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Abstract

Computer simulation programs are essential tools for scientists and engineers to understand

a particular system of interest. As expected, the complexity of the software increases

with the depth of the model used. In addition to the exigent demands of software

engineering, verification of simulation programs is especially challenging because the

models represented are complex and ridden with unknowns that will be discovered by

developers in an iterative process. To manage such complexity, advanced verification

techniques for continually matching the intended model to the implemented model are

necessary. Therefore, the main goal of this research work is to design a useful verification

and validation framework that is able to identify model representation errors and is

applicable to generic simulators.

The framework that was developed and implemented consists of two parts. The first

part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users

to specify the invariants of a model under consideration. From the first-order logic

specification, the FOLCSL translator automatically synthesizes a verification program

that reads the event trace generated by a simulator and signals whether all invariants are

respected. The second part consists of mining the temporal flow of events using a newly

developed representation called State Flow Temporal Analysis Graph (SFTAG). While the

first part seeks an assurance of implementation correctness by checking that the model

invariants hold, the second part derives an extended model of the implementation and hence

enables a deeper understanding of what was implemented. The main application studied

in this work is the validation of the timing behavior of micro-architecture simulators.

The study includes SFTAGs generated for a wide set of benchmark programs and

their analysis using several artificial intelligence algorithms. This work improves the

computer architecture research and verification processes as shown by the case studies and

experiments that have been conducted.
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Chapter 1

Introduction

“In this, the idea is that we interpret the input from our senses in terms of a model we make of the
world. One can not ask whether the model represents reality, only whether it works. A model is a
good model, if first, it interprets a wide range of observations in terms of a simple and elegant
model. And second, if the model makes definite predictions that can be tested, and possibly
falsified, by observation."

— Stephen Hawking, Origin of the Universe, Berkeley, March 13, 2007

Computer simulation programs are essential tools for scientists and engineers to understand

a particular system of interest. As expected, the complexity of the software increases

with the depth of the model used. In addition to the exigent demands of software

engineering, verification of simulation programs is especially challenging because the

models represented are complex and ridden with unknowns that will be discovered by

developers in an iterative process. To manage such complexity, advanced verification

techniques for continually matching the intended model to the implemented model are

necessary. Therefore, the main goal of this research work is to design a useful verification

and validation framework that is able to identify model representation errors and is

applicable to generic simulators. To achieve this, we defined five pillars of our design

philosophy.

1. Formalism - The methodology is based on formal foundations.

2. User friendliness - The verification system is easy to use. Simulation properties can

be described in a clear and concise manner.

3. Independence - The verification process is decoupled from the actual simulator. The

modifications needed on existing simulators are minimal.
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4. Reuse value and flexibility - A property is defined once and used in subsequent

verifications. Defined properties can easily be transferred to the variants of the model

being studied.

5. Scalability - It is possible to process very large amounts of data, and data streams

with unknown length. The execution overhead of the verifier is minimal.

Our techniques rely on generating event traces from an execution of the target simulator

and using the trace in two complementary processes. Figure 1.1 shows the general

framework. For the first process, we developed a first-order logic based language, which we

call, First-Order Logic Constraint Specification Language (FOLCSL). Using the language,

invariants of the model under consideration are specified. Examples of such invariants

in the computer architecture domain include, every fetched instruction must be decoded

(instruction pipeline constraint), no more than two load instructions can simultaneously

access the cache (resource constraint), and the execution step of an integer type instruction

takes a single cycle (temporal constraint). From the first-order logic specification, we

automatically synthesize a verification program as shown in Figure 1.1(a). This verification

program reads the event trace generated by running the simulator using a particular input

set as shown in Figures 1.1(b) and 1.1(c) and signals whether all invariants are respected.

In this approach, if the constraint specification is complete and the verification program

returns no errors, it can be stated that for the set of inputs tested, the simulator has

faithfully followed the model. Unfortunately, the domain of invariants is large and even

domain experts might omit necessary constraints to catch all the errors in the simulator.

We therefore developed a second approach complementing the first.

In our second approach, we process the event trace using several artificial intelligence

algorithms, and attempt to derive the simulated model from the event trace. To represent

the simulated model we developed a representation, which we call State Flow Temporal
Analysis Graph (SFTAG). An SFTAG presents a temporal, probabilistic view of the states

encountered during simulation. For example, in the computer micro-architecture domain,

the first nodes of an SFTAG may specify that 47% of the instructions start at the “instruction

fetch” stage, whereas 53% start at the “reorder buffer full” stage. Presenting the constraints

in the form of temporal graphs enables the user to gain a deeper understanding of what

the simulator actually implements. Using the derived model, further invariant constraints

can be formulated and added to the initial set of constraints, in essence complementing the

former process. These two processes are used iteratively with different inputs as shown in

Figure 1.1, each time improving the set of constraints.

The strength of the outlined approach lies in its power to verify the implementation by both

performing a check of the invariants and visually describing what the simulator implements.

Furthermore, this is done in a very practical and general manner. Event traces can be easily

2
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Figure 1.1: Simulator verification using event traces.
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generated from any type of simulator by inserting output statements at specific points. Most

existing simulators already provide mechanisms to generate an event trace. For example,

SimpleScalar [1] and Gem5 [2] simulators used by computer architects produce event traces

by simply setting an option. It also is easy to generate an event trace in automatically

synthesized simulators such as FAST ADL [3] by augmenting appropriate points in the

description.

Our experiments and case studies show that such traces contain sufficient information to

verify that the simulator faithfully implements its execution model when these traces are

processed with the appropriate algorithms. Although the data sets are very large and these

algorithms have bad asymptotic complexity, by applying advanced filtering and windowing

techniques, we are able to keep the running times within reasonable limits.

The main contributions of this research work are twofold. First, we designed a formal

verification language and implemented the software that allows users to describe simulation

properties and check the properties against the output events. Second, we developed and

implemented an algorithm that is capable of processing large data sets and representing

the temporal information in a graphical form that is amenable to both visual inspection

and automatic analysis. Our framework improves the computer architecture research and

verification processes as shown by the case studies and experiments we have conducted.

The organization of this dissertation is as follows. In Chapter 2, previous work related

to this research is discussed. Techniques and algorithms that this research is built upon

are reviewed in the same chapter. Chapter 3 gives an overview of the framework. The

constraint language, First-Order Logic Constraint Specification Language (FOLCSL), is

presented in Chapter 4. In Chapter 5 we describe State Flow Temporal Analysis Graphs

(SFTAGs) and the algorithms to construct them. We illustrate the application of SFTAGs

through case studies and experiments in Chapter 6. The summary of our research,

conclusion and future work are given in Chapter 7.
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Chapter 2

Background and Related Work

“Perfection is not attainable. But if we chase perfection, we can catch excellence."

— Vince Lombardi

“Never perfect. Perfection goal that changes. Never stop moving. Can chase, cannot catch."

— Abathur

The main topics in this section include verification, validation, and rule induction. We

provide a brief review of verification and validation in a general project management

context, within software engineering, and in the context of simulation software. We present

a summary of rule induction techniques along with metrics of rule quality.

2.1 Verification and Validation

Verification and validation are the foundations of software testing. Without referring to the

exact definitions, some of us might think they mean the same thing. But they do not. The

definition of these words depend on the context.

The Project Management Body of Knowledge (PMBOK) Guide [4] definitions cover a

wide scope providing the following definitions:

5



Verification - The evaluation of whether or not a product, service, or system complies

with a regulation, requirement, specification, or imposed condition. It is often an

internal process.

Validation - The assurance that a product, service, or system meets the needs of

the customer and other identified stakeholders. It often involves acceptance and

suitability with external customers.

One of the earliest definitions of software verification and validation comes from Barry

Boehm [5] who defined both terms as follows:

Verification - to establish the truth of the correspondence between a software product

and its specification (derived from Latin word veritas).

Validation - to establish the fitness or worth of a software product for its operational

mission (derived from Latin word valere).

In layman’s terms, verification can be expressed as “Am I building the software right?"

and validation can be expressed as “Am I building the right software?" [5]. The distinction

between these two terms is important because it defines the focus, scope, and the life-cycle

for each process.

On the other hand, Sargent’s [6] definitions are more specific toward simulation software.

His definitions are as follows:

Model verification - ensuring computer program of the computerized model and its

implementation are correct.

Model validation - substantiation that a computerized model within its domain of

applicability possesses a satisfactory range of accuracy consistent with the intended

application of the model.

We adopt Sargent’s definitions because of their specificality and relevance to our work.

Other closely related concepts are model credibility and model accreditation [6]. Model

credibility is concerned with developing the users’ confidence and trust they require in

order to use a model and in the information derived from that model. Model accreditation

determines if a model satisfies specified model accreditation criteria according to a

6



specified process. The definition of the term model accreditation also debatable. Balci

[7] mentioned that the definition given by the Department of Defense differs from the

ISO definition. By Department of defense standard, accreditation is the certification that a

model or simulation is acceptable for a specific purpose. On the other hand, ISO defines

accreditation as the formal recognition of a body or person that is competent to carry out

specific tasks and certification as third party written assurance that a product, process or

service conforms to specific characteristics. Balci used the ISO definitions because they

are more widely used in engineering disciplines and educational sectors. According to

the ISO standard, first party refers to the application sponsor, second party refers to the

application developer and the third party is the independent certification agent.

In computer architecture research, the term validation is used in a manner that is close

to Sargent’s definition. To validate a model, the accuracy of the implemented model

is compared with an actual implementation of a specific processor. For example, the

SimpleScalar Sim-alpha implementation, which faithfully implements the specific structure

of the Alpha 21264 processor, has been validated by comparing the estimated cycle counts

produced by the simulator with the cycle counts obtained by running the same benchmark

program on the physical machine [8, 9]. The results indicated that the simulated cycles are

within 2% of the actual implementation [10].

2.2 Simulation Verification and Validation

A specific category of verification is the verification of simulations. Recently, the accuracy

of simulation models have attracted interest, especially in scientifically and politically

sensitive areas such as global climate models [11, 12] and medical decision making [13].

Due to the large amount of simulation data that needs to be interpreted and verified by

domain experts, a range of visualization techniques have been developed.

Chen et al. describe visualization as a search process where the users start with a set of data

and visualization tools, and search for the best parameters and configurations to visualize

the set of data [14]. Using the same concept of search, Ahrens et al. developed an iterative

verification method that is used for comparing simulations that run different algorithms

[15]. The method involves four steps, namely, identifying the features to compare, making

an hypothesis about the identified feature, visualizing the identified features, and finally

creating quantitative plots or charts that reveal the differences between the simulations.

The process is repeated until the simulators used are verified. Han et al. developed a three

step methodology visualizing the assembly line of modular buildings. In the first step, the

proposed production line is developed using Value Stream Mapping. In the second step,

the simulation of the proposed design is built for verification. Finally, 3D visualizations
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are automatically developed for validation based on the outputs of lean production and

simulation.

Sargent proposed another simulation verification and validation process where a simulation

model is separated into a conceptual model and a computerized model [6]. The conceptual

model is developed first and is followed by conceptual model validation. This process

is repeated until the model is satisfactory. Next, the conceptual model is turned into a

computerized model and is followed by computerized model verification. Similarly, the

process is repeated until the model is satisfactory. This verification process was adopted by

Huang et. al.’s agent based simulation where the conceptual model was evaluated by six

domain experts and the computerized model verification was done by code walkthrough,

trace analysis, input/output testing, and boundary testing [16].

