metrics 

In-cylinder pressure signal has been historically used in the laboratory and more recently 

in series production to derive the combustion metrics and provide feedback for 

combustion phasing control [19 - 21 ]. However, the measurement of the in-cylinder 

pressure is typically obtained with intrusive sensors that require a special mounting 

process and engine structure modification. Also the in-cylinder pressure transducer has a 

high cost for mass production for diesel engines [22]. The engine vibration characteristics 

acquired through accelerometers mounted externally on the engine provide a path for a 

non-intrusive low cost sensor if they can be related to combustion characteristics [23]. In 

this dissertation block mounted accelerometers were used to reconstruct combustion 
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metrics so as provision for feedback in a closed-loop combustion phasing control 

scenario.   

Goal and Objectives 

The goal was to reconstruct the combustion metrics over varying engine conditions (SOI, 

speed, and load) based on the vibration signals acquired through accelerometers mounted 

on the engine block and engine head. Success of the reconstruction of combustion metrics 

depends on the development of a robust transfer path. Both the transfer path development 

and the combustion metrics reconstruction were performed on a medium sized diesel 

engine, John Deere 9L I6 280 kW. The reconstructed combustion metrics included SOC, 

CA50, PPA, PAA, PACL, MAPE, and PPCL. All these combustion metrics were 

extracted from the recovered in-cylinder pressure curve or apparent heat release rate 

(AHR) curve. Both frequency response function (FRF), which is based on a linear 

dependency assumption, and a nonlinear mapping tool, neural network, were applied to 

model the transfer path. The research objectives are listed as following: 

 Determine optimal accelerometer placement – Determine the accelerometer 

location that has the strongest correlation with the combustion events to use in the 

single-input single-output (SISO) frequency response function (FRF).  

 Adapt FRF for varying engine conditions based on SISO FRF model – 

Compute the SISO FRF from the optimal accelerometer channel based on one 

engine condition. Design an adaptation process to improve the robustness of the 

SISO FRF over different engine conditions with load and SOI variations. 

 Model the multiple-input single-output (MISO) transfer path with multiple 

accelerometer channels as the input channels – Evaluate the MISO model and 

reduce the input channel number to a minimum based upon…. Compare the 

estimation results between the SISO and MISO models. 

 Model the transfer path with radial basis function neural network – 

Construct and train a neural network to map the relation between the 
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accelerometer signal and the AHRR. Propose different neural network training 

methods and select one which has the best performance for application.   

1.2.2 Transfer path between the engine noise level and the in-cylinder 

pressure signal 

The construction of the diesel engine based on the compression ignition concept and the 

new combustion procedures designed to improve the fuel economy introduce more noise 

than the conventional gasoline engines [24 ]. So as to provide a quiet driving and 

operational environment, engine noise level is an important factor in the engine design 

and development process along with emissions, fuel economy, reliability, etc. [25-27]. 

Therefore, an evaluation procedure for the combustion noise level needs to be 

incorporated in the engine development process. To minimize time-consuming and 

expensive acoustic tests [18], engine noise level estimation based on the in-cylinder 

pressure signal, which can be obtained through an on-board load cell in-cylinder pressure 

sensor for each cylinder on a TDI engine [28], was investigated.  Success of this work 

needs a reliable and robust transfer path developed between the in-cylinder pressure 

signal and the engine noise level.  

Goal and Objectives 

The goal for this section was to develop the transfer path between the engine noise level 

and the in-cylinder pressure signal on a 1.9L TDI diesel engine to reconstruct the radiated 

noise level with the measured in-cylinder pressure as the input. The research objectives 

are listed as following: 

 Perform an evaluation of the classical attenuation curve for estimation of the 

engine noise level – apply the attenuation curve of a commercialized combustion 

noise meter to estimate the engine noise and evaluate the estimation results. 

 Compute the attenuation curve of the 1.9L diesel engine and optimize the 

attenuation curve – compute the attenuation curve based on the measured in-
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cylinder pressure and noise level on the 1.9L diesel engine and optimize the curve 

with two methods. 

  Develop an improved or new model for engine noise level estimation – 

develop a linear model that results in a more accurate engine noise level 

estimation.  

1.3 Dissertation outline 

Chapter 1 presents the background for the research in this dissertation. The transfer path 

between combustion metrics and engine vibration signal, and the transfer path between 

combustion metrics and engine noise level are discussed. Two research aspects for 

application of the transfer paths, combustion metrics reconstruction and engine noise 

level estimation, are presented. Both the goals and objectives of the two research aspects 

are given in this chapter. 

Chapter 2 reviews the literature which focuses on the combustion metrics reconstruction 

from reference signal and engine noise level estimations. Literatures involving reference 

signal selection, transfer path modeling, signal processing, etc. are also reviewed.  

Chapter 3 covers the development of the models for the transfer path between the 

accelerometer signals and the in-cylinder pressure signal with SISO FRF on the 9L I6 

diesel engine. An optimization process was applied to the SISO FRF which was obtained 

from one test condition to improve its robustness for additional engine conditions. The 

material contained in this chapter will be submitted to a journal in the future.  

Chapter 4 covers the model for the transfer path between the accelerometer signals and 

the in-cylinder pressure signal based on the accelerometer signals acquired through 

multiple accelerometer channels on the 9L diesel engine. The multiple-input single-

output (MISO) model was further simplified into a two-input one-output model without 

significant reduction in the accuracy. Comparison of the results was made between the 

MISO and SISO models. The material contained in this chapter was submitted to 
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“Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical 

Engineering Science” and the current status is “Peer review in process”. 

Chapter 5 covers the modelling for the transfer path between the accelerometer signals 

and the apparent heat release rate through a radial basis function neural network on the 

9L diesel engine. Three training methods were applied to the neural network and results 

showed that the principal component analysis provided the best estimation efficiency and 

accuracy. The material contained in this chapter was published as a journal article [i]. 

Chapter 6 develops and evaluates the performance of the attenuation curve in estimating 

the engine noise level with the in-cylinder pressure signal as the input. Cepstrum 

smoothing technique was applied to pursue an optimized attenuation curve for the 1.9L 

diesel engine. Also, a new model for engine noise level estimation was proposed and 

established on this engine, and it was shown that this new model can provide a more 

accurate noise level estimation result than the structural attenuation curve method. The 

material contained in this chapter was submitted to “SAE International Journal of 

Engines” and the current status is “Peer review in process”.  

Chapter 7 summarizes the research in this dissertation and the conclusions for the transfer 

path modeling between diesel engine combustion metrics and noise based upon vibration 

measurement on diesel engines. Finally, recommendations for future work are presented.   
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Chapter 2  

Literature review1 
2.1 Response signals for combustion events 

2.1.1 Crank shaft speed fluctuation 
Due to the variations of the in-cylinder pressure waveform during a combustion cycle, the 

crank shaft speed fluctuation varies in a complex way which depends on the engine 

parameters. How the speed fluctuation varies with the engine in-cylinder pressure 

changes has been explored by many researchers so as to develop a good alternative to the 

direct intrusive in-cylinder pressure measurement [29-37]. Based on a model that relates 

the crank-shaft speed and the in-cylinder pressure, the in-cylinder pressure can be 

estimated with the input of instantaneous speed signal measured by a crank-shaft speed 

sensor. The sensor can be an optical encoder or a magnetic pickup transducer which are 

easy to mount and low in cost.  

Moro et al. [29] proposed a linear dependency between the in-cylinder pressure and the 

engine speed signal and experimentally verified it for 38 different engine running 

conditions.  The equation that can represent this linear dependency is given as [29]: 

                 (2.1) 

1The material contained in this section is planned for submission as part of a journal article and/or 
conference paper in the future.
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Where  is piston area in ,  is the crank radius in ,  is the in-cylinder pressure 

in case of misfire (bar),  is the synthetic engine acceleration in ,  is the 

synthetic engine acceleration in case of misfire ,  is the moment of initial 

( ), and  is the crank-slider kinematics function.  

A frequency response function between the in-cylinder pressure and the engine speed can 

be obtained by converting equation 2.1 into frequency domain. However, this FRF is 

sensitive to engine running conditions and the FRF obtained based on one conditions 

does not lead to the estimated in-cylinder pressure with high accuracy when condition 

varies. So a FRF mapping was created in this paper based on 38 different steady-state 

engine conditions with the engine speed and the manifold pressure as the condition 

parameters to distinguish different test conditions. For the conditions falling into the FRF 

mapping, interpolation technique was used for both real and imaginary harmonic 

components to obtain the estimated FRF. The pressure recovery results for low speed low 

load, high speed low load, and low speed high load conditions were shown in this paper.  

Connolly and Yaggle modeled the cylinder combustion pressure via the crank-shaft 

velocity from a statistical point of view [30]. The model involves three sequent 

components. First, by replacing the time domain independent variables with crank-angle 

variables, a non-linear differential model between the crank’s shaft speed and the in-

cylinder pressure signal can be simplified. Secondly, the in-cylinder pressure signal was 

parameterized by the sample modeling sequence based on a stochastic model which uses 

the sum of the deterministic waveform and an amplitude-modulated cosine window.  

Third, an estimation of the in-cylinder pressure based on the crank-shaft speed signal was 

achieved through a state-space deconvolution process which utilized a Kalman filter. 

Moreover, signal to noise ratio effects to the in-cylinder pressure estimation were also 

evaluated in this paper. Results showed that for low to moderate noise level conditions 

the reasonable deconvolution can be reached.    

Shiao et al. [31] employed a sliding observer to estimate the in-cylinder pressure and 

combustion heat release for an SI engine. To estimate the in-cylinder pressure with high 
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accuracy, the error between the measured and the estimated crank-shaft speed was taken 

as the feedback to reduce the dynamic error of the estimated in-cylinder pressure.  The 

unobservability problem arises for the pressure estimation around the top dead center and 

thus introduces significant estimation error. This problem was partly solved by adapting 

the parameters of the observer. Then the estimated in-cylinder pressure was used to 

compute the cylinder heat release. Also, detection of misfire or abnormal combustion 

events was achieved through the estimated heat release.  

Additional investigators examining combustion metrics analysis based on the crank-shaft 

speed fluctuation can be found in [32-34]. In addition to estimating the in-cylinder 

pressure waveform and the heat release, engine crank shaft speed was also used to 

recover the engine torque [35-37]. For most cases, the crank shaft speed was fed into an 

engine model which was simplified based on assumptions to estimate the engine torque.  

2.1.2 In-cylinder ion current 
Ion current in the combustion chamber is measured via the spark plug. After the high-

voltage discharge, the ion current across the spark plug gap is obtained by applying a DC 

voltage across the gap and measuring the resulting current. The ion current is affected by 

gas flow, geometry of flame, electric potential, ion density, and the angle between the 

flame and electrode [38].  The ionization of gases in the cylinder occurs in two phases. 

When the fuel reacts with the oxygen during combustion, the first phase ionization occurs 

which can be considered as chemical phase. The second phase, defined as thermal phase, 

occurs when the burnt gases are compressed by the increased in-cylinder pressure [39].  

The most consistent dependency between the ion current and in-cylinder pressure occurs 

on the peaks of the two signals for both amplitude and the location perspectives. This has 

been verified by the researches in [38-43].  Martychenko [12] detected the breakdown 

voltage across the spark plug gap and modeled the relationship between the peak of the 

voltage and the peak the in-cylinder pressure based on second order polynomial function. 

The coefficients of the second order polynomial function for the conditions with varied 

engine speed are different. However, the coefficients can be curve fitted by a linear 
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function of engine speeds.  Hellring [39] proposed a least squares fit method to estimate 

the in-cylinder pressure peak position of spark ignited engines based on the ion current 

signal. This method was proved to have a better robustness and accuracy than multilayer 

perceptron and Gaussian curve fit methods for peak in-cylinder pressure estimation.   

Gazis et al [44] explored the possibility of estimating in-cylinder characteristics based on 

the ion current with one simple and computationally inexpensive neural network, 

adaptive linear type of network. Thirteen extracted characteristics of the ion current were 

taken as the input and four characteristics of the in-cylinder pressure (peak pressure 

position, peak pressure magnitude, the width of curve at half of its height, and the area of 

the curve between inlet valve closing (IVC) and exhaust valve opening (EVO)) as the 

output to train the network with the purpose of predicting the four characteristics of in-

cylinder pressure. Also, based on the same neural network structure but with the whole 

ion current signal (time domain sampled between IVC and EVO) as the input and the 

whole in-cylinder pressure signal (time sync’d with ion current signal) as the output, the 

in-cylinder pressure curve rather than just some characteristics of the in-cylinder pressure 

signal can be estimated. The peak pressure location, as one of the most important in-

cylinder pressure characteristics, was predicted with the mean error at 0.062 degrees and 

standard deviation at 2.55 degrees.  

Ion current was also used to detect engine knock, misfire, or incomplete combustion [42, 

45-47].  Kumar et al. [42] applied a band-pass filter on the ion current signal and the 

filtered output indicates the engine knock. Danne et al. [45] compared the ion current 

based knock detection with the conventional methods of pressure-based and 

accelerometer-based knock detection on a large-displacement, air-cooled, V-twin 

motorcycle engine. It was found that the ion current based method can detect the 

inaudible knock more accurately and reject the mechanical noise more effectively than 

the other two conventional methods. Zhu et al. [46] found that the in-cylinder ion current 

can detect misfire or incomplete combustion. Also, the ion current signal can be used to 

compute minimum spark advance for best torque (MBT) to measure the combustion 
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stability [46, 48]. However, the results are only limited to a fixed load over a narrow 

speed range. 

2.1.3 Accelerometer signal  
Accelerometers are mounted externally on the engine block or the engine head to detect 

the combustion events by measuring the vibration signals which are transmitted from the 

in-cylinder oscillation to the engine outer surface. However, as the accelerometer detects 

the vibrations from the sources in addition to the cylinder oscillation including the valve 

dynamics, piston slaps, etc., the signal may vary from cylinder to cylinder and over 

operating conditions. So the utilization of the accelerometer signal for combustion 

metrics detection relies on the signal processing technique which can eliminates the 

effects from other sources.   

Naber et al. [49] evaluated the effectiveness and accuracy of accelerometer-based knock 

detection. The distributions of the accelerometer-based knock intensity metrics for 

various operation conditions including varied speeds, loads, cam timings, and knock 

levels were measured and fitted by a log-norm distribution. The log-norm model was 

verified to provide a good fit of the distributions and the distribution characteristics 

including skewness and peakness. In addition, a good correlation can be seen between the 

cylinder pressure based knock intensity metrics and the accelerometer-based knock 

intensity metrics. Guillemin [50] estimated the instantaneous engine knock by fitting the 

accelerometer signals with Gaussian function on a 2.2L HCCI engine and measure the 

start of combustion where the knock level is out of the user-defined threshold.  

Characteristics of the accelerometer signal which are related to the characteristics of in-

cylinder pressure or apparent heat release rate were investigated and extracted [51-53]. 

These characteristics of the in-cylinder pressure or apparent heat release including start of 

combustion, CA50, and PPCL are closely related to the combustion process and thus can 

be used as the feedback to control the combustion process.  Arnone et al. [51] band-pass 

filtered the in-cylinder pressure signal and the accelerometer signal within 650-1000Hz 

and found that the accelerometer signal can locate the sudden rise of the in-cylinder 
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pressure signal (so as to denote the start of combustion), diffusive combustion process, 

and the peak of the in-cylinder pressure on a water cooled Lombardini LDW442CRS 

direct injection common rail diesel engine. Chiavola et al. [52] computed the cumulative 

heat release based on the measured in-cylinder pressure and investigated the relationship 

between the accelerometer signal and the cumulative heat release on a two cylinder diesel 

engine equipped with a common rail injection system. By superimposing the filtered 

accelerometer signal to the cumulative heat release, it was found that the filtered 

accelerometer signal can locate the start of combustion, the beginning of main 

combustion, and MFB50 (50% of the burnt fuel mass). Taglialatela [53] investigated the 

correlation between the in-cylinder pressure signal and the features derived from the 

accelerometer signal on a 4L single cylinder SI engine. Time-frequency spectrogram 

method was utilized to analyze the accelerometer signal to present more features of the 

accelerometer signal than the analysis in time domain. The result indicates a direct 

correlation between the peak pressure location and the maximum amplitude of 

accelerometer signal in time-frequency domain for all the engine operating conditions 

conducted in this paper. So the maximum amplitude location of the accelerometer signal 

can be used as the feedback for a closed-loop control system of spark advance.   

Polonowski et al. [54] explored the potential of accelerometers to recover the in-cylinder 

pressure curve on a 1.9L four cylinder, turbocharged, HPCR, direct injection diesel 

engine. In this paper, standard signal processing techniques including Fast Fourier 

Transform (FFT) and coherence were employed and results showed that a strong 

coherence presented between the in-cylinder pressure signal and the accelerometer signal 

within frequency band of 0.5 kHz to 4 kHz with the coherence value over 0.9. Also, this 

research found that the accelerometer location did result in a varied coherence value 

between the in-cylinder pressure signal and the accelerometer signal. The optimal 

locations for the accelerometer placement were determined based on both offline and 

online coherence analysis. In his later work [55], frequency response function (FRF) was 

used to quantify the relationship between accelerometer response and AHR, and the 

relationship between accelerometer response and in-cylinder pressure. A technique 
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termed as spectrum weighting was utilized to combine FRFs from all conducted test 

conditions into a single FRF by weighting the FRF magnitude and phase information for 

each frequency by the coherent output power at that specific frequency. Equation 2.2 

described coherent output power weighting matrix, and equation 2.3 explains how these 

FRFs were combined by means of coherence output power computed by equation 2.2. 
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Where: 

( )C f : Coherence as a function of frequency 

( )P f :  Autopower as a function of frequency 

TN:       Test number 

CPw :    Coherent power weighting matrix 
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Where: 

TN :                   Test number 

NT :                   Number of tests 

( )H f :               Frequency response function in frequency domain 
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( , )CPw TN f :     Coherent power weighting matrix  

This obtained FRF was used to estimate in-cylinder pressure and AHR on a cycle-cycle 

basis. The maximum pressure gradient determination was shown to have a root mean 

square error (RMSE) accuracy of 15% of actual maximum pressure gradient. The 

location based metrics had the RMSE as small as 0.29° and more than 80% of the 

estimated peak apparent heat locations were within 1° crank-angle.  

