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Abstract

Optical waveguides have shown promising results for use within printed circuit boards. These

optical waveguides have higher bandwidth than traditional copper transmission systems and

are immune to electromagnetic interference. Design parameters for these optical waveguides

are needed to ensure an optimal link budget. Modeling and simulation methods are used to

determine the optimal design parameters needed in designing the waveguides. As a result, optical

structures necessary for incorporating optical waveguides into printed circuit boards are designed

and optimized.

Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit

boards. This material was chosen because it has low absorption, high temperature stability, and

can be deposited using common processing techniques. Two sizes of waveguides are investigated,

50 µm multimode and 4 - 9 µm single mode waveguides.

A beam propagation method is developed for simulating the multimode and single mode waveg-

uide parameters. The attenuation of simulated multimode waveguides are able to match the

attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same

process as the multimode waveguides, parameters needed to ensure a low link loss are found

for single mode waveguides including maximum size, minimum cladding thickness, minimum

waveguide separation, and minimum bend radius.

To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect

assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal

reflection mirror can be found without prior knowledge of the waveguide length. The optimal

placement is found to be either 60 µm or 150 µm away from the end of the waveguide depending

on which metric a designer wants to optimize the average output power, the output power

variance, or the maximum possible power loss.

For single mode waveguides a volume grating coupler is designed to couple light from a silicon

waveguide to a polymer single mode waveguide. A focusing grating coupler is compared to a

xi



perpendicular grating coupler that is focused by a micro-molded lens. The focusing grating

coupler had an optical loss of over -14 dB, while the grating coupler with a lens had an optical

loss of -6.26 dB.

xii



1 Introduction

In the late 1950’s telecommunication engineers were looking for ways to increase the transmission

bandwidth of current communication systems. AT&T had just launched their 300 bit per second

modem and the big concern was how to transfer that much information over long distances. Two

electric communication systems, the analog telephone and coaxial lines, were in heavy demand

and the bandwidth was quickly being consumed. Transferring data using higher frequencies in

the optical domain was hoped to be a solution to this problem, but the attenuation and lack of

early optical fibers and a lock of an intense coherent source hindered progress. The invention

of the laser in the 1960’s, which could replace lossy broadband sources, caused fiber optics to

be researched as a possible communication medium. For some time fiber optic communications

stayed stagnant as the losses of fiber optic cables remained around 20 dB/km. Research remained

stagnant until in 1964 when C. K. Kao and M. W. Jones determined that the fiber optic loss was

due to impurities in the glass of the fiber optics[1]. Using better manufacturing standards to rid

the glass of impurities Kao measured the bulk intrinsic loss of bulk fused silica as 4 dB/km and

the fiber optic industry boomed [2]. Today fiber optic loss for long haul communications range

from 0.15 dB/km to 0.40 dB/km, and optical fibers are the cheapest and most efficient way of

transmitting data.

Several advantages of using fiber optics soon became apparent. The higher frequency of the

optical fiber allowed for a greater bandwidth of the communication system. In the mid 1970’s

single mode waveguides were manufactured to lower the attenuation of the waveguides and in-

crease the optical bandwidth. Since the different wavelengths of a single mode waveguide do

not interfere with each other many parallel channels could be supported on one waveguide using

coarse wavelength division multiplexing (CWDM) [3]. CWDM uses optical multiplexers which

can be tailored to add or drop only one channel of light using optical gratings. This increases

the bandwidth of the communication line by as many wavelengths that can be supported. By

1990 the wavelength spacing was decreased by dense wavelength division multiplexing (DWDM)

was developed.
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Another advantage of switching to optical waveguides was that they are not electrically conductive

minimizing electromagnetic interference between two channels. Cross talk between two or more

channels is reduced resulting in a lower bit error rate.

Increasing data rates on modern computers and computational systems have caused the band-

width required to communicate chip to chip or board to board have increased exponentially in

accordance with Moore’s law [4]. Solving this problem requires the size of the electrical intercon-

nects to become smaller so computational density can increase. As a result, copper interconnects

have gotten to the nanoscale where the size of the trace is 32 nm [5]. Reducing the size of the

electrical interconnect while increasing the bandwidth the high frequency losses dominate [6].

Printed circuit board manufactures are researching optical waveguides as a means of transmitting

data for short haul communications[7, 8, 9, 10]. The hope when manufacturing optical waveguides

is that optical waveguides can use the current processing techniques and industry standards set by

the copper transmission lines. Manufacturing an optical printed circuit board (O-PCB), however,

requires greater care in both design considerations and fabrication tolerances than those used in

traditional copper transmission communication systems. An example of this difference is a copper

trace can easily make a much tighter 90◦ bend, easing the routing of the copper transmission lines.

Optical waveguide turns are required to have a minimum radius of curvature for constraining the

light within the waveguide.

There are currently several short haul technologies emerging that may fill this need. Multimode

waveguide technology is nearing the production phase of development [11]. The size of these

multimode waveguides are usually in the range 30-100 µm. This technology has the drawback of

a lower bandwidth compared to single mode waveguides because of modal dispersion. Each one

of these modes travels at a different speed, therefore, faster data rates cannot be achieved because

of intersymbol interference. Intersymbol interference also makes determining the exact output

profile inconsistent making it more difficult to determine optimal coupling position. Multimode

waveguides have the advantage of larger size. Making coupling into and out of the waveguide

easier.
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Another proposed short haul communication system under investigation utilizes single mode

waveguides. These waveguides are smaller in size, typically around 4-10 µm, than the multimode

waveguides making it harder to align and manufacture in a printed circuit board production line.

The waveguide has one solution to the wave equation. This gives the single mode waveguide

several advantages: it has a greater bandwidth since there is no intersymbol interference, it can

support may channels using wavelength division multiplexing, and it has an easily determined

output profile making it easier to determine the optimal coupling position.

A possibility for creating the mulitmode and single mode optical waveguides is using polymer

siloxane waveguides. These materials can be manufactured using common processing techniques

such as UV lithography, direct write, or direct dispense methods. They also have a low absorption

coefficient which allows light to travel from the transmitter to the receiver with relatively little

loss. Polymer waveguides exhibit high temperature stability which is needed for processing other

components on a printed circuit board. The index of siloxane polymer waveguides are highly

tunable to meet required manufacturing parameters such as index matching the waveguide to an

optical fiber, minimizing coupling losses.

Implementing multimode and single mode waveguides into the printed circuit board process will

require design rules, tolerances, and fabrication parameters to minimize the optical link budget.

For example, as stated before, a waveguide cannot efficiently do an abrupt 90◦ in its propagation

axis which is feasible with an electric transmission line [12]. To change the propagation axis of

a waveguide, a large radius bend must be utilized to avoid appreciable radiation and coupling

losses. When designing the waveguides it is also undesirable to make waveguides with arbitrarily

large radius bends as that would greatly limit the feasible density of waveguides in the O-PCB

layer. Accurate simulation will reduce the experimental cost in determining the manufacturing

tolerances and design rules.

Optical vertical interconnect assemblies are required to couple light into and out of the embedded

optical layer within PCB’s with minimal loss. Since O-PCB’s are made using planar methods,

creating an out of plane bend would be a costly processing step. A different coupling method must

be utilized. Two possible solutions to couple light out-of-plane from a source such as a vertical
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cavity surface emitting laser (VSCEL) or a fiber to the waveguide layer are: using a lensed mirror

and using a diffractive elements. A lensed mirror element is easier to design, manufacture, and

more efficient in coupling the light, especially in the multimode waveguide case were each mode

has a different effective index, but is harder to manufacture and align.

This dissertation addresses what design parameters need to be and how to couple the light out

through modeling and simulation. Modeling and simulation methods are the most efficient means

to determine these parameters without having to manufacture and test the waveguides, which

may not be feasible. First it will explore the modeling methods used to simulate these compo-

nents. Then, it will explore the effects of waveguide parameters such as bend radius attenuation,

and sidewall roughness using the beam propagation method. These parameter are then con-

firmed by measuring the bend radius attenuation and sidewall roughness experimentally. The

sidewall roughness and bend attenuation are then used to gain insight on what are the minimal

parameters needed to minimize attenuation while maximizing waveguide packaging density on

both multimode and single mode waveguides.

Next the dissertation designs and optimizes structures needed for short haul communication

system. A total internal reflection mirror coupler is modeled for the optimal placement of a

under filled highly multimodal waveguide. The optimal placement of the total internal reflection

mirror will be found using without prior knowledge of the waveguide length itself, so the output

waveform is not known. Finally, the dissertation will look at using a volume grating coupler

to couple light from a silicon waveguide to a polymer single mode waveguide a compares using

a focusing grating coupler to using a perpendicular grating coupler that is focused by a micro-

molded lens.

Various waveguide parameters used in this dissertation are idealized, such as waveguide cross

sectional shape. Different shapes of waveguides can vary the attenuation of the waveguide slightly.

This dissertation focuses on the manufacturing parameters that are the most cost efficient to

control or have the greatest effect on the waveguide performance. Actual attenuation of fabricated

waveguides depends on the manufactures specific capabilities and may vary slightly from what

is presented.
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2 Simulation Models

There are two types of losses that occur when using optical waveguides: intrinsic losses and ex-

trinsic losses. Intrinsic losses are due to scattering and absorption which are material dependent.

These losses are not controllable through fabrication processes and can only be mediated by

choice of material. Extrinsic losses such as coupling losses and waveguide sidewall roughness, are

a result from fabrication and design processes. These losses can be minimized directly through

the fabrication process. An accurate model is imperative to determine how fabrication methods

will change the overall performance of the optical system. Several methods have been investi-

gated to model the effects of short haul waveguides. Each method has distinct advantages and

disadvantages which allow critical design parameters to be determined for the implementation of

single mode and multimode waveguides embedded into printed circuit boards.

2.1 Ray Optics Model

Ray optics, or geometrical optics, is the easiest and least computationally intensive method to

model a waveguide. The ray optics model is a simplified version of the wave optics model in

which it is assumed that the wavelength of the light approaches zero, therefore does not have

any diffraction effects [13]. This means light travels in a ray instead of a wave. This method is

orders of magnitude faster than the other methods in which diffraction is accounted for and is

an ideal method for modeling simple optical systems. It also provides users with an intuitive feel

of which modes exist in the waveguide. This method fails, however, when calculating coupling

coefficients between two waveguides (or different parts of the same waveguide) because it does

not take into account phase matching conditions of the waveguide. Since this method does not

take into account diffraction effects, this method cannot accurately model waveguide structures,

such as waveguide bends and roughness.