Verification can also be done by analyzing the simulation output using statistical techniques

(e.g., simulations in computational fluid dynamics [17], agent-based modeling [18]).

Sanchez described the important issues that researchers should be aware of while analyzing

simulation outputs [19]. One of the issues is the initialization bias which means that the

outputs that include the warm-up period may cause the overestimation or underestimation

of the steady state performance. The initialization bias is also one of the well researched

problems in computer architecture domain. SimPoint [20] and SMARTS [21] reduce the

initialization bias by warming up the simulator before collecting the simulation data.

Kleijnen discussed the suitability of specific statistical tests based on the availability of

data [22, 23]. He identified three situations, (i) no real data is available, (ii) real data and

simulated data are available but input data is not available, and (iii) both input and output

data are available. For the first case he suggested using sensitivity analysis, for the second

case, student t-test is appropriate, and regression test or bootstrapping can be applied for

the last case.

2.3 Runtime Verification

Runtime verification is a process that verifies a program’s dynamic execution behavior

against formally specified behavioral properties [24] and has its roots in model checking

[25]. Leucker and Schallhart define runtime verification as “the discipline of computer

science that deals with the study, development, and application of those verification

techniques that allow checking whether a run of a system under scrutiny satisfies or violates

a given correctness property” [26].

8



Broadly speaking, runtime verification involves four major research areas [27]:

1. logics for monitoring

2. online checking algorithms

3. extraction of observations necessary for checking

4. reduction of checking overhead

The logics used for monitoring provide a means to specify the behavioral properties of a

running program and are mainly based on linear temporal logic (LTL) [28]. LTL allows

reasoning about states using four operators, namely, next (property holds in the next

state), final (property will hold at a state in the future), global (property holds at

every state on the path), until (property hold until finally another property holds), and

release (a second property holds along the path up to and including the first state

where the first property holds). Recently published LTLs include AspectJ, which provides

a runtime verification framework for Java programs [29], and EAGLE, which provides

support for recursive parameterized equations [24]. Comparison of LTLs with different

levels of expressivity is provided by Bauer, Leucker and Schallhart [26, 30].

The monitoring algorithms for runtime verification are built on model checking algorithms,

which are updated to work online and incrementally [27, 31]. Generation of traces, also

commonly known as instrumentation, deals with the question “How are observations made

and recorded?". Inefficient implementation of runtime verification can degrade a system’s

performance significantly. Major sources of overhead reside in observation extraction and

checking algorithms. This issue falls into overhead management [27, 32, 33]. Last but

not least, feedback and runtime enforcement addresses the question of what to do when a

violation is discovered.

Recent work related to checking and monitoring is the Temporal Rover [34]. It uses

temporal logic to describe assertions. The assertion statements are written as source code

comments (C, C++, Verilog, VHDL) which are then embedded into the original source

code via the provided parser. In the mechatronics field, runtime verification is utilized

on a self-optimizing system. Zhao et al. [35] developed a service on top the real time

operating system (RTOS) to dynamically monitor and check the consistency and safety of

a system after performing component replacements. The authors first model the system

using real-time UML state charts. Following this, a series of translations are applied to

process the model into Kripke structure and Büchi automata which will be fetched during

the verification process. Further applications of runtime verification are in multi-agent

simulations of natural domains such as biological, cognitive and social domains. Bosse and
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colleagues show that the widely used differential equations in multi-agent system modeling

are inadequate [36]. They address it by designing logic based Temporal Trace Language

(TTL) to check and analyze multi-agent systems dynamically. Runtime verification can

also be used to ensure C memory safety. Rosu et al. proved that strong termination

and strong memory safety are undecidable in general, but strong memory safety of strong

terminating programs is decidable, thus it is runtime verifiable [37].

2.4 Invariant Extraction

Verification can also be done by observing a simulator’s invariant properties such as every

instruction must terminate at some point. If an observed invariant property doesn’t make

sense, it might indicate that the simulator has some flaws. For example, an invariant of a

processor simulator stating that there exists an instruction that stays in the pipeline for a

million cycles raises a red flag because it is unlikely to happen in a real implementation.

Some work related to this area has been published in recent years. One example

is IODINE [38] that automatically extracts low-level dynamic invariants such as state

machine protocols, request-acknowledge pairs, and mutual exclusion. Another example

is GoldMine [39]. It performs static analysis on a register-transfer level (RTL) design and

constructs a decision tree using a supervised learning algorithm on a simulation trace. The

decision tree represents the assertions of the design. Another recent work by Mandouh and

Wassal [40] utilizes frequent and sequential patterns mining and known templates to extract

RTL design properties.

Extracting invariant properties can be done in variety of ways. Data mining techniques are

very efficient for this purpose. For example GoldMine utilize decision tree algorithms

and Mandouh and Wassal use frequent and sequential pattern mining algorithms to

automatically generate hardware design properties. In the next section, we describe some

data mining techniques we used in our work.

2.5 Rule Induction

Rule induction techniques are effective in extracting properties of a simulation that follows

certain patterns. We used rule induction to extract bus arbiter properties which are best

described in the form of if and then rules (Section 5.3.3). Two widely used rule formats are

association rules and decision rules. We begin by describing the basic concepts and follow

10



by listing some of the mining algorithms.

2.5.1 Association Rules

The concept of association rules is formally defined in Rakesh Agrawal et. al.’s 1993 paper

[41] where they use it to study a large database of customer transactions in a supermarket

environment. The following definition is based on Agrawal et al. Let I = I1, · · · , Im be a

set of binary attributes with size m, called items. Let T be a database of transactions. Each

transaction t ∈ T is represented as a binary vector, with t[k] = 1 if t contains item Ik and

t[k] = 0 otherwise. Let X be a subset of I . A transaction t satisfies X if for all items Ik in

X , t[k] = 1.

An association rule is an implication of the form X =⇒ I j, where X �= /0, X ⊂I , I j ∈I
and X ∩ I j = /0. The rule X =⇒ I j is satisfied in T with the confidence factor c where

0≤ c≤ 1 if and only if at least c% transactions in T that satisfy X also satisfy I j. In some

text [42] the I j is replaced with a set Y , i.e., X =⇒ Y , where X �= /0, Y �= /0 X ,Y ⊂I , and

X ∩Y = /0.

2.5.2 Decision Rules

Besides association rules, there is another class of rules called decision rules. If we regard

a decision tree as graphical representation then its text equivalent representation is a set

of decision rules. Decision rules are also known as classification rules [43]. A rule can

be written in disjunctive form (Horn clause) or in implication form. In disjunctive form it

follows Horn form which is a clause with at most one positive literal (unnegated literal).

Disjunction form:

¬p∨¬q∨·· ·∨¬t ∨u (2.1)

If a rule is in Horn form, it can easily be rearranged into an equivalent implication form.

p∧q∧·· ·∧ t =⇒ u (2.2)

Nevertheless, the implication form is more commonly used. Sometimes it is written in the
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form of an if-then statement.

if p and q and · · · and t then u (2.3)

The if part (left side) of a rule is known as the rule antecedent or precondition. The then
part (right side) of a rule is known as the rule consequent and it contains a class prediction.

If the condition in a rule antecedent holds true for a given tuple, we say that the rule covers
the tuple.

Several rule metrics has been developed to measure the quality of the rules. These metrics

are used in filtering, pruning and the measurement of confidence during or after the rule

extraction process. In the next two sections, we describe some of the well known rule

measurement metrics.

2.5.3 Association Rule Metrics

The support of a rule X =⇒ Y that holds in a set of transactions T is defined as:

supp(X =⇒ Y ) = P(X ∪Y ) (2.4)

The notation P(X ∪Y ) indicates the probability that a transaction contains the union of sets

A and B. This should not be confused with P(X or Y ).

The confidence of a rule X =⇒ Y that holds in a set of transactions T is defined as:

con f (X =⇒ Y ) = P(Y |X)

=
supp(X ∪Y )

supp(X)

=
f req(X ∪Y )

f req(X)
(2.5)

where f req(A) is number of transactions that contain the itemset A. A set of items is known

as itemset.
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Lift is a correlation measure of two itemsets. The lift between itemset X and itemset Y can

be measured as follows:

li f t(X ,Y ) =
P(X ∪Y )
P(X)P(Y )

(2.6)

If the lift value less than 1, it means the occurrence of X is negatively correlated with

the occurrence of Y . If the lift value is greater than 1, it means the occurrence of X is

positively correlated with the occurrence of Y . If the lift value is zero, it means X and Y
are independent and there is no correlation between them.

Support and confidence are usually used to measure rule interestingness. For example one

might be interested on rules with 100% confidence. Lift, on the other hand, serves as an

extra measurement metric, that is rule correlation measurement.

2.5.4 Decision Rule Metrics

The coverage of a rule is the ratio between the number of records covered by a rule and the

number of records in a data set.

coverage(R) =
ncovers

|D| (2.7)

where R is a rule, ncovers is the number of records covered by R and |D| is number of records

in D.

The accuracy of a rule is percentage of the rule can correctly classify, defined as:

accuracy(R) =
ncorrect

ncovers
(2.8)

where ncorrect is number of records that are correctly classified by R.
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2.5.5 Rule Mining Algorithms

Decision rules can be extracted by first constructing a decision tree using algorithms such

as Quinlan’s ID3 [44], ID3’s successor [45], and CART by Breiman et al. [46]. Then,

the paths from the root node to each leaf node in the tree are traced to form the rules.

Alternatively, we can use sequential covering algorithms to learn the rules directly from a

data set. Widely used sequential covering algorithms include AQ [47] and CN2 [48]. The

general strategy is shown in algorithm 1:

Algorithm 1 Sequential Covering Algorithm

Input:
D data set

C set of class values

V set of all attributes and their possible values

Output:
R set of rules

1: R← /0

2: for all c ∈C do
3: repeat
4: r← learn1Rule(D,V,c)
5: remove records covered by r from D
6: R = R∪ r
7: until termination condition(s)

8: end for
9: return R

Algorithm 1 works by generating a rule that correctly classifies some instances in D that

belong to a class c, removing the instances that are covered by the generated rule, and

repeating the process for the remaining instances. The termination condition usually is

“when all the instances in D that belong to class c are correctly classified.”

The construction of rule r in algorithm 1 can be done in many different ways. One method

is shown in algorithm 2. Since the consequent is fixed to a class c, only the antecedent

needs to be constructed. The process starts with an empty antecedent and on each iteration

it adds the most promising attribute-value pair (i.e. a∗ = v∗) to the rule’s antecedent. The

process repeats until the rule r correctly classifies all the class c instances in D.
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Algorithm 2 learn1Rule

Input:
D data set

V set of all attributes and their possible values

c a class value

Output:
r a rule

1: α ← /0 (antecedent)

2: repeat
3: for all attribute-value pair, (a = v) ∈V do
4: r′ ← if α ∧ (a = v) then c
5: computeAccuracy(r′)
6: end for
7: let (a∗ = v∗) be the attribute-value pair of the maximum accuracy over D
8: α ← α ∧ (a∗ = v∗)
9: V =V −{a∗}

10: r← if α then c
11: until r correctly classifies all c instances of D
12: return r

In the next section, we describe artificial intelligence techniques for representing, reasoning

with, and mining temporal information.

2.6 Reasoning with Temporal Data

Temporal reasoning is an important field of artificial intelligence as evidenced by continual

developments and growing number of applications [49]. Temporal reasoning operates on

a formal representation of time and provides a means to reason about temporal aspects

of knowledge [50, 51]. There are two main ways of representing temporal information.

