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Abstract 

The development of innovative carbon-based materials can be greatly facilitated by 

molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to 

simulate the chemical behavior of carbon-based systems, the simulation settings required 

for accurate predictions have not been fully explored. Using the ReaxFF, molecular 

dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon 

and hydrocarbon reactive gases that are involved in the formation of carbon structures 

such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined 

that the maximum simulation time step that can be used in MD simulations with the 

ReaxFF is dependent on the simulated temperature and selected parameter set, as are the 

predicted reaction rates. It is also determined that different carbon-based reactive gases 

react at different rates, and that the predicted equilibrium structures are generally the 

same for the different ReaxFF parameter sets, except in the case of the predicted 

formation of large graphitic structures with the Chenoweth parameter set under specific 

conditions.  
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Chapter 1: Introduction 

Translation of properties of nanoscale constituents to bulk sized materials presents 

immense opportunities and challenges. Nanoscale constituents can have properties orders 

of magnitude better than those of current materials. Because of this, nanostructured 

materials are expected to play an important role in future structural materials including on 

aircraft and spacecraft. 

The February 2010 “National Aeronautics Research and Development Plan” set research 

objectives for future commercial aircraft.2 The goals set by the government include 

substantial reductions in energy consumption by commercial aircraft. NASA set specific 

goals to reduce energy use by 2030 shown in Table 1.1. Current metal materials and even 

carbon fiber reinforced composites are not capable of meeting the demands of future 

aircraft. Breakthroughs in the development of lightweight nanostructured materials are 

expected in the upcoming decades that will lead to their wide scale use for structural 

aerospace components. 

Table 1.1 NASA third generation aircraft performance goals 

 Goal 
Reduce environmental noise  71 dB 
Reduce NOx emissions 75% 
Reduce fuel burn 70% 
Runway length 50% 

 

The carbon nanotube is a recent discovery that has many remarkable properties. The 

discovery of carbon nanotubes has been largely credited to Sumio Iijima in 1991,3 

although it has been since noted that images and descriptions of carbon nanotubes had 

been previously published without fanfare.4 The mechanical properties of carbon 
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nanotubes are game-changing, with stiffness around 1.0 TPa, ultimate strength anywhere 

from 50-120 GPa and fracture strain between 15% and 19%5. If a bulk material could be 

made with even half of the strength and stiffness of an individual nanotube then the 

resulting material would still have a stiffness to weight and strength to weight ratio an 

order of magnitude better than current state of the art alloys and composites. 

1.1 Motivation 

Carbon based nanostructured materials are particularly promising for aerospace structural 

applications. These components are necessarily stiff, strong, ductile, and lightweight. 

Most structural components today are made from metal alloys. Because of their extensive 

use over a long period of time the metals used are near their potential maximum 

performance. Comparatively carbon based nanostructured materials are in their infancy 

and, while their properties are not currently better than metal alloys, have the potential to 

be several orders of magnitude stronger and stiffer than current metal components once 

fully developed. 

There are many nanoscale particles that may be useful as nanoscale constituents. Among 

them are the carbon nanotube, graphene, nano-diamond, nano-onions of carbon and 

buckyballs. 

Carbon nanotubes are a crystal form of carbon consisting of sp2 bonds in a hexagonal 

sheet arrangement wrapped into a tubular shape. Carbon nanotube diameters are in the 

nanometer range and can have lengths into the micrometer range. The strong carbon-

carbon bonds, crystal arrangement, and reinforcing cylindrical shape make it one of the 

strongest materials discovered. The hollow core in carbon nanotubes makes it a very low-

density material, ideal for aerospace applications. Carbon nanotubes can also possess 

interesting electrical characteristics. Depending on the bonding arrangement, carbon 

nanotubes can be either insulating or conductive. Conductive structural fiber 

multifunctional components can reduce weight by eliminating conventional wiring, and 

also provide new opportunities like conductive tethers for new green technologies such as 

windmill kites and spacecraft such as the TSS-1R Tethered Satellite System. 
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Reactive carbon-based gases are commonly used in the synthesis of carbon-based 

nanostructured materials. Various reactive gas processes occur in the production of 

carbon-based material constituents such as nanotubes, amorphous carbon films, and even 

soot particles formed from combustion. Electron beam deposition,6 chemical vapor 

deposition,7, 8 pulsed arc discharge deposition,9 plasma deposition,10-13 pulsed laser 

deposition,6, 14 laser ablation, combustion,15, 16 and ion beam irradiation17 are all processes 

that are used in the manufacture of carbon-based materials where the source of carbon is 

a reactive carbon-based gas. Because of the wide range of processing methods and 

conditions that can be used to fabricate carbon-based materials, their development can be 

time-consuming and expensive.  

Molecular modeling can be used to accelerate the design and development of carbon-

based materials. Molecular models give detailed atomic information not easily obtained 

from physical samples, and they provide precise control over environmental variables in 

the simulation. Traditionally, researchers modeled atom−atom interactions using 

molecular dynamics (MD) with fixed-topology force fields where bonds are defined at 

the beginning of a simulation and remain fixed throughout the simulation. However, 

since bond dissociation and formation are critical steps in the formation of carbon-based 

materials from a reactive gas, a new generation of force fields, such as the recently 

developed Reax Force Field18 (ReaxFF), are required to simulate these material systems. 

The ReaxFF has the capacity to model bond dissociation and formation in carbon-based 

materials.  

ReaxFF parameter sets developed have been shown to accurately describe bond 

dissociation and formation for systems including oxidation of hydrocarbons,19 catalytic 

formation of nanotubes,20, 21 shock waves in polymers,22 and many more carbon-based 

systems.23-31 However, a variety of ReaxFF force-field parameter sets and simulation 

parameters have been reported in these studies, and it is unclear what combination of 

parameter sets and simulation conditions should be used for carbon-based reactive gases.  
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1.2 Objective 

The objective of this study is to determine the modeling parameters necessary for the 

accurate simulation of carbon-based reactive gases using the ReaxFF. A parametric study 

is performed by monitoring the response of C, C2, C4, CH, C2H2, and C4H4 systems 

modeled using various simulation time steps, simulated temperatures, and ReaxFF 

parameter sets. A description of the ReaxFF is followed by a description of the 

parametric study modeling details. The results of the study identify the maximum usable 

time step length, beyond which the simulation results spuriously depend on the value 

chosen. The results also indicate that choice of temperature and parameter set can have a 

significant effect on the simulation results.  
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Chapter 2: Background 

This chapter will give an overview of research areas important to modeling reacting 

carbon-based gasses.  

