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Preface 

This dissertation consists of one overview and three major chapters. The major chapters 
are already in a standard paper format and will soon be published in peer reviewed 
journals. The dissertation author, Ram K. Deo, is the principal investigator who 
conducted all analysis, produced all figures and tables, and accomplished the writing. The 
co-advisors, Robert E. Froese and Michael J. Falkowski, contributed in refining research 
questions, methodology, and editing of the individual chapters. Ram K. Deo will be the 
first author of all the major papers to be published out of the dissertation, and the 
dissertation co-advisors, will stand as co-authors for each of the papers. Since no material 
has been submitted for publication, no chapter is under any copyright.  

ix 

 



 
 

 

Acknowledgements 

I am grateful to the School of Forest Resources and Environmental Science (SFRES) at 
Michigan Tech for letting me experience the top schooling environment with cooperative 
faculty and staff. I am humble to the Michigan Economic Development Corporation, U.S. 
Department of Energy, NASA, and US Forest Service, Forest Management Service 
Centre (FMSC) for supporting the three major research chapters of my dissertation. I am 
thankful to the Dean Dr. Terry Sharik and Asst. Dean Dr. Andrew Storer of SFRES for 
research assistantship support during the final semester of my stay at the SFRES. 

I express my sincere gratitude to my supervisors, Dr. Robert E. Froese and Dr. Michael J. 
Falkowski, for their continuous support, encouragement and helpful comments from the 
designing of research proposal till the completion of this dissertation. I thank Dr. Froese 
for arranging funds and facilitating data request with the national inventory programs 
(FIA, and BIA) and FMSC for model calibration and validation. Dr. Falkowski arranged 
the funding and opened the door of LiDAR remote sensing to assist my genuine interest; 
I thank him for his effective guidance on technical writing and questions regarding GIS 
and remote sensing based modeling. 

I owe sincere thankfulness to my research committee members, Dr. David D. Reed and 
Dr. David W. Watkins, for insightful comments and suggestions during my proposal 
defense, comprehensive exams, and other meetings. This helped me improve my research 
questions and methodological skills. I am also thankful to Dr. Erin Smith-Mateja of US 
Forest Service FMSC-FVS Group; Dr. Richard A. McCullough of  US Forest Service, 
Northern Research Station; and Dr. Joseph Mortzheim of the Bureau of Indian Affairs, 
Midwest Regional Office for their assistance with the data for model calibration and 
validation. 

I would like to thank Timothy Gebuhr for the hard work during my field data collection 
at the Ford Forestry Center of the Michigan Tech. I am highly indebted to Nan Pond and 
Michael Premer for the assistance with overstory validation datasets of the northern 
hardwood and aspen stands. I express my sincere appreciations to Aaron Poznanovic and 
Karl Meingast for the help during data analysis in the R statistical software, and also to 
Michael Hyslop, James Rivard, and Shawn O’Neil for GIS assistance. I would also like 
to thank all my lab-mates and colleagues who contributed in my study by providing 
moral and material support. Thanks to the Nepalese community at Michigan Tech for 
organizing frequent get-togethers in a cultural environment with native foods. I must also 
thank Erin Froese, Scott Hillard, Bridget Hillard, Gary Ewert, and Marianna Ewert for 
the intimacy and various supports. 

x 

 



 
 

 

Last but not least, I would like to thank the entire SFRES/MTU family who directly or 
indirectly contributed in my happy stay at Houghton. Extra thanks go to Linda Nagel, 
Debra Charlesworth, Jill Fisher, Ruth A Ojala, Andrea Longhini, Marjorie Lindley, and 
Nancy Byers Sprague for the academic and administrative supports. 

I also thank my wife Shruti for continuous and unconditional support since we are 
married. I am proud of my papa, mom, brothers, sisters and other family members for 
their continuous support in my career building. I humbly dedicate this work to my parents 
and teachers who inspired me to study forestry for the benefits of nature and society. 

xi 

 



 
 

 

Abstract 
Credible spatial information characterizing the structure and site quality of forests is 
critical to sustainable forest management and planning, especially given the increasing 
demands and threats to forest products and services. Forest managers and planners are 
required to evaluate forest conditions over a broad range of scales, contingent on 
operational or reporting requirements. Traditionally, forest inventory estimates are 
generated via a design-based approach that involves generalizing sample plot 
measurements to characterize an unknown population across a larger area of interest. 
However, field plot measurements are costly and as a consequence spatial coverage is 
limited. Remote sensing technologies have shown remarkable success in augmenting 
limited sample plot data to generate stand- and landscape-level spatial predictions of 
forest inventory attributes. Further enhancement of forest inventory approaches that 
couple field measurements with cutting edge remotely sensed and geospatial datasets are 
essential to sustainable forest management. We evaluated a novel Random Forest based k 
Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and 
geospatial data with field inventory collected by different sampling methods to generate 
forest inventory information across large spatial extents. The forest inventory data 
collected by the FIA program of US Forest Service was integrated with optical remote 
sensing and other geospatial datasets to produce biomass distribution maps for a part of 
the Lake States and species-specific site index maps for the entire Lake State. Targeting 
small-area application of the state-of-art remote sensing, LiDAR (light detection and 
ranging) data was integrated with the field data collected by an inexpensive method, 
called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing 
volume map in a cost-effective way. The outputs of the RF-kNN imputation were 
compared with independent validation datasets and extant map products based on 
different sampling and modeling strategies. The RF-kNN modeling approach was found 
to be very effective, especially for large-area estimation, and produced results statistically 
equivalent to the field observations or the estimates derived from secondary data sources. 
The models are useful to resource managers for operational and strategic purposes. 
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1. Introduction to the dissertation: Imputation for geospatial 
inventory of forest structural attributes at multiple spatial scales 

 

1.1. Background 
Spatially explicit inventory of forest structural attributes and site productivity is 
invaluable for informing strategic planning and proactive management of forests that face 
increasing demands for products and services such as bioenergy feedstock and carbon 
sequestration. However, exhaustive field measurement under a design-based framework 
(i.e., using only sample plots) for resource assessment across large spatial extents is 
implausibly expensive. An alternative is to couple remotely sensed data with sparse 
ground-sampled forest inventory data to extend sample plot measurements through both 
space and time. Spatial modeling algorithms using remotely sensed and other geospatial 
datasets have been recognized in intergovernmental initiatives towards climate change 
mitigation, such as the United Nations Framework Convention on Climate Change 
(UNFCCC, 1992). Such initiatives require estimation and verification of forest biomass 
which is an efficient apparatus (sink) to sequester rising level of atmospheric carbon 
dioxide. An example includes the global remote sensing survey of forest cover change by 
the United Nations Food and Agricultural Organization (FAO, 2010; D’Annunzio et al., 
2014). Forest biomass mapping and inventory updates provide information on 
production, availability, and distribution which also support understanding of the role of 
forest ecosystems as carbon sinks (Powell et al., 2010; Zhang and Ni-meister, 2014). 
Accurate and practical spatial models are needed to assess status and trend of forest 
resources resulting from various management practices (Zheng et al., 2007; Song, 2012). 
Forest managers can apply an efficient spatial model to generate a baseline and biomass 
accrual information to gain economic incentives such as under the United Nations 
collaborative program on reducing emissions from deforestation and forest degradation 
(UN-REDD, 2010). High resolution wall-to-wall maps of inventory attributes facilitate 
managers to design and implement ecologically sound, economically viable, and socially 
acceptable forestry projects. Local-scale inventory information is essential for operational 
management such as harvest scheduling while regional-scale inventory supports strategic 
planning (McRoberts et al., 2007; Brosofske et al., 2014) such as an optimal site selection 
for a biofuel plant. 

The operational inventory systems require methods of local and regional relevance 
(scope) with the qualities of cost-efficiency and reliability (Anaya et al., 2009). The 
reliability and accuracy of remote sensing methods for small-or large-areas inventory 
depends on quality and availability of spatially continuous auxiliary data along with 
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representative ground registered sample plot data and a robust algorithm for modeling 
(Lu et al., 2012). High resolution remotely sensed data are required to accurately quantify 
biophysical attributes for operational management at local scale (Hudak et al., 2008; 
Falkowski et al., 2010) while coarse resolution data are mostly used for large-area 
estimation suitable for strategic planning (Brosofske et al., 2014). For example, MODIS 
data at spatial resolutions of 250 m or 500 m have been used for national or continental 
scale mapping (Baccini et al., 2004; Zheng et al., 2007; Blackard et al., 2008; Anaya et 
al., 2009) while Landsat data at spatial resolutions of 30 m have been used for local or 
regional scale mapping (Hall et al., 2006; Labrecque et al., 2006; Luther et al., 2006; 
Powell et al., 2010). By configuration, high spatial resolution of space born sensors is, 
however, associated with low temporal and radiometric resolutions. Conversely, coarse 
spatial resolution data generally have high temporal and radiometric resolutions but 
suffer from the impairing effect of mixed digital signatures in large pixels (Huete et al., 
2002; Muukkonen and Heiskanen, 2007). The spatial mismatch between the plot size of 
ground data and pixel size of coarse optical data is also a serious issue in spatial 
modeling. However, this issue can be tackled by using high spatial resolution data (e.g. 
Landsat) as an intermediary feature to establish an empirical model with the field 
measured variable and then coarse resolution data (e.g. MODIS) can be used to spatially 
extend the model after radiometric calibration of image bands (Muukkonen and 
Heiskanen, 2007; Zheng et al., 2007; Wulder et al., 2012). The strategic in situ data 
collected by the national forest inventory and analysis (FIA) program of the US Forest 
Service have been historically used as a reference frame to produce estimates of forest 
structural attributes over large geographic area. The nationwide annual inventory system 
of FIA, operated since 1999, provides a comprehensive dataset to describe status and 
trend of forest resources over all forest types across the country. For any un-sampled 
small-area, a tactical inventory may employ algorithms that combine sample plot data 
from outside the area of interest with ancillary remotely sensed data that prevail explicitly 
over both sampled and unsampled area of interest (Yim et al., 2011). 

The feature metrics derived from several air- or space-borne spectral sensors, either 
passive or active, are used in spatial inventory modeling. Optical, RADAR and LiDAR 
remote sensing data are commonly applied in biomass mapping (Zhang and Ni-meister, 
2014). Passive optical data particularly from Landsat have long been applied in biomass 
mapping for several reasons including (i) free availability, (ii) historic data archive, (iii) 
large scene size, (iv) compatible spatial resolution with standard sample plots (e.g., FIA), 
and (v) sensitivity of spectral reflectance to canopy cover. However, the sensitivity of 
optical remote sensing data generally saturates in closed canopy forests which leads to 
underestimation at high biomass areas and overestimation in low biomass areas. Active 
sensors such as LiDAR and RADAR are credited to be most accurate in biomass 
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mapping at local scales. LiDAR has gained popularity because of high accuracy 
recognized in the characterization of horizontal and vertical structure of the canopy even 
in complex forest types. The increasing availability of LiDAR data and processing 
platforms to derive numerous metrics representing vegetation height, sub-canopy 
topography, and ground elevation have facilitated operational use in forestry research and 
development. The optical data provides reliable information on horizontal dimension 
while LiDAR is the most suited means to trace the vertical profile of forest canopy 
(Walker et al., 2007). However, the issues of smaller spatial coverage and high cost of 
LiDAR acquisition favors optical satellite data application for large-area assessment. 
RADAR technology is promising for measurement of forest structural properties as it can 
acquire data independent of weather and time. However, like optical sensors RADAR 
signal also suffers from saturation at lower biomass density, ranging 20-100 Mg.ha-1 

(Ranson et al., 1997; Ahamed et al., 2011; Næsset et al., 2011).  

Spectral reflectance, vegetation indices (e.g., normalized difference vegetation index, 
NDVI), land cover, and canopy density metrics are the fundamental predictors applied in 
optical remote sensing based inventory. Climatic (e.g., mean annual temperature and 
precipitation), soils, and topographic variables (elevation, slope, aspect) have also been 
applied in some studies as ancillary data because of their recognized association with 
biomass production and distribution (Ohmann and Gregory, 2002; Baccini et al., 2004; 
Anaya et al., 2009; Straub and Koch, 2011). Spatial models of canopy height and age 
derived from remotely sensed data have been found to have very good correlation with 
structural attributes. The efficiency of any model depends on the explanatory power, 
number and type of predictors. The privacy policy of FIA regarding confidentiality of 
plot coordinates (O'Connell et al., 2013) restricts the linking of plot measured response 
variables with desired number of geospatial features corresponding the plots. Although 
plot locations are not disclosed, the spatial data service of FIA helps attaching a limited 
number of spatial predictors to the plot data via actual coordinates after internal security 
screening. These privacy restrictions severely limit the number of options available for 
developing accurate and robust mapping models, particularly because it impedes data 
mining or model selection techniques to determine the best set of remote sensing and 
geospatial predictor variables. The FIA database, however, provides “fuzzed-swapped” 
coordinates for the plots. The fuzzing generally creates an offset by 0.8 km (0.5 mile) 
from the actual plot location, while swapping makes exchange of inventory attributes 
among 20% of similarly stocked plots under private ownership in each county. Despite 
these issues, FIA data still provide a reliable and attractive source of information for 
developing inventory models for large-area mapping. The FIA plot data are particularly 
useful for modeling because they are probability based samples and involve less bias 
compared to purposive samples (Jenkins et al., 2003). 
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Air-borne discrete return scanning LiDAR is the widely used state-of-art technology for 
accurate and detailed characterization of forest structural attributes for operational 
management (Lu et al., 2012; Wulder et al., 2012), especially at landscape (multi-stand) 
scale. Since LiDAR signals can penetrate canopy gaps and directly measure the 
horizontal and vertical profile of the canopy, several structural attributes can be modeled 
from LiDAR derived metrics, such as canopy height distribution, sub-canopy strata, 
cover, and crown dimensions (Popescu, 2007; Hudak et al., 2008; Falkowski et al., 2009; 
Falkowski et al., 2010; Popescu et al., 2011). The increasing resolution and coverage of 
new generation of sensors and publicly available processing platforms capable of 
generating numerous canopy, sup-canopy, density, cover, texture, and terrain metrics 
have made LiDAR data popular for operational use (Hudak et al., 2008; Næsset and 
Gobakken, 2008; Hudak et al., 2012). In the conventional area-based approach to forest 
attributes estimation using LiDAR data, field measured attributes from fixed dimension 
plots are generally related to LiDAR derived metrics for the same area, i.e. the spatial 
resolution of LiDAR metrics is restricted to the size of ground plot. The fixed area plot 
measurements are time consuming and costly, so implementation of this method 
generally involves a tradeoff between sample size and plot size. Further, smaller plots 
have higher variability (coefficient of variation) compared to larger plots which impacts 
accuracy of estimates. In the rapidly expanding era of LiDAR application, with promising 
accuracies revealed, improved approaches are continually being explored in remote 
sensing community to obtain cost-efficient results of acceptable accuracy. For example, 
LiDAR samples have also been used recently as substitutes for field plots (Wulder et al., 
2012a). 

An accurate metric of site productivity is important for forest growth modeling. Site 
index (SI), defined as the height of dominant and co-dominant trees in competition free 
environment at a given base age (e.g., 50 years in the Lake States), is a proxy for forest 
productivity (Rehfeldt et al., 2006; Crookston et al., 2010; Weiskittel et al., 2011). 
Accurately estimating SI depends on accurate estimates of total height and age of sample 
trees that are free of past competition and damage. Thus, the method is most suited to 
fully stocked even-aged stands of known or measurable age. Although tree height for SI 
calculation can be measured with higher accuracy, tree age estimation is often difficult or 
impossible to obtain, especially for diffuse-porous hardwood tree species that grow 
slowly. Further, the total height estimates may also be erroneous when tree tops are 
broken. In regions like the Lake States, many stands are characteristically composed of 
shade tolerant species in uneven-aged conditions, and it is not surprising that substantial 
error exists in SI estimation.  Since finding sample trees of dominant quality in 
competition free niche is difficult at many sites, development of spatially explicit map of 
SI may be useful for many applications.  
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Site quality, and thus SI as an index of quality, depends on the interaction of several 
biogeoclimatic variables including local management regimes (Stage et al., 2001; 
Rehfeldt et al., 2006; Crookston et al., 2010; Weiskittel et al., 2011; Sharma et al., 2012). 
Spatial variability in topography, soil, climate, and complex biotic interactions leads to 
variations in site conditions. The moisture gradient across a landscape, soil depth, soil 
nutrient, and temperature characteristic can influence site productivity since physiological 
systems of vascular plants are rooted to these factors. The spatial and temporal variation 
in forest site productivity can be modeled dependent on measures of climate, soil 
moisture, soil nutrients, land cover type, canopy density, canopy height, topographic 
variables, and other satellite imagery derived digital metrics (Klinka and Carter, 1990; 
Monserud et al., 2006; Monserud et al., 2008). Since site productivity depends on climate 
and climate is changing, integration of climatic spatial data is essential to make SI 
prediction models sensitive to climate. The changing paradigm in forestry to holistic 
management justifies the search for alternatives to traditional SI (Pokharel and Froese, 
2009). A number of geospatial layers of biogeoclimatic features are freely available 
through public web-portals. These spatial predictors can be coupled with FIA data in 
order to formulate SI models, and of course predicted SI can be incorporated into growth 
models to analyze the potential for broader application. The likelihood that FIA plots are 
evenly distributed over all age and site classes make the database more appropriate for 
regional SI modeling.  The predicted SI may be a useful explanatory variable in other 
geospatial inventory models, especially for uneven-aged mixed species stands where site 
trees are difficult to identify and measure for total height and age. Spatial mapping of SI 
allows for estimation of site quality even for the areas that are presently devoid of forests 
but need afforestation.  

1.2. Spatial inventory modeling and considerations 
The conventional approach to estimating forest population parameters is to aggregate 
sample plot statistics, provided the sample adequately represents the population 
characteristics (Jenkins et al., 2003; Golinkoff et al., 2011; Brosofske et al., 2014). Such 
methods may be robust, but they are costly and time consuming (Wulder et al., 2012a). 
Consequently, spatial modeling has evolved as a strategy to extrapolate sample estimates 
of inventory attributes across a large unsampled area of interest via remotely sensed and 
other geospatial auxiliary layers that augments the estimation process (McRoberts et al., 
2002). A remote sensing based inventory essentially requires a reference frame out of a 
sample of ground plots of known coordinates such that co-located auxiliary geospatial 
predictor values are attached to the measured response variables. Then, the process 
involves formulation of an empirical relationship from the reference frame and then 
spatial prediction across the entire target area via contiguous pixel units where only 
predictor variables are known as digital signatures. 
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Spatial inventory of forest structural attributes using a host of input spatial datasets 
(multi-resolution, and multi-coverage) and modeling frameworks have impact on the 
accuracy of estimates. Numerous modeling approaches prevail in myriad of published 
studies that have integrated various combination of optical, LiDAR, RADAR and other 
geospatial data with field sample data in the framework of parametric or non-parametric 
regression (Walker et al., 2007; Koch, 2010; Wulder et al., 2012; Brosofske et al., 2014). 
The parametric regression methods are the most common for biomass mapping (Fuchs et 
al., 2009; Powell et al., 2010); however, the inherent assumptions (e.g. independence, 
linearity, normality, and homoscedasticity) are often violated in multivariate remote 
sensing based assessment (Evans et al., 2011; Burkhart and Tomé, 2012; Brosofske et al., 
2014). The regression assumptions that biomass is linearly related to spectral response, 
and individual predictors are unrelated leads to biased prediction since multicollinearity 
among remotely sensed data is rife (Rehfeldt et al., 2006).  

A widely used non-parametric method that integrates sample inventory with remotely 
sensed and other geospatial data for large scale mapping is the k-nearest neighbors (kNN) 
imputation (Moeur et al., 1995; Katila and Tomppo, 2001; Haapanen et al., 2002; LeMay 
and Temesgen, 2005; Falkowski et al., 2008; Eskelson et al., 2009). The kNN has been 
extensively applied for local to regional scale estimation of forest attributes in many 
countries (Tomppo and Halme, 2004; McRoberts, 2012). The method has the ability to 
simultaneously predict multiple responses at unsampled locations based on the 
relationship of response and feature variables at the reference sample locations (Hudak et 
al., 2008; McRoberts, 2009). In the simplest form of kNN, the prediction at any target 
point is calculated as the weighted average of the nearest neighbors from the reference 
(training) set; the weight decreases with increasing distance (e.g., inverse distance 
squared). The imputation algorithm begins with the calculation of a similarity (nearness) 
between the target and reference points where the target points have known values of 
only the auxiliary features but the reference points have both auxiliary and response 
features. The nearness between a target and reference units can be determined in the 
feature space of covariates by using several methods (McRoberts et al., 2007; Crookston 
and Finley, 2008; Hudak et al., 2008; Falkowski et al., 2010). The Random Forest 
(Breiman, 2001) based proximity metric (Crookston and Finley, 2008) is a noble measure 
commonly applied in imputation mapping of forest resources using multivariate remotely 
sensed data (Rehfeldt et al., 2006; Falkowski et al., 2009; Ohmann et al., 2011). The RF 
algorithm can simultaneously handle categorical and continuous variables for multiple 
responses and predictors.  

The RF algorithm works on the basis of aggregated result of an ensemble (forest or 
machine) of many classification and regression trees where each is generated 
independently out of a bootstrap sample (usually two-third) of reference data (Breiman, 
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2001a; Liaw and Wiener, 2002; Cutler et al., 2007). The individual trees in the forest are 
made independent (or uncorrelated) with the introduction of an additional random 
component in tree formation where each node split depends on the best predictor among a 
random subset of all predictors. The tree development also requires an optimization 
function to select a node, a predictor variable, and a cut-off value that result in the more 
homogeneous child nodes, as measured by the Gini index (Falkowski et al., 2009). The 
tree growth stops at a point when further splitting does not reduce the Gini index. Thus, 
each terminal node of a tree contains a cluster of most similar observations. The RF 
proximity measure is the proportion of trees where target observation is in the same 
terminal node as a reference observation (Breiman, 2001; Liaw and Wiener, 2002; 
Crookston and Finley, 2008). The RF algorithm is strictly non-parametric, flexible and 
robust with respect to non-linear and noisy relations among input variables (Cutler et al., 
2007). Further, the algorithm does not require cross validation data since out-of-bag 
observations (about one-third) for each tree provide error of individual trees which are 
then summarized (averaging for continuous, or majority vote for categorical variables) 
across all trees to estimate the overall accuracy. The algorithm also gives relative 
importance ranking of predictors by randomly permuting the values of one predictor at a 
time and reporting the proportional increase in mean square error of the model (Liaw and 
Wiener, 2002; Falkowski et al., 2009).  

The accuracy of imputation depends on the choice of predictors, explanatory power of 
auxiliary variables, size and distribution of reference sample, distance or nearness 
measure, number of neighbors (i.e. value of k), and weight function used for prediction 
(Ohmann et al., 2011). A large size of reference sample can be expected to improve the 
accuracy as closer matches of reference and target covariates would be available for 
imputation (LeMay and Temesgen, 2005). When a single nearest neighbor is applied (i.e., 
k=1), then the imputed value of a response at a target point will simply be the observation 
from one of the reference points. In the case of single neighbor imputation, the natural 
variation of inventory variables is retained in the prediction but accuracy is reduced at the 
plot level (Moeur et al., 1995; Haapanen et al., 2002; Holmstrom and Fransson, 2003). 
When more than one neighbor is selected, the accuracy of prediction may improve but at 
the cost of higher bias (McRoberts et al., 2002). The larger bias with higher number of 
neighbors can be reduced by weighted averaging (Katila and Tomppo, 2001). 

The variation in forest composition, structure, and phenology (due to topographic, 
climatic, and site variables) over space and time combined with data scarcity restrict 
model calibration and expansion across a broader area and time scale (Foody et al., 2003; 
Lu et al., 2012). The optimization strategy and criteria of model selection depends on 
input data availability, accuracy requirements, simplicity, assumptions and limitations, 
and uncertainty (Zhang and Ni-meister, 2014). A large reference dataset, adequately 
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capturing the compositional and structural diversity of the target area, is important for 
model training to achieve reliable predictions of inventory attributes (Labrecque et al., 
2006; Song, 2012). It can be assumed that models including multiple variables may give 
better prediction but such models likely have limited application in lack of large-scale 
datasets.  The RF based kNN (RF-kNN) has advantage of producing distribution-free 
models that can accommodate numerous variables (multivariate and multi-response). Use 
of variable selection algorithms have been found to be a good strategy to reduce 
multicollinearity among predictors (Falkowski et al., 2009; Hapfelmeier and Ulm, 2013). 
Validation of prediction estimates from spatial inventory models is critical for operational 
application. However, performance of a model may vary with location, spatial scale of 
prediction, and selected fit statistics (e.g., R2, RMSE, and bias) with different validation 
dataset (Powell et al., 2010). 

An efficient inventory model requires that predictions are consistent for both small and 
large spatial extents and that variance is known to the end users. Different modeling 
approaches and optimization criteria have been used in the past for large scale predictive 
mapping of biomass. For example, Blackard et al. (2008) used coarse resolution (250 m) 
MODIS data, a national land cover dataset, and geo-climatic variables along with the FIA 
plot data to prepare spatially explicit biomass map for the conterminous USA circa 2003. 
Similarly, the Woods Hole Research Centre has produced a finer resolution (30 m) 
biomass map as a part of the National Biomass and Carbon Dataset 2000 (NBCD 2000) 
for the conterminous USA by combining FIA data with high-resolution RADAR data 
acquired from the 2000 Shuttle RADAR Topography Mission (SRTM), and optical 
remote sensing data acquired from the Landsat ETM+ sensor (Kellndorfer et al., 2004; 
Kellndorfer et al., 2012). Further, researchers and managers can develop new spatial 
models based on FIA data in two ways: (i) using the fuzzed-swapped coordinates of 
plots, available publicly via online database, to attach any number of geospatial 
predictors to the plot data, and (ii) collaborating regional FIA units that can attach limited 
number of geospatial predictors to the plot data via actual coordinates. The map products 
obtained from different modeling approaches need accuracy analysis at multiple spatial 
scales prior to any application. 

The cost-efficiency of LiDAR based inventory modeling can potentially be improved 
when integrated with sample data collected through a quick, unbiased, and easy technique 
called point or variable radius plot (VRP) sampling (Avery and Newton, 1965; Bropleh, 
1967; Avery and Burkhart, 1994). The VRP sampling is especially useful for timber 
inventory as efforts are more focused on big trees that hold the most volume and value. 
However, integrating VRP data with LiDAR data requires special strategies as the exact 
(optimal) size of VRPs remains unknown even for a known basal area factor (BAF). A 
major challenge is to find the optimum plot size so that the inventory variable of a VRP 
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best matches with the resolution at which plot-level LiDAR metrics are derived 
(Golinkoff et al., 2011; Hollaus et al. 2009).  

An option to estimate SI for any target locations is to apply RF-kNN imputation 
procedures that can spatially extend the measured SI values from the FIA plots, based on 
referenced auxiliary biogeoclimatic spatial layers. FIA database provides a good source 
of species-specific SI measurements per plot and can be integrated with biogeoclimatic 
spatial layers for large scale mapping. The FIA computes species-specific SI for every 
tree in the sample plots, based on measurements of one or more dominant and co-
dominant site-trees per plot (Woudenberg et al., 2010). 

1.3. Dissertation focus 
A common approach in all the chapters of this dissertation is to apply RF-kNN 
imputation algorithm for the spatial prediction of forest inventory attributes across 
multiple spatial scales by coupling field inventory data with remote sensing and 
geospatial data at various resolutions. The principal questions of the dissertation chapters 
are as below: 

1. How does the choice of model type and input data affect biomass predictions 
from alternative model approaches at small to large spatial scales? 

2. How accurately can structural attributes be mapped using LiDAR data when 
coupled with field data collected with two different sampling methods, one more 
focused on cost-efficiency and the other on accuracy? 

3. How efficient is the regional scale species-specific digital map of site index 
developed from the combination of FIA and geospatial data? 