Qualitative models represent relations between events such as “A occurs during B” or “A

is before B” [52, 53]. Quantitative models represent numeric information using points of

time [54] or using intervals of time [55]. The reasoning problems solved using temporal

representations can be broadly classified into three as follows:

1. Consistency checking: Finding whether a collection containing temporal data is free

of contradictions.
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2. Inference: Answering queries based on temporal data.

3. Optimization: Minimizing temporal networks or finding a minimal set of temporal

constraints.

Simple temporal networks (STNs) introduced by Dechter, Meiri, and Pearl [55] are widely

used as a representation of quantitative intervals. STNs have been extended in a range of

directions, including disjunctive temporal networks [56, 57, 58], temporal networks with

alternatives [59], preferences and uncertainty [60, 61, 62, 63], fuzzy preferences [64], and

time dependent temporal constraints [65].

Temporal data mining is the application of artificial intelligence and statistical techniques to

extract information from static or longitudinal temporal data [66]. Widely studied domains

of temporal data mining include finding temporal association rules [67], discovery of

frequent sequences [68, 69, 70], and describing and discovering common trends in time
series [71, 72, 73, 74]. Examples of recent work in these areas are finding calendar-based

[75] or relative [76] temporal association rules, finding frequent sequences in longitudinal

electronic patient records [77] or spatiotemporal human activity data [78], and finding

patterns of temporal variation in online media [79]. Higher order mining refers to mining

results of temporal discovery for further discoveries such as finding trends or changes in

association rules [80, 81].

In our work, we generate temporal flow information in the form of probabilistic state flow

graphs called SFTAGs as explained in Chapter 5. We analyze SFTAGs by clustering with

respect to edges and benchmark programs. We also process these graphs for higher order

relationships by clustering the clusters as discussed in Chapter 6. In the next chapter, we

present an overview of our framework’s design and its application domain.
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Chapter 3

Application Domain and Framework

“If it is not useful or necessary, free yourself from imagining that you need to make it. If it is
useful and necessary, free yourself from imagining that you need to enhance it by adding what is
not an integral part of its usefulness or necessity. And finally: If it is both useful and necessary
and you can recognize and eliminate what is not essential, then go ahead and make it as
beautifully as you can."

— Paul Rochleau & June Sprigg, Shaker Built: The Form and Function of Shaker Architecture

While the techniques developed in this dissertation can be applied to any simulator, the

main emphasis of our work is the validation of the timing behavior of micro-architecture

simulators. Like many other fields, state of the art computer architecture research

inherently relies on software simulations to develop new ideas and to improve existing

well-established designs. We can broadly classify these simulators into three main groups:

1. Functional Simulators: Functional simulators implement an interpreter for the

simulated architecture’s instruction set. No hardware details are modeled. By using

a functional simulator, researchers can start developing the system software for a

new architecture before the architecture is built, as the functional simulators enable

simulated execution of the programs compiled for the new architecture. Since they

do not model any of the specifics of the architecture, they are mainly used to develop

and debug system software. They are also useful for collecting statistics such as the

number and the type of instructions executed by a benchmark program, or generate

instruction and data address traces which can be used to study the hit/miss behavior

of caches and the memory subsystem.
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2. Cycle-Accurate Simulators: Cycle-accurate simulators model a processor

architecture in sufficient detail so that accurate information about how a given

program would execute under a new design can be quantitatively estimated. The

simulator typically simulates the behavior of individual hardware structures within a

processor, such as registers, register files, pipeline stages, buffers, arbiters as well as

the details of the datapath, including on-processor busses. While it is impossible to

predict the attainable clock-speed for the processor (i.e., the cycle time), the number

of cycles it would take to execute the given program is accurate and will match the

actual processor when it is built, if the simulator has been correctly implemented.

Cycle-accurate simulators are rather complex pieces of software as their

implementation typically takes tens of thousands of lines of high-level program code,

such as C. Cycle-accurate simulators also serve a crucial role in actual processor

development and their use is essential to finalize the micro-architecture design.

Currently, hand-coded cycle-accurate simulators such as SimpleScalar [82, 1],

RSIM [83], M5 [84], GEM5 [2] as well as those generated from domain-specific

architecture description languages are used widely both by the industry and

academia. Examples of architecture description languages include Mimola, nML,

Lisa, Expression, ASIP Meister, TIE, Madl, ADL++, GNR, among others [85].

3. Full System Simulators: Typically, whether it is a functional or cycle accurate

simulator, operating system calls are intercepted and executed on behalf of the

simulated program. Components of a computer system other than the CPU, such

as various I/O devices, are not modeled. Alternatively, the simulator may also

implement the behavior of these components, allowing the simulation of a complete

computer system. In such a case, it is possible to “boot” an operating system within

the simulator framework. Such a framework then becomes usable for developing

the device drivers and studying the behavior of the operating system as well. Such

simulators are called full-system simulators. Due to significant processing overhead,

the CPU is modeled only at the functional level and not at the cycle-accurate level.

Since the boundary between functional and cycle-accurate simulation is not rigid, it

is also possible to simulate certain components at the cycle-level and the rest in a

functional manner.

Full-system simulators are also useful to create “boot and run” environment for

machines that no longer exist, allowing us to preserve the history of computing.

This dissertation specifically targets cycle-accurate simulators. Having a formal

verification framework is important in this context due to two reasons. First, while

generation from an architecture description language can facilitate the application of formal

validation techniques for cycle-accurate simulators, using an architecture description

language in itself will not prevent model representation errors. Second, hand-coded

simulators are still widely used as companies rely on their developed code base to improve
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the future versions of existing processors. As a result, verification of cycle-accurate

simulators is still a difficult task and remains an area dominated by ad-hoc techniques,

except for simpler embedded processors where a formal specification language can be used

to describe the architectural details.

In order to facilitate a better understanding the issue of timing and how our framework

fits into the cycle-accurate simulation domain, we briefly review the general structure of

cycle-accurate simulators. Mauer et al. [86] give a taxonomy of simulators and classify

them into Integrated, Functional-First, Timing-Directed and Timing-First. In this work,

we used ADL [3] generated simulators used in this study are all integrated simulators

whereas SimpleScalar [1] simulators can be considered Functional-First. Irrespective of

this classification, almost all cycle-accurate simulators embody a main loop of simulation

such that each iteration of the loop corresponds to one clock cycle of the architecture.

Within each iteration, procedures (or methods) which implement the functionality of

individual hardware components are called. For example, a cycle-accurate simulator which

implements a two pipeline stage micro-architecture of instruction fetch and execute will

first calls the instruction fetch and then the execute procedures. Since the modeling is

performed at a register level, (i.e., the changes in the values of processor registers are

accurately reflected in the corresponding program variables) calling of the instruction fetch

might result in loading the instruction word into the simulated instruction register. The

execute procedure then can perform the desired operation, and the loop is iterated again.

Typically, machine registers, buffers, etc. become variables in the simulator, including the

memory which can be represented as an array.

It is important to observe that in this modeling approach, the simulator generates a series of

events which result from the execution of procedures that model the behavior of various

hardware components. While a functional-first simulator would act like a functional

simulator in terms of actual interpretation of instructions, to qualify as a cycle-accurate

simulator, it has to model and find the actual clock cycle a particular events happens, such

as the execution or writing back the result of an instruction. Therefore, cycle-accurate

simulators can easily be annotated to print out a trace file which contains the events that

take place and the clock cycle at which each event happens. We explain the structure of the

trace file in Section 4.1.

In addition to performing simulator verification, our framework can be used as a debugging

tool while developing a simulator. We present our working framework through a use-case

scenario example. Alma, a micro-architecture researcher developed a novel processor

prototype in an existing simulator. She wants to make sure that the modified simulator

does not break the unmodified portion of the simulator and the modified portion of the

simulator correctly represents her conceptual model.
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Figure 3.1: Framework overview.

Using our framework, all Alma needs is to instrument the events that she is interested in and

write the constraint specifications in FOLCSL based on her conceptual model. The written

set of constraint specifications are translated to C/C++ code via FOLCSL’s translator and

then compiled into an executable verifier. The right section of Figure 3.1 depicts the

process. To check whether the simulator adheres to the constraint specifications, Alma runs

the verifier in parallel with the simulator. The events output from the simulator are streamed

into the verifier and the verifier checks the events against the constraint specifications. The

verifier signals Alma if it finds any violations. In addition, Alma can utilize the output

events from the simulator to generate SFTAG graphs. Instead of running the verifier, Alma

runs the SFTAG processor which takes the events generated by the simulator and processes

them into SFTAG graphs. The SFTAG graphs show the temporal relationship of the events.

Furthermore, if Alma can produce the SFTAG graphs of the original simulator and compare

them with the current graphs, she can learn the changes between the graphs and reason

about the modifications she made. Alma can further study the SFTAG graphs as a whole

using data mining techniques such as clustering to reveal difficult to see patterns. The left

section of Figure 3.1 depicts this process.

In the next two chapters, we explain the components of our framework in detail. In Chapter

4, we present the structure of the trace files and events, the first-order logic constraint

specification language (FOLCSL) we developed, and the verification algorithms that use

FOLCSL constraints. In Chapter 5, we present the SFTAG structure, the algorithms to

generate SFTAGs, and the case studies we conducted.
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Chapter 4

First Order Logic Constraint
Specification (FOLCSL) 1 2

“A mind all logic is like a knife all blade. It makes the hand bleed that uses it."
— Rabindranath Tagore

“Logic will get you from A to B. Imagination will take you everywhere."

— Albert Einstein

First-order logic constraint specification language (FOLCSL) is designed to specify the

invariants which must hold during the execution of the simulator. The language allows

constraint specification using a subset of first-order logic. The constraints are specified by

referencing a particular event and associating it with other events. Expressions refer to the

names used in a given trace, therefore, we first formally describe the expected form of trace

data and then follow with the instrumentation methods.

1 c©2013 AAAI. Portions reprinted with permission, from Hui Meen Nyew, Nilufer Onder, Soner Onder and

Zhenlin Wang, “A First-Order Logic Based Framework for Verifying Simulations” , in Proceedings of the

Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013), Pre-PhD student Abstracts.
2 c©2014 ACM. Portions reprinted with permission, from Hui Meen Nyew, Nilufer Onder, Soner Onder, and

Zhenlin Wang, “Verifying Micro-architecture Simulators using Event Traces,” in Proceedings of the 2014

International Conference on Supercomputing (ICS’14).
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4.1 Trace Files and Events

A trace T is a sequence of events T = ξ 1 · · ·ξ l , represented as n-tuples: ξ i =< ei
1, · · · ,ei

n >
where, ei

j refers to the jth attribute of the ith event. Each ei
j is an integer. For example,

ξ i =< ai,si, ti > is an event generated by a processor simulator where ai is the instruction

sequence number, si is the pipeline stage or special events such as reorder buffer full, and

ti is the cycle time at which the ith event has been observed. It can be read as follows: At

time ti, the ai-th instruction is at state si. A sample trace generated by the simulator is:

1. 114, IF, 1008

2. 114, ROB Full, 1008

3. 109, EX, 1008

The first line of the trace states that instruction 114 is at instruction fetch stage (IF) and

at machine cycle 1008. At the same time reorder buffer full (ROB Full) event occurs for

the same instruction (second line of the trace). The last line of the trace indicates that

instruction 109 is at execution stage (EX) at machine cycle 1008. FOLCSL does not require

the declaration of text attributes such as ID, ROB Full or EX above. Text attributes have

no domain specific meaning attached to them by the language and they are treated just like

any other constant.