2.1 Molecular Modeling  

Molecular modeling simulations have been used extensively to investigate atomic scale 

phenomenon for decades. Initially, when computers had minimal computational power, 

very small system were simulated using simple interaction potentials. Simulations of 

halogens and diatomic gases being some of the simplest performed. As computational 

power increased over time molecular modeling became more common and models 

became larger and more complicated. State-of-the-art molecular models can contain 

millions of atoms, use complicated interaction potentials and for hundreds of 

nanoseconds. 

Ensembles 

Molecular modeling often involves sampling states in a defined ensemble. An ensemble 

is a collection of all possible positions and momentum that may be experienced by the 

atoms in the system in a defined state. The combination of all positions and momentums 

of the atoms in a system is referred to as phase space. An ensemble is an area of phase 

space that satisfies defined thermodynamic values such as a fixed temperature, volume, 

pressure, or energy. Common ensembles used in molecular modeling are detailed below. 
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Canonical (NVE) 

Energy within the system is conserved, oscillating between potential energy of the bonds 

and the atoms kinetic energy. In addition to fixed total energy the volume and number of 

atoms of the system is constant. 

Micro Canonical (NVT) 

The system is allowed to change total energy by exchanging kinetic energy with a 

theoretical surrounding heat bath. In this ensemble the temperature, number of atoms, and 

volume are constant. 

Isobaric-isothermal (NPT) 

The volume of the system is adjusted to maintain a set pressure. The number of atoms is 

fixed and temperature of the system is held constant like in the micro canonical ensemble. 

Molecular Dynamics 

Molecular dynamics (MD) is a method of sampling portions of phase space. MD 

simulations employ Newton’s second law to move atoms discreetly in time. In a MD 

simulation thermodynamic averages of an ensemble can be calculated by averaging over 

points in time that are far enough apart to be statistically uncorrelated. This makes MD 

similar to Monte-Carlo simulations where new positions are selected according to 

thermodynamic probability and a random number, instead of following a trajectory in 

time. 

In MD there are several algorithms for controlling the temperature and pressure of the 

system. The most common methods are described below. 

Nose-Hoover Thermostat and Barostat 

This algorithm scales the velocities to the desired temperature in a way that creates a 

Gaussian distribution. This method is the only thermostat to have a strict statistical 

mechanics derivation and is most likely to generate momentum in the desired ensemble. 
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Berendsen Thermostat and Barostat 

This method scales all velocities proportionally by the same factor to achieve the desired 

temperature. Used extensively for ReaxFF because it is known to better control very large 

velocities often found in rapidly changing systems such as reacting or non-equilibrium 

systems. This algorithm is also much simpler to code and is therefore common in small 

MD codes. 

Langevin Thermostat 

This thermostat scales the velocity and also adds a force in a random direction, 

simulating collisions with solvent molecules. This results in random-walk type diffusion 

of particles under the correction conditions. This thermostat also results in a non-

Gaussian distribution of velocities, favoring the average temperature and reducing the 

magnitude of higher velocities making it good for equilibrating bad systems. 

Thermodynamic Fluctuations  

It is important to note that macroscopic thermodynamic properties are averages of many 

atoms. For example temperature is an average of the velocities of many atoms. Pressure 

is the average of the virial of many atoms, and potential energy is the average of the 

potential of many atoms. Typical thermodynamic measuring equipment such as 

barometers and thermometers are large, containing many moles of atom, therefore the 

thermodynamic properties are averages of many moles of atoms. However, with 

molecular modeling simulations the number of atoms may be anywhere from tens of 

atoms to at most millions of atoms, many orders of magnitude less than even a single 

mole. Therefore it is expected that averages of the velocities in an MD simulation will 

vary significantly in time around the average value. The magnitude of the fluctuations is 

directly related to the total number of atoms. Very small systems of tens of atoms will 

have massive fluctuations in thermodynamic values, while systems of tens of thousands 

will have smaller fluctuations and systems of millions of atoms will have even smaller 

fluctuations. However even with millions of atoms thermodynamic values will still 

fluctuate.  Therefore thermodynamic fluctuations are a natural product of the method and 

are not necessarily an indication of a problem. 
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2.2 The Reax Force Field 

Traditionally researchers have used force fields with fixed bond topologies such as 

AMBER, OPLS, CHARM, and COMPASS to model covalent systems, where bonds are 

defined at the beginning of a simulation and remain fixed throughout. Often these force 

fields use simple harmonic functional forms to describe bonded interactions, assuming 

bonds are not stretched far from equilibrium. These models and their corresponding 

assumptions are applicable for modeling many equilibrium systems such as polymers and 

proteins. However use of these force fields restricts their use to equilibrium non-reacting 

systems. Investigations of systems where bonds break or form are important to many 

researchers. In particular use of reactive force fields expands to scope of materials 

research, allowing growth of a material during manufacture to be simulated.  

The Reax Force Field (ReaxFF) is a new generation bond-order force field developed by 

Adri van Duin et al. at Cal Tech and first published in 2001.32 ReaxFF is the most recent 

of a long history of reactive force fields used in molecular dynamics, and is designed to 

be highly transferable to diverse systems such as covalent, ionic, and metallic and is 

under active development with parameter sets for new systems being published every 

year since its release. ReaxFF is designed to describe bond dissociation and other higher 

order effects, typically found using DFT methods, but at significantly less computational 

expense allowing for the simulation of systems orders of magnitude larger with similar 

accuracy.  

History of Reactive Force Fields 

Morse Bond Potential 

Previously other force fields have been developed that allow for breaking and forming of 

bonds. One of the simplest potentials is the Morse potential developed in 1929 by Philip 

Morse.33, 34 The Morse potential is two-body force field in that only the distance between 

each pair of interacting atoms affects the energy of each bond, irrespective of other 

nearby atoms. In practice the Morse potential is used similarly to fixed-bond force fields 

where bonds are selected at the beginning of a simulation. However as a Morse bond is 
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stretched, the bond can dissociate and the force between the atoms goes to zero. The 

shape of the bond energy dissociation curve is fixed by the form of the potential with the 

minimum potential energy, dissociation energy, and equilibrium bond distance set by the 

user. Near equilibrium the Morse potential matches a harmonic potential. This potential is 

most useful for diatomic molecules, which it was originally use to describe, as there is no 

easy way to add simple angle or dihedral interactions that also dissipate as the bond 

dissipates. 

