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Abstract 
 

A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable 

for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems 

to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. 

The SCR performance needs to be improved through experimental and modeling 

studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model 

with mass transfer, heat transfer and global reaction mechanisms was developed for a 

Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust 

conditions with NH3 maldistribution and aging effects, and the details are presented. 

 

SCR experimental data were collected for the model development, calibration and 

validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine 

experimental setup at Michigan Technological University (MTU) with a Cummins 2010 

ISB engine. The model was calibrated separately to the reactor and engine data. The 

experimental setup, test procedures including a surrogate HD-FTP cycle developed for 

transient studies and the model calibration process are described. Differences in the 

model parameters were determined between the calibrations developed from the reactor 

and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of 

the reasons causing the differences. The model calibrated to the engine data served as 

a basis for developing a reduced order SCR estimator model.  

 

The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through 

simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the 

overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. 

The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6.  

 

A combined engine experimental and simulation study was performed to quantify the 

NH3 maldistribution at the SCR inlet and its effects on the SCR performance and 

kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was 

determined to be below 0.8 for the production system. The UI was improved to 0.9 after 
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installation of a swirl mixer into the SCR inlet cone. A multi-channel model was 

developed to simulate the maldistribution effects. The results showed that reducing the 

UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency 

and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data 

with the multi-channel model showed that the NH3 maldistribution is a factor causing the 

differences in the calibrations developed from the engine and the reactor data.  

 

The Reactor experiments were performed at ORNL using a Spaci-IR technique to study 

the thermal aging effects. The test results showed that the thermal aging (at 800°C for 

16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 

saturation conditions and different axial concentration profiles under SCR reaction 

conditions. The kinetics analysis showed that the thermal aging caused a reduction in 

total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 

adsorption/desorption properties and a decrease in activation energy and the pre-

exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in 

the storage capability and the change in kinetics of the major reactions contributed to the 

change in the axial storage and concentration profiles observed from the experiments. 
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Chapter 1.   
 
Introduction 
 

1.1 Background 
 

The diesel engine is known for its thermal efficiency, durability, and reliability. It is the 

main power source for medium and heavy-duty on-road vehicles including trucks, buses, 

off-road vehicles and industrial equipment. Diesel engines are also used as a power 

source for passenger cars and light-duty trucks particularly in Europe. The annual diesel 

fuel consumption in the United States is more than 40 billion gallons and up to 93% of 

the diesel is consumed by on road heavy-duty diesel (HDD) engines [1]. The energy 

demand for heavy trucks is predicted to increase by 20% in 2035 compared to 2010 [2].  

 

Despite the advantages and the popularity of the diesel engine, diesel emissions are 

considered as adverse to human health and the atmosphere. Diesel combustion 

products include carbon monoxide (CO), unburned hydrocarbons (HC), carbon dioxide 

(CO2) which is a greenhouse gas, nitrogen oxides (NOx) which is the sum of nitric oxide 

(NO) and nitrogen dioxide (NO2), and particulate matter (PM). The diesel fuel currently 

used in the U.S. contains less than 15 parts per million (ppm) of sulfur, low levels of 

sulfur oxidation products (<1 ppm) including sulfur dioxide (SO2) and sulfur trioxide (SO3) 

are thus emitted from the diesel engine. 

 

Starting in 1974, the U.S. Environmental Protection Agency (EPA) and other 

organizations began to develop regulations for diesel engine emissions [3]. Those 

standards and regulations have become more stringent in the past 30 years. An 

evolution of regulations for HDD engines is shown in Figure 1.1. The U.S. EPA on-Road 

HDD regulations for 2010 were 0.2 and 0.01g/bhp∙hr for NOx and PM respectively, which 
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are a magnitude lower than the EPA 1998 regulations. The European emission standard 

shows the similar trend. From EURO III regulation which was in effect in 2000 to EURO 

VI which will be in effect in 2013, the NOx and PM limits are reduced from 3.8 and 0.075 

g/bhp∙hr to 0.3 and 0.0075 g/bhp∙hr respectively. The upcoming 2014-2018 fuel 

consumption standards [4] necessitate the optimization of passive oxidation of PM in 

order to reduce the frequency of active regenerations, thus reducing the fuel 

consumption in additional to the engine changes. At the same time, extensive research 

has been carried out to reduce diesel emission levels by more than a magnitude to meet 

the regulations [5-13].  

 
Figure 1.1: An evolution of U.S. EPA and Europe regulations for HDD engines [14] 

 

1.2 HDD Aftertreatment Systems 
 

It has not been possible to reduce emissions to meet the EURO V and EPA 2010 

regulations by only improving the engine technologies. Therefore, aftertreatment 

systems have been developed to reduce PM and NOx to meet the regulations [8,9]. A 

typical aftertreatment system for HDD engines for EURO V and EPA 2010 is shown in 

Figure 1.2. The system consists of a diesel oxidation catalyst (DOC), catalyzed 
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particulate filter (CPF), selective catalytic reduction (SCR) system with urea injection, 

and an ammonia oxidation catalyst (AMOX).  