We consider every type of activity within the simulator to be an event, and broadly classify

events into two main groups, namely, those events which affect a single object and those

which globally affect all or a subset of objects. For example, in a superscalar processor

simulator, an object is an instruction. Fetching, decoding, and executing an instruction are

all considered to be events which affect a single instruction. In contrast, events such as the

initiation of a rollback due to a branch misprediction is considered to be global as it affects

every instruction in the processor.

4.2 Instrumentation

Trace data is generated by inserting instrumentation statements into the simulator. An

instrumentation statement outputs an event in the format described in Section 4.1. In our

early implementation, instrumentation statements were simple printf statements in C
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language. The printf statement outputs an event in comma-separated values (CSV)

format. Each field in the CVS line is an attribute of the event. For example:

printf("%lld, %d, %lld\n", sequence, state, cycles);

The above example outputs an event with 3 attributes. The advantage of using this

approach is that CSV is a widely used format. CSV APIs are available for many different

programming languages. Parsing CSV data is as simple as calling the appropriate function.

Furthermore, user can add additional event attributes by just changing number of CSV

fields when invoking the verifier or the SFTAG processor without altering their event reader.

However, this flexibility comes with a cost. The printf statement is expensive and each

will be executed billions of times while the simulator is running. This overhead increases

the simulator running time by twofold or more. For instance, 173.applu benchmark

using large MinneSPEC [87] as input running on an uninstrumented simulator takes about

3 minutes to complete, but the same benchmark using the same input running on an

instrumented simulator takes more than 6 minutes to finish. Because of the incurred

overhead, we decided to trade some flexibility for efficiency. To achieve this, instead of

outputting the events in CSV text format, we output events in fixed size binary format.

This way we free a lot of computational power in parsing CSV lines and converting text

strings to binary values and vice versa.

All of our tested simulators are written in C/C++ language. Here we demonstrate how

instrumentation for a simulator in C can be done. Simulators written in other language can

adapt similar coding structures. First we declare a C structure as follows:

typedef struct {
signed long long cycle;
unsigned int instruction_seq;
int state_id;

} Event;

Then we assign the proper value to each structure member before outputting the structure
in binary as shown in the code below.

void emit_event(long long int machine_cycles,
unsigned int sequence, int state_id, FILE* fd) {
Event event;
event.cycle = machine_cycles;
event.instruction_seq = sequence;
event.state_id = state_id;
fwrite(&event, sizeof(Event), 1, fd);

}
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Outputting the events in binary format dramatically reduces the incurred overhead. For

example, the 173.applu benchmark using large MinneSPEC as input running on an

unmodified simulator takes about 3 minutes to complete. Same benchmark with same

inputs running on simulator that outputs binary events takes a little over 3 minutes.

Alternatively, if the simulator contains a built-in trace generator, one can avoid

instrumentation by converting the original trace into proper format before feeding it into

the verifier or the SFTAG processor. For example, the SimpleScalar simulator [82, 1] has a

-ptrace option that outputs instruction events.

Although instrumentation is relatively straight-forward in this framework. Great care must

be taken while placing the instrumentation statement in the simulator code. The rule of

thumb is that every output event must correctly represent the instruction, the instruction

location, and the time at which the instruction is at that state. Besides that, global events

which affect a subset of instructions require attaching the event to all affected instructions

individually. For example, rollback is a global event in a processor pipeline but it only

affects a subset of instructions, namely, all uncommitted instructions that are still in the

pipeline. In order to properly handle these types of events, we attach the rollback state to

all uncommitted instructions when a rollback event occurs.

4.3 The FOLSCL Grammar

A constraint C is a quantified statement that includes arithmetic and Boolean expressions

and contains domain facts specified by the user. For example, the following constraint 4.1

specifies that each instruction that goes through the instruction fetch (IF) stage should go

through the instruction decode (ID) stage unless a rollback (RB) that flushes the pipeline

occurs.

∀z ∈ T ∃y ∈ T, (sz = IF) ⇒ (ay = az) ∧ ((sy = ID)∨ (sy = RB)) (4.1)

Verbally, the above expression specifies that for every event z that has the state attribute

s equal to instruction fetch (IF), the verifier needs to find another event y with the same

sequence number such that the stage attribute s of event y is equal to instruction decode

(ID), or it needs to find another matching event whose stage attribute s is rollback (RB).
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constraint→ quantification, statement;

statement→¬statement
→ statement ∧ statement

→ statement ∨ statement

→ statement ⇔ statement

→ statement ⇒ statement

→ expression relation expression

→ (statement)

→ identifier

expression→ expression + expression

→ expression - expression

→ expression * expression

→ expression / expression

→ (expression)

→ terminal

→ identifier

relation→> | ≥ |< | ≤ |= | �=
quantification→∀ | ∃

Figure 4.1: The FOLCSL grammar.

FOLCSL constraints consists of fully quantified variables, arithmetic expressions and

Boolean expressions. The language has the simple grammar shown in Figure 4.1. Note

that a terminal in the language is an integer or an event attribute and an identifier
is a variable name or a function. In our current implementation, functions are restricted to

built-in functions only and they are implicitly declared.

4.4 Stream Processing and Sliding Windows

FOLCSL and the associated trace description treat an instruction as an object which moves

through different states at some time point. The language allows the user to command the

full power of first-order logic in specifying the invariants which need to hold. A direct

consequence of this flexibility is the enormous size of the trace data which needs to be

processed. As an invariant can reference arbitrary events, it may be necessary to compare
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all events to each other. Given that the number of dynamic instructions for a benchmark

program are in the order of billions and each instruction will have multiple events, an

uncompressed full trace of a single benchmark program takes many terabytes of storage

space. Therefore, instead of storing the trace and processing it afterwards, we process the

data as a stream. In our approach, whenever all the required events are available they are

immediately processed and all the expired events are discarded. As a result, a minimal

amount of data is kept in memory during the verification process and the number of event

comparisons is minimized. To achieve this, we employ an algorithm based on sliding
windows [68] while checking the events against the constraint specifications.

4.4.1 Sliding Window

The sliding window approach views the trace as a chronologically ordered stream of events.

Let ξ z be our pivot event. We can buffer all events from time tz− tb to time tz + t f to form

a sliding window that pivots at time ti. If we assume that an instruction’s maximum time

to live (TTL) in the pipeline is tT T L, then a given constraint can be verified by just checking

events in the sliding window that pivots at time tz with tb = t f = tT T L. Note that, in the

event of a context switch or a roll-back, the TTL values are reset, so the window is always

bounded. The required events are all those events which reside in the sliding window and

the expired events are all events such that their occurrence time is less than tz− tb. Figure

4.2 depicts the sliding window for constraint 4.1, where tz is the pivot.

Figure 4.2: Sliding window.

The sliding window data structure provides three advantages. First, it requires minimal

amount of memory space for data. Second, the verification process can begin before the full

trace is generated, allowing traces with an unknown length to be processed, such as a data

stream from a network. Finally, for each pivot event, only the events residing in the sliding

window need to be considered instead of all the events in the full trace. This significantly

speeds up the verification process and makes processing very large traces feasible.
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4.4.2 Constraint Checker

Within a sliding window, all permutations of the events are verified against the constraints.

A more efficient way would be to view the verification process as an assignment of values

to event variables, similar to constraint satisfaction problems (CSP). Using that view,

existing CSP algorithms can be used. Our main checker algorithm is a backtracking

search algorithm which uses depth-first search by assigning values to each variable and

backtracking when a given assertion fails. To further reduce processing time, we prune

the search space by evaluating critical expressions of a constraint before all variables get

assigned a value. In constraint 4.2 shown below, if the evaluation of expression sz = IF is

true and ay = az is false, we know that the constraint is guaranteed to be false regardless of

the value x. As a result, we can immediately backtrack and assign another value for y. Note

that, instead of evaluating the expression ay = az, one can evaluate the expression tx > ty

first and if it evaluates to false we can still claim that the constraint is guaranteed to be false

without knowing the result of expression ay = az. But doing so will not eliminate any nodes

from the search space because three of the variables z, y and x already had values assigned

when the expression tx > ty was evaluated.

∀z ∈ T ∀y ∈ T ∃x ∈ T, (sz = IF) ⇒ (ay = az) ∧ (tx > ty) (4.2)

More efficient CSP heuristics such as propagation, variable ordering and intelligent

backtracking [88] can also be employed by the checker.

4.5 Constraint Specifications

While the domain of constraints is fairly large, several classes of constraints are particularly

interesting to look at as they are necessary to catch some of the most common modeling

errors. A common error in simulator development is the violation of resource constraints.

For example, if an architecture provides only two memory ports, at no time we should

have more than two memory operations performing an access. While such an error would

immediately get caught in a real hardware implementation as the hardware would not

run, a simulator may continue to execute and yield incorrect results. In this section, we

give examples targeting several common modeling errors which occur while modeling

the resources involved, the temporal behavior of instructions and modeling competing

instructions such as arbitration. In order to easily specify such constraints, FOLCSL
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includes several built-in functions that use sets to enforce resource based invariants. Two

of these are the set function which collects events into a set, and the car function which

computes the cardinality of a set. The following example specifies a constraint that

indicates at most two instructions can simultaneously access the memory ports.

∀q ∈ T, car(set(∀z ∈ T,(sz = MEMPORT ) ∧ (tz = tq)))≤ 2 (4.3)

Similar to resource constraints, temporal constraints can be violated without a visible

indication that such a violation has occurred. Temporal constraint violations include

omission of a simulation step (i.e., a corresponding hardware stage), as well as cases such as

the violation of the latency of a particular pipeline stage. Such violations are very difficult

to catch using ad-hoc techniques, particularly when these violations occur only for a small

subset of the executed instructions. The following example encodes the requirement that

an instruction that leaves the instruction fetch stage (IF) must either enter the instruction

decode (ID) stage or the rollback (RB) state and in doing so, it should take at least a cycle,

but no more than K cycles, where K is a constant value that depends on the simulated

model:

∀z ∈ T ∃y ∈ T, (sz = IF) ⇒ (ay = az)∧
(ty− tz > 0)∧ (ty− tz ≤ K)∧
((sy = ID)∨ (sy = RB)) (4.4)

When multiple instructions compete for a particular resource, a subset of those instructions

might have higher priority over other instructions. This process, which is typically carried

out by an arbiter at the hardware level, is particularly difficult to verify as the combination

of the set of instructions must be taken into account while writing the FOLCSL statements.

In the following example, we specify through constraint 4.5 that LOAD instructions are

given priority to move from EX to WB stage.

∀z ∈ T ∀y ∈ T, ∃x ∈ T ∃w ∈ T
(sz = EX)∧ (hz = LOAD)∧ (sy = EX)∧ (hy �= LOAD)∧ (ty = tz) ⇒
(ax = az)∧ (aw = ay)∧
[((sx =WB)∧ (sw =WB)∧ (tx ≤ tw))∨ (sx = RB)∨ (sw = RB)] (4.5)

28



As it can be seen through our examples, FOLCSL provides a convenient and easy way to

specify the invariants which must hold during the execution of the simulator. The challenge

is to produce a sound and complete set of constraints for a given simulator implementation

so that the correctness of the simulator can be trusted with high confidence. We have

developed a large number of constraints targeting these common errors in modeling and

tested two simulators, one automatically synthesized from an Architecture Description

Language (ADL) [3] specification and the other for SimpleScalar out-of-order simulator

[1]. Both of these simulators model sophisticated superscalar processor architectures. We

found that both simulators respect the timing and resource constraints they are believed

to model. During this process, several “errors” we found turned out to be incomplete

constraint specifications. Because this is an iterative process, each run yielded better

constraint specifications which provided improved coverage. As both of these simulators

are mature and have been verified multiple times using different means of verification

techniques in the past, the lack of errors is expected.