Among the fore-mentioned three signals for combustion metrics estimation or correlation, 

accelerometer signal was most utilized because the accelerometer has the advantage of 

low price and easy mounting as well as high reliability and durability. Also, utilization of 

multiple accelerometers which are placed at multiple locations on engine block can 

supply more than one input channels which have the potential of improving the 

combustion metrics estimation accuracy with the assistance of signal processing. The 

limitation of usage of crank shaft signal is that the instantaneous output torque near TDC 

where CI engine combustion typically starts is zero [14]. Also, the dynamics of the 

system limit the dynamic content of the signal. Ion signals are dependent on engine 

conditions including speed, load, boost, air/fuel ratio, fuel additives, and spark plug 

condition [48]. So the accuracy of the combustion metrics estimation will be affected by 

the changes of these dependent conditions. Also, as deposit accumulation on the ion 

probe electrodes will decrease the ion current signal, a self-cleaning mechanism must be 

considered in its application [48 ].  

2.2 Signal processing techniques to correlate the 
combustion metrics and the response signal 

2.2.1 Frequency response function (FRF) 
The pressure curve recovery depends on the transfer path modeling between the acquired 

source signal (in-cylinder pressure signal) and the response signal (vibration signal for 

example). Frequency response function which represents the frequency domain 
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relationship between the in-cylinder pressure signal,  and the accelerometer 

signal, , can be presented by Equation 2.4: 

                                                     (2.4) 

 is the transfer path in frequency domain and is defined as the frequency response 

function (FRF).  With the FRF obtained by measuring both  and  based on the 

representative operating conditions, the in-cylinder pressure signal of any other condition 

can be recovered with the measured  and the obtained  by equation 2.5: 

                                                   (2.5) 

However, as the response signal is sensitive to not only the in-cylinder pressure 

oscillation but the rotating crank-slider and vibration from other mechanical parts 

including piston slaps and valve dynamics which varies with the engine operating 

conditions, the FRF with assumption of linear dependency in frequency domain between 

the source signal and the response signal does not have a good robustness over engine 

operating conditions. This conclusion has been confirmed by researchers [55-58]. Gao et 

al. [56] applied the FRF computed from 2400rpm full load condition to reconstruct the 

in-cylinder pressure with the accelerometer signal measured at 3600rpm and full load 

condition as the input. The significant recovery error for the in-cylinder pressure 

waveform indicated that the transfer path modeled by FRF cannot be considered 

consistent over engine operating conditions. Morello [57] attempted to overcome the 

drawback of FRF application for the heat release recovery based on the accelerometer 

signal by optimizing the time domain window applied to the accelerometer signal. Also, a 

Vold-Kalman order tracking filter was employed to eliminate the abnormal harmonics of 

the singular value decomposition results of both the accelerometer signal and in-cylinder 

pressure signal. However, no significant heat release estimation accuracy improvement 

can be seen for a start of injection (SOI) sweep test conditions. Polonowski [55] also tried 

to improve the FRF performance by adding a weighting function to the FRF as shown in 

equation 2.2. However, the robustness improvement for FRF is still limited.  
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Gao et al. [56] explained why the variation of the FRF results in an error of source 

estimation with the Laplace transform. It can be seen that the variation of FRF introduces 

incomplete cancellation of the poles and zeros in the dominator with the accelerometer 

signal as the numerator. The incomplete cancellation of non-minimum-phase zeros will 

make the extra poles or zeros of FRF present and make the inverse filtering unstable. As 

a result errors will be introduced to the estimation result.    

2.2.2 Cepstrum analysis 
Complex cepstral analysis is a nonlinear homomorphic signal process which is being 

utilized in many areas including machine diagnostics, image processing, speech, and 

radar signal processing. A cepstrum is reached by taking the inverse Fourier transform of 

the logarithm of a signal spectrum. The complex cepstrum  can be expressed as: 

                                             (2.6) 

 is the signal in time domain,  represents the Fourier transform algorithm, and  

denotes inverse Fourier transform.   

Equation 2.7 can be obtained by applying logarithm to equation 2.4:  

                                              (2.7) 

After computing the inverses Fourier transform: 

                             (2.8) 

According to equation 2.6, the cepstrum of FRF can be obtained as: 

                                                 (2.9) 

The advantage of this method is that the convolution process is converted to an addition 

process in cepstrum domain. El-Ghamry et al. [ 59 ] applied the complex cepstrum 

analysis on the root mean square acoustic emission signal. The complex cepstrum of FRF, 

 was evaluated for four complete combustion cycles at 1280rpm 30Nm condition. 
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By inserting the  and the  into equation 2.9, the cylinder pressure signal can be 

identified as: 

                                               (2.10)         

However, this method only gave good estimation of the in-cylinder pressure signal for the 

same engine operating conditions based on which the was computed.   

Another important application of complex cepstral analysis is for signal smoothing. The 

complex cepstrum was utilized to improve the robustness of the transfer path by 

smoothing both the source signal and the response signal [56, 60, &61]. Smoothing the 

FRF actually reduces the variations of the FRF associated with different operating 

conditions. The schematic illustration for smoothing the FRF is shown in Figure 2.1.  

Figure 2.1: In-cylinder pressure estimation based on the cepstral smoothing technique 
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In the process described in Figure 2.1, the smoothing of magnitude and phase was 

realized by applying a low-pass filter in quefrency domain to lifter the corresponding 

content of complex cepstrum. In other words, the liftering process was achieved by 

applying a window around zero quefrency. Kim [60] also discussed the effects of the 

window length in the signal smoothing and results showed that the shorter the window, 

the smoother the log spectrum. The smoothed amplitude and phase of FRF was obtained 

through equation 2.9 by smoothing the phase and amplitude of both the accelerometer 

signal and the premeasured in-cylinder pressure under the given conditions. By inserting 

the smoothed FRF into equation 2.10, the in-cylinder pressure signal was recovered by 

inputting the smoothed accelerometer signal measured from the same conditions on 

another engine structure of the same type. 

Gao [56] applied the complex cepstral smoothing technique to obtain a smoothed FRF for 

in-cylinder pressure recovery. They compared the results based on four different in-

cylinder pressure recovery methods, including two inverse filtering procedures (equations 

2.5 and 2.10), the cepstral smoothed FRF, and the time domain smoothed FRF. It showed 

that the pressure waveforms recovered from the two smoothing operations can better 

match the measured ones than the pressure waveforms recovered from the two inverse 

filtering operations.    

2.2.3 System identification 
FRF method assumed a linear dependency in frequency domain between the in-cylinder 

pressure and the vibration signal. However, the low robustness of the FRF with respect to 

the engine operating condition variations proved that the linear dependency needs to be 

adapted. System identification approach modeled the transfer path between the in-

cylinder pressure and the accelerometer signal with a nonlinear hypothesis. Villarino [62] 

modeled the transfer path as a filter which was applied to the in-cylinder pressure signal 

to output the accelerometer signal. Also, it was assumed that the accelerometer signal 

consists of a superposition of components with each component for one cylinder. The 

model was expressed as:  
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                      (2.11)  

 as the measured accelerometer signal is the sum of the in-cylinder pressure  filtered 

by a time-variant filter past accelerometer samples termed by 

, and the noise termed by .  is the left shift operator and works as 

.  

The optimal filter coefficients  and  were estimated by minimizing the error 

between the estimated in-cylinder accelerometer signal  and the measured one : 

                                  (2.12) 

For the ease of reconstruction of the in-cylinder pressure, in-cylinder pressure trace was 

decomposed into three parts which are associated with the same dependent parameters. 

Expectation maximization algorithm was employed to recover the dependent parameters. 

The results showed that the peak pressure location estimation yields a mean error of  

with the standard deviation at . However, the high estimation accuracy was limited 

to the same engine operating conditions. No results were reported when this method was 

applied to a varied engine operating condition. 

Wagner [63] built a physical model which denoted the speed dependence of the transfer 

path between the in-cylinder pressure and the accelerometer signal. SGN algorithm was 

used to identify the parameters of the transfer function speed-independently. Each 

pressure in this paper was considered to be composed of two parts with the first one 

introduced by the compression due to the piston movement and the second one generated 

by the pressure rise due to the combustion event.  As the parameters were identified 

speed-independently, only one set of transfer path parameters needs to be stored for the 

in-cylinder pressure estimation.  

Other than recovering the in-cylinder pressure signal, system identification approach was 

also used for misfire detection [64-66]. A function was developed to interpret the ratio 

between the energy of the signal and the energy of the noise, termed as signal energy to 
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noise ratio in Villarino’s work. A higher load can cause the signal energy-to-noise ratio to 

increase. A threshold value was determined with the function value lower than the 

threshold value indicating the occurrence of the misfire.  

2.2.4 Neural network   
The modeled transfer paths described in the previous sections only work for limited 

engine operating conditions. The transfer behavior between the accelerometer and the 

combustion metrics (with the in-cylinder pressure as the example) is a nonlinear dynamic 

path highly depending on the input and the engine operating condition. For this reason, 

another nonlinear modeling approach, neural network, was employed to investigate the 

relationship between the combustion metrics and the response signal, including crank 

speed fluctuation [30, 33], the vibration signal [67], and hybrid of crank speed fluctuation 

and vibration signal [68].    

Gu [33] modeled the relationship between the cranks shaft speed and the in-cylinder 

pressure with a radial basis function (RBF) neural network on a four cylinder DI diesel 

engine.  With network trained with the selected data and the in-cylinder pressure can be 

expressed as:  

                                       (2.13) 

Where  is the radial basis function and  are the weighting vectors. The RBF is 

composed of a linear layer represented by equation 2.13 and a non-linear layer with radial 

basis functions as the components. The radial basis function is expressed as: 

                                            (2.14) 

Where  is the hidden unit center,  represents the crank speed input, and  is the 

radius of the Gaussian function.  represents the Euclidean distance between the 

vectors. Results showed that the recovered pressure waveform match well the measured 

one for nine engine conditions with varied engine speeds and loads for all the phases: 

compression, peak pressure and rise and fall of the combustion. Indicated mean effective 
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pressure (IMEP) was also computed based on the recovered in-cylinder pressure signal 

and the IMEP from the recovered in-cylinder pressure can follow the respective measured 

values closely.  

Taglialatela [22] utilized the Multi-Layer Perceptron neural network to model the 

relationship between the crank shaft speed and parameters extracted from the in-cylinder 

pressure, including peak pressure value and peak pressure angular location, instead of the 

pressure waveform. With the trained neural network, the peak pressure amplitude can be 

estimated with minimum error of 2.31bar and maximum error of 6.97bar which are 4.1% 

and 8.0% respectively in relative percentage scale.  The peak pressure location can be 

estimated with minimum error of 1.38 crank-angle degrees and maximum of 5.20 crank-

angle degrees.  

Bizon et al [67] reconstructed the in-cylinder pressure signal on a single cylinder 0.5L 

diesel engine with the engine block vibration as the input signal to a trained RBF neural 

network. This paper focused on the RBF neural network parameters optimization with 

respect to the number of neurons and the spread parameter. 50 centers and spread 

parameter of 3.2 were finally determined and the RBF network structured with the 

optimized parameters were evaluated based on the peak pressure amplitude, peak 

pressure location, and the MBF50 which are derived from the recovered in-cylinder 

pressure.  The peak pressure value estimation error was under 3% in relative RMSE and 

the peak location and MBF50 were below both 1.5 crank-angle degrees.  

Johnsson [68] also employed the RBF neural network for the in-cylinder pressure 

recovery but with the hybrid of vibration signal and the crankshaft speed as the input on a 

9-litre, 6-cylinder, and inline four-stroke diesel engine. Because the coherence analysis 

indicated that the crankshaft angular speed has the highest coherence with the in-cylinder 

pressure for the lowest frequency while the vibration signal has the highest coherence 

with the in-cylinder pressure for higher frequency. A recursive hybrid learning procedure 

was applied to train the neural network. K-means clustering algorithm found the k centers 

and used the regularization to determine the weights. Fourier transform of vibration 
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signal and the crankshaft signal are taken as the input to the RBF neural network, so both 

the input and output are complex values. The training data and the validation data are 

presented in Figure 2.2: 

Figure 2.2: Engine operating conditions (o: validation data; *: training data) [68] 

The results showed that the RMS error of maximum pressure based on the validation data 

was 3.5bar, the location for the maximum pressure was 1.5 degrees, RMS error for IMEP 

was 0.7bar. 

2.2.5 Wavelet method  
Although the frequency domain signal processing techniques including the Fourier 

transform and the FRF has the advantages in analyzing the raw signal and building the 

transfer path, the Fourier transform result is inefficient for non-stationary problems such 

as the engine vibration signal with the non-stationary effects introduced by the 

combustion events [69]. Also, the Fourier-transform-based technique is not capable to 

detect the temporal variations of the periodicities due to its pure frequency domain 

dependency [70]. Wavelet transform as a popular time-frequency-transform decomposes 

the signal into different frequency bands and allows the feature analysis associated with 

these frequency bands. This property makes wavelet transform a useful tool to analyze 
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the signals with time discontinuities and sharp spikes, such as the vibration signal or the 

radiated sound of an engine during combustion.    

Kim and Min [71] applied the Meyer wavelet transform to the engine block vibration 

signal obtained on a controlled auto-ignition engine to detect the start of combustion 

which was defined as 2% mass fraction burned. The engine block vibration signal within 

500Hz to 7 kHz was converted into wavelet scale with an interval of 100Hz. A threshold 

value was determined to correspond to the start of combustion and the wavelet scale 

which grows greater than this threshold value was used to locate the start of combustion 

for each frequency band. Then the averaged start of combustion for each frequency band 

was the final determined result. Figure 2.3 indicates the engine block vibration wavelet 

transform results and the start of combustion was determined at 363 crank-angle degrees 

(3 degrees after top-dead center).   

Figure 2.3: Wavelet transform result in a specific cycle for 1500rpm [71] 

Hariyanto et al. [72] defined the pressure-based start of combustion based on derivatives 

of the pressure trace and took it as reference. The technique for the start of combustion 

determination based on the vibration signal wavelet analysis used the trial and error 

method. Results showed that the averaged difference of the start of combustion between 

the two determination methods is below 1 crank-angle degree. The correlation coefficient 

of the start of combustion derived from in-cylinder pressure and the accelerometer signal 

is higher than 0.95.  

As the wavelet transform presents more details about the signal in time-frequency  

domain, features extraction can be achieved based on the wavelet transform analysis. 

Then the correlation between the features extracted from the vibration or sound signal 
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and the features extracted from the in-cylinder pressure trace was investigated. However, 

no transfer path based on the wavelet transform has been developed and applied for the 

pressure waveform recovery. More researches concerning application of wavelet 

transform for engine combustion or engine radiated noise can be found in [69, 70, &73]. 

2.3 Engine noise level estimation 

In-cylinder pressure and mechanical forces are the major sources of engine noise. The 

pressure forces operate on the cylinder chamber wall and piston and create a downward 

force through the piston and connecting rod to the crankshaft and main bearings, these 

combined reactions cause the vibration of the engine block. Noise will radiate from the 

engine block due to its vibration. So the major sources of the engine noise can be 

characterized and connected through the in-cylinder pressure.    

To explore the effects of the in-cylinder pressure on the engine noise, Austen and Priede 

[16] modeled the transfer path between the in-cylinder pressure and the engine noise with 

an “attenuation curve”. In this approach, it is assumed that the engine block is a linear 

system. The AVL 450 combustion noise meter was developed based on this theory. 

Shahlari et al. [17] has verified the engine noise computation algorithm (attenuation 

curve) of the AVL 450 in Matlab and applied it to three different engine structures. With 

the in-cylinder pressure as the input to the combustion noise meter, the error between the 

noise meter output and the results based on microphone measurements are as low as 0 

dBA. However, the robustness of the attenuation curve for quantitative analysis is still 

suspect since the linear response of engine block is expected regardless of engine 

structure or engine working conditions.     

While studying the attenuation curve depending on the raw in-cylinder pressure signal, 

Jung et al. [74] created a new combustion noise index based on the in-cylinder pressure, 

the sum of the 1-3.15 kHz range of the third octave band levels of the in-cylinder 

pressure. It was found that the combustion noise index has a linear dependency with the 

combustion noise (sum of the 1-3.15 kHz range of the third octave band levels of the 
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measured engine noise) for 1250rpm to 2000rpm engine conditions. However, the 

customers care about the total engine noise more than just the combustion noise. 

Tousignant et al. [75] defined the engine radiated noise as the sum of the noises due to 

direct combustion, indirect combustion, flow, and mechanical forces. An arithmetic 

weighting function was determined and applied to each source excitation. This approach 

has a more reasonable physical explanation about the engine noise sources. However, 

other excitation sources in addition to the in-cylinder pressure must be measured 

including rotary force, gas mass flow, etc. 

2.4 Literature review summary 

Current and past research for combustion measurement is interested in the indirect 

measurements with the sensors not exposed to the combustion chamber. Accelerometer is 

the representative sensor used for indirect combustion measurement with the advantage 

of low price and easy mounting as well as high reliability and durability. A majority of 

current accelerometer-based combustion measurement research focuses on identifying 

correlations between the block mounted accelerometer signal and the in-cylinder pressure 

signal and modeling the transfer path between the two signals.  

Many of the methodologies used to quantify the relationship between the accelerometer 

signal and the in-cylinder pressure signal show promising results. However, the proposed 

methods used to model the transfer path, including FRF method and structural 

identification method, are only applicable for test conditions with limited variations of 

speed, load, and SOI. Also, a majority of the researches were performed on one or two 

cylinder engines which are relatively small in size with low power output. 