Lennard-Jones  

Later in 1931 Lennard-Jones proposed his two-body “12-6” potential energy form to 

approximate van der Waals interactions between atoms35. The Lennard-Jones functional 

form is two-body term is used to describe the long-range van-der-Waals atomic 

interactions, and not the covalent bonding of the Morse potential. The Lennard-Jones 

form was used in describing systems where non-bonded energies dominate, like liquids 

or noble gases. 

Bond Energy - Bond Order Method 

Harold Johnston and Christopher Parr in 1963 applied Pauling’s bond order, which states 

that there is a direct correlation between bond length and bond order, to a potential form 

for hydrogen transfer.36 The critical principle is that the total bond order of the entire 

system is conserved, even when a bond has been greatly separated. The limitation of this 

potential is that it can only be used to describe rate constants for hydrogen transfer 

reactions. However the introduction of conserved bond order to describe reactions was a 

useful assumption used in the creation of later force fields. 

The Addition of Three-Body Terms 

In order to describe a larger set of states than potentials with only single and two-body 

terms, the two body energy terms were expanded to include higher orders of body terms. 

These include the potentials of Stillinger and Webber, Pearson et al, and Biswald and 

Hamann.37-39 The Stillinger-Webber and Pearson models included two-body and three-

body terms that were parameterized to reproduce specific properties of silicon. Biswald 
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and Hamann added a large array of states to their fitting database and tried to fit their 

parameters very generally to all these states. Their model, though, did not give good 

results, and therefore the three-body term was not enough to model the diverse set of 

states for silicon, and in particular non-tetrahedral states of silicon. 

Abell Bond Order Function 

In 1985 Abell proposed that the bond order of an atom was dominated by the number of 

near neighbors.40 Near neighbors are atoms within the covalent bonding distance from 

that atom. Abell’s functional form added an adjustable parameter to the shape of the 

Morse potential to better describe some reactions. For bond distances less than the 

equilibrium the Abell form is identical to the Morse potential. 

The Teroff Potential 

Tersoff, in 1986, identified the weaknesses of higher body-order terms and took the ideas 

of Abell and Morse to create a potential to model silicon.41 Tersoff’s great addition was 

to split the potential into a repulsive and attractive part and multiply the attractive part by 

the bond order. The bond order is a function of the number of nearest neighbors, the 

angle between neighbors, and the distance to the near neighbors. By making the bond 

order dependent on the geometry, his model was able to achieve better computational 

scaling and greater simplicity than by adding a three-body or, four-body potential. The 

attractive and repulsive terms of the Tersoff potential are multiplied by a cutoff function 

so that the bond energy goes to zero for large deformations. Since long-range forces and 

charges do not play a significant role in silicon structures they were not included, which 

makes it difficult to generalize the Tersoff potential to many systems. Also the shape of 

the dissociation curve is not adjustable. However with this form Tersoff was very 

successful in simulating a large number of Silicon and similar systems. 

Brenner Parameterization of the Teroff Form (REBO) 

In 1990 Brenner published a parameterization of the Tersoff potential used to describe 

Chemical Vapor Deposition (CVD) of hydrocarbons on a diamond surface.42 This 

potential is commonly known as the Reactive Empirical Bond Order (REBO) potential. 
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In addition to parameterizing the Tersoff functional form, he also included terms to 

differentiate conjugated systems from linear molecules. For example the Brenner 

potential can differentiate between the resonant double carbon-carbon bond in graphite 

and the double carbon-carbon bond in (CH3)2C=C(CH3). Brenner also included a term to 

improve the accuracy of radicals.  With this term vacancies in a diamond lattice could not 

be accurately modeled. 

AIREBO 

In 2000, after the successful implementations and adoptions of the Brenner potential to 

many hydrocarbon systems, Stuart et al. added non-bonded interactions and single-bond 

dihedral energies to the Brenner potential in order to better simulate systems like liquids 

and thin films where these energies play a larger role.43 This is commonly called the 

Adaptive Intermolecular REBO potential (AIREBO). The long-range energies are 

represented by a Lennard-Jones equation. This leads to unrealistic repulsion at short 

distances. However for many systems this is not important. Lennard-Jones interactions 

are also not included in atoms that are within four bonds and on the same molecule. 

The Reax Force Field 

Then in 2001 a new reactive potential form was introduced by van Duin et al. that aimed 

to create a reactive force field functional form that corrected many of the problems of the 

Brenner-Tersoff style potential. Like Tersoff, Abell, and Brenner, ReaxFF has a direct 

distance - bond order relationship. This force field’s potential energy curve is a composite 

of many terms including bonds, angles, dihedrals, conjugation, over/under coordination, 

van-der-Waals, electrostatics and more. This form allows for the shape of the bond 

dissociation curve to be fitted to QM results. In addition when the ReaxFF is 

parameterized long-range forces are included from the start, being parameterized 

simultaneously along with the other energies as opposed to AIREBO where covalent 

energies are parameterized first and then long-range energies are parameterized 

afterwards. In the ReaxFF the QEq charge distribution scheme is used which allows for 

charges on atoms to change as they react and form new molecules. The original ReaxFF 

was published along with parameters fit to hydrocarbon reactions, while subsequent 
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publications have included parameter sets for a wide variety of elements and reactions. 

The ReaxFF will be discussed more thoroughly later. 

Second Generation REBO 

In 2002 Brenner updated his original REBO potential with parameters derived from a 

more extensive training set and modified analytic functions.44 The long range and 

dihedral terms for the previous AIREBO potential can also be added to the second 

generation REBO potential since they are parameterized separately.  

Summary 

There are two primary reactive molecular force fields that are under active use and 

development for describing covalent carbon systems. These are the Brenner-Tersoff form 

force fields, and the ReaxFF potential. Both are built on a long evolution of earlier 

potentials dating back to the 1920s. Both Brenner-Tersoff and ReaxFF are based on the 

Abell distance-bond order relationship.  

Other Higher Order Methods 

Other methods of simulating materials are Density Functional Theory (DFT) and ab initio 

simulations. These are expected to be more accurate than the molecular force fields, 

however they are also significantly more computationally expensive so they are more 

appropriate for much smaller systems. 