The fundamental value of our technique is the assurance it provides when these simulators

are modified to model an architectural variation of the original design. The verifier’s

presence will provide confidence that after the modification the resulting simulator remains

a trustworthy model of the architecture under consideration.

We tested various hand-written constraints in ADL and SimpleScalar simulators. The

constraints that we tested include:

1. For each instruction type, the stages that must be visited are indeed visited.

2. All stage latencies such as integer operations, divide and multiply latencies, cache

access latencies, as well as floating point calculation latencies are respected.

3. Global events, such as rollback are properly included.

4. Resource constraints, such as the number and type of available memory ports are

respected.

5. The width of each stage, such as the number of instructions fetched, decoded, and

retired matches the architecture description.

While the invariant verification provides an assurance and a “yes” or “no” answer to

simulator correctness, micro-architecture research can benefit immensely from better

understanding the implemented model’s behavior under various execution scenarios. We

therefore extended our framework to utilize trace data for model extraction. The extracted

models provide the user with the ability to develop further constraints and better understand

the implications of newly developed techniques. This is the topic of the next section.
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Chapter 5

State Flow Temporal Analysis Graph
(SFTAG) 1

“The soul never thinks without an image."

— Aristotle, On The Soul

Cycle-accurate simulators typically model the flow of instructions from one pipeline stage

to the next, and it is this timing which eventually provides estimates about how many cycles

it will take to execute a given program. Depending on the modeled architecture, the number

of stages and the latency through each stage will be different. As the flow of instructions

through the stages is modeled, various events affect their flow. We directly derive the

pipeline structure, stages simulated, how instructions flow from one stage to the next, as

well as various events taking place from the event trace and represent them on a temporal

graph. This graphical representation is called an SFTAG (State Flow Temporal Analysis

Graph) and used to display the paths the instructions follow through the pipeline as well as

the conditions and events under which such flow occurs.

1 c©2014 ACM. Portions reprinted with permission, from Hui Meen Nyew, Nilufer Onder, Soner Onder, and

Zhenlin Wang, “Verifying Micro-architecture Simulators using Event Traces,” in Proceedings of the 2014

International Conference on Supercomputing (ICS’14).
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5.1 SFTAG graph

An SFTAG is a labeled, directed graph < N,E >, where N represents the set of nodes and

E represents the set of edges. The nodes of the graph represent the state an instruction is

in. This is different from pipeline stages because each node includes one or more state (or

stage) titles representing the states an instruction is in, and the associated conditions. For

example, a node titled “IF” means that the instruction is in the “Instruction Fetch” stage.

Having multiple titles shows that the instruction is either in many states, or additional events

took place simultaneously while the instruction is in that state. For example, a node titled

“II & W4O” means that the instruction is in the “Instruction Issue” stage and is waiting for

its operands to be ready (W4O stands for waiting for operands). Similarly, in the simulated

architecture, if two sub-operations are performed in the same clock cycle and the trace

contains a separate event data for each sub-operation, they will be combined into a single

parallel state which represents both. For example, if the modeled architecture performs

execution EX and register-file write WB in the same cycle, the corresponding state will be

EX & WB.

Figure 5.1: Portion of FAST pipeline temporal representation. EX&WB

has two outgoing edges ended at END. One edge is due to rollback and the

other is normal termination.
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In a graph, an edge e∈ E is a quadruple < ns,h,r,nd >, where, ns ∈N represents the source

node, h is a 2-tuple representing the minimum and maximum time taken for the transition, r
represents the ratio of instructions performing the state transition, and nd ∈N represents the

destination node. The titles for nodes ns and nd come from the set {S ∪start∪end},
where S is the set of states shown in the trace file, start is the special start state showing

the entrance of the instructions to the pipeline, and end is the special end state showing

the exit of the instructions from the pipeline. A tuple h is shown as a [hmin,hmax] pair where

hmin is the minimum time taken by the transition and hmax is the maximum time taken by

the transition. For example, the three edges emanating from the node titled “II” in Figure

5.1 show that 2% of the instructions end at the II stage, 63% of the instructions transition

from II to EX & WB taking between 1 to 2 cycles, and 35% of the instructions transition to

the EX stage taking between 1 to 2 cycles. Note that the instructions that end at the II stage

end due to a rollback.

5.2 Construction of SFTAGs

We use Algorithm 3 to create an SFTAG from a trace. The events in a trace used to generate

an SFTAG minimally must contain three attributes, namely, instruction sequence number

or more generally, an object sequence number, state, and time. The attributes are the same

as the event attributes discussed in Section 4.1. The algorithm uses sliding windows as

explained in Section 4.4.1. The window size is set such that all the events related to a

particular instruction are within the window. Events emitted from the simulator flow to

the SFTAG processor. It first constructs windows (line 8 of Algorithm 3) by buffering the

events based on the specified window size. Figure 5.2 shows the process.
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Algorithm 3 Analyze object transition.

Input:
T trace consisting of event triplets id,state(s), time(t),
maxsamples maximum number of samples

prob probability

t f forward time for sliding window

tb backward time for sliding window

Output:
G graph

1: G← initialize to empty graph

2: H← initialize to empty histogram container

3: B← /0

4: ξ ← firstEvent(T )

5: while length(BINS) < maxsamples do
6: eseq← getSequence(ξ )

7: if random() < prob and eseq /∈ B then
8: w← window(T , ξ , t f , tb)

9: bin← group(w, eseq)

10: bin← sort(bin)

11: bin← cse(bin)

12: bin← cpe(bin)

13: H← update(H, bin)

14: G← merge(G, bin)

15: B← B∪ eseq
16: end if
17: ξ ← nextEvent(T )

18: end while
19: return G

Figure 5.2: Events emitted from the simulator are processed into windows.

For each window, all the events with a sequence number that matches the sequence number

of the pivot event are grouped into a bin. Figure 5.3 shows a segment of trace (a window)

with three instructions with distinct sequence numbers 1 (blue), 2 (green) and 3 (orange).

The constructed bin shown on the right hand side contains all the events with sequence

number of 1 (sequence number of the pivot event). Then the bin is sorted with respect to
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time (line 10 of Algorithm 3). If the simulator outputs events in strict chronological order,

the sorting process can be skipped.

Figure 5.3: Group events with specific sequence number into a bin.

The bin is then represented as a graph. Every event is a node in the graph. The node label

is the event state. All the nodes are ordered based on the bin ordering. This way, events

that have the earliest timestamp will be placed at the top of the graph and events that have

the latest timestamp will be placed at the end of the graph. For events that have the same

timestamp, ordering does not matter because they will be combined in the subsequent step.

Next, edges are added in between two nodes. The direction of the edges indicate the flow of

time. Edge labels represent the transition time between two events. For example, in Figure

5.4, ID to II takes 1 time unit and EX to WB takes zero time unit which indicates that the

events are parallel.

Next, adjacent nodes with same label are combined to form a single node with a unique

label (line 11 of Algorithm 3). This is done in recursive manner. The edge transition time

is recomputed by adding the transition times of the original nodes’ outgoing edges. Figure

5.5 shows two adjacent nodes with label II are combined into single node. The dotted line

depicts that their transition times are added together. The resulting graph has one fewer

node and the transition time between node II and node EX changes from 1 to 2.

In the next step, parallel nodes are combined (line 12 of Algorithm 3). Two nodes are

defined to be parallel with each other when the edge that connects them has zero transition

time. The combined node has a new label which is the concatenation of the two original

node labels. The edge transition time is same as the edge transition time of the lowest node
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Figure 5.4: Constructed bin represented as a graph.

among the nodes that were combined. Figure 5.6 shows nodes EX and WB are combined

into a single node with label EX & WB. The outgoing edge for the combined node does

not have a transition time because it is connected to the end node. It is the same as the

outgoing edge of node WB. If node WB had an outgoing edge with a transition time of 1,

the newly combined node would have a transition time of 1 too.

While processing the trace events, the algorithm also keeps track of the computed transition

time in the form of histograms (line 13 of Algorithm 3). The transition times for each

distinct edge, that is, a pair consisting of a source node (ns) and a destination node (nd),

is tracked in separate histograms. In the final output process, all the histograms will be

generated along with the final SFTAG graph.

At this point, bin processing is complete. The last step is to merge the bin graph (graph

representation of the bin) into the total graph G (line 14 of Algorithm 3). Initially the total

graph G is empty, thus merging yields the bin graph itself. Figure 5.7 depicts the process of

merging the empty total graph with first bin graph. Notice that the edge label changes from

single values to three values expressed in the form [hmin, hmax] r. As mentioned in Section

5.1, hmin is the minimum transition time, hmax is the maximum transition time and r is the

ratio of instructions that moved along the edge. Since the bin is merged with an empty total
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Figure 5.5: Combining adjacent nodes with the same label.

graph, the minimum transition time is same as the maximum transition time and each node

has only one outgoing edge with a ratio of, 1.0 or 100%. If the total graph is not empty, all

the edges and the nodes in the bin graph that are not already in the total graph are added to

the total graph. This operation can be expressed as follows: Let G = (NG,EG) be the total

graph, NG is all the nodes in G and EG is all the edges in G. Also, let Gbin = (NGbin ,EGbin)
be the bin graph. NGbin is all the nodes in Gbin and EGbin is all the edges in Gbin. The total

graph nodes and edges are updated as follows:

NG = NG∪NGbin (5.1)

EG = EG∪EGbin (5.2)

The minimum and maximum transition times are compared and updated accordingly. The

ratio also needs to be recomputed so that it reflects the changes. Figure 5.8 shows the

merging process of the total graph (after being merged with the first bin as shown in Figure

5.7) with the second bin graph. The maximum transition time of the edge from node ID
to node II is updated to 4 and the ratios on the two outgoing edges from node of node II
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Figure 5.6: Combine parallel nodes.

is updated to 0.5. This indicates that 50% of the instructions moved from node II to node

EX and the remaining 50% of instructions moved from node II to parallel node EX & WB.

The third bin graph is shorter than the other bin graphs. This is because it indicates that the

instruction encountered a rollback sequence during execution. As a result, the instruction

only passed through IF and ID stages.

5.3 Case Studies

In this section we present three case studies we conducted using empirical data. The data

traces were obtained from FAST ADL [3] and SimpleScalar out of order [1] simulators.

We manually instrumented various events in the FAST ADL simulator. Instrumented

events included major pipeline stages, various stall events and various global events.

For SimpleScalar, we used its built-in trace generation and manually added extra events

such as memory port accesses. The first of these studies shows how our technique can

extract both the pipeline structure and the temporal behavior of the simulated model.

We also illustrate how a human interpreter can write new constraints in FOLCSL by

examining the temporal graphs. In the second case study, we compare the temporal graphs

obtained from two variants of SimpleScalar. The first simulator faithfully implements a
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Figure 5.7: Merge bin graph into the total graph G.