The primary goal of this dissertation is to model the transfer path between the in-cylinder 

pressure signal (or the AHR derived from cylinder pressure) and the accelerometer signal 

in a robust manner on a 9L 6 cylinder diesel engine with the maximum power output at 

280 kw. In-cylinder pressure estimation based on FRF theory is applied in this 

dissertation. Research focuses on improving the robustness of FRF by adding adaptation 
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process to the SISO model and exploring MISO FRF models. By adding an adaptive 

segment in SISO FRF model the FRF computed from one engine condition can be 

applied to additional conditions with varied SOI and load. Based on a MISO FRF model, 

the FRF computed from one engine conditions can adapt to engine conditions with varied 

speed, load, and SOI. Research in this dissertation greatly promotes the application of 

FRF model for combustion metrics estimation. In addition, neural network is explored in 

the dissertation to model the relationship between accelerometer signal and the AHR. 

More than pursuing accurate estimation results, efforts focus on improvement of the 

network training efficiency.   

Engine noise level estimation based on structural attenuation curve (initially proposed by 

other investigators) with the input from in-cylinder pressure signal is examined on a 1.9L 

four cylinder, turbocharged, HPCR, direct injection diesel engine. Optimization of the 

attenuation curve is performed to further improve the estimation accuracy on this engine. 

Also, linear model with the engine speed and in-cylinder pressure as the components is 

explored to provide more accurate noise level estimation results than the attenuation 

curve.  

The technical information regarding the engine, method, and applicability over speed, 

load and SOI variations is shown in Table 2.1.  
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Table 2. 1 Summary of studies relating to this dissertation work 

Author Engine Method used Objective Applicability 
Morello [58] Diesel engine 

9L  
6cylinder  

FRF, time-
domain 
window 

optimization, 
Kalman filter 

Recover the 
AHR 

2200rpm, 
725Nm, SOI 

sweep 

Polonowski 
[55] 

Diesel engine 
1.9L  

4 cylinder  

FRF, 
weighting 
function 

development 
for FRF 

Recover the 
in-cylinder 

pressure 
signal and 

AHR 

Speed, load, 
and SOI 

variations 

Kim [60] Diesel engine 
6 cylinder  

Cepstrum 
analysis, 

parameter 
modification 

Recover the 
in-cylinder 

pressure 
signal 

1600rpm, 
1150ft-lb, the 
transfer path 
can adapt to 

three different 
accelerometer 

locations 
Gao et al. 

[56] 
Diesel engine 

single 
cylinder  

FRF, 
cepstrum 

smoothing of 
FRF 

Recover the 
in-cylinder 

pressure 
signal 

Load 
variations at 

the same 
speed 

EI-Ghamry 
et al. [59] 

Diesel engines 
four cylinder 

 

FRF, complex 
cepstrum 
modeling,  

Recover the 
in-cylinder 

pressure 
signal 

Load 
variations at 

the same 
speed 

Taglialatela 
et al. [22] 

Gasoline 
engine 
Single 

cylinder  

Multi-Layer 
Perceptron 

neural 
network with 

input from 
crank shaft 

speed 

Recover 
combustion 

metrics 
including PPA 

and PPCL 

Speed and 
load 

variations 
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Table 2. 1 Cont’d  

Author Engine Method used Objective Applicability 
Gu et al. 

[33] 
DI diesel 
engine 

Four cylinder  

Radial basis 
function with 

input from 
crank shaft 

speed 

Recover in-
cylinder 

pressure and 
IMEP 

Speed and 
load 

variations 

Johnsson 
[68] 

Diesel 
engine  

9-litre, 6-
cylinder, and 
diesel engine 

Radial basis 
function with 

input from 
hybrid of 

crank shaft 
speed and 

accelerometer 
signal 

Recover in-
cylinder 

pressure and 
estimate the 
combustion 

metrics 
including 

max pressure 
rising rate, 

IMEP. 

Speed and 
load 

variations 

Shahlari et 
al. [17] 

Diesel 
engines 

1.9L single 
cylinder  

& 1.9L four 
cylinder  

Structural 
attenuation 

curve 

Estimate the 
engine noise 

level 

Speeds: 1000 
to 3000rpm, 
Loads: 4.28 
to 14.13 Bar 

IMEP 

Tousignant 
et al. [75] 

Two 
different 

engines (no 
more 

information 
provided) 

Weighting 
function and 

transfer 
function 

Estimate the 
engine noise 

level 

Speed sweep 
conditions 
and load 

variations 

Torregrosa, 
A. J., et al. 

[18] 

Diesel 
engines 

1.6 L and 
2.2L  

four-cylinder 

Structural 
attenuation 

curve, linear 
model 

development 

Estimate the 
engine noise 

level 

Speed and 
load 

variations 
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Chapter 3  

FRF adaptation1 
An accelerometer as a low-cost non-intrusive transducer for sensing the combustion 

events in a diesel engine was investigated via reconstruction of in-cylinder pressure by 

use of an adapting frequency response function (FRF). As the noise introduced into the 

accelerometer signal and the response to combustion vary with the operating condition, 

the FRF computed from a single test condition only works for the same or similar 

conditions.  To overcome this limitation, an adaptation process for the FRF is explored to 

improve the FRF’s robustness to other operational conditions with start of injection, start 

of combustion, and load variations.  Frequency domain analysis shows that only the low 

frequency content is determinant for the in-cylinder pressure reconstruction, and the 

adaptation of the first and second (0Hz and 121Hz) harmonics of the FRF results in the 

greatest improvement for the in-cylinder pressure estimation accuracy. The 0Hz 

harmonic is adjusted based on the premeasured in-cylinder pressure offset and the on-line 

measured accelerometer signal offset. Particle swam optimization as a computational 

algorithm is applied to adapt the 121Hz harmonic of FRF. The results show that the 

adapted FRF, in comparison to the un-adapted FRF, can reduce the phase error up to 1.3 

degrees and the amplitude error by up to 90 percent.     

1 The material contained in this section is planned for submission as part of a journal article and/or 
conference paper in the future.
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3.1 Experimental setup & test conditions 

Testing was conducted on an inline 9L 6-cylinder turbocharged diesel engine with high 

pressure common rail fuel injection. The specifications of this engine are given in Table  

3.1.  

Table 3.1: 9L diesel engine parameters 

Engine specification 
Variable  Value Units 

Displacement 9 L 
Cylinder Inline N/A 

# of Cylinders 6 Cylinders 
Peak torque@1500 1543 Nm 
Peak power @2200 228 kW 

Stroke 13.6 cm 
Compression ratio 16:1 N/A 

 

Tri-axial PCB model HT356A63 sensors with a measurement range of ±500 g were used 

to measure the engine vibration signature. The in-cylinder pressure was measured by a 

Kistler 6123A piezoelectric cylinder pressure transducer mounted in each cylinder head. 

A Hewlett-Packard VXI mainframe was used for data acquisition with sampling rate and 

acquisition time length set as 51.2 kHz and 40s. Figure 3.1 illustrates the placements for 

the accelerometers. 

Figure 3.1: Sensor placement on 9L diesel engine 
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An operating condition of 2200RPM at both 725Nm and 1212Nm loads are taken as the 

example conditions to examine the FRF’s robustness for load change. Also, SOI sweep 

was conducted for each load condition as the fuel efficiency and emissions are related 

with injection timing [76, 77]. Test condition details are shown in Table 3.2.  

Table 3.2: Engine test conditions 

Test 
condition 

Engine 
Load (Nm) 

Engine 
Speed 
(RPM) 

Start of 
injection 
(DBTDC) 

Injection 
duration 
(CAD) 

1 725(60%) 2200 13.4 12.1 
2 725(60%) 2200 13.4 12.3 
3 725(60%) 2200 14.4 12.4 
4 725(60%) 2200 15.4 12.0 
5 1212(100%) 2200 12.0 22.1 
6 1212(100%) 2200 13.5 21.7 
7 1212(100%) 2200 15.4 21.1 
8 1212(100%) 2200 16.9 21.4 

 

3.2 Frequency response function 

The frequency response function (FRF) quantifies the relationship between the input and 

the output spectrum in frequency domain by following equation 3.1 and is used to 

characterize the dynamic features of a system. As the objective of this work is to 

reconstruct the in-cylinder pressure (in cylinder 1) based on the measured accelerometer 

signal, the accelerometer signal is thus considered as the input and the in-cylinder 

pressure as the output. The FRF is then given as: 

                                                        (3.1) 

where the  is the crosspower spectrum between the accelerometer signal and the in-

cylinder pressure,  represents the autopower spectrum of the in-cylinder pressure. 

Both and  are averaged through multiple cycles so as to eliminate the random 

noise.  
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To select the accelerometer location and channel which is used to compute the FRF and 

supply the accelerometer signal for in-cylinder pressure reconstruction, coherence 

analysis is employed. Coherence is a normalized measurement of linear dependence 

between two signals in frequency domain. With the range 0 - 1 quantifying the linear 

dependence, 1 represents the two signals are linear dependent and 0 indicates that the two 

signals are completely unrelated. When coherence falls to the scope between 0 and 1, 

noise is induced to the measurements of the two signals. If the coherence value is close to 

zero, the single-input and single-output model is deficient in modeling the system’s 

dynamic features. Coherence is computed based on equation 3.2: 

                                                  (3.2) 

where  represents the coherence between the accelerometer signal and the in-cylinder 

pressure, and  is the crosspower spectrum between the two signals.  and  are 

autopower spectrum of the in-cylinder pressure and the accelerometer signal respectively.    

Morello [58] has shown that the frequency band of accelerometer signal that has strong 

linear dependency with in-cylinder pressure within the 0-2000 Hz frequency band on this 

engine. So for each accelerometer channel, the coherence is first averaged through 0-

2000 Hz to be a single value for each test condition. Then these test condition dependent 

values are averaged to a new single value to ensure the coherence analysis takes into 

account all the test conditions. Figure 3.2 displays the coherence between the 

accelerometer signal acquired from each of the 21 channels and the in-cylinder pressure 

of cylinder 1. Channel 4x, 6z, 7x, and 7z are characterized with the coherence above 0.8 

and 4x has the highest coherence at 0.85. So channel 4x is selected as the input channel 

of the single-input and single-output model to compute the FRF and supply the vibration 

signature to FRF for in-cylinder pressure reconstruction.  
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Figure 3.2: Coherence between in-cylinder pressure of cylinder 1 and accelerometer 
signals 

Figure 3.3 illustrates the process for in-cylinder pressure reconstruction. FRF is first 

computed (equation 3.1) based on one test through accelerometer channel 4x. The time 

domain measured accelerometer signal from another test, named as objective test, is 

transformed to frequency domain linear spectrum by fast Fourier transform (FFT) and 

input to the obtained FRF. Then the estimated in-cylinder spectrum for the objective test 

in frequency domain is transformed back to time domain with inverse fast Fourier 

transform (IFFT) to achieve the time-based reconstructed in-cylinder pressure.  

Figure 3.3: Process schematics for in-cylinder pressure reconstruction 
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To check the robustness of FRF acquired through channel 4x, the FRF computed based 

on Test 1 is applied to other test conditions (in Table 3.2) for the in-cylinder pressure 

reconstruction. The reconstructed in-cylinder pressure for each test condition is plotted in 

Figure 3.4, overlaid on the measured in-cylinder pressure. The estimated in-cylinder 

pressure for Test 2 has the best accuracy among all the tests. The amplitude error caused 

by the SOI change, which can be seen from Tests 2-4, is not as great as the error caused 

by the load change (Tests 5-8).  
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Figure 3.4: In-cylinder pressure reconstruction based on FRF from Test 1 

To quantify the error between estimated and measured in-cylinder pressures, three 

parameters of in-cylinder pressures are used. Peak pressure crank angle location error 
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(PPCLE), in degree, is used to evaluate the combustion phasing accuracy. Peak pressure 

amplitude error (PPAE), and mean absolute pressure error (MAPE) are used to evaluate 

the amplitude accuracy of the reconstruction work. PPAE is normalized by the measured 

peak pressure amplitude (PPA) with the unit in %: 

                                                 (3.3) 

MAPE, in MPa, is computed with equation 3.4, where is the sample number of a 

windowed cycle from -36 degree to 72 degree, and  is the sample index.  

                                    (3.4) 
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Figure 3.5: Reconstruction results evaluation based on PPCLE, PPAE, and MAPE 

Figure 3.5 shows the three errors, PPCLE, PPAE, and MAPE, between the measured in-

cylinder pressure and the in-cylinder pressure reconstructed with FRF obtained from Test 

1. When the FRF computed based on Test 1 is applied to Test 1 itself for in-cylinder 

pressure reconstruction, the errors of the three pressure parameters are all zeros.  As there 

is only 0.2 degree injection timing difference between Test 1 and Test 2 with speed, load, 

and SOI the same, the errors of the in-cylinder pressure reconstruction for Test 2 are: 

PPCLE= 0.3 degree, PPAE=0.8%, and MAPE=0.08 MPa, which are the lowest among all 

the test conditions.  At low load SOI sweep conditions, less than 0.4 degree PPCLE is 

introduced due to the SOI change. Meanwhile, SOI change can lead to the PPAE change 

as great as 8% and MAPE change as great as 0.7MPa. When condition changes to high 
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load, more errors are induced. This can be seen in Figures 3.4 and 3.5 (Tests 5 to 8). 

PPCLE reaches the maximum, 2.3 degree, at Test 8. PPAE maintains above 20% for high 

load tests with 25% at Test 6 being the maximum. MAPE are all above 2MPa with the 

maximum close to 2.5 MPa at Test 6. So the conclusion can be drawn that the accuracy 

of the in-cylinder pressure reconstruction deteriorates when SOI or load changes 

especially when the load changes. The FRF robustness is just limited to similar test 

conditions.  

As the FRF computed based on one test condition does not possess the capability to adapt 

to test conditions with SOI and load changes, further work in this study is to improve the 

in-cylinder pressure reconstruction accuracy by promoting the robustness of the FRF. As 

shown in Figure 3.6, an adaptation block, which is used to adapt the obtained FRF, is 

plugged into the reconstruction process before the FRF is applied for the in-cylinder 

reconstruction.  

Figure 3.6: Process schematics for in-cylinder pressure reconstruction with the adaptor 
added 

3.3 Adaptation of frequency response function 

With the sample frequency at 51200Hz, the -36 to 72 degree window at 2200RPM 

contains 423 samples. So it seems that the adaptation process has to handle the 213 

harmonics (FRF is symmetrical along the Nyquist frequency) of FRF to make it work for 
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other test conditions. However, further observation based on the FFT plot of in-cylinder 

pressure shows that the number of FRF harmonics the adaptation process needs to deal 

with can be reduced. Figure 3.7 shows the FRF amplitude and the in-cylinder pressure 

FFT content.  

Figure 3.7: FRF amplitude (top) and FFT content of in-cylinder pressure (bottom) 

The main FFT content of in-cylinder pressure concentrates at low frequency band, 

definitely lower than 2 kHz. So only the low frequency harmonics need to be adapted to 

make FRF robust. For the frequency band higher than 2 kHz, FRF is relating the noise 

parts of the two signals. To figure out exactly how many harmonics of FRF in the low 

frequency band are determinant for in-cylinder pressure reconstruction, an examination 

procedure is implemented. First, the FRF computed based on Test 1 is taken as the base 

FRF. The first to the nth successive harmonics of the base FRF are replaced with the 

corresponding harmonics of the FRF computed from another test condition, named as 

objective condition. Then, the new FRF is applied to reconstruct the in-cylinder pressure 

for this objective condition. Evaluation of the performance of new FRF relative to the 

number of harmonics replaced based on the three pressure parameter errors, PPCEL, 

PPAE, and MAPE, is given in Figure 3.8. Table 3.3 gives the frequency values for the 

first 10 sequential harmonics with the sampling frequency at 51.2 kHz.   
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Table 3.3: Frequency location for FRF harmonics 

Harmonic 
sequence 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Frequency 
(Hz) 

0 121 242 363 484 605 726 847 968 1089 
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Figure 3.8: Estimation errors with FRF harmonics of Test 1 corrected 

For PPCLE in Figure 3.8 (a), when the first 2 harmonics of FRF are replaced, an error 

drop can be seen for Test 3, Test 6, Test 7, and Test 8. No obvious drop is seen when 

more than 2 harmonics are replaced except for Test 8, where the error decreases when 7 

and 9 harmonics are replaced. With respect to PPAE and MAPE, the most dominant 

decreases of the errors occur when the first two harmonics are replaced. When more than 

two and up to ten harmonics are replaced, PPAE maintains stable with error decrease as 

small as 5% of the error decrease that is due to the replacement of the first two FRF 

harmonics. MAPE follows the similar trend with PPAE when more than the first two 

harmonics are replaced. The error decrease of 0.15 MPa with the other eight more 

harmonics replaced is just 6% of the error decrease due to the first two harmonics 

replacement for Test6, Test7, and Test8.      

So the first two harmonics should play the most important role in FRF adaptation process. 

Although more harmonics adapted will lead to a reconstruction result with higher 

accuracy, the increased cost of computation makes the adaptation inclined to work on the 

first two, 0Hz and 121Hz, harmonics.  



41 
 

The first harmonic of FRF which locates at 0 Hz represents the ratio between the offset of 

accelerometer signal and the offset of in-cylinder pressure. Figure 3.9 displays the in-

cylinder pressure offsets for 40 tests. The first 20 tests are at 2200RPM/725Nm, the 

second 20 tests are at 2200/1212Nm. The 20 tests at each load condition are not repeated 

but distinguished by start of injection and injection duration.  The maximum offset 

differences for the tests at the same load condition are: 0.21MPa at 725NM and 0.24MPa 

at 1212Nm. The maximum offset differences normalized by the mean offset value at 

corresponding load condition are 2.5% at 725NM and 3% at 1212NM respectively. So 

the offsets of in-cylinder pressure for 2200RPM conditions with the same load are close 

to one another. In this study, the in-cylinder pressure offsets of the two load conditions 

are taken as constants and computed by averaging the offsets of the 20 tests for each load. 