The first chapter (Chapter 2) presents an approach to utilize FIA data for large area 
biomass mapping in two contrasting ways: (i) using a limited number of spatial predictors 
under the policy restrictions on actual plot coordinates to develop a high resolution map 
(30 m pixel), and (ii) leveraging a large number of spatial predictors related via fuzzed-
swapped coordinates to develop a coarse resolution map (250 m pixel). The predictor 
layers included in the study were the product of optical remote sensing (Landsat derived 
vegetation index, and land cover and MODIS derived slope raster), and fusion of optical 
and RADAR remote sensing (basal area weighted height), along with other geo-climatic 
datasets. The two map products of this study were compared with two other existing 
maps for assessment of biomass estimation accuracy at plot, stand and county scales. The 
small-and large-areas biomass estimates of the individual models, developed using 
different data sources and optimization criteria, were compared to recommend a suitable 
model depending on the area of operation. A key focus was on generating a high 
resolution map of operational use based on publicly available datasets.  
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The second chapter (Chapter 3) intends to leverage the strength of LiDAR derived 
metrics with inexpensively collected field data (following an unbiased variable-radius 
sampling) from indeterminate ground coverage to perform cost-effective spatial 
inventory of standing volume at multi-stand scale. The accuracy of inventory estimates 
from the indeterminate (variable-radius) sampling based imputation model was evaluated 
on the basis of estimates obtained from fixed area sampling based imputation model. The 
comparison of the two model estimates was done only at the plot level (not at the stand 
level in absence of sufficient number of stand inventory data). The study was carried out 
in six conifer stands at the Ford Forest of Michigan Technological University. 

The third chapter (Chapter 4) integrates FIA measured species-specific SI with a number 
of biogeoclimatic variables to produce spatially explicit map of SI for five major species 
of the Lake States (MI, WI, and MN) at a spatial resolution of 250 m. Accuracy of the SI 
imputation models was evaluated by comparing the predicted SI against the measured 
values at a set of FIA plots other than the ones used for model training. In addition, the 
performance of the imputed SI was analyzed in the Forest Vegetation Simulator’s 
(Dixon, 2002) large tree diameter growth models which are characteristically dependent 
on measured SI. The diameter growth predictions based on the models separately using 
measured SI and imputed SI was validated against the field observations at the tribal 
lands in Minnesota and Wisconsin managed under the Bureau of Indian Affairs. 

 
 

10 

 



 
 

 

2. Evaluation of multivariate imputation methods for the spatial 
inventory of above-ground biomass in favor of operation planning in 
the Great Lakes region1 

 

2.1. Introduction 
Forest biomass is the largest terrestrial carbon sink and thus a crucial ecological variable 
for understanding and mitigating climate change (FAO, 2009; Hudak et al., 2012). Since 
live forest biomass sequesters atmospheric carbon and biomass removal or mortality 
causes greenhouse gas emissions, explicit assessment and mapping of biomass (dry 
weight of which can contain 45-50% of carbon) can improve our understanding of the 
carbon cycle. Consequently, international agreements and conventions are adding 
economic value to biomass. This has ultimately created a demand for baseline biomass 
maps as a means to quantify changes in carbon stocks in support of programs such as 
REDD+ (Reducing Emissions from Deforestation and forest Degradation) (Walker et al., 
2007; Tomppo et al., 2008; UN-REDD, 2010). In addition, commercial conversion of 
woody biomass into a sustainable energy sources (as biofuel or electricity) has drawn 
more attention toward the assessment of the distribution and availability (quantity, and 
accessibility) of biomass as a resource for biofuel feedstock (White, 2010; Gleason and 
Im, 2011; Straub and Koch, 2011). Indeed, a detailed understanding of the spatial 
distribution of forest biomass is required for management operations and ecological 
sustainability in addition to estimating the carbon stock and bioenergy potential of a 
given area (Tuominen et al., 2010). When overlaid with land ownership, forest type, site 
index, and transportation layers, spatially explicit forest biomass information can assist in 
the identification of potential harvest areas and availability across multiple spatial 
extents. Small area inventory estimates at local scales guide operational management 
activities while large area regional assessments are necessary to inform national strategic 
plans and policies.  

Forest biomass assessment can be done solely via in situ sampling or by integration of in 
situ data with remote sensing information in a modeling framework (FAO, 2009). In situ 
measurements from national forest inventories (NFI) are a reliable source to derive 
regional or national level biomass estimates (Jenkins et al., 2003). However, NFI 
sampling designs are insufficient for generating inventory information at resolutions 
appropriate to operational management and biofuels planning. This is because NFIs are 

1 This chapter is ready to submit in a remote sensing journal with Ram K. Deo as the first author and 
Robert E. Froese and Michael J. Falkowski as the second and third authors respectively. 
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specifically designed for large area assessment (e.g. regional or national level) by means 
of a systematic network of sparsely distributed permanent sample plots (Fazakas et al., 
1999; Franco-Lopez et al., 2001; McRoberts, 2012). The large degree of spatial 
separation between NFI plots ultimately limits estimation of inventory attributes for 
small-areas due to insufficient sample representation. For example, the smallest area for 
which attributes were estimated at an acceptable accuracy was approximately 150,000 ha 
in Finland (Tomppo and Katila, 1991) and 500,000 ha in Sweden (Fazakas et al., 1999). 
Hence, only limited or inadequately precise forest statistics can be expected for small 
areas based on NFI measurements alone (Tomppo et al., 2008). This is a challenge for 
resource managers, who are often interested in generating forest inventory information on 
the amount and distribution of, say, biofuel feedstock at sub-regional levels such as forest 
stands. Two options are available for generating or improving inventory information for 
small-areas: (i) conduct additional field surveys within the small target area, or (ii) use 
sample data from outside the area of interest and leverage the combined strengths of the 
field and remotely sensed data through advanced modeling algorithms. Geographically 
localized small-area estimation methods generally adopt the latter strategy by augmenting 
NFI data with remotely sensed and geospatial predictors. The spatially explicit products 
from such integration could potentially benefit both small-area operations and regional 
forest planning, if sufficiently accurate.  

The success and synergies of remote sensing and geospatial data have been noteworthy in 
the past two decades for generating biomass maps at multiple spatial scales (Walker et 
al., 2007; Anaya et al., 2009). The assured quality of in situ data collected to a national 
standard by NFI, particularly in the United States, offers a good promise to improve 
small-area assessments when integrated with multisource high spatial resolution datasets. 
Published research has established relationships between biomass and a combination of 
remote sensing, topographic, and climatic data sources (Baccini et al., 2004; Saatchi et 
al., 2007; Wulder et al., 2008a). Remotely sensed reflectance and derived metrics such as 
normalized difference vegetation index (NDVI), percentage canopy density, canopy 
height, cover types, and texture are commonly used predictors in biomass modeling and 
mapping (Tomppo and Halme, 2004; Hall et al., 2006; Wulder et al., 2008a; Anaya et al., 
2009). The selection of suitable metrics and algorithms form the basis of efficient 
modeling and mapping strategies (Lu et al., 2012). Due to the complexity of forest 
structure, composition, phenology, and sites, several ancillary variables representing soil 
productivity, topography, and climate are often included to account for the non-linear 
relationships between biomass and spatial predictors at the landscape scales (Baccini et 
al., 2004; Blackard et al., 2008; Powell et al., 2010; Ohmann et al., 2011; Brosofske et al., 
2014). Further, time series spectral trend at pixel level is applied to leverage the temporal 
information (e.g. change in forest surface, growth, age) of satellite data (Powell et al., 

12 

 



 
 

 

2010; Le Maire et al., 2011). While multispectral data provide two-dimensional 
information on canopy coverage, integration of height information such as basal area 
weighted canopy height (BAWHT) from active sensors has potential to improve biomass 
prediction accuracy (Kellndorfer et al., 2004; Pond et al., 2014). A moderate resolution 
spatial dataset representing BAWHT (circa 2000) is freely available for the conterminous 
USA (Walker et al., 2007; Kellndorfer et al., 2012). Some studies combine spectrally 
calibrated moderate and coarse resolution optical data where moderate resolution data are 
used to establish a model with the field data and coarse resolution data are used to 
spatially extend the model (Zheng et al., 2007; Wulder et al., 2008a). However, solitary 
use of passive remotely sensed data is generally insufficient, particularly for small-area 
estimation.  For example, Powell et al. (2010) used Landsat imagery and NFI data to map 
forest biomass in Minnesota, USA and attained a plot-level root mean square error 
(RMSE) between 61-69%. When estimating standing volume, from a combination of 
Landsat, geospatial, and NFI data, Tomppo et al. (2008) reported relative RMSE of 50-
80% at the pixel (plot) level, 13-14% in small-areas of size 1 km2, and 5% for the size of 
100 km2 in Finland and Sweden. Similarly, Franco-Lopez et al. (2001) observed a 
relative RMSE of 83.76% for plot level volume estimation in Minnesota from a 
combination of NFI data and Landsat imagery, while Yim et al. (2011) observed a 
relative RMSE of 55-75% for the plot level volume prediction when integrating Landsat 
and NFI data in central South Korea. Fazakas et al. (1999) modeled NFI and Landsat data 
and obtained 66-78% RMSE for plot-level biomass prediction in Sweden. 

The accuracy of remote sensing based approaches to inventory modeling depends on 
several factors. These include the quality of the remote sensing and geospatial data (e.g., 
resolution, atmospheric attenuation), the sensitivity of sensor to the variation in forest 
structure, as well as characteristics of the NFI data such as quality, sampling intensity, 
and data availability (Hall et al., 2011). Spatial mismatch of field plots and corresponding 
pixels in remotely sensed imagery, incompatible size of the plots and pixels, poor 
sensitivity of image bands, radiometric variations within and among adjacent scenes, and 
mixed pixel effects in coarse resolution data are additional sources of uncertainty 
(Tuominen and Pekkarinen, 2005; Muukkonen and Heiskanen, 2007; Tomppo et al., 
2008). Multispectral optical sensors such as Landsat or MODIS are inefficient to capture 
the  spatial variability of forest structure as the sensors become insensitive in high 
biomass areas and possess limited power for discriminating species and cover types 
(Lefsky et al., 2002; Lu, 2006; Song, 2012). This is revealed in Huete et al.(2002) who 
pointed out the insensitivity of NDVI in high biomass regions and Steininger (2000) who 
observed saturation of canopy-reflectance and biomass relationship at around 150 Mg ha-

1. The insensitive spectral data ultimately leads to spatial models that generate estimates 
closer to the mean (called regression towards the mean effect) at every pixel, i.e. over-
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prediction in areas with low biomass and under-prediction in areas with high biomass 
(Baccini et al., 2004).  

Active sensors such as LiDAR and RADAR are substantially more accurate in biomass 
mapping at local scales. LiDAR based state-of-art techniques for biomass assessment 
have shown remarkable success since the sensors accurately measure three dimensional 
canopy profile as well as terrain elevations (Koch, 2010; Lu et al., 2012; Wulder et al., 
2012). But application of LiDAR is generally limited due to higher cost acquisition, and 
also narrow spatial coverage of the sensors. Synthetic aperture RADAR (SAR) operated 
from satellite platforms is less expensive and promising technology but suffers from 
saturation of backscatter intensity comparatively at lower biomass levels of around 20-
100 Mg ha-1 (Ranson et al., 1997; Ahamed et al., 2011; Næsset et al., 2011). 
Interferometric SAR (InSAR), available from both spaceborne and airborne platforms, is 
more promising when used in concert with a digital terrain model (DTM) since the 
difference of the DTM and InSAR height is strongly related to the height of forest 
canopies and above ground biomass (Næsset et al., 2011). Although not as accurate as 
active remote sensing, optical remote sensing is still essential to monitor biomass and 
biomass change over a large spatial and temporal extents (Le Maire et al., 2011). Given 
the pressing need for regional-level spatially explicit biomass assessment, Landsat 
imagery is considered appropriate for biomass mapping for several reasons including (i) 
free availability, (ii) historic data archive, (iii) large scene size, and (iv) a spatial 
resolution comparable to the size of typical NFI plots (Labrecque et al., 2006; Main-
Knorn et al., 2011). Publicly available multisource, multitemporal, and multisensor 
geospatial datasets including climate, and topographic layers are often combined to 
improve biomass estimation accuracy (Ahamed et al., 2011). 

When developing remote sensing based biomass-mapping models, it is important to 
assure that sample data represent the entire range of variability in the forest conditions of 
the area of interest. The U.S. Forest Service’s national Forest Inventory and Analysis 
(FIA) program collects data annually over all ownerships via a network of design-based 
sample plots with an intensity of at least one plot per 2400 ha. The Great Lakes States 
(MI, WI and MN) have more than 44,000 permanent plots that represent the entire range 
of biomass variability in the region and hence is apt to develop a statistically robust 
prediction models (Franco-Lopez et al., 2001; Zheng et al., 2007). Privacy restrictions on 
data access are, however, a major barrier in the development of accurate models for 
biomass prediction. The legal security restrictions on FIA data do not allow outside 
entities access to true plot coordinates. Although outside users can request to have FIA 
program analysts intersect plot data with remotely sensed and geospatial data (i.e., to 
create a data frame for geospatial prediction), security restrictions limit the number of 
spatial data layers that can be used. This is because security restrictions are in place to 
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ensure that data users outside of the FIA program cannot trace-back actual plot locations 
from the derived data frame. The FIA database, however, provides “fuzzed-swapped” 
coordinates for the plots; fuzzing generally creates an offset by 0.8 km from the actual 
plot location, and swapping makes exchange of inventory attributes among upto 20% of 
privately owned similarly stocked forested plots for each county (O'Connell et al., 2013). 
These privacy restrictions severely limit the number of options available for developing 
accurate and statistically robust mapping models, particularly because it impedes using 
data mining or model selection techniques to determine the best set of remote sensing and 
geospatial predictor variables. Despite these issues, FIA data still provide a reliable and 
attractive source of information for developing biomass models for large area mapping. 
Modeling of response variables from probability based samples (e.g. FIA plots) involves 
less bias compared to purposive samples (Blackard et al., 2008). This study explores the 
operational suitability of biomass models formulated from the FIA data obtained under 
the privacy constraints. 

Application of several parametric and non-parametric regression approaches for biomass 
modeling prevails in myriad of published studies. However, parametric methods 
generally rely on statistical assumptions (such as independency, normality, linearity, and 
homoscedasticity) that do not hold true with remote sensing data (Evans et al., 2011; 
Robinson and Hamann, 2011; Burkhart and Tomé, 2012; Lu et al., 2012). Non-
parametric models are gaining popularity for many reasons including the fact that they 
are robust and free from many statistical assumptions. One widely used non-parametric 
method is k nearest neighbor (kNN) imputation which has been applied in large area 
forest inventory since the early 1990s (Tomppo, 1991; Moeur et al., 1995; Ek et al., 1997; 
Van Deusen, 1997; Tomppo and Halme, 2004; McRoberts, 2012). In the kNN, 
predictions at a target location is the weighted average of response measurements at the k 
nearest neighbors in the domain of reference samples, where nearness is determined 
based on the similarity of spatial predictors known at every unit throughout the area of 
interest (McRoberts et al., 2002; McRoberts, 2012). An advantage of the kNN method is 
that multiple response variables can be predicted simultaneously at unsampled locations 
based on multiple spectral or auxiliary features. The application of more predictor 
variables in a model may improve its precision but the design also needs to be 
parsimonious and pragmatic since operational use requires inexpensive, accurate, update, 
and accessible auxiliary predictors valid for general conditions for spatially explicit 
mapping. An issue often noticed when using a large number of predictors from remotely 
sensed and other geospatial datasets is multicollinearity among predictors that may lead 
to unstable predictions. Indeed, research has demonstrated that including variable 
selection or model selection procedures can improve results (Falkowski et al., 2009; 
Latifi et al., 2010; Hapfelmeier and Ulm, 2013). 
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An efficient spatial inventory model requires that predictions are consistent for both small 
and large spatial extents and variance is known to the end users (for confidence in the 
predictions). Different modeling approaches and optimization criteria have been used in 
the past for large scale predictive mapping of biomass. For example, Blackard et al. 
(2008) used coarse resolution (250 m) MODIS data, a national land cover dataset, and 
geo-climatic variables along with the FIA plot data to prepare spatially explicit 
aboveground biomass map for the conterminous USA circa 2003. Similarly, the Woods 
Hole Research Centre has produced a finer resolution (30 m) spatially explicit above-
ground dry biomass map as a part of the National Biomass and Carbon Dataset 2000 
(NBCD 2000) for the conterminous USA by combining FIA data with high-resolution 
InSAR data acquired from the 2000 Shuttle RADAR Topography Mission (SRTM), and 
optical remote sensing data acquired from the Landsat ETM+ sensor (Kellndorfer et al., 
2012).  However, the quality of such map products has not been compared with each 
other.  

2.2. Objectives 
Given that the FIA privacy protocols cause reduced power of explanatory variables while 
linking remotely sensed and geospatial values to the sample plot data, the general 
objective was to formulate multivariate spatial inventory models of biomass under the 
scenarios of true and fuzzed-swapped plot locations (both compromising with reduced 
power of predictors) and evaluate the accuracy at multiple spatial scales. The concept was 
to prepare biomass maps for a portion of the Lake States of the USA at 30 m and 250 m 
spatial resolutions, with the actual and fuzzed-swapped coordinate datasets respectively, 
and compare the correspondence of both small- and large-area estimates against the 
extant maps produced at 30 m resolution in the NBCD and at 250 m resolution by 
Blackard et al. (2008). In addition, performance of new models at small and large scales 
was intended to be verified with independent stand inventory datasets, and the county-
level estimates from the FIA database. Realizing the need for cost-effective accurate 
biomass estimation for small-areas (e.g. stands) where only field observations external to 
the area are available, and large areas (e.g. county) at which FIA design may include a 
reasonable number of sample units, the following objectives were set: 

I. To develop geospatial models and maps of biomass in favor of operational 
planning by employing restricted information from remote sensing and other 
geospatial datasets under the FIA privacy policy restrictions 

II. To assess the accuracy of small- and large-area biomass estimates based on the 
new models and the extant models of NBCD and USFS 

The ultimate focus was to ease the burden of model formulation and support prompt 
spatial inventory of biomass. 
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2.3. Methods 

2.3.1. Study Area 
A portion of the Lake States, specifically in the northern region of Michigan, USA, was 
selected as the study area (Figure 2.1). Forest biomass is the predominant target for 
biofuel production in the region, composed largely of mixed upland hardwood stands. 
The region supports diverse type of forests on glacial outwash plains within a matrix of 
lowland and upland mixed, conifer, and deciduous forests (Frelich, 2002). The major 
forest cover types in the region include wet deciduous (elm-ash-cottonwood), oak-
hickory, mesic deciduous (maple-beech-northern hardwoods), pine, aspen, and wet 
coniferous-boreal (spruce-fir) (Dickmann and Leefers, 2003). The annual inventory 
system of FIA has been implemented in the region since 2000. 

 

Figure 2.1. The study area and location of the validation stands in the upper Michigan, 
U.S.A.  

17 

 



 
 

 

2.3.2. FIA inventory system in the study area  
The FIA plots in the study area are distributed across all public and private lands with 
sampling intensity of up to three plots per 2,400 ha of hexagonally gridded land area. 
There are more than 10,000 plots in the study area, approximately 20% of which are 
measured annually via panels with 5 years rotation. The plots are located such that each 
has at least 10% canopy cover within 0.4 ha neighborhood (Walker et al., 2007). Each 
plot consists of a cluster of 4 subplots (each with 7.32 m radius) in which all trees above 
2.54 cm dbh are measured for numerous attributes. The plot-level data includes forest 
type, condition (forest/non-forest), site index, tree species, tree condition (live or dead), 
and tree size including dbh and height. The tree size measurements are used in species-
specific allometric equations to derive individual tree volume or biomass which are then 
summarized to plot-level biomass on per unit area basis (O'Connell et al., 2013). The 
biomass (used interchangeably with above-ground biomass in this dissertation) in FIA 
parlance is sum of dry biomass in bole, stump, branches and twigs of all live trees above 
2.54 cm dbh. The actual coordinates of the plots are kept confidential to maintain private 
owners’ privacy, and also plot integrity. 

2.3.3. Remote sensing and geospatial data  
The initial set of spatial predictors for biomass mapping were Landsat 5 Thematic 
Mapper (TM) derived NDVI, land cover data from the state of Michigan’s project called 
IFMAP (IFMAP, 2001), a digital elevation model (DEM) from the seamless data 
warehouse of the USGS, and basal area weighted canopy height (BAWHT) from the 
NBCD (Walker et al., 2007). All these raster layers are publicly available at a spatial 
resolution of 30 m. In addition, a coarse index of disturbance as an ancillary layer, named 
MODIS-slope, was derived using time series NDVI imagery from the MODIS sensor to 
account for the inter-annual vegetation phenology and structural variations.  

The TM NDVI layer for the study area was prepared from 22 cloud-free Landsat scenes 
of the growing seasons (Jun-Aug) from the years 2006 to 2010 (Table 2.1). Only growing 
season imagery was considered to reduce the impact of seasonal phenological and solar 
zenith angle variations on spectral reflectance characteristics. A model builder in Erdas 
Imagine software was used for radiometric calibration of the images that involve 
conversion of the raw digital numbers to the absolute units of at-sensor spectral radiance 
(W m-2) and finally to the top-of-atmosphere reflectance (TOA) (%) using algorithms and 
coefficients as in Chander et al., (2009). The TM NDVI raster which was produced from 
the TOA reflectance image as normalized ratio of the difference of near-infrared band 
(highly reflective to green leaves) and red band (highly absorptive to chlorophyll), was 
considered since the index is insensitive to many forms of multiplicative noise, and 
sensitive to the amount of green biomass (Huete et al., 2002; Jensen, 2005). 
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The original state-wide IFMAP land cover raster, derived through the classification of 
three-season Landsat TM imageries collected between 1997-2001, contained 32 thematic 
classes with 12 forest categories. For this study, the IFMAP cover types were reclassified 
into eight broader classes consisting of seven forest and one non-forest categories in an 
approach to assign a cover type to each of the FIA plot based on species composition 
(Table 2.2). The BAWHT raster was developed at the source using an empirical 
modeling approach that combined FIA sample plot data with high-resolution InSAR data 
acquired from the 2000 Shuttle RADAR Topography Mission (SRTM) and optical 
remote sensing data acquired from the Landsat ETM+ sensor (Walker et al., 2007). 

The MODIS-slope raster was produced from the MODIS/Terra derived 16-day composite 
NDVI images of anniversary dates from 2005 to 2010 (Table 2.3) in the peak growing 
season that offered similar solar zenith angle and phenological traits to the images. The 
images available at 250 m resolution were retrieved from the Land Processes Distributed 
Active Archive Center of the U.S. Geological Survey (LP DAAC, 2013). A simple linear 
regression, xbay .+= , was fitted to the time series pixel values for the six years and a 
slope raster was calculated using the formula: ( ) ( )( )∑ ∑∑ ∑ ∑ −−=

22 xxNyxxyNb , where 

N represents number of years (i.e. six) and y is NDVI value of a pixel for the year x. The 
pixel values of the slope raster are assumed to characterize the growth, mortality and 
removal of growing stock. For consistency with other datasets related to the actual 
coordinate plots, the slope raster was resampled from 250 m to 30 m resolution using 
nearest neighbor approach in ArcMap 10 (ESRI, Redlands, CA, USA, 2011). 

Some additional geospatial predictors were obtained and processed to model biomass 
directly from the fuzzed-swapped coordinates of FIA plots in the study area. These layers 
included the landcover dataset from the national gap analysis program (GAP, 2013) and 
geo-climatic variables. The climatic variables included frost-free degree-days above 50C 
(DD5), growing season precipitation (GSP), mean annual precipitation (MAP), mean 
annual temperature (MAT), and mean temperature in the warmest month (MTWM) that 
were obtained from a climate data server of the USFS Moscow Forest Sciences 
Laboratory (RMRS, 2013). The soil taxonomy dependent spatial layers, namely soil 
drainage index (DI) and productivity index (PI), were also used because these layers 
indicate long-term soil wetness, soil volume available for plant rooting, and potential tree 
stress areas (Schaetzl et al., 2012; Schaetzl et al., 2009). The DI and PI layers were 
downloaded from the forest health protection mapping and reporting portal (USDA 
Forest Service, 2013a). The GAP land cover dataset, originally produced from multi-
season Landsat ETM+ imageries from1999-2001, is available at six different national 
vegetation hierarchies based on physiognomy (FGDC, 2008) but for ease of interpretation 
and analysis we considered only the macro-group with 59 classes and further aggregated 
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into 20 broader classes by merging similar cover types. The climatic rasters were 
produced at the source by fitting Hutchinson's spline-surfaces to 30-year (1961-1990) 
normalized average monthly data from local meteorological stations throughout the North 
America (Rehfeldt et al., 2006; Crookston et al., 2010).  These biogeoclimatic layers 
were resampled to a common spatial resolution of 250 m with exactly overlapping 
orientation of pixels in all the rasters which were used only with the fuzzed FIA plot data. 