Rambus DRAM model while the second models the original SimpleScalar simple DRAM

model. Through the generated histograms, we conclude that the observed behavior matches

to expected behavior for these two models. Finally, we present an analysis of a bus

arbiter implementation which uses the same algorithms as the ones used for pipeline

temporal models but transposes the data so that instead of modeling instruction flow

through the states, flow of states through instructions is performed. This transposition

exposes resource arbitration by combining all those instructions which are simultaneously

in the same stage. This is a powerful concept which can also be used to identify the

forwarding requirements of a given architecture by allowing instructions to get their data as

if full-forwarding is implemented, obtaining the trace data, analyzing it and implementing

a realistic forwarding implementation back in the simulator. We believe each of these

case studies are representative of common, time-consuming analysis efforts spent by the

micro-architecture community.

5.3.1 Pipeline Temporal Information

When the simulator event traces are fed through the algorithms discussed in the previous

section, two graphs shown in Figure 5.10 and Figure 5.11 result. These temporal graphs

are obtained directly from trace data, without human intervention.

Figure 5.10 can be read as follows: Every instruction starts at IF state or IF&ROBFull
state. The IF&ROBFull state means that the instruction is in IF state and at the same time
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Figure 5.8: Merge second bin graph into the current total graph G.

reorder buffer (ROB) is full. 47% of the instructions will start at IF and the rest will begin

at the IF&ROBFull state. Instructions from both states then move to ID. Instructions

which move from ID have a transition time of 1 cycle and instructions which originate

from ID&ROBFull have a minimum transition time of 3 and a maximum transition time of

113 cycles. In other words, a full ROB takes from 3 to 113 cycles to make itself available

again. From ID, instructions can move to II (instruction issue), II&W4O (instruction issue

and waiting for operands) or RB (terminate due to rollback) state. The rest of the graph can

be read in a similar fashion.

Figure 5.11 is similar to Figure 5.10 except that it represents the SimpleScalar out of order

architecture. One major difference depicted in both graphs is an instruction’s starting state.

In FAST, all instructions start at IF but in SimpleScalar an instruction can either start

at IF or DA. Looking at the code revealed that SimpleScalar architecture splits load
or store instructions into two instructions in the dispatch stage. The trace treats these

instructions as generic instructions and since their starting state is in DA (dispatch) and

they never visit IF , they appear as if they fork out from the DA state. Alternatively,

one can tag those instructions as special instructions and represent them differently but

we preferred not to distinguish them. Our approach is to not modify the simulator at

all with the exception of adding the necessary instrumentation code and thus keeping the

modifications at a minimum. Nevertheless, this is a clear example of how our approach can

provide information about what the simulator actually implements. Whether the simulator
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Figure 5.9: Merge third bin graph into the current total graph G.

performed any instruction splitting, and if so, at which stage were not known to us at the

beginning of the case study. This is an example of how the perception of the user and what

is actually implemented may differ, which our approach has successfully identified.

Besides showing the user the pipeline temporal information, the graph can also serve as

a guide to construct pipeline constraints such as constraint 4.4. For example, consider

the outgoing edges from ID in Figure 5.10. We observe that every instruction that is

in ID transitions to one of II state, RB state, or W4O state. This can be encoded in a

straight-forward manner as :

∀z ∈ T ∃y ∈ T, (sz = ID) ⇒
(ay = az)∧

[
(sy = II)∨ (sy = RB)

]
(5.3)

∀z ∈ T ∀y ∈ T ∃x ∈ T, (sz = ID)∧ (sy =W4O)∧ (ay = az) ⇒
(ax = az)∧

[(
(sx = II)∧ (tx = ty)

)
∨ (sx = RB)

]
(5.4)

Similarly, temporal information can be added as follows:
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start

IF

   0.47

IF & ROBFULL

   0.53

end

ID

 [1, 1] 1.00

 RB [0, 0] 0.00

II

 [1, 1] 0.18 II & W4O

 [1, 1] 0.81

 RB [0, 0] 0.02

EX

 [1, 2] 0.35

EX & WB

 [1, 2] 0.63

 [0, 0] 0.02

MEM

 [1, 918] 0.98

WB

 RB [0, 0] 0.02  [0, 0] 0.98

 RB [0, 96] 0.04  [0, 7] 0.38

 [1, 108] 0.58

 ROBFull [3, 113] 1.00

 RB [0, 568] 0.10

 [1, 1030] 0.90

 RB [0, 0] 0.06  [0, 0] 0.94

Figure 5.10: FAST pipeline temporal representation.

∀z ∈ T ∃y ∈ T, (sz = ID) ⇒
(ay = az)∧

[(
(sy = II)∧ (ty− tz = 1)

)
∨
(
(sy = RB)∧ (ty = tz)

)]
(5.5)

∀z ∈ T ∀y ∈ T ∃x ∈ T, (sz = ID)∧ (sy =W4O)∧ (ay = az) ⇒
(ax = az)∧

[(
(sx = II)∧ (tx = ty)∧ (tx− tz = 1)

)
∨
(
(sx = RB)∧ (tx = tz)

)]

(5.6)

Figures 5.10 and 5.11 represent all the possible transitions for instructions. If the behavior

of specific types of instructions is of interest, filtering the event trace for an instruction type

will expose the specific path taken by the selected instruction types.
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start

IF

0.71

DA

0.29

end

[1, 75] 1.00

IF & DEAD

[1, 2] 0.00

EX

[1, 99] 1.00

WB

[2, 5] 0.00

DA & DEAD

[1, 2] 0.00

[1, 88] 1.00

WB & DEAD

[1, 1] 0.00

CT & DEAD

[1, 100] 1.00

[0, 0] 1.00

[0, 0] 1.00

[0, 0] 1.00

[0, 0] 1.00

Figure 5.11: SimpleScalar pipeline temporal representation.

5.3.2 DRAM

One common use of architectural simulators is to verify and test new architectural designs.

SFTAGs can help the designer to reason about the behavior of the new design both in its

correctness and efficiency. We take SimpleScalar as an example to show how the main

memory architecture can affect the processor pipeline.

Figure 5.11 shows the SFTAG for a default superscalar machine with a simple DRAM

model as used in SimpleScalar 3.0. The SFTAG shown in Figure 5.12 is from an extension

to SimpleScalar where Rambus DRAM is modeled. The two simulators are configured

the same otherwise. We configured SimpleScalar 3.0 with a memory latency of 72 to 88

cycles. Both simulators execute 171.swim from SPEC CPU2000. The Rambus DRAM can

yield a latency of 200 to 300 cycles depending on the memory access pattern. As can be

observed from the SFTAGs, the increased DRAM latency causes longer transition times

between instruction fetch (IF) and dispatch (DA), execute (EX) and write-back (WB), and

WB and commit (CT).
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Figure 5.12: SimpleScalar/Rambus pipeline temporal representation.
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Figure 5.13: SimpleScalar EX to WB distribution.

We can further generate a histogram for a transition edge of interest in an SFTAG to show

the distribution of transition times. The distribution is helpful for us to gain more insight

into the simulated architecture and infer its behavior. Figure 5.13 and Figure 5.14 show

the histograms of the transition from EX to WB for the original SimpleScalar 3.0 and its

Rambus extension, respectively. Figure 5.13 demonstrates that a large number of load

instructions indeed cause L2 misses and need to access the main memory. The range of the
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Figure 5.14: SimpleScalar/Rambus EX to WB distribution.

latencies follows the memory configuration and thus supports the correctness of memory

system simulation. The Rambus DRAM (RDRAM) is much more complicated. Figure

5.14 suggests that an access to the RDRAM may have a latency of 200 to 300 cycles. This

range fits our configuration of Rambus and thus increases our confidence in the correctness

of the implementation.

5.3.3 Bus Arbiter
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load
load
int

int
float
load

float
float
int

End
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<1,load, EX, 32>
<2, load, EX, 32>
<3, int, EX, 32>
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<4, float, EX, 33>
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<4, float, EX, 34>
<6, float, EX, 34>
<7, int, EX, 34>

<id, type, state, time>

Figure 5.15: Finding the temporal information about the instructions

leaving the EX stage.
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Table 5.1
Type of instructions entering and leaving EX stage.

LOAD STORE INT FLOAT E-LOAD E-STORE E-INT E-FLOAT

2 0 1 0 2 0 0 0

1 0 1 1 1 0 1 0

We use the concept of state flow graph to find patterns of priority in a simulation. The

case study we performed was to look at how instructions are prioritized by a bus arbiter.

To achieve this, we first filter all the events where the instructions are in the “Execute”

(EX) stage as shown in Figure 5.15(a). Next, we combine parallel events into single nodes

(Figure 5.15(b)). We convert the graph into a tabular representation showing which type of

instructions leave the EX stage as shown Table 5.1. In the table, the columns LOAD,

STORE, INT and FLOAT indicate the number of that class of instructions which are

simultaneously present at the EX stage, and columns E-LOAD, E-STORE, etc., indicate

how many instructions of the given class leave the stage. We feed this table into the CN2

algorithm [48, 89] and find the rules regarding which instructions leave the execute stage.

CN2 is a learning algorithm for rule induction. It takes a set of examples and induces rules

in the form of IF-THEN statements. The algorithm uses information entropy as the search

heuristic during the rule induction process, similar to decision tree induction algorithms.

This algorithm yields a set of rules which relate the given combination to the observed

outcome. The simulated architecture permits up to 4 instructions at EX, and only 2

instructions exit EX at any given time. Below is a list of the rules generated by CN2.

1. if LOAD=1, STORE=1 then E-LOAD=1, E-STORE=1

This rule reads as follows: if there is one LOAD and one STORE in EX stage then

during the next transition, the LOAD and STORE will exit EX stage having priority

over others.

2. if LOAD=0, STORE=0, INT=0, FLOAT=0 then E-LOAD=0, E-STORE=0,

E-INT=0, E-FLOAT=0

This rule is trivial. If EX stage contains no instructions then nothing will exit the

stage.

3. if LOAD=2, STORE=0 then E-LOAD=2

This rule states that if EX stage contains two loads, and no stores, they will leave

(irrespective of presence of other types of instructions).

4. if STORE=1, INT=3 then E-STORE=1, E-INT=1

STORE has precedence over INT instructions. STORE is given priority, remaining

slots are filled by the rest.
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5. if STORE=1, FLOAT=3 then E-STORE=1, E-FLOAT=1

STORE has precedence over FLOAT instructions (same as above).

6. if STORE=2, LOAD=0 then E-STORE=2

This rule states that if EX stage contains two stores, and no loads, they will leave

(irrespective of presence of other types of instructions).

The above rules clearly match the implemented arbiter which gives precedence to memory

instructions over others. Note that the technique can be used to learn additional information

about the inner-workings of a given simulator. If the process yields unintended rules, this

may point to significant problems in faithfully implementing the desired model.

Just like a simulator implementation may incorrectly implement an arbiter, it may

inadvertently embody an “arbiter” when there is none. This problem originates from

trying to map the simulation of an inherently parallel implementation onto a sequential

representation, a well studied problem by Vachharajani et al. [90]. For example, the

polling order of the simulator may always give preference to a particular stage, in essence

simulating an architecture which embodies an arbiter that always favors that stage. A

concrete example is the utilization of ports. A hardware implementation may grant a

particular port on a random basis. If the simulator polls a particular stage first, it always will

get priority over others, different from the real implementation. In other words, observing a

rule which should not be present is equally important as not observing a rule which should

be present.