 

 
Figure 1.2: Typical layout of HDD engine aftertreatment system 

 

The DOC is a flow through device with square channels open at both ends with a 

honeycomb structure. The DOC is used for oxidizing CO and HC, and converting NO to 

NO2. The NOx in the diesel engine out exhaust typically contains less than 10% of NO2 

[15]. Oxidation of NO to NO2 through the DOC provides additional NO2 for passively 

regenerating the CPF and for providing optimal NO2/NOx ratio for better SCR NOx 

reduction efficiency [16]. This will be discussed in detail in later sections. The CO 

conversion efficiency across the DOC can approach 100% for normal engine operating 

conditions. The HC and NO conversion efficiencies across the DOC are functions of 

temperature and space velocity. Typically the HC conversion efficiency increases with 

increased temperature. The NO to NO2 conversion efficiency is dependent upon the 

catalyst formation, temperature and operating space velocity. A maximum NO to NO2 

conversion efficiency of about 65% occurs at the temperature of 325°C. 

 

The CPF is a filter that collects PM contained in the exhaust in and on the substrate wall. 

It is a wall flow device with every other channel open in the inlet face but each open inlet 

face channel is closed in the outlet face. Therefore, the exhaust going into the inlet 

channel has to pass through the porous substrate wall to get to the outlet channel and 

exit the filter. The filtration efficiency of the CPF can reach 97% once a PM cake layer 

forms on the substrate wall. As PM is being loaded in and on the wall, the pressure drop 

across the CPF increases thus increasing the back pressure of the engine which results 

in lower efficiency and higher fuel consumption [17]. The NO2 generated by the DOC 

from oxidizing NO can react with PM in the CPF at relatively low temperatures (>250°C) 

to reduce the pressure drop across the CPF. This process is known as NO2 assisted 
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oxidation. Above 400°C, thermal or O2 oxidation also occurs at a significant rate. When 

there is no external energy source, this process of oxidation is called “passive oxidation”. 

However, this method is not always effective because of the temperature and PM to NOx 

ratio is not sufficient to oxidize PM by passive oxidation. In order to effectively remove 

the PM retained in the CPF and maintain the pressure drop at low levels, an active 

regeneration process by injection of diesel fuel either late in the cycle (in-cylinder or in 

the exhaust)t is carried out. The fuel is oxidized in the DOC, and this generates an 

increase in temperature which with excess O2 in the exhaust gas oxidizes the PM 

retained in the CPF. 

 

The urea SCR system is the leading technology for NOx reduction in HDD engines which 

uses a urea-water solution as reductant to reduce NOx on the SCR catalyst surface. A 

urea water solution with urea concentration of 32.5% by weigh is used as the reductant 

for automotive applications and HDD applications in the US. This solution goes by 

different names including diesel exhaust fluid (DEF) in the U.S. or Ad-Blue in Europe. 

The DEF is introduced to the exhaust stream by an injector located before the SCR 

bricks (see Figure 1.2). Typically there is a mixing tube between the injector and SCR 

bricks to help mix the urea with the exhaust flow and accelerate the urea hydrolysis and 

decomposition process. The desired urea decomposition product is ammonia (NH3), 

which will be adsorbed on the catalyst surface, and the stored NH3 reacts with NOx on 

the catalyst surface through a number of pathways to form H2O and N2. This stored 

ammonia can also be desorbed at high temperature or oxidized with oxygen. Anhydrous 

ammonia can also be used as a reductant without going through a hydrolysis or 

decomposition process, but compared to the urea-water solution, it is extremely toxic 

and difficult to store.   

 

The SCR substrate or brick is a flow through device with square channels open at both 

ends with a typical channel density of 400 cells per square inch (CPSI). This honeycomb 

like structure is the catalyst carrier made from various ceramic materials including 

titanium oxide and cordierite. The channels are covered with active catalytic 

components. Those components are typically oxides of base metals including vanadium 

and tungsten, zeolites, and precious metals [18,19]. Oxides of vanadium and tungsten 
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are usually less expensive and perform well under temperatures below 500 °C. 

However, their thermal durability is a problem for applications with temperatures above 

500°C generated by the active regeneration of the CPF [20]. Zeolite catalysts have 

better low temperature performance and the capability of remaining active at high 

temperatures of 600°C and transient temperatures of up to 850°C [21]. Iron (Fe) and 

copper (Cu) zeolite catalysts are two popular choices for SCR systems installed 

downstream of the CPF [10]. The performance of the catalysts will be described in detail 

in the next chapter. 