The offsets of in-cylinder pressure within -36 - 72DATDC for 2200RPM/725Nm and 

2200RPM/1212Nm conditions are determined as 6.8MPa and 9.4MPa respectively. 

Figure 3.9: Offsets of in-cylinder pressure for tests at 2200RPM/725Nm and 
2200RPM/1212Nm 

With the offset of measured accelerometer signal within -36 - 72DATDC computed, the 

0Hz harmonic of FRF can be estimated by equation 3.5: 
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The estimated 0Hz FRF harmonic relative to test conditions are shown in Figure 3.10. 

The estimated 0Hz harmonic of FRF is close to the measured one with the greatest error 

at 9.8e-9 from Test 7. Such an error normalized by the measured 0Hz harmonic of FRF at 

Test 7 is 1%.   

Figure 3.10: Estimated 0Hz harmonic of FRF 

The 0Hz harmonic of FRF at each test can be estimated based on the on-line measured 

accelerometer signal offset, and the pre-measured in-cylinder pressure offset.  As the test-

condition-dependent in-cylinder pressure offset is considered similar between different 

engine structures of the same type, the pre-measurement of in-cylinder pressure offsets 

can be performed on one engine and these offsets can be applied to the other engines.  

Next, the second harmonic of FRF which locates at 121Hz needs to be adapted. Figure 

3.11 shows the 2nd harmonics of FRFs in complex plane for the 8 conditions (Table 3.2). 

As the FRF computed from Test 1 is taken as the base FRF, the adaptation will start from 

the original position marked by a triangle and end up at the distinctive positions 

corresponding to other test conditions marked by asterisks.  
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Figure 3.11: 121Hz harmonic of FRF for each test condition 

To find the optimal 2nd harmonic position in the complex domain for each test condition, 

the population-based optimization method is utilized. The population-based optimization 

approach through competition and cooperation among the population can often find the 

optimal solution effectively and efficiently [78]. Particle swarm optimization (PSO), as 

one of the population-based optimization approaches, is a computational method that 

seeks the optimal solution of a problem with iterative improvement of candidate solutions 

with the goal of minimizing the objective function. Each of the candidate solutions, 

named as particle, moves around the M-dimension search-space and towards better 

solution area with the velocity adjusted according to its own moving experience and its 

companions’ moving experience. M represents the number of variables that involved in 

the optimization process. The position of the ith particle is defined with

1 2( , ,.... )i i i iMX x x x . The best previous position of the ith particle, which is locally best, is 

defined as 1, 2( ,..... )i i i iMP p p p . The index for the globally best particle among all the 

particles is represented with g.  The locally best position is updated according to personal 

moving experience. The globally best position is updated based on all the particles’ 

moving experience. The velocity for ith particle is defined by 1 2( , ,.... )i i i iMV v v v . The 

particles are organized with the following equation: 
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                                    (3.6a) 

                                                                       (3.6b) 

represents the th iteration.  is the initial weight. A greater  will promote a global 

search while a small  will promote a local search [78]. In his chapter, a linearly 

decreasing  at range  is utilized through the PSO run to make the initial searches 

more global while the searches near the end more local. c1 and c2 are two positive 

constants, which are fixed at 1.05. r1 and r2 are random fractions in range [0,1]. M equals 

2 because both the real and imaginary parts of the 2nd harmonic of FRF need to be 

adapted. The search-space is confined within -10e-8 to -1e-8 for real axis and 0.5e-8 to 

15e-8 for imaginary axis with the 2nd harmonic of FRF of Test 1 near the center of the 

search-space. The initial positions for the particle population are randomly fixed in the 

search-space. The initial velocity is defined depending on its projection on each axis, 

named as projected velocity. The projected velocity is randomly fixed between 0 and 1/4 

of the length that has been confined on each axis.  

To update imp  and gmp  for each iteration, an objective function is needed as a standard to 

figure out the locally best and globally best position.  For the compression stroke and 

expansion stroke, the in-cylinder pressure and cylinder volume can be formulated with 

the following equation [14]: 

                                                    (3.7)

Figure 3.12 shows the LogP-LogV plot for the 8 tests. Although the condition parameters 

are different from one another, all of them share the identical , which is the ratio of 

specific heats, for compression stroke and expansion stroke where  and 

.  
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Figure 3.12: LogP-LogV plot 

An objective function that incorporates both comp  and expan  is created:  

                                        (3.8) 

k represents the kth iteration. k
imp  and k

gmp  will be updated if the objective function can 

be further minimized at the kth iteration. This objective function actually linearly 

combines two objective functions into one [79]. The final adapted value of the 2nd 

harmonic of FRF for each test condition is composed in the form of . 

3.4 Results 

The designed adaptor, which adapts the FRF to make it work for other tests with different 

condition parameters, is expected to be implemented with least computation consumption. 

So a compromise needs to be determined between the computation cost and the 

performance of the adaptor. Generally, when a greater number of population and iteration 

is employed, the optimization result will be further improved [78, 80, &81]. However, the 

time for computation will increase accordingly. Table 3.4 lists the changes of the three in-

cylinder pressure parameter errors relative to the population number and the iteration 

number. The most remarkable improvements of the three in-cylinder pressure parameters, 
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as shown in Table 3.4, occur when iteration number increases from 5 to 10 with the 

population number at 10. The reductions of the errors are:  0.5 degree PPCLE, 3% PPAE, 

and 0.4MPa MAPE. With the further increase of both population and iteration numbers, 

the three parameter errors maintain stable with PPCLE at 0.8 degree, PPAE at 1%, and 

MAPE at 0.2 or 0.3 MPa. Therefore, the population number and iteration number are 

determined as 10 and 10 respectively. In equation 3.6,  and

. The primary reason why the increased computation cost does not bring about 

an improved estimation result is due to the cost function definition. If another cost 

function defined based on the three pressure parameters can be found, the errors will be 

definitely decreased by following the process of minimizing the cost function. On the 

other hand, the adaptation of only two FRF harmonics cannot result in the further 

reduction of the three in-cylinder pressure parameter errors which depends on the 

adaptation of more than two FRF harmonics.  

Table 3.4: Mean errors relative to population and iteration of PSO algorithm 

Population Iteration 
Results 

PPCLE 
(Degree) 

PPAE 
 (%) 

MAPE 
 (MPa) 

10 

5 1.3 4 0.7 
10 0.8 1 0.3 
15 0.8 1 0.2 
20 0.8 1 0.2 

20 

5 0.8 1 0.3 
10 0.8 1 0.3 
15 0.8 1 0.3 
20 0.8 1 0.2 

30 

5 0.8 1 0.2 
10 0.8 1 0.2 
15 0.8 1 0.3 
20 0.8 1 0.2 

 

Figure 3.13 compares the 2nd harmonics of the measured FRFs and the reconstructed 2nd 

harmonics which are obtained based on the adaptation of the 2nd harmonic of the base 

FRF (Test 1). The reconstructed and the measured ones don’t coincide. However, if all of 



47 
 

them are connected following the test condition sequence, the test-to-test relative 

positions are similar between measured and reconstructed cases except for Test 8. 

Figure 3.13: Reconstructed 121Hz-harmonics of FRF 

With the adaptor worked on the 0Hz harmonics, and the 121Hz-harmonics of base FRF 

(computed from Test 1) by following the procedures described above, in-cylinder 

pressure is reconstructed by inputting the adapted FRF into equation 3.2. Figure 3.14 

shows the reconstructed in-cylinder pressure overlaid upon the measured one for each test. 

In comparison to Figure 3.4, the reconstructed in-cylinder pressures based on the adapted 

FRF match the measured ones better based on visual assessment. The most obvious 

improvements occur for high load SOI sweep tests where the amplitude of reconstructed 

in-cylinder pressure is closer to the measured one. The evaluation of the performance of 

adapted FRF on the basis of PPCLE, PPAE, and MAPE, is given in Figure 3.15 by 

comparing to the errors of the base-FRF case. For PPCLE, all the errors of the 8 tests for 

adapted FRF are below 1 degree and the greatest PPCLE improvement of 1.3 degree 

occurs at Test 8. PPAE is retained lower than 3% with PPAE at high load tests improved 

over 90% (normalized by base-FRF PPAE). MAPE is maintained below 1.5MPa across 

all the tests. The most evident improvements of MAPE also occur for high load tests with 

the average improvement at high loads at 75% (normalized by base-FRF MAPE).  
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Figure 3.14: In-cylinder pressure reconstruction results based on adapted FRF 
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3.5 Summary and conclusion 

The results of this study show that the adapted FRF, in comparison to the unadapted FRF, 

can result in an improvement of the in-cylinder pressure reconstruction for the tests with 

SOI and load variations. The results of the research in this chapter are as follows: 

 The FRF that used to model the relationship between the in-cylinder pressure and 

accelerometer signal varies with load change and SOI change. So the FRF 

computed from one condition needs to be adapted so as to reconstruct the in-

cylinder pressure for other test conditions with load or SOI changes. 

 Results show that the adaptation of 0Hz and 121Hz harmonics of FRF leads to the 

greatest improvement for in-cylinder pressure reconstruction with the standard 

setup by PPCLE, PPAE, and MAPE. So the adaptation process in this study 

focuses on the first two harmonics of FRF.  

 0Hz harmonic of FRF can be predicted for each test condition with the offset of 

the premeasured in-cylinder pressure and offset of accelerometer signal measured 

on-line. 

 PSO works to adapt the 121Hz harmonic of FRF with the objective function 

created by incorporating the ratio of specific heats of both compression and 

expansion strokes. 

 In-cylinder pressure reconstruction performance is improved with the 0Hz and 

121Hz harmonics of FRF adapted. In comparison to the results obtained based on 

the unadapted FRF, the PPCLE is improved as great as 1.3 degree, the 

improvements for PPAE are all above 90%, and the averaged MAPE 

improvement is 75%.  
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Chapter 4  

Application of FRF with SISO and 

MISO models5 
In this chapter, the work focused on the comparison of frequency response function 

applications for accelerometer-based in-cylinder pressure reconstruction between SISO 

and MISO models. Frequency response function was used to quantify the relationship 

between the input and the output for each model. The accelerometer signals were taken as 

the inputs and in-cylinder pressure as the output. For the SISO model, the single input 

was acquired through the accelerometer channel that was proved optimal for data 

acquisition via coherence analysis. With respect to the MISO model, the accelerometer 

signals from multiple channels were utilized as the inputs and the channel-based FRFs 

were computed. Then, the in-cylinder pressures were reconstructed from the obtained 

FRFs. Principal Component Analysis (PCA) was employed to extract the common 

features from the estimated in-cylinder pressures so as to supply an optimized pressure 

trace. The shape of the estimated in-cylinder pressure was improved after implementing 

the PCA method. However, offset of the estimated in-cylinder pressure still needs to be 

compensated. The reason why FRF introduces great offset error to the in-cylinder 

pressure reconstruction is that a low coherence between the in-cylinder pressure and the 

accelerometer signal resides within the lowest frequency band. The low coherence exists 

in the lowest frequency band has been demonstrated in Johnsson’s work [68]. This 

5 The material contained in this chapter was submitted to “Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering Science” and the current status is “Peer review in 
process”.
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feature, as a drawback of FRF application, introduces considerable errors to both the 

shape and especially the offset reconstruction of the in-cylinder pressure. The offset error 

was successfully compensated in this chapter based on the deviation of adiabatic equation 

in the compression engine stroke. However, the correct offset error compensation needs 

the shape of the in-cylinder pressure to be accurately estimated first. After compensating 

the offset of the optimized in-cylinder pressure, the final estimated in-cylinder pressure 

was achieved. With the concern of reducing the cost for the accelerometer usage and 

mounting, a procedure that seeks the minimum number of input channels which does not 

deteriorate the reconstruction accuracy was presented.     

4.1 SISO model 

Most researchers follow the SISO model for combustion metrics reconstruction with the 

vibration signature acquired from one single channel [56, 57, 49, 60, &68]. Similarly on 

the 9L engine, the FRF between the in-cylinder pressure from cylinder 1 and the 

accelerometer signal from one selected channel is first applied for in-cylinder pressure 

estimation. To evaluate the FRF’s robustness, FRF computed based on test condition #4 

is utilized to reconstruct the in-cylinder pressure for all the test conditions listed in Table 

3.2.  

As seven triaxial accelerometers mounted on the engine structure are acquiring the 

acceleration data simultaneously, a selection procedure that picks out one optimal 

channel to supply the input for SISO model should be considered.  

Johnsson [68] and Chiavola et al. [52] have proved the frequency dependent linear 

dependency between accelerometer signal and in-cylinder pressure with coherence 

analysis on two different engine structures. Coherence is a frequency dependent 

normalized measurement of linear relationship between the input and the corresponding 

output signal. It ranges from 0 to 1 with 0 indicating no relationship and 1 indicating 

outstanding linear dependency between the input and output signals. The coherence 

computation is based on equation 4.1 where G  is the power spectrum with respect to its 
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subscripts and C is the coherence. In this work, the  represents the crosspower 

between the accelerometer signal and the in-cylinder pressure, is the autopower of 

the in-cylinder pressure, and is the autopower of the accelerometer signal.  

                                                    (4.1) 

When coherence drops to the value lower than 1 but greater than 0, it indicates that the 

noise enters the measurement of either input or output signals, or the accelerometer signal 

corresponds not only to the in-cylinder pressure but some other part movement like the 

valve movement. The vibration signal from the optimal input channel is expected to 

relate to in-cylinder pressure rather than other momentum. Also, a low noise introduction 

to the accelerometer signal is preferred. So the coherence between the in-cylinder 

pressure and the accelerometer signal that is closest to 1 will be utilized as the standard to 

select the optimal input channel.  

Figure 4.1 illustrates the frequency content of in-cylinder pressure’s fast Fourier 

transform (FFT) result and the coherence between the in-cylinder pressure and the 

accelerometer signals where x and z represent the orientations of accelerometers as 

shown in Figure 3.1. Coherence that has been averaged through 700 cycles within the 0-

2000Hz band is high and an obvious coherence amplitude drop can be seen at the 

frequency of 2000Hz and higher. The most dominant component of pressure FFT content 

locates within the 0-1000Hz band. 
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Figure 4.1: FFT content of in-cylinder pressure (a) and Coherence between in-cylinder 
pressure and engine structure vibration (b) 

So the 0-1000Hz is initially determined to be the frequency band based on which the 

further work will proceed. However, as displayed by Figure 4.2, the low pass filter with 

cut-off frequency at 1000Hz makes the filtered pressure lose some dynamic features 

around 0 crank angle degree (CAD) where a sharp pressure increase can be seen on the 

full bandwidth (full BW) in-cylinder pressure. Also, the peak of filtered pressure just 

reaches the valleys of the peak magnitude oscillation of the full bandwidth in-cylinder 

pressure. In comparison, the low pass filter with cut-off frequency at 2000Hz leads to a 

better filtered result with respect to both the pressure peak and the pressure change 

around 0 CAD. As shown in Figure 4.1(b), the coherence drops to a much lower value for 

the frequency higher than 2000Hz when no low pass filter is applied. This can be 

demonstrated by the coherence of 0.3 at 3000Hz for channel 7Z. Therefore, the cutoff 

frequency is fixed at 2000Hz. The in-cylinder pressures discussed in the following 

sections are all filtered by the Kaiser low-pass filter with cut-off frequency at 2 kHz. Also, 

a window with the length of 108 degrees starting from -36 to 72 degrees is applied to 

both accelerometer signal and in-cylinder pressure with respect to each cycle in each 

cylinder. Some of the figures in this chapter have a crank angle range of -30 to 60 degrees 

to zoom it for observation convenience as shown in Figure 4.2.   
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Figure 4.2: In-cylinder pressure filtered by low-pass filter  

As the frequency band is narrowed to 0-2kHz from 0-25.6kHz, the coherence within 0-

2kHz is averaged into one single value for each test condition to feature the linear 

dependency between the in-cylinder pressure and the accelerometer signal. Then, these 

test-condition-dependent coherence values are averaged into one single value to ensure 

the coherence analysis is on the basis of all the conducted test conditions. Figure 4.3 

indicates the coherence between the in-cylinder pressure from each cylinder and the 

accelerometer signal from each accelerometer channel.  
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Figure 4.3: Coherence between in-cylinder pressure and accelerometer signals 

In Figure 4.3, from cylinder 1 to cylinder 6, the channels characterized with the highest 

coherence are respectively 4x, 2x or 6z, 2x, 2x, 2x, and 1x. Channels 1x and 2x have high 

coherence with the pressure of cylinder 6 and cylinder 5 respectively because 

accelerometers 1 and 2 are placed closest to the two cylinders on the engine head. 

Similarly for cylinder 1 and cylinder 2, channels 4x and 3x are expected to have high 

coherence with the two cylinder pressure signals respectively due to the closeness of the 

accelerometer placement (Figure 3.1). However, the coherence is much lower than 

cylinder 5(2x) and cylinder 6(1x). The possible reason could be more noise not correlated 

with the in-cylinder pressure was introduced to the two accelerometer channels. Channel 

3y has a consistently low coherence below 0.55 for all six cylinders. The reason could be 

the noise not correlated with in-cylinder pressure is induced to channel 3y and becomes 

dominant. Or channel 3y or the cable might be damaged. It is unlikely due to the 

accelerometer mounting process as the other two orientations x and z have coherence 

around 0.8 for cylinder 1.  

The channel which is characterized by higher coherence with in-cylinder pressure can 

result in a more accurate in-cylinder pressure reconstruction. As the study in this chapter 

takes the reconstruction of in-cylinder pressure from cylinder 1 as the objective, channel 
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4x is chosen as the optimal accelerometer for the SISO model. So for SISO model, FRF 

is computed through channel 4x based on equation 4.2. Both and  are averaged 

through all the cycles under one test condition so that the random noise can be reduced.  