Table 2.1. Landsat imageries used in the study for the derivation of NDVI raster 

WRS-2  
path/ row 

Lat/ long Acquisition 
date 

Scan time UTM 
zone 

Sun 
elevation 

Earth-Sun 
distance* 

20/ 29 44.6/ -82.7 2007-06-11 16:09:52 17 62.86 1.01536 
20/ 30 43.2/ -83.2 2008-05-28 16:04:19 17 61.93 1.01355 
20/ 31 41.8/ -83.7 2008-07-15 16:03:22 17 61.07 1.01646 
21/ 28 46.0/ -83.8 2008-07-06 16:08:37 17 60.11 1.01670 
21/ 29 44.6/ -84.3 2008-07-06 16:09:01 16 60.86 1.01670 
21/ 30 43.2/ -84.8 2006-06-15 16:15:11 16 63.57 1.01577 
21/ 31 41.8/ -85.3 2007-07-20 16:16:21 16 61.46 1.01616 
22/ 28 46.0/ -85.3 2007-06-25 16:21:35 16 61.91 1.01652 
22/ 29 44.6/ -85.8 2007-06-09 16:22:16 16 62.78 1.01513 
22/ 30 43.2/ -86.3 2007-06-09 16:22:40 16 63.59 1.01513 
22/ 31 41.8/ -86.8 2008-07-13 16:15:47 16 61.35 1.01655 
23/ 28 46.0/ -86.9 2006-07-15 16:27:24 16 59.79 1.01646 
23/ 29 44.6/ -87.4 2007-08-03 16:27:47 16 57.21 1.01471 
23/ 30 43.2/ -87.9 2007-08-03 16:28:11 16 58.08 1.01471 
24/ 27 47.4/ -87.9 2009-08-31 16:29:14 16 47.23 1.00946 
24/ 28 46.0/ -88.4 2007-06-23 16:33:59 16 62.00 1.01642 
24/ 29 44.6/ -88.9 2010-07-17 16:30:58 16 59.95 1.01635 
24/ 30 43.2/ -89.4 2010-07-01 16:31:25 16 62.61 1.01667 
25/ 27 47.4/ -89.4 2009-06-03 16:33:57 16 60.05 1.01433 
25/ 28 46.0/ -89.9 2009-06-03 16:34:21 16 60.92 1.01433 
25/ 29 44.6/ -90.5 2007-08-17 16:39:59 15 53.81 1.01244 
26/ 28 46.0/ -91.5 2007-07-07 16:46:10 15 60.93 1.01669 

(* earth-sun distance in astronomical units for day of the year) 
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Table 2.2. Reclassification of the 12 IFMAP forest categories into 7 broader classes 

IFMPAP 
Class 

New 
Class 

Description for categorization of FIA plots to the new class 

14 1 Northern hardwood association (maples, American beech, 
American basswood, white ash, black cherry, and yellow birch 
exceeds 60% of total wood volume in plot) 

15 2 Oak association (oak spp. exceeds 60% of total wood volume in 
 16 3 Aspen association (aspen exceeds 40% of total wood volume in 
 17, 18, 

 
4 Deciduous dominant (deciduous trees exceeds 60% of total wood 

   19 5 Pines (pines exceeds 60% of total wood volume in plot) 
20, 21, 
25 

6 Conifer dominant (conifers other than pines exceeds 60% of total 
wood volume in plot) 

22, 26 7 Mixed forest (does not fall into any of the above categories; 
proportion of conifers and deciduous ranges from 40 to 60%) 

all others 8 Non-forest 
 
 
Table 2.3. MODIS/Terra NDVI imageries used to derive the MODIS-slope raster 

H/V Lat/Long Scene ID Date 
11/4 45.0/-91.9 MOD13Q1.A2005209.h11v04.005 2005-08-13 
11/4 45.0/-91.9 MOD13Q1.A2006209.h11v04.005 2006-07-28 
11/4 45.0/-91.9 MOD13Q1.A2007209.h11v04.005 2007-07-28 
11/4 45.0/-91.9 MOD13Q1.A2008209.h11v04.005 2008-07-27 
11/4 45.0/-91.9 MOD13Q1.A2009209.h11v04.005 2009-07-28 
11/4 45.0/-91.9 MOD13Q1.A2010209.h11v04.005 2010-07-28 
12/4 45.0/-77.8 MOD13Q1.A2005209.h12v04.005 2005-07-28 
12/4 45.0/-77.8 MOD13Q1.A2006209.h12v04.005 2006-07-28 
12/4 45.0/-77.8 MOD13Q1.A2007209.h12v04.005 2007-07-28 
12/4 45.0/-77.8 MOD13Q1.A2008209.h12v04.005 2008-07-27 
12/4 45.0/-77.8 MOD13Q1.A2009209.h12v04.005 2009-07-28 
12/4 45.0/-77.8 MOD13Q1.A2010209.h12v04.005 2010-07-28 

 

2.3.4. Reference data frames  
A reference set comprising of inventory data from 4,830 plots with actual coordinates 
intersected and attached to the key geospatial predictors were procured from FIA after an 
agreement abiding the privacy requirements. The TM NDVI and MODIS-slope rasters, 
both classified to 20 classes, were sent to the FIA unit at the Northern Research Station 
(Newtown Square, PA) to attach the auxiliary digital values to the inventory plot data. 
This strategy was pursued to maximize the number of reference plots under the FIA 
security screening that has set a minimum threshold on number of unique combinations 
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of the raster values at the plot locations as well as non-sampled areas in each county. 
Pond et al. (2014) reported that at least 3 sample plots and 101.2 ha non-sampled areas 
need to have the same combination of raster values in each county for the data to be 
released.  The plot-level inventory attributes obtained in the dataset were net timber 
volume, growth, mortality, and removal quantities on per unit area basis and also by 
species groups. In addition, FIA also attached ground elevation and BAWHT to each 
plots directly from its database. It was assumed that the FIA measured ground elevation 
and BAWHT are close to the respective values in the geo-referenced DEM and the 
BAWHT rasters used to spatially extrapolate the inventory data. Cover types of the plots 
similar to the 8 categories of the reclassified IFMAP dataset were deduced based on 
species dominance determined from plot-level net timber volume by species group. This 
strategy did not require us to request FIA for intersection and attachment of IFMAP 
values to the plots. Again, it was assumed that the IFMAP adequately represented cover 
types defined by FIA. The plot biomass was estimated from the net timber volume by 
applying average expansion factors of species group derived from FIA database. 

An additional reference frame based on the data from the fuzzed-swapped coordinates of 
7,322 FIA plots was prepared. The plot level biomass inventory and latitude and 
longitude data were obtained from the FIA database available online with the DataMart 
tool (FIA, 2013). The plot biomass was derived by summing up the above ground 
biomass of individual trees (≥ 12.5 cm dbh) per plot given in the tree table of the 
database. Only sampled plots (PLOT_STATUS_CD= 1&2) that were measured 
physically (SAMP_METHOD_CD=1) with standard quality assurance 
(QA_STATUS=1) were considered for preparation of the data frame for model training. 
The geospatial predictors attached to the plots via the fuzzed-swapped coordinates 
included BAWHT, TM NDVI, MODIS NDVI, GAP landcover, DD5, GSP, MAP, MAT, 
MTWM, DI and PI. 

The large number of sample plots provided a good representation of actual forest 
conditions and diversity in the study area. Among the 4830 plots with actual coordinates 
intersected to the spatial predictors, almost 400 plots belonged to non-forest category 
with apparently no canopy height (i.e. zero BAWHT). The inventory data belonged to the 
seventh cycle of FIA in Michigan, measured in 2005-2009. 

2.3.5. Validation data  
Three independent sampling datasets termed FFC (Ford Forestry Center), Hardwood, and 
Aspen were used for the validation of spatial inventory models at the stand level; only 
FFC inventory data were used for the plot level validation because of the availability of 
highly accurate plot coordinates. The FFC dataset represents the ground truth from an 
intensive sampling of 51 stands with a network of 366 permanent plots (each 0.04 ha) 
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measured in 2012 at the Michigan Tech’s Ford Forestry Center, a research forest (about 
1,400 ha) located in the Baraga County, Michigan. The coordinates of every plot center 
were determined using a Trimble GeoXH 6000 global positioning system and differential 
correction post-processing (via Trimble Pathfinder Office software) that resulted in an 
average horizontal precision of 1.50 m or less. The stands, roughly divided into jack pine 
(Pinus banksiana) and northern hardwood cover types have an average size of 22 ha. 
Most of these stands have been harvested more than once in the past 60 years.  

The hardwood dataset comprised of sample measurements in 0.04 ha plots, established in 
2010 and 2011, in 47 recently harvested (in 2006-2010) northern hardwood stands (area 
range 6.8 to 115.1 ha) throughout the study area. The sample measurements were made 
post-harvest and the pre-harvest inventory were derived using localized stem-to-breast 
height diameter prediction equation (Pond, 2012) . The Aspen dataset comprised of 
overstory sample data from 18 Populus-dominated stands (area range 1.9 to 16.1 ha) 
measured in 2012 at different locations of the central Upper Peninsula of Michigan. The 
aspen stands varied in age from 0 to 35 years. 

The standing volume of the validation plots were calculated from the individual tree 
measurements following the algorithms adopted by FIA. The individual tree volumes 
were calculated using species-specific allometric equations for the Lake States as 
described in Miles and Hill (2010) and Woodall et al. (2010). This approach of volume 
calculation requires bole length estimation using models and coefficients from Ek et al. 
(1981) and Hahn (1984).  The bole length is described as a function of stand basal area 
and site. Therefore, stand basal area was calculated from the plot inventory datasets and 
average site index values for individual species were estimated from tree lists available 
from the FIA DataMart (USFS, 2013). The individual tree volume estimates were 
summed to obtain plot level volume which were further summarized to the stand level 
estimates via up-scaling. The plot volume data were converted to above-ground biomass 
estimate by using species-specific expansion factors derived from the FIA database. 

The county level estimates of biomass as a secondary dataset for the validation of 
landscape scale imputation estimates were obtained from the FIA database via the 
EVALIDator web-tool query (FIA, 2014) for the period 2005-2009. 

2.3.6. Above-ground biomass modeling and accuracy assessment 
The widely used novel extension of k-nearest neighbors (kNN) imputation (Tomppo et 
al., 2008; McRoberts, 2012) called random forest algorithm (Breiman, 2001; Crookston 
and Finley, 2008) was used to build empirical relationship between biomass and 
multisource spatial predictors for spatially extending the attribute across the study area. 
The kNN method is based on the premise that plots having similar spectral characteristics 
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also have similar structural attributes. In the primitive form the kNN method estimates 
response variable at any unsampled target unit as the weighted average of the observed 
values from the nearest neighbors in the reference set. Several methods do exist to 
measure the nearness between the target and reference points on the basis of spatial 
covariates (Crookston and Finley, 2008; Latifi et al., 2010). The random forest (RF) 
based proximity is determined from the function of an ensemble of many classification 
and regression trees where each tree is built from a bootstrap sample of reference data 
and binary splitting of nodes in each tree is created with the best predictor selected out of 
a random subset of all predictors at each node (Liaw and Wiener, 2002). Conceptually, 
two observations are considered similar if they end up in the same terminal node of a 
tree, and the proportion of trees in the ensemble that place target and reference units in 
the same terminal node gives the distance measure. The RF based kNN (RF-kNN) 
imputation in regression mode predicts the response variable at any target point as the 
simple average of k nearest neighbors. Many recent studies have shown that the RF 
approach generally produces better results compared to other imputation methods (Hudak 
et al., 2008; Powell et al., 2010; Vauhkonen et al., 2010; Nelson et al., 2011; Ohmann et 
al., 2011; Coulston et al., 2012; Gleason and Im, 2012; Waske et al., 2012). The ability of 
internal cross-validation in RF also allows estimation of mean square error, and variable 
importance. In this study, the domain for nearest neighbor search for each target unit was 
the complete reference set since the auxiliary layers for the entire area were spectrally 
normalized using a standard procedure. The general advantage of imputation approach is 
that the prediction retains the natural variation as observed in the field measurements.  

The RF-kNN imputation modeling was executed in the R statistical software (R Core 
Team, 2013) using the randomForest (Liaw and Wiener, 2002) and yaImpute packages 
(Crookston and Finley, 2008; Falkowski et al., 2010). Using different combinations of 
response and predictors, several RF imputation models were developed from the two 
reference data frames corresponding to the actual and fuzzed-swapped coordinates of FIA 
plots. Each model was based on 3,000 regression trees and the value of k parameter (i.e. 
number of nearest neighbors) set to 1 to maintain the natural variation in forest structure 
represented in the dataset. This mode of RF ensures that the imputed values at target 
points are exactly the same as one of the sample plots data in the reference set (rather 
than average of more than one plot). The details of the modeling approach with the actual 
coordinate data frame are described in Pond et al. (2014). The amount of (%) variation 
explained, mean square error (MSE), and bias for each of the models were compared to 
identify the best model to extend it spatially. The only model produced from the fuzzed-
swapped coordinate data frame included eleven different biogeoclimatic variables to 
predict biomass. The RF variable importance ranking procedure was followed to include 
predictors in the models; the ranking depends on the criteria of proportional increase in 
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the model’s MSE when substituting random numbers for one predictor at a time while 
retaining others at actual values (i.e. permutation of predictors). 

To scale up the FIA plot biomass spatially via the model from the actual coordinate data 
frame and also the model out of the fuzzed-swapped coordinate data frame, all the 
predictor rasters were converted to AsciiGrid format in ArcMap and were used as input to 
the two models in the yaImpute package of the R software. The model outputs in 
AsciiGrid format were finally converted to raster format, and the stand- and county-level 
summaries of biomass were obtained with the aid of the stand and county shapefiles in 
ArcMap. 

The scatter plots of measured versus imputed total of plot-, stand-, and county-level 
biomass was produced and compared against a 1:1 line; the model predicting response 
mostly below the 1:1 line was inferred as negatively biased and vice-versa. The 
equivalence tests of inventory observation and imputation estimates as suggested by 
Robinson et al. (2005) and Robinson and Froese (2004) were carried out for the three 
spatial scales to evaluate the accuracy of the kNN technique at those scales. The accuracy 
was also measured in terms of root mean square error (RMSE), bias, and R2. The 
experience from Finland and Sweden indicates that if the imputation estimates of 
inventory attributes are within 15 % of the measured values at stand level, then the results 
are reliable (Reese et al., 2002; Tomppo et al., 2008). Based on this premise, the smallest 
area for reliable estimate by imputation was explored. 

The plot-, stand-, and county-level estimates of biomass obtained from generated 
imputation maps of this study were also compared with the estimates for the 
corresponding area derived from the extant biomass maps of the NBCD and Blackard et 
al. (2008). The county-level estimates from the four spatially explicit biomass layers were 
validated against the reference data derived via the FIA EVALIDator tool. The 
TukeyHSD (Tukey Honest Significant Differences) post-hoc test was also carried out to 
evaluate the significance of difference in the pairwise comparisons of mean estimates of 
the different methods at the three spatial extents. RMSEs and biases of the spatial 
inventory estimates based on the extant maps were calculated at stand-level based on the 
validation datasets. 

Two comparisons were particularly emphasized to infer the utility of different 
approaches: (1) stand level comparison of imputation maps of this study with the map 
from NBCD, and (2) county level comparison of imputation maps of this study with the 
map by Blackard et al. (2008). If the NBCD maps provide better estimates than the 
imputation map of this study, then the new approach can be inferred as being constrained 
by the FIA privacy policy and the shortcomings of the optical remote sensing data; better 
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results from NBCD can be justified because it used RADAR information. If the map of 
Blackard et al. (2008) and the new imputation maps provide similar results at the county 
scale, then the efforts at developing finer resolution maps for larger areas may not be 
necessary.  

2.4. Results 
The ranking of predictor variables used in the biomass imputation models based on the 
data from the actual and fuzzed-swapped coordinates of the reference plots are given in 
the Figures 2.2a and 2.2b that also represent the correlation of individual predictors with 
the biomass. It reveals that BAWHT is the most influential for both the models while 
elevation has very little explanatory power. The fuzzed-swapped data based model poorly 
explained the variations (% variance explained: 9.96) compared to actual coordinate data 
derived model (% variance explained: 32.23). It is also clear from the analysis that 
climatic variables, particularly mean annual precipitation, mean annual temperature, and 
growing season precipitation have important influence on biomass production and 
distribution (see Figure 2.2b).  
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Figure 2.2a. Random forest based importance ranking (left) and correlation of predictors 
(right) used in biomass imputation modeling dependent on FIA database with actual plot-
coordinate information.   
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Figure 2.2b. Random forest based importance ranking and correlation of predictors used 
in biomass imputation modeling dependent on FIA database with fuzzed-swapped plot-
coordinate information. 

Plot-level imputation (average of 3×3 window of pixels) based on the newly formulated 
models and the extant models are compared in the Figure 2.3. From the box plot (Figure 
2.3, right), it is clear that the existing models of NBCD and Blackard et al., 2008 
(hereafter called USFS model) provide a narrow range of biomass predictions at the plot 
level compared to observed values which is more closely followed by the actual 
coordinate data derived imputation model, denoted by Actu.imput hereafter. All the 
models are negatively biased (i.e. do under prediction) in high biomass regions with 
density above 80 Mg ha-1 and positively biased in low biomass regions. As expected, the 
model derived from the fuzzed-swapped coordinate database (denoted by Fuzz.imput 
hereafter) performed poorly, while the model derived from the actual coordinate database 
is the best in terms of the linear correspondence between predictions and observations 
(Figure 2.3, left). However, none of the models are able to predict estimates statistically 
equivalent to the field measurements as evident from the result of equivalence test shown 
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in the Figure 2.4. Further, the increasing spread of predictions on reference data towards 
higher biomass areas also signifies heteroscedasticity in the residuals which is a common 
nature of most spatial inventory systems. 

  

 

Figure 2.3. Comparison of plot-level biomass estimates by different imputation methods 
with the FFC inventory data. 
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Figure 2.4. Equivalence plotting of the observed and imputed plot-level biomass 
estimates by the four methods. The black inclined line represents the line of best fit, the 
dashed gray lines represent 25% region of similarity for the slope, the shaded gray 
polygon represents 25% region of similarity for the intercept, and black vertical bar 
represents a confidence interval (at 5% alpha level) for the slope of the line of best fit. 

The observed stand-level total biomass most closely matched the estimates based on the 
new imputation model developed out of the actual coordinate reference data frame (i.e. 
Actu.imput model); this is apparent in Figure 2.5 (left) as the 95% confidence interval of 
the fitted line includes the 1:1 line. The USFS and NBCD models were also found to be 
capable of producing estimates closer to the field observations; however, the model based 
on the fuzzed-swapped coordinate derived data frame (i.e. Fuzz.imput model) seemed 
unsatisfactory for stand-level biomass estimation. The insufficiency of the fuzzed-
swapped model was verified from the equivalence test of the field observations against 
the imputation estimates as shown in the Figure 2.6. Except the Fuzz.imput model, the 
other models produced biomass estimates equivalent to the field observations.  

A high degree of prediction variability was observed in younger stands due to low 
biomass but high canopy greenness (referred by NDVI) of the growing stock. It was 
particularly apparent in the young jack pine and aspen stands that have many trees 
smaller than the minimum threshold (10 cm) for dbh adopted in the field sampling. 
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Among the FFC stands, five were clear-cut harvested since 1995, and 15 were selectively 
harvested after 2006. Similarly, most of the hardwood stands were selectively harvested 
in between 2006-2011. So there is likely temporal mismatch between what was actually 
observed on the ground and what remote sensing device captured from space (e.g. 
Landsat derived NDVI were based on images from 2005-2010 while the field inventory 
data for validation were from 2010-2012). The stand level prediction error for the 
imputation methods were non-systematic with respect to stand size (e.g., larger stands did 
not necessarily had lower RMSE), hence it can be inferred that the imputation accuracy at 
stand level depends not only on the size but also the cover type and disturbance history. 
So, the initial goal of determining the minimum area for which imputation may provide a 
reliable estimate (say, within 15% of the observed biomass) is subject to additional 
information on stand age, management harvesting, and disturbance history besides a large 
range of stand sizes. 

 

 

Figure 2.5. Comparison of stand-level total biomass estimates by the different imputation 
methods with the total estimates obtained from stand inventories from different locations 
of the upper Michigan. 
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Figure 2.6. Equivalence plotting of the observed and imputed stand-level total biomass 
estimates by the four methods. The black inclined line represents the line of best fit, the 
dashed gray lines represent 25% region of similarity for the slope, the shaded gray 
polygon represents 25% region of similarity for the intercept, and black vertical bar 
represents a confidence interval (at 5% alpha level) for the slope of the line of best fit. 

The county-level estimates are achievable to similar precision with any of the four 
models (see Figure 2.7); however, each of the models are generally producing over-
estimation if we consider the FIA database with the county-level biomass estimate (via 
EVALIDator tool) as the accurate reference. The equivalence test (Figure 2.8) indicates 
that the NBCD model is providing the best correspondence of prediction estimates with 
the reference data, however, the Fuzz.imput and Actu.imput models are close competitors. 
In fact, application of large number of local samples in the training set of the fuzzed-
swapped model may be attributed to less bias compared to the other models. This result 
implies that high degree of sophistication or adjustments to offset the spatial mismatch 
concern of sample plot data and remote sensing or geospatial predictors is not necessary 
during the reference data acquisition, processing, and analysis while undertaking large 
area biomass estimation. 
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Figure 2.7. Comparison of county-level total biomass estimation by different imputation 
methods against the reference data obtained from the FIA database via EVALIDator tool. 
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Figure 2.8. Equivalence plotting of the FIA estimated (via EVALIDator tool) and 
imputed county-level total biomass estimates by the four methods. The black inclined 
line represents the line of best fit, the dashed gray lines represent 25% region of similarity 
for the slope, the shaded gray polygon represents 25% region of similarity for the 
intercept, and black vertical bar represents a confidence interval (at 5% alpha level) for 
the slope of the line of best fit. 

The highest coefficient of determination (R2) was obtained for the county-level 
estimation by all the imputation methods compared to the validation data from FIA 
(Table 2.4). The R2 values slightly decreased from county to stand-scale estimation but a 
large decline was found for plot-level estimates as compared to the field measurements. 
The plot-level RMSE was surprisingly lowest (58.19%) with the USFS model; however, 
the RMSE of Actu.imput model was lowest at the stand level and competitively similar at 
the county-level. Since the spatial distribution of the validation stands represent high 
diversity of conditions compared to the narrow capture of diversity in the validation plots 
(only at FFC), it can be concluded that the Actu.imput model is better. The smaller bias of 
NBCD model at all the scales can be attributed to the large sample size applied for model 
training and also inclusion of canopy height information from the InSAR data.   
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Table 2.4. Validation of the four models in terms of fit statistics at plot, stand and county 
scales 

Spatial 
extent 

Model R2 RMSE 
(Mg) 

Relative 
RMSE 

(%) 

Bias      
(Mg) 

Relative 
bias (%) 

Plot Actu.imput 0.4103 53.97 64.35 7.33 8.73 
Plot NBCD 0.4628 50.61 69.59 -3.82 -5.24 
Plot USFS 0.4942 50.36 58.19 9.99 11.55 
Plot Fuzz.imput 0.1446 66.49 102.62 -13.33 -20.57 

Stand Actu.imput 0.9164 896.07 33.38 313.94 11.69 
Stand NBCD 0.8795 1035.15 43.25 22.75 0.95 
Stand USFS 0.9112 923.01 36.88 131.72 5.26 
Stand Fuzz.imput 0.717 1679.05 91.47 -529.16 -28.98 

County Actu.imput 0.9497 3732479.88 26.82 3111837.41 22.36 
County NBCD 0.9431 2494049.01 19.97 1684509.06 13.49 
County USFS 0.9347 4586442.74 32.25 -3418411.15 -24.04 
County Fuzz.imput 0.9298 3623739.84 25.98 3147890.45 22.56 

 

The analysis of variance (ANOVA) test revealed that overall means of the estimation 
methods differ significantly only at the plot-level but not at the stand- and county-level at 
95% confidence level. The TukeyHSD test showed that only four pairs of methods 
(namely, Actu.imput-Observed, NBCD-Observed, USFS-Actu.imput, and Fuzz.imput-
NBCD) generate overall plot-level means that do not differ significantly with the pair of 
methods at 95% confidence level (Table 2.5a). All the pairs of methods produced stand- 
and county-level average estimates that are not significantly different at those scales 
(Tables 2.5a, 2.5b, 2.5c). 
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Table 2.5a. TukeyHSD test for difference of plot-level overall means by all pairs of 
methods 

Pair of Methods Mean diff (Mg) Lower limit Upper limit p-adjusted 
Actu.imput-Observed 7.3279 -2.5632 17.2189 0.2553 

NBCD-Observed -3.8175 -13.7085 6.0735 0.8299 
USFS-Observed 9.9993 0.1083 19.8903 0.0460 

Fuzz.imput-Observed -13.3312 -23.2222 -3.4402 0.0022 
NBCD-Actu.imput -11.1453 -21.0363 -1.2543 0.0180 
USFS-Actu.imput 2.6714 -7.2196 12.5624 0.9477 

Fuzz.imput-Actu.imput -20.6591 -30.5501 -10.7680 <0.0001 
USFS-NBCD 13.8168 3.9257 23.7078 0.0013 

Fuzz.imput-NBCD -9.5137 -19.4047 0.3773 0.0660 
Fuzz.imput-USFS -23.3305 -33.2215 -13.4395 <0.0001 

  

Table 2.5b. TukeyHSD test for difference of stand-level overall means by all pairs of 
methods 

Pair of Methods Mean diff (Mg) Lower limit Upper limit p-adjusted 
Actu.imput-Observed 313.9410 -607.5749 1235.4568 0.8843 

NBCD-Observed 22.7516 -898.7643 944.2675 0.9999 
USFS-Observed 131.7232 -789.7927 1053.2390 0.9950 

Fuzz.imput-Observed -534.8651 -1456.3810 386.6508 0.5055 
NBCD-Actu.imput -291.1894 -1212.7052 630.3265 0.9096 
USFS-Actu.imput -182.2178 -1103.7337 739.2981 0.9829 

Fuzz.imput-Actu.imput -848.8061 -1770.3220 72.7098 0.0874 
USFS-NBCD 108.9716 -812.5443 1030.4874 0.9976 

Fuzz.imput-NBCD -557.6167 -1479.1326 363.8992 0.4623 
Fuzz.imput-USFS -666.5883 -1588.1042 254.9276 0.2773 
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Table 2.5c. TukeyHSD test for difference of county-level overall means by all pairs of 
methods 

Pair of Methods Mean diff (Mg) Lower limit Upper limit p-adjusted 
NBCD-Actu.imput -1427328.34 -5706594.0 2851937.5 0.8902 
USFS-Actu.imput 306573.74 -3972692.0 4585839.6 0.9996 

Fuzz.imput-Actu.imput 36053.04 -4243213.0 4315318.9 0.9999 
Evalidator-Actu.imput -3111837.41 -7391103.0 1167428.4 0.2697 

USFS-NBCD 1733902.08 -2545364.0 6013167.9 0.7992 
Fuzz.imput-NBCD 1463381.38 -2815884.0 5742647.2 0.8810 
Evalidator-NBCD -1684509.07 -5963775.0 2594756.8 0.8157 
Fuzz.imput-USFS -270520.70 -4549787.0 4008745.1 0.9997 
Evalidator-USFS -3418411.15 -7697677.0 860854.7 0.1848 

Evalidator-Fuzz.imput -3147890.45 -7427156.0 1131375.4 0.2586 
 

2.5. Discussion 
Model formulation and validation are crucial for remote sensing based forest biomass 
assessment and its application. Contemporary spatial inventory systems for biomass 
estimation apply different modeling strategies contingent on scale of operation, required 
accuracy, data availability, funding and logistic support. High resolution data are more 
often used in small-area estimation and coarse resolution data for regional or national 
scale studies. The NBCD dataset is focused for the year 2000 and uses multi-source high 
resolution data with least temporal difference among the input variables. The InSAR data 
applied in the NBCD model accounts for canopy height, but the USFS model lacks height 
information.  The inputs of USFS model also have a smaller temporal gap between the 
collection of field data and geospatial variables. The NBCD leveraged the SRTM 2000 
data and hence is not replicable unless a similar data acquisition mission is conducted. 
The USFS method using MODIS data is reproducible though resulting in a coarser 
resolution output. Biomass estimation using MODIS data has limited success for small-
area estimation because of the occurrence of mixed pixels which hinders integration of 
sample data from small sized plots with the remote sensing signatures from bigger pixels. 
Considering the potential of canopy height information and the linkage of biomass 
abundance with cover types, BAWHT and IFMAP layers were included as explanatory 
variables in the new models formulated in this study. But these two spatial layers were 
prepared at least 5 years before the FIA field data (collected in 2005-2009) and thus there 
is temporal mismatch.  
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The constraint of inadequate data for model training and validation hampered efficient 
modeling and data mining efforts. The fuzzed-swapped coordinates of the inventory plots 
in the FIA database are useful because as many predictor variables as available can be 
attached to the plot locations; the tradeoff is that the resulting reference frame suffers 
from spatial mismatch of the ground response and the feature explanatory variables. On 
the other hand, the true coordinates accessible only via FIA regional units allow joining 
of limited number of feature variables, often after reclassification, to the plot data. The 
FIA privacy policy led to compromise with predictive power of the auxiliary layers used 
in this study. Since it required grouping of NDVI and MODIS-slope rasters into 20 
broader classes to pass the FIA security clearance with maximum number of reference 
data, the predictive power of the spatial layers was obviously reduced from what it would 
have been without the grouping. Further, the BAWHT values attached to the plots in the 
reference data matrix were not extracted from the raster used for spatially extending the 
model. These values were instead derived from the field measurements made by FIA at 
the inventory plots. Therefore, there is potential inconsistency between the raster values 
and the plot-level values of the two sources which may also introduce bias in the 
estimation. These constraints motivate evaluation of alternative modeling approaches for 
application to multiple spatial scales. 

The way spatial inventory modeling was designed in this study is particularly important 
for small-area estimation where the areas are devoid of field inventory data. The spatial 
distribution of biomass obtained using the Actu.imput model suggest that the FIA 
database holds good promise for stand-level estimation provided that at least the 
restricted remote sensing and geospatial variables can be attached to the plot data. An 
advantage of using the FIA data is that it provides unbiased estimates as the sample units 
have random layout. The NBCD model did not produce better stand-level estimates than 
the constrained Actu.imput model. This implies that formulation and application of a 
model similar to the Actu.imput model is appropriate to update inventory information for 
operational planning. 