5.4 Performance

Through careful selection and implementation of our algorithms, we can process very large

traces with reasonable running times. In this section, we give an evaluation of SFTAG

generation performance for a set of SPEC CPU2000 benchmarks. All experiments were

performed on a machine which has a Quad Core Intel Core i7 processor running at 3.4

GHZ. The machine has 256 KB L2, 8 MB L3 cache and 24 GB of memory. The operating

system is OS X 10.9.2 (13C64) with the kernel version Darwin 13.1.0.

Our algorithm’s performance is directly correlated with the number of events that need

to be processed. Figure 5.16 illustrates that the number of events per instruction is

variable among different benchmarks, with a mean value of 6.5 events/instruction. SFTAG

generation algorithm can process close to a million instructions per second as shown in

Figure 5.17. This rate is close to the performance of an annotated simulator. Hence, on a
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Figure 5.16: Events per instruction for benchmark programs.

dual-core system, it is possible to generate SFTAGs in parallel with the simulation as the

data becomes available and no extra time will be added on top of the simulation time.
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Figure 5.17: SFTAG processed instructions per second.
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Chapter 6

Analysis

“You see, one thing is, I can live with doubt, and uncertainty, and not knowing. I think it’s much
more interesting to live not knowing than to have answers which might be wrong. I have
approximate answers and possible beliefs and different degrees of certainty about different
things. But I’m not absolutely sure of anything, and there are many things I don’t know anything
about, such as whether it means anything to ask why we’re here, and what the question might
mean. I might think about it a little bit. If I can’t figure it out, then I go onto something else. But I
don’t have to know an answer. I don’t feel frightened by not knowing things, by being lost in the
mysterious universe without having any purpose, which is the way it really is, as far as I can tell
– possibly. It doesn’t frighten me."

— Richard Feynman, Interview with BBC Horizon, 1981

The SFTAG described in Chapter 5 is rich in data. The data can be used to cross-validate

expected or known results. It can also be used as an evidence to infer a conclusion. The

case studies in Section 5.3 analyze each benchmark program individually. Alternatively,

we can analyze the benchmark suite as a whole to reveal their properties from a different

perspective.

We processed about [1.2PB] of binary data from the FAST ADL simulator. From these

data, we constructed 18 SFTAG graphs. Each graph represents a benchmark program in

SPEC2000 benchmark suite [91] and on average there are 50 edges in a single SFTAG

graph. The edges in an SFTAG graph represent the transition from a source state to the

destination state. Furthermore, the distribution of the transition times on each edge is

recorded in the form of a histogram. Analyzing this massive data all at once is difficult

and very time consuming. To make the analysis process smoother, we applied clustering
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techniques to group data with similar properties into clusters. By doing this, we are able

focus our analysis on each cluster locally rather than looking all the data at once.

6.1 Clustering

The clustering method we use is hierarchical agglomerative clustering (HAC) [92]. HAC

works as following. Initially, each data point is in a cluster by itself. At each iteration,

two clusters that have the shortest distance are grouped together to form a new cluster. The

iterations continue until there is only one cluster left in the cluster set. The cluster tree is

usually presented as a dendrogram. Algorithm 4 depicts the clustering process. One of the

most important component in clustering is the distance measurement. In HAC there are

two types of distance measurements – the distances between individual data points and the

distances between clusters (icdist in line 12 Algorithm 4). The next two sections describe

these distance measurements.

Algorithm 4 Hierarchical Agglomerative Clustering (HAC).

Input:
D set of data

Output:
G =< N,E > cluster tree

1: G← initialize to empty cluster tree ↪→ Graph (tree)
2: C← /0 ↪→ set of clusters
3: m← 0 ↪→ number of clusters
4: for all d ∈ D do
5: cm = {d} ↪→ Data point is a cluster
6: N = N∪{cm}∪{d} ↪→ Nodes
7: E = E ∪ (cm,d) ↪→ Edge
8: C =C∪{cm} ↪→ Clusters
9: m = m+1 ↪→ Increment number of clusters

10: end for
11: while length(C) > 1 do ↪→ Repeat until only one cluster left
12: (c′i,c′j) = min{icdist(ci,c j), | ci ∈C,c j ∈C,ci �= c j} ↪→ Intercluster distance
13: cm = cm∪ c′i∪ c′j ↪→ Create new cluster
14: N = N∪{cm} ↪→ Add new node
15: E = E ∪ (cm,ci)∪ (cm,c j) ↪→ Add new edges
16: C =C∪{cm}�{ci,c j} ↪→ Remove processed clusters
17: m = m+1 ↪→ Increment cluster count
18: end while
19: return G
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6.2 Intercluster Distance Measurement

Intercluster distance measures the distance or dissimilarity between two clusters. There

are many different types of intercluster distance functions. The two well known distance

functions are nearest neighbor (single link) and furthest neighbor (complete link). The

intercluster distance we use in the clustering process is nearest neighbor. It is defined as

follows:

icdist(ci,c j) = argmin
x,y
{dist(x,y) | x ∈ ci,y ∈ c j} (6.1)

where arg min refers to the x and y values that minimize the formula value.

We chose this measurement for two reasons. First, nearest neighbor method is simple

and easy to understand. Second, it has a property that no other intercluster measurement

possesses, which is if two pairs of clusters have the same distance, the overall results will be

the same regardless of the order of the merger [93]. The simplicity of this distance measure

comes with a price. It suffers from the “chaining" effect where a series of data points are

merged into the same cluster. Chaining occurs because nearest neighbor merging criterion

is strictly local regardless of the overall clustering. Besides that, it doesn’t account for the

distribution in its local cluster [92, p. 382]. Having said that, nearest neighbor measurement

still serves our objectives well. The “chaining" effect is desired for our purposes because we

focus more on the distances between clusters rather than the overall shape of the clusters.

6.3 Data Distance Measurement

Data distance measurement or intra-cluster distance measurement is the measurement of

the similarity of two data points. This is the most important distance measurement in the

clustering process and it varies from data set to data set. The data point is represented as a

feature vector, i.e., a vector of values corresponding to the features of each data item.

In SFTAG, each data point is a histogram which corresponds to an edge in the graph. The

feature vector of each data point consists of a set of frequency values. Each frequency value

corresponds to a bin’s frequency in the histogram and the width of the bins in the histogram
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is 1 unit time or 1 cycle. HAC operates using pairwise distances between data points. In

other words, each data point needs to be compared with every other data point in the data

set. For the distance measurements to work, the number of bins in every histogram must be

the same. We assume that the number of bins in all the histograms is the same and is some

constant. If there are any unobserved bins in a histogram, their frequencies are assigned to

be 0.

Clustering SFTAG data can be done from three different perspectives. First, we can cluster

all the edges for a given benchmark program. Having groups of similar edges enables

the domain expert to look at fewer transitions on a benchmark’s SFTAG. Second, we can

cluster all the benchmark programs for a given edge. This shows which benchmarks exhibit

similar transition behaviors between states. Third, we can do a second level clustering on

the first level of clusters. Using higher order clustering on the clusters from the first method,

we will be able to learn the the similarity of benchmark programs. On the other hand, if

we cluster the clusters from the second method, we will be able to learn the similarity of

edges.

Clustering on the properties of individual benchmark programs is straight-forward but

clustering on the properties across benchmark programs requires proper scaling because

each benchmark program has a different number of executed instructions. To make all

the histograms independent from the number of executed instructions, we convert their

absolute frequencies to percentages by dividing each frequency value by the corresponding

number of executed instructions.

We first experimented with the commonly used Euclidean distance as shown in the next

section. Using these results, we then designed a distance measurement that is more tailored

to the data set (Section 6.3.2). Finally, we incorporated domain knowledge into the distance

measurement so that it captures the semantics of the data representation (6.3.3).

6.3.1 Euclidean Distance Metric

Euclidean distance is a true distance metric which by definition satisfies four metric criteria

[92]:

1. d(x,y)≥ 0

2. d(x,y) = 0 ⇐⇒ x = y

3. d(x,y) = d(y,x)

54



4. d(x,z)≤ d(x,y)+d(y,z)

It is also known as a special case of Minkowski’s distance where the order p is equal to two.

Euclidean distance metric works in any number of dimensions which makes comparing two

histograms relatively straight-forward. Figure 6.1 shows the APSI dendrogram computed

using the Euclidean distance metric. Here the figure shows that the edges that have similar

histograms are grouped close to each other. The x-axis is the distance between the two

histograms. The Euclidean distance measures the histogram dissimilarity directly without

scaling thus the magnitude of the sum of frequencies of the histograms under consideration

plays a very important role. Because of that, edges that are visited frequently have larger

distances compared with edges that are visited less frequently even though their distance is

small percentage-wise.

6.3.2 Least Squares Distance Metric

Alternatively, we can compute the distance between two histograms using the least

squares approximation method. The intuition behind this measure is that the least squares

approximates the overall differences all the bins between the two histograms. First, we

compute the errors as shown in Equation 6.2. Next, we compute the maximum histogram
as defined in Equation 6.3. We can write the error �E as a fraction of the maximum histogram
�H as in Equation 6.4. The changes in d in relation to �E is suitable for use as a distance

measure. From the equation we can see that if there is no error or |�E| = 0 then d = 0 and

if �E = �H (maximum error) then d = 1. Since �E and �H contain multiple elements and d
is a scalar, there are more equations than variables. Therefore, Equation 6.4 is unsolvable.

However, we can approximate it by solving Equation 6.5. The final distance d̂ is given in

Equation 6.6 where EH and H2 are given in Equations 6.7 and 6.8, respectively. Equation

6.6 is in fact a least squares approximation without the intercept term.

Figure 6.2 shows the APSI dendrogram computed using the least squares distance metric.

Comparing Figure 6.1 with Figure 6.2, we prefer Figure 6.2 which used the least squares

distance because it scales better. The reason for that is the least squares distance measures

distance that is independent of the sum of the frequency values in a histogram whereas

in Euclidean distance, the sum of the frequency values in a histogram affects the distance

value. Of course, we can achieve the same scaled distance with Euclidean distance by

explicitly scaling the histograms properly before computing their distances but we prefer

least squares distance for its simplicity and elegance. Note that, even though the least

squares distance metric does not satisfy last metric criteria, i.e. triangle inequality, the first

three metric criteria it satisfies are sufficient for our measuring purposes. This is because

our measuring goals do not rely on triangle inequality properties which are important for
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Figure 6.1: APSI dendrogram computed using Euclidean distance.
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problems such as optimization.

�E = �H1− �H2 (6.2)

�H = {hi |max{h1
i ,h

2
i },h1

i ∈ �H1,h2
i ∈ �H2,1≤ i≤ |�H1|} (6.3)

�E = d�H (6.4)

�HT�E = d̂�HT �H (6.5)

d̂ =
EH

H2
(6.6)

EH =
1

n

n

∑
i=1

eihi | ei ∈ �E,hi ∈ �H (6.7)

H2 =
1

n

n

∑
i=1

h2
i | hi ∈ �H (6.8)

6.3.3 Least Least Square Distance Metric

Often times a distance measurement design that includes domain knowledge is more

accurate compared to a generic distance measurement. Consider the following empirical

observation. A transition T from state A to state B has a minimum transition time of Tmin
and a maximum transition time of Tmax. Suppose we have a transition T1 that moves from

state A to state B and another transition T2 that moves from state B to state C. Further

assume that T1min = T1max = c1 and T2min = T2max = c2, where c1 and c2 are scalar values.