ReaxFF Potential Energy Definitions and Explanations 

The ReaxFF potential energy function is defined as the sum of many individual energy 

terms. Some of the terms are typical of any force field including fixed topology force 

fields such as potential energy terms from bonds, angles, dihedrals, van der Waals, 

electrostatics, and hydrogen bonds. However with ReaxFF instead of these terms being 

directly dependent on the distance between atoms, these terms are dependent on the bond 

order which varies continuously between single, double, and triple bonds and gradually 

goes to zero as the distance increases. In addition to the typical terms mentioned ReaxFF 

includes contributions from over and under coordinated atoms (radicals, and 
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oversaturated valences), lone pair electrons, extra rigidity for angles that include a 

covalent double-bond, C2 triple bond destabilization energy, three body conjugation such 

as -NO2-, and four body conjugation such as benzene. 

Parameterization of ReaxFF 

A significant advantage of the ReaxFF is that the functional form of the potential energies 

is very broad and encompasses a variety of bonding situations such that it can be 

parameterized for diverse systems with metallic, ionic, and covalent bonding. While the 

various parameterizations for ReaxFF are made to be as broadly applicable as possible, 

care must be taken to ensure that the selected parameter set reproduces the desired 

properties. ReaxFF parameterizations are developed by generating a database of 

coordinates for crystal structures and molecules and their corresponding energies using 

highly accurate QM methods and then tweaking the ReaxFF parameters until the 

difference in ReaxFF and QM energies is minimized for each set of coordinates. This 

database of coordinates and QM energies is called the training set, since it is used to 

“train” the ReaxFF to reproduce the QM results in the database. ReaxFF training sets 

typically include points along the bond dissociation curves for a variety of molecules, 

relative potential energies of stable and radical molecules, equation of state (EOS), and 

lattice constants for stable and unstable crystal structures. Inclusion of the EOS indirectly 

includes elasticity constants in the parameterization. When a parameter set is generated 

different weighting factors are given to each data point. With this weighting scheme 

critical reactions can be forced to be match well, potentially at the expense of less critical 

reactions. A single point minimization technique is used determine the parameters, where 

single parameters are minimized sequentially until the overall energy difference 

converges to a minimum. Selecting an efficient and accurate minimization steps and 

parameters can be quite difficult and require substantial expertise.  

When selecting a parameterization for ReaxFF it is important to keep in mind that the 

properties desired, in addition to the elements in the parameterization are important. For 

example there are several parameterization that include carbon, but for different 

situations such as shock waves in polymers,22 transition metal catalyzed nanotube 
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formation,45 absorption of carbon in nickel clusters,20 oxidation and combustion,46 in 

addition to the original hydrocarbon parameter set.32 Each of these parameterizations 

includes different carbon reactions in the training set. Currently, no EOS for carbon 

crystals such as diamond and graphene has been included in a training set. Therefore it is 

important to verify the accuracy of the parameter set for elasticity of carbon crystals if 

that is the desired property. ReaxFF parameter sets are usually published in a standard 

format in a text file in the supporting information section of the paper. The text file can 

be read by the stand-alone Fortran code made by the ReaxFF developers, a parallel C++ 

code developed at Purdue or using the generic MD software LAMMPS that has both the 

Fortran and C++ implementations included as additional optional packages. Details on 

the current body of published parameterizations for ReaxFF and their applications are 

described below. 

Relevant Parameterizations for ReaxFF 

Generic Carbon Parameters 

The ReaxFF was originally published along with parameters suited for a wide variety of 

hydrocarbon reactions.32 This paper includes extensive discussion on each equation in the 

force field. This parameter set reproduced QM values near 4 kcal/mole for heat of 

formation, bond lengths near 0.01 Å, and angles near 2°. The heat of formation of 110 

hydrocarbon molecules, the bonds and angles in 19 molecules, relative potential energies 

of 11 molecules, and lattice constants for 4 structures. This parameter set forms the base 

for most future parameterizations, and is shown to be accurate for a diverse set of small 

hydrocarbon systems. 

Then in 2008 Chenoweth et al. created a parameterization for hydrocarbon oxidation, 

which included previous hydrocarbon reactions in the training set in addition to reactions 

with oxygen.46 The parameter set has been used extensively to model a variety of 

hydrocarbon and oxygen systems since. 
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In 2011 Liu et al. applied recently developed DFT van der Waals low-gradient to carbon, 

nitrogen, hydrogen, and oxygen parameters.47 The van der Waals equation from the 

original publication is a shielded Morse form. However recently developed DFT methods 

to more accurately model van der Waals interactions indicated the ReaxFF functional 

form was inadequate, and a scaling term was added and parameterized. The lattice 

constant for diamond, polyethylene, and small explosive molecule structures were 

validated with the new parameters with good results.  

Carbon based explosives 

The original hydrocarbon training set was extended with nitrogen and oxygen reactions in 

order to model high-energy materials such as nitramine RDX by Strachan et al.48 Later 

this training set was expanded to include unimolecular pathways for the high-energy 

material TATP49 and reparameterized. Condensed phases for TATP were also included in 

the training set. Note that while the original RDX parameterization included all the 

elements found in TATP, since reactions relevant to TATP decomposition were not 

included in the training set, it was not accurate, and the training set needed to be 

expanded. More recently in 2009 Zhang further expanded the training set for thermal 

decomposition of the explosives TATP and HMX.27 

Catalyzed fullerene growth 

Nielson expanded on the previous hydrocarbon training sets and added reactions of 

hydrocarbons with single atoms of Co, Cu, and Ni.45 These transition metal elements are 

common catalysts in the manufacture of carbon nanotubes. Relative energies of a variety 

of pure carbon species were added to the training set including graphene, graphite, 

diamond, a few nanotubes and C60. Small acyclic and cyclic molecules of pure carbon 

were also included. In this parameter set the energy term C2 was added to destabilize the 

triple bond in C2. While a number of condensed states for carbon were included in this 

training set, their EOS was not included. Only equilibrium values were included. Later 

the carbon-nickel interactions were expanded with nickel-nickel interactions and 

nanotube growth from a nickel particle was simulated by Mueller et al.20 
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Proteins 

Rahaman et al. developed ReaxFF parameters for glycine with water.50 The parameter set 

included the elements carbon, nitrogen, oxygen, and hydrogen. In addition a bond 

restraining energy term was added in order to restrain O-H bonds and N***H bonds, 

forcing proton transfer which was of interest to the authors. This parameter set was 

tweaked shortly afterwards and used to model proline-catalyzed iminium–enamine 

conversion.51 

Other carbon based systems 

The organic silicon oxygen were further analyzed and validated in particular the organic 

silicon interactions by Chenoweth et al. who used it to model the thermal decomposition 

of the silicone polymer PDMS.52 PDMS was heated to a variety of maximum temperature 

and heating rates and the products of the cook off simulation were analyzed. 