The Actu.imput model validation results are consistent with previous studies. The pixel-
plot level accuracy of estimates was least and county-level estimates were the best. 
Published works using kNN have shown that pixel level accuracy of forest attribute 
estimations is low, but for larger areas more acceptable accuracy is reached (Nilsson, 
2002; Tomppo et al., 2002; Holmstrom and Fransson, 2003; McRoberts et al., 2007). For 
example, Reese et al. (2002) found low accuracy at the pixel level (58–80% relative 
RMSE for standing volume), and better accuracy over larger areas, with the best result of 
10% relative RMSE over a 100 ha aggregation. Similarly, Chirici et al. (2008) reported 
44-63% and Fazakas et al. (1999) reported about 74% relative RMSE against the 
measured mean standing volume. The under prediction in high biomass areas and over-
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prediction in low biomass areas is pursuant to Baccini et al. (2004) who observed under-
prediction above 250 Mg ha-1 and over-prediction below 45 Mg ha-1.   

The relative importance of climatic variables in the Fuzz.imput model (Figure 2.2b) can 
be explained on the basis of Zheng et al. (2007) who reported increasing density of 
biomass from west to east and north to south that respectively follows increasing 
precipitation and temperature trend in the Lake States. Baccini et al.(2004) also observed 
positive association of total annual precipitation and biomass. 

The weak association between plot-level measured and imputed values can also be 
justified on the basis of FIA plot design. The layout of the FIA plots is such that the four 
subplots (each 7.3 m in radius) are spread over a minimum of 4 pixels within a 3×3 
window. The reference plot estimate of biomass used in this study was based on 
averaging and up-scaling of the values from the four sub-plots. As there is not direct 
correspondence between single pixels and FIA plots, an average of 3×3 window from the 
biomass output raster was used for cross validation with the field measurements in the 
FFC. This resulted in a higher R2 value than when extracting values from single pixels. 
Another source of uncertainty in the estimation was the difference in the years of FIA 
measurements and the years of Landsat image acquisition.  

The county-level validation data retrieved directly from the FIA database were the 
estimates of growing-stock on forest land only that includes timberland, reserved forest 
land, and other forest land. The definition of forest land in FIA protocol is set to the 
criteria of “at least 0.405 ha in size, 36.58 m continuous canopy width and 10% stocking 
where understory is not disturbed by non-forest land use such as agriculture or residence” 
(Blackard et al., 2008). The FIA plots, according to current design, can also include areas 
having <10% crown cover (e.g., clear-cut) and the imputation models of this study also 
considered such plots and gave predictions for both forested and non-forested pixels. As 
expected our results show that the total of the imputed values for most of the counties are 
above the reference values as shown by the distribution of points above 1:1 line in the 
Figure 2.7. This means that the imputation models are also predicting biomass at some 
cover types that are actually not forest. Use of a mask to exclude non-forest area and 
running imputation only for the forested region was not deemed necessary as the 
reference frame for model training included a large number of samples representing the 
full range of cover types of the study area. Although Actu.imput model was superior to 
the USFS model in terms of R2, RMSE and bias at the county-scale, high efforts in 
developing fine resolution maps for large-area estimation is not necessary as a model 
generated out of fuzzed-swapped coordinate database also provided acceptable estimates 
at the county-level. The superiority of Actu.imput model may be because the FIA plot 
size is comparable to the pixel size of Landsat but not to the size of MODIS.  
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In general, spatial models have an inherent characteristic of being area specific, i.e. a 
model extended beyond the region of reference data may provide biased estimates. The 
NBCD and USFS models are for the entire conterminous USA but the models produced 
in this study are specific to a region of the Lake States so its application outside the study 
area even within the Lake Sates requires further scrutiny. The factors causing uncertainty 
in biomass prediction are described in Lu et al. (2012). The complex forest structure and 
composition across the landscape, use of improper allometric equations, and non-linear 
relationship between biomass and canopy cover are some factors hindering accurate 
mapping. For example, biomass continues to accumulate in trees even after canopy 
closure of forest, limiting the extent to which optical reflectance from canopy can be used 
to estimate biomass. The performance (or superiority) of models varies with scale of 
validation data, and choice of statistical measures derived from the prediction and 
validation datasets. 

 

2.6. Conclusions 
i. Although the restricted FIA plot data based imputation model (Actu.imput) 

provided better plot level estimates, none of the evaluated models can be applied 
for the plot level biomass prediction because none of the prediction estimates 
were statistically equivalent to the field based observations. 

ii. Stand-level biomass estimate is most accurately provided by the Actu.imput 
model in terms of RMSE. The NBCD and USFS models are also capable of 
producing estimates closer to the field observations, but Fuzz.imput model derived 
from the fuzzed-swapped coordinate FIA database is not appropriate. 

iii. A high degree of prediction variability was observed in younger stands with all 
the models, mostly because of temporal mismatch between remote sensing and 
field data. 

iv. The county level estimates can be satisfactorily obtained with any of the tested 
models. A high degree of sophistication and adjustments to offset the spatial 
mismatch concerns of field plot data and remote sensing data is not necessary in 
modeling and mapping. This is because even the Fuzz.imput model generated 
results statistically equivalent to reference data. 

v. The performance of models varied with the size of target area, choice of statistical 
measure to test goodness-of-fit, and the quality of calibration and validation data. 
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2.7. Suggested further study  
Addition of more stands of known age, known disturbance history, and larger size that 
hold large trees above the minimum dbh threshold (10 cm in this study) could facilitate 
identifying the minimum area for reliable prediction of biomass by the imputation 
methods of operational value. The integration of un-binned NDVI and MODIS-slope and 
single panel (one year measurement) FIA data closest to the year of acquisition of the 
remote sensing images can be expected to improve the prediction accuracy, and this 
needs to be tested. The hypothesis that reducing temporal mismatch between remote 
sensing, geospatial data and field data used in model formulation could reduce prediction 
error could be verified through a similar study. Unsupervised or supervised classification 
of satellite image can be substituted for the outdated IFMAP layer. 
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3. Integration of variable radius plot and LiDAR data for multi-stand 
imputation and mapping of forest attributes2 

 

3.1. Introduction 
Assessment of forest structural attributes such as growing stock volume and biomass is 
essential for understanding ecosystem productivity and carbon cycling (Gleason and Im, 
2011). Spatially explicit mapping of biomass has especially gained more attention in the 
frameworks of international conventions on climate change mitigation and sustainable 
forest management (Luther et al., 2006; FAO, 2009, 2010). In addition, accurate and cost 
effective spatial inventory information is demanding in operational forest management 
planning. 

The traditional field-based techniques of generating inventory information on structural 
parameters via the use of sample data to extrapolate attributes over broader areas are 
often constrained by time and resources.  Therefore, improved tools and techniques are 
continually being searched and developed to achieve better inventory accuracy in a cost-
efficient manner. As intensive management practices demand low-cost and high 
resolution structural information especially for stand level monitoring, a customary 
practice is to integrate remote sensing (RS) data with a sparse network of field plot 
measurements (Wulder et al., 2008). Fundamentally, any geospatial inventory technique 
requires predictive models developed from a reference data frame based on samples of 
field measured response and co-located remotely sensed predictor variables across the 
entire area of interest. The formulated empirical relationship between field and remote 
sensing measures is then applied at spatially contiguous pixel units where only predictor 
variables are known across the entire target area. 

A wide range of RS data and analysis techniques have been applied to augment in situ 
sample inventory data with the intent of providing timely, unbiased and cost-efficient 
assessments of forest structural attributes over progressively large spatial extents  
(Falkowski et al., 2006; Zhao et al., 2009; Gleason and Im, 2011). Indeed, RS data from 
both passive and active sensors have the capability to supplement the traditional approach 
of forest inventory and assessment (Lu, 2006; Song, 2012). Some satellite data (e.g. 
Landsat) are readily available globally and can be useful for estimating forest attributes. 
However, when considering diverse forest structures, Landsat and similar optical RS data 
are constrained by the fact that reflectance signals saturate in high biomass areas (Lefsky 

2 This chapter is ready to submit in a remote sensing journal with Ram K. Deo as the first author and 
Michael J. Falkowski and Robert E. Froese as the second and third authors respectively. 
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et al., 2002; Lu et al., 2012). Light detection and ranging (LiDAR) technology has 
demonstrated potential for addressing weaknesses inherent in the optical RS because 
LiDAR signals can penetrate the canopy gaps and directly measure horizontal and 
vertical profiles of canopy and terrain (Lefsky et al., 2002). Consequently, contemporary 
forestry research on structural assessments tends to leverage LiDAR for improved 
detection of 3-dimensional forest characteristics. Several studies have demonstrated high 
correlation between LiDAR data and forest structural attributes (Van Aardt et al., 2006; 
Wulder et al., 2008; Gleason and Im, 2012). LiDAR data is often leveraged in geospatial 
forest inventories because the sensor directly measures vegetation height, sub-canopy 
topography (i.e., elevations) with high degrees of accuracy and precision even in closed 
canopy and inaccessible forests. Indeed, the application of LiDAR data in forest resource 
inventory is rapidly expanding in the last 20 years (Hudak et al., 2009). In the future, 
regional or national level assessments may be realistic given the increasing availability, 
resolution, and coverage of sensors and acquisitions (Hudak et al., 2009; 2012). Further, 
incorporating LiDAR data into an operational forest inventory has been found to improve 
cost-efficiency as compared to the traditional field based approach (Hummel et al., 2011) 
and the advantages of LiDAR data may supersede the difficulties posed by cost-intensive 
field campaigns (e.g., sampling in remote areas).  

LiDAR data are well suited to characterize horizontal and vertical attributes of forest 
canopies and underlying terrain (Wulder et al., 2012). The point cloud data obtained from 
LiDAR instruments accurately represents the elevations of vegetation and the ground 
surface (Mitchell et al., 2011; Sun et al., 2011). The vertical profile of the point cloud can 
be separated into ground and non-ground returns and a digital elevation model (DEM) at 
an appropriate resolution can be created (e.g. via nearest neighbor, kriging, or spline 
interpolation methods) based upon the ground returns only. The normalized point cloud 
(difference between individual point elevation and the DEM) then characterizes the 
vertical and horizontal distribution of vegetation in a forest, and various metrics 
representing statistical distribution of canopy height, canopy cover, strata density, and 
strength of near infrared return signals (i.e. intensity) can be derived (Gobakken and 
Naesset, 2008; Hudak et al., 2008). Such metrics have been used extensively as 
explanatory variables in many studies employing empirical or semi-empirical models 
under parametric or non-parametric frameworks for the prediction of various forest 
biophysical attributes (Goerndt et al., 2010; Pesonen et al., 2010; Gleason and Im, 2012). 
However, performance of the predictors varies with data characteristics, forest type, 
sampling design, and the modeling approach employed (Chen et al., 2012; Vincent et al., 
2012). LiDAR derived metrics have been used successfully in previous studies for the 
prediction of biophysical parameters such as biomass (Lefsky et al., 2002; Popescu et al., 
2011; Straub and Koch, 2011; Chen et al., 2012; Gleason and Im, 2012; Nelson et al., 
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2012), standing volume (Nilsson, 1996; Van Aardt et al., 2006; Straub et al., 2009; Latifi 
et al., 2010; Tesfamichael et al., 2010), stand basal area (Hudak et al., 2006; 2008; 
Vincent et al., 2012), tree density (Hudak et al., 2006; 2008), crown diameter (Popescu et 
al., 2003), DBH (Salas et al., 2010), LAI (Solberg et al., 2009), and vegetation structural 
development stages (Falkowski et al., 2009).  

Any LiDAR assisted forest inventory, similar to other RS based methods, involves 
empirical model building by relating dependent variables measured in sufficient number 
of sample plots with coinciding LiDAR derived predictor metrics. Hence, in addition to 
LiDAR data acquisition, a significant portion of the total inventory cost is associated with 
field sampling measurements. The conventional approach for integrating LiDAR and 
field sample plot data is to use inventory parameters from fixed dimension plots, with the 
size of the plots approximately equal to the spatial resolution (i.e., grid size) at which 
LiDAR predictor variables are calculated (Hudak et al., 2008). However, forest inventory 
based on fixed dimension plots can be costly since that entails detailed measurements of 
every tree within the plot boundary. In addition, statistical validity of the models requires 
that the sample plots should characteristically represent the full coverage of forest 
structural variability across the area of interest. Since the size, number (intensity), and 
distribution of sample plots is directly related to the cost of inventory, resource managers 
often have vested interest in inventory protocols that maintain sampling efficiencies and 
produce accurate estimates of attributes. Nonetheless, increasing the sampling intensity is 
one solution to improving the representation of forest variability in the sample dataset. A 
commonly applied strategy to increase the sampling intensity is to employ variable radius 
plots (VRP), or point sampling. VRP sampling is quick, unbiased, and easy to implement 
as the sample trees are selected with probabilities proportional to their basal area and 
inverse-distance from the plot center (Avery and Burkhart, 1994). The technique 
basically requires the cruiser to stand at a point, view every tree at the breast height level 
(1.37 m) through an angle gauge (prism or Relaskop) in a 3600 sweep, and count only 
those trees the bole of which completely covers the projection angle of the device. The 
technique depends on a pre-selected angle gauge that corresponds to a constant basal area 
on per unit forest-area basis, called basal area factor (BAF), for each tally tree regardless 
of the DBH. The conventional practice is to apply a single BAF to cruise one stand. The 
choice of BAF in an operational inventory depends on tree size distribution and density. 
A smaller BAF generally corresponds to a larger coverage of unknown and inconsistent 
area and results in more tally trees per point compared to a larger BAF (Reed and Mroz, 
1997); smaller BAFs have risk of missing or double counting sample trees in dense 
stands but reduce the likelihood of edge effect (White et al., 2013). Some prior 
publications recommend selection of BAFs that provide an average of 4-8 tally trees per 
point (Reed and Mroz, 1997; USFS, 2000). The tallied trees need also to be measured for 
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DBH (also total height for better results) if the objective is computation of tree density or 
standing volume. This type of sampling strategy is especially useful for timber inventory 
as efforts are focused on larger trees that hold the most volume and value. The canopy 
height and density information from LiDAR data can be useful to determine an optimum 
BAF for multi-stand sampling and modeling. Currently, studies that integrate VRP data 
with LiDAR data are limited. 

Integrating VRP data into a LiDAR based forest inventory is problematic because size of 
the sample plots is indeterminate and inconsistent even for a specified BAF. In other 
words, spatial mismatch issues arise when formulating prediction models dependent on 
LiDAR derived metrics with a fixed spatial resolution (i.e. raster grids). The variable size 
of input field plots is the major source inducing uncertainties in the models. Thus a key 
challenge for improving the integration of VRP and LiDAR data is finding the optimum 
grid size to which LiDAR data be binned so that inventory parameters of a VRP best 
matches with the coinciding LiDAR derived metrics (Golinkoff et al., 2011). The purpose 
of finding an optimal size is to reduce the variability and spatial mismatch between the 
LiDAR data and plot measured attributes (Hollaus et al., 2007; Jochem et al., 2011). 
Hollaus et al. (2009) selected an approximate grid size of LiDAR metrics by analyzing 
only four different arbitrarily selected plot-diameters (16, 20, 24, and 28 m) while 
Kronseder et al. (2012) used a one hectare circular area for each plot to extract LiDAR 
metrics, citing that the VRP method provides attribute estimates on per hectare basis for 
each plot. Hollaus et al. (2007) also used five different circular areas to extract the 
LiDAR data, and evaluated the impact of five resolutions of predictor metrics on 
response variables to decide an approximate (or average) VRP size. Van Aardt et al. 
(2006) coupled LiDAR distributional parameters on per segment basis (segment derived 
from canopy height model) with multiple VRPs per segment for modeling and mapping 
of volume and biomass. Gobakken and Naesset (2008) evaluated the effect of different 
sized fixed dimension plots on the accuracy of a LiDAR based inventory and noticed that 
the effect varies with canopy structure and stem density. Some authors caution against 
integrating LiDAR with VRP data simply because of the concerns for mismatch between 
field-measured attributes and corresponding fixed resolution LiDAR metrics (Laes et al., 
2011). 

A large area inventory across multiple stands using VRP sampling may involve several 
BAFs that in principle vary with stand structure. However, Reed and Mroz (1997) have 
indicated that foresters often prefer to work with a compromise BAF for multi-stand 
inventory to avoid practical difficulties that arise due to change in limiting distance for a 
given tree size with a change in BAF. Indeed, an efficient strategy for multi-stand 
inventory and assessment dependent on point sampling and LiDAR data would be to 
apply a common BAF suitable for all target stands. This strategy would support prompt 
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resource assessment goals as a single BAF may allow the use of a single grid size of 
LiDAR metrics for the entire target area, and hence less time for LiDAR data processing. 
An intuitive approach for leveraging LiDAR data with multi-stand VRP data would be 
trial-based, where several LiDAR samples of varying size can be extracted successively 
at each VRP location, and then models can be developed at various resolutions by 
associating the LiDAR samples with the inventory attributes obtained from point 
sampling. Further strategy to facilitate modeling could be grouping of the plots cruised 
with the same BAF and formulating model for each size (resolution) of LiDAR samples.  

3.2. Objectives 
The goal of this study was to assess the efficacy of supporting LiDAR based forest 
inventories with VRP data, and subsequently to develop an effective methodology for 
integrating LiDAR and VRP data to perform a large area assessment of standing volume. 
The general research questions include:  

• Can VRP data be effectively integrated with LiDAR data to improve the 
efficiency of geospatial forest inventories? 

• Can VRP data be substituted for fixed radius plot (FRP) data in the case where 
insufficient FRPs exist? 

• How does a LiDAR-based stand level inventory modeled using VRP data 
compare with the field measurements? 

3.3. Methods 

3.3.1. Overall approach 
The VRP data based modeling and mapping approach involved four principal steps. First, 
the VRP inventory data was collected by using a small angle gauge of BAF 1.15 m2 ha-1, 
denoted hereafter as BAF 5 (corresponding to the imperial units) for easy spelling. 
Second, the BAF 5 plot data was re-processed iteratively to derive data for larger BAFs 
since a smaller BAF corresponds to a larger plot size (but indeterminate area) with more 
tally trees. Third, LiDAR point cloud data were extracted at each plot locations for a 
range of radii between average and maximum limiting distances (see sections 3.3.3 and 
3.3.5) that depend on the BAF and DBH distribution of each plot. Then ninety potential 
LiDAR metrics were generated and models were fitted separately for each sample size; 
the size yielding the best fit statistics were inferred the optimal plot size. Fourth, all tiles 
of LiDAR data for the area of interest were processed and predictor metrics were 
generated at spatial resolutions corresponding to the optimal plot size of the two best 
VRP models, and finally the models were extended spatially to develop standing volume 
distribution maps. 
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The FRP data based modeling and mapping followed the conventional procedures where 
LiDAR data was processed and ninety metrics were prepared to the resolution of plot 
diameter (i.e., 22.6 m). Then, the metrics were attached to each plot data and a model was 
fitted which was finally extended spatially across the study area.  

Thus three volume maps, two corresponding to the best two VRP models and one 
corresponding to the best FRP model, were produced. The volume estimates at the plot-
level by the FRP and VRP models were compared at the last. 

3.3.2. Study area  
The study was carried out in six conifer stands (Figure 3.1) of Michigan Technological 
University’s Ford Forestry Center (FFC), located in the western Upper Peninsula of 
Michigan, U.S.A (Latitude 46°37’N, Longitude 88°29’W). The total FFC area is 
approximately 1400 ha and has been divided into 54 stands with an average size of 22 ha. 
The stands have been subject to various management activities since 1954. The Ford 
Forest is predominantly occupied by jack pine and hemlock-northern hardwood cover 
types, but also contains smaller areas of quaking aspen and natural (fire-origin) red pine. 
The dominant overstory tree species in the stands are jack pine (Pinus banksiana), sugar 
maple (Acer saccharum), red maple (Acer rubrum), eastern hemlock (Tsuga canadensis), 
and yellow birch (Betula alleghaniensis). The minor overstory species in the stands 
include red pine (Pinus resinosa), white pine (Pinus strobus), quaking aspen (Populus 
tremuloides), black cherry (Prunus serotina), American basswood (Tilia Americana), 
American elm (Ulmus americana), ironwood (Ostrya virginiana), eastern white pine 
(Pinus strobus), red pine (Pinus resinosa), balsam fir (Abies balsamea), white spruce 
(Picea glauca), northern white cedar (Thuja occidentalis), black spruce (Picea mariana), 
and tamarack (Larix laricina). Elevation of the target stands range from 359- 425 m 
above sea level and the soils primarily belong to the orders Spodosols and Entisols, 
originated out of glacial outwash, with varying nutrient status where mesic to dry silt 
loams support plant communities typical of northern hardwood complex, and xeric sandy 
areas harbor jack pine dominant overstory (Berndt, 1988).  

The area of interest differs by age, stoking, species composition, and complexity. The six 
target stands (Figure 3.1) include one jack pine dominated old protected reserve, four 
pure even-aged young jack pine stands, and one mixed uneven-aged red pine dominant 
stand. The stands have not been harvested since 2007; however, selective harvesting did 
occur in two of the six stands in 1991 and 2007. 
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Figure 3.1. The six target conifer stands and sample plot locations overlaid on the canopy 
height model derived from the LiDAR data. The stands belong to different age, size 
(height, and diameter) and stocking classes.  

Table 3.1. Characteristics of the sample stands based on overstory measurements 

Stand 
ID 

No. 
of 
plots 

Area 
(ha) 

Max 
DBH 
(cm) 

QMD* 
(cm) 

Trees 
per ha 

SBAᶲ 
m2.ha-1 

BAWHT 
ϯ (m) 

Remarks 

6 13 50.29 82.0 26.9 515 29.43 18.7 red pine 
dominant 

10 4 10.14 23.8 17.8 412 10.29 12.36 pure jack 
pine 

12 7 14.22 23.6 5.8 803 13.82 11.12 pure jack 
pine 

17 10 33.09 32.2 15.9 840 16.77 11.76 pure jack 
pine 

19 9 32.12 27.6 15.3 961 17.74 11.35 pure jack 
pine 

24 4 4.08 35.5 22.6 729 29.50 14.92 jack pine 
dominant 
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* QMD: quadratic mean diameter; ᶲ SBA: stand basal area; ϯ BAWHT: basal area 
weighted canopy height 

3.3.3. Field inventory data  
A field inventory was carried out in the summer 2012 over a network of fixed radius plots 
(FRP, 0.04 ha in size) in the stands. The permanent plots were distributed randomly 
across the study area in a stratified sampling design. The number of plots per stand 
ranged from 4 to 13 depending on stand size, density, and heterogeneity so that the 
minimum intensity was 1 plot per 3.8 ha (Table 3.1). The plots distribution intensity was 
based on a maximum sampling error objective of 20%. The FRP inventory dataset was 
supplemented with VRP inventory in September 2013 at each of the existing plot 
locations by using a prism of BAF 5. Data from both fixed radius and variable radius 
sampling techniques were obtained for a total of 47 plots in the target stands. The VRP 
inventory was made with a smaller BAF of 5 in order to obtain a large number of sample 
trees per plot so that a simulated inventory with larger BAFs result in at least four tally 
trees per plot. In the FRP sampling, species and DBH of each tally tree 10 cm or greater 
were recorded in addition to the ground slope, aspect, elevation, and coordinates of each 
plot. The coordinates of every plot center were determined using a Trimble GeoXH 6000 
global positioning system and differential correction post-processing (via Trimble 
Pathfinder Office software) that resulted in an average horizontal precision of 0.80 m. In 
addition, total height of the smallest and largest trees (by DBH) of each species occurring 
within the fixed-size plots was measured using a Haglof Vertex Laser VL400 
Hypsometer. In the case of the VRP sampling with BAF 5 prism, species and DBH of 
tallied trees 10 cm or greater, as well as the distance of each tree from the plot center, 
were measured. A laser hypsometer, fixed on a tripod over the plot center, was used to 
measure the distance (at breast height level) of the tallied trees. As a protocol, the sample 
tree measurement at each plot was started from due north to avoid measurement bias. 

From the BAF 5 measurements, VRP data for additional six different BAFs of 1.60, 2.06, 
2.29, 2.75, 3.21, and 3.44 m2 ha-1 tree-1 were simulated; these six factors are hereafter 
denoted by BAF 7, BAF 9, BAF 10, BAF 12, BAF 14, and BAF 15 (corresponding the 
imperial units) respectively, for ease of spelling. The simulation was based on the 
comparison of measured horizontal distance of a tree from the plot center to the 
calculated limiting distance (R) (see Equation I). The limiting distance is the maximum 
horizontal distance from plot center to the face of a tree of given DBH such that the tree 
would still be considered “in”. If the measured distance was less than or equal to the 
limiting distance then the subject tree was considered to be “in” for the selected BAF. 
The limiting distance (R) was calculated as:  
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DBHPRFR ×= ; Where 
BAF

Factor Radius PlotPRF 6962.8
== ……….. Equation I 

Tree basal area, volume, and other metrics corresponding to both FRP and VRP data 
were separately computed using standard procedures. The individual tree volumes were 
calculated using the species-specific equations for the Lake States as adopted by the FIA 
program (O'Connell et al., 2013) and detailed in Miles and Hill (2010) and Woodall et al. 
(2010). This approach of volume calculation requires bole length estimation using models 
and coefficients from Ek et al. (1981) and Hahn (1984).  The bole length is described as a 
function of stand basal area and site. Therefore, stand basal area was calculated from the 
FRP inventory data and average site index for individual species were estimated from the 
tree lists available online via the FIA DataMart tool (USFS, 2013). The individual tree 
measurements from the FRPs were summed to obtain plot level estimates which were 
further summarized to the stand level estimates through up-scaling. Volume on a per unit 
area basis at each plot was calculated by summing the volume of individual trees, 
multiplied by appropriate sampling weight. In the case of FRPs, the sampling weight is a 
constant (1/plot size) for each tree. For VRPs, the sampling weight is a function of DBH 
and is calculated as individual-tree BA divided by BAF (Avery and Burkhart, 1994). 

3.3.4. LiDAR data and processing  
LiDAR data for the area was collected in June 2011 by Aerometric, Inc. (Sheboygan, WI, 
U.S.A.) using a RIEGL LMS-Q680i airborne laser scanner onboard a helicopter flown at 
an altitude of 457 m with a ground speed of 60 kts. The LiDAR system operated at 1550 
nm near infrared wavelength with pulse frequency of 400 kHz and scan angle of ±300 
from nadir, and generated a point density of 18 pulses per square meter and captured up 
to 9 returns per pulse. The sensor has ability to scan up to 200 lines per second with 
effective measurement rate (of coordinates) upto 266 kHz. The vendor provided data as 
discrete return point cloud in numerous tiles in .las format. The multi-return dataset was 
analyzed and classified in FUSION software (McGaughey, 2014)  to produce information 
about above ground forest structure as well as the bare-earth surface. The ‘ground filter’ 
tool was used to separate ground returns out of all returns in the high-density point cloud. 
The default coefficients for the weight function (described in McGaughey, 2014) and a 
tolerance value of 0.03 m (0.1 ft) after 10 iterations were specified in the filtering process 
to properly screen out non-ground returns. A high resolution (1.5 m) grid surface (i.e. 
DEM) was then created out of the filtered ground returns and ultimately applied to 
normalize the raw LiDAR point cloud so that the remaining points represent the 
elevations of canopy elements above the ground. Since LiDAR acquires three-
dimensional information on forest structure at all possible strata including tops and 
understory, all non-ground returns from each pulse were used to derive predictor metrics. 
The non-ground LiDAR returns were clipped for 24 different radii ranging from 7 to 38 

50 

 



 
 

 

m (Tables 3.2 and 3.4) including a fixed radius of 11.3 m at each sample plot location to 
derive a suite of area-based predictor metrics. Based on the returns above 1.5 m from the 
ground surface, numerous candidate predictors characterizing canopy structural attributes 
as mentioned in Falkowski et al. (2010), Hudak et al. (2008) and McGaughey (2014) 
were derived. Altogether ninety metrics representative of canopy (fractional) cover, 
height distributional statistics, relative vegetation density (percentage returns by height 
strata), proxy leaf area index, gap fraction (Wulder et al., 2008; McGaughey, 2014), and 
texture characteristics were developed (see Appendix 1). The same metrics were 
calculated across the entire study area at a grid size equivalent to the optimal size of VRP 
for the two most suitable BAFs, and also at a grid size of 22.6 m corresponding to the 
FRP. Note that the ratio of average stand basal area (on per unit area basis) and the 
desired number of tally trees per plot gives the optimal BAF; at least 4 trees per plot was 
the desired number in this study. 

