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Abstract 

 
Harmonic distortion on voltages and currents increases with the increased penetration 

of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators 

(WGs), which are source of harmonic currents, have some common harmonic profiles 

with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs 

on harmonic distortion. This work studies the impact of PEVs on harmonic distortions 

and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced 

distribution system model is developed in OpenDSS, where PEVs and WGs are 

represented by harmonic current loads and sources respectively. The developed model 

is first used to solve harmonic power flow on IEEE 34-bus distribution system with 

low, moderate, and high penetration of PEVs, and its impact on current/voltage Total 

Harmonic Distortions (THDs) is studied. This study shows that the voltage and current 

THDs could be increased upto 9.5% and 50% respectively, in case of distribution 

systems with high PEV penetration and these THD values are significantly larger than 

the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at 

different locations in the 34-bus distribution system to demonstrate reduction in the 

current/voltage THDs. 

In this work, a framework is also developed to find optimal size of WGs to reduce 

THDs below prescribed operational limits in distribution circuits with PEV loads. The 

optimization framework is implemented in MATLAB using Genetic Algorithm, which 

is interfaced with the harmonic power flow model developed in OpenDSS. The 

developed framework is used to find optimal size of WGs on the 34-bus distribution 

system with low, moderate, and high penetration of PEVs, with an objective to reduce 

voltage/current THD deviations throughout the distribution circuits. With the optimal 

size of WGs in distribution systems with PEV loads, the current and voltage THDs are 

reduced below 5% and 7% respectively, which are within the limits prescribed by 

IEEE.           
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Chapter 1 

Introduction 

1.1 Motivation  

Plug-in Electric Vehicles (PEVs) and wind energy have emerged as two recent entities 

which have the potential of being included in modern day electric distribution system 

at a large scale. With the increasing exhaustion of fossil energy, depletion of global 

energy reserves is a major worldwide concern at economic, environmental and 

industrial levels. Potentially, the greenhouse gas emissions are changing the climate 

which would be a major threat to human society. PEVs and wind power has capability 

to reduce the emissions as well as depletion of energy reserve. However, 

accommodating PEVs and wind power in the network will have adverse impacts in the 

distribution network because of the increased load from PEV charging and 

intermittency of wind power [1, 2]. The placement and size of PEV loads or wind 

generator (WG) impacts the voltage profile as the load profile changes in the network. 

Also, the presence of PEV can cause power loss and power quality degradation. 

PEVs integrated into the grid poses challenge from power system operation point of 

view. As most of the Electric Vehicles (EV) is charged completely or partially by 

electricity, it is required to be connected with the distribution grid for considerable 

time duration. This may require remodeling of the modern grid system as a large 

number of PEVs will introduce a new set of uncertainty into power system operation, 

which might be proven harmful for the grid [3]. As the studies have shown, that 

without any kind of mitigation, the charging of PEVs leads the electricity grid with 

additional loads which might result an increment of aggregated load in peak hours, 

and hence impacts the overall reliability of the grid [4].  
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It is natural that energy demand increases every year. Also for the growing concern of 

the climate changes and energy security issues, increment of the usage of PEVs in the 

near future is unavoidable. In a recent study, it has been indicated that the number of 

gridable vehicles will reach roughly 2 million by the end of 2020 in U.S.A. By 2030 

there would be 14 million PEVs on the road of U.S.A, which is about 5% of the light 

duty vehicle fleet [5, 6]. However, the penetration of PEV in the grid will not be 

uniform across the country. Some of the utilities in west coast are expecting PEV 

penetration of around 5% in their service territories by the end of 2020. By that time 

large scale deployment of residential and public load chargers will be required. 

Similarly in other countries like Germany have plans to have one million PEV by 

2020 [7, 8]. Also, Japan is planning to have 50% market share of PEV by 2020 [9-11].  

Wind energy is a green renewable energy which is cleaner than most of the traditional 

power sources. To solve the current problem of world's depleting reserve and shortage 

of fossil energy reserves, deployment of wind energy resources is very important [12]. 

Both of PEVs and wind energy are considered to reduce the use of fossil fuels, reduce 

green-house gas emission, carbon footprints around the world. The intermittency of 

wind power is one of the biggest challenges in the practical application of wind power.  

In one of the most ambitious projects to ensure energy security, governments around 

the world are taking steps to incorporate wind energy into the modern day power grid 

[13]. By 2020, the state of California alone has set a target of reaching 33% renewable 

penetration [14, 15]. Similarly one of the studies made by the Global Wind Energy 

Council in 2006 showed that world's total installed wind power capacity will reach 

almost 3.0 billion kW by 2050, and generated electrical energy will reach 5 trillion 

kWh in 2030, and 8 trillion kWh in 2050 [12]. To mitigate fluctuations, aggregation of 

the output of multiple wind turbines or wind farm is usually practiced. In some cases, 

the operator needs to procure more reserves to supply the demand in case of wind 

intermittency. The extra power could cost vary from $0.45-$8.85/MWh. Thus, 
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scheduling highly fluctuating wind energy is not an easy task for the operator [4, 16, 

17]. 

The integration of PEVs into the grid is also a challenging problem for Demand Side 

Management (DSM). Utilities face problems when PEVs charge from the grid due to 

the size of its battery chargers which can represent sizable loads. One example is that 

after arriving home from work, a large number of PEV users will to try to charge their 

vehicles within a short range of time, thus resulting in increased peak demand [13]. 

The batteries of the PEVs take significant amount of time to charge, the charging 

duration varies with different manufacturers such as Nissan, Mitsubishi, GM, Tesla 

Motors, Chevrolet, etc. The timing of PEV charging are mostly uncoordinated and 

random which negatively impact the power grid. Severe voltage fluctuation, sub-

optimal generation dispatch, increment of the Total Harmonic Distortion (THD), 

degraded system efficiency, irregular economic dispatch are some of the problems that 

could be caused by increased PEV penetration. Also, the likelihood of blackout 

becomes higher as the demand to generation scenario could be impacted as most of the 

PEVs draw significant amount of power from the grid [18-20]. To overcome this, the 

need of high speed bidirectional communication is becoming imminent. With the 

advent of smart grid networking system, an effort is going to modernize power grid to 

cope with the ever increasing energy demand. Real-time monitoring, control of 

transmission, distribution and end-user consumers will be much easier with an 

evolving smart grid framework [21, 22]. To manage intelligent or smart coordinated 

charging of the PEVs, communication systems and proper usage of available energy 

resources will be of utmost importance [23].  

In recent studies, it has been also shown that the PEVs can be used as energy storage 

devices. It has been shown in [3] that PEVs are not used for 96% of a day. The 

Vehicle to Grid (V2G) technology helps to partially solve the problem of depletion of 

energy reserves. It is a recent application of energy storage technology, which will 

eventually allow a bidirectional power flow between vehicles batteries and the power 
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grid. The PEVs, which have a successful collaboration with the grid, are often termed 

as Gridable Vehicles (GV). For GV technology, the State-Of-Charge (SOC) of the 

vehicle's battery is controllable. With a proper grid framework, through V2G 

technology these unused PEVs can inject power back to the grid during the peak load 

hours [2]. PEVs can also be used to mitigate the intermittency of the Distributed 

Generation (DG) as PEV acts as a dispatchable energy sources. However, economic 

dispatch models of PEVs and its solution methods should be thoroughly studied before 

these methods can be directly applied to solve the aforementioned problems [3].  

The aforementioned observations have motivated this research to conduct the 

assessment of WGs and PEVs on the Total Harmonic Distortion (THD) of voltages 

and currents in distribution circuits. 

1.2 Literature Review 

This section briefly discusses the literature survey carried out to assess the impact of 

PEV loads in distribution system, the optimal planning of renewable DGs in 

distribution system, and the advantages that PEVs and DGs pose to the distribution 

system operations.  

1.2.1 Optimal Sitting and Sizing of DGs 

As the penetration of DGs are increasing in the modern grid, the placement and proper 

sizing of DGs are one of the most important factors from planning perspective. Relay 

system configurations, voltage profiles, network losses can be affected due to 

improper sitting and sizing of DGs. The problems become more complicated with 

PEV loads. Random charging and discharging schedule of the PEVs may play a key 

role in the planning of the grid. In present studies deterministic approach is mainly 

used to find the optimal sitting and sizing of DGs [24]. In [25], to determine the 

optimal location of the DG, analytical methods are used in radial as well as meshed 

systems with objective function of network loss minimization. Then, from the bus 

admittance matrix, generation information, and load distribution, optimal site of DGs 
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are determined. For loss reduction and voltage profile improvement in distribution 

system, fuzzy goal programming technique has been used to determine the optimal 

placement of the DGs in [26]. In some other works, Newton-Raphson load-flow 

method has been used to develop an iterative technique which will determine the 

optimal placement and sizing of the DGs [27]. In [28], three indices such as losses, 

voltage profile and short-circuit levels have been included to optimally determine the 

locations and size of the DGs in a large mesh-connected distribution. The issue with 

deterministic approach is that it uses Mixed-Integer Non-Linear Programming 

(MINLP) method to derive mathematical models which has multiple variables and 

constraints. In [29], an analytical method with minimization of the total power losses 

as objective has been considered to determine the optimal placement and sizing of the 

DGs. This method is based on the equivalent current injection technique. A 

multiobjective programming and decision theory based approach has been taken in 

[30] with the optimized use of DGs to solve voltage quality and THD related 

problems. Similar studies have been reported in [31, 32] where the authors have 

considered Particle Swarm Optimization (PSO) technique for optimal sitting and 

sizing of DGs to improve voltage profile and reduce THDs. The distribution network 

should be utilized in an optimal way to integrate the DGs. Voltage and thermal 

constraints are considered in [33], while developing an optimal power flow technique 

that maximizes the DG capacity across the network. In [34], to determine the optimal 

location and size of the DGs a Genetic Algorithm (GA) based approach is taken in 

single distributed generation, as well as in multi distributed generation separately, 

where the objective is loss minimization. Electricity deregulation and its impact on the 

optimal DG placement are studied in [35]. Optimal sitting and sizing of DG's is also 

achievable by using Chance Constrained Programming (CCP) framework which uses 

a Monte Carlo simulation embedded genetic algorithm. This model developed with 

minimization of DGs investment cost, operating cost, maintenance cost, network loss 

constraint, capacity adequacy cost as objective function [24].  
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From these aforementioned studies, it can be understood that placement and sizing of 

the DGs have a large impact while performing an optimal planning of the power grid. 

But, these studies haven’t considered the problem related to current and/or voltage 

harmonics which necessitates a work that will deal with the issue of harmonics in the 

optimal planning and operational problems.  

1.2.2 Optimal Operation of Distribution System in presence of PEVs 
and DGs 

In [11], optimal operation of PEVs in the presence of high wind penetration is studied, 

where the energy cost for the PEV owners can be reduced in both spot and regulation 

market. This study has considered an aggregated battery storage model in load 

frequency control simulations to demonstrate the application of PEV as regulation 

power provider. As the battery of the PEV acts as a source of energy, it can provide 

ancillary service management such as supply of primary and secondary control and 

voltage regulation. Also, the PEVs can mitigate the high variation in the power 

generation caused by wind fluctuation in a PEV wind integrated grid. In [36], a 

primary control method of PEV to control the frequency deviation significantly is 

reported. Also, as shown in [37, 38] a secondary control of demand balance can be 

achieved through PEVs. Based on the voltage at the connection point, PEV charger 

can control charge/discharge profiles. With the advent of advanced power electronic 

converter installed within the charger of PEV, it will be able to provide reactive power 

support. With the high wind power penetration in some countries these secondary 

controls of PEVs could be very helpful [39, 40].  