                                                            (4.2) 

To check the FRF’s robustness, the FRF computed from Test 4 through channel 4x is 

applied to reconstruct the in-cylinder pressures for all the test conditions listed in Table 

3.2. Figure 4.4 shows the results of in-cylinder pressure reconstruction for each test. 
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Figure 4.4: In-cylinder pressure reconstruction results for cylinder 1 with SISO model by 
applying the FRF from Test 4 through channel 4x 

Except for Test 4, errors can be observed when the SOI or load condition changes. For 

low load SOI sweep conditions, offset difference is dominant for Test 2 and Test 3. For 

Test1, a distinct shape difference appears. For high load SOI sweep conditions, shape 
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difference is dominant and especially obvious for Test 5. It can be concluded that the 

FRF based on SISO model does not show adequate robustness in in-cylinder pressure 

reconstruction for test conditions with SOI and load variations. The quantified errors will 

be given and compared with the errors based on MISO model in the following section. 

4.2 MISO model 

The SISO-model-based FRF, computed based on a known test condition through the 

optimal input acquisition channel, is deficient in modeling the relationship between the 

in-cylinder pressure and the accelerometer signal when the load or SOI parameter 

changes. To comprehensively model the system dynamics in a structure, a multiple-input 

and multiple-output model (MIMO) is needed [82, 83]. The engine structure is a complex 

system with both combustion related energy including in-cylinder pressure and 

mechanical energy including valve movement and piston slaps as outputs. However, as 

the in-cylinder pressure can thoroughly reflect the combustion process and thus supply 

feedback for combustion control, the MIMO model that aims for dynamic feature 

identification is simplified into a MISO model with the in-cylinder pressure as the single 

output and the other outputs as the noise. As the objective of the study is to reconstruct 

the combustion metrics based on accelerometer signals, accelerometer signals are taken 

as the inputs. The MISO model is evaluated based on the same test conditions which have 

been used to evaluate the SISO model. Initially, all the 21 channels are utilized as the 

input channels and 21 independent FRFs are obtained to connect the in-cylinder pressure 

with these accelerometer signals. To evaluate the FRFs’ robustness, the FRFs obtained 

from one test condition are applied to reconstruct the in-cylinder pressures for all the test 

conditions given in Table 3.2. By following equation 4.2, 21 FRFs are computed based 

on Test 4. When the accelerometer signals acquired from the 21 channels for any other 

test condition are input into the fixed FRFs, 21 estimated in-cylinder pressures will be 

output. Figure 4.5 displays this process and Figure 4.6 illustrates the 21 estimated in-

cylinder pressures for Test 1.  
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Figure 4.5: Process for in-cylinder pressure reconstruction with accelerometer signals 
from multiple channels 

Figure 4.6: In-cylinder pressures reconstructed from 21 channels, Test1 

After removing the offset (Figure 4.6), some of the 21 estimated pressure traces look 

noisy and the shapes of the 21 estimated pressure traces are different from one another. 

Although the single input channel does not possess adequate reliability for in-cylinder 

pressure reconstruction, the combination or interaction of the estimation results from all 

of or some of the input channels might lead to an improved result. Principal component 

analysis is employed to extract the shared and most dominant features in all the 21 

reconstructed in-cylinder pressures, because it is believed that the estimated pressure 
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based on each accelerometer channel should be carrying some useful information the 

research cannot ignore.  

Principal component analysis is an orthogonalization process that transforms the 

observed variables into linearly independent variables which are called principal 

components. The principal components are arrayed in such an order that the nth principal 

component has the nth greatest variance. By combining the 21 estimated in-cylinder 

pressures into one matrix P with the dimension , where  the singular value 

decomposition of P is: 

                                                           (4.3) 

where is the matrix of left singular vectors,  is the matrix of right 

singular vectors, and  is the rectangular diagonal matrix with the nonnegative 

singular values as the diagonal elements. The principal components are obtained based on 

singular value decomposition with equation 4.4: 

                                                               (4.4) 

To extract the most important information from the data matrix, generally the first few 

principal components will be retained. However, how many principal components should 

be retained is still an open problem [84]. The commonly used method is to retain the 

components whose eigenvalues are greater than the average of eigenvalues, but this 

procedure may lose some important information as discussed in [85]. In this work, a 

threshold value for the ratio between the cumulative eigenvalue and the summation of all 

the eigenvalues is determined. This ratio is expressed with equation 4.5: 

                                               (4.5) 

The threshold value for  is set to 0.9. The first  principal components will be kept if 

summation of the first  eigenvalues can occupy equally or greater than 90% of the 

summation of all the eigenvalues. This is a much stricter standard than setting the average 

of eigenvalues as threshold. This way, more key information will be extracted from the 
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data matrix , and the other principal components will be considered as the 

representatives of the noise. Figure 4.7 shows the results computed with equation 4.5. 

Figure 4.7: Ratio between cumulative eigenvalues and summation of eigenvalues, Test3 

The first eigenvalue takes a proportion of 93% in the summation of all the eigenvalues as 

shown in Figure 4.7. So only the first principal component is considered as dominant and 

will be retained for further computation.  

By replacing the th to the th singular values (2nd to 21th for Test 3) in equation 

4.3 with zeros and averaging the new matrix  into one vector, the estimated pressures on 

the basis of 21 accelerometer channels are transformed to one pressure trace that is 

overlaid upon the measured pressure (Figure 4.8). Equation group (4.6) summarizes the 

PCA process described above and  is the final estimated in-cylinder pressure 

based on the PCA method.     

                               (4.6) 
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 the column index. 

 Time domain accelerometer signal with the  th column acquired through the  

th accelerometer channel. 

: Frequency response functions with the  th column representing the  th 

accelerometer channel.  

Fast Fourier Transform.  

Inverse Fast Fourier Transform. 

Figure 4.8: Estimated pressure after PCA procedure, Test 3 

After the PCA procedure, however, great offset error between the estimated pressure and 

the measured in-cylinder pressure can be seen and needs to be compensated (Figure 4.8).  

It is known that during compression or expansion stroke, the relationship between in-

cylinder pressure and volume follows equation 4.7 [14]: 

                                                    (4.7)  

This formula relationship can be used to compensate the offset. When logarithm 

computation is performed on both sides of equation 4.7,  is just the negative of the slope 
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of the logP-logV plot with respect to compression or expansion stroke as shown in 

equation 4.8: 

                                (4.8) 

For offset compensation purposes, compression stroke  is utilized. Actually, either of 

the two strokes can help compensate the offset. Figure 4.9 displays the logP-logV plot 

based on measured in-cylinder pressure for all the test conditions listed in Table 3.2 and 

the  values for compression stroke are given in the legend.    

Figure 4.9: LogP-LogV plot for the eight tests 

Referring to the  values of different test conditions given in Figure 4.9, the compression 

ratio  is utilized as the target to adjust the offset of the estimated pressure. At the 

beginning of offset compensation process, an initial offset compensation, , 

is added to the estimated in-cylinder pressure. With the difference between the  of the 

estimated in-cylinder pressure and the goal of the compression ratio, , as the 

objective function, when the difference is greater than 0.001, a 0.1 MPa increment or 

decrement is added to the estimated in-cylinder pressure (if the difference is negative, an 

increment is added). This process moves on until the difference is lower than 0.001. Or if 

the searching iteration number for the compensation process is greater than 50, the 
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process will end up as well. It is considered that the shape of the estimated in-cylinder 

pressure is too far off from the measured in-cylinder pressure to satisfy the objective 

function.   

The offset-compensated estimated in-cylinder pressure is plotted in Figure 4.10 by 

overlaying upon the measured in-cylinder pressure. It can be seen that the offset between 

the estimated and the measured in-cylinder pressures has been compensated successfully. 

However, this offset compensation method is only limited to the case that the shape of the 

estimated in-cylinder pressure is close to the shape of the measured one.  

Figure 4.10: Estimated in-cylinder pressures with offset adjusted, Test 3 

Figure 4.11 displays the reconstructed in-cylinder pressure for each test condition based 

on MISO model. It can be seen that the FRFs adapt to the SOI changes well at low load. 

For high load SOI sweep conditions, the errors can be observed at the expansion stroke 

after the pressure peak. However, the MISO model results in an improved reconstructed 

pressure for each test condition in comparison to the results based on the SISO model 

(Figure 4.4). Nevertheless, this improvement of result is at the cost of seven tri-axial 

accelerometers usage which is unrealistic for real-time online application. So it is 

meaningful to reduce the number of vibration acquisition channels without trading off the 

reconstruction accuracy.  
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Figure 4.11: Estimated in-cylinder pressures with offset adjusted, eight tests 

To quantitatively evaluate the reconstruction result, the errors of three pressure 

parameters between measured (low passed) and reconstructed pressures, PPA (peak 

pressure amplitude), PPCL (peak pressure crank angle location), and SPA (sample-based 

pressure amplitude) are utilized to check the reconstruction performance on both phase 

and amplitude perspectives. The respective errors are named as PPAE, PPCLE, and 

MAPE (mean absolute pressure error). For the estimated in-cylinder pressure  and the 

measured in-cylinder pressure  within one windowed cycle, the MAPE is computed 

as: 

                                               (4.9) 

where  is the sample number in one windowed cycle,  is the sample number index.   
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The procedure for reducing the number of vibration acquisition channels in MISO model 

starts from minimizing the number of the triaxial accelerometers. Then, further 

minimization of channel number will be performed on the candidate channels supplied by 

these qualified triaxial accelerometers. By averaging through all the tests, the errors of 

the three pressure parameters reconstructed based on 21 input channels are: 

PPAE=0.4Mpa, PPCLE=1.4DBTDC, and MAPE=0.5DBTDC. Accordingly, the 

thresholds as the standard for selecting the qualified accelerometers or channels are 

determined as: PPAE=0.5Mpa, PPCLE=1.6DBTDC, and MAPE=0.6DBTDC, so that the 

reconstruction accuracy can be guaranteed even though the input channel number is 

reduced. Only the accelerometers or channels based on which the errors of all the three 

pressure parameters are lower than the thresholds will be retained.  

Table 4.1 lists the number of combinations corresponding to the number of triaxial 
accelerometers that are combined.   

Table 4.1: Number of combinations for accelerometers 

Number of triaxial 
accelerometers for 

combination 

Number of 
combinations 

1 7 
2 21 
3 35 
4 35 
5 21 
6 7 
7 1 

 

PPAE, PPCLE, and MAPE are computed for all the possible combinations that are 

relative to the number of triaxial accelerometers used for combination. The mean and 

standard deviation of the three pressure parameters are displayed in Figure 4.12. The bars 

represent the mean value and the error bars describe the standard deviation.    
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Figure 4.12: In-cylinder pressure estimation results relative to the combinations of 
accelerometers 

With the increase in the number of accelerometers, no obvious improvement can be seen 

for the PPCLE result based on the interpretation of the mean value, but the decreasing 

standard deviation confirms that the extremely good or bad result comes closer to the 

average. However, the estimations of the amplitude parameters, PPA and SPA, are 

improved as verified by the decreasing mean and standard deviation when more 

accelerometers are used especially when the accelerometer number increases from one to 

two.   

By applying the thresholds, PPAE=0.5Mpa, PPCLE=1.6DBTDC, and 

MAPE=0.6DBTDC, to all the combinations, the combinations that can bring the PPAE, 

PPCLE, and MAPE lower than the thresholds are qualified to retain. Figure 4.13 shows 

the ratio of the qualified combinations relative to how many accelerometers are utilized. 

With more accelerometers being employed, the ratio of qualified accelerometers 

increases.  
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Figure 4.13: Qualified combinations relative to the number of accelerometers 

With the increase in the number of accelerometers, no obvious improvement can be seen 

for the PPCLE result based on the interpretation of the mean value, but the decreasing 

standard deviation confirms that the extremely good or bad result comes closer to the 

average. However, the estimation of amplitude parameters, PPA and SPA, is improved as 

verified by the decreasing mean and standard deviation when more accelerometers are 

used especially when the accelerometer number increases from one to two.   

By applying the thresholds, PPAE=0.5Mpa, PPCLE=1.6DBTDC, and 

MAPE=0.6DBTDC, to all the combinations, the combinations that can bring the PPAE, 

PPCLE, and MAPE lower than the thresholds are qualified to retain. Figure 4.14 shows 

the ratio of the qualified combinations relative to how many accelerometers are utilized. 

With more accelerometers being employed, the ratio of qualified accelerometers 

increases.  
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Figure 4.14: Qualified combinations relative to the number of accelerometers 

As we pursue the usage of fewer accelerometers, the qualified combination in the 21 

combinations of two accelerometers stands out. This combination is composed by 

accelerometers 5 and 7. Further work will focus on seeking the qualified combination 

composed of a minimum number of channels from the six channels supplied by 

accelerometers 5 and 7.  The number of possible combinations relative to the number of 

channels is listed in Table 4.2.  

Table 4.2: Number of combinations for accelerometer channels 

Number of channels 
for combination 

Number of 
combinations 

1 6 
2 15 
3 20 
4 15 
5 6 
6 1 

 

Figure 4.15 shows the mean and standard deviation of PPAE, MAPE, and PPCLE 

depending on the number of combined channels. The channel number increase brings 

about significant improvement for PPA and SPA estimation as both the mean and 
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deviation of the error decrease. But more than two accelerometer channels do not make 

the PPCL estimation more accurate than the PPCL estimated from two channels. The 

most obvious improvement for all the three pressure parameters happens when the 

channel number increases from one to two.  
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Figure 4.15: In-cylinder pressure reconstruction results relative to the number of 
combined channels from accelerometers 5 and 7 

Similar to the procedure of selecting the accelerometers, the same thresholds are applied 

to the three pressure parameters. In Figure 4.16, the qualified combinations are marked 

with green blocks and unqualified ones marked with red blocks. Each block in Figure 

4.16 is filled with the sequence numbers of the being evaluated combined channels, 

where the channels with ID number 5z, 5y, 5z, 7x, 7y, and 7z are represented by a new 

sequence 1, 2, 3, 4, 5, and 6. 
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Figure 4.16: Evaluation of reconstruction results for all combinations of six channels 

As we pursue the usage of fewer accelerometers, the qualified combination in the 21 

combinations of two accelerometers stands out. This combination is composed by 

accelerometers 5 and 7. The work next will focus on seeking the qualified combination 

composed of a minimum number of channels from the six channels supplied by 

accelerometers 5 and 7.   

By applying the same procedures as selecting the optimal tri-axial accelerometers, 

channel 5x and channel 5y are finally selected as the optimal channel combination to 

estimate the in-cylinder pressure. As shown in Figure 3.1, accelerometer #5 is placed 

close to cylinder 1 on the engine block. The reconstructed pressure overlaid upon the 

measured pressure is plotted in Figure 4.17 for each conducted test condition. Based on 

the observation on Figure 4.17, the reconstruction results for low load test conditions 

with SOI sweep are better than the results achieved by the SISO model. For Test 5 and 

Test 6 at high load conditions, the compression stoke can be estimated with high 

accuracy, but the errors can be seen in combustion and expansion strokes. For Test 7 and 

Test 8, most errors appear before pressure peak and at the end of the expansion stroke. 

However, the reconstruction results for high load SOI sweep test conditions are improved 

in comparison to the results obtained with the SISO model.  
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Figure 4.17: Estimated in-cylinder pressures for cylinder 1 based on vibration signatures 
acquired through channels 5x and 5y, FRF computed through channels 5x and 5y on Test 

4 

To further evaluate the robustness of the obtained two-input single-output model, this 

model is applied to more tests (listed in Table 4.3) with diverse speed and load conditions. 

The same FRFs computed through channel 5x and 5y based on Test 4 are used to recover 

the in-cylinder pressure for the Tests 9-16 given in Table 4.3. Both the PCA and the 

offset compensation processes are applied to optimize the in-cylinder pressure recovery 

results. Figure 4.18 shows the in-cylinder pressure recovery results based on the MISO 

model. Figure 4.19 shows the results based on the SISO model with the accelerometer 

signal acquired through channel 4x as the input and the FRF is computed through channel 

4x. Both figures take the measured in-cylinder pressure as the reference to show the 

difference.  
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Table 4.3: Additional engine test conditions for robustness examination 

Test 
condition 

Engine 
Speed 
(RPM) 

Engine Load 
(Nm) 

Start of 
injection 
(DBTDC) 

Injection 
duration 
(CAD) 

9 1169 1646(70%) 5.6 19.3 
10 1169 1646(70%) 5.5 18.4 
11 1195 412(20%) 9.5 5.2 
12 1195 412(20%) 4.1 5.2 
13 1600 873(50%) 7.3 10.5 
14 1600 873(50%) 10.2 10.3 

 

Improvements of the in-cylinder pressure recovery can be seen based on the MISO model 

in comparison to the SISO model, although the estimated in-cylinder pressure curves 

with the MISO model do not coincide with the measured in-cylinder pressure curve with 

the accuracy as high as for 2200RPM conditions. The especially low estimation accuracy 

based on the MISO model occurs on Test11 and Test12 (low speed and low load 

conditions). For the conditions with 1600RPM engine speed, the best result occurs on   

50% load and 10.2 degree SOI. For other 1600RPM conditions, low estimation errors can 

be seen for the compression engine stoke, but the errors increase for the combustion 

stroke. The errors of the compression stroke are low except for the 50% load 7.3 degree 

SOI condition. Overall, however, the robustness of FRF application for the in-cylinder 

pressure estimation has been greatly improved based on the presented MISO model in 

comparison to the SISO model.  As the error of the in-cylinder pressure recovery result 

based on SISO model is too larger, no quantified MISO-model-based estimation 

improvement is shown in this chapter to present the MISO model’s superiority.  
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Figure 4.18: Estimated in-cylinder pressures based on vibration signatures acquired 
through channels 5x and 5y, FRF computed through channels 5x and 5y on Test 4 
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Figure 4.19: Estimated in-cylinder pressures based on vibration signatures acquired 
through channels 4x, FRF computed through channels 4x on Test 4 

More than the result comparison based on observations, PPAE, PPCLE, and MAPE, are 

used to quantitatively evaluate the in-cylinder reconstruction performance of the SISO 

and MISO (two-input single-output) FRF models. The bars in Figure 4.20 represent how 

much improvement of the parameter estimation is achieved with the MISO model by 

comparing to the SISO model. Both the MISO model and the SISO model are computed 

from Test 4. The positive value indicates “real” improvement has been made by the 

MISO model, and negative value shows that the pressure parameter estimation based on 

the MISO model is worse than that based on the SISO model. Specifically, improvement 

of PPAE and MAPE are defined as 

(4.10)
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and

(4.11)

in percentage.