Confining light within a waveguide is caused by having a core of a higher index of refraction (n0)

than the surrounding medium(n1), the cladding. This is shown in Figure 1. The rays are bound

within the waveguide if the angle of the incident ray passes the critical angle given by:
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θc = arccos(
n0
n1

) (1)

Figure 1: Geometrical optics ray propagation.

There is an infinite number of angles that can satisfy the critical angle condition. To become a

propagating mode the light must also constructively interfere or pass the self-consistency condi-

tion of:

(
(cos2 θ − sin2 θ) ∗ d

sin θ
− d

sin θ
)n0k + 2φ = 2mπ, m = 1, 2, . . . (2)

Where d is the width of the waveguide, k is the free space propagation constant of plane waves.

k =
2π

λ
(3)

φ is the phase change caused by the n0, n1 boundary:

φ = −2 arctan

(√
n1 k cos(θ)− n22 k2√

n1 k sin(θ)

)
(4)

For a wave that is polarized and has its electric field vector parallel to the interface and
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φ = n1 k cos(θ) (5)

for a wave that is polarized so its magnetic vector is parallel to the interface.

Finally, m is an integer number corresponding to the mode number. Since the self consistency

formulation can be satisfied when two waves are aligned in integer multiples of each other, several

solutions of the equation exist if the width of the waveguide is high enough to allow more than

one mode. These waveguides are called multimode waveguides.

The ray approach described above is the basis for finding the performance of a waveguide using

geometrical optics. In the past this has been the preferred technique for modeling highly multi-

mode waveguides because it is a simple approach that can run relatively quickly. However, since

ray optics does not take into account diffraction and coupling effects, its modeling capability is

limited. In short haul waveguides these modeling assumptions can not be used and a wave optics

approach needs to be utilized.

2.2 Wave Optics Model

To achieve accurate coupling efficiencies, a wave optics model needs to be used. To model

waveguides using wave optics, it is assumed that the waveguide is in a region with no charges,

no currents, and is monochromatic. Therefore Maxwell’s equations simplify to:

∇ · ~E = 0 (6)

∇ · ~B = 0 (7)

∇× ~E = −∂
~B

∂t
(8)

∇× ~B = µ0ε0
∂ ~E

∂t
. (9)
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Individual solutions to these equations form the modes of the waveguide. There are very few

waveguide profiles in which the solutions to these equations are known, (slab waveguide, fiber

waveguide). Analyses of other profiles need to be modeled using various assumptions. Depending

on the assumptions used, different models emerge that solve this equation.

2.2.1 Finite Difference Time Domain

Maxwell’s equations are able to be solved over a simulation domain if the index of the domain

and the starting conditions of the simulation a known. This method solves Equation 8 and 9

explicitly over all the domain using time as the propagation variable. It separates each E and

B component into its Cartesian coordinates (Ex,Ey...) for each computational unit cell known

as the Yee cell, as shown in Figure 2 and relates the curl of the field to the time derivative.

This method is known as the Finite Difference Time Domain method, or FDTD [14]. While

solving for the specific field makes this method very robust, the model is very computationally

intensive in both time and memory. The Yee cell size for FDTD simulations must be at least λ
2

so that Nyquist criteria is satisfied, which adds to computation complexity. The 2D model that

has a reasonable size for modal mismatch coupling can have a least 660,000,000 elements that

need to be calculated through 1,000,000 iterations. Using past run-times using the FDTD if can

be found that this example will take approximately 360 hours to complete and use around 280

GB of memory. The 3D simulation will take 600 times as much memory and time. With the

large computational time and memory requirements it is easy to see that finite difference time

domain simulations should only be used for short distances. Instead of traveling 6 cm with the

waveguide, traveling 1 mm will bring the memory requirements for a 2D simulation down to 5

GB and the time to 18 hours. 3D simulations run times are still too long for any reasonably

short waveguide. Therefore, this method is the prime candidate to model small structures that

have many reflections such as gratings couplers.
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Figure 2: Finite difference time domain Yee cell.

2.2.2 Beam Propagation Method

Since the FDTD method is so computationally intensive, additional assumptions must be made

to accurately model coupling in a waveguide. The Beam Propagation Method [15, 16] has been

used as a solution to this problem. This method assumes that the wave evolves quickly in one

direction compared to all other directions, the magnitude field changes slowly, and the solution

is steady state. As such, this method is very quick in determining the steady state field in a

straight waveguide (and a waveguide with bends using methods discussed later) and coupling

coefficients between two waveguides or within the same waveguide.

The beam propagation method couples the Maxwells equations together to get one steady state

equation. To couple the equations above the curl is taken on the Maxwell-Faraday equation and

the Ampere’s circuital law.

∇×∇× ~E = − ∂

∂t
∇× ~B = −µ0ε0

∂2 ~E

∂t2
(10)

∇×∇× ~B = µ0ε0
∂

∂t
∇× ~E = −µoεo

∂2 ~B

∂t2
(11)
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By using the vector identity:

∇×
(
∇× ~V

)
= ∇

(
∇ · ~V

)
−∇2~V (12)

The wave equation is formed:

(
∇2 − µε ∂

2

∂t2

)
~E = 0 (13)(

∇2 − µε ∂
2

∂t2

)
~B = 0 (14)

If ~E(r, t) and ~B(r, t) are separable such that:

u(r, t) = A(r)T (t) (15)

Where A is the amplitude of the wave and T is the time dependence. The wave equation may

be simplified further to:

∇2A

A
− µε

T

d2T

dt2
= 0 (16)

Using the identity:

−µε
T

d2T

dt2
= k2 (17)
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Where k is the wavenumber. You get the commonly known Helmholtz equation

∇2A+ k2A = 0 (18)

Assuming A is a plane wave of the form:

A(x, y, z) = a(x, y, z) expiβz (19)

Separating the variables a finite difference equation of is produced:

∂a

∂z
=

i

2β
(
∂2a

∂x2
+
∂2a

∂x2
+ (k2 − β2)a) (20)

This equation can be solved through evolving each plane in z based on the previous plane using

finite difference methods. For a given input of a(x, y, z = 0) the model is able to solve all other

z planes. This method is very fast because the number of points that are needed to calculate

for each iteration is minimal. The number of iterations can also be minimized by a coarse z

direction step size which can be run because time dependence does not need to be sampled. For

example, a normal 50 µm width, 6 cm long, multimode waveguide, a 2D simulation will have

1,100 points that need to be calculated for each z step and have about 60,000 iterations. This

simulation takes about a minute. When the simulation is brought to a 3D simulation there will

be 1,210,000 points that need to be calculated for each z step and it will still have about 60,000

iterations. This simulation takes considerably longer, about 36 hours.

Although the beam propagation method is the least memory constricting and runs the fastest

under non-ideal conditions, several disadvantages result because of the assumptions made. It
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was assumed the wave has the form of a plane wave the model with a slow changing field and

is inaccurate when modeling a fast changing field. With the assumption that the field was

separable, only the steady state solutions can be solved. Therefore, waveguide characteristics

such as dispersion cannot be solved. In addition, the field can only propagate in the z-direction.

A consequence of this error is shown in Figure 3 were in which a field along a 45◦ direction from

the z-axis was propagated.

Figure 3: Limitations in propagating field in the x direction using beam propagation method.

2.2.3 Coupled Mode Theory

Another way to model waveguides is using coupled mode theory. This method uses the known

solutions or approximations of the Maxwell’s Equations to propagate down a waveguide with

the modes effective index. Coupled mode theory works because each mode in a waveguide is

orthogonal to all other modes so that Equation 21 is realized.

∫ ∫
~Em(x, y) ~En(x, y) dxdy = 0, ∀ m 6= n (21)

This means that each input field may be written as:
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~Ei(x, y) =

M∑
m=0

(
am ~Em(x, y)

)
+ loss (22)

Using the orthogonality principle am can be rewritten as:

am =
∫ ∫

~Ei(x, y) ~Em(x, y) dxdy, ∀ am (23)

Plugging each am into Equation 22, the loss associated due to modal mismatch can be found.

Example solved modes for a waveguide are shown in Figure 4. Each of these modes travel

at a different speed, β. Using this knowledge the modal dispersion of the waveguide can be

determined. This method is considerably more accurate in fast changing conditions than the

beam propagation method. This method of modeling also runs very fast if the waveguide profile

is not changing or if the waveguide profile is mathematically known, such as in the case of a

slab waveguide and a cylindrical fiber. The number of modes in a highly multimodal square

waveguide may be approximated as:

NModes ≈ πNA2(
d

λ
) (24)

Where d is the width of the waveguide and NA is the numerical aperture given by

NA =
√
n2core − n2clad (25)

When the waveguide modes are not known, or the number of modes that are needed to be cal-

culated is very large, this method falls apart because the computational time needed to compute

all the possible modes that the waveguide can support.
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Figure 4: Modal solutions for a slab waveguide.

2.2.4 Angular Spectrum

If a field propagates in a uniform media, such as free space, the field may be decomposed to a

superposition of plane waves across an input pupil. A plane wave can be written as:

Aej(
~k•~r) (26)

Where ~k is the wave vector and ~r is the direction of the plane wave. such that:

~k =
2π

λ
(αx̂+ βŷ + γẑ) (27)

and

~r = xx̂+ yŷ + zẑ (28)

Decomposing the input field into a continuum of plane waves at the pupil can then be written

as a Fourier transform of the pupil as:
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U(
α

λ
,
β

λ
, 0) =

+∞∫∫
−∞

a(x, y, 0) e−j
2π
λ (αx+βy) dx dy (29)

The field is propagated by:

U(
α

λ
,
β

λ
, z) = U(

α

λ
,
β

λ
, 0) ej

2π
λ

√
1−α2−β2z (30)

The resultant field can then be reconstructed using an inverse Fourier transform:

u(x, y, z) =

+∞∫∫
−∞

U(
α

λ
,
β

λ
, z) ej

2π
λ (αx+βy) d

α

λ
d
β

λ
(31)

This method assumes that the medium is constant throughout the propagation and solves the

Helmholtz equation explicitly, therefore it is a very accurate and fast way to model an input field.