In the Western Danish power system, the total share of annual power production is 

more than 27% [41]. By 2025, wind power is expected to be 50% of total power 

generation. The optimal operation of PEVs can significantly decrease the power 

intermittency due to wind across Europe. In Nordic power market, the hourly spot 

market price is available one day ahead and the consumers will make the changes 

based on the optimal charging and discharging patterns of the PEVs to minimize 
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energy costs [42]. In Denmark, during real-time operations, the system operator uses 

regulation market as a tool to balance the power generation with the load. By 

providing regulation power, the PEV owners can get some benefits from the regulation 

market [43].   

To mitigate the impact of PEV charging from the electric grid, one of the potential 

ways is to combine PEV charging with renewable DGs and local storage facilities into 

a single system. Several utility companies across the globe are currently working on 

this to make it commercially feasible. However, there are still several unknown issues 

that can adversely impact the architectural combination and control methodology. In 

[44], a GA based approach has been taken to design an optimally size standalone i. e., 

non-grid connected hybrid wind/PV power system model. In [45], a method has been 

developed to optimally size the combination of a battery bank and PV array into a 

wind/PV hybrid system. An optimum control method is required in order to settle the 

dispatch strategy to determine the optimized system unit cost [46].  Although, here the 

uncertainty still lays in the design of grid-interfaced DG and the storage systems. 

There are also several constraints and objective functions which has not been clearly 

explained to meet the PEV charging requirements. In [8], an optimal architecture of 

the grid has been designed using the constraint of lowest system lifecycle cost. Cost, 

efficiency and reliability are taken as important attributes of the PEV charging system. 

The system has been designed in a way, that it has the independence of drawing power 

from the grid. Also at the same time, different limits on the power drawn from the grid 

have been used as a constraint in the algorithm. Such systems are, self-sufficient with 

substantial renewable DG and energy storage without any kind of grid interface. 

Some of the studies which deal with the optimal operation of distribution network in 

presence of PEVs and DGs have mainly seen the problem from the operation point of 

view. However, in this work a similar study have been done from the power system 

perspective, where it deals with the harmonics that are being introduced into grid due 

to the presence of PEVs and DGs.  
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1.2.3 Coordinated Energy Scheduling in a Distribution System in 
presence of PEVs and DGs 

PEVs can support the grid by improving voltage control and congestion management. 

However, uncoordinated PEV charging in a grid, which have WGs, may cause several 

local grid problem including additional extra power losses, voltage swings, power 

quality disturbances. A study is conducted in [47] to understand the coordinated 

charging and discharging behavior. Several other studies have been made for 

coordinated energy dispatch of microgrid where the PEV works as load and wind 

power as a source for generation. In [48], a modeling package has been proposed by 

the authors, which can simulate impact of PEV integration into a wind-thermal 

network. The emission level of this wind-PEV grid network is also very less compared 

to the system with number of PEVs. In [49], a novel unit commitment model is 

proposed to determine the interactive behavior between the PEVs and WGs. The 

model analyzes the demand response characteristics and proposed different PEV 

charging scenarios. It shows that the total system cost can be reduced significantly at 

an optimal dispatch level of the PEV loads. Also in the wind-PEV complementation 

models, consideration of the carbon emission models of the conventional and carbon 

capture power plants are effective as it can reduce the carbon emission as well the use 

of fuels [50]. This has demonstrated an improvement of wind power energy supply 

efficiency of the PEVs and also the optimal control of energy dispatch in power 

networks. However, it should be noted that most of these models don't consider the 

variability of the PEV charging behaviors and the deviation between actual and 

forecasted wind power outputs. The distribution of the SOC with respect to individual 

vehicles has not been considered as well. The wind power volatility scenarios are 

important for the coordinated scheduling of wind-PEV network. So on the basis of 

coordinated wind-PEV energy dispatching and control of PEV charging and 

discharging behaviors, energy dispatching approaches has been reported in [51].  
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1.2.4 Impact of PEVs on Harmonics 

As discussed above, unexpected number of PEV charging during the peak demand 

hours impact the overall residential load curve, increase system losses and overloading 

of lines and increase harmonics introduction into the system. In [52] two PEV 

charging regime is taken to analyze such detrimental effects. In the uncoordinated 

random charging scenario, maximum bus voltage deviation is observed. However in 

the case of scheduled coordinated charging, total power losses and THD for voltage is 

much less. Also it has been shown that, when the PEV penetration is about 20%, the 

THD distortion is not so significant that utilities can ignore it [52]. In [53], it is 

demonstrated that, due to the nonlinear nature of PEV loads the resulting current 

harmonics can cause abnormal operation such as increased losses, reduced efficiency, 

temperature rise, premature insulation and windings failure, etc. In overall, this can 

significantly have an adverse impact on reliability, security and efficiency of the grid. 

Despite the higher ratings of the PEVs and their rapid charging capabilities, the power 

demand will increase during the peak charging hours. So, even in newly developed 

smart grids, the power operations, component life cycle would be affected adversely 

[52-55]. These studies have been carried out to find the impact on harmonics due to 

the integration of PEVs. However the authors haven't considered any kind of DGs in 

the network. So, this thesis tries to address the issue of optimal operation of DGs and 

PEVs together for the reduction of THDs in the system. 

1.2.5 Smart Load Management (SLM) of PEVs 

Due to nature of irregularity in PEV charging, it poses a significant threat to DSM. 

From the utilities perspective, the PEV battery chargers represent sizeable nonlinearity 

in the system and difficult to predict. So there is a need for monitoring and control of 

the network which will also help the modern Distribution Management Systems 

(DMS). The DMS will directly coordinate with the PEV chargers through the evolving 

smart grid communication infrastructure. The process of SLM will also be helpful to 

coordinate the charging multiple PEVs, while maintaining system stresses, grid 
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reliability, security, etc. In this SLM approach, human input such as time of the PEV 

charging, location of the PEVs are required. Based on the system constraints, SLM 

will may consider loss minimization, voltage regulation, and load variation over 24 

hours [13].  

1.3 Research Objectives 

This thesis focuses on the mitigation of current and voltage THDs in distribution 

network due to the PEVs and WGs. The main contributions of this thesis are: 

• To develop a three-phase unbalanced distribution system model required for 

harmonic power flow studies. The model is used to study the impact of PEVs 

on voltage and current THDs in distribution system with varying degree of 

penetration. The same model is used to demonstrate that careful planning of 

WGs can help to reduce the harmonic distortions caused by the PEVs.  

• To develop an optimization framework based on GA that utilizes previous 

model as constraints and WGs as decision variables. The model is then used to 

find optimal size of WGs that will reduce the voltage or current THDs in the 

distribution circuit with varying penetration level of the PEVs. 

1.4 Thesis Overview 

The remainder of the thesis is organized as follows:  

Chapter 2 discusses background topics and tools related to this research. Also, a brief 

background to the basic distribution system circuits and harmonic power flow has 

been provided. It also discusses basics of optimization, GA which are directly relevant 

to the work presented in this thesis. 

Chapter 3 presents basics of IEEE 34 node test system. The models of PEVs and WGs 

in terms of harmonics are presented. Initial set of case studies have been presented 

where the penetration of the PEV is varied from 30%, 50% and 100%. More case 
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studies considering random placement of WGs in the 34 node test system to 

demonstrate WGs benefit on reducing THDs are also included in Chapter 3.  

Chapter 4 discusses the interface between MATLAB and OpenDSS and the modeling 

work. Next, a GA based approach has been presented where WGs have demonstrated 

to reduce the voltage and current THDs in the presence of varying level of PEV 

penetration i. e., 30%, 50% and 100%. 

Chapter 5 presents the main results and conclusions. Also, some directions for future 

have been briefly discussed.  
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Chapter 2 

Background 

2.1 Introduction 

This chapter discusses a background review of the main concepts and tools related to 

this research work. Nomenclature of all parameters, variables, indices and function is 

given in Section 2.2. In Section 2.3 an overview of the distribution system is provided. 

The mathematically model required for harmonic power flow studies is provided in 

Section 2.4. A brief overview of optimization techniques related to the present work is 

discussed in Section 2.5 and 2.6. A detailed description of OpenDSS tool and the 

modeling of the distribution system in OpenDSS are presented in Section 2.7. 

2.2 Nomenclature  

𝛼 Set of series elements whose receiving end is connected to node n, 𝛼 ⊆ 𝑙. 

𝛽 Set of series elements whose receiving end is connected to node n, 𝛽 ⊆ 𝑙.   

∆𝑆 Percentage voltage change for each LTC tap.  

𝜃 Load power factor angle, rad.                                                                                                                    

𝐴,𝐵,𝐶,𝐷Three phase ABCD parameter matrices, p.u. 

𝐶(ℎ) Ratio of hth harmonic current component to its fundamental current.          

ℎ Set of harmonics, ℎ ∈ {1,3,5, … … . , 13}.                                              

ℎ1 Set of harmonics, ℎ1 ∈ {1} and ℎ1 ⊆ ℎ. 

ℎ2 Set of harmonics, ℎ2 ∈ {1,5,7,11,13} and ℎ2 ⊆ ℎ.             

𝐼 Phase current vector.       
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𝐼𝑤 Current from wind generators. 

𝐼𝑒𝑣 Current from electric vehicles. 

𝐼𝑜 Load phase current at a specified power and nominal voltage, p.u.   

𝑙 Set of series elements. 

𝐿 Set of wye-connected loads at each node.       

𝑛 Set of nodes. 

𝑝 Set of phases, 𝑝 ∈ {𝑎, 𝑏, 𝑐}.                                

𝑟 Receiving-end of series elements. 

𝑠 Sending-end of series elements. 

𝑡 Controllable set of tap changers, 𝑡 ⊆ 𝑙. 

𝑡𝑎𝑝Tap position. 

𝑉 Phase current vector.                                     

2.3 Distribution Systems 

In electric distribution system, everything begins with the distribution substation. It 

might be fed by one or more than one sub-transmission lines. Without the presence of 

sub-transmission system, the distribution substation is fed directly by high voltage 

transmission line. Normally the distribution substation is connected to multiple 

feeders. Only in case of radial distribution system, there is only one path for the power 

to flow from substation to the user end. The various components of a standard 

distribution are shown in Figure 2.1.  

Feeders are three-phase wires which might be overhead conductors or underground 

cables, generated from the source through which the power is being transmitted to the 
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loads and eventually to the end users. These can have lateral branches which could be 

three-phase, two-phase, or single-phase. Switches and regulators are used to 

reconfigure the feeders. From the distribution substation, step-down transformer is 

required to bring down the voltage to distribution level. Normally, in U.S.A the 

distribution source voltage is 132 kV and the distribution voltage levels are 34.5 kV, 

23.9 kV, 14.4 kV, 13.2 kV, 12.47 kV, 4.16 kV, etc. [56]. The transformers can have 

two or more phases. The three-phase transformers can have various connections like 

delta-wye grounded, wye grounded-wye grounded, etc.  

 

Figure 2.1: Sample Distribution System. Figure adapted from figures in Kresting [56] 
and Gonen [57]. 

 

Voltage regulators are used in distribution system to regulate voltage drop between 

substation and users. The substation voltage changes as load changes, but the voltage 

regulator keeps the voltage variation within a certain range in order to meet the 

standards. Load Tap Changing (LTC) transformers are used to vary these voltages. In 
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the low voltage windings, the LTC changes the tap as the load varies. The substation 

transformers normally have fixed tap on the high voltage side of the transformer.  