Silicon based parameterizations 

Adri van Duin et al. developed ReaxFF parameters for silicon and silicon oxide.53 The 

original hydrocarbon training set was also included as well as silicon and silicon oxide 

reactions with carbon and hydrogen. Crystal structures of stable and unstable crystal 

structures of silicon and silicon oxide are included in the training set over a large range of 

pressures from 500 GPa compression to 10 GPa in tension. After the parameters were 

developed a silicon and silicon oxide interface was successfully modeled. More recently 

the silicon-oxide parameter set was expanded to include gas phase molecules and DFT 

simulations in the original training set were re-run with more accurate recently developed 

DFT functionals.54 The silicon training set was also expanded by Naserifar et al. to 

include reaction found in the thermal decomposition of hydridopolycarbosilane to form a 

low-density silicon-carbon material.55 

Metals, transition metal, and other parameterizations 

In addition to carbon and silicon parameterizations, the ReaxFF has been applied to a 

wide array of other elements including metals, transition metals, boron-nitride, and 

halogen elements. Many of the metal parameterization includes stiffness coefficients and 
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EOS data in their training sets that allows the parameterization to reproduce mechanical 

properties well. A significant number of ReaxFF parameterizations for investigating 

metal surface catalyzed hydrocarbon reactions have been developed primarily by the 

group of Bill Goddard. Metal alloys, metal oxides, metals for hydrogen storage, cold 

welding, and even concrete have been studied using the ReaxFF. An overview of all 44 

published ReaxFF parameterizations is listed below in Table 2.1. 

 

Table 2.1 Comprehensive list of ReaxFF parameterizations in chronological order 

First 
Author Elements Year Ref. Notes 
Goddard  C H 2001 32 Original publication 
Strachen C H O N 2003 48 RDX explosive 
van Duin Si O 2003 53 Interface properties 
Zhang Al O H 2004 56 Surface properties 
Chenoweth Si O C H 2005 52 PDMS polymer 
Cheung Mg H 2005 57 Hydrogen storage 
Han B N H 2005 58 BN nanotubes for H storage 
Han Li O H 2005 59 Various lithium compounds 
Nielson C H Ni Cu Co 2005 45 Catalyzed nanotube growth 
van Duin C H O 2005 49 TATP and DADP explosives 
Goddard C H O Mo Bi V 2006 60 Catalysts 
Ludwig Pt H 2006 61 Pt surface with hydrogen 
Chenoweth V O C H 2008 62 Catalysts 
Chenoweth C H O 2008 46 Hydrocarbon oxidation 
Goddard C H N O V Mo Bi Nb Te 2008 63 Catalysts 
Jarvi Au 2008 64 General parameters 
Raymand Zn O H 2008 65 Catalysts 
van Duin Y Ba Zr O H 2008 66 Fuel cell electrolytes  
van Duin Y Zr O 2008 67 General parameters 
Kua C H O Cl Sb 2009 68 Self-assembling materials 
Zhang C H N O 2009 27 Explosives 
Aryanpour Fe O H 2010 69 Water purification  
Joshi Au O H 2010 70 Cold-welding 
LaBrosse Co 2010 71 General parameters 
Mueller C H Ni 2010 20 Catalyst 
Rahaman Cu Cl O H 2010 72 Enzymatic and aqueous processes 
Raymand Zn O H 2010 73 Reparameterized to include water 
van Duin Cu O H 2010 74 Protein activation 
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Weismiller B H O N 2010 75 Hydrogen storage 
Agrawalla H O 2011 76 Hydrogen combustion 
Liu C H N O 2011 47 Corrected van der Waals term 
Jarvi Au S C H 2011 77 Self-organizing contacts 
Rahaman C H N O 2011 50 Glycine protien in water 
Hubin C H N O 2012 51 Modified for other proteins 
Liu Ca Al O H S 2012 78 Ettringite 
Manzano Ca O H 2012 79 Calcium oxide surface 
Narayanan Li Al Si O H 2012 80 Lithium-aluminum silicates 
Shin Fe Al Ni 2012 81 Alloy properties 
Vasenkov Mo Ni C O N S H 2012 82 High pressure molybdenum alloys 
Zou Fe C H 2012 83 Catalyst 
Gouissem Hf Zr B 2013 84 Ultra high temperature ceramics 
Kulkarni Si O H 2013 54 Expanded/recalculated training set 
Naserifar C Si H 2013 55 Silicon carbon membranes 
Song Al Mo O 2013 85 Explosives 
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Chapter 3: Parametric Modeling Procedure  

For this parametric study, six different initial gas molecules were included. Three pure 

carbon systems were simulated: C, C2, and linear C4. In addition, three corresponding 

radical hydrocarbons were also simulated: CH, C2H2 with both hydrogen atoms bonded 

to a single carbon atom, and C4H4 (Figure 3.1). These small radical carbon and 

hydrocarbon molecules are expected to be present in various reactive gas manufacturing 

processes, if only transiently.  

 

Figure 3.1 Initial gas molecules simulated.1 

Two ReaxFF parameter sets were used to model the reactions. The parameter set of 

Nielson et al.45 (henceforth referred to as Nielson) was originally parametrized for 

reactions expected in nanotube formation and growth from transition-metal atoms. This 

parametrization is well-suited for small cyclic and acyclic carbon structures, graphite, 

various graphenes, various nanotubes, fullerenes, and hydrocarbon reactions. This 

parameter set is also well-suited for reactions of carbon with nickel, copper, and platinum 

atoms. The parameter set of Chenoweth et al.46 (henceforth referred to as Chenoweth) 

was parametrized for the reactions of small hydrocarbon molecules with oxygen. Other 

published parameter sets for ReaxFF exist; however, the Chenoweth and Nielson 

parameter sets are the most recent parameters useful for either oxygen or transition-metal 

reactions, respectively, with all-carbon and hydrocarbon molecules.  
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Three different temperatures were modeled as part of the parametric study: 300, 1500, 

and 3000 K. This temperature range was selected based on the range of temperatures that 

carbon-based structures can be exposed to during typical synthesis and operating 

conditions. The Berendsen thermostat was used to maintain the temperature in the MD 

models with a damping coefficient of 5 fs.  