3.3.5. Optimal plot size  
The optimal plot size for point sampling was estimated with the reference of average and 
maximum limiting distances that depend on the DBH of sample trees and BAF of the 
angle gauge. The average and maximum limiting distances were calculated for each plot 
by respectively using the average and maximum DBH in the equation: 

BAFDBHR /*6962.8=  

If average limiting distance is used as the optimum radius to extract the LiDAR data, it is 
likely that a tree above average DBH may get excluded from the sample. Hence, a large 
number of radii in the range of average to maximum limiting distance (Table 3.4) were 
considered to extract the LiDAR data and processed to develop the predictor metrics. The 
impact of varying resolution of LiDAR metrics on the response variable (gross standing 
volume) was evaluated to identify the optimal plot size that was eventually adopted for 
development of LiDAR metric grids to spatially extend the VRP model over the area of 
interest (AOI). The plot size leading to the highest correlation between LiDAR metrics 
and the VRP attribute was taken as the optimum. 
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Table 3.2. Point sampling with different BAF and the summary of total number of tally 
trees in the sample plots (total 47), minimum and maximum number of tally trees per 
plot, number of plots having less than 4 tallies, and average and maximum limiting 
distances. 

BAF Total 
no. of 
tally 
trees  

Min. 
no. of 
tallies 
per 
plot 

Max. 
no. of 
tallies 
per 
plot 

No. of 
plots 
with   
≤ 4 
tallies 

Av. 
DBH 
(cm) 

Max. 
DBH 
(cm) 

Av. 
limit-
ing 
dist. 
(m) 

 

Max. 
limit-
ing 
dist. 
(m) 

 
5 840 6 33 0 23.9 81.6 11.15 38.12 
7 627 5 27 0 24.3 81.6 9.61 32.21 
9 479 2 22 1 24.3 81.6 8.46 28.41 
10 441 2 21 1 24.5 81.6 8.09 26.95 
12 367 2 18 5 24.7 81.6 7.44 24.60 
14 317 2 14 9 24.6 81.6 6.88 22.78 
15 291 2 14 11 24.5 81.6 6.62 22.00 

 

3.3.6. Modelling and mapping 
Random Forest (RF) (Breiman, 2001) based k nearest neighbors (kNN) imputation 
(Crookston and Finley, 2008; Hudak et al., 2008; Falkowski et al., 2010) was used to 
establish relationships between standing volume and LiDAR metrics for spatial 
prediction. RF is a non-parametric modeling approach that is dependent on the summary 
of many classification and regression trees where each tree is built up in a special way 
from a bootstrap sample such that each node split depends on the best predictor out of  a 
random subset of all predictors (Liaw and Wiener, 2002; Cutler et al., 2007; Crookston 
and Finley, 2008). The RF algorithm provides a noble proximity metric to identify 
nearest neighbors for a target point from the list of reference points, depending on the 
covariates of the feature space. This RF-kNN based modeling assumes that the LiDAR 
metrics of any location are related to the forest structural attributes and the response 
estimate at a target point is the weighted average value of spectrally nearest neighbors in 
the reference set. In contemporary studies, RF-kNN models have shown better 
performance compared to other methods (Hudak et al., 2008; Powell et al., 2010; Evans 
et al., 2011) and also avoid attending to parametric assumptions inherent in traditional 
regression, particularly in spatial prediction with multivariate remote sensing data 
(Brosofske et al., 2014).  

For the fixed area plot (diameter 22.6 m) and the various plot sizes (Table 3.4) at each 
BAF of VRP, separate reference data frames (with all predictors and the response) were 
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created and separate models were formulated. The RF modeling procedure was executed 
in the R statistical software (R Core Team, 2013) which required selection of an optimum 
set of predictors for each resolution of LiDAR data via application of the QR-
decomposition method (Cížková and Cížek, 2012) followed by a RF model selection 
function optimized on the RF model improvement ratio (MIR) (Falkowski et al., 2009). 
The QR-decomposition method applies multivariate variable screening process to prune 
multi-collinear candidate predictors. The importance ranking of predictors in RF follow 
an iterative procedure in which observed values of one variable is permuted at a time 
with random numbers while other predictors are left unchanged and percentage increase 
in mean squared error is estimated (Liaw and Weiner, 2002; Brosofske et al, 2014). The 
RF algorithm is useful to narrow down the predictors to an optimum set based on 
standardized importance values, %variance explained, and mean squared error (MSE). 
The optimum set of predictors were then used to develop the RF based imputation models 
separately for each reference frame corresponding to a plot size by using the 
randomForest package (Liaw and Wiener, 2002) in the R software. The amount of 
variation (and MSE) explained by the models for each BAF was plotted against the size 
of LiDAR sample to identify the best models. The size that yielded highest variance 
explanation or lowest MSE was considered as the optimum size for LiDAR grid metrics 
preparation. Two best VRP models corresponding to two optimum BAFs and respective 
optimum sample sizes were identified based on the goodness-of-fit statistics. The model 
formulated out of the FRP data was taken as the validation model. Next, wall-to-wall 
LiDAR grid metrics at the resolutions of the optimal sizes for the two BAFs and the exact 
size of FRP (22.6 m diameter) were developed for all the predictor variables in the 
models. Finally, the two VRP models and the FRP model were extended spatially using 
the yaImpute package (Crookston and Finley, 2008) of the R software. The outputs were 
three rasters of standing volume corresponding to the three models. 

3.3.7. Accuracy assessment  
The accuracy of imputation estimates by the two best VRP models at the plot level were 
evaluated based on the FRP inventory measurements through calculation of bias and root 
mean square error (RMSE). Graphical analysis of equivalence tests following Robinson 
et al. (2005) and Robinson and Froese (2004) was also carried out to verify whether the 
imputation estimates differ significantly from the fixed radius plot measurements. The 
stand level volume estimates from the two best VRP models were also compared with the 
estimates from the FRP model. In addition, stand level summaries of standing volume 
were also generated based on the extrapolation of plot level inventory estimates from the 
FRP sampling. However, the equivalence test could not be performed at the stand level as 
the number of stands was less than required (only six). 
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3.4. Results 
The minimum and maximum numbers of tally trees per plot with VRP sampling at 
different BAF levels are given in Table 3.2. It reveals that BAF 10 is most suitable for 
effective inventory of the entire area as it tallies at least four trees per plot (except in one) 
as suggested in several inventory guidelines (NRIS, 2014). The BAF 10 encounters fewer 
tally trees compared to the excessively large numbers of trees with BAF 5.  

The coinciding plot-level volume estimates based on the FRP and the seven different 
VRP sampling schemes applied at all the sample locations revealed that VRP sampling 
with BAF 9 produces the closest estimates (in terms of bias) on the reference data from 
the FRP cruising  (Table 3.3; Figure 3.2). The correlation and error statistics for the plot 
level FRP versus VRP estimates are given in the Table 3.3 while the individual plot level 
estimates by those methods are given in the Appendix 2. When the sample plots were 
grouped into plots with younger stand ages and older stand ages, the analysis of residuals 
imply that the BAF 9 produces lower bias and error in the younger stands while BAF 10 
performs better with the older stands (Tables 3.3a and 3.3b). It is also evident that 
younger stands suffer larger relative bias in the VRP based inventory compared to the 
older stands. However, the estimates are negatively biased (i.e. under estimated) with 
smaller BAFs in high biomass areas of the older stands (Table 3.3b). The VRP based plot 
volume estimates also show that a higher BAF gauge results in overestimation in low 
biomass areas while a lower BAF gauge results in underestimation in high biomass areas 
(Figure 3.2). 

Table 3.3. Analysis of residual errors and correlation statistics of the VRP based plot 
level volume estimates compared with the FRP based estimates for all the plots 

Statistics BAF            
5 

BAF     
7 

BAF    
9 

BAF  
10 

BAF  
12 

BAF  
14 

BAF  
15 

Bias            
(m3.ha-1) 

-2.4539 3.7707 1.5466 4.5152 4.7710 5.6569 3.5307 

Rel. bias         
(%) 

-2.3412 

 

3.3959 

 

1.4213 4.0393 4.2584 

 

5.0095 3.1867 

 RMSE        
(m3.ha-1) 

35.7435 35.4053 36.1586 38.5704 41.0013 45.0732 44.7076 

Rel. RMSE     
(%) 

34.1024 31.8860 

 

33.2301 34.5052 36.5961 39.9149 40.3509 

 Correlation 
coefficient 

0.8749 

 

0.8808 

 

0.8778 0.8734 0.8666 

 

0.8395 

 

0.8315 
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Table 3.3a. For the low volume plots in younger stands (ID 10, 12, 17 and 19) 

Statistics BAF             
5 

BAF    
7 

BAF    
9 

BAF  
10 

BAF  
12 

BAF  
14 

BAF  
15 

Bias              
(m3.ha-1) 

10.9971 11.0520 7.0611 7.6846 6.9532 7.8970 8.0048 

Rel. bias            
(%) 

15.9667 

 

16.0336 

 

10.8734 

 

11.7209 

 

10.7251
3 

 

12.0061 

 

12.1501 

 RMSE           
(m3.ha-1) 

21.4711 24.8439 22.6463 26.8394 27.0924 29.3860 30.9537 

Rel. RMSE        
(%) 

31.1737 

 

36.0421 

 

34.8728 

 

40.9367 

 

41.7889 

 

44.6763 

 

46.9827 

 Correlation 
coefficient 

0.5974 

 

0.5743 

 

0.4572 

 

0.4441 

 

0.3755 

 

0.3052 

 

0.3151 

  
Table 3.3b. For the high volume plots in older stands (ID 6 and 24) 

Statistics BAF    
5 

BAF    
7 

BAF    
9 

BAF  
10 

BAF  
12 

BAF  
14 

BAF  
15 

Bias              
(m3.ha-1) 

-26.191 -9.0786 -8.1849 -1.0777 0.9199 1.7037 -4.3645 

Rel. bias             
(%) 

-15.568 

 

-4.8983 

 

-4.3949 

 

-0.5574 

 

0.4709 

 

0.8686 

 

-2.2964 

RMSE           
(m3.ha-1) 

52.1406 48.7487 49.3879 53.3083 57.9005 63.9755 61.9289 

Rel. RMSE        
(%) 

30.9936 

 

26.3020 

 

26.5190 

 

27.5718 

 

29.6407 

 

32.6198 

 

32.5844 

 Correlation 
coefficient 

0.6059 

 

0.6531 

 

0.6507 

 

0.6579 

 

0.6796 

 

0.5933 

 

0.5909 
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Figure 3.2. Comparison of FRP based plot level volume estimates with VRP based 
estimates at the seven different BAF levels. 

The percentage variance explained by the formulated RF inventory models for the plot 
level volume prediction using numerous spatial extents (radius in m) of LiDAR samples 
are given in Table 3.4. The size of LiDAR samples were in the range of 7 to 38 m radius 
which corresponds to the average to maximum limiting distances derived respectively 
from the average and maximum DBH encountered for each BAF. Table 3.4 shows that 
the optimum LiDAR sample size (plot radius) decreases with increasing BAF. The best 
models from VRP data were obtained from LiDAR samples with a 9 m radius, 
corresponding to BAFs 9 and 10 (Tables 3.4 and 3.5; Figure 3.3). The model based on 
FRP data explained the highest variance (upto 83.32 %) among all other models and 
hence was taken as the reference model. The RMSE of the FRP, BAF9 VRP and BAF 10 
VRP imputation models were 31.80, 37.97, 45.75 m3.ha-1 respectively (Table 3.5). 
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Table 3.4. Variance explained by the RF models constructed from different sized VRP 
data and LiDAR metrics at different resolution (i.e. radius of LiDAR samples) 

Radius of 
LiDAR samples 

(m) 

% variance explained by the RF models at the different BAFs of 
VRP 

BAF        
5 

BAF   
7 

BAF   
9 

BAF 
10 

BAF 
12 

BAF 
14 

BAF 
15 

7     59.72 60.13 60.42 
8    64.5 61.52 61.31 61.23 
9   72.94 65.59 59.91 59.28 59.33 
10  59.93 69.87 61.27 58.25 57.41 58.27 
11 63.36 61.63 68.60 62.22 58.79 56.08 57.56 
12 64.56 60.48 66.01 61.16 57.92 53.36 52.91 
13 61.65 59.42 65.32 61.35 58.06 55.3 57.57 
14 62.22 58.82 64.36 61.80 58.88 56.45 56.57 
15 65.50 58.74 63.90 61.06 56.70 54.28 53.63 
16 64.19 57.99 63.40 59.44 53.72 57.62 55.11 
17 61.53 58.70 63.19 60.85 55.73 60.29 55.16 
18 60.52 57.70 62.73 60.58 56.17 60.14 54.29 
20 60.62 57.01 62.66 61.54 56.42 59.38 57.03 
22 61.66 56.78 60.99 62.35 57.10 60.28 59.63 
23 62.43 57.73 61.92 62.55 58.98 58.17  
24 61.71 58.39 59.53 62.79 58.85   
26 60.52 58.76 60.03 63.81    
28 60.93 56.83 60.32     
29 58.72 55.67      
30 59.06 56.76      
32 57.28 57.06      
35 59.26       
38 59.50       

 

57 

 



 
 

 

 

Figure 3.3. Percent variance explained by the RF prediction models built from VRP 
based plot volume estimates at different scales of BAFs and predictors at different 
resolution of LiDAR samples. 

The summary of RF based relationships between field plot inventory and co-located 
LiDAR derived metrics are given in the Table 3.5. FRP data produced the best model 
when different combinations of the response from variable or fixed radius plots and the 
predictors derived from corresponding LiDAR samples were analyzed in the modeling 
exercise. The FRP model constructed using all plots, except the 4 plots from the old 
reserve-stand, produced the highest degree of determination (83.32%). However, 
inclusion of the reserve-stand plots resulted in slightly lower explanation of variance 
(81.12%) which can largely be attributed to the fact that many snags were present in the 
reserve plots but not recorded during the field inventory. Among the models based only 
on VRPs and corresponding LiDAR metrics, the most efficient model was with BAF 9 at 
the optimum radius of 9 m for the LiDAR samples. When the inventory data (response 
variable) from the VRP sampling and the predictors derived from the fixed area (11.33 m 
radius) LiDAR samples corresponding to the points were used in model building, the 
results were inferior as compared to when an optimum radius was used for each BAF. 
The combination of inventory data from FRP and VRP, in different proportion from both 
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young and old stands, and LiDAR metrics at respective resolutions revealed that 
inclusion of a higher proportion of FRPs from older stands produces better training data 
for modeling. Similar results were obtained when VRP data from the two levels of BAF 
(9 and10) were mixed with FRP data in the model building process. This implies that 
VRP data from younger stands and FRP data from older stands, or only VRP data from 
all stands can be combined to formulate a generalized model with some compromise in 
accuracy. However, mixing different sized plots in the training dataset has practical 
limitations while spatially extending the model across the entire acquisition area (see 
discussion section). The predictor metrics selected by the RF approach are also listed for 
each model in Table 3.5. 

 

Table 3.5. A summary of random forest based key models from the different 
combinations of field plot inventory data and LiDAR derived predictors 

Description of model inputs 
Selected 
explanatory 
variables 

% 
Variance 
explain-
ed 

RMSE 
(m3ha-1) 

LiDAR 
sample 
radius 
(m) 

Only FRP samples (response and predictors from 11.33 m radius) 
All 47 FRP samples See List 1  81.12 31.80 11.33 
43 FRP samples (reserve stand excluded) See List 2 83.32 30.30 11.33 
30 FRP samples  (young stands only) See List 3 6.43 17.25 11.33 
17 FRP samples (old stands only) See List 4 23.13 42.46 11.33 
Only VRP samples (response from VRP and predictors from an optimum radius) 
47 plots @BAF 5  See List 5 65.62 35.20 15 
47 plots @BAF 7  See List 6 61.63 43.82 11 
47 plots @BAF 9  See List 7 72.94 37.97 9 
47 plots @BAF 10  See List 8 65.59 45.75 9 
47 plots @BAF 12  See List 9 61.52 50.52 8 
47 plots @BAF 14  See List10 61.31 50.95 8 
47 plots @BAF 15  See List11 61.23 49.26 8 
VRP samples (response from VRP and predictors from 11.33 m radius) 
47 plots @BAF 5  See List12 61.69 37.16 11.33 
47 plots @BAF 7  See List13 61.77 43.74 11.33 
47 plots @BAF 9  See List14 68.18 41.17 11.33 
47 plots @BAF 10  See List15 65.62 45.73 11.33 
47 plots @BAF 12  See List16 60.03 51.49 11.33 
47 plots @BAF 14  See List17 57.31 53.52 11.33 
47 plots @BAF 15  See List18 55.66 52.68 11.33 
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Table 3.5 (continued). 

Description of model inputs 
Selected 
explanatory 
variables 

% 
Variance 
explain-
ed 

RMSE 
(m3ha-1) 

LiDAR 
sample 
radius 
(m) 

Mixed FRP and BAF9 VRP samples (response and predictors from respective plots with 
FRP size 11.33 m and VRP optimum size 9 m) 
30 FRPs in young + 17 VRPs in old stands See List19 74.26 37.50 11.33, 9 
30 VRPs in young + 17 FRP in old stands See List20 78.66 33.29 11.33, 9 
Less FRPs and more VRPs (32:68) for all 

 
See List21 70.52 40.55 11.33, 9 

More FRPs and less VRPs (68:32) for all 
 

See List22 76.51 34.62 11.33, 9 
50% FRPs & 50% VRPs per stand See List23 72.65 37.70 11.33, 9 
Mixed FRP and BAF10 VRP samples (response and predictors from respective plots with 
FRP size 11.33 m and VRP optimum size 9 m) 
30 FRPs in young + 17 VRPs in old stands See List24 69.61 43.58 11.33, 9 
30 VRPs in young + 17 FRP in old stands See List25 76.81 34.67 11.33, 9 
Less FRPs and more VRPs (32:68) for all 

 
See List26 68.06 44.86 11.33, 9 

More FRPs and less VRPs (68:32) for all 
 

See List27 76.54 34.76 11.33, 9 
50% FRPs & 50% VRPs per stand See List28 69.58 40.45 11.33, 9 
Mixed FRP and BAF9 and BAF10 VRP samples (response and predictors from respective 
plots; VRPs being measured half-half with the two BAFs) 
30 FRPs in young + 17 VRPs in old stands See List29 72.27 41.04 11.33, 9 
30 VRPs in young + 17 FRP in old stands See List30 77.52 34.39 11.33, 9 
Less FRPs and more VRPs (32:68) for all 

 
See List31 68.93 42.57 11.33, 9 

More FRPs and less VRPs (68:32) for all 
 

See List32 77.14 34.36 11.33, 9 
50% FRPs & 50% VRPs per stand See List33 71.50 38.99 11.33, 9 

 
List 1: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevIQR, Strata3, Strata5 
List 2: ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, Strata3, Strata5 
List 3: PropT, Prop4, ElevL3, IntMode 
List 4: PropT, ElevMax, ElevMean 
List 5: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevIQR, IntMode,   
……...Strata3, Strata5 
List 6: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevIQR, EMADmed, 
……...ElevL3, IntL4, Strata3, Strata5 
List 7: PropT, ElevMean, ElevMode, Strata5 
List 8: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevSkew, ElevL3, 
……...Strata3, Strata5 
List 9: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevL4, IntL4, 
……...Strata3, Strata5 
List 10: ElevMax, ElevMean, ElevMode, ElevVar, ElevL4 
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List 11: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevSkew, 
……….ElevKurt, ElevL4, ElevLkurt, IntL4, Strata2, Strata3, Strata5 
List 12: ElevMax, ElevMean, Strata5 
List 13: ElevMax, ElevMean, Strata5 
List 14: PropT, ElevMax, ElevMean, ElevSD, Strata5 
List 15: ElevMax, Strata5 
List 16: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevIQR, EMADmed, 
……….ElevL3, ElevL4, IntL4, Strata3, Strata5 
List 17: Prop4, ElevMax, ElevMean, ElevMode, ElevSD, ElevIQR, ElevKurt, 
……….ElevL3, ElevL4, IntSkew, IntL4, Strata3, Strata5 
List 18: ElevMax, ElevMean, ElevMode, ElevSD, ElevIQR, ElevKurt, ElevL3, 
……….ElevL4, IntSkew, IntL4, Strata3, Strata5 
List 19: PropT, ElevMax, ElevMean, ElevMode, ElevSD, Strata5 
List 20: PropT, ElevMax, ElevMean, ElevSD, ElevVar, Strata5 
List 21: PropT, Prop4, Prop5, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, 
……….ElevIQR, ElevSkew, ElevKurt, EMADmed, ElevL3, ElevL4, ElevP05, 
……….IntMin, IntMode, IntVar, IntL3, IntL4, Strata2, Strata3, Strata4, Strata5 
List 22: PropT, ElevMax, ElevMean, ElevMode ElevSD, ElevVar, ElevL3, IntL4, 
…….....Strata3, Strata5 
List 23: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, Strata5 
List 24: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevL3, IntL4, 
……….Strata3, Strata5 
List 25: PropT, ElevMax, ElevMean, ElevSD, ElevVar, ElevIQR, Strata3, Strata5 
List 26: ElevMax, ElevMean, ElevSD, ElevVar, Strata5 
List 27: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevL3, IntL4, 
……….Strata3, Strata5 
List 28: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, EMADmed, 
……….ElevL3, Strata0, Strata3, Strata5 
List 29: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevL3, IntL4, 
……….Strata0, Strata3, Strata5 
List 30: PropT, ElevMax, ElevMean, ElevSD, ElevVar, ElevIQR, Strata3, Strata5 
List 31: PropT, Prop3, Prop4, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, 
……….ElevIQR, ElevSkew, ElevL3, ElevL4, ElevP05, IntMin, IntVar, IntL4 , 
……….Strata2, Strata3, Strata4, Strata5 
List 32: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevL3, IntL4, 
……….Strata3, Strata5 
List 33: PropT, ElevMax, ElevMean, ElevMode, ElevSD, ElevVar, ElevL3, Strata0, 
……….Strata3, Strata5 
 
These results show that VRP sampling with BAF 9 and 10, both matching an optimal plot 
size of 9 m radius, produced the top two models after the FRP based model (if we 
disregard models based on mixed VRP and FRP data). The FRP model is taken as the 
reference to mainly evaluate the plot-level prediction accuracy of the VRP based models. 
For these three models, the selected LiDAR metrics and their importance ranking based 
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on the percentage increase in mean square error when a particular variable is dropped 
from a model are given in Figure 3.4. The intensity metrics were not found to be 
significantly important in any of the formulated models. 

 

Figure 3.4. Importance ranking of LiDAR metrics selected in the fixed radius model and 
the variable radius models. 

Comparisons of the plot-level volume estimates by the BAF 9 and BAF 10 imputation 
models against the FRP measurements are given in the equivalence plots in Figure 3.5. 
The equivalence test uses the null hypothesis of dissimilarity of two target datasets being 
compared (Robinson and Froese, 2004; Robinson et al., 2005). The test assumes that if 
two-one-sided confidence interval (at a given alpha level) of slope and intercept of the 
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line of best fit lie within a specified region of similarity for the slope and intercept then 
the slope of observed-predicted regression is similar to 1 and the two datasets hold 
equivalency. Since the lines of best fit in Figure 3.5 lie within the region of similarity (set 
at 25% for both slope and intercept) and the confidence intervals for slopes and intercepts 
lie within the respective regions of similarity, it is concluded that the VRP model based 
imputation estimates are equivalent to the FRP based measurements.  

 
Figure 3.5. Equivalence plot of the measured and imputed plot level volumes by the two 
VRP models. The black inclined line represents the line of best fit, the dashed gray lines 
represent the 25% region of similarity for the slope, the shaded gray polygon represents 
the 25% region of similarity for the intercept, black vertical bar represents a confidence 
interval (at 5% alpha level) for the slope of the line of best fit, and red vertical bar 
indicates the confidence interval for the intercept. 
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The spatially explicit standing volume raster outputs were at 18 m resolution for BAF 9 
and BAF 10 VRP models, and at 22.6 m resolution for the FRP model (Figure 3.6). The 
stand level gross volume estimates by the three models and directly based on 
extrapolation of the field inventory are given in Table 3.6. It can be argued that the 
volume estimates by the FRP model is close to the actual volumes compared to the 
extrapolation based or the VRP model based estimates. 
 
Table 3.6. Comparison of stand level gross volume (m3) estimates by the different 
methods. 

Stand 
ID 

Area 
(ha) 

Design-based 
estimate from 
FRP inventory 
(% std. error) 

Total volume 
by FRP 

imputation 
model 

Total volume 
by VRP BAF9 

imputation 
model 

Total volume 
by VRP BAF10 

imputation 
model 

6 50.29 10301.66 (6.89) 9714.17 8418.49 9257.23 
10 10.15 474.14 (7.18) 472.34 424.25 432.71 
12 14.23 577.73 (17.34) 711.36 764.40 886.40 
17 33.01 2154.64 (6.55) 2203.85 2505.80 2631.99 
19 32.12 2191.80 (6.92) 2092.09 1989.73 2200.37 
24 4.08 655.55 (9.40) 766.61 435.79 492.47 
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Figure 3.6. Volume prediction maps by the FRP (top) and BAF 9 (middle) and BAF 
10 (bottom) based VRP models. 
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3.5. Discussion 
A prime concern of forest managers is to obtain inventory estimates at a standard 
accuracy and minimum cost. A variety of inventory designs that include variable radius 
plots and fixed area plots are used to estimate forest structural parameters. The choice of 
a design depends on forest type, target variables, and required inventory accuracy. Often, 
managers want to increase sampling intensity for intensive management. As the plot size 
increases, the sampling effort and cost increases but the variation among plots 
diminishes. An optimum plot size depends on spatial pattern and variation in sampling 
units. In case of stands with clumps and gaps, a large plot size is useful to minimize 
variance among plots. Thus the sampling choice involves a trade-off between accuracy 
and cost-efficiency. 

The sampling design impacts the accuracy, particularly bias of estimates. The 
probability-based selection of sampling units avoids bias and provides correct estimates 
of sampling error. A sampling method is efficient when it estimates the target variable 
with a probability proportional to the quantity (Avery and Burkhart, 1994). In an 
inventory using randomly-located fixed area plots, each tree is selected with equal 
probability, whereas in variable radius plots each tree has a selection probability 
proportional to DBH. VRP sampling which samples larger trees with greater probability, 
is more precise and cost-effective for stand timber volume estimation in most 
circumstances compared to fixed plots that require significantly more cruising 
time (Scott, 1990). Fixed plots are efficient in the examination of younger stands with 
smaller diameter trees where point samples suffer due to issues associated with missing 
trees. Point samples perform better in older stands with larger trees and a wide range of 
diameters. Fixed plot sampling requires more sample trees than point samples to yield the 
same precision (Matern, 1972). Martin (1983) reported that if the target variable is 
independent of stand basal area (e.g., stem density, cover type) then fixed plots are more 
accurate. 