Protection schemes are an inevitable aspect of distribution system. Different circuit 

breaker relay protection schemes are generally employed to protect the system in high 

and low voltage buses to protect the system from faults. Meters are used in a 

substation to record line to line, phase to phase voltages and currents in a substation 

design. Digital meters are used in the output of the transformer or feeder as a part of 

the advanced metering system to record the values of voltages and current in specified 

time intervals [56, 57].   

2.4 Harmonic Power Flow 

The mathematical model for harmonic power flow studies is discussed next. The series 

parameters are conductors/cables, transformers. LTCs are modeled using the ABCD 

parameters. The conductors and cables are modeled using π-equivalent circuits. These 

are designed to include all the types i. e., single-phase, two-phase, three-wire three-

phase, and four-wire three-phase connections. 

The model of three-phase transformers depends on the connection type (wye or delta). 

In the distribution system, voltage regulating transformers are equipped with LTCs. 

Shunt components like loads are modeled for individual phases separately to represent 

the unbalanced three-phase loads since single phase loads are very common in 

distribution feeders. For loads, constant current loads are considered. For each of the 

series element, a set of equations based on the ABCD parameters have been used. 

These relates to three-phase voltages and current of the sending end and receiving end 

for each harmonics. These are as follows:  

                            �
𝑉𝑙,𝑠ℎ

𝐼𝑙,𝑠ℎ
� =  �𝐴

ℎ 𝐵ℎ
𝐶ℎ 𝐷ℎ� �

𝑉𝑙,𝑟ℎ

𝐼𝑙,𝑟ℎ
�                                                            (2.1)                                 
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The ABCD parameters of all the elements except the LTCs are constant. In case of 

LTCs these parameters depend upon the tap position during the time of operation. The 

following sets of equations are used to represent the A and D matrices for each LTC: 

             𝐴𝑡ℎ = �
1 + ∆𝑆𝑡𝑡𝑎𝑝𝑎,𝑡 0 0

0 1 + ∆𝑆𝑡𝑡𝑎𝑝𝑏,𝑡 0
0 0 1 + ∆𝑆𝑡𝑡𝑎𝑝𝑐,𝑡

�                             (2.2)         

                             𝐷𝑡ℎ = 𝐴𝑡−ℎ                                                                 (2.3)   

These tap variables𝑡𝑎𝑝𝑎,𝑡, 𝑡𝑎𝑝𝑏,𝑡, 𝑡𝑎𝑝𝑐,𝑡 take only integer values.  

In this study, only the constant power loads have been considered. The next equation is 

used to represent the wye-connected loads on a per-phase basis.  

                              �𝐼𝑝,𝐿
ℎ ��∠𝑉𝑝,𝐿

ℎ − ∠𝐼𝑝,𝐿
ℎ � =  �𝐼0𝑝,𝐿

ℎ � ∠𝜃𝑝,𝐿
ℎ                                        (2.4) 

For the delta-connected loads and capacitor banks, line-to-line voltages and currents are 

required. In (2.5) line variables are replaced by line-to-line variables. The equations for 

currents and voltages which can properly relate line-to-line variables to line variables 

are as following: 

                                     �
𝑉𝑎,𝑏
ℎ

𝑉𝑏,𝑐
ℎ

𝑉𝑐,𝑎
ℎ
� = �

1 −1 0
0 1 −1
−1 0 1

� �
𝑉𝑎ℎ

𝑉𝑏ℎ

𝑉𝑐ℎ
�                                        (2.5) 

 

                                           �
𝐼𝑎ℎ

𝐼𝑏ℎ

𝐼𝑐ℎ
� = �

1 −1 0
0 1 −1
−1 0 1

� �
𝐼𝑎,𝑐
ℎ

𝐼𝑏,𝑎
ℎ

𝐼𝑐,𝑎
ℎ
�                                         (2.6) 

To represent the current balance in each phase and node, after the integration of wind 

and PEV as shown in Figure 2.2, the following equation is used [58]:       

                              𝐼𝑤𝑝,𝑛
ℎ + ∑ 𝐼𝑝,𝑙,𝑟

ℎ
𝛼 = ∑ 𝐼𝑝,𝑙,𝑠

ℎ
𝛽 + ∑ 𝐼𝑝,𝑙

ℎ1
𝐿 + 𝐼𝑒𝑣𝑝,𝑛

ℎ2                          (2.7) 
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Figure 2.2: The Network after Integration of WGs and PEVs. 
For the harmonic power flow calculation a decoupled approach is considered. The 

proposed Decoupled Harmonic Power Flow (DHPF) is justified due to the acceptable 

accuracy of the technique. Most of the industrial distribution systems consist of a large 

number of linear and non-linear loads. If the harmonic couplings are considered, then it 

may cause convergence and memory storage problems but the results will be improved.  

At harmonic frequencies, the system is modeled in the presence of the passive elements 

and harmonic current sources. The related admittance matrix is modified with the 

accordance to the harmonic frequency. Due to harmonic current injections into the 

system, the non-linear loads are modeled as current sources. Modeling of the 

fundamental and the ℎ𝑡ℎ harmonic current of nonlinear load connected at node n is 

given by the following equations: 

                                             𝐼𝑛1 = [(𝑃𝑛 + 𝑗𝑄𝑛)/𝑉𝑛1]∗                                              (2.8)  

                                                   𝐼𝑛ℎ = 𝐶(ℎ)𝐼𝑛1                                                         (2.9)                                                                                                                                                                        

The total harmonic distortion of voltage (𝑇𝐻𝐷𝑣) and current (𝑇𝐻𝐷𝑖) are defined as, 

[21, 58] 

                           𝑇𝐻𝐷𝑣 = �(∑ |𝑉𝑛ℎ|213
ℎ=2 )1/2

|𝑉𝑛1|� � × 100%                               (2.10)        
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                                  𝑇𝐻𝐷𝑖 = �(∑ |𝐼𝑛ℎ|213
ℎ=2 )1/2

|𝐼𝑛1|� � × 100                                  (2.11) 

In the equations (2.10) and (2.11), upto 13th harmonics are considered, as the harmonic 

injection by WGs and PEVs are negligible beyond 13th harmonics.  

2.5 Optimization 

Optimization can be defined as the process of obtaining a set of solutions for a certain 

set of variables, which forms user defined objective function. The solution can be 

obtained under the condition of some user defined constraints. In several engineering 

processes, it is very common to find a minimized or maximized solution for a certain 

function under the subject of decision variables. Through the optimization, it is easy to 

understand the conditions for yielding the minimized or maximized solution of the 

process. The set of values that can minimize or maximize the objective function is 

called an optimal solution. The optimization is generally defined as the minimized 

solution of the objective function, since it is same as maximization of the negative of 

the same function. The optimization problems normally arrive at either local and/or 

global optimum solutions depending upon the nature of the problem, solution 

techniques, constraints and the initial guess. 

The mathematics behind the optimization problem is comprised of a objective function 

which is to minimized or maximized. These objective functions are set to a number of 

different constraints which is as follows: 

Minimize:                                𝑓(𝑥)                                                                        (2.12) 

Set of variables:                 𝑥 =  

⎝

⎜⎜
⎜
⎛

𝑥1
𝑥2
𝑥3.
.
.
𝑥𝑛⎠

⎟⎟
⎟
⎞

                                                                   (2.13) 
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Subjected to:                        𝑔𝑚(𝑥) = 0;      𝑚 = 1,2, … … . . , 𝑙                               (2.14) 

                                             ℎ𝑘(𝑥) ≤ 0;      𝑘 = 1,2, … … . . , 𝑝                                (2.15) 

Here, 𝑓(𝑥) is user defined objective function and 𝑥 is the solution set which user is 

trying to obtain through optimization problem. 𝑛 is the number of variables.  𝑔𝑚(𝑥) 

and ℎ𝑘(𝑥) are called equality and inequality constraints respectively. Based on the 

objective function and constraints, the problem can be linear or non-linear of nature. 

The constraints and the number of variables are not needed to be related. These types 

of problems are defined as constrained optimization problem.  

The nature of the optimization problems is basically divided in two large areas: Linear 

Programming (LP) and Non-Linear Programming (NLP) as shown in Figure 2.3. The 

LP is defined on the basis of linear objective function and the linear equality and 

inequality constraints.  

 

Figure 2.3: Hierarchy of Solution Techniques. 
In the LP problems, the optimal solution is at one of the vertices of polyhedrons and 

the inequalities define the polyhedron solutions. Normally through the simplex method 

and interior-point method the LP solutions can be solved. In case of the simplex 

method, the polyhedron is built through a systematic process. The vertices are 
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generated and tested in a systematic way. An arbitrary vertex is taken as the candidate 

solution, and the candidate solution is moved iteratively from one vertex to another. It 

is done in order to achieve the maximum improvement of the objective function [59]. 

For the interior-point method the candidate solution goes through the interior of the 

polyhedron to reach a vertex which is maximum improvement of the objective 

function [60].  

In the optimization problem equation (2.12)-(2.15), if all the equations are linear and if 

the set of variables consist of at least one integer variable, then the nature of the 

problem is categorized as Mixed Integer Linear Programming (MILP) problem. For 

MILP problem the solution process becomes more complex as it has integer variables 

[59]. The cutting plane technique, Branch and Bound (B&B) method is normally used 

to solve these types of problems. For the cutting plane technique constraints are being 

added to the MILP problem to reach vertex which has feasible space for integers. For 

the B&B method large set of useless candidates are discarded with an intelligent 

enumeration of candidate solutions by using the lower and upper bounds of the 

constraints in the problem. Also if any variable in the NLP problem is an integer then 

it is called the MINLP [60, 61]. 

2.6 Optimization Solution Techniques 

As shown in Figure 2.3, MINLP problem can be solved in different ways. GA is an 

evolutionary algorithm technique to obtain a set of optimized solution of a given 

problem. This modern heuristic search technique can be used for modeling, 

forecasting and simulation. GA starts with a population of candidates which searches 

several places of a solution space in a simultaneous and adaptive nature. The GA is the 

most used method to solve combinatorial optimization problems. The combinatorial 

optimization requires the use of enumeration technique like dynamic programming, 

B&B which usually requires a large number of initial solutions.  
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In case of heuristic optimization methods there are some methods which use local 

search and others use a non-convex optimization approach. Some of the common 

methods which go beyond the local search are Simulated Annealing (SA), Tabu 

Search (TS), and Particle Swarm Optimization (PSO). Short-time adaptive memory is 

used in TS which excludes the possibility of cycling. It searches in the neighborhood 

with local optima avoidance. In case of SA the approach of the search uses a 

probability function that allows the move to a worse solution in a decreasing 

probability.  The SA and GA both use a memoryless search technique. The SA and 

GA methods do have the proof of convergence [60, 61]. The main problem with SA 

procedure is that it has a slower asymptotic convergence rate with respect to the 

temperature which determines the cooling schedule. For TS methods the experience-

based fine-tuning of a large collection of parameters determines its efficiency. It uses a 

systematic search in the neighborhood. Both SA and TS take multiple solutions to the 

next iteration.  

The initial population of the GA is encoded as a binary string of fixed length. This is a 

direct analogy of chromosomes. The initial population is generated randomly and after 

that it is being used in an iterative process throughout the algorithm. After each 

iteration, a new generation is formed and if these solutions are better than the initial 

population in terms of the objective function and constraints, then these replaces the 

initial population until and unless an optimal solution is reached. The procedure has 

three stages: selection, crossover, mutation. The process has been depicted through a 

flowchart in Figure 2.4. Following the sequence in flowchart, with the evaluation of 

each string, a fitness value is being assigned after the initial population is created. 