The problem arises because the input and output field must be sampled at [17]:

Nx,y =
2λz

dx2
(32)

This makes it difficult to model fields propagating over a great distance compared to the sample

spacing, as the required samples approach an very large number. If a waveguide is sampled

at 0.01 µm and the wavelength is 1310 nm, propagating 1 mm would require a 2.62 ∗ 107 x

2.62 ∗ 107 matrix. As such, the angular spectrum is only used in the near field of the pupil.
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3 In-Plane Performance of Mulimode Wavegudies

The Shannon-Hartley theorem is one of the most powerful equations in information theory be-

cause it calculates maximum rate at which information can be transmitted over a communica-

tions channel. Using this theory the maximum rate of information that can be transmitted over

a channel can be calculated by

C = B log2(1 +
Sr
N

). (33)

Where C is the channel capacity, C , B is the bandwidth, Sr is the received signal power, and N is

the system noise. Decreasing N in this equation is costly, as it usually requires expensive cooling

of the transmitter and receiver. As such, it is normally used only in long haul communication

systems. The bandwidth of a short haul communication system is limited by the transmitters or

the detectors of the system and is not usually a design issue because of the short communication

length. Therefore, the best way to increase the channel capacity is to increase the received power,

Sr. The received signal power can be broken down to:

Sr = Sin − Sloss (34)

To increase the received power a designer can increase the input power, Sin, but this comes at the

cost of higher power needed for the communication link. This method experiences diminishing

returns as a raise in input power, Sin, also increases the noise of the system, N . The best way

to increase the channel capacity is to lower the loss of the system Sloss.

Sloss is a function of the distance of the waveguide and is characterized by:

Sloss = Sin e
−αm∗L + Sinsertion (35)
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Where Sinsertion is the coupling loss of the waveguide and αm is the constant loss which can be

broken down to

αm = αmaterial + αscattering + αradiative (36)

Where αmaterial is the absorption of the material, αscattering is the loss because of manufacturing

processes such a roughness, and αradiative is the loss due to the geometry of the waveguide such as

a small radius bends. When the light is confined in a perfect waveguide (αfabrication = 0) the loss

of the waveguide systems is very low, around the intrinsic loss of the waveguide material, on the

order of 0.01 dB/cm. A perfect waveguide system, however, is not realizable and not applicable

for mass manufacturing of waveguides as it would be cost prohibitive. Previous research has

shown that the material losses are not the underlying factor in overall waveguide attenuation

[18]. Therefore, ensuring an accurate model of scattering and radiative losses in a waveguide is

paramount to determining the attenuation of a waveguide. An accurate model of the radiative

losses demonstrates the minimum radius bend a waveguide can have. An accurate model of the

scattering losses helps show the performance gains by making the material less rough. Several

methods have been proposed to minimize roughness losses in polymer waveguides including finer

lithographic mask resolution [19], thermal-reflow technique [20], and micro-molding [21].

The multimode waveguides used are lithographically defined as 50 µm x 50 µm channels of a

waveguide. This waveguide size is used because it easily couples to a standard 50/125 µm (50 µm

circular core with 125 µm cladding) multimode fiber. The materials used were Dow Corning’s

c©OE 4140 for the cladding and OE 4141 for the core. A wavelength of 850 nm was used for the

optical communication. This wavelength was chosen because the energy in a photon of light, as

shown in Equation 37, is larger than the band gap of silicon of 1.11 eV [22], therefore inexpensive

detectors can be made and are easily fabricated into existing Silicon manufacturing processes.

E =
h c

λ
(37)

17



The cladding index of the material is 1.50 and the core index of the material is 1.52. The

numerical aperture (NA), given by Equation 25, of the waveguide using the cladding and core

refractive indexes is 0.246.

Several attempts to characterize the effects of roughness on highly multimodal waveguides have

been made using coupled mode theory or Fourier decomposition method [23, 24, 25, 26, 27]. Cou-

pled mode theory, however, is not easily adaptable to structures such as waveguides containing

short radius (410 mm) bends. While the modal distribution of waveguides with bends are defined

mathematically [28] for the 2D case, the high order Bessel functions to be solved with formula-

tions, such as coupled mode theory, are out of range of current numerical libraries [29], therefore

making them inaccurate or too time consuming to evaluate. These limitations can be alleviated

by matching power performance of waveguides modeled by the beam propagation method (BPM)

[15, 16] to waveguides fabricated in the lab for both straight and bent waveguides.

3.1 Measurement of Fabricated Waveguides

To measure the attenuation of the fabricated waveguides the cutback method [30] was used.

Use of the cutback method determines the waveguide loss per distance and the insertion loss by

measuring the loss of the waveguide at a larger distance, then cutting back the waveguide to

a shorter distance and repeating this step multiple times. The attenuation in the waveguides

is a exponential curve (or linear curve in dB scale) depending on the length of the waveguide.

The slope of the resulting curve corresponds to the constant loss, αm, while the y-intercept

corresponds to the insertion loss, Sinsertion.

To measure the attenuation of the waveguide, a 5.6 µm with a NA of 0.124 single mode fiber

was used to illuminate the fabricated waveguide with 2 mW of light at λ = 830 nm. The fiber

was placed at the center of the waveguide to only excite the even modes of the waveguide. The

position of the fiber was desirable since this most closely matches the attenuation suffered in a

mass fabricated optical printed circuit board (O-PCB) setup. The fiber size was desirable because

it is a single mode waveguide, so the input waveform is the same for each time the waveguide
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is measured. The guided light was then captured with a 50 µm multimode fiber, with an NA

of 0.201 and measured with a silicon detector. The difference in NA between the waveguide and

the multimode fiber causes the highest order modes not to be coupled. Even with the higher

order modes not coupling the results should be consistent with the true attenuation because of

the nature of the cutback method and the comparatively low amount of power in the higher

order modes compared to the lower order modes. Index matching fluid was utilized to lessen the

insertion losses between optical fibers and the waveguide.

A set of four waveguides were fabricated with varying lengths. The length of the first set of

waveguides was 6.76 cm. The power loss was recorded for each channel on four separate occasions

then averaged. The guides were then milled to 4.84 cm then remeasured four times for each

channel. This process continued for waveguides of length 3.81 cm and 1.91 cm. The results using

the cutback method are shown in Figure 5 by the slope of the regression line the attenuation

was determined to be 0.045 dB/cm with an insertion loss of 0.073 dB. This fit had a coefficient

of determination (R2) of 0.8293. Several outliers show up in Figure 5, especially at 3.805 cm

length and 4.839 cm. The differences between the measured intensities and the attenuation line

is less than 1.5% of the received power. This is attributed to differences in the cut quality of the

waveguide endface.

Figure 5: Cutback method losses in straight waveguide.
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3.2 Straight Waveguides Simulation

The parameters used in the simulation are shown in Table 1. The beam propagation simula-

tion was preformed using BeamProp, which is the beam propagation method module under the

RSoftTMPhotonics CAD Suite. The simulation consisted of three lateral regions: the waveguide

core region, the cladding region, and a boundary absorbing region as shown in Figure 6. The core

and the cladding region were consistent with the index and the size of the fabricated waveguides,

while the absorption region was added to reduce the amount of power reflection on the simulation

boundaries. The simulation used simple transparent boundary conditions [31]. These boundary

conditions are the most suitable for highly multimodal problems in BeamProp [32]. Sampling

conditions were found by a convergence study using a 2D BPM effective index simulation and

are shown in Table 1. Using these sampling conditions, the power output of a 4 mm radius turn

varied by no more than 1%. The input waveform of the straight simulation was chosen to be a

5.6 µm single mode fiber operating at a wavelength of 850 nm. The simulation was run using

only the foreword scattering model because backscattering in this case is minimal, (10−10 dB),

at the roughness and correlation lengths used in the simulation.

Figure 6: Simulation regions.

3.2.1 Waveguide Roughness

Roughness on a waveguide, which is shown in Figure 7, can be modeled as a slight deviation

from the original waveguide such that the waveguide’s width and the center of the waveguide are
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Table 1: Beam propagation method simulation parameters.

Parameter Value
Wavelength 850 nm
Input Fiber Diameter 5.6 µm
Input Fiber NA 0.24
Real Index Core 1.52
Real Index Clad 1.50
Absorption Clad/Core 0.01 dB/cm
Absorption Region Absorption 1 dB/cm
Waveguide Width 50 µm
Sample Size ∆x,∆y 0.02 µm
Sample Size ∆z 1 µm
Normal Cladding Region 20 µm
Absorbing Cladding Regoin 10 µm
Boundary Conditions Simple Transparent Boundary Conditions
Padé order (1,1)

slightly offset by random functions:

w(z) = w0(z) + ∆wx,y(z) (38)

M(z) = M0(z) + ∆Mx,y(z) (39)

Where w0 and M0 is the width geometric center of the unperturbed waveguide and ∆w, ∆M

are the deviations from the ideal waveguide. Waveguides that are lithographically defined tend

to have the greatest roughness along the sidewall so that the roughness of the waveguide is

predominately in the y-z plane which is shown in Figure 7. Therefore, the roughness in the x-z

plane can be neglected. Simplifying Equations 38 and 39 to the following:

w(z) = w0(z) + ∆wyz(z) (40)

M(z) = M0(z) + ∆Myz(z) (41)

The validity of this assumption was proven by observing the roughness profile with a field emission

scanning electron microscope (FE-SEM) as shown in Figure 8 and measuring the roughness
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Figure 7: 3D Beam propagation setup for sidewall roughness.

with an infinite focus microscope which is shown later in Section 3.1. The sidewall roughness

was at least five times greater than the roughness at the top of the waveguide, the sidewall

roughness was shown to have an RMS of 46 nm while the top roughness had an RMS of 7 nm.

Furthermore, it was assumed that the roughness of the waveguide had a wide sense stationary

noise with autocorrelation of the roughness characterized by the commonly used exponential

function [33, 34]:

Cw(z) = ∆wye
− |z|
Lc (42)

CM (z) = ∆Mye
− |z|
Lc (43)

Where Lc is the autocorrelation of the roughness and z is the length along the waveguide.

3.2.2 Sampling Constraints

The beam propagation method sampling of the sidewall roughness was preformed using either a

non-uniform mesh or a course mesh with a linear interpolation function to reduce computational

time. The non-uniform mesh first samples the inside of the waveguide with a coarse mesh then on

the edges of the waveguide the mesh gets smaller to incorporate the effects of sidewall roughness.

This method alleviates the need for fine sampling across the entire waveguide, but still takes more
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Figure 8: Edge view of waveguide sidewall roughness of a 25 µm x 50 µm straight waveguide
found using Hitachi S4700 FE-SEM.

time than coarse sampled waveguide. The other option is to use an interpolation function across

the sample area to generate an average index between two sample points. Using this method it is

possible to simulate the effects of lithographic roughness without increasing runtime, as long as

the sample size of the simulation remains under the critical sampling condition. Figure 9 shows

the difference between the output attenuation, in dB, of a non-uniform mesh straight waveguide

simulation with 50 µm roughness with the boundaries sampled at 0.1 nm and a uniform coarse

mesh simulation. This shows that if the sample size of the waveguide remains under 0.04 µm

the attenuation of a straight waveguide varies by less than 0.4 %.