Five different simulation time steps were selected: 0.4, 0.2, 0.1, 0.05, and 0.025 fs. These 

time steps encompass the range of typical time steps reported in the literature for a wide 

range of force fields. It is expected that time steps as large as 0.4 fs result in faster 

simulation times, but may cause divergent results. A time step as small as 0.025 fs is 

expected to take ∼16 times more CPU hours, but will produce accurate simulations. It is 

expected that there is a critical time step between 0.4 fs and 0.025 fs where further 

decreases in time step size do not change the simulation results.  

 

Figure 3.2 Equilibrated system of C2 molecules at 300 K.1 

A three-dimensional (3D) periodic MD simulation box was constructed for each initial 

gas molecule, parameter set, temperature, and time step combination. Each molecular 

simulation was conducted in a cubic cell with sides 90.0 Å long. Molecules were added 

to the cell until the total number of carbon atoms in the system reached 900, resulting in a 
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total density of 0.02455 g/cm3 for the pure carbon systems and 0.02663 g/cm3 for the 

hydrocarbon systems. The initial state of each system was equilibrated by running an 

NVT simulation of the system for 3 ns at the desired temperature using a modified 

Amber force field. In this force field, parameters were modified to produce bond lengths 

similar to those of ReaxFF, and only the repulsive portion of the van der Walls term was 

included. This step prevented the initial state from including high-energy configurations 

such as overlapping atoms. The trajectories of the atoms were saved at 1, 2, and 3 ns and 

subsequently used to establish three different simulation samples for each time step, 

temperature, parameter set, and initial molecule combination, resulting in a total of 540 

MD models. The fixed topology force field was then replaced with the ReaxFF. 

Subsequently, the system energies were minimized and the simulations were run for 500 

ps, 1 ns, or 1.5 ns, depending on what duration was required for the reactive system to 

reach equilibrium. The system energies were recorded at regular intervals throughout 

each ReaxFF simulation. Simulations were performed on several high-performance 

computing systems using the LAMMPS86 software, which includes an implementation of 

the ReaxFF code. An example of an equilibrated system is shown in Figure 3.2.
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Chapter 4: Results and Discussion 

4.1 Time Step Size 

The time step required to get accurate results with the ReaxFF may be quite different than 

those used with traditional force fields. The proper choice of time step is highly 

dependent on the stiffest portion of the force gradient experienced by the atoms during 

MD simulations. In traditional force fields, the stiffest molecular interactions of a system 

in equilibrium are harmonic bond stretches, which exhibit a linear force−distance 

relationship for all deformation magnitudes. With the ReaxFF however, because bonds 

can break and form, the force between interacting atoms is nonlinear. In addition, for 

specific molecular systems, like all-carbon systems, the force gradient can be much 

steeper than those in traditional force fields. In addition, ReaxFF incorporates the EEM32 

charge equilibration method to handle charge transfer between atoms as reactions take 

place. While not important for the all-carbon and hydrocarbon systems being investigated 

in this study, charge transfer in polar systems can also be substantially affected by time 

step size.  

Because of these factors, the selection of a MD time step that results in accurate 

predictions is not straightforward. For example, consider the energy-deformation and 

force-deformation curve of the bond in C2 and acetylene molecules, as shown in Figure 

4.1 for both the ReaxFF and a typical harmonic alkene carbon−carbon bond. It can be 

seen that the energy slope near the equilibrium bond distance is much greater for the 

ReaxFF, compared to the typical harmonic potential. It also shows that, as the bond in 

both molecules is stretched, the slope of the ReaxFF force curve varies significantly away 

from the equilibrium distance, in contrast to the constant slope of the harmonic potential 

force curve. As a result, the maximum MD simulation time step size that may be used 
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with the ReaxFF is expected to be much smaller than that for a traditional force field 

containing a typical harmonic bond.  

With traditional force fields, once the system is near equilibrium, the time step size can 

be validated by running a simulation in the microcanonical ensemble. If the time step is 

too large, the total energy of the system will not be conserved, typically increasing over 

the course of the simulation. In some simple cases, this method can also be applied to the 

ReaxFF by temporarily modifying the parameter set to disable favorable reactions, 

causing the initial system to remain in equilibrium, acting like a fixed-topology force 

field. However, this method only verifies the time step size for molecules present in the 

initial system. Once the system is allowed to react, new bonds and molecules will form, 

which may require smaller time steps. An alternative approach for verifying the time step 

size when using ReaxFF is to run simulations of identical systems under identical 

conditions with different simulation time step sizes. There will be a critical time step after 

which all smaller time steps will result in the same response in the system. This critical 

time step will allow for the most efficient and accurate simulation of a particular system 

while the using the ReaxFF. This approach has the advantage that it will sample all 

molecules present throughout the reaction process.  
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Figure 4.1 Comparison of the potential energy and force gradient between the ReaxFF 

and a generic harmonic potential for (a) a  C2 molecule (with a harmonic force constant 

of 549 kcal/mole and an  equilibrium bond distance of 1.34 Å) and (b) acetylene (with a 

harmonic force constant of 1150 kcal/mol and equilibrium bond distance of 1.21 Å).1 

An example of the influence of time step size on the simulated evolution of the reactive 

carbon gases is shown in Figure 4.2. This figure clearly shows that there is a maximum 

time step size below which the potential energy curves show close agreement (0.1 fs). For 

larger time step sizes, the corresponding potential energy curves diverge from these 

results. It is also clear from this figure that simulations run with different initial 

configurations show close agreement for a given set of parameters. For each combination 
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of temperatures and initial gas molecules, the corresponding maximum time step sizes are 

listed in Table 4.1 and Table 4.2 for the Chenoweth and Nielson parameter sets, 

respectively. 

 

Figure 4.2 Influence of time step on potential energy convergence for a system of C4 

initial gas molecules at 1,500 K using the Chenoweth parameter set.1 

 

Table 4.1 Maximum time step size for various reactive carbon gases at different 

temperatures using the Chenoweth parameter set.  

Molecule 300K 1,500 K 3,000 K 
C 0.1 0.1 0.1 
C2 0.1 0.1 0.1 
C4 0.2 0.1 0.1 
CH 0.2 0.1 0.1 
C2H2 0.2 0.2 0.1 
C4H4 0.4 0.2 0.1 
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Table 4.2 Maximum time step size for various reactive carbon gases at different 

temperatures using the Nielson parameter set. 