Through the objective function, the fitness of a string is defined with respect to other 

present members of the population. The encoded chromosomes are the input in the 

fitness function. The fitness function considers the constraints defined by the user and 

also incorporates different subojectives. Selection normally sets up the convergence 

characteristics of GA problems. With higher pressure of selection the degree of 
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choosing the best individual is always high [62]. The convergence rate of GA is also 

directly proportional with the selection pressure. With the selection pressure, it will 

determine whether the optimization will take longer time to converge. Different types 

of selection schemes such as tournament selection, truncation selection, proportional 

selection, linear ranking selection are available in the GA. By selecting bits randomly 

from the pool offspring(s) are generated.  

 

Figure 2.4: Sample Flowchart of Evolutionary Algorithm. Figure adapted from figures 
in K. Y. Lee et.al. [63]. 
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In crossover the bits of offspring(s) are exchanged between themselves. The crossing 

of the bits can be in one point or in multiple points. Usually, GA employs all types of 

crossover.  

In mutation, the binary bits of the offspring(s) are flipped. A mutation constant is 

normally set up at the beginning of this process. Normally this constant value gets 

compared with a random number and if the mutation constant is smaller than the 

random number then the bits are flipped [63].  

2.7 OpenDSS 

The Open Distribution System Simulator (OpenDSS) is a comprehensive electrical 

system simulator tool developed by the Electric Power Research Institute (EPRI) for 

studies of utility distribution systems. This software refers to the open source 

implementation of Distribution System Simulator (DSS). OpenDSS has an in-process 

Component Object Model (COM) server which acts as an interface with a variety of 

existing software. It can be implemented as a stand-alone executable program driven 

by various programming tools.  

In OpenDSS most of the codes are written in a text based script. Also, as the 

OpenDSS is solely made to design distribution systems, it gives the developer more 

windows of accuracy and reliability for designing distribution systems. In OpenDSS, 

it has command and syntax for each distribution system components which can be 

given in any order. The compiler takes every line or parameter individually and then 

develops the model of interconnected distribution systems. A new command is used to 

add a new circuit element. This command can confirm the registered class and then 

determines the type of elements to add.  

In this program most of the steady-state i. e., frequency domain analyses can be done 

for utility distribution system for planning and analysis purposes. With the advent of 

smart grid technology and deregulation in market, several complexities would arise 
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which the OpenDSS can address. The OpenDSS has features to support different 

studies in distribution generation needs, energy efficiency analysis on power delivery, 

harmonic analysis, smart grid applications, etc. Also the modeling feature of 

OpenDSS can be applicable for annual load and generation simulations, probabilistic 

planning studies, protection system simulation, storage modeling, distribution state 

estimation, geomagnetically-induced currents and general multi-phase AC circuit 

analysis.  

The circuit in the OpenDSS can be solved by different built-in solution models like 

daily power flow, harmonics, dynamics, montecarlo fault study etc. As these solvers 

are given in OpenDSS, the user just need to design the system in OpenDSS and call 

right solver to obtain the results. With the presence of COM interface, the user can 

execute different solution techniques in an external program and can transfer data of 

the system to utilize those in the program. It can be entirely driven by official tool 

through VBA or other programs like Python, MATLAB, R which can handle COM. It 

also increases the chance of better analysis of the system as well as excellent graphics 

for displaying results. Also the user can develop DLLs, so that the DSS can perform 

the analysis of all aspects of distribution system from a user built interface [64].  

2.7.1 Harmonic Modeling in OpenDSS 

For harmonic studies, the load model in OpenDSS is originally designed as the norton 

equivalent. The current source in the model, as shown in Figure 2.5 is set to the value 

of the fundamental current𝐼𝑓𝑢𝑛𝑑 times the multiplier of the spectrum object, which is 

associated with the load for the desired frequency. In the load equivalent admittance, 

𝐺 + 𝑗𝐵, the B part is adjusted with the frequencies. This type of model is sufficient for 

the cases where the load object is being retained for the harmonic analysis.  
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Figure 2.5: Initial Load Model in OpenDSS. 
In the aforementioned models at the time of power flow solution, the load objects 

would automatically get converted and the system would be solved for all the 

frequencies present at the spectrum objects. Since at frequencies, where the system is 

near resonance the driving-point impedance looking into the system is very high. Thus, 

a significant portion of the harmonic current gives a rise in the harmonic content which 

also is the cause of significant damping of the resonance. Also, if the shunt admittances 

are added in the model, then the values of voltages will appear higher in near resonant 

conditions. 

To avoid these issues, the model is modified in such a way that the user can define 

what percentage of load is to be modeled as a series R-L and the remainder would be 

automatically considered as the parallel R-L as shown in Figure 2.6. This has a 

significant impact on controlling the amount of damping in harmonic solutions. 

Generally, the resistance in distribution system has little to do with the effect of flow of 

harmonic currents when the system is not in resonance. However, the damping of 

harmonic resonance by resistance of loads, lines and transformers can make a 

significant impact on the level of harmonic current and voltage distortions predicted by 

the models. Substation transformers and larger transformers which supply the industrial 

consumers have a relatively high X/R ratio of 10 or greater at fundamental power 

frequency. Although distribution service transformers which serve the residential loads 

can have a much lower value of X/R.  
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Figure 2.6: Updated Harmonic Load Model in OpenDSS. 
In OpenDSS, without any modifications of the winding resistance R, the equivalent 

X/R will increase in proportion to the harmonic. The apparent resistance of 

transformers increases with frequency at a rate proportional to the design.  The chief 

component of this increase comes from the stray eddy current losses which is quite 

significant in transformers that have conductors with large cross sectional areas. Also, 

in windings, design with conductors in parallel can have circulating currents that yield 

and cause effective increase in R. 

OpenDSS works with a solution method for fundamental frequency power flow since 

it performs the analysis in the frequency domain and does not work in the 

electromagnetic transients or time domain studies. Solving power flows occur in 

OpenDSS for various modes like snapshot in time, daily and yearly mode. The 

modeling of distribution systems can be done in OpenDSS for selected time periods at 

various intervals. Also harmonic flow analysis is one of the most important aspects of 

OpenDSS. There is a separate mode i. e., "harmonics mode" for doing harmonic 

studies in OpenDSS for all kind of distribution networks.      

Harmonics are mainly periodical waveforms or signal whose frequency is a multiple 

of the frequency of the reference waveform or signal. Harmonics occur due to the 

periodic distortion of the voltage and current waveforms. This happens due to 

nonlinear devices typically loads.  Harmonic analysis of a system in OpenDSS is one 



 

27 
 

of its built-in functions. It implements the linear admittance solution. The linear 

system models are solved at each frequency of interest for voltages and currents. The 

system admittance matrix is built from each component of the model. The method is 

based on the nodal admittance matrix harmonic solution model. 

In OpenDSS the harmonic analysis is done in two steps. First the power flow is carried 

out in the model and the solution must converge before starting the next step. Next, the 

harmonic sources are activated with proper magnitude and phase angle. The "solve 

mode= harmonics" solves the system for each frequency defined in any circuit 

elements [64-66].  

2.7.2 Component Modeling in OpenDSS 

Transformer 

The transformers are modeled as a three-phase step-down transformer for this work. A 

substation transformer connected in delta-wye is used to bring down the voltage of 69 

kV to 24.9 kV. Another transformer is used between node 832 and node 888 to reduce 

the voltage level of 24.9 kV to 4.16 kV [64].  

Regulator 

The regulator control objects are designed in OpenDSS to emulate the LTC control or 

voltage regulator. It is normally attached to only one of the windings in the 

transformer to adjust the tap in that winding but could be used for control of the taps in 

other windings. It also has a line drop compensator model which requires resistance, 

reactance, CT ratings and PT ratio as input parameters [64]. 

Overhead and Underground Line Modeling 

In OpenDSS, both the overhead and underground lines are required. In case of the 

underground cable All Aluminum (AA) concentric cable of 15 kV has been used. Also 
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tape shielded AA cable of 15 kV has been used. In case of overhead conductors apart 

from AA Copper Conductor (CU) and Aluminum-Conductor Steel-Reinforced 

(ACSR) cable have been used [64].  

 Line Code 

The line code objects of the OpenDSS are general library objects. This also contains 

the impedance characteristics for the lines and cables. Through the series impedance 

matrix and nodal capacitive admittance matrix, the impedance of a line is described. 

These matrices can be specified directly or with the use of symmetrical component 

data it can be generated. The line code also performs a kron reduction. It can reduce 

the last conductor which is also the neutral conductor in the impedance matrix. If the 

impedance is not specified as a matrix rather as a symmetrical component, this 

function does not work as the reduction is already assumed in the symmetrical 

component [64].  

Load 

In OpenDSS the load is modeled as current injection for this case. In case of wye-

connected load the primitive Y matrix contains only the impedance which is between 

the load and the ground. The load is defined as kW, kvar and kVA. The base load can 

be specified by either two of the mentioned three parameters. There are eight load 

models specified in OpenDSS. 

1. Normal load-flow load- Constant P and constant Q 

2. Constant Impedance Load 

3. Constant P and quadratic Q 

4. Linear P and quadratic Q 

5. Rectifier Load- Constant P and constant current 
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6. Constant P; Q fixed at nominal value 

7. Constant P; Q fixed impedance at nominal value 

Both spot and distributed loads have designed for the model. Also, a spectrum 

component can be defined which determines the harmonic current magnitude and 

angle of that load. Normally when spectrum is not defined the load takes a default 

value [64]. 

Generator 

The generator works as the power conversion element same as the load in OpenDSS. 

The rating of generator is defined by its kW and kVA. The generator works as 

negative load at the time of power flow studies. At the time of harmonic study the 

generator gets converted to a voltage source. A duty cycle loadshape can be separately 

defined for the generator. At the time of modeling wind generators, a separate 

normalized loadshape have been defined [64].  

2.8 Summary 

In this chapter a review of distribution system components has been presented. The 

software that has been used to design the distribution system is discussed. 

Mathematical modeling of harmonic power-flow is discussed briefly. A review on 

optimization and different optimization techniques have been presented as well.  
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Chapter 3 

Impact of Plug-in Electric Vehicles (PEVs) and Wind 

Generators (WGs) on Total Harmonic Distortion (THD) 

3.1 Introduction 

This chapter presents the impacts on harmonics of a distribution system when PEVs 

and WGs are integrated into the system. In Section 3.2, parameters related to IEEE 34 

node test feeder system are discussed briefly. In Section 3.3 and 3.4, the harmonic 

modeling of PEVs and WGs have been analyzed. In Section 3.5, different case studies 

with or without the presence of WGs and PEVs have been presented to show the 

impacts of PEVs and WGs on the harmonics of the system.  

3.2 IEEE 34 Node Test Feeder 

To demonstrate the propose research objectives, IEEE 34 node test feeder system have 

been considered. Figure 3.1 shows the one line diagram of the IEEE 34 node test 

feeder system. In Figure 3.1, the numbers of crossbars on the feeders represent the 

number of phases in the IEEE 34-node test feeder. Following are the information 

about the test feeder: 

 The test feeder has a nominal voltage of 24.9 kV. 

 The substation is rated at 2500 kVA. 

 The network has very long distribution lines. 

 Multiple laterals are branching out from the main feeder which is single-phase 

and three-phase. This is representative of a rural network system which is able 

to incorporate distributed generation. 