3.2.3 2D vs 3D Model Considerations

A single run of the beam propagation method is shown in Figure 10. On the right hand side

the evolving electric field amplitude as the beam propagates down the length of the waveguide

is shown. As the beam propagates down the length of the waveguide, each mode constructively

and destructively interferes with each other creating a different electric field distribution for each

length. The amount of power is contained in the waveguide plus about 2.5 µm on the outside of

the waveguide to account for the evanescent fields of each mode is shown on the right.
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Figure 9: Attenuation sample size error of a straight waveguide with a roughness of 50 nm
RMS and a correlation length of 3 µm.

Figure 10: A single run of the 2D beam propagation method.

By changing a parameter in the simulation, such as the roughness strength of the waveguide,

a distribution of attenuation may be made from the resulting graphs. Fitting the measured

attenuation of the waveguides to the simulated attenuation, an estimate of the roughness can be

estimated. For example, in Figure 11 if the slopes of the attenuation after the modal coupling

losses which show up in the first 0.1 cm propagation are matched, an estimate of the roughness

in the waveguide can be found.

Until now, in this dissertation, the beam propagation method results have only been shown in a

2D beam propagation simulation. The 2D simulation assumes that the waveguide is infinite in the

y-direction. While this assumption is not accurate, the simulation times for these simulation are
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Figure 11: Changing the roughness in the 2D beam propagation method.

much less than 3D simulation elapsing about a half minute up to three minutes. 3D simulations

take many times longer, usually lasting about three to twelve hours. One way to lessen the

burden of this assumption is to use the effective index method [35]. Unfortunately, for the µm

waveguide used this requires 266 different 2D simulations which approach the time of the 3D

simulation. Figure 12 shows how sidewall roughness effects waveguide attenuation depending on

the method used. The attenuation found in the fabricated waveguides is matched the roughness

that was found using the 3D BPM, 2D BPM, and effective index method was 60.2 µm, 63.4

µm, 62.8 µm respectively. Based on results, it was determined that the 3D beam propagation

method simulations were needed for accurate modeling of the waveguides.

Figure 12: Comparison of beam propagation methods.
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3.2.4 Physical Verification of Roughness

To verify the roughness result from the straight simulation, the sidewall roughness of the exper-

imental waveguides was measured using interferometric microscopy (IFM). IFM uses an inter-

ference pattern of white light to determine the roughness of a sample. The machine used, the

Phase Shift MicroXAM, can sample depth with a resolution of 0.5 nm and a lateral resolution

of 0.22 µm [36]. The roughness at the top of the waveguide was measured to be 6 nm and it

had very little correlation between the roughness samples, therefore the effect of this roughness

was ignored. The sidewall roughness was measured by dispensing Dow Corning’s c©OE-4140

core material onto a glass substrate. Using a lithographic mask that had a resolution of 0.5

nm, therefore it can be assumed that the roughness on the side of the waveguide is roughly the

same as on the waveguide bends. Waveguides were then diced using a dicing saw about 2 µm

from the waveguide. The diced components were then cleaned with compressed air to remove

any particles left from the dicing saw. Holding the waveguide on its side, the sidewall roughness

could be measured. The roughness, shown in Figure 13a, resulted in a root mean square (RMS)

roughness of 46 nm with a long correlation length of Lc = 3 µm as shown in Figure 13b. This

value is much higher correlation length then other researchers have reported [23, 24, 25]. This

difference may be attributed to the masks used for the lithographic pattering, differences in the

polymer material for the waveguide, or low spatial frequency effects [37].

3.3 Simulation of Waveguides with 90◦ Turns

3.3.1 Coordinate Transformation for Simulation

As explained in Section 2.2.2, the beam propagation method cannot accurately model waves that

travel beyond 1 or 2◦ in the x or y direction. Modeling a bend using the beam propagation

method is inaccurate in the later part of the curve. To overcome this limitation a conformal

transformation is utilized [38]. This transformation, shown in Equation 44, transforms the Z

plane shown in Figure 14b to the W plane shown in Figure 14a. This transform is made possible

by changing the index of the system, n(x, z) to neff (u, v).
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(a) Roughness profile found with the IFM.

(b) Autocorrelation of the measured roughness along the
direction of light propagation.

Figure 13: Waveguide sidewall roughness measured using the Phase Shift MicroXAM IFM.

W = u+ jv = R ln

(
Z +R

R

)
(44)

Where

Z = x+ jz (45)
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(a) Waveguide bend profile
after conformal transformation.

(b) Waveguide bend profile before
conformal transformation.

Figure 14: Coordinate transformation of a curved waveguide to straight waveguide using
conformal transformations.

Separating the transformation into the components of the W plane

u = R ln


√

(x+R)
2

+ z2

R

 (46)

v = R tan−1
(

z

x+R

)
(47)

Which satisfy the the Cauchy Riemann relations of

∂u

∂x
=
∂v

∂z
(48)

∂v

∂x
= −∂u

∂z
(49)

Using the transformation

∇2
x,z =

((
∂u

∂x

)2

+

(
∂v

∂x

)2
)
∇2
u,v (50)

and substituting it into the Helmholtz equation, the effective index of the transformed waveguide

is found as

neff (u, v) = e
u
Rn (x(u, v), z(u, v)) (51)
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Here it was approximated that when z = 0

u = R ln

(
x+R

R

)
≈ x− x2

2R
(52)

There is a slight transverse component when changing coordinates from the straight to curved

waveguides. Given that Equations 53 and 54 hold true, the width, the roughness size, and

statistics using the conformal transformation remains unchanged as seen in Equations 55 and 56.

σ2 � R (53)

wσ � R (54)

ŵ = u
[w

2

]
− u

[
−w
2

]
= w (55)

σ̂ = u
[w

2

]
− u

[w
2
− σ

]
= σ2 − wσ

R
− σ2

R
≈ σ (56)

3.3.2 Bends Simulation Correlation to Experimental Results

The simulation consisted of three lateral regions: the waveguide core region, the cladding region,

and a boundary absorbing region. Additionally included were three sectors along the z-direction

of a radius length straight, the quarter bend, and another radius length straight as shown in

Figure 15.

The waveguides with bends were measured using the same light coupling methods used in the

straight waveguides as discussed in Section 3.1. The bends of the lithography-based sample’s

bends ranged from 1 to 10 mm radii in increments of 1 mm where each radii had 8 sets of

waveguides. They consisted of a straight section that is the curvature radius in length followed

by a quarter turn of the radius followed by another straight of 1 cm plus the radius of the bend

in length. This geometry was necessary to fit all the radii on a single board layer. Utilizing the

previously calculated values of insertion loss of 0.073 dB found in Section 3.1, the losses for the

waveguides including bends were determined. Two different sets of simulations were performed.
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Figure 15: Beam propagation method model used for simulation of waveguides with 90◦ bends.

Both sets of simulations used the same parameters previously found in Table 1, except the ∆x

and ∆y were shortened to 0.005 µm for one simulation and 0.010 µm for the other to ensure

stability. The results of the simulation with 0.005 µm spacing and the measured fabricated

attenuation are shown in Figure 16.

Figure 16: Comparison of simulated and measured bends.

The correlation coefficient (CC) and the mean square error (MSE) of the attenuation based on

the radius of the bends between the measured and the simulated results are shown in Table 2.

The coefficients were found by averaging the attenuation for 8 fabricated sets of waveguides for

each radii then comparing the simulated data to the fabricated. The simulations show that the

correlation coefficient of the waveguide with no roughness is a better match than the correlation
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coefficient of the rough waveguide. This can be due to averaging the attenuation of each radii,

giving a smoother curve. To overcome the limitation on the rough waveguide, several runs

could be performed in order to provide a more representative averaged smooth curve. However,

additional runs were not conducted. One simulation took 17 days to run. This is justified

because mean square error was greatly reduced by adding the roughness to the simulation. The

attenuation difference between the 0.005 µm simulations and the 0.010 µm simulations differed

by less than 1%, therefore the simulation was considered stable.

Table 2: Figures of merit.

Parameter Sample Spacing Roughness Value
CC 0.005 µm 60 nm 0.9633
CC 0.005 µm none 0.9810
CC 0.010 µm 60 nm 0.9591
CC 0.010 µm none 0.9783

MSE 0.005 µm 60 nm 0.0370 µm2

MSE 0.005 µm none 0.2442 µm2

MSE 0.010 µm 60 nm 0.0520 µm2

MSE 0.010 µm none 0.1815 µm2

3.4 Conclusion

Manufacturing parameters for multimode waveguides for use in optical printed circuit boards were

found using the beam propagation method. To find the optimal parameters, straight multimode

waveguides were fabricated using Dow Corning’s c©OE-414x material. Using the cutback method,

the attenuation of the straight waveguides was determined to be 0.045 dB/cm with a insertion loss

of 0.073 dB. The attenuation found using the cutback method was used to determine the sidewall

roughness of a waveguide using simulations. The roughness was found to be, σ = 60 nm using

the simulations. The roughness was then measured experimentally using the IFM and the RMS

roughness was determined to be σ = 46 nm. Using the simulated 60 nm roughness the attenuation

of a waveguide with a 90◦ bend was successfully estimated within the standard deviation of the

fabricated waveguides. The correlation coefficient of the simulation being 0.9633 and the mean

square error being 0.0370 µm2. These results demonstrate that the sidewall roughness can be
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modeled using the beam propagation method and the maximum sidewall roughness a waveguide

can have is 80 nm RMS to get under a 0.08 dB/cm attenuation. Further the results indicate

that when the sidewall roughness of a waveguide is 60 µm a bend radius of 0.6 cm is needed to

achieve a bend loss of less than 0.7 dB.
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4 Modeling In-Plane Performance of Single Mode

Wavegudies

4.1 Single Mode Waveguides Criteria

One of the greatest advantages of a single mode optical waveguide is that it is able to support

wavelength division multiplexing [39, 40, 41]. This allows the bandwidth of the waveguide to

increase by allowing several different wavelength channels on one waveguide, effectively increasing

the bandwidth by a factor of the number of channels. Adding and dropping one of these channels

on the waveguide usually requires a ring resonator or a grating diffractive element.

To manufacture single mode waveguides a maximum size must be met so that only one mode

can exist as explained in Section 2.1. A smaller waveguide is more difficult to couple light into

the waveguide due to its size. The waveguide may be smaller than the maximum size, but the

smaller size leads to more losses. Increasingly smaller waveguides are less desirable because the

mode in the waveguide is less confined with the majority of modal structure is in the cladding.

This causes more losses when bending the light in a short radius turn, as the weak confinement

cannot contain the mode. This also causes more losses in sidewall roughness because the electric

field interacts with the sidewall at a higher point on the modal curve than when the mode is

more confined.

Single mode technology is not as far along in the development process as the multimode waveg-

uides. This means single mode waveguides have more than one wavelength under consideration.