Molecule 300K 1,500 K 3,000 K 
C 0.1 0.1 0.05 
C2 0.1 0.1 0.05 
C4 0.1 0.1 0.05 
CH 0.2 0.1 0.1 
C2H2 0.2 0.1 0.1 
C4H4 0.2 0.1 0.1 

 

The data in Table 4.1 and Table 4.2 indicate that, for a majority of the simulated 

conditions, a time step of 0.1 fs was sufficiently small to yield reliable results. The data 

also indicate that, as the simulation temperature increases, smaller time steps are 

generally necessary for convergent results. Running simulations at very high 

temperatures results in increased sampling of large-amplitude bond vibrations. As the 

potential energy gradient is nonlinear in this region, shorter integration time steps are 

required to ensure numerical stability and reliable simulation results.  

The data in Table 4.1 and Table 4.2 also indicates that, generally, the pure carbon 

systems require smaller time steps than the hydrocarbon systems. There are several 

possible explanations for this. First, there is a C2 correction term used by the ReaxFF 

when the C2 molecule is present. For the hydrocarbon systems, it is unlikely that there are 

significant numbers of C2 present at any given time. Therefore, the C2 correction term can 

influence the required time step size for pure carbon systems but is unlikely to have a 

significant effect of the hydrocarbon systems. Second, the higher mass of the 

hydrocarbon systems could alter the natural vibrational frequencies of the molecules, thus 

changing the time step size necessary for accurate simulation. Finally, the presence of 

hydrogen in the hydrocarbon molecules could cause the molecules to be more chemically 

stable, resulting in a force gradient with fewer sharp spikes and thus higher minimum 

time steps.  
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4.2 Temperature 

 

Figure 4.3 Influence of temperature on potential energy convergence for an initial gas of 

C atoms using the Nielson parameter set.1 

Figure 4.3 shows a typical plot of the influence of simulation temperature on the 

evolution of carbon reactive gases. The potential energy generally shows a more rapid 

approach to its equilibrium value for higher temperatures, indicating that the reaction 

rates increase with increasing temperature. Also, the results are reproducible, as 

demonstrated by the similar response of the three different simulation samples at each 

temperature. The same trends were observed for other initial gas molecules considered in 

this study. For the pure-carbon systems, the potential energies converged to −148 to −160 

kcal/mol when using the Chenoweth parameters and −160 to −180 kcal/mol with the 

Nielsen parameters. For the hydrocarbon systems the potential energies converged to 

−108 to −120 kcal/mol when using either parameter sets. The variation in final potential 

energies decreases further for increasing temperatures with final potential energies of 

different initial gases within 4 kcal/mol of each other at 3000 K. For all of the pure 

carbon systems, the equilibrium structures are mostly long linear-branched carbon 

molecules with a small number of stable cyclic C3 molecules (Figure 4.4). The final 
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structure of the hydrocarbon systems consisted primarily of short linear hydrocarbon 

molecules with hydrogen atoms terminating the ends of the carbon chains (Figure 4.4).  

 

Figure 4.4 Final structures for initial gas of carbon atoms at 3,000 K with the Nielson 

parameter set (left) and an initial gas system of C2H2 at 3,000 K with the Chenoweth 

parameter set (right).1 

4.3 Parameter set 

Figure 4.5 shows the influence of the two different ReaxFF hydrocarbon parameter sets 

on the potential energies of an initially pure C2 system and an initially pure C2H2 system, 

both at 1500 K. From the figure, it is clear that, for the C2 system, the Nielson parameter 

set results in greater initial reaction rates than the Chenoweth parameter set. Similar 

trends have been observed for the other pure carbon systems and the CH system at all 

temperatures. From Figure 4.5, it is also clear that, for the initially pure C2H2 system, the 

predicted reaction rates for the two parameter sets are almost identical. A similar trend 

was observed for the C4H4 system at all temperatures.  
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Figure 4.5 Influence of parameter set on potential energy convergence for initial gas of 

C2 and C2H2 molecules at 1,500 K.1 

4.4 Initial gas molecule 

Figure 4.6 shows a typical example of the influence of the initial gas species on the 

reaction rates of the molecular system. From the figure, it is evident that starting with 

single carbon atoms yields the fastest initial reaction rate. Because of the high initial 

potential energy, there is a significant driving force to react very quickly to form C2, C3, 

C4, and higher-order carbon structures. Also, since there are no bond vibrations for C, all 

of the kinetic energy in a single carbon atom is translational. As the single carbon atoms 

react to form higher-order carbon chains with more bonds, more of the translational 

potential energy is transformed to bond vibration potential energy. As the translational 

energy of the molecules decreases, the kinetic energy barriers to lower energy states 

become more difficult to overcome. It is also important to note that all of the pure carbon 

systems converge to a similar potential energy in the final state, regardless of the initial 

molecular type. The same observation can be made about the hydrocarbon systems.  
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Figure 4.6 Influence of initial gas molecules on potential energy convergence, using the 

Nielson parameter set at 300 K.1 

It is interesting to note that, for the Chenoweth parameter set at 3,000 K for all of the pure 

carbon systems, a structural transformation was observed at ∼250 ps, as shown in Figure 

4.7. This transformation is characterized by the formation of large graphitic particles, 

instead of the long linear carbon chains that the other simulation parameters produced. It 

is expected that, at the transition point, a small ring forms that can act as a nucleation site 

for a larger graphitic structure. This finding is significant because it demonstrates the 

ability of the ReaxFF to predict the formation of similar carbon structures, such as 

graphite, buckyballs, and carbon nanotubes, with specific simulation parameters. Similar 

observations have been made using ab initio simulations.87-89 
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Figure 4.7 Structural transformation predicted in pure carbon systems, as indicated by a 

sudden decrease in the potential energy near 250 ps.1
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Chapter 5: Conclusions 

The results in this study indicate that simulations of carbon-based reactive gases using the 

Reax Force Field (ReaxFF) are highly sensitive to the simulation parameters. In 

particular, it is clear that, for pure carbon and hydrocarbon gases simulated at 3,000 K, a 

time step of 0.05 fs should be used, whereas for lower temperatures (300 and 1,500 K), 

time steps of 0.1 fs are sufficient for accurate simulation. The results also indicate that the 

selection of parameter set may also have a significant influence on the simulation results. 