 Test feeder has two voltage regulators to keep the voltage under prescribed 

limit. The regulators are connected at node 814 and 852, respectively. 
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 A substation transformer connected in delta-wye is used to step down the 

voltage of 69 kV to 24.9 kV. Another transformer is used between node 832 

and node 888 to step down the voltage level from 24.9 kV to 4.16 kV. 

 The system has both spot and distributed loads. 

 Shunt capacitors have been used at node 844 and 848 to improve the power 

factor by compensating reactive power [67].  

 

Figure 3.1: IEEE 34 Node Test Feeder System. 

More information and other data of IEEE 34 node test feeder system are provided in 

the Appendix.  

3.3 PEV Model with Harmonics 

The impact of integrating PEVs in the grid is becoming a matter of concern. With the 

extensive presence of PEVs in residential and distribution loads, the smart grid 

provides a unique opportunity on energy storage systems. Normally the PEV battery 

has a capacity range of few kWh to over 50 kWh [68-71]. In Table 3.1 a comparison 

of recent PEVs battery capacity have shown.  
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Table 3.1: Battery Capacity of Recently Released PEVs [53]. 

PEV Models Battery Capacity (kWh) 

Mitsubishi iMiev 

Tesla Roadster 

GM Chevrolet Volt 

Nissan Leaf 

16 

54 

16 

24 

 

Most of the PEVs have multiple charger models allowing slow to rapid charging 

because of the time constraint similar to filling the tank of a fuel based car. Lithium-

ion batteries are mostly used because of their lightweight, energy dense and rapid 

charging capability. To recharge these batteries with a suitable battery charger, it will 

take approximately 10 minutes with 95% of full charge. For example, in Australia the 

recently released Mitsubishi iMiev PEV gets charged from home from 240V/15A 

power supply. However, for rapid charging it is required to install a special rapid 

power battery charger. In case of the iMiev a quick charging facility using a special 

socket is offered. It will get charged from a rapid charge unit such as those installed in 

charging stations [53]. 

For this work, the PEV loads have been calculated based on the IEEE 34 bus system 

base loads. The rated power of PEV is taken as 8.8 kW for the studies. It is more 

reasonable to assume that level-2 charging infrastructure is helpful for residential areas 

as level-1 charging is mostly slow. Also level-3 charging is the fastest but it is more 

expensive. So, it is safer to assume usage of 220V/40A [72].   

It can be assumed that the percentage of residential load (𝑁𝑅𝐿) in the residential mix is 

30% as reported in [73], the average monthly electricity consumption is 1500 kWh, so, 

for a residential customer the average hourly electricity load will be 2.0833 kW. If the 

total load at a particular node is 𝑥 kW then the number of the residential load will be 

computed using the following equation [2]: 
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                                               𝑁𝑅𝐿 = 0.3 × 𝑥
2.0833

                                                        (3.1) 

According to aforementioned calculation the load of the PEV (𝑃𝐸𝑉𝐿𝑂𝐴𝐷) will be: 

𝑃𝐸𝑉𝐿𝑂𝐴𝐷 = 𝑁𝑅𝐿 × 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑃𝐸𝑉 𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑅𝑎𝑡𝑒𝑑 𝑃𝐸𝑉 𝑃𝑜𝑤𝑒𝑟                        

(3.2) 

The typical harmonic current content of PEV's which have been obtained from [21, 74] 

has been shown in Table 3.2. 

Table 3.2: Line Current Harmonic Content of PEV Charger [21, 74]. 

Harmonic 

order 

Magnitude 

(%) 
Angle (deg.) 

1 100 -26 

5 25 -94 

7 17 -67 

11 9 -67 

13 5 -46 

 

3.4 WG Model with Harmonics 

In wind farms harmonics are generated due to the power electronic components 

present in the wind power generation system. In case of the WG, the harmonics 

generated includes the inherent harmonic produced by generator system and the 

harmonic generated through the excitation system. The inherent harmonic component 

produces the air-gap space harmonic magnetic potential. Also sinusoidal pulse width 

modulation (SPWM) inverters are used in wind turbines to provide the AC excitation. 

The output voltage of the SPWM inverter has a large number of harmonics which gets 
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amplified by the motor air-gap magnetic field in the stator ultimately posing an 

adverse impact in the system [12]. 

Using the usual cube law equation, the mechanical output power of the wind turbine is 

calculated as; 

𝑃𝑚 = 0.5𝜌𝐶𝜌𝐴𝑈𝑤3𝑊                                              (3.3) 

Here, 𝐶𝜌 is the power coefficient. It is expressed as a function of tip speed ratio λ and 

blade angle. 𝜌 is air density, 𝐴 is the wind turbine rotor swept area and 𝑈𝑤 is the wind 

speed.   

The tip speed ratio λ is; 

𝜆 = 𝑟𝜔𝑚
𝑈𝑤

                                                        (3.4)   

Here 𝑟 is the rotor speed, and 𝜔𝑚 is shaft's mechanical angular speed. 

The power coefficient ratio is; 

𝐶𝑝 = 1
2

(𝜆 − 5.6)𝑒−0.17𝜆                                                      (3.5) 

The optimum power of variable speed wind turbine with pitch control is obtained by 

applying appropriate conditions. The maximum power and optimum generator speed 

are respectively; 

𝑃𝑚 𝑚𝑎𝑥 = 𝑘𝑝𝑈𝑚3                                                   (3.6) 

𝜔𝑚 𝑜𝑝𝑡 = 𝑘𝑚𝑈𝑚                                                (3.7) 

Here 𝑘𝑝 and 𝑘𝑚 are wind turbine constants determined from wind turbine 

characteristics [75].  

Wind turbine doesn't have a proper start/stop schedule, which generates harmonic 

current. Also, new harmonics are generated when the low order harmonics are 



 

35 
 

connected with existing low order harmonics of power system. In unbalanced power 

system, due to the presence of negative sequence components, low order harmonics 

are being generated. The step-up transformer of wind farm has a magnetizing current 

waveform which results in the odd harmonics. The core saturation, nonlinear 

magnetization curve, design considerations also contribute in harmonic generation 

[12].  

There are various types of power electronic components present in a wind power 

generation system. The electronic converters in wind turbine bear power transmission, 

load switching, etc. At the time of their operation, these will cause waveform 

distortion in the grid voltage and current which leads to major harmonic contribution. 

At the time of WGs operation, the converter feeds a large amount of current into the 

network. Although the self-generated harmonics are low in WGs, the introduction of 

these electronic components brings a number of changes in the waveform patterns [2]. 

The current injections of wind farm in p.u. based on 100 MVA is given in Table 3.3 

[76]. 

Table 3.3: Current Content in Harmonic Injections of WG [76]. 

Harmonic Magnitude (p.u.) 

2 0.000183 

3 0.000147 

4 0.00011 

5 0.00077 

6 7.33E-05 

7 0.00033 

8 3.67E-05 

11 0.000293 

13 7.33E-05 

25 3.67E-05 
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45 3.67E-05 

47 0.00011 

 

3.5 Case Studies 

For this work, an uncoordinated PEV-WG charging system is studied. Three different 

levels of PEV penetration schemes have been presented. For the first part, the low 

penetration scheme is studied, where the penetration level of the PEV in the grid is 

30%. In the next two parts moderate and high penetration has been studied, where the 

PEV penetration is 50% and 100%, respectively. In each penetration level three 

different type cases are considered. The results from the each case study have been 

compared to evaluate its usefulness. 

The first case is the base case where only base loads and the PEV loads are present. 

The system loads of the IEEE 34 node test system is designed in the base frequency i. 

e., 60 Hz. PEVs are designed as the non-linear loads with no reactive power. For the 

second case, one wind generator of 2MW is added in node 848 with the presence of 

PEV and system loads as shown in Figure 3.2. For the last case study, two more WGs 

of 2MW have been added in node 834 and node 890 in addition with the previous WG 

present in node 848 as shown in Figure 3.3. To measure the harmonic voltages and 

currents, four monitors have been placed in the different areas of the test system. In 

OpenDSS the monitors record the voltages and current harmonics, which can be 

placed in any component of the system.  For this work monitor M1 is placed in the 

line which is connecting node 844 and 846. Similarly monitors M2, M3, M4 have 

been placed in the lines 828-830, 808-806 and 834-860 respectively, as shown in 

Figure 3.2 and 3.3, respectively.  
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Figure 3.2: IEEE 34 Node Test Feeder System after the Addition of One WG.  

 

 

Figure 3.3: IEEE 34 Node Test Feeder System after the Addition of Three WGs. 
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3.5.1 Low PEV Penetration 

For the first case study, the low penetration of PEV i. e., 30% has been considered. The 

voltage and current THDs for this is shown in Table 3.4 and 3.5 respectively. In Case 1 

and Case 4, only the base and PEV loads have been considered. In Case 2 and Case 5, 

one WG has been integrated in node 848 as shown in Figure 3.2. In Case 3 and Case 6, 

two more wind turbines have been added in node 834 and 890 as shown in Figure 3.3. 

The load of the PEV has been calculated by using the same procedure given in Section 

2.4. 

It can be seen from the THD value that even without WGs, the voltage THDs is 

subsequently low i. e., less than 5% and it is also under the limits prescribed by IEEE 

[77]. So, it can be understood that the lower PEV penetration does not make a 

significant impact on the voltage THDs. On the other hand, current THD values are 

subsequently high for feeder sections those are away from the substation source. 

However, with the introduction of consecutive WGs, it can be seen that current THD 

value has been gradually reduced in the range of 2% to 3%. 

Table 3.4: Phase to Phase Voltage THDs for Low PEV Penetration. 

Case 

Studies Branch THD 𝑽𝒂𝒃 (%) THD 𝑽𝒃𝒄 (%) THD 𝑽𝒄𝒂 (%) 

Case 1 

(PEV) 

844-846 4.62 4.64 4.14 

828-830 2.73 2.77 2.52 

808-806 0.09 0.09 0.08 

834-860 4.58 4.60 4.11 

Case 2 

(PEV+

1 WG)    

844-846 3.81 4.06 3.74 

828-830 2.60 2.71 2.53 

808-806 0.11 0.11 0.10 
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 834-860 3.78 4.03 3.71 

Case 3 

(PEV+

2 WG)   

844-846 3.99 4.58 4.13 

828-830 2.96 3.39 3.11 

808-806 0.13 0.14 0.14 

834-860 3.95 4.54 4.09 

 

Table 3.5: Current THDs for Low PEV Penetration. 

Case 

Studies Branch THD 𝑰𝒂 (%) THD 𝑰𝒃 (%) THD 𝑰𝒄 (%) 

Case 4 

(PEV) 

844-846 25.75 24.20 23.19 

828-830 8.04 7.22 6.16 

808-806 5.5 6.46 6.31 

834-860 6.41 3.43 6.09 

Case 5 

(PEV+1 

WG)   

 

844-846 2.81 2.90 2.59 

828-830 3.49 3.81 3.92 

808-806 4.42 4.29 4.14 

834-860 4.41 3.55 4.37 

Case 6 

(PEV+2 

WG)   

844-846 2.04 2.05 1.77 

828-830 2.31 2.32 2.23 

808-806 2.14 2.33 2.35 

834-860 3.35 3.53 3.79 

 



 

40 
 

3.5.2 Moderate PEV Penetration 

In moderate PEV penetration, the PEV penetration level is 50%. The THD of voltages 

and currents have been represented in Table 3.6 and 3.7 for all the six case studies 

from Case 7 to Case 12. As it can be seen from Table 3.6, for the Case 7, the value of 

voltage THD is around 6%. Both voltage and current THD has increased with the 

penetration. In case of Branch 808-806, the voltage THD values are less as it is closer 

to the substation transformer. When the distance of the lines is increasing from 

substation transformer, the THDs are getting worst. But in Case 8 and Case 9 for 

voltage THDs and in Case 11 and Case 12 for current THDs, after the introduction of 

the WGs, the THD values are substantially reduced. 