Wavelength bands of 1310 nm and 1550 nm are also under consideration along with the 850

nm that multimode waveguides have. Wavelengths of 1310 nm and 1550 nm are the standard

telecommunication wavelengths, the source and receiver are more costly but allow for larger

waveguide dimensions.

The width of a rectangular (3D) dielectric waveguide the maximum width does not have a closed

form solution and must be approximated [42]. One of the least complex approximations can be
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made using the effective index method. The effective index method uses the width of a single

mode planar (2D) dielectric waveguide and is limited by:

wplanar =
λ

2NA
(57)

The mode that is supported by this waveguide is has the effective index

neff =
βm
k0

(58)

Where βm is the speed of the propagation mode as shown in Section 2.2.3. The equation for the

size of the waveguide can then be expressed as:

wrect =
λ

2
√
n2eff − n2clad

(59)

A general approximation of this equation is

wrect =
√

2wplanar (60)

These estimates give a first order approximation to the maximum size of the waveguide [42],

but when designing a waveguide a greater accuracy is usually required. To model the maximum

size of the waveguide, COMSOL was used. COMSOL is a multiphysics program that can solve

the equations given in Section 2.2.3 by discretizing the index profile along the waveguide then

applying boundary conditions:
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~Eboundary = 0 (61)

∂ ~Eboundary
∂~nboundary

= 0 (62)

~Hboundary = 0 (63)

∂ ~Hboundary

∂~nboundary
= 0 (64)

(65)

The Helmholtz equation can then be solved for eigenvalue from an initial guess of the effective

index.

λ = −j β. (66)

The effective index guess is then updated until the determinate of the matrix system is zero. The

results, shown in Figure 17, shows the structure of the waveguide mode along with its effective

index.

Figure 17: Comsol modeling of waveguide mode.

If the initial guess for the effective index is closer to the cladding index than the core index, the
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chances of obtaining the highest mode is increased. If the initial guess is too close to the cladding

index, however, a radiation mode, or a mode that does not confine the light, will be obtained.

The best initial guess that was found was

nguess = nclad

(
1 + 0.3

ncore
nclad

)
(67)

Figure 18 shows the effective index using the initial guess found in Equation 67.

Figure 18: Effective index of highest order mode.

Figure 18 shows the effective index of the highest order mode. When the effective index ap-

proaches the cladding index, the waveguide is considered multimode. In this way, given a core

and cladding index the waveguide size can be maximized to minimize coupling loss, sidewall loss,

and bend loss.

The multimode material provided by Dow Corning has an core index of 1.52 and a cladding index

of 1.50. The index contrast of these two material makes the maximum size of the waveguide 1.87

µm. This size is small compared to regular single mode fibers that are used to couple light into

a fiber which have the size of around 7.5 µm, so high coupling losses arise. To couple light into

the waveguide a Dow Corning SMF 28 was used. The numerical aperture of this fiber is 0.14.

To minimize coupling losses the NA should be similar to the input/output fiber, thus reducing
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coupling loss. Therefore, the material used to make single mode waveguides needs to be different

than the material used for the multimode waveguides. A new experimental single mode material

was obtained from Dow Corning. For a wavelength of 1550 nm, Dow Corning reported that the

experimental material had an index of refraction for the core as 1.5061 for the core and 1.5015

for the cladding. Assuming numerical aperture of the waveguide remains unchanged for the 850

nm and 1310 nm wavelengths, the minimum waveguide size for rectangular dielectric waveguides

is shown in Table 3.

Table 3: Maximum waveguide size for single mode criteria.

Wavelength 850 nm 1310 nm 1550 nm
Planar Approximation 5.110 µm 7.88 µm 9.318 µm

COMSOL modeling 4.875 µm 7.75 µm 8.875 µm

A lithographic mask was designed so that the size of the waveguides with the 90◦ bends were

8 µm. This size allowed the waveguide to be single mode for the wavelength of 1550 nm with

enough size tolerance to allow for slight changes in the index of refraction of the core and the

clad and added size due to diffraction effects when patterning using the lithographic mask.

4.2 Minimum Sampling Conditions Needed for Single Mode BPM Sim-

ulations

To determine optimal sampling spacing criteria, a simple spacing convergence simulation was

run. Figure 19 shows the effect of different sized sampling conditions. This simulation was a 2D

straight BPM simulation with no roughness simulated in the waveguide. From this simulation it

was found that the attenuation of the simulated straight waveguide changed very little (<0 .01

dB change) within the optimal sampling region. The losses started to vary more when the lateral

sampling spacing exceeded 0.2 µm and the direction of propagation sampling spacing exceeded

0.4 µm. It was also found that if the propagation sample spacing was too small compared to

the lateral sample spacing, stability issues occurred. This is likely due to the inability of the

field to propagate in the lateral direction fast enough. Using the results of this simulation, it
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was found that the optimal sampling conditions for single mode waveguides are 0.3 µm in the

propagation and 0.1 µm in the lateral direction. The propagation direction sampling decreased

from the multimode case from where the sampling was 0.7 µm in the propagation direction and

the lateral was still unchanged at 0.1 µm.

Figure 19: Effects of sample spacing in a 2D single mode straight waveguide with no roughness.

The convergence simulation was then re-run to show the effect of stability on a straight waveguide

that has lithographic roughness. The simulation was performed using the roughness found for

multimode waveguides or σ = 60 nm. As seen in Figure 20, even though the roughness at the

side of the waveguide was under the size of the sampling conditions, the simulations showed little

deviation from the no-roughness simulation. This could be due to how the simulation interprets

sample region that are not uniform.

4.3 Minimum Cladding Size Conditions

When a waveguide is in close proximity to an electric conductor, such as copper, the field of

the waveguide can interact with the conductor. This can lead to modes that can propagate

within the cladding, attenuation of the field in the waveguide, and other non desired factors.

A 2D BPM simulation was preformed to shows the interaction with a copper conductor. The

simulation propagated for 1 cm. The modal structure was also observed at the end of the
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Figure 20: Effects of sample spacing in a 2D single mode straight waveguide with roughness

simulation to determine if any cladding modes were present. Figure 21 shows the minimum

cladding width required on the top and the bottom of the waveguide to negate attenuation due

to field interactions with copper traces at the wavelength of 1550 nm. When the cladding is 7

µm thick on the top and the bottom the waveguide has very little interaction with the copper

traces.

Figure 21: Minimum cladding width.

As explained in Section 2.2.3, each mode has a tail in the cladding. If one waveguide gets too

close to another waveguide power from the tail of one waveguide can couple into the power in
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the other waveguide leading to crosstalk. The minimum separation distance between two parallel

waveguides is needed. Figure 22 shows channel isolation based on waveguide separation. Two

10 cm long parallel waveguides were simulated to determine how much power gets coupled from

one waveguide to another. The simulation was run for a longer distance than the previous top

cladding width simulation because power can easily couple from one waveguide to another if they

have similar indices of refraction. The minimum waveguide spacing in order to achieve 40 dB of

isolation must be 19.5 µm, 15.5 µm and 9 µm for wavelengths of 1550 nm, 1310 nm and 850

nm respectively.

Figure 22: Channel cross-talk separation.

4.4 Attenuation due to Sidewall Roughness

The effect of sidewall roughness on the attenuation of the waveguides for the wavelengths of 1550

nm, 1310 nm, and 850 nm was calculated and the results are shown in Figure 23. Waveguides

widths for 8, 10, and 12 µm were simulated. At these widths only the 8 µm at λ = 1550 nm is

single mode, however, to match up with the manufactured data the larger sizes were simulated.

The material absorption for the simulations was 0.05, 0.40, and 0.70 for wavelengths of 850

nm, 1350 nm, and 1550 nm respectively. Material absorption for the Dow Corning single mode

material was unknown. Therefore, this was estimated based on Dow Cornings c©OE-4140 and

OE-4141 multimode waveguides.
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Figure 23: Effects of sidewall roughness on the attenuation of single mode waveguides.

The simulation shows that in larger wavelengths, the effect of lithographic roughness is lessened.

Differences between the 10 µm and the 12 µm attenuation was less than expected while the 8 µm

waveguide diverged from the larger guides faster, even when the waveguide was not multimode.

This is likely due to the number of modes supported in the waveguide.

When manufacturing multimode waveguides, the root mean squared (RMS) sidewall roughness

is between 40 nm and 60 nm. Because of the similar processing steps single mode waveguide

roughness will be similar. Simulated results showed that for the single mode case the lithographic

roughness was between 400 and 700 nm while the roughness for the 1550 nm wavelength was

above 1000 nm. Measured waveguide attenuation is for the 1350 nm wavelength is shown by the

arrows on the graph. These are unrealistic numbers. The discrepancy was found to be caused

by material problems such as micro-voids or micro-cracks.

4.5 Simulation of Power Performance in Waveguides with Bends

The lower the index contrast is, the less confined the wave is to the waveguide. In a straight

waveguide this makes little difference, however, when a bend in the waveguide is required the

index contrast greatly affects the minimum turn radius. Figure 24 shows the effect of index
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Figure 24: Effect of index contrast on single mode waveguide bends.

(a) Plot showing full loss. (b) Plot zoomed in.

Figure 25: Bend waveguide power losses for index contrast 0.0046.

contrast that the index contrast has on the minimum bend radius.

In Figure 24 it was clear that an index contrast above 0.004 is necessary. Currently Dow Corning

has a material that has an index contrast of 0.0046 at a wavelength of 1554 nm. Using these

numbers the power losses for different radii bends are shown in Figure 25a which is magnified,

in Figure 25b. The minimum bend radius was found to be at least 8 mm.

The modal structure of a waveguide bend has more power on the outside of the waveguide bend

as shown in Figure 26. To get better power coupling from a straight waveguide to a curved

waveguide, it is recommended to offset the two to get more efficient coupling in the overlap

integral given in Equation 22 [43]. The structure of this offset is shown in Figure 27a. By

evaluating the optimal overlap integral, the optimal offsets can be found. The optimal offsets are

shown in Figure 27b.
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Figure 26: Comparison of modal structures between straight and curved waveguides.

(a) Bend offset setup. (b) Optimal bend offsets.

Figure 27: Offset to minimize the bending coupling losses.