Because the transition times at T1 and T2 have no variability, the histograms of T1 and T2

contain only a single bin with values of c1 and c2, respectively. If a state B has only one

incoming edge (T1) and one outgoing edge (T2), then the total frequencies in histograms T1

and T2 must be the same. If c1 �= c2, the least squares distance will yield maximum errors

even though their magnitudes are exactly the same. We call this dislocation.

To minimize the effects of dislocation, we rearrange the bins in the second histogram so

that the absolute sum of errors is minimum (Equation 6.9). In Equation 6.10, P is the set of

all permutation rules for histogram H2, p is a single permutation rule and H p
2 is histogram

H2 where all the bins are arranged based on the permutation rule p. p∗ is the permutation

rule that yield the minimum sum of errors. Once the p∗ permutation rule is determined, �E
and �H can be computed as usual by substituting H2 with permuted H p∗

2 . Equation 6.11 and

6.12 show the changes. Note that, this distance measurement is heuristic and is based on
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Figure 6.2: APSI dendrogram computed using least squares distance.
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Figure 6.3: APSI dendrogram computed using least least squares distance.
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the histogram patterns we observed from experiments. The reason this distance measure

works is that the transition time have the tendency to cluster in a single bin or in very tight

range. If two histograms have similar magnitudes across all the bins but differ in bin values,

least least squares distance is able to match them. Figure 6.3 shows APSI the dendrogram

computed with least least squares distance. Comparing Figures 6.1, 6.2 and 6.3, we can

see that Figure 6.2 the distance between each clusters are more distinct than Figure 6.1 and

Figure 6.3 the distance between each clusters are more distinct than Figure 6.2.

eH1,H2
=
|H1|
∑
i=1

|h1i−h2i |
∣∣h1i ∈ H1,h2i ∈ H2 (6.9)

p∗ = p |min{eH1,H
p
2
}, p ∈ P (6.10)

�E = �H1− �H p∗
2 (6.11)

�H = {hi |max{h1
i ,h

2
i },h1

i ∈ �H1,h2
i ∈ �H p∗

2 ,1≤ i≤ |�H1|} (6.12)

6.4 Evaluation

For our empirical work, we generated a total of 18 SFTAG graphs and hundreds of

histograms using the FAST ADL simulator on a set of input programs from the benchmark

set in SPEC2000 [91]. We then used HAC and least least squares as the distance measure

to cluster the generated data. In this section, we present the analysis results of selected

SFTAGs.

6.4.1 186.CRAFTY Dendrogram

Figure 6.4 shows a section of 186.CRAFTY dendrogram. This dendrogram is constructed

by clustering all the edges of 186.CRAFTY. There are two clusters in the figure. The first

cluster groups the II-EX&LAT4 edge and the EX&LAT4-RB edge together. II-EX&LAT4

indicates transition from state II (instruction issue) to state EX&LAT4 (execution and

latency 4 instruction) and EX&LAT4-RB indicates transition from state EX&LAT4 to

state RB (rollback). This grouping implies that their histograms are the same or they are

very similar. The second cluster groups the EX&LAT4-EX&LAT4&WB edge and the

EX&LAT4&WB-RB edge together. The first and second clusters are very similar; they

both end in RB state. From this grouping results we can infer that, no matter which path
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Figure 6.4: A Section of the 186.CRAFTY dendrogram

instructions with latency 4 go, they will end up in the RB state. Figure 6.5 confirms our

observation. It shows that all the states that are involved with latency 4 instructions end up

in the RB state.

II

EX&LAT4

&WB

RB

EX&LAT4

Figure 6.5: A section of the 186.CRAFTY SFTAG.

This dendogram and its analysis shows that the distance metrics and the clustering

techniques effectively capture similarities of SFTAG edges. This observation indicates

that the input does not cover this particular code path.
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6.4.2 Floating Point Division Instruction In 256.BZIP2

Figures 6.6, 6.7 and 6.8 are generated by clustering all the benchmark programs for the

edges that are related to latency 19 instructions (floating point division). 256.BZIP2 and

its variations appear in Figure 6.6 but not in Figure 6.7 which means that latency 19

instructions are executed but never move to CT (commit) state. The reason that these

instructions never move to CT state is shown in Figure 6.8. 256.BIZP2 and its variations

reappear in Figure 6.8 which indicate that latency 19 instructions in 256.BZIP2 and its

variations encounter rollback before process to CT state. To confirm our reasoning, we

ran 256.BZIP2-PROGRAM on a perfect branch predictor architecture and Figure 6.9

shows the generated SFTAG graph. A perfect branch predictor architecture will never

pick the wrong path thus no RB events will be generated. In Figure 6.9 not a single RB

state appears and most importantly, no latency 19 states. This result matches our reasoning.

6.4.3 Reorder Buffer Full Ratio

Besides clustering based on an edge’s histograms, we can also cluster benchmark programs

based on an edge’s ratio values. Table 6.1 lists the ratio values for START-IF&ROBFULL

edge for every benchmark programs. From the table we can clearly see that it is divided

into two parts. The upper part of the table contains low ratio value and is occupied by

integer benchmark programs whereas the lower part of the table contains relatively high

ratio and is occupied by floating point benchmark programs. The reason is that floating

point programs have higher cache misses thus instructions stay in the pipeline longer and

clog the reorder buffer. Therefore instructions have a higher chance to encounter the reorder

buffer full event.

6.4.4 Cluster of Clusters

In addition to clustering the original data points, we can also apply clustering in a recursive

manner, i.e. cluster the clusters to expose different relationships among the data. Figure

6.10 is generated by clustering the edge clusters for every benchmark program. Edge

clusters are generated in a similar fashion to 186.CRAFT and 301.APSI. From the figure we

can see that 164.GZIP and its variations are grouped together which means that they exhibit

similar clustering patterns. This is the same for 256.BZIP and its variations. 176.GCC,
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Figure 6.6: Dendrogram of II-EX&LAT19.
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Figure 6.7: Dendrogram of EX&LAT19&WB-CT.
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Figure 6.8: Dendrogram of EX&LAT19&WB-RB.
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Table 6.1
List of ratio values for START-IF&ROBFULL edges.

Benchmark Ratio Type

CRAFTY 0.04 Integer

GAP 0.03 Integer

GCC 0.04 Integer

BZIP2-GRAPHIC 0.11 Integer

BZIP2-PROGRAM 0.08 Integer

BZIP2-SOURCE 0.05 Integer

GZIP-GRAPHIC 0.08 Integer

GZIP-LOG 0.14 Integer

GZIP-RANDOM 0.10 Integer

GZIP-SOURCE 0.08 Integer

PARSER 0.01 Integer

MCF 0.05 Integer

SWIM 0.86 Float

APPLU 0.73 Float

MGRID 0.96 Float

AMMP 0.30 Float

APSI 0.48 Float

197.PARSER and 254.GAP are grouped next to each other.

Clearly, using different input sets for a given benchmark does not make the benchmark

behave in an entirely different manner. This grouping also shows that the algorithms

implemented by a given benchmark profoundly affects how it behaves. For example, while

both GZIP and BZIP2 are compression programs, they implement different algorithms,

hence they are in different clusters. In addition, PARSER and GCC are grouped together.

GCC spends a significant amount of time parsing the input streams using a similar parsing

algorithm.

Figure 6.10 also shows that several floating point programs such as SWIM, MGRID, and

APSI are grouped together. While each of these programs implement a different algorithm,

they all possess the algorithmic structure of scientific computations such as linear algebra,

and numerical function and differential computation algorithms. These results indicate that

clustering SFTAGs at a higher level can provide insight into the algorithmic behavior of

programs as well.
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ID
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II

 [1, 1.22, 37] 0.26 109.15 II & W4O

 [1, 1.24, 41] 0.74 145.89

EX

 [1, 1.12, 16] 0.29 89.35

EX & LAT1

 [1, 1.47, 16] 0.71 105.18

EX & LAT6

 [1, 1.00, 1] 0.00 1.23

EX & LAT35

 [1, 1.70, 10] 0.00 6.11

 [1, 34.35, 383] 1.00 1593.35

MEM

 [1, 20.26, 352] 0.98 1265.82

MEM & WB
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WB
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 [1, 3.41, 142] 0.33 349.95  [1, 7.20, 77] 1.00 228.10

 [1, 4.36, 226] 1.00 490.44

 1.00

 [1, 23.33, 386] 1.00 1558.26

 1.00

 [2, 11.03, 144] 1.00 664.56

 [1, 13.88, 120] 1.00 1.60  [1, 1.82, 81] 1.00 3.17

Figure 6.9: SFTAG of 256.BZIP-PROGRAM executed with a perfect

branch predictor.
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Figure 6.10: Benchmark cluster.
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Chapter 7

Conclusion

In this dissertation, we presented a micro-architecture simulator verification framework

that relies on visual and analytical discovery of patterns, as well as invariant checking.

A considerable amount of time is spent in the micro-architecture research community to

develop simulators for new techniques and make sure that they faithfully implement the

desired models. While simulator validation (as opposed to verification) has been carried

out for most widely used simulators, a robust verification framework is still needed because

the validation of a simulator does not guarantee that the modified versions still correctly

simulate the desired model. Our developed framework is a step to increase researchers’

confidence in simulator implementations using an online process.

The framework we developed and implemented consists of two parts. The first part

is First-Order Logic Constraint Specification Language (FOLCSL) that enables users

to specify the invariants of the model under consideration. From the first-order logic

specification, we automatically synthesize a verification program that reads the event

trace generated by a simulator and signals whether all invariants are respected. The

second part consists of mining the temporal flow of events using a newly developed

representation called State Flow Temporal Analysis Graph (SFTAG). The study includes

SFTAGs generated for a wide set of benchmark programs and their analysis using several

artificial intelligence algorithms. Our framework improves the computer architecture

research and verification processes as shown by the case studies and experiments we have

conducted.
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7.1 Contributions

The main contributions of this research work are in twofold. First, we designed a formal

verification language and implemented the software that allows users to describe simulation

properties and check the properties against the output events. Second, we developed and

implemented an algorithm that is capable of processing large data sets and representing the

temporal information in a graphical form that is amenable to both visual inspection and

automatic analysis.

Our techniques serve both verification and debugging purposes and close an important gap

in simulation-based research. They complement current approaches by providing temporal

information in the form of state flow graphs. Our methods provide an efficient, scalable and

practical framework with formal foundations. Our software is publicly available to allow

widespread use and to lay the foundation for further improvements. We showed that the

data in SFTAGs can be processed again using data mining techniques such as clustering

and rule-base algorithms to uncover new patterns.

7.2 Future work

This dissertation work can be extended by developing new techniques for automatic and

semi-automatic derivation of invariant rules from event-traces. In addition to the visual and

analytical techniques we have outlined, artificial intelligence techniques can be employed

to extract additional information from event streams. For example, the causal relationships

between changes in performance and the related events that occur can be found using

Bayesian learning techniques.

New algorithms that use SFTAGs can be developed to make comparisons to aid during

the development of new micro-architectures. In this regards, one can compare different

phases of a program within an architecture, different programs on the same architecture,

and different architectures on the same program. Both visual and automated techniques can

be used to make comparisons.

Finally, the visualization can be improved by creating interactive SFTAGs which display

certain properties based on mousing over edges or nodes and by providing comparative

views of SFTAG sections.
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