Selection of an optimum BAF that yields a desired number of trees per plot is important 
to improve inventory accuracy. A smaller BAF tallies more trees but miss (or double 
count) some as the distance between the point and the tree increases. A larger BAF on the 
other hand tally fewer trees per plot but cause increased coefficient of variation (CV) 
among plots. Hence, search for an optimum BAF is required to minimize the number of 
missing trees and the CV. In eastern U.S. a BAF of 5, 10, and 20 (sighting angles 73.66', 
104.18', 147.34' respectively) are commonly applied to yield the desired number of “in” 
trees. The literature provides a wide range for the desired numbers. For example, Avery 
and Burkhart (1994) reported 5-12 trees, Schreuder et al. (1993) reported 6-12 trees, and 
NRIS (2014) recommended an average of 4-8 trees per plot. Avery and Burkhart (2002) 
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noted that BAF 10 is commonly used for second growth saw timber and dense pole size 
stands in the eastern United States. NRCS (2011) reports that BAF 10 is the most 
common in Michigan. Avery and Newton (1965) found that BAF 10 VRPs are roughly 
equivalent to 0.04 ha and 0.02 ha FRPs in terms of tree tally in stands with average dbh 
of 34.2 cm and 24.1 cm respectively; average dbh of the stands in this study ranged from 
14.4 cm to 24.1 cm. The Michigan Integrated Forest Monitoring Assessment and 
Prescription (IFMAP) project also applied BAF 10 in the stage 2 inventory. If a site 
estimate of stand basal area is available, an appropriate BAF can be obtained from the 
ratio of stand basal area and the desired number of tally trees per plot. Once a BAF is 
selected and applied on the first plot, conventionally it is used throughout the stand exam. 

The angle gauges with BAF in multiple of 5 are commonly available in the market and 
associated expansion factors can be readily obtained from available inventory guidelines. 
The BAF 5 prism in this study encountered too many trees per plot (up to 33) and 
required much effort to avoid issues of missing, double counting and occluding trees in 
the dense stands. The BAF 10 is the most suitable gauge for inventory in the Ford Forest 
area since the gauge adequately sampled the number of trees per plot which ranged from 
4-21. Avery and Newton (1965) found BAF 10 plots and 0.04 ha plots perform equally 
well in hardwood stands in Georgia. The individual fixed plots in existing set-up at the 
Ford Forest have 0.04 ha area and hence an initial assumption was that BAF 10 device 
would work better in the study area. This assumption is validated from the observations 
that the models based on LiDAR samples of 0.04 ha and inventory data from the BAF 9 
and BAF 10 plots yielded high variance explanation (Table 3.5). Since BAF 9 devices are 
not easily available and requires additional work to apply in an inventory, we focused 
more on BAF 10. 

The analysis of the design-based estimates from the VRP inventory compared with the 
FRP inventory revealed that BAF 9 performed best (i.e. least bias and RMSE) followed 
by BAF 10 for all the stands combined (Table 3.3). The LiDAR based models similarly 
revealed that BAF 9 was the most accurate (in terms of % variance explained and MSE) 
followed by BAF 10 (Table 3.5). This result signifies the strength of LiDAR remote 
sensing in forest structural characterization. 

The model developed from younger stands only explained a small portion of the variance. 
This is not surprising because younger stands have small volumes with many trees below 
10 cm DBH which were not counted in the field inventory, but included in LiDAR 
samples. On the other hand, the model based on older stands only explained variance 
marginally better, despite the fact that there were fewer plots and the stands included 
many snags and smaller live trees below 10 cm DBH. Fixed plots in the older stands 
against variable plots improved model accuracy by a small amount, which implies that 
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VRP can work well in older stands that have large volumes. In contrast, using fixed plots 
in the younger stands didn’t improve accuracy since the young stands have low standing 
volume.  

Application of data from mixed plot sizes (fixed and variable plots or only variable plots 
at different levels of BAF) from separate locations in model building also seems to work 
well in terms of the goodness-of-fit statistics. However, use of multiple BAFs in LiDAR 
based multi-stand inventory is work intensive since multiple LiDAR grids at different 
resolutions corresponding to different BAF need to be prepared in order to spatially 
extend the model spatially. The results also reveal that the VRP data in some cases can be 
substituted for FRP as long as VRP contain a desired number of trees per plot and the 
optimum radius identified for the VRP is comparable to the size of FRP. In this study, the 
optimum radius identified was 9 m for both BAF 9 and the BAF 10. The search of 
optimal radius for LiDAR samples for integration with VRP data at the different levels of 
BAF showed that the optimum radius decreases with increasing BAF. This observation is 
consistent with the fact that increasing BAF means increasing sighting angle and closer 
location of tally trees (i.e. a tree of given size to be “in” must lie closer to the plot center 
with increasing BAF).  

Volume is a three dimensional metric, so information on LiDAR returns from various 
canopy height strata and horizontal coverage is essential for estimation of wood content 
or biomass (Wulder et al., 2008). Selection of LiDAR metrics is important for effective 
inventory modeling of structural parameters as many remote sensing derived predictors 
are linearly dependent. The canopy height distribution, percent cover and vertical strata 
density metrics were the most influential predictors in the selected models by the RF 
technique. The intensity metrics were not found to be significant in any of the models 
which parallels the note by McGaughey (2014) that “in aerial discrete return lidar 
technology the intensity values are not normalized, so they are not ideally suited for 
analytical work”.   

The errors in the LiDAR based models can be attributed to several factors. A prominent 
factor is the mismatch between LiDAR and field data (Gleason and Im, 2011). The 
extracted LiDAR samples corresponding to the field plots may represent canopy elements 
that are part of trees outside the plot. A tree just outside the plot or a leaning tree can 
contribute a large amount of returns in the LiDAR samples. Another reason for mismatch 
was the ignorance of dead trees in the field inventory and inclusion in the LIDAR 
samples. There may also be flaw in the field data as the allometric equations used for the 
volume calculation was regional based which is adopted by the FIA program in the Lake 
States. Nonetheless, the models are generalizations of reality and provide a valuable 
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means to improve understanding of the complex interactions between interdependent 
ecosystem components. 
 

3.6. Conclusions 
i. VRP sampling of younger stands involve larger relative bias compared to older 

stands. 
ii. BAF 9 VRP performed best (in terms of bias) compared to the reference field 

inventory obtained from FRP sampling at the target stands combined; however, 
BAF 10 VRP was the best for older stands. 

iii. BAF 10 is most suitable for effective inventory in the Ford Forest area as it tallies 
at least four trees per plot, overcomes practical difficulties associated with the use 
of several BAFs, and the device with associated expansion factors is easily 
available. 

iv. As expected, integration of FRP data with LiDAR data provided the best model. 
Nonetheless, VRP data can also be integrated with LiDAR data for inventory 
prediction with some compromise in accuracy but equivalent estimates as with the 
FRP based model. 

v. VRP data can also be combined with FRP data (or substituted for FRP data) for 
spatial inventory with LiDAR derived metrics at an optimum grid resolution. 
Fixed plots in the older stands against variable plots improved model accuracy by 
a small amount, which implies that VRP can work well in older stands that have 
large volumes. A combination of VRP data from younger stands and FRP data 
from older stands, or only VRP data from all stands can be used to formulate a 
generalized model with some compromise in accuracy.  

vi. Canopy height distribution, strata density, and cover density are the most 
influential LiDAR predictors but intensity is not. 
 

3.7. Suggested further study 
Similar study can also be extended to include broadleaved stands and explore suitability 
of a common BAF for the entire Ford Forest. 

We have found optimum radii for seven different BAFs to guide integration of VRP data 
with LiDAR data for spatial inventory. It is a question whether the radius can also be 
applied at other sites with differing forest structure and composition.  

Further research can be directed at identifying an optimum BAF for any target area based 
on LiDAR data. Such studies will help grouping of stands into cohorts of similar 
structure, composition, and quality, for silvicultural treatments. 
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Instead of measuring DBH of individual tally trees in each plot, the DBH of only the 
largest tree per plot can be measured to obtain the maximum limiting distance to vary the 
LiDAR sample size corresponding to the VRP. The average DBH or individual tree DBH 
for each plot can be derived from LiDAR data. That will potentially be most appropriate 
to map stand basal area. 
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4. Performance evaluation of imputed site index and biogeoclimatic 
spatial data in diameter growth modeling of selected tree species in 
the Great Lakes States3 

 

4.1. Introduction 
Forest managers require tree growth, yield and productivity models to project stand 
development and summarize growing stock status for decision making (Miner et al., 
1988; Lessard et al., 2001). Tree growth models are usually based on tree size and 
periodic expansion of size (lateral or vertical) driven by a combination of edaphic, 
climatic, and biotic elements influencing ecological site and competition of trees 
(Wykoff, 1990; Valentine, 1997). Formulation of reliable growth models with careful 
selection of predictors is necessary for operational applications such as estimation of 
wood production for sustainable harvesting (Vanclay, 1994). The way site quality is 
represented in growth models has been shown to have important influence on prediction 
accuracy as site relates to productivity (Pokharel and Froese, 2009). In principle, site and 
site productivity are often distinguished in the sense that site refers to the combination of 
local physical, biological, and climatic factors, while site productivity refers to the 
synoptic effect of the biogeoclimatic characteristics on the quantitative production of 
plant biomass (Skovsgaard and Vanclay, 2008).  

The Forest Vegetation Simulator (FVS) is a widely used growth and yield modeling 
framework that generates stand statistics for current and future management scenarios 
(Dixon, 2002). FVS based projections are dependent on empirical aspatial individual tree 
growth, mortality, and volume equations (Lacerte et al., 2004). FVS has been adopted 
nationally by the US Forest Service and is implemented via twenty variants throughout 
the U.S.A., across all forest types. All the FVS variants are continuously modified and 
updated by improving the embedded models (Dixon, 2002). For example, the Lake States 
variant was reformulated in 2006, except for the diameter growth models. The most 
important component in the FVS based projection and simulation of stand development 
constitutes the large tree diameter increment models that are empirically derived from 
observed periodic growth of sample trees from geo-referenced locations (Wykoff et al., 
1982; Froese and Robinson, 2007). The diameter growth models can be formulated with 
either diameter increment (ΔD) or basal area increment as dependent variable since the 
variables are algebraically related and variance of the response distribution can be made 

3 This chapter is ready to submit in a forestry journal with Ram K. Deo as the first author and Robert E. 
Froese and Michael J. Falkowski as the second and third authors respectively. 
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homogeneous through transformations. Wykoff et al. (1982; 1990) used natural log 
transformed ten years difference in diameter squared (lnDDS) as the response variable to 
emphasize basal area increment. Cole and Stage (1972), West (1980), and Zhao et al. 
(2004) noticed better performance of lnDDS model over lnΔD. Vanclay (1994) argues 
that basal area increment and diameter increment are algebraically related, and therefore 
either can be used as response variable. The DDS models have biological rationale and 
better correlate with tree volume increment. Any empirical model for diameter growth 
should express higher increments at smaller size with a peak at intermediate size and then 
diminish slowly as the photosynthetic capacity of larger trees go down, and finally 
approach zero asymptotically (Leary, 1997). 

The commonly measured attributes from routine inventory programs are generally 
selected as explanatory variables in any growth modeling. Diameter at breast height 
(DBH) is the prime predictor in most growth models. In addition, stand basal area per 
acre (SBA), quadratic mean diameter (QMD), crown ratio (CR), trees per hectare (TPH), 
site index (SI), and derivatives from DBH measurements such as percentile ranking of 
tree size are predominantly used in the growth models. The factors such as SBA, TPH, 
and cumulative basal area of all trees larger than a subject tree (BAL) signify competition 
that affects tree growth. The BAL is included in the prognosis growth model (Wykoff et 
al., 1982) and the Central States TWIGS growth model (Shifley, 1987; Miner et al., 
1988) to represent relative advantage of the individual trees for site resources (Stage, 
1973; Monserud and Sterba, 1996). SBA reflects two-sided competition of a tree for 
moisture and nutrients. The competition effect of stem density (i.e., TPH) on growth can 
be understood from the general observation that tree growth in open area is slower than in 
stands of similar site quality (Burkhart et al., 1987). In general, the competition factors 
reduce theoretical potential growth (Holdaway, 1984), and microsite or genetic 
differences produce random (stochastic) effect on tree growth. Tree CR is included in 
growth models to reflect a tree’s vigor, photosynthetic potential, and effect of past 
competition (Wykoff, 1990). 

An accurate metric of site productivity is important for forest growth modeling (Carmean 
et al., 1989). Site index (SI), defined as the height of dominant and co-dominant trees in 
competition free environment at a given base age (e.g., 50 years in the Lake States), is a 
proxy for forest productivity (Rehfeldt et al., 2006; Skovsgaard and Vanclay, 2008; 
Crookston et al., 2010; Weiskittel et al., 2011; Skovsgaard and Vanclay, 2013). This 
index is derived from the dominant tree height at a selected reference age which may be 
the age of culmination of mean annual increment, or a common rotation age. Tree height 
is commonly used as a proxy of site quality because of the recognized association of the 
height growth with volume growth, and the indifference of dominant height to thinning 
(stem density). A classical concept (called Eichhorn rule) is that volume production for a 
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given species at a given stand height is identical for all sites (Skovsgaard and Vanclay, 
2013).  

Accurately estimating SI depends on accurate estimates of total height and age of sample 
trees that are free of past competition and damage. Thus, the method is most suited to 
fully stocked even-aged stands of known or measurable age. Although tree height for SI 
calculation can be measured with higher accuracy, tree age estimation is often difficult or 
impossible to obtain, especially for diffuse-porous hardwood tree species that grow 
slowly. Further, the total height estimates may also be erroneous when tree tops are 
broken. In regions like the Lake States, many stands are characteristically composed of 
shade tolerant species in uneven-aged conditions, and it is not surprising that substantial 
error exists in SI estimation.  Since finding sample trees of dominant quality in 
competition free niche is difficult at many sites, development of spatially explicit map of 
SI may be useful for many applications. 

SI depends on interaction of several biogeoclimatic variables and shift in management 
regimes such as fertilization and genetic improvement (Stage et al., 2001; Sharma et al., 
2012). Spatial variability in topography, soil, climate, and complex biotic interactions 
leads to variations in site conditions. The moisture gradient across a landscape, soil depth, 
soil nutrient, and temperature characteristic can influence site productivity since 
physiological systems of vascular plants are rooted to these factors. The spatial and 
temporal variation in forest site productivity can be modeled dependent on measures of 
climate, soil moisture, soil nutrients, land cover type, canopy density, canopy height, 
topographic variables, and other satellite imagery derived digital metrics (Klinka and 
Carter, 1990; Monserud et al., 2006; Monserud et al., 2008; Waring et al., 2010; Beaulieu 
et al., 2011; Weiskittel et al., 2011; Sharma et al., 2012; Skovsgaard and Vanclay, 2013). 
Since site productivity depends on climate and climate is changing, integration of 
climatic spatial data is essential to make SI prediction models sensitive to climate. 

An important data source for tree growth modeling and derivation of spatially explicit SI 
maps is the Forest Inventory and Analysis (FIA) Program of the US Forest Service. FIA 
has been conducting periodic national forest inventories on a state-by-state basis since 
1960s. FIA has adopted a coherent national plot design under the standard annual 
inventory system since 1999 in which the whole country is divided into regular hexagons 
(2,428 ha) and at least one permanent plot (0.067 ha) is established per hexagon. The 
total plots in a state are divided into 5 to 10 panels and a single panel is measured each 
year and thus plots are re-visited in 5 to 10 years. FIA computes species-specific SI for 
every tree (SITREE) in the sample plots for a reference age (usually 25 or 50 years), 
based on measurements of one or more dominant and co-dominant site-trees per plot 
during the inventory (Woudenberg et al., 2010). The SI is most commonly calculated 
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using a family of curves dependent on total height and age of sample trees (Carmean et 
al., 1989). A given species can have entirely different SI curves in different geographic 
regions, and each set of curves may use a different reference age.  

The changing paradigm in forestry to holistic management justifies the search for 
alternatives to traditional SI (Pokharel and Froese, 2009). A number of spatial layers of 
biogeoclimatic variables are freely available through public web-portals. These spatial 
predictors can be coupled with the FIA database in order to formulate SI models, and of 
course the predicted SI can be incorporated into growth models to analyze the potential 
for broader application. The likelihood that FIA plots are evenly distributed over all age 
and site classes make the database more appropriate for regional scale SI modeling; an 
uneven proportion of sample trees from younger stands (high growth rate, so better sites) 
or older stands (slow growth, so poor sites) can introduce bias (Avery and Burkhart, 
1994). The FIA data can be co-registered with biogeoclimatic spatial layers and utilized 
for geospatial inventory of SI under a modeling framework such as Random Forest based 
k nearest neighbor (RF-kNN) imputation (Falkowski et al., 2010). The RF-kNN 
imputation has been profoundly applied in contemporary forestry research for regional 
and local scale species distribution and structural attributes mapping (Rehfeldt et al., 
2006; Weiskittel et al., 2011). The imputed SI may be applicable for large scale resource 
inventory and growth assessment especially in uneven-aged mixed species stands where 
site trees are difficult to identify and measure for total height and age. The spatial 
mapping has the advantage that users can estimate site quality even for the areas that are 
presently devoid of forests but need afforestation. Imputed SI can also be helpful for 
forest managers in selecting suitable crop, and planning operations. 

Direct application of biogeoclimatic variables instead of measured SI in a growth model 
is also an option to account the influence of site quality on tree growth. This approach 
can be justified if we could replace measured SI with readily available spatial 
biogeoclimatic predictors, or imputed SI. As measured SI may involve error accumulated 
from tree age and height measurements, my hypothesis is that direct inclusion of 
bioclimatic variables in the growth model will perform better in large tree growth 
modeling. 

4.2. Objectives 
This study was aimed at evaluating alternative ways of including site factors in the 
formulation and application of large-tree diameter growth models in the Lake States. 
Three sets of proxies characterizing site productivity namely measured SI, imputed SI 
and a combination of biogeoclimatic variables were used separately in calibrating 
species-specific growth models and their performance was evaluated in terms of growth 
prediction. The study examined the strength of imputed SI and environmental variables in 
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growth modeling and projection (i.e., whether or not the derived SI can capture site 
differences in the increment model). In addition, the implications and tradeoffs of 
applying a growth model based on measured SI in areas where only imputed SI exists and 
vice versa were explored. 

Research question 
• How well does imputed SI or the combination of biogeoclimatic variables compare 

when substituted for measured SI in the large-tree diameter growth models?  

 

4.3. Methods 

4.3.1. Reference data 
The FIA inventory database (FIA, 2013) based on the annual inventory design was 
utilized for the preparation of species-specific SI maps and formulation of large tree 
diameter growth models for the five major species of the Lake States (LS). The selected 
species, belonging to tolerant and intolerant categories of both conifer and broadleaf, 
included red pine (Pinus resinosa), northern white cedar (Thuja occidentalis), sugar 
maple (Acer saccharum), quaking aspen (Populus tremuloides), and northern red oak 
(Quercus rubra). These species were found be the dominant in terms of the number of 
trees in the database and spatial coverage of site classes (niche). These species also have 
high commercial importance in this region. Among the two selected conifers, red pine is 
shade intolerant that mostly inhabit plain or gently rolling sandy ground or low ridges 
adjacent to swamps, while northern white-cedar is shade tolerant that prefers cool, moist, 
nutrient-rich sites, particularly organic soils near streams. Among the three broad leaves, 
sugar maple is very tolerant to shade, quaking aspen is very intolerant, and northern red 
oak is intermediate in shade tolerance. Sugar maple grows best on well-drained loams 
(stunted growth on dry shallow soils or swamps) but quaking aspen grows on a great 
variety of soils ranging from shallow rocky to deep loamy sands or heavy clays. The 
northern red oak grows on cool moist glacial soils, preferably deep well-drained loams.  

The inventory data of FIA plots were obtained from the online database by using the FIA 
Data Mart Tool (FIA, 2013). The database was downloaded separately for Michigan 
(MI), Wisconsin (WI) and Minnesota (MN) which are the states covered by the LS 
variant of FVS. FIA started annual inventory system in the states in 1999 (for MN) and 
2000 (for MI and WI). The selected inventory years with 10 years gap between two 
points in time for re-measurement of sample trees are given in the Table 4.1. All the three 
states have five inventory panels and five-year cycle to revisit the plots. The inventory 
data from two panels of WI and three panels each of MI and MN were used in the 
species-specific diameter growth modeling while the remaining panels were used for the 
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species-specific SI mapping (Table 4.1). Separate panels were used for SI mapping and 
diameter growth modeling to avoid circularity bias (using measured SI of a plot to impute 
SI for the same plot and using those in growth modeling).  

Table 4.1. Measurement years and cycles of sample trees from FIA plots used for growth 
modeling and site index imputation 

            

State 
Time 1 

inventory 
year 

Time 2 
inventory 

year 

Time 1 
FIA 

cycle- 
subcycle 

Time 2 
FIA 

cycle- 
subcycle 

Sample data application 

  2000 2010 6-1 8-1 diameter growth modeling 
  2001 2011 6-2 8-2 diameter growth modeling 

MI 2002 2012 6-3 8-3 diameter growth modeling 
  2003  6-4  site index modeling 
  2004  6-5  site index modeling 
  2000 2010 6-1 8-1 diameter growth modeling 
  2001 2011 6-2 8-2 diameter growth modeling 

WI 2002  6-3  site index modeling 
  2003  6-4  site index modeling 
  2004  6-5  site index modeling 
  1999 2009 12-1 14-1 diameter growth modeling 
  2000 2010 12-2 14-2 diameter growth modeling 

MN 2001 2011 12-3 14-3 diameter growth modeling 
  2002  12-4  site index modeling 
  2003  12-5  site index modeling 

 

The FIA database encompasses detailed information on biophysical parameters under 
separate tables including plot and tree tables. The tree level information includes tree-ID, 
species code, status code (live or dead), DBH, total height, crown ratio, calculated SI 
(SITREE), biomass, and many other variables. In addition, location reference of each tree 
is signified in terms of the hosting subplot, plot, county, and state.  However, only fuzzed 
and swapped coordinates of the plots are available to general public (due to privacy 
regulations set forth by the federal government and plot integrity concerns of FIA). The 
fuzzing and swapping creates random shift in plot coordinates and exchange of plot 
attributes. For large area growing stock estimation, Coulston et al. (2006) found that 
spatial models based on perturbed plot locations did not differ significantly from the 
models based on unperturbed plot locations. 

76 

 



 
 

 

Live sample trees (STATUSCD = 1), measured for over-bark diameter at breast height 
(DIAHTCD = 1) in the last three consecutive cycles, (Table 4.1) were selected for 
analysis in this study. Only sound trees of merchantable standards (TREECLCD = 2, that 
excludes rough or rotten cull trees), above 12.7 cm DBH, and re-measured accurately for 
DBH (DIACHECK = 0) in the inventories were selected for diameter growth modeling. 
The sample trees selected for SI modeling were additionally subjected to the criteria of 
being actually measured in the field for total height (HTCD=1). The sample tree 
measurements at time 1 and time 2 were related by matching the county, plot, subplot, 
tree, and species codes of the database using Microsoft Access query language. The 
actual diameter increments in 10 years (∆D) as well as 10 years difference in squared 
diameters (DDS) were calculated for each sample tree. Any sample trees with negative, 
zero, or above 15 cm diameter increment in 10 years were discarded from the reference 
frame for model fitting (only 3 trees were found to have above 15 cm diameter 
increment). In ArcGIS display, some plots that were found to fall outside of the spatial 
extent of the LS boundary, due to the fuzzed and swapped coordinates, were also 
excluded from the reference set (25 plots with 475 trees). Based on the above criteria of 
sample selection, the number of trees for SI and growth modeling and their distribution 
over plots are given by species in the Table 4.2 and Table 4.3. Since the trees were 
selected via stringent criteria from a large number of FIA plots, the samples were 
representative of virtually all stand age, structures, composition, and site across the entire 
LS. The diameter distribution of sample trees used in growth modeling and the scatter 
plots of DDS against DBH are given in the Figure 4.1. The reverse J-shaped diameter 
distribution of sample trees signifies the representation of heterogeneous stand structure 
and diverse site qualities. 

Table 4.2. Number of sample trees for growth modeling, size distribution and growth 
characteristics over the range of FIA sites/plots 

Species No. of 
trees 

No. 
of 

plots 

DBH 
range 
(cm) 

Mean 
DBH 
(cm) 

10-yr DBH 
growth 

range (cm) 

SI 
range 
(m) 

Correlation 
of DBH 

and DDS 

Red pine 7,923 710 12.7-
75.9 22.9 0.2-12.7 4.8-

32.3 0.3842 

N. white-
cedar 9,905 754 12.7-

83.1 20.3 0.2-10.4 3.9-
30.4 0.6124 

Sugar 
maple 10,575 1,403 12.7-

83.8 22.1 0.2-12.9 6.4-
32.0 0.585 

Quaking 
aspen 9,269 1,766 12.7-

58.9 20.2 0.2-13.2 6.7-
34.7 0.4376 

N. red 
oak 3,104 883 12.7-

99.5 28.3 0.2-15.2 7.6-
36.3 0.6325 
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Table 4.3. Number of sample trees for SI modeling, size distribution and site index 
ranges 

              
Species No. of 

trees 
No. of 
plots 

DBH 
range 
(cm) 

Mean 
DBH 
(cm) 

SI range 
(m) 

Mean 
SI (m) 

Red pine 6,384 949 12.7- 71.1 23.5 6.4- 32.3 20.6 

N. white-cedar 7,991 1,134 12.7- 87.8 20.9 4.3- 31.4 11.4 

Sugar maple 13,089 2,263 12.7- 93.2 22.4 9.1- 37.2 19.2 

Quaking aspen 12,283 2,808 12.7- 81.3 21.1 6.4- 36.6 21.4 

N. red oak 4,810 1,455 12.7- 96.5 28.8 7.9- 35.0 20.2 
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Figure 4.1. Locally weighted regression (loess) curve with 95% confidence band fitted to 
the scatter plot of DDS against DBH (top), separately for conifer and broadleaf, along 
with the relative frequency of sample trees by diameter classes (bottom) for the growth 
model fitting. 

The DBH (≥ 12.7 cm) data of all live trees in each plot, measured at the start of the 10 
year growth period (i.e. time 1 data), were summarized to obtain plot characteristics 
namely stand basal area per acre (SBA), basal area of larger trees (BAL) than the subject 
tree, trees per hectare (TPH), and quadratic mean diameter (QMD). These variables were 
eventually used as predictors in the growth modeling. The smaller ingrowths were 
ignored with an assumption that they have relatively little influence on growth of the 
over-story trees. Additional tree variables considered for direct inclusion in growth 
modeling were CR and SI, both measured at the start of the growth period. I also tested 
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the potential of imputed SI and biogeoclimatic variables to represent site quality since 
they could aid in decoupling the model from the need for accurate SI measurements. The 
fuzzed and swapped coordinates of the FIA plots were used to intersect and attach the 
auxiliary variables to each tree. My assumption is that biogeoclimatic variables do not 
change significantly within the fuzzed-swapped zone (about 0.8 km) of the plots.  