4.6 Conclusion

Manufacturing parameters for single mode waveguides for use in printed circuit boards were

found. Single mode waveguides are desirable in optical circuit board interconnection because

they are not limited by modal dispersion, they have a smaller size, and wavelength division mul-

tiplexing is possible. The index of refraction of a polymer single mode waveguide manufactured

by Dow Corning is 1.5061 for the cladding and the core index is 1.5015, the maximum size pos-

sible of the waveguide to be considered single mode is 4.875 µm, 7.75 µm, and 8.875 µm for a

wavelengths of 850 nm, 1310 nm, and 1550 nm respectively. The waveguides were modeled in

RSOFT using the beam propagation method. The optimal sampling size of the simulation was

0.1 µm in the transverse direction of propagation and 0.3 µm in the propagation direction. The

minimum cladding on the top and the bottom of the waveguide was 8 µm and the minimum

separation distance was 19.5 µm, 15.5 µm, and 9 µm for wavelengths of 1550 nm, 1310 nm and
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850 nm respectively. The minimum sized radius of curvature of the waveguide was found to be

8 mm.
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5 Multimode Vertical Interconnect Assembly

In order to fully realize the full potential of optical waveguides in optical printed circuit boards,

the problem of how to couple light into the waveguide needs to be addressed. This interconnect

couples light from another fiber or a VSCEL into the waveguide. This can be as simple as butt

coupling to the waveguide edge done previously when testing the waveguides. However, this

method is not conducive to optical interconnect systems in which opti-electric circuit boards are

manufactured. Turning light out of plane to another layer of the circuit board, or to an optical

receiver mounted on top of the circuit board, becomes necessary. To accomplish this an optical

vertical interconnect assembly (VIA) needs to be manufactured. A proposed VIA is shown in

Figure 28a. This is a lensed VIA that contains a total internal reflection mirror end face to the

assembly.

When manufacturing the VIA it was found that the power varies drastically when the distance,

D, is changed as is shown in Figure 28b. The power change is a consequence of the output field

changing with the length of the waveguide as shown in Figure 29. The changing field makes

placing the VIA very difficult for the manufacturer of the waveguides. Finding the optimal

position, D, requires knowing the modal structure of the terminated waveguide. Simulating the

exact modal structure for a waveguide is a modeling intensive process which requires knowledge

of many waveguide parameters such as waveguide length, curves, and crossings. To alleviate this

constraint, the optimal VIA placement is found for all possible VIA lengths, L.

5.1 Multimode Coupling

The size of the embedded multimodal waveguides allows for greater mechanical misalignment and

fabrication tolerance when compared to single mode waveguides. As a consequence, multimode

waveguides can contain thousands of modes, each mode distributing the total power of the

waveguide [44]. Additionally, these modes travel at different speeds, resulting in modal dispersion.

Since the phase of each mode moves at a different speed the electric field distribution changes

depending on the length of the guide. This self-imaging principle of multimode waveguides [45]
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(a) Isometric view.

(b) Front view.

Figure 28: Optical VIA placement in waveguide layer.

is shown in Figure 29.

The self imaging principle changes the output profile in the angular spectrum, resulting in differ-

ent coupling efficiencies of the VIA structure, especially when the transceiver is within the near

field [46]:

z <
2P 2

λ
(68)
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Figure 29: Repeating mode length.

where P is the aperture dimension. For example, two output fields from two different lengths

of waveguides are given in Figure 30a and Figure 30b. Using a transceiver size around 50 µm

results in massively different coupling efficiency between the two lengths.

A designer can find the optimal coupling position for one of these waveguides, but embedded

multimode waveguides in printed wiring boards can have several parallel channels utilizing one

VIA, as shown in Figure 28a. If one channel of a waveguide group is slightly longer than the

other waveguides in the group, its coupling efficiency can be significantly less (1-6 dB) than

its neighbors leading to that channel exceeding the overall link budget. A change in index of

refraction from heating of the board or aging of the material would additionally impact the

coupling efficiency [47]. If the refractive index of the waveguide changes by 0.01, the optical path

length changes by 1 mm per 10 cm length, resulting in a new modal structure that is coupled to

the optical VIA changing the coupling efficiency appreciably on the order of 1-6 dB.

An optical electrical printed wiring board section is shown in Figure 28a and Figure 28b to

indicate how the VIA is located within the embedded waveguide layer. The optical VIA consists

of a molded block of Polymethyl methacrylate (PMMA). The index of refraction, (n = 1.41),

allows for a 45◦ total internal reflection mirror to turn the light 90◦. There are two 50 µm

curvature lenses, separated by an optical path length of 70 µm, located at the entrance and exit

of the optical channel. Approximating that the total internal reflection mirror is a perfect mirror,
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(a) L = 1.5 mm.

(b) L = 2.0 mm.

Figure 30: Output irradiance patterns 1.5 mm away from the waveguide.

the overall effective focal length of the system is 76.5 µm.

To find the optical coupling loss of the VIA, two simulation parameters were changed. First,

varying waveguide field outputs that are dependent upon the length of the waveguide were

modeled using the beam propagation method. Then, the efficiency through the VIA was modeled

for each length of waveguide (L). This process was repeated for different waveguide end to VIA

distance, D, ranging from 50 µm to 150 µm, which was chosen to reflect the dimensions of the

milled waveguide trenches.
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5.2 System Layout

The field distributions for each length of waveguides were found by modeling a 50 µm x 50 µm

embedded step index square waveguide. The setup for the simulation is shown in Figure 31. The

beam propagation method was used to find the field distribution for each length, L, of waveguide.

This method is applicable because the field amplitude slowly varies in the propagation direction

[48]. Simple transparent boundary conditions were used [31] because they are most suited for

highly multimode problems [32]. An additional absorbing layer with a width of 12.5 µm was

added to ensure field falloff of the model. The index of the core of the material is 1.52 and the

cladding index is 1.50. These indicies were chosen to match Dow Corning’s c©OE414x polymer

waveguide material. The input of the simulation was a 5.6 µm single mode fiber. The numerical

aperture of the fiber was 0.24 and illuminated the waveguide with 1 mW of light. This was chosen

because it was assumed that the VCSEL or single mode fiber input shown in Figure 28b was

mirrored onto the waveguide face. The field was first propagated 1 mm to ensure mode coupling

losses were taken into account. The field output was sampled every 10 µm until the field had

repeated itself, as shown in Figure 29. A summary of the simulation parameters is given in Table

1.

Using the calculated field distribution outputs, the light was propagated through the VIA as-

sembly using an angular spectrum propagator, as shown in Section 2.2.4. After propagation to

the lens, the angular spectrum becomes:

U(x, y, z) = F
(
L(x, y)F−1

(
U(fx, fy, 0) e

2πz
λ

√
1−(fxλ)2−(fyλ)2

))
(69)

L(x, y) is the contribution of an aberration free lens defined by [49]:

L(x, y) =
f2

x2 + y2 + f2
e
j 2πz

λ

(√
x2+y2+f2−f

)
Tx(x, y) ej2π (fx x+fy y) (70)

Where Tx is the reflection coefficient at the lens boundary and f is the focus of the lens. The
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Figure 31: Buried waveguide setup for BPM simulation.

setup for determining the reflection coefficient of the lens is shown in Figure 32. In determining

the reflection coefficient, it is assumed that all the light incident upon the lens is parallel to the

optical axis, or φ = 0, (paraxial assumption). This assumption is valid because the reflection

coefficient, R, is roughly the same for small angles of φ, or dR
dφ ≈ 0 for small angles of phi.

The angle of incidence to the air lens boundary can then be simplified to:

Θ = arcsin(
r̂

R
) (71)

Where r is the height of the incident parallel ray and R is the radius of the lens. To determine an

paraxial transmission coefficient, it is also assumed that all the light hitting the VIA is randomly

polarized.

The input field, the lens, and output field must be sampled at:
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Figure 32: Setup for determining reflection coefficient, Tx.

Nx,y =
2λz

dx2
(72)

Which is double as reported in to the sampling size given by Odate [49] but is needed to satisfy

Nyquist criterion. Where z is the overall optical path length. For most lens systems this criterion

leads to unrealistic array sizes and run times, but in the case of microlenses, such as the VIA,

this application is efficient [50], giving a runtime of 10 minutes.

All the field outputs generated from the beam propagation method were then put through the

lens system of the optical VIA shown in Figure 33. In the optical system the optimal coupler

position, D, is sampled as 21 different free space propagation portions of length between 50 and

150 µm in increments of 5 µm. The output field then encounters the first lens and travels 70

µm in an index of 1.41. Finally, a third simulation was run propagating the field from the second

lens interface 200 µm to the 50 µm square sensor. The power on the detector compared to the

power from the waveguide output is defined as the system efficiency.

51



Figure 33: Optical setup for propagating a field through the VIA.

5.3 Analysis

Figure 34 shows two samples of how the coupling efficiency of the VIA assembly changes depend-

ing on the length of the waveguide. The attenuation of both waveguide to VIA distances shows

significant differences in efficiency depending on the waveguide length, L, although there is a

relativity small difference between the two lengths, D. To determine the optimal VIA placement

distance, three metrics were used to determine the optimal placement of the VIA, the highest

average power, the lowest variance, and the worst-case scenario.

Figure 34: Attenuation of VIA assembly for two waveguide to VIA lengths.

The first metric was obtaining the optimal waveguide to VIA distance based on the average

power of the all the waveguide lengths. The attenuation of the distance the VIA is away from
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the waveguide end-face, D, distance is shown in Figure 35. The optimal placement for the VIA

using this metric was 150 µm away from the waveguide. This result is intriguing because when

using geometrical optics the optimal focal point appears at 123.9 µm. A possible reason for the

difference may be the beam waist for each mode will be slightly different, resulting in a circle of

least confusion and not a true focal point.

Figure 35: Average power of VIA assembly.

The second metric was the variance of the power in the VIA assembly. Minimizing the variance

of the system also minimizes the number of waveguide channels that are deemed out of tolerance.

Figure 36 shows the variance depending on the waveguide to VIA distance. The optimal place-

ment of the VIA using this metric is also 150 µm. This metric gives the same optimal coupling

position as the average power simulations.

Figure 36: Variance in power of VIA assembly.

The last metric found the lowest attenuation with the worst-case waveguide length distance,

or the optimal distance using the worst-case scenario. This metric is important in minimizing

the number of waveguides that are deemed out of tolerance in a multichannel optical VIA. The

results for the simulation are shown in Figure 37. The optimal distance with this metric is 60

µm with an attenuation of 5.85 dB.
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Figure 37: Worst case attenuation of VIA assembly.

5.4 Conclusion

To determine the optical loss in an optical VIA for embedded multimode waveguide applications,

a single mode fiber input was propagated along a 20 mm waveguide in order to mimic field struc-

tures present at the output. The single mode input was launched into a 50 µm square multimode

structure. Losses for the system ranged between 0.177 dB to 6.48 dB. For optimal VIA place-

ment that, on average, couples effectively or has the smallest variation with respect to changes in

the waveguide attenuation, the VIA placement should be just beyond geometrical optics optimal

focal point at 150 µm away from the end of the waveguide. To have the least amount of coupling

loss for all waveguide distances, the VIA should be placed before the geometrical optical optimal

focal point at 60 µm away from the end of the waveguide. Using these metrics it is possible to

blind pick and place a waveguide VIA in the optical printed circuit board process so that the

attenuation or variance of the waveguide channels of the VIA assembly is minimized.
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6 Single Mode Grating Vertical Interconnect Assembly

As explained in Section 1, silicon waveguides suffer from high attenuation. This makes them

impractical for passive bus communications because of the high expense. Combining single mode

polymer waveguides and silicon waveguides into a hybrid technology alleviates this problem.