Improvement of PPCLE is defined as

(4.12)

in degree.
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Figure 4.20: Pressure parameters estimation improvement based on the MISO (two-input 
single-output) FRF model in comparison to the SISO FRF model (MISO and SISO FRF 

models were computed from Test 4)  

For the PPAE and MAPE values, the greater than 0 (within the 100% upper limit), the 

more improvements are introduced by the MISO model. Negative PPAE value which 

represents a worse estimation based on the MISO model occurs on Tests 5 and 11. For 

Test 5, 0.3MPa more estimation error is introduced by the MISO model 

( =0.6MPa and =0.9MPa). For Test 11, 0.8MPa more error is 

introduced by the MISO model ( =3.3MPa and =4.1MPa). With 

respect to MAPE, negative value occurs on Test 11 and the MISO model led to 0.5MPa 

more estimation error ( =2.2MPa and =2.7MPa).  

MISO FRF model does not lead to consistent improvement for PPCL estimation. 

Enlarged error occurs to Tests 3, 5, 6, and 8. However, the PPCLE increases for the four 

tests based on the MISO model are within 1 degree, which can be considered as minor 

deterioration.  
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However, the application of the MISO FRF model leads to more accurate estimation 

results for majority of the tests. Improvement can be seen for 75% of the tests with the 

evaluation based on PPCLE, 88% of the tests with the evaluation based on PPAE, and   

94% of the tests with the evaluation based on MAPE.  

4.3 Summary and Conclusion  

FRF was used to model the connection between the in-cylinder pressure and the vibration 

signatures acquired through accelerometers mounting on engine block and engine head 

on a 9L inline 6-cylinder diesel engine. Based on SISO and MISO models, the robustness 

of FRF with respect to speed, load, and SOI variations was evaluated.  

The results showed that the SISO model computed based on Test 4 with the input 

acquisition channel selected depending on coherence analysis did not render an FRF that 

can fit the conditions with speed, load, and SOI variations. For the MISO model, the 

multiple FRFs improved the pressure reconstruction with the assistance of principal 

component analysis and offset-compensation processes. With the purpose of minimizing 

the cost for accelerometer mounting and usage, two channels, 5x and 5y, were confirmed 

to be the optimal choice which can meet the threshold requirements (PPAE=0.5Mpa, 

PPCLE=1.6DBTDC, and MAPE=0.6DBTDC) given based on engine conditions with 

2200rpm engine speed. Then the performances of two-input single-output and SISO 

models were evaluated by the three in-cylinder pressure parameters (PPAE, MAPE, and 

PPCLE) based on all engine tests conducted in this paper. The two-input single-output 

FRF model introduced significant improvement to the estimation of the three in-cylinder 

pressure parameters for over 75% of the tests.  

So the two-input single-output FRF model coupled with the PCA and offset 

compensation processes proposed in this paper can improve the robustness of FRF for the 

estimation of combustion metrics with the accelerometer signals as the inputs. It implies 

that the application of FRF for combustion metrics estimation can be extended to varied 

test conditions rather than only the same or similar test conditions.    
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Chapter 5 

Radial basis function neural network1 
In this chapter, RBFNN was used to correlate the accelerometer signal and AHR. 

Although AHR can be derived by the estimated in-cylinder pressure, accurate estimated 

AHR will not be reached if the error of the estimated in-cylinder pressure is incorporated 

in the AHR computation process. The research was conducted based on a 9L in-line 6-

cylinder medium duty diesel engine in comparison to the light duty diesel engine used in 

Bizon’s research. In addition in this work, two algorithms that select the weight vectors in 

the hidden layer were implemented and are discussed and compared to make this network 

more robust and efficient. The trained network was proven to be highly robust in 

combustion metrics reconstruction for a wide range of conditions even if artificial noise 

was added to the accelerometer signal.   

5.1 Test conditions 

In total 87 tests were conducted on this engine. The selected tests cover multiple speeds, 

loads, and SOI conditions whose combinations aim to mimic the infield engine operating 

conditions. At each speed condition (low speed: 1195 rpm, medium speed: 1600 rpm, and 

high speed: 2200 rpm), both low load and high load tests were conducted (Figure 5.1). 

Speed sweep tests were developed with 50 RPM increments from 2000 to 2200 RPM at a 

load of 725Nm. Pilot injection and EGR changes have not been used to differentiate the 

conditions in this chapter.    

1 The material contained in this chapter was published as a journal article [i]. 
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Figure 5.1: Test conditions (87 test points) comprised of load conditions 

For each speed and load combination, an SOI sweep was developed. Figure 5.2 illustrates 

the test conditions with the main start of injection relative to the engine speed (a) and 

load (b).  
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Figure 5.2: Test conditions including breakdown of training and validation data plotted as 
start of injection versus speed (a) and torque (b) 
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5.2 Combustion metrics 

Apparent heat release rate (AHR)  computed by equation 5.1 is an indicator of energy 

conversion rate of the combustion of fuel from chemical to sensible energy, and equals 

the rate at which the work is done on the piston plus the rate of change of sensible 

internal energy of the cylinder contents [14].  

. 1
1 1

dQ dV dPQ P V
dt dt dt

                                  (5.1) 

Q :  Apparent Heat Release rate (MW) 

V :  Cylinder volume (L) 

P :  Cylinder pressure measured from in-cylinder pressure sensor (MPa) 

:   Polytropic coefficient or ratio of specific heats /p vc c .  

t  :   Time (Sec) 

Depending on the AHR, a number of combustion metrics, including SOC (start of 

combustion with the AHR at 0.1 MW), PACL (peak AHR crank angle location), PAA 

(peak AHR amplitude), and CA50 (crank angle location for 50% fuel burnt), which 

denote the phasing and quantify combustion can be determined. Moreover, these 

combustion metrics can also evaluate the accuracy of AHR estimation results. The AHR 

relative to crank angle degrees is shown in Figure 5.3 with the combustion metrics 

presented above identified. Since Morello’s research [58] indicated that the signal content 

within the 0 – 2 kHz frequency band is the most correlated to the combustion event on 

this engine, the AHR plotted in Figure 5.3 is low-pass filtered with the cutoff frequency 

at 2 kHz. A window with a length of 90 degrees was selected for each cylinder 

combustion event from -30 to 60 degrees.  The AHR obtained with the above process will 

be called derived AHR in the following sections of the chapter.  
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Figure 5.3: AHR trace marked with combustion metrics (engine speed = 2200 rpm, 
engine load = 725 Nm, SOI = -11.3 °CA) 

5.3 Radial basis function neural network 

It is difficult to formulate a linear model between an accelerometer signal and AHR due 

to their nonlinear relationship and the noise introduced into the accelerometer signal. The 

Radial Basis Function Neural Network (RBFNN) is therefore employed to create a 

nonlinear mapping between the two signals through the training process. The RBFNN is 

characterized by the capability of learning the association between an input and an output 

signal to mimic the flexibility of the transmission between them, even under low signal to 

noise ratio conditions. The proposed RBFNN is composed of four layers as displayed in 

Figure 5.4: the input layer, the radial basis layer with M neurons, the linear layer with S 

neurons, and the output layer [86]. Figure 5.5 shows the accelerometer signal and the 

derived AHR that are used to train the RBFNN by feeding the input and the output layers 

respectively. According to equation 5.1, the AHR as the output is derived based on the in-

cylinder pressure acquired from cylinder 1. The accelerometer signal used as the input of 

RBFNN is from the X orientation of accelerometer #4, which is placed closest to cylinder 
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1 and oriented along the piston reciprocating movement. The ability of the radial basis 

function network to process the data that is “new” depends on both the optimized 

parameters (RW, 1m , LW, and 2m ) and the input-output training data set.  

Figure 5.4: Radial basis function network structure 

Figure 5.5: Accelerometer signal overlaid upon derived AHR trace 

The radial basis function, 
2

( ) nf n e , has a maximum of 1 for an input of 0 and close to 

the minimum of 0 when the input moves towards either positive or negative infinity. The 

input to the radial basis function is the vector distance || ||RW A  between the weight 

vectors RW and the input vector A. When the distance between vectors RW and A 
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increases, the output of the radial basis function decreases. This property of the radial 

basis function, called localization, is preferred in neural network training, because the 

significant difference between the input A and the weight vectors RW results in an output 

close to zero and the small output of the radial basis function layer has only a minor 

effect on the linear layer. The variable 1m  is the bias that allows for adjusting the 

sensitivity of the radial layer. The same with Bizon’s work [67], mean square error is 

used as the criteria to make a choice for 1m  and the number of weight vectors RW. In this 

work, 1m  is set as 50 and the number of weight vectors RW expressed by M is fixed at 

100 with the input and the output data both with a dimension of 600×423 (N=600, S=423), 

where 600 is the number of vectors and 423 is the length of each vector. More details 

about how to work out LW and  are given in [86]. The “repmat” computation within 

the linear layer in Figure 5.4 transfers  to  by repeating the column  N times to 

match the size of matrix . 

Based on the neural network structure described above, the method for selecting 100 of 

the 600 vectors of A to compose the weight vector RW must be determined. Random 

selection would take the least effort but likely lead to the least accurate results because 

the resulting RW may not accurately represent the pattern and features of the training 

input data. Therefore, two algorithms are presented here to select the weight vector for 

the RBFNN structure so as to output the predicted AHR with high accuracy, even if the 

input has never been “seen” by the network.  

5.4 Modified Gram-Schmidt method 

Given that the linear layer of the RBFNN is a special case of a linear regression model 
[87],  

                                                                                             (5.2) 

Q is the output of the radial basis layer with a dimension N×N as all the vectors of A are 

taken as the candidates for RW component selection.  
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The orthogonalization process is applied to the output of the radial basis layer, Q. The 

orthogonalized vectors will span the same subspace as Q, while being linearly 

independent in the new subset. Thereafter, the correlation between the output R and each 

single orthogonal basis vector can be evaluated.                                                     

As the classical Gram-Schmidt procedure is sensitive to round-off errors, the more stable 

Modified Gram-Schmidt algorithm is employed to decompose Q into orthogonal basis 

vectors . At the kth iteration, the Modified Gram-Schmidt operates on the (k+1)th to 

the Nth columns of Q to make them orthogonal to the kth column and repeats this process 

for . As suggested by Chen in [87], the criterion used to select the 

component of RW is to evaluate the contribution of each orthogonalized vector of  to 

the total energy of output of the network, R. By rearranging the error definition equation 

given in [87], equation 5.3 is obtained to compute each orthogonalized vector’s 

contribution to R.  

                                                             (5.3) 

Where  denotes the inner product.  

The index of  which results in the maximum  is used to locate the RW 
components from A.  

5.5 Principal component analysis method 

Principal component analysis (PCA) is a process that uses an orthogonal transformation 

to convert data composed of correlated variables into a set of linearly uncorrelated 

variables called principal components. These components are arranged in such an order 

that the first component has the largest variance and the nth component has the nth 

highest variance. PCA is a well-known technique in reducing the large dimensionality of 

data space into a smaller one by discarding the minor components which are 

characterized by small variances. Meanwhile, the lower dimension of the data space 

retains the most relevant information from the original data. As the RW in the radial basis 

layer is expected to carry the most representative characteristics of the training data and 
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make the network sufficiently reflect the transmission features between the input and the 

output with a dimension lower than A, the PCA method is employed for RW selection.  

PCA method is first applied to the response of radial basis layer, Q. The reason why PCA 

is applied to Q is that Q is linearly correlated to the output R and the features of the 

output R are expected to be extracted and retained since the output quality is the primary 

concern for the network application. Moreover, components of Q can be used to trace the 

corresponding components of A with the same indices. A matrix, defined as

, is then constructed by selecting 100 vectors from Q under the criterion that 

 can most resemble the first 100 principal components of Q. The RW is selected from A 

with the same indices as  is selected from Q. As all the training data are taken as the 

candidates for RW component selection, Q is a matrix with  dimension. The PCA 

result of the output of the radial basis layer, Q, that preserves the same dimension with Q 

is presented in equation 5.4:  

                                         T T T T TY Q W V W W V                                           (5.4) 

The singular value decomposition of Q is TQ W V , W is an N N  matrix of 

eigenvectors of the covariance matrix TQQ , is an  diagonal matrix of eigenvalues, 

and V is an  matrix of eigenvectors of TQ Q .  

Figure 5.6 illustrates the process that constructs  through the selection of the 

component vectors from . The objective function  is a quantified criterion that 

compares the two input matrices,  and . The maximum of the objective 

function, , indicates that the two input matrices,  and , resemble each 

other the most. The creation of the objective function is based on the Procrustes analysis 

which involves three steps including translation, rotation, and dilation. More details about 

Procrustes analysis are given in [88]. Initially, all the vectors of Q are considered as 

candidates and the vector that can maximize the objective function is selected to 

compose . Also, the selected vector is emptied from Q so that the future selection for 

component of  will not consider this selected vector again. At the  iteration,
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, only the vector in the slimmed Q that can maximize the objective function 

will be selected to compose .  

Figure 5.6: Schematic illustration for selection of  from Q 

5.6 Results 

Twenty one of the 87 tests were used to train the RBFNN to determine the optimal 

parameters (RW, 1m , LW, and 2m ). This fixed network is then applied to estimate the 

combustion metrics for the other 66 tests. As shown in Figure 5.2(b), the tests marked 

with circles were employed for network training and the tests marked with squares were 

used for network validation. Table 5.1 indicates the estimation errors of the combustion 

metrics including SOC, PACL, PAA, and CA50. The PAA error is divided by the PAA 

of derived AHR. The mean and root-mean-square error (RMSE) in Table 5.1 represent 

the mean error and errors’ standard deviation across the 66 tests. A low RMSE of any 

specific error indicates the errors across the 66 tests maintain close to the mean value of 

these errors. The mean and RMS errors are averaged and computed respectively with 

respect to all the test conditions and all the measured cycles.  

As shown in Table 5.1, both the error and the RMSE of SOC estimation are controlled 

within 1 degree for the three RW selecting approaches. The randomly selected RW results 
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in the SOC being estimated with a higher error at 0.7 degrees and the RMSE at 1.0 

degree in comparison to the other two methods. The mean estimated errors in CA50 are 

all similar at 1.7 to 1.8 degrees and similar RMSE’s of 1.8 to 1.9 degrees.  

Accuracy with respect to PACL estimation is lower than SOC because there are two 

peaks in the AHR curve with amplitudes close to each other under the high speed low 

load conditions (e.g., 2200 rpm and 725 Nm) as shown in Figure 5.7. The estimator of 

PACL can shift from one peak to another when the two amplitudes are close to the same 

in magnitude and closely spaced as in Figure 5.7. In this case, a 10 degree shift of the 

PACL is induced between the derived and estimated results depending upon only small 

changes in the combustion condition or estimator.  

Table 5.1: Combustion parameter estimation results with comparison for 
errors between accelerometer based RBFNN estimated and  

cylinder pressure derived AHR combustion parameters 

Combustion 
Parameter 

RW selected  
based on MGS 

RW selected  
based on PCA 

RW selected 
randomly 

mean RMSE mean RMSE mean RMSE 

SOC ( CA)  0.8 0.4 0.6   0.7 1.0 

CA50 ( CA) 1.7 1.9 1.8 1.8   1.8 1.7 

PACL ( CA) 3.7 4.0 4.5 4.5   4.7 3.2 

PAA (%) 9.5 7.0 9.9 6.3 13.2   6.6 
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Figure 5.7: AHR signatures indicating PACL differences between estimated and derived 
for engine speed = 2200 rpm and engine load = 725 Nm 

Based on the evaluation from the four combustion metrics, there is no significant 

estimation accuracy difference between the two network structures with RW selected by 

either the PCA or the MGS methods. However the two RW selection methods show 

quantitatively improved SOC and PAA combustion parameters in comparison to the 

randomly selected RW method. 

In addition to the accurate estimation of combustion metrics, the success of combustion 

sensing based on accelerometers depends on how well the estimated AHR trace matches 

the derived AHR trace. CA50 may reflect the crank angle based amplitude difference 

between estimated and derived AHR since it depends on the computation of the 

summation of AHR. However, the amplitude difference details cannot be indicated. To 

compare the AHR reconstruction results on a more comprehensive basis, the estimated 

AHR traces are overlaid upon the derived AHR trace, as shown in Figure 5.8. The test 

conditions in Figure 5.8 reflect the various combinations of low and high engine speeds, 

low and high loads, and SOI changes in the non-training dataset. Based on the 

comparison of the estimation results among the three weight vector selection methods, it 

can be seen that the PCA and MGS method result in the estimated AHRs with shapes and 

amplitudes closer to the derived ones. Again there is no significant performance 
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difference observed between these two. Significant differences in the AHR shape are 

observed for the random selection method results in the AHRs estimated. See for 

example Figure 5.8(e) where the derived AHR shows only a minimal first peak, but the 

estimated AHR via RBFNN with the randomly selected weight vectors for RW has a 

distinct first peak. For the validation test conditions shown here, the random case has 

higher error. Furthermore, the estimation results based on the random method may be 

worse if other weight vectors were randomly selected. 
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Figure 5.8: Comparison of AHR estimation results based on three RW selection methods 

To further evaluate the performance of the RBFNN, its capability to tolerate additive 

noise was also examined. AHR is estimated based on the fixed networks determined from 
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the above training methods, then the input for the non-training data has additive noise 

included. To simulate the noise that an accelerometer sensor may encounter when the test 

condition changes, the frequency content of the noise was designed to be broadband. 