The biogeoclimatic variables considered in the study can be grouped into three 
categories: climate, soil, and satellite. The contemporary climate data consisting of raster 
grids for frost-free degree-days above 50C (DD5), growing season precipitation (GSP), 
mean annual precipitation (MAP), mean annual temperature (MAT), and mean 
temperature in the warmest month (MTWM) were obtained from the Moscow Forest 
Sciences Laboratory (RMRS, 2013). These climatic rasters were derived at the source by 
fitting Hutchinson's spline surfaces to 30 year (1961-1990) normalized average monthly 
data from meteorological stations throughout the North America (Rehfeldt et al., 2006; 
Crookston et al., 2010). Accuracy of these layers was tested by Weiskittel et al. (2011) 
through comparison with DAYMET (http://daymet.org/) derived daily temperature and 
precipitation datasets. The USDA system of soil taxonomy based two spatial layers, 
namely soil drainage index (DI) and productivity index (PI), were additionally identified 
for inclusion in the growth modeling because these layers are primarily developed to 
indicate long term soil wetness, soil volume available for plant rooting, soil productivity 
ranks, and likely tree stress areas (Schaetzl et al., 2009; Schaetzl et al., 2012). The DI and 
PI layers were downloaded from the forest health protection, mapping and reporting 
portal (USDA Forest Service, 2013a). The layers were originally developed from the 
most detailed digital soil survey geographic database, SSURGO (NRCS, 2013), by 
spatially joining its soil map units (MUKEY) field with an empirically produced master 
table for soil drainage and productivity indexes (USDA Forest Service, 2013a). Both DI 
and PI are on ordinal scale: DI ranges from 0 to 99 with the higher values representing 
more water, and PI ranges from 0 to 19 with higher values representing more productive 
sites. The satellite dependent predictor layers included MODIS/Terra sensor derived 16-
day composite NDVI image (see https://lpdaac.usgs.gov) in the peak growing season 
(July) of 2010, and the landcover dataset from the National Gap Analysis Program (GAP, 
2013). The GAP landcover is produced from multi-season Landsat (ETM+) imageries 
from 1999-2001. The GAP landcover map is available at six tiered levels of vegetation 
details based on physiognomy (FGDC, 2008) but we considered only the macrogroup 
level of national vegetation hierarchies for ease in interpretation and analysis. The 
macrogroup classes (total 59) were further aggregated into broader categories (total 20) 
by merging similar vegetation cover types. All the biogeoclimatic layers were clipped to 
the LS boundary in ArcMap and the grids were resampled to a common spatial resolution 
of 250 m with exactly overlapping orientation of pixels of all the layers. The GAP 
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landcover data was not directly employed in diameter growth modeling (but in SI 
imputation) to avoid complex model structure with the addition of categorical variables 
with many classes. 

4.3.2. Validation data 
A validation dataset with permanent locations of the sample plots established under the 
Continuous Forest Inventory (CFI) design, were obtained from the Bureau of Indian 
Affairs (BIA), Midwest Regional Office. There were altogether 739 permanent plots 
(radius 16 m) within seven reservations (404, 409.1, 409.2, 409.3,432, 434, and 438) with 
true coordinates of plot centers and measured tree and plot level variables. The data were 
available from 1965 to 2006, however, only the last two inventory cycles (Table 4.4) 
were considered for the validation, in the similar fashion used in the growth modeling. 
The Microsoft Access query command was utilized to join database tables of different 
inventory years by matching the reservation, plot, tree, and species codes. The numbers 
of sample trees by target species are given in the Table 4.4. Since the sample tree re-
measurement intervals varied from 13 to 17 years, the diameter increment data was 
normalized to 10 years for consistency in the analysis. The dataset contained species-
specific calculated SI only for some reservations (404, 432, and 434) but site tree 
measurements were available in other reservations (409.1, 409.2, 409.3, and 438). The 
coefficients and equations from Carmean et al. (1989) were used to calculate species-
specific SI, denoted by SIbia, for each plot based on age and height data of site trees. The 
analysis revealed that BIA has applied Carmean et al. (1989) equations for SI calculation. 
All the biogeoclimatic variables were attached to the sample trees using actual 
coordinates of the BIA plots in ArcGIS.  

Table 4.4. BIA validation dataset description 

          
Reserv-
ations 

No. of  
plots 

Time 1  
inventory 

year 

Time 2  
inventory 

year 

No. of sample trees by target 
species, and DBH and SI ranges 

404 143 1993 2006 Red pine:  1179 t rees;  77 plots; 
12.7 to 62 cm dbh; 14 to 31 m SI 
W. cedar: 1767 trees; 47 plots; 
12.7 to 58 cm dbh; 6 to 17 m SI 

S. maple: 481 trees; 31 plots; 
12.7 to 53 cm dbh; 16 to 23 m SI 

Q. aspen: 780 trees; 85 plots 
12.7 to 46 cm dbh; 15 to 34 m SI 

Red oak: 299 trees; 39 plots; 
12.7 to 55 cm dbh; 15 to 26 m SI 

409.1 65 1992 2008 

409.2 141 1992 2007 

409.3 55 1992 2009 

432 154 1991 2005 

434 65 1990 2005 

438 116 1989 2003 
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4.3.3. Site index modeling 
The FIA measured SI, denoted by SIfia, was the response variable, and ten biogeoclimatic 
variables were attached as potential explanatory variables in SI modeling. The panels and 
numbers of sample trees used for SI modeling are given in the Tables 4.1 and 4.3 
respectively. Separate SI models for each of the five species was developed using the RF-
kNN imputation technique in which the proximity of target and reference locations in the 
feature space of covariates are first calculated using the RF algorithm (Crookston and 
Finley, 2008) and then the response variable from the nearest reference plot is assigned to 
the target location. The RF-kNN modeling and spatially explicit mapping was 
implemented in ArcMap using the Marine Geospatial Ecology Tools (Roberts et al., 
2010; MGET, 2013). The mean square error, proportion of variance explained, and 
variable importance metrics produced by the algorithm were analyzed to select optimal 
values for the required parameters in the modeling. The number of trees (ntree) in RF and 
number of variables (mtry) for node split of each tree are the key parameters to 
implement the modeling. The model predictions depend on summary (average or 
majority voting) of many trees and their internal structure (each tree is built from a 
bootstrap sample; and tree growth depends of node splitting by the best out of a random 
subset of predictors). It was found that 1500 or more trees and 2 variables at each node 
(mtry) produced stable error. The SI imputation accuracy was corroborated with the BIA 
data for SI. 

4.3.4. Diameter growth modeling 
Natural log transformed ten years difference in diameter squared (lnDDS) of sample trees 
was the response variable in the species-specific large tree diameter growth models. The 
logarithmic transformation was necessary as the histogram of DDS was found to be 
positively skewed which is against the principles of linear least square regression. The 
panels and numbers of sample trees used for the growth modeling are given in the Tables 
4.1 and 4.2, respectively. The sample trees were also intersected with the spatially 
explicit layers of imputed SI for respective species. That means each sample tree was 
attached to measured SI, imputed SI, and ten different biogeoclimatic values. Keeping the 
tree size and competition parameters as the common predictors, diameter growth models 
were formulated by separately using the three different proxies of site productivity: 
measured SI, imputed SI, and a direct combination of the biogeoclimatic variables. The 
size effect was accounted in the model by including DBH (D), CR, and transformed DBH 
namely 1/D, and D². The competition indices as the ratio of DBH to QMD and interaction 
of DBH and relative diameter (i.e. D²/QMD) were considered as predictors; the rationale 
is that a tree of given size has less competition in younger stand than in an older stand 
with similar stem density (Wykoff, 1986). The interaction terms such as SI×QMD 
(referred as anabolic terms by Hahn and Leary, 1979) and BAL× lnDBH were also 
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evaluated with the rationale that the former can be a proxy for crown (respiring) surface 
and the later can describe the impact of diameter distribution on tree size. 

In an independent research comparing several composite linear model forms as 
formulated in Andreassen and Tomter (2003), Cole and Stage (1972), Wykoff (1990), 
Froese (2003), Weiskittel et al. (2007), and Zhao et.al. (2004), it was observed that the 
form as in Equation-1 provided best fit statistics (adjusted R2 and standard error) with the 
same reference data.  

1 Equation ....................          fia SI.11β   

2CR .10βCR .9βBAL .8β SBA.7βQMD
2D.6βQMD
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2D .4βD .3βD
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Where DDS= ten years difference in over-bark diameter squared (cm2); D = diameter at 
breast height (cm); QMD= quadratic mean diameter (cm); CR = crown ratio; SI = site 
index (m); BAL= basal area of larger tree than the subject tree (m2 ha-1); SBA = stand 
basal area (m2 ha-1); MAP = mean annual precipitation (mm); DI = soil drainage index; 
PI= soil productivity index; GSP = growing season precipitation (mm); DD5 = degree-
days above 50C accumulating within frost-free period; MNDVI= MODIS sensor derived 
normalized difference vegetation index; MTWM= mean temperature in warmest month 
(0C); MAT= mean annual temperature (0C); BAWHT= basal area weighted canopy height 
(m); MAP.DI = interaction of mean annual precipitation and soil drainage index; βi are 
species dependent regression coefficients. 

The Equation-1 was modified to two additional versions: one with imputed SI (SIimpt) 
replacing measured SI (SIfia) (Equation 2) and the other with a combination of 
biogeoclimatic variables completely substituting the site factor (Equation 3). Thus three 
model forms were examined for each of the species. The linear model function ‘lm’ in the 
R statistical software (R Core Team, 2013) was used to formulate the growth models with 
the best subset of available predictors.  A stepwise variable selection technique followed 
by the best-subsets regression was applied for identifying the most influential variables 
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and also to reduce multicollinearity among predictors. The Akaike Information Criterion 
(AIC) for stopping the both direction stepwise process was implemented with the 
‘stepAIC’ function in the ‘MASS’ package of R (Venables and Ripley, 2002). The 
stepwise algorithm iteratively adds or removes individual predictors into the model to 
attain an optimum subset of candidate predictors beyond which the function no longer 
invoke improvement in the model with additional variables (Sakamoto et al., 1986). This 
implies that each parameter is assigned an AIC value and the model with the minimum 
AIC total is taken as the best among candidate models. The AIC is defined as AIC = -
2.log(L) + k*edf, where L is the maximum likelihood of the candidate model, edf is 
equivalent degree of freedom, and k is a numeric weight for edf (Adler, 2010). Since a 
model with large number of parameters better fits the data, possibly with smaller residual, 
the best choice require a balance between goodness of fit and model size. The second 
term in the AIC formula favors model parsimony and penalizes for addition of more 
parameters that might lead to overfitting. AIC offers a relative estimate of information 
loss when a selected model is used to predict the data obtained from true process (model). 
A model with the lowest AIC are supposed to perform best when used for prediction 
outside the dataset. 

The models screened from the stepwise regression were further refined for the best-subset 
of parameters using ‘regsubsets’ function in R with the ‘leaps’ package (Lumley, 2009) 
so that the initial adjusted R2 and AIC values remained at the similar level and the refined 
models provided biologically justified growth trend with increasing DBH. The median 
values of the predictors (except DBH) extracted from the reference data frame were used 
in the refined models to portray species-specific diameter growth surfaces against DBH 
and only the combination of predictors that yielded satisfactory unimodal curves were 
selected as the final best-subset model. The best-subsets function requires an argument 
(namely ‘nvmax’) specifying maximum size of subsets to examine and returns separate 
best models of all sizes up to ‘nvmax’ via exhaustive search of all possible combinations 
of predictors in contrast to the stepwise function that identify only one combination 
(Hudak et al., 2006). I set ‘nvmax’ equal to the number of predictors retained after 
stepwise operation of full models. I considered adjusted R2 statistic for the best model 
selection because R2 overestimates the strength of association between response and 
predictors (i.e. R2 would never decline even when irrelevant x-variables are added at the 
cost of loss of degree of freedom). The adjusted R2 statistic accounts for the number of x 
variables by penalizing excessive use of unimportant variables. 
 
Adjusted R2 = 1-[(1-R2) (n-1)/ (n-k-1)], where n is sample size and k is number of 
independent variables in the model.  
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The importance ranking of predictor variables of each model was done through a 
sensitivity analysis by using the Sampling and Sensitivity Analysis Tool (Hoare et al., 
2008). The analysis requires sampling of the input parameter space and the samples are 
used in an external model to predict the target response variable. The variations in the 
predicted response caused by the variations in the predictors are scrutinized to rank the 
importance of each input in terms of their contribution to uncertainty in the prediction. 
The Latin hypercube sampling (LHS) approach was used to characterize the input 
parameter space. LHS is a standard sampling technique in which a probability density 
function is assigned to each predictor factor and the distribution is divided into N equal 
probability areas, so that only one value is randomly selected from every interval of each 
predictor (Hoare et al., 2008). The two-parameter (scale and shape) Weibull probability 
density function (because of its flexibility) was fitted to the histograms of each factor. A 
variety of metrics are available for conducting sensitivity analysis but we used the most 
fascinating approach of factors prioritization by reduction of variance. 
 

4.3.5. Model validation 
The diagnostic measures such as root mean square error (RMSE), bias, and R2 values and 
also the signs of coefficients were analyzed for model evaluation. The best model form 
(out of the three versions) for each of the five species was identified by evaluating the 
prediction error obtained when applying the models to the independent inventory data set 
from BIA. The fundamental notion that better measures of site quality should reduce 
mean square error on the training and validation data was favored to evaluate model 
performance. The values of explanatory variables from the BIA data frame were used in 
the calibrated models to predict diameter increment which was then compared with the 
measured increments. The five scenarios as in the Table 4.5 were tested to evaluate the 
relative performance of SIfia, SIimpt, and biogeoclimatic variables. The equivalence test as 
suggested by Robinson and Froese (2004) and Robinson et al. (2005) was performed to 
determine the performance of proxy of site productivity variables in diameter growth 
prediction. In addition, Tukey’s honest significant differences (TukeyHSD) post hoc test 
was performed to compare the mean estimates of diameter by each model with the field 
measurements. 
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Table 4.5. Possible cases of diameter growth model calibration and verification of 
predicted diameter growth with measured values at BIA plot locations 

      
No. Proxy of site quality in  

model calibration 
Proxy of site quality in  

model verification with BIA data 
1. measured site index (SIfia) measured site index (SIbia) 
2. imputed site index  (SIimpt) imputed site index (SIimpt) 

3. combination of biogeoclimatic 
variables 

combination of biogeoclimatic 
variables 

4. measured site index (SIfia) imputed site index (SIimpt) 
5. imputed site index (SIimpt) measured site index (SIbia) 

    

4.4. Results 
The site index imputation models reasonably explained the variance in the training 
dataset; however, the importance ranking (sensitivity) of auxiliary predictors varied with 
the species. The productivity index (PI) was found to be the most important while the 
mean temperature in the warmest month least affected the prediction of species-specific 
SI. The growing season precipitation (GSP), MODIS derived NDVI (MNDVI), mean 
annual precipitation (MAP), landcover, and normal degree-days above 5 0C (DD5) were 
the bands of second most important predictors whose ranking varied with species. The 
other predictors have intermediate roles in determining the site quality of any location as 
in the Figure 4.2. The RMSE and prediction powers of the individual RF-kNN imputation 
models are given in the Table 4.6. 
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Figure 4.2. The ranking of relative importance of variables in site index prediction 
mapping using the random forest technique. The ranking is determined based on the 
percentage increase in mean square error if a particular variable in not included in the 
model. 
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Table 4.6. Fit statistics of random forest based site index imputation model 

          
Species % var explained RMSE (m) 

RF model parameters 
mtry ntree 

Red pine 93.9 0.89 2 3200 
N. white-cedar 91.5 1.22 2 2500 
Sugar maple 92.8 0.81 2 1500 
Quaking aspen 90.1 1.19 2 1700 
N. red oak 86.4 1.37 2 4000 
      

The comparisons of species-specific imputed site index with calculated (measured) site 
index at FIA plot locations show reasonable trend as can be expected with imputation 
techniques (Figure 4.3). 

The Pearson’s correlation (r) analysis of the individual predictors (including 
transformations and interaction terms) with the DDS indicates that D, D², D/QMD, 
D²/QMD, CR, QMD, and SI are positively correlated to the response while SBA, BAL, and 
TPH (trees per hectare) are negatively correlated (Table 4.7). This result indicates 
positive effect of site quality and negative effect of competition elements on tree growth. 
CR has positive influence on growth despite the fact that tree density, stand age, 
management regimes, and growth habits of species affect CR (over-stocked stands 
supports low CR and vice versa). Further, the scatter plot of DDS against D plus D² in 
general revealed a linear trend (graph not shown) which implies a quadratic relationship 
of the growth with DBH (or linear relationship with initial tree basal area). 
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Figure 4.3. Comparison of species-specific calculated (measured) site index in the FIA 
plots with the imputed values at respective locations. 
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Table 4.7. Correlation coefficient (r) of predictor variables with DDS by species 

            Predictors Red pine N. white-cedar Sugar maple Quaking aspen N. red oak 
1/D -0.351 -0.547 -0.536 -0.4123 -0.521 
D 0.384 0.612 0.585 0.4377 0.633 
D2 0.367 0.611 0.568 0.4355 0.645 

QMD 0.082 0.409 0.19 0.1849 0.246 
D/QMD 0.452 0.466 0.533 0.4069 0.561 
D2/QMD 0.407 0.573 0.569 0.4406 0.625 

SBA -0.347 -0.081 -0.148 0.0023 -0.072 
BAL -0.473 -0.282 -0.346 -0.2227 -0.356 
CR 0.429 0.397 0.247 0.2607 0.185 

TPH -0.365 -0.31 -0.295 -0.1407 -0.239 
SIfia -0.062 0.204 0.131 0.0515 0.138 

BAWHT -0.024 0.047 -0.062 -0.0523 -0.124 
DI 0.059 -0.168 -0.016 0.0648 0.099 
PI 0.07 -0.13 0.052 0.0725 0.135 

DD5 -0.198 -0.118 0.203 0.1147 0.25 
GSP 0.177 0.146 0.046 -0.013 0.161 
MAP -0.193 0.094 -0.032 -0.0659 0.082 
MAT -0.329 -0.134 0.193 0.0318 0.201 

MNDVI 0.042 0.082 -0.016 0.0027 -0.015 
MTWM -0.103 -0.107 0.197 0.1205 0.252 
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Table 4.8. Coefficients and fit statistics of species-specific diameter growth models in the three forms (Equations-1, 2, and 3) 
with lnDDS as the response variable and measured SI (SIfia), imputed SI (SIimpt) and biogeoclimatic (BGC) predictors 
successively substituting the site variable. 

Para- 
meters 

Red pine models N. white-cedar models Sugar maple models 
~SIfia ~SIimpt ~BGC ~SIfia ~SIimpt ~BGC ~SIfia ~SIimpt ~BGC 

Intercept 5.01935 5.24531 2.86382 1.29009 1.42301 2.97122 4.05131 3.97291 2.63501 
1/D -27.7165 -27.1814 -27.7361    -20.4084 -20.2670 -20.1392 
D    0.10555 0.11452 0.10399 0.078745 0.082584 0.07803 
D2       -0.00060 -0.00064 -0.00062 
D/QMD 0.56589 0.60674 0.66951    -0.56119 -0.59852 -0.48859 
D2/QMD -0.00965 -0.01050 -0.01333 -0.02509 -0.02899 -0.02465    SBA -0.01506 -0.01338 -0.00913 -0.00383 -0.00402 -0.00303 -0.02781 -0.02656 -0.02459 
BAL -0.00820 -0.00923 -0.00814    -0.00203 -0.00237 -0.00255 
CR 0.023804 0.024117 0.02794 0.029853 0.029167 0.028076 0.022762 0.022778 0.023408 
CR2 -5.0E-05 -6.1E-05 -0.00011 -0.00016 -0.00015 -0.00015 -0.00011 -0.00011 -0.00014 
SI 0.018899 0.004485  0.017876 -0.00259  0.017193 0.017937  DD5   -0.00035   0.001662    MAP.DI   1.63E-05   -3.3E-06   -2.4E-05 
DI   -0.01315      0.01791 
MTWM   0.019925   -0.02647    MAT   -0.01949   -0.00668   0.009011 
GSP      0.003453   0.002449 
BAWHT      0.000594   0.000266 
Adj. R2 0.4734 0.4669 0.5244 0.4087 0.4028 0.4266 0.4043 0.4048 0.4165 
RSS 2845.92 2880.99 2568.91 4104.41 4144.93 3978.07 5727.13 5722.40 5608.33 
RSE 0.5996 0.6033 0.5698 0.6439 0.6471 0.6341 0.7362 0.7359 0.7287 
DF 7914 7914 7910 9898 9898 9893 10565 10565 10561 
F-stat 891.22 868.33 728.96 1142.1 1114.8 670.96 798.61 800.24 581.59 
AIC 14392.29 14489.31 13588.92 19399.09 19496.4 19099.42 23547.14 23538.4 23333.47 
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Table 4.8 (continued). RSS: residual sum of square; RSE: residual standard error; and DF: degrees of freedom 

Para- 
meters 

Quaking aspen models N. red oak models 
~SIfia ~SIimpt ~BGC ~SIfia ~SIimpt ~BGC 

Intercept 5.04331 5.20084 0.42506 2.45192 3.03057 5.60123 
1/D -18.8786 -18.2105 -17.9302    D    0.080475 0.079799 0.067672 
D2    -0.00029 -0.00034 -0.00022 
D/QMD    0.44995 0.33575 0.63932 
D2/QMD    -0.01105 -0.00748 -0.01172 
SBA -0.00924 -0.00789 -0.00438 -0.02139 -0.01771 -0.01212 
BAL -0.00463 -0.00531 -0.00629   -0.00406 
CR 0.022837 0.024561 0.029455 0.007506  0.006722 
CR2 -9.8E-05 -0.00012 -0.00016  7.54E-05  SI 0.020625 0.008793  0.037313 0.015498  DD5   -0.00036   0.000988 
MAP.DI   1.10E-05   2.33E-05 
DI   -0.00652   -0.01682 
MAP      -0.00296 
MTWM   0.028794   -0.02068 
MAT   -0.01125   0.009863 
GSP   -0.00129   0.003414 
MNDVI   0.85502    PI      0.012064 
Adj. R2 0.2545 0.2447 0.2827 0.4500 0.4277 0.4807 
RSS 3170.98 3212.75 3049.03 1218.02 1267.28 1147.12 
RSE 0.5851 0.5889 0.5739 0.6272 0.6397 0.6094 
DF 9262 9262 9256 3096 3096 3088 
F-stat 528.4 501.46 305.44 363.72 332.4 192.49 
AIC 16378.05 16499.34 16026.54 5923.10 6046.16 5752.94 
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Table 4.9. Factors prioritization in the three forms of growth models through reduction of variance approach in sensitivity 
analysis; the numbers in the parentheses represent sensitivity index (i.e., importance ranking of the predictors in the model). 

Spp Models Ranking of predictor variables (in descending order from left to right) by sensitivity analysis 

Red 
pine 

~SIfia  CR 
(0.3891) 

1/D 
(0.3863) 

D/QMD 
(0.0660) 

SBA 
(0.0575) 

D2/QMD 
(0.0503) 

BAL 
(0.0238 

CR2 
(0.0138) 

SIfia 
(0.0131)     

~SIimpt CR 
(0.3982) 

1/D 
(0.3703) 

D/QMD 
(0.0756) 

D2/QMD 
(0.0595) 

SBA 
(0.0453) 

BAL 
(0.0301) 

CR2 
(0.0204) 

SIimpt 
(0.0006)         

~BGC CR 
(0.2485) 

1/D 
(0.1791) 

MAPDI 
(0.1525) 

DI 
(0.1239) 

MAT 
(0.0854) 

MTWM 
(0.0634) 

D2/QMD 
(0.0445) 

D/QMD 
(0.0428) 

CR2 
(0.0307) 

BAL 
(0.0109) 

SBA 
(0.0098) 

DD5 
(0.0084) 

N. 
white 
cedar 

~SIfia D 
(0.5997) 

CR 
(0.2327) 

D2/QMD 
(0.1015) 

CR2 
(0.0591) 

SIfia 
(0.0051) 

SBA 
(0.0019)             

~SIimpt D 
(0.6312) 

CR 
(0.1989) 

D2/QMD 
(0.1213) 

CR2 
(0.0466) 

SBA 
(0.0019) 

SIimpt 
(0.0001)             

~BGC D 
(0.4971) 

CR 
(0.1759) 

DD5 
(0.0999) 

D2/QMD 
(0.0837) 

MTWM 
(0.0718) 

CR2 
(0.0443) 

GSP 
(0.0159) 

MAT 
(0.0053) 

BAWHT 
(0.0027) 

MAPDI 
(0.0024) 

SBA 
(0.0010)   

Sugar 
maple 

~SIfia D 
(0.5860) 

1/D 
(0.1197) 

CR 
(0.0995) 

D2 
(0.0769) 

SBA 
(0.0599) 

D/QMD 
(0.0383) 

CR2 
(0.0143) 

SIfia 
(0.0045) 

BAL 
(0.0009)       

~SIimpt D 
(0.6030) 

1/D 
(0.1105) 

CR 
(0.0933) 

D2 
(0.0822) 

SBA 
(0.0511) 

D/QMD 
(0.0407) 

CR2 
(0.0133) 

SIimpt 
(0.0047) 

BAL 
(0.0011)       

~BGC D 
(0.4097) 

MAPDI 
(0.1507) 

DI 
(0.1299) 

1/D 
(0.0830) 

CR 
(0.0750) 

D2 
(0.0585) 

SBA 
(0.0334) 

D/QMD 
(0.0207) 

CR2 
(0.0164) 

MAT 
(0.0111) 

GSP 
(0.0092) 

BAWHT 
(0.0014) 

Quakin
g 

aspen 

~SIfia 1/D 
(0.4838) 

CR 
(0.3953) 

SIfia 
(0.0394) 

SBA 
(0.0368) 

CR2 
(0.0338) 

BAL 
(0.0108)             

~SIimpt CR 
(0.4546) 

1/D 
(0.4478) 

CR2 
(0.0505) 

SBA 
(0.0267) 

BAL 
(0.0141) 

SIimpt 
(0.0063)             

~BGC CR 
(0.2688) 

MTWM 
(0.2668) 

1/D 
(0.1771) 

MAPDI 
(0.0937) 

DI 
(0.0590) 

MAT 
(0.0560) 

CR2 
(0.0366) 

DD5 
(0.0172) 

GSP 
(0.0083) 

BAL 
(0.0081) 

MNDVI 
(0.0050) 

SBA 
(0.0034) 

N. red 
oak 

~SIfia D 
(0.7979) 

D2/QMD 
(0.0667) 

D2 
(0.0382) 

SBA 
(0.0327) 

D/QMD 
(0.0304) 

SIfia 
(0.0248) 

CR 
(0.0093)           

~SIimpt D 
(0.8562) 

D2 
(0.0573) 

D2/QMD 
(0.0334) 

SBA 
(0.0245) 

D/QMD 
(0.0185) 

CR2 
(0.0068) 

SIimpt 
(0.0033)           

~BGC D 
(0.4145) 

MAPDI 
(0.1474) 

DI 
(0.1287) 

DD5 
(0.0600) 

D2/QMD 
(0.0551) 

MTWM 
(0.0536) 

D/QMD 
(0.0452) 

MAP 
(0.0251) 

GSP 
(0.0228) 

D2 
(0.0161) 

MAT 
(0.0145) 

SBA 
(0.0077) 

 



 
 

 

The coefficients and fit statistics of the three model forms for each of the species are 
given in the Table 4.8. Only the coefficients that were statistically significant at 95% 
confidence level (p-values ≤ 0.05) are retained in the model. Table 4.8 shows that for 
each of the species, the model form including biogeoclimatic variables have the highest 
adjusted R2, least variance (residual sum of square), least error, and least F-statistic. The 
large values of F-statistic compared to the tabulated values at the specified model and 
error degrees of freedom (p-1, n-p) implies that each of the model coefficients are 
significantly different from zero. Signs of the coefficients too are noteworthy and make 
sense for the allometric models. For example, positive coefficients for D and negative 
coefficients for 1/D, and D2 corroborate the typical unimodal allometric growth pattern 
such as mean annual increment (MAI). The negative coefficients with SBA, BAL, and 
interaction of diameter and relative diameter (D2/QMD) terms signify the suppression 
effect of competition on tree growth. The negative coefficients of relative diameter 
(D/QMD) in the case of sugar maple indicates retarding growth with increasing tree size 
(DBH) and this behavior can be attributed to the very high shade tolerance characteristics 
of the species. The CR and measured SI have positive influence on tree growth. The 
negative coefficient of imputed SI for northern white-cedar is strange; this indicates 
inefficiency of spatial model of SI for such species that can grow over a wide range of 
sites, remain dominated for several years, and respond quickly to release at any age. If we 
compare the error statistics, the models based on measured and imputed SI perform 
similarly for red pine, sugar maple and quaking aspen. But the model for northern red oak 
dependent on imputed SI causes largest drop in adjusted R2 compared to the others. It can 
also be noticed that the growth of northern red oak and quaking aspen is influenced by 
relatively larger number of biogeoclimatic variables. 