This solution uses silicon waveguides for the integrated optics, then it uses, low loss single mode

waveguides for transferring information. To create the hybrid solution, both the silicon waveg-

uides and the single mode waveguides must be able to connect to each other through an optical

vertical interconnect assembly.

Coupling waveguides with two very large numerical aperture differences is a very lossy process. A

problem that arises with the coupling of the two technologies is the massive numerical aperture

mismatch. Silicon waveguides consist of a silicon core with a silicon dioxide cladding on the

outside of the waveguide. The index of silicon at λ = 1310 nm is 3.503 [51] for the core and

1.531 for the cladding [52]. This gives a numerical aperture shown in Equation 25 of 3.15. Using

the equation

NAwaveguide = nmed sin(θ) (73)

Where θ is maximum output angle in a given medium with index nmed. The numerical aperture

of 3.13 gives an imaginary output angle in air making the waveguide output in a full 2π steradians

as was shown in Figure 38. Whereas the single mode waveguide manufactured by Dow Corning

c©has a core index of 1.5135 and a cladding index of 1.5057 giving a numerical aperture of 0.153.

This means that the single mode waveguide can only accept power from a very small portion of

the power that the silicon waveguide outputs leading to heavy losses.

A possible solution to the problem is the utilization of a lensed coupler, as was done with the

multimode waveguide. The single mode interconnects would give the advantage of consistent

output throughout the waveguide because of the singular mode, eliminating the problem with

multimode waveguide of a changing coupling efficiency. Unfortunately, this comes at the price
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Figure 38: Output waveform at the end of a silicon waveguide.

of alignment tolerance when coupling into the waveguide. For example, if using a lensed system,

the input tolerance will be stricter than butt coupling a single mode fiber and a single mode

waveguide. The alignment tolerance for a fiber and a single mode waveguide is shown in Figure

39.

This tolerance of the single mode waveguide has a much greater limit as compared to the multi-

mode waveguide butt coupling tolerance given in Figure 40.

The other difficulty with using a total internal refraction coupler is the size of the coupler needed

to give decent coupling losses needs to have high numerical aperture lens to capture most of the

light from the Si waveguide. Where the numerical aperture of the lens is given by

NAlens =
f

D
(74)

Where f is the focal length of the lens and D is the diameter of the lens.

Another possible solution to coupling the light into the single mode waveguide is to use a volume

grating coupler. Volume grating couplers use a varying index contrast that is spaced in such a
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Figure 39: Axial and angular misalignment tolerances in a single mode waveguide butt coupled
to a SMF 28 fiber.

Figure 40: Axial and angular misalignment tolerances in a multimode waveguide butt coupled
to a SMF 28 fiber.

way that the reflected light adds constructively. Designing the coupler in this way, the size of

the coupler can be larger to give better coupling efficiencies

6.1 In-Plane Bragg Gratings

A basic Bragg grating has a periodic index characterized by:

ngrating(z) = nclad + dnwrite Π(
z

Λ
) (75)
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Where dnwrite is the index difference in the core depending on the intensity of the writing light,

Λ is the period of the index change, and Π is the rectangular function given by:

Π(x) =


0 if x mod 1 > 1

2 ,

1
2 if x mod 1 = 1

2 ,

1 if x mod 1 < 1
2

(76)

The grating structure is shown in Figure 41. Suppose the fundamental mode is propagating down

a single mode waveguide is incident on the waveguide. The modal structure is characterized by

A(x, y, z) = a(x, y) expiβz (77)

Figure 41: Basic waveguide grating.

When the index of a material changes, a portion of light is reflected back given by the Fresnel

equations at normal incidence

Γ =

∣∣∣∣ dnwrite
2ncore + dnwrite

∣∣∣∣2 (78)

When the change in the core index is large compared to the index of the core, the reflection

coefficient approaches unity, but most of the time this is not an option and the change in the

core index is relatively small. When using the single mode material from Dow Corning, each
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interface reflects 8.556 ∗ 10−4 of the incoming light. This makes for a very inefficient coupler.

Many reflections can be made by adding the periodic interface . If the grating period Λ is

arranged in such a way that the phases of the reflected light add constructively, such as is shown

in Figure 41, the steady state equation, or the equation that does not include dispersion effects,

may be written as

Areflect(x, y, z) =
(
Γ + Γ(1− Γ) + Γ(1− Γ)2 + . . .

)
a(x, y) exp−iβz (79)

=

x∑
n=0

(Γ (1− Γ)n) a(x, y) exp−iβz (80)

= (1− (1− Γ)x + (1− Γ)x Γ) a(x, y) exp−iβz (81)

Where x is the number of reflections.

To make the reflections add up constructively, the time the wave takes to travel from one reflection

boundary to the to the next reflection boundary and back must be a integer of the wavelength

in the medium.

2 ∗ Λ = m
λ

n̄eff
(82)

Where n̄eff is the average effective index of the waveguide which can be estimated in the first

order by [53]

n̄eff =

√
n2efflow + n2effhigh

2
(83)

Where neffhigh and nefflow is the effective index of the core material with and without the added

index from overexposure respectively.
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6.2 Slanted Bragg Grating

The inline Bragg grating is only effective when sending waves back down the grating and is not

applicable for coupling. To couple light into and out of the grating, the grating must be angled

as in Figure 42.

Figure 42: Slanted volume grating setup.

The process of adding the slanted interface is just an expansion on the previous straight grating.

According to the Huygens - Fresnel principle, every point along a disturbance can be become a

source of a spherical wave, as show in Figure 43. Applying the optical path difference constraint

to the slanted grating gives an equation of

(AB + CB)− (AC ′) = m
λ

n̄eff
(84)

Where

AB = BC =
Λ

sin θ
(85)

AC =
2Λ

tan θ
(86)

Giving
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AC ′ =
2Λ cos2 θ

sin θ
(87)

Plugging these into Equation 84 yeilds

Λ =
mλ

2 n̄eff sin θ
(88)

Which is known as Bragg’s law.

Figure 43: Bragg’s effect setup for slanted volume grating.

Bragg’s law can now be applied to a slanted grating coupler with an index modulation of

ngrating(x, z) = nclad + dnwrite Π(K · (x̂+ ẑ)) (89)

With K being the grating vector. The grating vector expresses the direction and the spacing of

the grating interfaces. Using the conservation of momentum and the conservation of energy it

can be shown that [54]
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K = kin − kout (90)

Where k is the propagation vector

ki =
2πn̄i
λ

(91)

Applying Bragg’s law to the grating vector for normal incidence, kin = −kout, the grating vector

magnitude can be expressed as

|K| = 2π

λ
(92)

The grating period Λ and the grating angle θ can then be determined using Bragg’s Law and the

grating vector equation. Using Bragg’s Law the grating vector along the propagation direction

can be determined Kz

Λz =
λ

Sin(2θ)n̄eff
(93)

The grating vector equation now becomes

√(
2π

Λz

)2

+

(
2π

Λx

)2

=
2π

λncore
− 2π

λ n̄eff
(94)

Where Λx may be solved. The angle of the grating may now be solved as

θ = arcsin

(
Kx

Kz

)
= arcsin

(
Λz
Λx

)
(95)
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Using Equations 93 and 95 it is possible to design a focusing grating that focuses light into a

silicon waveguide by varying the grating vector, K(x, z) and the grating angle θ(x, y) along the

length of the waveguide. An example of a focusing grating is shown in Figure 44.

Figure 44: Waveguide containing a slanted volume grating.

6.3 Rigorous Coupled Wave Analysis

Equations 93 and 95 are used to solve for the grating period and the angle in the first order

geometrical optics approximation. Since the wavelength of the input light, λ, is on the same

order as the grating period, Λ, this approximation is not accurate and a wave optics approach

needs to be used. One of the methods that may be used to solve the optimal grating period and

angle using wave optics is rigorous coupled-wave analysis (RCWA) [55, 56, 57].

RCWA analysis assumes that the grating is infinite in the propagation direction, therefore, the

grating’s diffraction may be solved over one period of the grating as shown in Figure 45. The

restriction to one unit cell means gives rise to a boundary condition on Γ2 and Γ4 given by the

Floquet-Bloch theorem [58].

E(x, z) = E(x, z + Λ) expj sin θ, 0 ≤ x < Λ, −∞ < z <∞ (96)

Therefore the outgoing wave condition only needs to hold for boundaries Γ1 and Γ3 or the reflected

and transmitted waves respectively.
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Figure 45: RCWA domain.

The index distribution is then sliced up in the x direction, eliminating the x direction dependency.

It is then possible to model the z direction index perturbation as a Fourier series expansion. Since

the grating index profile is now continuous, the reflection can be found using the Helmholtz

equation shown in Equation 18. Using the methods described in [55] the reflected electric field

can be found for one layer. Propagating the transmitted wave to the next z layer the resulting

electric field can be written as

E(x, z) =

∞∑
x=−∞

(
Ame

jkxmbx+jkmzbz +Bme
jkxmfx+jkmzfz

)
(97)

where Am is the reflected order coefficients, Bm is the transmitted orders, and kimd is the direction

coefficients.

6.4 Focusing Grating Design

Using RCWA it is possible to refine the new chirped grating period in the propagation direction

(Λz(z)) and the transverse direction (Λx(z)) more accurately than the first order approximation.

The optimal parameters for the RCWA optimized grating is shown in Figure 46.

In Figure 46 a grating profile that can be made based on total system design is shown. If the
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Figure 46: Optimal grating periods found using RCWA.

grating length is 500 µm and a focal distance is 1 mm the parameters of the grating coupler are

shown in Figure 47.

Figure 47: Grating period and angle derived from RCWA.

Along the length of the grating the grating period varies from 710 nm at the beginning of the

grating to 570 nm at the end of the grating. The grating angle also varies from 51◦ at the

beginning of the waveguide to 36◦ at the end of the waveguide. To simulate the efficiency of

the waveguide, the finite difference time domain (FDTD) method was used. The FDTD model

can be implemented in two different ways. In Figure 48a the grating interface is parallel to the

simulation axis and in Figure 48b the sidewall of the waveguide is parallel to the simulation axis.