Figure 5.9 indicates the frequency spectrum of the accelerometer signal (top) and 

artificial noise (bottom). The peak amplitude of the artificial noise is set at approximately 

7g with the peak amplitude of the measured accelerometer signal at 10 to 15 g. The signal 

to noise ratio in the 0-2000Hz frequency band is 17.5dB as computed by equation 5.5. 

                                                                             (5.5) 

In equation 5.5,  and  are autopower spectrums for the 

accelerometer signal and the noise signal respectively.  

Also, the location for intense noise content in the time domain was randomly selected to 

mimic possible noise formations. Figure 5.10 indicates three time domain noise signals 

that were added to the accelerometer signals of three different test conditions. Similarly, 

the noise signals that were added to other test conditions were distinctive from one 

another.  

Figure 5.9: Frequency content for accelerometer signal and artificial noise 
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Figure 5.10: Artificial noise in time domain 

The reconstruction results for combustion metrics with the noise added to the 

accelerometer signals are shown in Table 5.2. By comparing them with the results shown 

in Table 5.1, where no artificial noise was added to the accelerometer signals, the most 

obvious change occurs to PAA (the upward arrow in Table 5.2 indicates an increase in 

comparison to Table 5.1, the downward arrow indicates a decrease). So the amplitude 

metrics estimation is more sensitive to the additive noise. None of the combustion metrics 

estimation results deteriorate significantly when the accelerometer signal is contaminated 

by noise with a SNR at 17.5dB.   
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Table 5.2: Combustion metrics estimation results based on noise-added accelerometer 
signal 

Combustion 
Parameter 

RW selected  
based on MGS 

RW selected  
based on PCA 

RW selected 
randomly 

mean RMSE mean RMSE mean RMSE 

SOC ( CA) 0.5 0.9 (0.1 ) 0.4 0.6 0.7 1.0 

CA50 ( CA) 1.6(0.1 ) 1.9 1.7(0.1 ) 1.8 1.6(0.2 ) 1.5(0.2 ) 

PACL ( CA) 4.1(0.4 ) 4.0 4.3(0.2 ) 4.4(0.1 ) 4.3(0.4 ) 3.1(0.1 ) 

PAA (%) 7.5(2 ) 6.7(0.3 ) 7.8(2.1 ) 6.1(0.2 ) 10.1(3.1 ) 8.2(1.6 ) 

 

Figure 5.11 shows the comparison of computation time for weight vector selection 

between the PCA and MGS methods. The time used to select 100 weight vectors based 

on PCA method is 18 hours, while the time used to select 100 weight vectors based on 

the MGS method is just 5 seconds. The reason why PCA method requires so much more 

computation effort is that the PCA computation needs to run 600-k times to select the th 

( ) component of RW at the kth iteration. For 100 weight vectors selection, PCA 

computation runs 5000 times. Since the MGS and PCA methods show similar estimation 

accuracy, the MGS method is recommended for its lower computational requirements.  
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Figure 5.11: Computation time comparison between PCA and MGS methods  

5.7 Applicability 

By inputting the measured accelerometer signal to the trained RBFNN, the combustion 

metrics including SOC, PACL, PAA, and CA50 can be estimated as discussed and shown 

above. For the following, weight vectors in radial basis layer were selected via MGS 

method as it has been demonstrated to be superior to the other two methods in terms of 

accuracy and computational effort. Three of the four combustion metrics, SOC, PACL 

and CA50, are all correlated with combustion phasing and thus can be used as the 

feedback in a closed loop to control the start of injection. If CA50 is used as the 

combusting phasing feedback, a target (set point) CA50 meeting the NOx / BSFC target 

can be determined from a dynamometer calibration dependent upon the engine speed and 

load condition and stored in the engine control unit memory. The simplest strategy is then 

to adjust the start of injection (SOI) with the feedback error between the actual CA50 and 

target CA50 into a closed-loop controller. 

The closed-loop control architecture is illustrated in Figure 5.12. RBFNN parameters 

(RW, 1m , LW, and 2m ) and target CA50s are stored in the flash memory of the ECU. The 

computation of the CA50 based on the RBFNN and the on-line accelerometer signal is 
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implemented by the microcontroller. The desired SOI values related to fuel injection 

quantity and engine speed are stored as a map in the flash memory of the ECU as well. 

CA50, the difference between the computed CA50 and the goal CA50, is used to 

correct the SOI. A driver stage that can activate the start-of-injection controlling 

mechanism in the actuators is triggered by the microcontroller [89]. By modifying the 

SOI value, the actual CA50 will be maintained close to the target CA50.  

Figure 5.12: Start of injection closed-loop control with CA50 as the feedback 

The storage of the four parameters of RBFNN, RW( ), 1m ( ), LW(

), and 2m ( ), will take 0.32MB memory space. If the Freescale MPC5676R 

microcontroller with a 6MB flash memory is employed, the storage for RBFNN 

parameters takes approximately 5% of the total memory. SPE (signal processing engine) 

in this microcontroller will implement the computation process to supply the corrected 

SOI. To evaluate the feasibility of the application of RBFNN for a real-time cycle-based 

combustion control, a comparison is made between the time used to implement a second 
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order IIR filter and the time used to implement the RBFNN. The reason why a second 

order IIR filter is taken as a reference is that most detection hardware chips are using the 

IIR filters. Based on the same computation environment on a PC, the time used for 

implementation of the RBFNN is 48 times the time used for implementation of a second 

order IIR filter. Wu, et al. [90] has examined the computation time of a second order IIR 

filter based on a Freescale MPC 5554 microcontroller (maximum operation frequency at 

132MHz) and found it to be 3.12  per data point. So for a windowed combustion cycle 

composed of 423 data points, the computation time is 0.0013s. By assuming that the 

RBFNN implementation time is 48 times the time used for implementation of a second 

order IIR filter on a microcontroller, the implementation of RBNFF based on a Frescale 

MPC 5554 will take 0.062s, which equals the time duration of one combustion cycle 

when engine speed is 1900RPM. If a more advanced microcontroller (Freescale 

MPC5676R with the maximum operating frequency at 360MHz) is employed, the 

computation time will be shortened. Although the exact computation time cannot be 

determined without the testing on the microcontroller, the rough estimation of the 

computation time indicates that the application of a RBFNN for a real-time cycle-based 

combustion control is promising.  

5.8 Summary 

The Radial Basis Function Neural Network introduces a non-linear mapping between the 

accelerometer signal and the Apparent Heat Release Rate for combustion metrics 

reconstruction. With the comparison of the estimation results from the three weight 

vector selection methods, it was shown that the weight vector selection based on 

Modified Gram-Schmidt and Principal Component Analysis lead to a higher accuracy of 

combustion metrics estimation than the random weight vector selection method. No 

significant difference was observed for the two methods based on the estimation results 

comparison. Moreover, the RBFNN was shown to have tolerance to additive noise with 

the signal noise ratio as high as 17.5dB with respect to the three weight vector selection 

methods discussed in this chapter. However, as the time cost for the 100 weight vectors 
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selection based on PCA method is 18 hours, computationally orders of magnitude higher 

than the MGC method, MGC method was selected for determination of the weight 

vectors. After being trained by twenty one test conditions, the fixed network with the 

weight vector selected based on the Modified Gram-Schmidt method can estimate the 

combustion phasing metrics, including SOC and CA50, across the sixty-six validation 

test conditions with the phasing error under 2 crank-angle degrees. The peak amplitude 

error is within 10%.  

An online real-time application of the trained RBFNN has been proposed to supply the 

feedback for a closed-loop combustion phasing control. Future work will focus on the 

RBFNN training for a larger variety of test conditions, including low temperature 

combustion with pilot injection at high EGR rates, combustion with closely spaced pilot 

injections, etc., and applying the fixed network to different engine structures of the same 

type with the help of an adaptive filter design and feature extraction technique.  
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Chapter 6 

Engine noise level estimation1 
Diesel engines with the reduced exhaust and emissions can better fulfill the 

restrictive emissions regulations. However, one drawback of the application of the diesel 

engine is the noise radiation due to the diesel combustion process. With the competitive 

nature of the automotive industry, the engine design needs to be perceived as both 

environmentally friendly and highly satisfactory to the customer. The acoustic comfort is 

an important consideration when the customer makes their purchasing decision and 

deserves significant attentions from the engine manufacturers.  

In this chapter, the structural attenuation curves were evaluated. The algorithm built in a 

commercial noise meter was examined on the 1.9L TDI engine. An optimized attenuation 

curve that can better fit this engine was then pursued by applying both the averaging and 

cepstrum smoothing techniques. To further improve the engine noise estimation accuracy, 

a linear model was developed with the two components derived based on the engine 

speed and the in-cylinder pressure measurement respectively.  

6.1 Experimental equipment 

In this study, the tests were conducted on a 1.9L diesel engine equipped with a variable 

geometry turbocharger and a common rail direct injection system. Table 6.1 summarizes 

the specifications of the engine. The engine was directly connected to a dynamometer.  

1 The material contained in this chapter was submitted to “SAE International Journal of Engines” and the 
current status is “Peer review in process”.
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Table 6.1: The engine specifications 

Specification Value unit 

Cylinders 4 # 

Displacement 1915 cc 

Clearance Volume  30 cc 

Bore 79.9 mm 

Stroke 95.5 mm 

Cylinder 
arrangement 

4 inline NA 

Compression ratio 16.95 NA 

Max Power 67 @ 3700 rpm kW 

Max Torque 210 @1900 rpm Nm 

 

PCB378B02 microphones were used to acquire the engine noise signal. The engine noise 

was computed by averaging the noise level from three microphones which were placed 1 

meter away from the top, front, and left of the engine, the dynamometer was coupled to 

the right side of the engine. The in-cylinder pressure signal in cylinder 1 was acquired 

with a Kistler 6123A sensor. Data acquisition was performed with an advanced 

combustion acquisition and processing (ACAP) system with data processing and analysis 

being completed in Matlab.  The experimental setup was laid out based on the guidance 

from the SAE J1074 standard.   

6.2 Optimized structural attenuation curve  

Based on the assumption that the engine structure response to the in-cylinder pressure 

excitation is linear, Austen and Priede [16] introduced the structural attenuation curve to 

estimate the engine noise level for any engine working condition. The structural 

attenuation is computed as the transfer path between the engine noise and the in-cylinder 

pressure one third octave band spectra. There are several structural attenuation curves, all 

with a similar shape [18, 17]. In this paper, the attenuation curve which is implemented in 
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the AVL combustion noise meter [91] is evaluated with its application on the 1.9L diesel 

test engine. With the in-cylinder pressure signal as the input, the structural attenuation 

function followed by the A weighting filter are applied to obtain the engine noise in dBA 

as output. Details about how to implement this algorithm are given in [17]. Figure 6.1 

shows the estimated engine noise compared to the measured engine noise.  

Figure 6.1: Engine noise level estimation with the attenuation curve in the AVL 
combustion noise meter 

In Figure 6.1, with the increase of the measured engine noise, a similar trend can be seen 

on the estimated engine noise. However, the mean error between the estimated and 

measured cases is 9.6 dBA with the root mean error (RMSE) at 2.2 dBA. The significant 

disagreement between the measured and the estimated engine noise indicates that the 

standard structural attenuation curve cannot characterize the transfer path between the in-

cylinder pressure excitation and the engine noise on the 1.9L TDI engine accurately. This 

implies that the standard structural attenuation curve implemented in the noise meter 

cannot be taken as a universal approach to estimate the noise radiated by any type of 

diesel engine.   

To determine the optimized structural attenuation curve for the 1.9L diesel engine, an 

attempt is made by averaging the attenuation curves computed from multiple engine 

conditions. According to [92], Russell suggested to compute the attenuation curves based 
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on different speeds and load conditions (at least 20 cycles for each condition). The 

average of the attenuation curves is expected to provide a more accurate estimation of the 

engine noise.  To examine the effects of this averaged attenuation curve, tests (Table 6.2) 

were conducted on the 1.9L diesel engine to supply the conditions at different speeds and 

loads. All the tests in Table 6.2 have the same main start of injection at 11DBTDC and 

the same pilot start of injection at 24 DBTCD. The rail pressure was consistently 750 Bar.  

Table 6.2: Conducted test conditions 

Test 1 2 3 4 5 6 7 8 9 10 11 12 

Speed(rpm) 1250 1250 1250 1500 1500 1500 1800 1800 1800 2200 2200 2200 

Torque(Nm) 45 90 180 45 90 180 45 90 180 45 90 180 

Injection 
duration 

(ms) 

 

0.44 

 

0.61 

 

0.74 

 

0.37 

 

0.53 

 

0.72 

 

0.45 

 

0.60 

 

0.76 

 

0.42 

 

0.59 

 

0.75 

 

Figure 6.2 shows an example of the attenuation curve determined from Test 11. Both 

cylinder pressure and engine noise are averaged through 85 cycles.  As only the in-

cylinder pressure in cylinder 1 is measured in this paper, both the microphone signal and 

the in-cylinder pressure signal are windowed around the combustion event in cylinder 1 

so that the engine noise due to the combustion events in other cylinders will be 

minimized in the analysis. For the reason that the data acquisition is time based not crank 

angle based, the window length is selected to be from 266 samples left of the top dead 

center (TDC) of cylinder 1 to 532 samples right of the TDC. The sample based window 

also provides convenience for the averaging computation of the attenuation curves from 

different engine conditions because the crank angle based window will introduce 

inconsistent data block size for different engine speed conditions. For each condition, as 

shown in Figure 6.2, the attenuation curve is computed by subtracting the engine noise 

spectrum from the cylinder pressure spectrum. At the frequency around 7 kHz, an 

amplitude peak of the in-cylinder pressure spectrum can be seen. This peak is caused by 
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the abrupt rise of the in-cylinder pressure at the beginning of the combustion, which 

incurs the high frequency resonant oscillation of the gas in the combustion chamber [74]. 

Figure 6.2: Structural attenuation curve computation example (Test11) 

The attenuation curves for the other conditions (Table 6.2) are computed with the same 

procedure as for Test 11 in Figure 6.2. They are averaged to achieve one attenuation 

curve which is expected to be robust enough to work for all the test conditions. For any 

operating condition, the estimated engine noise can be reached by subtracting the 

averaged attenuation curve from the in-cylinder pressure spectrum. Figure 6.3 shows the 

engine noise estimation results based on the averaged attenuation curve.  
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Figure 6.3: Engine noise level estimation based on the averaged attenuation curve 

In comparison to the results in Figure 6.1, the estimation error of the engine noise based 

on the averaged attenuation curve decreases. However, the estimated engine noise is 

lower than the measured one with a mean error of 5.3dBA and the RMSE of 1.8dBA. 

Although the averaging algorithm minimizes the variation of the attenuation curves of 

different conditions, it does not always lead to a good result because the averaging is 

performed in the complex domain. For example, assuming that the value for one 

attenuation curve is  and and a value of for another attenuation curve at 

500Hz, the average of the two values at 500Hz will be 0 and the log scale value will be 

infinity. This will result in a significant error for the engine noise estimation. Even if the 

real situation may not be as extreme as the scenario described above, the averaging 

process is not a reliable approach to eliminate the variation among the attenuation curves 

unless these curves are extremely close to one another with respect to both amplitude and 

phase.   

To find the optimized structural attenuation curve which has a better robustness for 

various engine conditions, a cepstrum smoothing technique is used in this paper. Kim  

[60] introduced the cepstrum smoothing technique to reduce the transfer path variability 

among the engine structures of the same class. In this paper, this technique is applied to 
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reduce the variability of the attenuation curves among different engine conditions. 

Cepstrum is defined as the inverse Fourier transform of the logarithm of the spectrum of 

a time domain signal [93]. The cepstrum equivalent of the frequency domain, quefrency, 

is found by reversing the first four letters of frequency. Cepstrum can be presented as 

Equation 6.1: 

                                              (6.1) 

Where                                                     (6.2) 

 is the spectrum of signal . However, before applying logarithm computation, 

both magnitude and phase of  need to be continuous. Magnitude is always 

continuous. The phase function is not continuous because the phase value  

bounces between  and  , and thus is discontinuous at . An unwrapping process is 

used to convert the phase function into a continuous function [60].  

The cepstrum smoothing is implemented by applying a low pass filter in the quefrency 

domain (a window around the zero quefrency), which is called “liftering”. The magnitude 

and phase of the attenuation curve are smoothed by liftering both the in-cylinder pressure 

and the engine noise under a particular engine condition. A shorter window applied for 

liftering can provide a smoother result. However, when the curve becomes smoother, 

more local information will be lost and significant engine noise estimation error may 

result. More details about the effects of window length and shape on the smoothing 

results can be found in [60]. In this paper, the lifetering window used was rectangular in 

shape with a length of 100 points corresponding to the data length of 799. The schematic 

illustration of the smoothing process is given is Figure 6.4. 
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Figure 6.4: Attenuation curve smoothing process 

After the in-cylinder pressure and the engine noise are liftered and transformed back to 

the frequency domain, the smoothed attenuation curve is estimated through the process 

illustrated in Figure 6.2. The attenuation curve computed from Test 12 was taken as the 

raw curve based on which the smoothing process was applied. Figure 6.5 shows the 

comparison of the attenuation curves studied in this chapter. The curves in Figure 6.5 

follow a similar trend with the curves descending within the low frequency band. After 

the decline, an amplitude increase can be seen. For the AVL attenuation curve, the curve 

amplitude keeps a monotone increasing through to 10 kHz. For the other curves, an 

amplitude peak can be observed around 6500 Hz followed by a slight amplitude decrease 

up until 10 kHz. The AVL attenuation curve is the smoothest and is thus lacking many 

local details that are particular to each operating condition. The accuracy will be severely 

reduced when the curve becomes too smooth. Therefore, although the smoothed curve 

may have better adaptability, a good balance needs to be achieved between the robustness 

and the estimation accuracy. Also, as the AVL attenuation curve has an opposite trend for 

the frequency band higher than 6.5 kHz, significant errors can be observed in the engine 

noise estimation result in Figure 6.1.  
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Figure 6.5: Comparison of the attenuation curves studied in this chapter 

The smoothed attenuation curve in Figure 6.5 captures the trend of the raw curve without 

including some oscillations that vary with engine conditions. In comparison to the AVL 

curve, the smoothed curve performs better in extracting the shape characteristics of the 

raw curve. The smoothed curve may not lead to a highly accurate estimation result for 

any particular engine condition since it loses some local details. However, when it is 

applied to multiple engine conditions, the improved overall engine noise estimation 

performance demonstrates the improved robustness of the smoothed attenuation curve. 