The sensitivity analysis for factors prioritization using reduction of variance approach 
shows that DBH is the most important factor for red oak, white cedar and sugar maple, 
whereas crown ratio is more important in red pine and quaking aspen (Table 4.9). As 
expected, the importance of imputed SI was either similar to or worse than the measured 
SI. The site index (measured) was found to have more influence on growth compared to 
the competition parameters such as SBA and BAL for white cedar and quaking aspen. 
For northern red oak, the SI was even more influential than CR.  

The validation and performance evaluation of the three model forms and their variants 
with switched application of measured and imputed values of SI in the respective models 
is shown in Table 4.10. The projected diameters, 10 years after the initial measurements, 
when compared via equivalence test with the measured (interpolated) diameters in the 
BIA plots, it was found that the measured and projected values by all model forms are 
similar at 25% region of similarity for slopes and intercepts (graphs not shown). The 
Tukey’s Honest Significant Difference (TukeyHSD) post hoc test to compare the 
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difference between the means of each pair of measured and projected diameters as well as 
among the means of each pair of projected diameters indicated that the model including  
biogeoclimatic variables are superior (closer to the measurements) and involved least 
RMSE and bias. For white cedar, sugar maple and red oak, the means of measured and 
predicted diameters did not differ significantly at 95% level of confidence (Table 4.10). 
However, in the case of quaking aspen, the mean diameter estimates by all the models 
differed significantly from the mean of measured diameters at 95% level of confidence. 
In the case of red pine, the models with measured and imputed SI poorly estimated the 
mean diameter growth per decade. Poor correspondence of mean diameter growth 
obtained from the BIA data and the predictions by the three model forms can also be 
attributed to the quality of BIA data, especially the long gap for remeasurements and 
ocular estimation of some variable such as crown ratio.  
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Table 4.10. RMSE and bias of estimates along with the evaluation of the difference between the means of each pair of diameter 
projection methods* by Tukey’s Honest Significant Difference (TukeyHSD) post hoc test. The adjusted p-values in bold case 
(less than 0.05) imply that the related pair of methods differs significantly 

*Methods: A: time-2 diameter measured (interpolated) 10 years later from the first measurement; B: time-2 diameter predicted 
by SIfia model; C: time-2 diameter predicted by SIimpt model; D: time-2 diameter predicted by BGC model; E: time-2 diameter 
predicted by SIfia model when imputed SI values are used instead of measured SI; F: time-2 diameter predicted by SIimpt model 
when measured SI values are used instead of imputed SI. 
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B-A <0.05 2.01 -1.43 0.76 0.80 -0.25 0.08 1.79 -1.23 <0.05 1.96 -1.09 0.75 1.91 -1.01 
C-A <0.05 2.04 -1.45 0.76 0.81 -0.25 0.07 1.80 -1.24 <0.05 2.10 -1.31 0.78 1.95 -0.98 
D-A 0.41 1.63 -0.74 0.93 0.78 -0.18 0.11 1.75 1.17 <0.05 1.97 -1.10 0.76 1.95 -1.00 
E-A <0.05 2.07 -1.50 0.85 0.83 -0.22 0.08 1.79 -1.23 <0.05 2.08 -1.28 0.77 1.88 -0.99 
F-A <0.05 2.02 -1.44 0.77 0.82 -0.24 0.07 1.80 -1.24 <0.05 2.05 -1.24 0.77 1.96 -0.99 
C-B 1.00 0.13 -0.02 1.00 0.06 0.00 1.00 0.08 -0.02 0.98 0.30 -0.22 1.00 0.21 0.03 
D-B 0.49 0.77 0.69 1.00 0.14 0.07 1.00 0.10 0.05 1.00 0.41 -0.01 1.00 0.34 0.01 
E-B 1.00 0.19 -0.07 1.00 0.12 0.03 1.00 0.07 -0.01 0.99 0.30 -0.19 1.00 0.25 0.03 
F-B 1.00 0.10 -0.01 1.00 0.06 0.01 1.00 0.02 -0.01 1.00 0.19 -0.14 1.00 0.18 0.03 
D-C 0.45 0.79 0.71 1.00 0.14 0.07 1.00 0.10 0.07 0.99 0.42 0.21 1.00 0.33 -0.02 
E-C 1.00 0.11 -0.04 1.00 0.13 0.03 1.00 0.02 0.01 1.00 0.11 0.03 1.00 0.23 -0.01 
F-C 1.00 0.04 0.02 1.00 0.02 0.00 1.00 0.08 0.01 1.00 0.13 0.08 1.00 0.10 -0.01 
E-D 0.38 0.85 -0.76 1.00 0.17 -0.04 1.00 0.10 -0.06 0.99 0.43 -0.18 1.00 0.43 0.02 
F-D 0.48 0.77 -0.70 1.00 0.14 -0.07 1.00 0.10 -0.06 1.00 0.38 -0.13 1.00 0.30 0.03 
F-E 1.00 0.15 0.02 1.00 0.11 -0.03 1.00 0.07 0.00 1.00 0.18 0.04 1.00 0.30 0.00 

 



  

4.5. Discussion 
The biogeoclimatic approach of site productivity mapping fundamentally involves 
measurements of SI as response and biotic, climate, soil, and physiographic variables as 
explanatory variables for the locations of sample trees (site trees) from stands distributed 
throughout the region of interest. The measured SI is then traditionally related to the 
explanatory variables by means of regression analysis. The practical application of SI 
maps in forest growth and yield mapping require analytical evaluation of accuracy with 
respect to modeling approaches and inclusion of explanatory biogeoclimatic variables. 
Because of the complex nature of ecological systems particularly in regional level studies 
with limited availability of spatially explicit auxiliary predictors in public domain, it is 
always challenging to identify and select variables for large area SI mapping. The scale 
dependent correlation and interaction among the predictor biogeoclimatic variables and 
the inherent assumptions regarding independence, homocedasticity, and normality in the 
traditional multivariate modeling approach has opened ways for sophisticated machine 
learning approaches. Hence, I have selected freely available spatial variables believed to 
directly influence site quality and the non-parametric RF-kNN modeling approach which 
is assumed to be free from the general assumptions of parametric regression. The 
accuracies of species-specific imputed site index layers are satisfactory as the developed 
individual models possessed more than 86% explanatory power for the variations (Table 
4.6). Although Avery and Burkhart (1994) have mentioned limited success in SI 
prediction mapping, Klinka and Carter (1990) reported strong relationship (R2 = 0.84) 
between SI of Douglas fir and spatial metrics of climate, soil moisture, and nutrients. 
Similarly, Sharma et al. (2012) developed SI models for Norway spruce and Scots pine 
by using national forest inventories and different combinations of site and climatic 
variables that explained a large part of the total variations (adjusted R2 of 0.86 and 0.72 
for the spruce and pine respectively). Despite some reported deficiencies, spatially 
explicit SI maps have the intuitive appeal since the productivity models based on data 
from sites of known/ measurable quality can be applied to the sites where site parameters 
are difficult to measure. 

No model can perfectly portray the growth pattern of trees since the complex ecological 
systems are dynamic, interactive and dependent on several environmental and socio-
economic factors (Zeide, 1993). It is difficult to incorporate the effects of numerous 
factors including disturbance in a growth model. We have not accounted for the effect of 
catastrophic mortality or excessive harvesting on the growth, primarily because of the 
unavailability of true coordinates of the FIA plots. As the disturbance component is not 
considered, the assumption that the initial stand condition prevailed during the growth 
period suffers from a drawback. 
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The scatter plot of DDS against D² revealed an approximately linear trend which implies 
quadratic relationship of the growth with DBH (or linear relationship with initial tree 
basal area). I did not use polynomial growth forms which lack biological interpretation 
(Zeide, 1993). The developed diameter growth models explained the variability to 
varying degrees. The models possessed the desirable statistical characteristics of 
homogenous residual variance with increasing DBH. The adjusted R2 statistic obtained in 
this study are similar to or better than the reported values by Lessard et al. (2001); they 
obtained the fit indexes (analogous to R2) of 0.438, 0.36, 0.363, 0.246, and 0.227, 
respectively for red pine, white-cedar, soft maples, quaking aspen, and red oak by using 
FIA data from undisturbed, mixed species, and mixed age stands in Minnesota. The fit 
statistics in this study are also better than the ones reported by Shifley (1987). 

The varying degrees of dependency of diameter growth on site and competition elements 
is justified from the notion that SI represents a only fraction of potential growth of an 
individual tree, and the effect of other parameters depend on competition (e.g., trees have 
larger CR in understocked stands with abundant nutrients, that creates positive effect on 
growth). In addition, the growth rate for a given DBH and SI decreases as BAL increases, 
and reach zero asymptotically. Teck and Hilt (1991) have reported positive correlations 
of tree diameter and diameter growth, and also site index and diameter growth. This study 
indicates relatively low ranking of SI in the models (Table 4.9), as also noticed by 
Wykoff (1990) who relates the cause to the selection of sample trees from irregular 
stands spread over large areas. The positive coefficients of CR and negative coefficients 
of SBA and BAL in the calibrated models suggest that growth increments are larger for 
dominant trees with large crown from low density stands in contrast to suppressed trees 
of short crowns from high density stands.  

The diameter growth patterns for each of the target species are biologically justified as 
shown by the unimodel positively skewed shapes in the Figure 4.4. The under estimation 
of diameter growth (revealed by negative biases in the Table 4.10) by each of the models 
is in line with the previous study by Zhao et al. (1988) who also applied a similar model 
form; however, Froese and Robinson (2007) and Holdaway and Brand (1983) have 
observed overpredictions with different model forms.  

The individual tree level general growth trend against size maintains a certain degree of 
rigidity (Figure 4.4), which is an asset for applications in simulation frameworks. Since 
growth equations serve as building blocks for simulation programs and commercial 
operational applications largely apply timber simulations/projections, the large tree 
growth equations are formulated and alternative versions of the models are evaluated to 
see how well the predictions matches the observed growths. 
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Discrepancies in the inventory designs/systems of FIA and BIA have likely introduced 
higher error in the validation of growth predictions at BIA locations. Tree CR (which is 
the most important predictor for red pine and quaking aspen) was inconsistently 
measured, on different scales (e.g. coding) in different reservations, in the BIA plots. The 
long gaps between two successive measurements (up to 17 years) in the BIA plots have 
further consequence in the calculation of 10-year periodic diameter growth. The SI data 
was not available for all BIA plots/reservations and the BIA measurement methods 
(particularly age and height) of site trees may have been different from the ones adopted 
in the FIA design. The distributions of BIA validation plots are over narrow areas/ 
pockets in MN and WI, and the application of developed models to local conditions still 
suffer shortfalls since the predicted growth rates represent average rates over the entire 
LS region (despite the fact that SI or BGC variables account for the site variations).  
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Figure 4.4. Comparisons of 10-year predicted diameter growth surfaces based on models 
consecutively consisting of measured site-index, imputed site-index, and biogeoclimatic 
variables for each of the target species. The decadal growths are derived from lnDDS by 
varying only the initial DBH and using the median values of other predictors. 

  

4.6. Conclusions 
i. The site index imputation models dependent on biogeoclimatic variables strongly 

explained the variance in the training dataset; however, sensitivity of the 
predictors varied with the species. 
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ii. Per decade diameter (or basal area) growth of the sample trees were found to be 
positively related to initial DBH, crown ratio, and site index and negatively 
related to stem density, stand basal area, and cumulative basal area of larger trees. 
This indicates positive effect of site quality and negative effect of competition 
elements on tree growth. 

iii. Diameter growth models based on biogeoclimatic variables better explained the 
variance compared to the models based on measured or imputed site index. 

iv. The spatial model of site index for northern white cedar was inefficient because it 
revealed a negative coefficient of the imputed variable in the growth model. This 
indicates inability of site index models for species that grow on a wide range of 
sites, remain dormant for several years, and respond quickly to release at any age. 

v. The success of imputed site index in diameter growth projection was either 
similar to or worse than the measured site index and varied with species. 

vi. Diameter growth models based on biogeoclimatic variables were superior in 
predicting the diameter growth as verified with the independent dataset from BIA. 

vii. Site index models (except for some species) have intuitive appeal since site data 
from a reference sample can be extended to areas where sample site trees are not 
available. 

viii. Since this study applied fuzzed-swapped coordinates of the FIA plots, better 
spatial models of site index can be prepared with actual coordinate of the plots. 
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5. Conclusions 
 

Foundation of this work is built on the strengths of the Random Forest based k-Nearest 
Neighbor (RF-kNN) imputation algorithm that combines a sample of geo-referenced 
ground inventory data with geospatial datasets for spatially explicit prediction of forest 
structural attributes. I applied the novel RF-kNN imputation approach to generate forest 
inventory across large spatial extents by coupling remote sensing and geospatial data with 
sample inventory collected by different sampling methods. The algorithm is highly 
acknowledged in contemporary forestry research focused on large-area assessment of 
inventory attributes to guide operational management and strategic planning. The 
strength particularly lies in the distribution free assumptions and the algorithm's 
capability to provide relative importance of selected variables while simultaneously 
predicting multiple inventory attributes for large (even inaccessible) target area. This 
study evaluated accuracy of imputation estimates produced by using optical and LiDAR 
remote sensing and other publicly available geospatial layers combined with the forest 
inventory data at multiple spatial scales (regional and local). The accuracy, particularly 
for small-area operational requirements, was found to be dependent on the characteristics 
of geospatial datasets as well as the sample field inventory. The training dataset 
developed from high resolution geospatial layers intersected with the actual coordinates 
of sample inventory plots were found to be efficient and precise in generating resource 
stock and distribution information. The imputation products are useful to forest managers 
and policy makers for enhanced production of goods and ecosystem services. 

To evaluate the impact of data-driven modeling approaches and optimization criteria on 
the accuracy of biomass estimates at small and large spatial scales, two new imputation 
models were developed and two extant models produced by USFS (Blackard et al., 2008) 
and NBCD (Kellndorfer et al., 2012) were considered in this study. Using publicly 
available remote sensing and other biogeoclimatic spatial layers coupled with the national 
forest inventory (FIA) data from a large part of Michigan, the new models were built in 
two contrasting ways: (i) a limited number (total five) of spatial predictors were attached 
to the FIA data under the policy restrictions on disclosing actual plot locations and a 
model called Actu.imput was formulated to develop a high resolution map (30 m pixel); 
(ii) a large number (total eleven) of spatial predictors were related to FIA data via the 
fuzzed-swapped plot coordinates available in the online database and a model called 
Fuzz.imput was formulated to develop a coarse resolution map (250 m pixel). The 
biomass estimates of the four imputation models at plot, stand and county scales, 
validated against separate datasets revealed that the prediction accuracy improves with 
increasing size of the target area. The actual coordinate based new model (Actu.imput) 
relatively performed better for the plot (pixel) level prediction but none of the models 
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were reliable since the estimates were not statistically equivalent to the field plot 
observations. The stand level estimates by the Actu.imput model were best in terms of 
RMSE; however, the USFS and NBCD models also generated estimates statistically 
equivalent to the field observations. This implies that an imputation model based on 
limited number of sensible spatial predictors attached to the inventory data via the actual 
plot coordinates can provide reliable biomass estimates at a stand or larger spatial extent. 
Since the model based on fuzzed-swapped plots provided statistically equivalent results 
as with the model derived from true coordinate data, it can be concluded that a high 
degree of sophistication or adjustments to offset the spatial mismatch of the plot data and 
corresponding spatial predictors is not necessary for large area estimation. As in many 
published works, insensitivity of optical remote sensing data was obvious from the 
validation analysis since the models produced under estimation in large biomass plots and 
over estimation in low biomass plots. Among the predictors selected, basal area weighted 
height (BAWHT) was found to be the most influential in the two new models. In the 
Actu.imput model with five predictors, the ranking in the order of decreasing importance 
followed BAWHT, land cover, Landsat image derived normalized difference vegetation 
index (NDVI), and MODIS time-series images derived disturbance (MODIS-slope), and 
elevation. In the Fuzz.imput model including 11 different predictors, climatic variables 
(precipitation and temperature) were the next important predictors after BAWHT. The 
performance of models varied with the size of target area, choice of statistical measure to 
test goodness-of-fit, and the quality of calibration and validation data. 

The potential of combining the strength of LiDAR data with inexpensively collected 
sample inventory data via variable-radius plot (VRP) or point sampling has long been 
realized in remote sensing community to enhance cost-effective geospatial inventory. 
Accuracy of inventory estimates by the RF-kNN imputation model based on the 
integration of indeterminate size VRP sampling data and LiDAR derived metrics was 
evaluated against the estimates by a similar model developed from the integration of 
fixed radius plot (FRP) sampling data and LiDAR derived metrics. The FRP sampling 
data was used as reference to compare the coinciding plot level standing volume 
estimates by seven different VRP models developed on the basis of sampling of six 
conifer stands in the Ford Forest area of Michigan Tech. It was found that the VRP data 
based models are capable of estimating volume statistically equivalent to the FRP data 
based model predictions. The most efficient VRP model in terms of bias was associated 
with the basal area factor (BAF) 9 for all the stands together; however, BAF 10 was the 
best for older stands only. BAF 10 was concluded to be the most effective for the target 
area inventory since it tallied at least four trees per plot, and the sampling device (i.e. 
prism) along with associated expansion factors is easily available in the market. The 
study revealed that VRP and FRP data from separate stands can also be combined to 
formulate a spatial model at an optimal grid resolution of LiDAR metrics. The suitability 
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of VRP model in older stands (with large volume) was supported by the observations that 
use of fixed plots instead of variable plots for model training improved the accuracy only 
by a small margin. Further a combination of VRP data from younger stands and FRP data 
from older stands, or only VRP data from all stands can be used to formulate a 
generalized model with some compromise in accuracy. However, use of a single BAF 
(especially BAF 10) for all stands is useful as this practice overcomes the practical 
difficulties associated with the use of several BAFs. 

The characteristic of imputation to generate an estimate of target inventory attribute at 
unsampled points based on the observations from a sample of reference points is 
particularly attractive for the attributes such as forest site index (SI) which require 
meticulous efforts in parameters measurement (e.g., tree age and height) and are 
sometime difficult or impossible to measure. The comprehensive FIA database with 
species-specific SI estimated per plot was combined with biogeoclimatic spatial layers 
(linked via fuzzed-swapped coordinates) in the RF-kNN framework to develop spatially 
explicit maps of SI for five major species (red pine, northern white cedar, sugar maple, 
quaking aspen, and northern red oak) of the Lake States (MI, WI, and MN). Accuracy of 
the imputed SI (produced as raster at 250 m resolution) was validated against measured 
SI at the plots other than the ones used for model training. Analysis showed that utility of 
the SI models vary with species, and specially models for shade tolerant species or others 
that grow over a wide range of sites are less reliable. Additionally, when large tree 
diameter growth models were formulated by using three proxies for site quality namely 
measured SI, imputed SI, and a combination of biogeoclimatic variables, negative 
coefficient of imputed SI was found for the white cedar model; this is not reasonable 
because all SI coefficients for other species were positive. Tree diameter growth 
predictions based on models using measured SI and imputed SI when compared with the 
field observation (from BIA plots), it was found that statistically significant difference 
prevail in the predictions of red pine and quaking aspen. As expected the sensitivity of 
imputed SI in the growth projection are either similar to or poorer than measured SI. The 
spatial maps of SI have intuitive appeal since one can estimate site quality even for the 
areas that are presently devoid of forests; it can guide crop selection for plantation. 
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Appendix 1. Description of 90 different LiDAR metrics used in this study 

Predictor Description 
PropT proportion of total return >1.5 m (total returns >1.5 m /total returns) 
Prop1 proportion of first return >1.5 m (first returns >1.5 m /total returns >1.5 

 Prop2 proportion of second return >1.5 m (second returns >1.5 m /total 
  Prop3 proportion of third return >1.5 m (third returns>1.5 m /total returns>1.5 

 Prop4 proportion of fourth return >1.5 m (fourth returns>1.5 m /total return 
  Prop5 proportion of fifth return >1.5 m (fifth returns>1.5 m /total return 
  ElevMin Elevations minimum 

ElevMax Elevations maximum 
ElevMean Elevations mean 
ElevMode Elevations mode 
ElevSD Elevations standard deviation 
ElevVar Elevations variance 
ElevCV Elevations coefficient of variation 
ElevIQR Elevations interquartile range 
ElevSkew Elevations skewness 
ElevKurt Elevations kurtosis 
ElevAAD Elevations average absolute deviation 
EMADmed Median of the absolute deviations from the overall median of 

 EMADmod Mode of the absolute deviations from the overall mode of elevations 
ElevL1 Elevations first L-moment 
ElevL2 Elevations second L-moment 
ElevL3 Elevations third L-moment 
ElevL4 Elevations fourth L-moment 
ElevLCV Elevations L-moment coefficient of variation 
ElevLskew Elevation L-moment skewness 
ElevLkurt Elevation L-moment kurtosis 
ElevP01 Elevations 1st percentile 
ElevP05 Elevations 5th percentile 
ElevP10 Elevations 10th percentile 
ElevP20 Elevations 20th percentile 
ElevP25 Elevations 25th percentile 
ElevP30 Elevations 30th percentile 
ElevP40 Elevations 40th percentile 
ElevP50 Elevations 50th percentile 
ElevP60 Elevations 60th percentile 
ElevP70 Elevations 70th percentile 
ElevP75 Elevations 75th percentile 
ElevP80 Elevations 80th percentile 
ElevP90 Elevations 90th percentile 
ElevP95 Elevations 95th percentile 
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ElevP99 Elevations 99th percentile 
CRR Canopy relief ratio ((mean-min)/(max-min)) 
EQM Elevation quadratic mean 
ECM Elevation cubic mean 
IntMin Intensity minimum 
IntMax Intensity maximum 
IntMean Intensity mean 
IntMode Intensity mode 
IntSD Intensity standard deviation 
IntVar Intensity variance 
IntCV Intensity coefficient of variation 
IntIQR Intensity interquartile range 
IntSkew Intensity skewness 
IntKurt Intensity kurtosis 
IntAAD Intensity average absolute deviation 
IntL1 Intensity first L-moment 
IntL2 Intensity second L-moment 
IntL3 Intensity third L-moment 
IntL4 Intensity fourth L-moment 
IntLCV Intensity L-moment coefficient of variation 
IntLskew Intensity L-moment skewness 
IntLkurt Intensity L-moment kurtosis 
IntP01 Intensity 1st percentile 
IntP05 Intensity 5th percentile 
IntP10 Intensity 10th percentile 
IntP20 Intensity 20th percentile 
IntP25 Intensity 25th percentile 
IntP30 Intensity 30th percentile 
IntP40 Intensity 40th percentile 
IntP50 Intensity 50th percentile 
IntP60 Intensity 60th percentile 
IntP70 Intensity 70th percentile 
IntP75 Intensity 75th percentile 
IntP80 Intensity 80th percentile 
IntP90 Intensity 90th percentile 
IntP95 Intensity 95th percentile 
IntP99 Intensity 99th percentile 
Density1 overstory canopy density as % of first return >3m(Ist returns >3m/total 

  Density2 overstory canopy density as % of all return >3m (all returns > 3m/total 
  Density3 Percentage first returns above mean 

Density4 Percentage first returns above mode 
Density5 Percentage all returns above mean 
Density6 Percentage all returns above mode 
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Strata0 proportion of ground return 
Strata1 proportion of above-ground returns below 1.5 m 
Strata2 proportion of vegetation returns above 1.5 m and below 6 m 
Strata3 proportion of vegetation returns above 6 m and below 10.6 m 
Strata4 proportion of vegetation returns above 10.6 m and below 15.2 m 
Strata5 proportion of vegetation returns above 15.2 m and below 19.8 m 
Strata6 proportion of vegetation returns above 19.8 m 
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Appendix 2. Plot level volume estimates based on the FRP and coinciding VRP sampling 
schemes in the field 
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6 1 193.32 147.12 186.04 163.71 181.90 197.77 230.74 195.48 
6 2 218.76 212.32 224.23 227.96 218.98 240.40 228.49 232.45 
6 3 131.95 140.94 144.43 142.32 143.01 152.01 158.50 145.75 
6 4 188.04 142.43 189.26 186.85 192.06 209.04 243.88 236.43 
6 5 269.35 172.11 207.68 221.50 246.11 233.17 245.17 262.68 
6 6 173.96 158.30 155.01 169.36 188.18 193.01 203.60 193.78 
6 7 176.75 174.93 171.54 190.34 181.01 148.53 57.83 61.96 
6 8 291.27 156.46 172.07 174.79 178.27 196.95 164.06 156.74 
6 9 266.00 281.26 348.61 374.15 402.71 420.73 383.08 360.48 
6 10 148.24 173.41 146.23 134.93 119.90 124.95 145.77 156.18 
6 11 147.50 117.28 132.93 151.69 151.99 132.00 154.00 124.33 
6 12 243.81 270.08 247.56 211.44 234.94 242.57 283.00 254.68 
6 13 214.03 211.50 250.05 251.91 264.20 272.19 252.50 242.89 
10 1 47.52 39.26 54.96 60.36 58.52 63.26 73.80 62.72 
10 2 44.04 52.00 51.40 31.51 35.01 42.02 23.53 25.21 
10 3 39.77 28.55 32.71 33.36 37.07 33.75 39.37 42.18 
10 4 55.61 67.07 62.04 46.15 40.45 25.69 29.97 32.11 
12 1 34.13 52.90 44.85 49.91 55.45 56.99 56.01 47.66 
12 2 67.69 111.25 116.96 118.82 123.21 109.24 100.39 96.03 
12 3 55.29 60.83 31.22 16.65 18.50 22.21 25.91 27.76 
12 4 44.77 70.26 71.39 63.03 60.29 59.34 69.23 74.17 
12 5 25.07 51.32 49.09 63.11 61.22 73.47 85.71 91.83 
12 6 12.12 42.19 45.39 56.05 56.01 56.24 60.24 55.82 
12 7 45.08 85.38 90.02 97.64 99.87 87.94 102.59 109.92 
17 1 71.89 82.76 83.07 91.65 76.25 80.34 66.18 70.91 
17 2 74.20 96.84 80.64 83.95 67.44 59.93 64.23 55.94 
17 3 61.37 49.22 68.90 52.86 51.71 62.06 72.40 77.57 
17 4 89.16 120.79 138.09 118.55 131.72 143.92 151.53 162.35 
17 5 55.30 87.54 107.16 84.18 93.54 75.21 49.17 52.69 
17 6 75.27 64.61 65.24 63.95 71.06 57.37 66.93 71.72 
17 7 70.07 48.54 46.37 39.07 43.41 52.10 40.55 43.45 
17 8 59.50 66.48 62.63 66.51 63.06 75.67 88.28 74.50 
17 9 50.43 54.72 39.67 30.72 34.13 40.96 37.63 40.32 
17 10 43.93 89.02 91.44 86.58 84.68 91.76 95.01 101.79 
19 1 99.60 99.07 115.66 121.20 124.25 111.94 102.28 109.59 
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19 2 70.42 95.27 104.96 102.69 106.59 100.45 101.96 95.02 
19 3 61.81 49.43 40.26 34.22 38.02 31.38 36.61 27.61 
19 4 72.22 67.46 68.29 47.24 52.49 52.08 49.03 37.46 
19 5 70.93 97.72 77.62 69.53 69.56 48.12 56.14 60.15 
19 6 67.45 54.90 54.29 54.70 40.48 36.74 42.87 45.93 
19 7 68.26 63.20 82.15 63.10 60.82 72.98 72.67 77.86 
19 8 49.65 56.06 46.41 50.84 56.49 67.79 50.03 38.73 
19 9 53.81 61.62 45.03 50.02 55.58 54.02 63.02 67.52 
24 1 185.73 121.31 126.52 127.74 111.84 87.63 102.23 91.46 
24 2 150.87 65.58 71.89 80.44 89.38 107.25 103.88 111.30 
24 3 122.06 121.21 133.85 135.06 150.06 111.61 113.56 121.67 
24 4 183.53 193.65 242.92 221.82 232.29 250.99 263.85 282.69 
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