While the Nielson and Chenoweth parameter sets predict similar equilibrated potential 

energies, the reaction rates for the Nielson set are faster than those for the Chenoweth set 

for the pure carbon systems. Although the Nielson and Chenoweth parameter sets usually 

result in simulations that predict the same equilibrated structures, it was observed that, for 

pure carbon systems simulated at 3000 K, the Chenoweth parameter set yielded the 

formation of large graphitic structures that the Nielson parameter set did not. This may 

indicate that the Chenoweth parameter set may be more appropriate for MD simulations 

in which the growth of graphitic structures is investigated.
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Appendix A: LAMMPS input script for acetylene 

dissociation curve 

#---------initialization--------- 
units       real 
dimension   3 
boundary    f f f 
atom_style  charge 
atom_modify map hash 
read_data   acetylene.charge 
group       C1 id 1 
group       C2 id 2 
group       hydrogens subtract all C1 C2 

 #--------force-field------------ 
pair_style  reax/c NULL 
pair_coeff  * * ffield.reax.chenoweth C C H 
fix         chargeeq all qeq/reax 1 0.0 10.0 1.0e-6 reax/c 
compute    reax all pair reax/c 
variable   eb   equal c_reax[1]/count(all) 
variable   ea   equal c_reax[2]/count(all) 
variable   elp  equal c_reax[3]/count(all) 
variable   emol equal c_reax[4]/count(all) 
variable   ev   equal c_reax[5]/count(all) 
variable   epen equal c_reax[6]/count(all) 
variable   ecoa equal c_reax[7]/count(all) 
variable   ehb  equal c_reax[8]/count(all) 
variable   et   equal c_reax[9]/count(all) 
variable   eco  equal c_reax[10]/count(all) 
variable   ew   equal c_reax[11]/count(all) 
variable   ep   equal c_reax[12]/count(all) 
variable   efi  equal c_reax[13]/count(all) 
variable   eqeq equal c_reax[14]/count(all) 

 #------harmonic bond equations------ 
variable    dist equal z[2]-z[1] 
variable    reax_Cf equal fz[1] 
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compute     ppm C2 pe/atom 
compute     ptm all reduce sum c_ppm 
variable    reax_Ce equal c_ptm/count(C2) 

 #parameters from TINKER OPLS files 
variable    b_CZe equal 1150.00*(v_dist-1.2100)^2 
variable    b_CMe equal 549.00*(v_dist-1.3400)^2 
variable    b_CZf equal 2*1150.00*(v_dist-1.2100) 
variable    b_CMf equal 2*549.00*(v_dist-1.3400) 

 #-----------settings------------ 
timestep      0.5 
thermo        100 
thermo_style  custom step v_dist ke pe v_reax_Cf v_reax_Ce 
thermo_modify norm yes 

 #----------minimize---------- 
fix             2 all viscous 0.3 
min_style       cg 
min_modify      line quadratic 
fix             1 hydrogens nve 
velocity        all set 0.0 0.0 0.0 units box 
fix             freeze1 C2 setforce 0.0 0.0 0.0 
fix             freeze2 C1 setforce 0.0 0.0 0.0 
minimize        0.0 1.0e-6 10000 100000 
unfix           freeze1 
unfix           freeze2 
run             400000 
reset_timestep  0 

 #---Loop----------------------------------------- 
#------------------------------------------------ 
dump         1 all atom 16000 acetylene.lammpstrj 
dump_modify  1 scale no 
fix data all ave/time 1 1 8000 v_dist v_b_CZe v_b_CZf & 
    v_b_CMe v_b_CMf v_reax_Cf v_reax_Ce file thermo.txt  
variable     a loop 1 1500 
label        loop 

 #------------run------------ 
fix          1 C2 nve 
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velocity     C2 set 0.0 0.0 0.003 units box 
fix          freeze all setforce 0.0 0.0 0.0 
run          1 
unfix        freeze 

 #----------minimize--------- 
unfix        1 
fix          1 hydrogens nve 
velocity     all set 0.0 0.0 0.0 units box 
run          7999 

 #------------------------------------------------ 
#-----Loop End----------------------------------- 
next            a 
jump            in.script loop 

 

42 



 

Appendix B: Representative LAMMPS input 

script for a reacting gas 

Input script for C2 at 3,000 K using ReaxFF with Chenoweth parameters 

#LAMMPS input file 
log C2_3000K_chenoweth_0.025.log.lammps 

 #---------initialization--------- 
units      real 
dimension  3 
boundary   p p p 
atom_style charge 
read_data  C2_3000K.charge 

 #--------force-field------------ 
pair_style  reax/c NULL 
pair_coeff  * * ffield.reax.chenoweth C 
fix chargeeq all qeq/reax 1 0.0 10.0 1.0e-6 reax/c 

 #--------reax energies----------- 
compute    reax all pair reax/c 
variable   eb   equal c_reax[1] 
variable   ea   equal c_reax[2] 
variable   elp  equal c_reax[3] 
variable   emol equal c_reax[4] 
variable   ev   equal c_reax[5] 
variable   epen equal c_reax[6] 
variable   ecoa equal c_reax[7] 
variable   ehb  equal c_reax[8] 
variable   et   equal c_reax[9] 
variable   eco  equal c_reax[10] 
variable   ew   equal c_reax[11] 
variable   ep   equal c_reax[12] 
variable   efi  equal c_reax[13] 
variable   eqeq equal c_reax[14] 
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#-----------settings------------ 
compute         ppa all pe/atom 

 timestep        0.025 
variable        Time equal step*dt/1000 #time in picoseconds 
thermo_style    custom step v_Time temp press etotal ke pe fmax 
thermo_modify   norm yes flush yes 

 fix             integrate all nve 
fix             thermostat all temp/berendsen 3000 3000 5 
fix             momentum all momentum 2000 linear 1 1 1 angular 

 #---------minimize--------- 
min_style       sd 
minimize        1.0e-4 1.0e-6 100 1000 
reset_timestep  0 

 #------------run------------ 
thermo          20000 # 500 fs 
variable        a loop 1 5 # 500 ps total 

 label           loop 
Fix reaxdata all ave/time 40000 1 40000 v_Time v_eb v_ea v_elp & 
     v_ev v_epen v_ecoa v_ehb v_et v_eco v_ew v_ep v_eqeq & 
     off 1 file C2_3000K_chenoweth_0.025.reax$a.txt 
Dump 1 all custom 40000 C2_3000K_chenoweth_0.025_$a.lammpstrj &  
                                           id type x y z c_ppa 
dump_modify  1 flush yes 

 run             4000000 #100 pecoseconds 
write_restart   $a.restart 
undump          1 
unfix           reaxdata 
next            a 
jump            in.script1 loop 
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