Figure 6.6 shows the engine noise estimation results based on the smoothed attenuation 

curve with the raw curve computed from Test 12. The mean error is reduced to 1.8 dBA 

with the decreased RMSE at 1.6 dBA. The highest estimation error occurs for Test 1 and 

Test 2. However, the improvement of the estimation results is obvious when comparing 

to the results based on the AVL attenuation curve and the averaged attenuation curve 

(Figures 6.1 and 6.3).  
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Figure 6.6: Engine noise level estimation based on the averaged attenuation curve (the 
raw attenuation curve is computed from Test12) 

The raw attenuation curve does not have to be computed based on Test 12. Figure 6.7 

shows the results when the cepstrum smoothing process is applied to the attenuation 

curves obtained from Test 5 (1500rpm/90Nm), Test 6 (1500rpm/180Nm), Test 7 

(1800rpm/45Nm), and Test 10 (2200rpm/45Nm). The averaged estimation errors are all 

near 2 dBA with the RMSE near 1.5dBA. No significant difference can be seen when the 

condition that is used to compute the raw attenuation curve changes. This implies that it 

can be concluded that the smoothed attenuation curve determination does not depend on 

any specific engine condition. This implies that a large effort does not need to be made to 

identify the ideal engine conditions to estimate an optimal smoothed attenuation curve.   
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Figure 6.7: Engine noise level estimation based on the smoothed attenuation curve, the 
raw attenuation curve is computed from: (a) Test5; (b) Test6; (c) Test7; (d) Test10.   

In summary, the AVL attenuation curve introduces the maximum error to the engine 

noise estimation for the 1.9L TDI engine among the three attenuation curves studied in 

this chapter. The averaged attenuation curve improves the estimation performance. 

However, the best estimation results are introduced by the cepstrum smoothed attenuation 

curve. More than the improved estimation accuracy, the smoothed attenuation curve 

computation neither relies on any specific engine operational condition nor, on the 

averaged attenuation curve that depends on multiple engine conditions which must 

include different speeds and loads. The smoothed attenuation curve computation is 

characterized by a high efficiency as well.  
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6.3 A linear model for engine noise estimation 

The attenuation curves which can be used to estimate the engine noise level were 

presented in the above section. The optimized curve provided an estimation result with an 

approximate averaged error of 2dBA. Another approach that can provide a more accurate 

estimation result is proposed below.  

In Tousignant’s work [75], engine speed was taken as a deterministic factor for the total 

engine noise level and was considered as one excitation source in their model. However, 

how the engine speed contributes to the total engine noise was not presented. To validate 

that the engine speed is related to the engine noise level, Figure 6.8 plots the engine noise 

versus the engine speed to reveal the relation between the two.  
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Figure 6.8: Engine noise variations with changes of engine speed  

An obvious linear dependency can be seen between the measured engine noise level and 

the engine speed. Along with the engine speed increase, the engine noise increases 

proportionally. The linear correlation coefficient is as high as 92.9% when the raw engine 

speed is evaluated, Figure 6.8 (b). The evaluation of linear dependency between the 

engine noise and the logarithmic engine speed is also made in Figure 6.8 (a) since the 

engine noise in dBA is in logarithmic scale.  The linear correlation coefficient increases 

to 94.2% and thus indicates a better linear correlation. Depending on these observations, 

a linear model can be created to estimate the engine noise level based on the logarithmic 

engine speed.  
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In this chapter, all the tests in Table 6.2 can be distinguished by the main injection 

durations. This implies that other combustion-related components that can reflect the 

injection parameter variations should be incorporated into the linear model to improve the 

engine noise level estimation accuracy. Torregrosa et al. [75] reached the same 

conclusion and developed two more combustion-related components based on the 

decomposed in-cylinder pressure. In Torregarosa’s work, the in-cylinder pressure trace 

was decomposed into pseudo-motored, combustion, and resonance pressure signals. Only 

the combustion and resonance signals were considered to create two more components 

which were incorporated into a linear model to estimate the engine noise. The pseudo-

motored pressure was used to normalize the two components to turn them into 

dimensionless quantities. However, when combustion occurs in the cylinder chamber, not 

only the combustion and resonance pressures but the pseudo-motor pressure forces 

operate on the chamber wall and introduce forces through the mechanical systems to the 

engine block.  In this chapter, the non-decomposed in-cylinder pressure is used to derive 

a combustion related component for the linear model. This component is defined as: 

                                                          (6.3) 

Where  is the measured in-cylinder pressure in Pa. , in a physical sense, can be 

considered as the energy propagation of the in-cylinder pressure which will cause the 

engine block vibration and thus introduce the engine noise.  

Together with the engine speed component: 

                                                          (6.4) 

Where  is the engine speed in rpm.  

A multiple regression with the two components,  and , is created to output the 

estimated engine noise (EN): 

                                               (6.5) 

The coefficient , , and , are estimated and presented in Table 6.3: 
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Table 6.3: Coefficients for the linear model with two components 

(dBA) (dBA/ Pa) (dBA/rpm) 

-19.55 32.00 0.49 

 

By applying this linear model to the tests given in Table 6.2, the noise radiated from the 

1.9L diesel engine is estimated. Figure 6.9 shows the estimation results. For each test 

condition, 30 cycles are examined (the same as Figures 6.1, 6.3, 6.6, and 6.7). The 

averaged estimation error decreases to 0.5 dBA with a reduced RMSE of 0.3 dBA. A 

significant estimation improvement can be observed in comparison to the estimation 

results based on the optimized attenuation curves.  

Figure 6.9: Engine noise estimation based on the linear model 

6.4 Conclusion 

The established engine noise estimation approach based on the structural attenuation 

curve was evaluated on a 1.9L TDI diesel engine. The attenuation curve from a 

commercial combustion noise meter was first investigated. The result showed a 

significant difference between the estimated and the measured engine noise with a mean 

difference of 9.6 dBA and an RMSE of 2.2 dBA. To find the “personalized” attenuation 
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curve that can characterize the transfer path between the in-cylinder pressure signal and 

the overall engine noise level on the 1.9L TDI engine, the attenuation curve was 

computed based on the measurement of in-cylinder pressure and engine noise.  

After estimating the specific attenuation curve for this engine, optimization was pursued 

by two methods, averaging the attenuation curves from different engine operating 

conditions and cepstrum smoothing the attenuation curve. Results show that the cepstrum 

smoothed attenuation curve provides a more accurate estimation with the mean error of 

1.8dBA (RSME of 1.6dBA), in comparison to the averaged attenuation curve with the 

mean error of 5.3dBA (RSME of 1.8 dBA). Moreover, the cepstrum smoothed 

attenuation curve can be obtained based on only one engine operating condition. No 

significant difference on the estimation result was observed when an alternative engine 

operating condition was used. So less work about data acquisition and signal processing 

is needed to achieve the cepstrum smoothed curve.  

Even with the optimized attenuation curve, the high dispersion of the results with respect 

to different engine conditions evidenced its limited robustness (especially for Test 1 and 

Test 2). To pursue higher estimation accuracy, a model based on a concept different from 

the attenuation curve was developed. A linear model was developed based on two 

components, , representative of the in-cylinder pressure energy propagation, and , 

associated with the engine speed. Through the multiple regression analysis, the 

coefficients of the two components were estimated. With the new model, results show 

that the averaged estimation error is reduced to 0.5dBA with a decreased RMSE of 

0.3dBA. Obvious improvement can be seen based on this linear model. Furthermore, this 

linear model has a good adaptive potential and can be optimized by incorporating other 

components which are related to the engine noise if higher estimation accuracy is 

required.  

 

 





115 
 

 

Chapter 7 

Summary, conclusions and 

recommendations for future study1 

7.1 Summary and Conclusions 

7.1.1 Combustion metrics estimation based on the vibration signature 

The vibration signatures acquired through block-mounted accelerometers were used to 

reconstruct the in-cylinder pressure waveform and the apparent heat release rate 

waveform. Combustion metrics including PPCL, CA50, SOC, PACL, PPA, and PAA 

were derived from the reconstructed in-cylinder pressure waveform or the apparent heat 

release rate waveforms. Success of estimation of the combustion metrics depends on the 

development of a robust transfer path.    

The study in this dissertation started from the evaluation of the single-input single-output 

frequency response function based on the optimal accelerometer. The optimal single 

accelerometer channel used to provide the vibration signal was selected based on the 

coherence analysis between the in-cylinder pressure signal and the accelerometer signals. 

The accelerometer channel that is characterized with the highest coherence value which 

indicates the strongest correlation between the in-cylinder pressure and the accelerometer 

1The material contained in this section is planned for submission as part of a journal article and/or 
conference paper in the future.
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signal is considered as optimal. The application of FRF (computed through the optimal 

accelerometer channel based on one condition) to the engine operating conditions with 

varied SOIs and loads showed that the FRF computed from one operating condition 

needs to be adapted for its application for other engine conditions.  

Then an adaptation process was explored to adapt the SISO FRF from one engine 

operating condition to engine operating conditions with varied SOIs and loads. This 

research found that adaptation of the lowest frequency band of FRF, the DC offset and 

the 121Hz harmonics, has more than 95% of the original PPA and MAPE errors 

decreased. The DC offset was compensated by a gain which is dependent upon engine 

load. This gain was premeasured and can be taken as calibration factor for use of 

compensation. The 121Hz harmonics was adapted through a computational optimization 

algorithm, particle swarm optimization, with the objective function created based on the 

ratio of specific heats of both the compression and expansion strokes. Results showed 

that this adaptation process can significantly improve the robustness of FRF over the SOI 

and loads variations. However, its applicability to the speed changes needs adaptation of 

more FRF harmonics which will cause the increase of computation time and storage cost 

and makes it an obstacle for online application.  

Following the SISO methods, a multiple-input single-output model for the FRF 

application was investigated to further improve the robustness of FRF. First, the data 

from all the twenty one accelerometer channels were utilized to recover the in-cylinder 

pressure. Twenty one FRFs which correspond to the twenty one channels were computed 

and then utilized to output twenty one estimated in-cylinder pressure curves. Then the 

principal component analysis was applied to all the obtained pressure curves to extract 

the most representative information. After the PCA process, however, the offset of the 

extracted in-cylinder pressure needs to be further compensated. An iterative 

compensation process was then developed with the ratio of the specific heats at the 

compression stroke as the objective function. A significant improvement of estimation 

result for the conditions with varied SOIs and loads can be observed with the in-cylinder 
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pressure obtained based on MISO model and manipulated by PCA process followed by 

the offset compensation process. However, the usage of twenty one input channels make 

this method unrealistic for online combustion metrics reconstruction. As a result, a 

process that reduced the number of input channels was developed with the purpose of 

utilizing fewer numbers of accelerometers and providing accurate estimation results from 

the combustion metrics. Threshold values from three combustion metrics, PPA, PPCL, 

and SPA, which can extract the features of the in-cylinder pressure curve for the control 

of combustion process, were employed as the standard to select the qualified minimum-

number of input channels. Finally, two channels were determined as the input channels 

for the MISO model based on which the estimation results were above the thresholds. 

This fixed MISO (two-input single-output) model was applied to additional conditions 

with variations of SOI, load, and speed. It showed that estimation results were improved 

based on the fixed MISO model in comparison to the SISO model.  

Neural network as a nonlinear modeling method was developed and applied to estimate 

the apparent heat release rate waveform with the single channel accelerometer signal 

(selected based on the coherence analysis) as the input. Radial basis function network 

was selected since it is a forward neural network with the advantage of being trained with 

a more straightforward approach in comparison to the back-propagation algorithms. This 

dissertation focused on the selection of neural network structure and training method 

among the three proposed methods to provide a network with the best accuracy and 

efficiency for apparent heat release rate estimation. Results showed that the Modified 

Gram-Schmidt method and PCA method can introduce better estimations than the 

random selection method for the apparent heat release rate estimation. Moreover, 

Modified Gram-Schmidt method can complete the 100 weighing vectors selection with 

1/100 of the computation time that is needed for the PCA method. So the Modified 

Gram-Schmidt method is determined to be the optimal method for selecting the 

weighting vector of the radial basis function neural network. 
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7.1.2 Engine noise level estimation based on the in-cylinder pressure 

signal 

Engine noise level as a deterministic factor of acoustical emission on a vehicle requires 

significant attention from the engine manufacturers. The availability of on-board load cell 

in-cylinder pressure sensor on current TDI engine [28] makes it possible to estimate the 

engine noise level based on the in-cylinder pressure signal. Structural attenuation curve 

was applied to the 1.9L TDI diesel engine to estimate the engine noise level. Results 

showed that this attenuation curve built in a commercial combustion noise meter 

introduced a 9.6 dBA estimation error on the 1.9L TDI engine. So an optimization 

process of the attenuation curve was performed through two proposed algorithms, 

averaging and cepstral smoothing. Results show that the cepstral-smoothed attenuation 

curve was considered as the optimal transfer path between the in-cylinder pressure signal 

and the engine noise level.  

Another simple linear model was established based on the multiple regression approach 

with the engine speed and the measured in-cylinder pressure signal as the components.  

Conclusions from this work are: 

 With the adaptation process added to the SISO FRF model, the PPCLE is 

improved as great as 1.3 degree, the improvements for PPAE are all above 90% 

(normalized by the PPAE value from raw SISO FRF model), and the averaged 

MAPE improvement is 75% (normalized by the MAPE value from raw SISO FRF 

model). 

 Based on the MISO (two-input single-output) FRF model in comparison to the 

SISO FRF model, improvement was be obtained for 75% of the tests (Tables 3.2 

and 4.3) with the evaluation based on PPCLE, 88% of the tests with the 

evaluation based on PPAE, and 94% of the tests with the evaluation based on 

MAPE. The improvements for PPAE and MAPE are as high as 98% (normalized 
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by the MAPE from SISO FRF model). The improvement for PPCLE is as great as 

7.8 degree.  

 Modified Gram-Schmidt method has been confirmed to be the optimal 

weightvector selecting method for the radial basis function network modeled 

between the accelerometer signal and the AHR. Combustion metrics were 

estimated with the SOC mean error at 0.5 degrees and RMSE at 0.8 degrees, 

CA50 mean error at 1.5 degrees and RMSE at 1.9 degrees, PACL mean error at 

3.7 degrees and RMSE at 4.0 degrees, and PPA mean error at 9.5% and RMSE at 

7.0%.   

 It was found that the attenuation curve obtained by averaging the attenuation 

curves of different operating conditions can introduce a better estimation result 

(error of 5.3 dBA) than the results (error of 9.6 dBA) based on the attenuation 

curve in AVL combustion noise meter. Application of cepstrum smoothing 

technique on the computed attenuation curve further improved the estimation 

results (error of 2 dBA) in comparison to the averaged attenuation curve.Results 

showed that the proposed linear model can introduce more accurate engine level 

estimation results than the attenuation curve approach. The estimation error is as 

low as 0.5 dBA with the RMSE of 0.3 dBA. 

7.2 Recommendations for future work  

Based on the explorations in this dissertation, the following recommendations are given 

for future work:  

 To adapt the SISO FRF for the engine operating conditions with speed variations, 

more FRF harmonics need to be manipulated. However, simultaneous adaptation 

of more than one harmonic increases the computational time. So the working 

efficiency of the particle swarm optimization adaptation algorithm should be 

improved or an algorithm other than the particle swarm optimization should be 

investigated.  
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 MISO model was confirmed to improve the performance of FRFs for combustion 

metrics estimation. The future signal processing work can focus on the FRF 

matrix to develop a robust FRF matrix that can output the estimated in-cylinder 

pressure without needing the assistance from PCA and offset compensation 

processes. Then shorter time would be needed for the online combustion metrics 

estimation. 

 Radial basis function neural network led to the best combustion metrics 

estimation based on the results in this work. However, the training and application 

of the network were implemented only based on one engine. The results of 

applying the trained network based on one engine to another engine structure of 

the same type need to be evaluated. The vibration signal on another engine may 

vary due to the assembling variation even under the same engine operating 

condition. Therefore, adaptation process should be designed to assist the trained 

network to make it work for different engine structures. 

 The accelerometers mounting on the engine block are measuring the vibration 

caused not only by in-cylinder pressure but other sources including piston slap, 

valve train dynamics, etc. So the pre-processing of the accelerometer signal to 

separate the component which originated from the source of the most interest (in-

cylinder pressure signal in this dissertation) would be helpful in improving the 

robustness of FRF. Blind source separation as a method to separate the source 

signals from a set of mixed signals is recommended.  

 The transfer path modeled in this dissertation only took the engine vibration 

signal as the input. It is possible that additional signals that related to the 

combustion events used as the inputs, more accurate the combustion metrics 

estimation results will be.  So a hybrid of input signals, including the crank-shaft 

speed and vibration signal, ion current signal and vibration signal, etc., can be 

utilized as the input parameters to model the transfer path.  
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