Table 3.6: Phase to Phase Voltage THDs for Moderate PEV Penetration. 

Case 

Studies Branch THD 𝑽𝒂𝒃 (%) THD 𝑽𝒃𝒄 (%) THD 𝑽𝒄𝒂 (%) 

Case 7 

(PEV) 

844-846 6.66 6.67 5.85 

828-830 3.88 3.98 3.54 

808-806 0.12 0.13 0.11 

834-860 6.61 6.61 5.80 

Case 8 

(PEV+1 

WG)   

 

844-846 4.37 4.65 4.15 

828-830 3.09 3.14 2.87 

808-806 0.13 0.13 0.12 

834-860 4.34 4.62 4.11 

Case 9 

(PEV+2 

WG)  

844-846 4.45 5.17 4.57 

828-830 3.32 3.83 3.45 

808-806 0.14 0.16 0.15 
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834-860 4.41 5.12 4.53 

 

Table 3.7: Current THDs for Moderate PEV Penetration. 

Case 

Studies Branch THD 𝑰𝒂 (%) THD 𝑰𝒃 (%) THD 𝑰𝒄 (%) 

Case 10 

(PEV) 

844-846 36.71 32.42 31.14 

828-830 10.06 8.78 7.18 

808-806 6.68 7.72 7.35 

834-860 9.69 5.07 8.85 

Case 11 

(PEV+1 

WG)  

 

844-846 3.35 3.57 3.06 

828-830 3.55 4.37 4.45 

808-806 5.59 5.30 4.75 

834-860 6.58 4.66 6.40 

Case 12 

(PEV+2 

WG) 

844-846 2.14 2.16 1.75 

828-830 2.72 2.69 2.5 

808-806 2.39 2.66 2.73 

834-860 4.84 4.53 5.21 

 

3.5.3 High PEV Penetration 

In this case maximum penetration level of PEVs is considered which is 100%. The 

voltage and current THD values have been shown in Table 3.8 and Table 3.9, 

respectively. Similar to the previous case studies Case 13 and Case 16 considers the 

base and PEV loads only. Case 14 and Case 17 is representing integration of one WG 
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with 100% PEV loads and its impact on voltage and current THDs. Similarly, Case 15 

and 18 represent integration of three WGs. 

As the PEV penetration level is 100%, it is expected that the PEV load will inject more 

harmonics into the system. In case 18, the values of the current THDs are almost 

around 50% from which is a clear indication that harmonics distortion gets worse. Also 

the voltage THDs in Case 13 have reached around 9.5%. However, by looking at THD 

values throughout the system, it is evident that near substation node the THD are less. 

Also, the THD value increases as we move away from the substation transformer.  

In Case 14 with the introduction of one WG the voltage THDs has been reduced to 5% 

and in Case 17 the current THD have been reduced in the range of 4% to 10%. So it 

can be seen that with proper sizing and location of WGs, the THDs can be reduced 

significantly. 

Table 3.8: Phase to Phase Voltage THDs for High PEV Penetration. 

Case 

Studies Branch THD 𝑽𝒂𝒃 (%) THD 𝑽𝒃𝒄 (%) THD 𝑽𝒄𝒂 (%) 

Case 13 

(PEV) 

844-846 9.61 9.54 7.82 

828-830 5.38 5.57 4.62 

808-806 0.16 0.17 0.14 

834-860 9.54 9.46 7.76 

Case 14 

(PEV+1 

WG) 

 

844-846 5.43 5.84 4.73 

828-830 4.19 4.04 3.53 

808-806 0.18 0.18 0.15 

834-860 5.40 5.80 4.62 

Case 15 844-846 5.91 6.80 5.84 
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(PEV+2 

WG) 
828-830 4.47 4.97 4.35 

808-806 0.19 0.20 0.19 

834-860 5.84 6.72 5.77 

 

Table 3.9: Current THDs for High PEV Penetration. 

Case 

Studies Branch THD 𝑰𝒂 (%) THD 𝑰𝒃 (%) THD 𝑰𝒄 (%) 

Case 16 

(PEV) 

844-846 50.26 38.70 37.75 

828-830 11.02 9.52 6.98 

808-806 6.67 7.913 7.12 

834-860 14.89 7.62 12.96 

Case 17 

(PEV+1 

WG) 

 

844-846 4.50 5.03 4.03 

828-830 3.43 5.98 5.93 

808-806 10.91 9.00 6.46 

834-860 10.20 6.37 9.56 

Case 18 

(PEV+2 

WG) 

844-846 2.59 2.73 2.07 

828-830 3.87 3.78 3.72 

808-806 3.72 3.99 3.96 

834-860 7.39 5.88 7.33 

 

In all the aforementioned case studies, it can be seen that irrespective of the PEV 

penetration, the introduction of three WGs can bring down the current and voltage 

THD values in less than 5%.  However as the process is still arbitrary, there is an 
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anomaly in the range and the process of bringing down the THD values. It can be seen 

in Case 15 of the voltage THDs is increased from Case 14 even with two additional 

WGs. This is happening as the selection of WG locations is completely random. 

It can be inferred from the aforementioned case studies that the introduction of WGs 

certainly helps to reduce the voltage/current THD values caused by the PEVs. 

However, the positioning and sizing of the WGs are making some differences in the 

THD profile of the system. So, it would be more acceptable if the process is more 

regular and can bring down the THD values in a systematic way. To do it in a more 

acceptable and systematic way, in the next chapter a GA based approach has been 

presented to reduce the voltage and current THD values of the system irrespective of 

PEV penetration or placement of the WGs. 

3.6 Summary 

In this chapter a brief description of test system has been presented. The harmonic 

modeling of both PEVs and WGs are discussed. Case studies depicting increased 

current/voltage THDs due to PEVs are presented. Also, a prospective mitigation 

technique to reduce the THDs due to PEVs by WGs is presented.  
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Chapter 4 

Mitigating THDs with WGs 

4.1 Introduction 

This chapter discusses about the GA technique applied to mitigate the voltage and 

current THDs using the WGs. The procedures and tools used for this technique have 

also been discussed in this chapter. In Section 4.2, the property of COM interface 

between MATLAB and OpenDSS is briefly discussed. In Section 4.3, the details of 

used GA method applied for this work have been presented. In Section 4.4, different 

case studies on voltage/current THDs, optimal sizing of WGs with different 

penetration of PEVs are discussed. In the end, a comparative study has been made to 

explain the usefulness of this technique. 

4.2 OpenDSS and MATLAB Interface 

OpenDSS is basically used to design the distribution system where MATLAB is used 

for the coding and execution purposes of the GA. As it have been mentioned in 

Section 2.7 OpenDSS and MATLAB has a built-in COM interface. So, this is used to 

make a data transaction from one software to the other. In the OpenDSS, mainly the 

IEEE 34 node test feeder system has been designed and in the MATLAB the GA 

technique has been employed to mitigate the voltage and current THDs.  

In OpenDSS, the various components required to build a standard distribution system 

has been modeled. For the modeling of this particular system as shown in Figure 4.1, 

transformer, overhead lines, underground cables, loads, capacitor, regulator and WGs 

have been designed in OpenDSS. There are two types of load i. e., base loads and PEV 

loads, which have been modeled in the system. Both the loads have been assigned 

with its individual harmonic characteristics. A normalized loadshape has defined the 
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characteristics of WGs. The voltage and current limits has been defined for each phase 

and line.  

The structure of this work is dependent on the interaction between both software. 

Initially MATLAB calls the OpenDSS distribution system model to assign input 

values for particular variables. The user can call the active circuit of the OpenDSS in 

between MATLAB program execution as well. Then on the users request OpenDSS 

solve different types of power flow to give the voltage and current data. 

 

Figure 4.1 Com Interface between OpenDSS and MATLAB. 

These extracted data is then used in the MATLAB code to solve optimization using 

GA. In the end, the optimally sized WG output power and minimization of voltage and 

current THDs have been obtained. 
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4.3 Proposed Genetic Algorithm (GA) for Optimization 

A GA based method similar to the one discussed in Section 2.5 and Section 2.6 has 

been implemented to minimize the voltage and current THD deviation. A brief 

overview of the generic GA based solution method has already been presented in the 

aforementioned sections. In Figure 4.2, the operational algorithm of the GA based 

technique has been shown for better understanding of the procedure. Though mainly 

the programming of GA has been done in MATLAB through the COM interface, 

OpenDSS has been called several times during this process. 

The GA can be divided in four processes. These processes are following: 

• Initial Population:  A population pool of total 20 individual, with 34 variables 

in each individual is considered for each case. These individuals are the output 

power of the WGs, which are to be assigned in the OpenDSS through the help 

of COM interface. Each individual population is also considered as the feasible 

solution of the problem. With each individual or the WG output OpenDSS 

solves the three-phase harmonic flow to generate current and voltage 

harmonics for each individual lines and phases of the IEEE 34 node test feeder. 

For each iteration, these 34 variables should satisfy the pre-defined constraints: 

voltage limit and current loading limits. If not, then from the MATLAB, a 

random set of 34 values, which represents WG outputs should be send in the 

OpenDSS to investigate the feasibility condition. After the criteria check, each 

screened individual is stored in the initial population pool. Thus, the process 

has been iterated to develop a matrix of 20 rows and 34 columns, which is 

considered as the initial population pool, where row represents number of 

individuals and column represents number of variables. Each individual has 

been encoded into a binary number using 8 bits. These binary numbers are 

considered as chromosomes.  
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• Fitness Function: The fitness function shown in (4.1) and (4.2) is used to 

evaluate the fitness of the initial population and offspring(s) that will 

subsequently be generated. Any offspring value that does not satisfy the 

constraints is going to yield a very high value in fitness function using penalty. 

Here, the fitness function is the cumulative THD deviation from the base case 

calculated for all the lines and phases. In both the equation 𝑝 and 𝑚 has been 

used to represent the phases and branches respectively.  

                        𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑇𝐻𝐷) = ∑ ∑ �𝑇𝐻𝐷𝑣𝑚,𝑝 − 1�
2

𝑝𝑚                        (4.1) 

                        𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝐻𝐷) = ∑ ∑ �𝑇𝐻𝐷𝑖𝑚,𝑝 − 1�
2

𝑝𝑚                         (4.2) 

• Generation: The GA method is implemented for 1000 generations.  

• Constraints: The fitness function is evaluated in the presence of both linear and 

non-linear constraints. In case of linear constraints as shown in (4.3) – (4.5) the 

line model, KCL equation and the load modeling described in Section 2.4 has 

been taken.  