The advantage of having the grating interface parallel to the simulation axis is that the field hits

the grating interface perpendicularly, eliminating any higher grating modes that occur because

of the simulation grid size. It also easier to make the grating profile as the x dependency of the
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(a) FDTD model with grating parallel to simulation
boundary.

(b) FDTD model with sidewall parallel to simulation
boundary.

Figure 48: Comparison of FDTD models.

grating is eliminated and the grating profile can be made in RSOFT without using an external

meshing software. These advantages come at the cost of a larger simulation domain because of

the sideways waveguide and the inability to make a grating that varies both grating period and

grating angle.

Figure 49 shows the dependency of the sample size on the grating efficiency. When the sample

size of the simulation is equal to or less than 0.04 µm, there is less than 0.1 dB difference in both

the straight and angled simulations. The straight simulation took 82 hours to complete, while

the angled simulation took 10 hours less, completing in 72 hours. This is surprising because the
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angled simulation is considerably larger than the straight simulation. For a grating length of 500

µm, the simulation size for the angled simulation is 656.0 MB while the straight simulation is

151.4 MB. The difference in time is likely due to RSOFT needing to load the grating mesh for

the straight waveguide multiple times during a simulation.

Figure 49: Grating FDTD sample size convergence.

Unfortunately, because of the changing grating period and grating angle, the straight simulation

needed to be used for the simulation. A grating length of 500 µm and a focal length of 1 mm

was used. The grating mesh for the coupler is shown in Figure 50.

Due to the low index contrast of the core material, the efficiency of the blazed and angled grating

was low. Each of the slanted grating interfaces did not couple with each other leading to high

loss. The FDTD simulation, shown in Figure 51, shows that almost no light couples into the

waveguide, revealing a 14 dB loss for a 500 µm grating.

Other than the low efficiency, the deficiency with blazed and angled grating is that it is very

difficult and time consuming to manufacture. Doing both the blazed and the angle grating

requires that the grating be made with linear approximations of the grating vector. The grating

can then be made with two cylindrical lenses and a prism using methods described in [59]. This

method has the problem of the high alignment tolerance necessary to manufacture the grating.

Other options for manufacturing the grating include micromolding the grating [60], but the
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Figure 50: Grating mesh.

changing angle of the grating by large amounts may not release the grating and depositing a

blazed grating [61] at a certain angle to a small section of the grating then changes the angle

as the grating propagates. However, this process is time consuming and not applicable to mass

manufacturing. Because the grating yields low efficiency and is time consuming to manufacture

other methods for using grating couplers were needed.

6.5 Lensed Grating Design

To eliminate the need to make a blazed and angled grating, the light from the silicon waveguide

needs to be collimated. To collimate the light into the grating a lens micromolded into the core

of the waveguide is proposed, as shown in Figure 52. This design has several advantages over

the focusing grating. The lensed grating can be manufactured by interfering two coherent laser

beams and a prism [62, 63]. Each of the lens grating periods is at the perfect angle and grating

period, leading to higher coupling efficiency. Finally, the lensed grating has a lager alignment

tolerance than the focusing grating, making it easier to manufacture.
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Figure 51: Electric field for grating input showing poor coupling efficiency.

Figure 52: Lensed grating coupler setup.

The loss of the lensed grating coupler can be broken down to three factors: Losses from collimated

light that does not couple in to the waveguide all the way; losses from skew rays, or rays that

don’t hit or reflect off the lens; and losses from non-collimation of the light into the grating.

Each of these factors will be explored separately to describe the overall coupling efficiency of the

grating.

6.5.1 Collimated Light Losses

All gratings are not perfectly efficient even if light hits the grating at only one angle loss can occur

as a result of the grating itself, such as the grating vector, the length of the grating, and the core

index contrast. Since the core index contrast of the Dow Corning material is fixed at 0.003, the
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other parameters need to be optimized. Using an angled FDTD simulation, the optimal grating

period is found. For this simulation, a grating of length 100 µm was modeled. The grating angle

was set at 45◦ due to analysis done with the RCWA simulation at normal input coupling. Figure

53a shows the coupling tolerance of the straight waveguide. It shows that the optimal grating

period is 0.6105 µm, which is close to the first order approximation of 0.615 µm. If the coupling

efficiency is within ±0.01 µm the coupling efficiency varies by less than 5%.

(a) FDTD optimal grating period, (Λ).

(b) FDTD length of grating efficiency.

Figure 53: FDTD collimated light losses.

Using the optimal grating period given in Figure 53a, another FDTD simulation was conducted

varying the length of the waveguide. Figure 53b shows how the efficiency of the grating increases
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as the length of the waveguide increases. The length simulation shows that for a grating length

of 700 µm, the grating has a -6.0 dB coupling loss. The grating couplers are not very efficient

and a long grating needs to be used. Unfortunately, to simulate a grating of this size would be

very time consuming, a grating of 2 mm would take 9770 MB of memory and take 270 hours to

complete for one simulation alone, and is not very practical. To save the time of simulating the

grating up to 2 mm in length, coupling efficiency of a grating depending on the length was used

[64]

CE = 1− eαL (98)

where α is the coupling coefficient and L is the length of the grating. Solving for the coupling

coefficient gives

α =
log (1− CE)

L
(99)

which is constant for every length of the waveguide, L. Figure 54 shows that the coupling

coefficient, α, is constant across the simulation within 3%, therefore the coupling efficiency can

be estimated using Equation 99. The resulting interpolation is shown in Figure 55. This shows

that if the grating length is 2 mm, the coupling loss is -2.6 dB.

Figure 54: Coupling coefficient across length of the grating.

71



Figure 55: Interpolation to grating length efficiency.

6.5.2 Skew Ray Lossses

The next loss that needs to be calculated is the skew ray loss. This measures the amount of rays

that do not hit the lens coupler. The output field of a silicon waveguide, shown in Figure 38, can

be modeled as a uniform point source for distances more than 10 µm away from the end of the

silicon waveguide. Using the geometry shown in Figure 56 to determine the skew loss, assuming

the output is a point source, the skew loss can be written as

Loss =
Plens

Pradiates
=

sin−1
(
R
f

)
π

(100)

Where R is the radius of the lens, f is the focal length of the lens. To a collimaing lens, the

silicon waveguide needs to be placed on the focal length of the lens. Therefore, the focal length

of the lens can be related to the radius of the lens by

1

f
= (n− 1)

(
1

R1
− 1

R2
+

(n− 1)d

nR1R2

)
(101)

Where R1 is the radius of the surface closest to the source waveguide, R2 is the radius of the

farthest surface, and d is the thickness of the lens. Since R2 =∞, the lens makers equation can

be simplified to
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R = f (n− 1) (102)

Simplifying the skew ray calculation to

Loss = sin−1(n− 1). (103)

This means that no matter the collimating lens is situated, a constant loss occurs. Using the

Dow Corning cladding index as the lens index, a loss of -2.76 dB is experienced.

Figure 56: Geometry setup to determine skew ray loss.

This does not mean that the coupler should be positioned arbitrarily. The further the lens is from

the end of the silicon waveguide the larger the lens radius is, therefore the larger the maximum

grating length, D. The maximum grating length is
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D =
2R

√
f2 −R2

f
(104)

D = 2 f (n− 1)
√
n(2− n). (105)

6.5.3 Non-Collimation Losses

The final loss in the grating system is the loss that occurs when a wave hits a grating at a

angle that isn’t normal to the grating. The FDTD method was used to find the input coupling

efficiency of input plane waves that are slightly off the normal optical axis. Grating lengths of

200 µm were simulated. The resulting coupling efficiency is shown in Figure 57.

Figure 57: Coupling efficiency of off axis input plane waves.

Even if the lens is a perfect lens, diffraction effects keep the lens from perfectly collimating the

incoming wave. In Section 6.5.1 it was determined that a grating of 2 mm was necessary for

efficient coupling. Using Equation 105 it was found that the lens needed to be 1 mm from the

silicon waveguide. Using these parameters the collimating lens was optimized in ZEMAX to

minimize lens abberations. Because the lens will be micromolded, it is possible to impart any

shape into the lens, therefore the optimization parameters included both the lens radius and the

lens conic. This makes the molded lens an aspheric lens. The equation of the surface is given by
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x(r) =
r2

R(1 +
√

1− (1 + κ) r
2

R2 )
(106)

where r is the distance from the axis and κ is the conic constant.

The optimized parameters for coupling a collimating lens with a focal length of 1 mm and a lens

to grating distance of 0.5 mm was found. The radius of curvature, R, of 0.506 mm and a conic

constant, κ, of -2.267. The profile of the output waveform is shown in Figure 58.

Figure 58: Collimating Lens.

Using ZEMAX the fast Fourier transform point spread function (FFT PSF) was found to deter-

mine the output angles. Figure 59a shows what the output relative intensity when the waveguide

is centered on the optical axis. To attain alignment tolerances, the silicon waveguide was allowed

to go off the optical axis of the lens. Figure 59b shows the relative output intensity when the

silicon waveguide is 0.1 µm off the optical axis.

Applying the output intensity of the grating profiles to the off axis losses, the alignment tolerance

was obtained, shown in Figure 60. Figure 60 shows that the coupling efficiency of the lens peaks

at 0.814 when the lens is 40 µm off axis of the coupler. To get under 2 dB loss from the off

axis loss, the coupler has an alignment tolerance of ±40 µm. The interesting thing about the

coupling efficiency is that it peaks again when the input beam is off center. This peak is due to

the second peak in the off axis coupling efficiency in Figure 57.
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(a) Output point spread function for Si waveguide on axis
with the lens.
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(b) Output point spread function for Si waveguide off axis
by 0.1 µm.

Figure 59: ZEMAX FFT PSF profiles.

Figure 60: Alignment tolerance of grating coupler.

6.6 Conclusion

Two grating couplers to couple light from silicon waveguides to polymer single mode fibers were

investigated for use in printed circuit boards. A focusing grating coupler, in which the grating
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period and the grating angle changed along the direction of the grating length, was designed

and evaluated. This coupler gave a coupling efficiency of -14 dB, of the light incident upon the

coupler. This coupler was also deemed difficult to manufacture in a non laboratory setting. The

second coupler consisted of a lensed grating where the grating angle and the grating period was

constant throughout the entire waveguide. The grating period of this coupler was found to be

610.5 nm and the grating angle was found to be 45◦. The length of the grating needed to be at

least 2 mm for coupling losses greater than -2.6 dB. The grating also suffered from a constant

loss of -2.76 dB due to skew ray losses. The grating alignment tolerances were also modeled. The

highest efficiency is when the lens leads the grating by 40 µm this gives a loss of 0.90 dB. To

stay within a 2 dB loss the lens and the silicon waveguide must be aligned by ±40 µm.
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