                                     �
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� =  �𝐴

ℎ 𝐵ℎ
𝐶ℎ 𝐷ℎ� �

𝑉𝑙,𝑟ℎ

𝐼𝑙,𝑟ℎ
�                                          (4.3) 
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𝐿 + 𝐼𝑒𝑣𝑝,𝑛

ℎ2                        (4.4) 

                               �𝐼𝑝,𝐿
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ℎ − ∠𝐼𝑝,𝐿
ℎ � =  �𝐼0𝑝,𝐿

ℎ � ∠𝜃𝑝,𝐿
ℎ                              (4.5) 

For non-linear constraints, shown in (4.6) and (4.7), the voltage limits and the 

current loading limits of IEEE 34-node test system has been taken. For voltage 

limits IEEE ANSI standards has been taken. However, the value of the upper 

and lower bound of voltages has been relaxed for the solution space of the 

optimization problem. The 𝑉𝑚𝑖𝑛 have been kept as 0.75 p.u and 𝑉𝑚𝑎𝑥 is kept as 

1.2 p.u. In case of current limits the ampacity of the conductor of the test 

system has been used. Here the value of  𝐼𝑚𝑎𝑥 is 119 A.  
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                                        𝑉𝑚𝑖𝑛 ≤ 𝑉𝑚,𝑝 ≤ 𝑉𝑚𝑎𝑥                                              (4.6) 

                                                  𝐼𝑚,𝑝 ≤ 𝐼𝑚𝑎𝑥                                                  (4.7) 

• Selection: The selection is a random process where from the population pool, 

two values would be selected. It is done from the encoded binary population 

pool. A probabilistic approach has been taken for this selection.  

• Cross-over: A two point cross-over has been done between the parent 

chromosomes. It is done in after the 5th bit to 8th bit. 

• Mutation: The mutation value is kept constant as 0.07. A random number is 

generated and compared with this value and if the random number is equal to 

or less than the mutation probability, then the bits in the chromosomes are 

flipped.  

• Offspring(s): Two sets of offspring(s) will be born from the parent(s). Each 

offspring is an array of 34 values, which are basically the WG outputs. The 

OpenDSS will again solve three-phase harmonic power flow to obtain the 

current and voltage harmonic value for each offspring. If the voltage and 

current constraints are satisfied then the fitness function will be calculated for 

these offspring(s).  

• Comparison and Update: In this part a comparison criteria between the fitness 

of parent(s) and offspring(s) would be set and if the criteria is successfully met 

then the parent values get replaced by the offspring values. As the main focus 

of this GA is minimization, if the fitness of the offspring(s) is lesser than the 

fitness of the parent(s), then it is deemed to have better fitness and the parent(s) 

from the pool will get replaced by the offspring(s). 
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Figure 4.2: Operational Flowchart of GA. 



 

51 
 

4.4 Case Studies 

In this section, three different case studies have been presented with varying level of 

penetration. As it was discussed in the last chapter, three different penetration levels 

are: 30% (low), 50% (moderate), and 100% (high). 

4.4.1 Low PEV Penetration 

In all the nodes of the IEEE 34 node test system, a WG is connected. For this case 

study, in low PEV penetration which is 30%, the GA has been applied to determine 

the optimal size of WGs at all the nodes, while reducing the THD values. The output 

power of the optimally sized WGs has been determined in kW as shown in Table 4.2. 

Also in Table 4.1 THD of phase to phase voltages of some selected branches has been 

shown.  In Figure 4.3, the characteristics of the GA fitness function have been shown. 

The minimization of the cumulative voltage THDs is depicted in Figure 4.3. The 

fitness function has been defined by percentage value. 

Table 4.1: THD of Phase to Phase Voltages for Low PEV Penetration. 

Branch THD 𝑽𝒂𝒃(%) THD 𝑽𝒃𝒄(%) THD 𝑽𝒄𝒂(%) 

844-846 2.39 2.96 2.92 

828-830 1.57 2.04 1.88 

808-806 0.13 0.15 0.14 

834-860 2.35 2.9 2.86 

 

From Table 4.1, it can be seen that the THDs of phase to phase voltages after the GA 

enabled optimization is less than 5% which is the standard limit set by the IEEE [77].  
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Table 4.2: Optimal WG Size for Voltage THDs in Low PEV Penetration. 

Node 
WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 

1 254.9 8 490.2 15 176.47 22 58.82 29 950.98 

2 372.55 9 1205.8 16 352.94 23 264.7 30 2323.5 

3 2450.98 10 950.98 17 88.24 24 617.65 31 1568.6 

4 303.92 11 715.69 18 1568.83 25 245.1 32 2294.1 

5 519.61 12 19.61 19 1833.33 26 2480.4 33 137.25 

6 215.69 13 1450.9 20 833.33 27 1950.9 34 2490.2 

7 1862.75 14 156.86 21 215.69 28 1382.3   

 

 

Figure 4.3: Minimization of Voltage THDs for Low PEV Penetration using GA. 

A similar kind of approach has been taken for the minimization of current THDs. In 

Table 4.3 and Table 4.4, the line current THD values and the optimal size of the WGs 
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are shown respectively. Also in Figure 4.4, the GA plot for minimizing the current 

THDs have been shown. The line current THD values of the selected branches in 

Table 4.3, are also below IEEE standard limit of 7% [77]. 

Table 4.3: THD of Line Currents for Low PEV Penetration. 

Branch THD 𝑰𝒂 (%) THD 𝑰𝒃 (%) THD 𝑰𝒄(%) 

844-846 3.33 3.42 3.91 

828-830 1.08 1.07 1.22 

808-806 0.37 0.34 0.42 

834-860 2.83 2.42 2.96 

 

Table 4.4: Optimal WG Size for Current THDs in Low PEV Penetration. 

Node 
WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 

1 655.69 8 436.08 15 800 22 781.18 29 781.18 

2 800 9 787.45 16 737.25 23 724.71 30 730.98 

3 420.39 10 410.98 17 765.49 24 727.84 31 178.82 

4 643.14 11 740.39 18 633.73 25 687.06 32 169.41 

5 78.43 12 730.98 19 746.67 26 3.14 33 90.98 

6 718.43 13 665.1 20 715.29 27 407.84 34 18.82 

7 768.63 14 737.25 21 567.84 28 743.53   
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Figure 4.4: Minimization of Current THDs for Low PEV Penetration using GA. 

 

4.4.2 Moderate PEV Penetration 

In the second set of case study moderate PEV penetration, i. e. 50% has been 

considered. The phase to phase voltage THD is in Table 4.5 for the selected lines. 

Similarly, in Table 4.6, the optimal size of WGs obtained after the implementation of 

GA has been shown. It can be seen that as the penetration level is increased, the GA 

has been able to limit the phase to phase voltage THD level within aforementioned 

limit of 5% [77]. The performance of GA to minimize the cumulative THD is shown 

in Figure 4.5. 
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Table 4.5: THD of Phase to Phase Voltages for Moderate PEV Penetration. 

Branch THD 𝑽𝒂𝒃(%) THD 𝑽𝒃𝒄(%) THD 𝑽𝒄𝒂(%) 

844-846 2.59 3.65 3.46 

828-830 1.57 2.36 2.03 

808-806 0.18 0.22 0.2 

834-860 2.54 3.56 3.37 

 

Table 4.6: Optimal WG Size for Voltage THDs in Moderate PEV Penetration. 

Node 
WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 

1 147.06 8 441.18 15 39.22 22 235.3 29 2049.02 

2 196.08 9 1490.2 16 529.41 23 333.33 30 2284.31 

3 352.94 10 1098.4 17 39.22 24 49.02 31 1039.22 

4 2225.5 11 205.88 18 2235.3 25 323.53 32 1774.51 

5 9.8 12 88.24 19 19.61 26 2313.73 33 509.8 

6 2323.53 13 1323.5 20 431.37 27 2303.92 34 2500 

7 284.31 14 294.1 21 774.57 28 1588.82   
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Figure 4.5: Minimization of Voltage THDs for Moderate PEV Penetration using GA. 

The results for current THD minimization are shown in Table 4.7 and 4.8. In Figure 

4.6, the GA plot for minimizing the current THDs is shown. In case of the current 

THDs, all the values are under the desired limit of 7% [77].   

Table 4.7: THD of Line Currents for Moderate PEV Penetration. 

Branch THD 𝑰𝒂 (%) THD 𝑰𝒃 (%) THD 𝑰𝒄(%) 

844-846 3.47 3.62 4.3 

828-830 0.87 0.88 1.05 

808-806 0.5 0.47 0.57 

834-860 3.36 2.81 3.73 
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Table 4.8: Optimal WG Size for Current THDs in Moderate PEV Penetration. 

Node 
WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 

1 627.45 8 250.98 15 800 22 756.08 29 194.51 

2 796.86 9 485.04 16 800 23 752.94 30 370.2 

3 269.8 10 31.37 17 793.73 24 539.61 31 272.94 

4 260.39 11 589.8 18 3.14 25 778.04 32 272.94 

5 31.37 12 771.76 19 448.63 26 3.14 33 285.49 

6 429.8 13 84.71 20 800 27 373.33 34 3.14 

7 762.35 14 762.35 21 285.49 28 3.14   

 

 

Figure 4.6: Minimization of Current THDs for Moderate PEV Penetration using GA. 
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4.4.3 High PEV Penetration 

In the last study, high penetration level of PEVs has been considered which is 100%. 

The increase of the harmonics for unmitigated cases has been shown in Chapter 3, 

Section 3.5.3 in Case 13 and Case 16. Through the implementation of GA, voltage 

harmonics have been suppressed below 5% in all branches. Table 4.9 and Table 4.10, 

represent THD of phase to phase voltages and optimal size of WGs. Figure 4.7, shows 

the performance of GA method. It can be seen that initial cumulative voltage/current 

cumulative THD deviation is higher than the previous case, but with successive  

Table 4.9: THD of Phase to Phase Voltages for High PEV Penetration. 

Branch THD 𝑽𝒂𝒃(%) THD 𝑽𝒃𝒄(%) THD 𝑽𝒄𝒂(%) 

844-846 3.72 4.04 3.73 

828-830 1.59 1.43 1.51 

808-806 0.24 0.28 0.26 

834-860 3.66 3.97 3.68 

 

Table 4.10: Optimal WG Size for Voltage THDs in High PEV Penetration. 

Nod

e 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 

Nod

e 

WG 

(kW) 

1 2245.1 8 1813.73 15 1186.27 22 2235.29 29 2421.5 

2 2264.7 9 2411.76 16 343.14 23 1196.08 30 2117.6 

3 2137.25 10 2470.59 17 2450.98 24 617.65 31 323.53 

4 1892.16 11 2460.78 18 1931.37 25 2215.69 32 990.2 

5 2127.45 12 2303.92 19 1803.92 26 19.61 33 254.9 

6 284.31 13 235.29 20 313.73 27 2245.1 34 196.8 

7 1666.6 14 1529.41 21 156.86 28 1725.5   
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iterations the THDS will come down under the IEEE limits. However over a range of 

1000 generations the THD deviation is minimized by almost 90%. 

 

Figure 4.7: Minimization of Voltage THDs for High PEV Penetration using GA. 

 

For the current THDs the performance of GA has been shown in Figure 4.8. The 

minimized THD values of currents in selected branches have been presented in Table 

4.11. Also the optimal size of WGs is given in Table 4.12. It can be seen the THDs in 

all the monitored branches are less than 7%. In Figure 4.8 the cumulative current THD 

deviation has been reduced by almost 83% over the range of 1000 iterations.  
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Table 4.11: THD of Line Currents for High PEV Penetration. 

Branch THD 𝑰𝒂 (%) THD 𝑰𝒃 (%) THD 𝑰𝒄(%) 

844-846 3.89 4.24 5.27 

828-830 0.72 0.69 0.93 

808-806 0.67 0.65 0.82 

834-860 4.33 3.59 5.14 

 

Table 4.12: Optimal WG Size for Current THDs in High PEV Penetration. 

Node 
WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 
Node 

WG 

(kW) 

1 756.08 8 473.73 15 784.31 22 800 29 72.16 

2 800 9 78.43 16 774.9 23 771.76 30 12.55 

3 128.63 10 279.22 17 498.82 24 683.92 31 624.31 

4 94.12 11 53.33 18 12.55 25 727.84 32 163.14 

5 329.41 12 539.61 19 134.9 26 6.27 33 320 

6 345.1 13 345.1 20 787.45 27 614.9 34 21.96 

7 263.53 14 800 21 699.61 28 498.82   
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Figure 4.8: Minimization of Current THDs for High PEV Penetration using GA. 
The case of high PEV penetration can be taken as the worst possible scenario as it will 

inject harmonics of highest magnitude. The grid network should be designed in such a 

way that it will able to handle the harmonics injected due to a 100% integration of 

PEVs into the grid. With this GA based technique, even in the presence of highest 

order of PEV loads, it can be seen from the Table 4.9 and Table 4.11 all the voltage 

and current harmonics are well below their respective limits prescribed by the IEEE 

[77].  

A comparison can be drawn between Table 4.9 and Table 4.10, with Table 3.8 and 

Table 3.9 from Chapter 3 here to describe the usefulness of the GA based approach. In 

case of voltage THDs in Table 3.8, Case 15 after the introduction of WGs, the 

harmonics increased by approximately 10% and the values were still above the 

standard limit of voltage THDs i. e., 5%. Similarly, in Table 3.9 in Chapter 3 Case 18, 
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the current harmonics values were being changed abruptly and for certain phases the 

values were still above 7% which is a violation of the IEEE standard of current THDs. 

However, with the proper implementation of GA based technique, in both Table 4.9 

and Table 4.10 the voltage and current harmonics values are well below 5% and 7% 

respectively in all the phases and at all branches. 

To represent the minimization of the voltage and current THDs over a certain number 

of iterations in the GA algorithm, change of the THDs over the iteration period has 

been plotted for the aforementioned branches. The change of voltage THDs has been 

shown in Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12 which respectively 

represent branch 844-846, 828-830, 808-806, 834-860. The current THD patterns for 

branch 844-846, 828-830, 808-806, 834-860 has been shown in Figure 4.13, Figure 

4.14, Figure 4.15, Figure 4.16 respectively.  

 

Figure 4.9: Change of Voltage THD in Line 844-846 for High PEV Penetration. 
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Figure 4.10: Change of Voltage THD in Line 828-830 for High PEV Penetration. 

 

Figure 4.11: Change of Voltage THD in Line 808-806 for High PEV Penetration. 
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Figure 4.12: Change of Voltage THD in Line 834-860 for High PEV Penetration. 

 

Figure 4.13: Change of Current THD in Line 844-846 for High PEV Penetration. 
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Figure 4.14: Change of Current THD in Line 828-830 for High PEV Penetration. 

 

 

Figure 4.15: Change of Current THD in Line 808-806 for High PEV Penetration. 
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Figure 4.16: Change of Current THD in Line 834-860 for High PEV Penetration. 

In figure 4.17 and 4.18 the optimal WG values for voltage and current THD reduction 

is shown respectively, for high PEV penetration. The black dots are representing the 

nodes in the system. In the each box, the output of the connected WG with respective 

nodes are shown. 
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Figure 4.17: Optimal WG Values for Minimized Voltage THDs at High PEV 
Penetration. 

 

Figure 4.18: Optimal WG Values for Minimized Current THDs at High PEV 
Penetration. 
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4.5 Summary 

In this chapter a generic overview of the COM interface between the MATLAB and 

OpenDSS is provided. The implementation of GA and harmonic power flow on these 

tools has been discussed in detail. The framework of the GA and its implementation in 

distribution system consisting of PEVs and WGs has been discussed. It has been 

shown that the optimally sized WG is capable of reducing the current and voltage 

THDs, caused by the PEVs, for varying level of penetration. These results have also 

been compared with the previous results obtained in Chapter 3, by randomly selecting 

WG location, to demonstrate the significance of the used GA algorithm.  
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Chapter 5 

Conclusions and Future Work 

5.1 Chapter Summary 

The research presented in this thesis mainly focuses on decreasing the voltage and 

current THDs that are caused by PEV loads in the grid. The reduction in harmonics in 

the distribution system is achievable through the use of WGs and a GA based 

approach. The main summaries that can be drawn from the thesis are: 

• Chapter 1 presented the motivations behind this work. It outlines the concerns 

such as environmental impacts, depletion of natural energy reserves, which is 

the driving force behind the integration of wind power and PEV into the grid. 

A literature review of some works pertaining to this research has been briefly 

discussed. The focus of the review was on optimal setting and sizing of DGs, 

impact of PEVs on harmonics, coordinated energy dispatch using WGs and 

PEVs etc. This chapter also provides an overview and contribution of this 

research. 

• Chapter 2 discussed the basic background information related to this research. 

A basic overview of the basic distribution system components has been 

provided. This chapter also presented a general discussion on the optimization 

and different techniques that have been related to this research. In this chapter, 

a brief description on the OpenDSS software is also provided. The 

mathematical modeling of the harmonic power flow in OpenDSS was also 

presented. 

• Chapter 3 discussed on the impacts of PEVs and WGs on current and voltage 

THDs of distribution systems. The parameters of the test system were also 

briefly discussed in this chapter. The modeling of the PEVs and WGs in the 

presence of harmonics was also explained. In Chapter 3 different case studies 
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on impact on voltage/current THDs with varying level of PEV penetration was 

demonstrated. Also, a harmonic reduction technique by integrating WGs into 

the system was discussed with case studies considering different number of 

WGs. 

• Chapter 4 presented the GA modelling and implementation of the GA based 

technique to reduce the THDs using the WGs. Through the proposed GA 

technique, the optimal size of the WGs was determined in varying levels of 

PEV penetration to mitigate the current/voltage THDs. Different case studies 

similar to Chapter 3 but with optimization was carried out. It was shown that 

the GA is able to minimize the cumulative THD of the system with proper 

sizing of WGs.  

5.2 Thesis Contributions 

The main contributions of this thesis are outlined as following: 

• A three-phase unbalanced distribution system model required for harmonic 

power flow studies have been developed. In this model, the impact of PEVs on 

current/voltage harmonics has been studied with varying level of penetration. 

Carefully planned WGs have been used to demonstrate its impact on reducing 

the harmonic distortions. 

• An optimization framework based on GA has been developed. It utilizes the 

previous model as constraint and WGs as decision variables. This model was 

able to successfully find the optimal size of WGs which reduced 

current/voltage THDs with varying PEV penetration level. 
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5.3 Limitation and Future Work 

The limitations of this work can be used as a scope to improve the proposed work. 

Some of the main shortcomings this work is: 

• While minimizing the PEV induced harmonics in the system the optimal size 

of the WGs in all nodes have been calculated. It has been inferred from the 

Chapter 3, that the placements of the WG make a difference while reducing the 

system harmonics. However, there are many practical constraints which do not 

allow installation of wind at every node in the distribution circuits. It needs to 

be carefully considered in the optimization problem to obtain more meaningful 

results. 

• In the modeling part of the test system PEV loads are taken as a fixed power. 

However, in real-time PEV loads certainly have a charging profiles and it 

changes over 24 hour period. So, it will be more accurate to take care of the 

charging profiles into the case studies while modeling the distribution system.  
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Appendix 

IEEE 34 Node Test Feeder Data 

Table A1: Underground Cable Data. 

Phase 
Conductor 

Diameter over 
Insulation 

(inch) 

Diameter over 
Screen (inch) 

Outside 
Diameter (inch) 

Ampacity 

2 (7x) 0.78 0.85 0.98 135 
1/0 (19x) 0.85 0.93 1.06 175 
2/0 (19x) 0.9 0.97 1.1 200 
250 (37x) 1.06 1.16 1.29 260 
500 (37x) 1.29 1.39 1.56 385 
1000 (61x) 1.64 1.77 1.98 550 

 

Table A2: Conductor Data. 

Conductor Type Resistance 
(Ohms/mi) 

Diameter 
(Inch) 

GMR 
(Ft.) 

Rating 
(Amps) 

1,000,000 
CM 

AA 0.105 1.15 0.0368 698 

556,500 CM ACSR 0.186 0.927 0.0311 730 
500,000 CM AA 0.206 0.813 0.026 483 
250,000 CM AA 0.41 0.567 0.0171 329 
336,400 CM ACSR 0.306 0.721 0.0244 530 

4/0 ACSR 0.592 0.563 0.00814 340 
2/0 AA 0.769 0.414 0.0125 230 
1/0 ACSR 1.12 0.398 0.00446 230 
1/0 CU 0.607 0.368 0.01113 310 
2 AA 1.54 0.292 0.00883 156 
2 ACSR 1.69 0.316 0.00418 180 
4 ACSR 2.55 0.257 0.00452 140 
10 CU 5.903 0.102 0.00331 80 
12 CU 9.375 0.081 0.00262 75 
14 CU 14.872 0.064 0.00208 20 
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Table A3: Overhead Line Configuration. 

Configuration Phasing Phase (ACSR) Neutral (ACSR) 
Spacing 

ID 
300 B A C N  1/0 1/0 500 
301 B A C N   6/1   6/1 500 
302 A N   6/1   6/1 510 
303 B N   6/1   6/1 510 
304 B N   6/1   6/1 510 

 

Table A4: Distributed Load Data. 

Nod
e A 

Node 
B 

Load 
Model  

Ph-1 
(kW) 

Ph-1 
(kVAr) 

Ph-2 
(kW) 

Ph-2 
(kVAr) 

Ph-3 
(kW) 

Ph-3 
(kVAr) 

802 806 Y-PQ 0 0 30 15 25 14 
808 810 Y-I 0 0 16 8 0 0 
818 820 Y-Z 34 17 0 0 0 0 
820 822 Y-PQ 135 70 0 0 0 0 
816 824 D-I 0 0 5 2 0 0 
824 826 Y-I 0 0 40 20 0 0 
824 828 Y-PQ 0 0 0 0 4 2 
828 830 Y-PQ 7 3 0 0 0 0 
854 856 Y-PQ 0 0 4 2 0 0 
832 858 D-Z 7 3 2 1 6 3 
858 864 Y-PQ 2 1 0 0 0 0 
858 834 D-PQ 4 2 15 8 13 7 
834 860 D-Z 16 8 20 10 110 55 
860 836 D-PQ 30 15 10 6 42 22 
836 840 D-I 18 9 22 11 0 0 
862 838 Y-PQ 0 0 28 14 0 0 
842 844 Y-PQ 9 5 0 0 0 0 
844 846 Y-PQ 0 0 25 12 20 11 
846 848 Y-PQ 0 0 23 11 0 0 
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Table A5: Spot Load Data. 

Node 
Load 
Model 

Ph-1 
(kW) 

Ph-1 
(kVAr) 

Ph-2 
(kW) 

Ph-2 
(kVAr) 

Ph-3 
(kW) 

Ph-3 
(kVAr) 

860 Y-PQ 20 16 20 16 20 16 
840 Y-I 9 7 9 7 9 7 
844 Y-Z 135 105 135 105 135 105 
848 D-PQ 20 16 20 16 20 16 
890 D-I 150 75 150 75 150 75 
830 D-Z 10 5 10 5 25 10 

 

Table A6: All Aluminum Coil. 

Phase 
Conductor 

Diameter over 
Insulation (inch) 

Diameter over 
Shield (inch) 

Outside 
Diameter (inch) 

Ampacity 

1/0 AL 0.82 0.88 1.06 165 
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