 

A typical aftertreatment system also consists of an ammonia oxidation catalyst (AMOX) 

after the SCR. For the urea SCR, under situations of over injecting urea, low exhaust 

temperature, and with the SCR being aged, ammonia slip (ammonia going through the 

SCR without being fully converted) will be present at the SCR outlet. Ammonia is 

harmful to human health and the environment and is usually required to be below 10-30 

ppm. The AMOX is commonly placed after the SCR bricks to oxidize ammonia to N2 and 

H2O. 

 

Other ways to reduce NOx emissions include engine based exhaust gas recirculation 

(EGR), and aftertreatment based lean NOx traps (LNT). EGR works by recirculation of a 

certain fraction of the exhaust gas back into the cylinders. This lowers the adiabatic 

flame temperature thus reducing the level of thermal formation of NOx. All diesel engines 

now incorporate the EGR technology. The NOx reduction efficiency higher than 95% is 

highly desirable for highway heavy-duty applications to meet the EPA 2010 NOx 

regulations [12]. However, using only EGR is not sufficient to meet the EPA 2010 NOx 

regulation and a higher level of EGR increases the PM concentration in the exhaust so 

that fuel consumption will be increased because more fuel needs to be used for CPF 

active regeneration. LNT is HC based NOx reduction method typically used on light-duty 

applications. LNT works by trapping NOx on the zeolite surface. When the storage of the 

trap is full, a rich regeneration process is run by introducing HC into exhaust to react with 

the trapped NOx and produce H2O and N2 [10]. 
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1.3 Motivation  
 

Effective NOx control for the HDD engine is becoming more important to meet the fuel 

consumption and emission regulations. It requires high NOx reduction efficiency (>90%), 

and low ammonia slip (<30 ppm) under a wide range of operating conditions for the SCR 

system. Understanding the SCR characteristics is becoming more imperative for system 

improvement. Well-designed SCR experiments are necessary to characterize the SCR 

performance and the effects of different variables including temperature, space velocity 

and inlet gas composition. However, the SCR system is a complex non-linear system in 

which there is limited ability to measure the internal states directly. In order to improve 

the understanding of the SCR system and the chemical kinetics, extensive experimental 

studies along with modeling efforts are required. An SCR model calibrated to 

experimental data provides possibilities to estimate the SCR states which cannot be 

directly measured.  

 

Furthermore, it is time intensive and costly to use the conventional experimental 

approach to develop the SCR system because there are a significant number of 

variables that need to be considered when designing and optimizing the system. These 

variables include dimensions, wall thickness, cell density of the catalyst, fuel and urea 

injection control strategies, etc. Changes in each variable can cause differences in the 

overall system performance. However, running an accurate simulation model in 

conjunction with the experimental approach allows simulating a wider range of different 

scenarios, which then takes less time and is more cost effective. As a result, a high 

fidelity SCR model developed based on experimental studies is able to simulate a wide 

range of scenarios in a timely and cost efficient way. 

 

A well developed and accurately calibrated SCR model is able to predict the SCR 

internal states which cannot be directly or easily measured. Those states include the 

gaseous concentrations at different axial locations of the catalyst as well as the NH3 

stored on the catalyst. The SCR performance is highly dependent on the NH3 coverage 

on the catalyst surface. For the application of the SCR on diesel engines, the system is 

exposed to highly transient conditions. This makes the SCR difficult to reach steady 
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state operating conditions. As a result, the ability of a SCR model to correctly predict the 

internal states under transient conditions is important to SCR state estimation and SCR 

model based control strategies. A high fidelity SCR model calibrated to engine data can 

serve as a basis for further developing a SCR estimator model that estimates the SCR 

states in real time [22]. This is meaningful for developing the OBD system and model 

based control strategies for on-vehicle applications. 

 

Extensive SCR data are required to develop and calibrate the SCR model. Testing the 

SCR in a flow reactor is an efficient first step in studying the basic characteristics of the 

catalyst. Simulated exhaust flow generated from different gas cylinders are used in SCR 

reactor tests and gaseous NH3 is used as reductant. The test conditions including gas 

flow rate, temperature, and SCR inlet gaseous concentrations can be precisely 

controlled. With carefully designed test protocols and procedures, the SCR reactor tests 

provide opportunities for characterization of the SCR performance and analyzing the 

reactions taking place as well as the kinetic parameters involved in the reactions. 

 

However, the flow reactor test environment is much simpler than the real SCR exposure 

conditions in the engine aftertreatment system. The reactor studies provide accurate 

performance characterization and kinetic analysis of the SCR catalyst but do not account 

for the more complex conditions (complex urea decomposition process, maldistribution 

of NH3 .etc.) which could occur in engine applications. As a result, well-designed SCR 

engine tests and a model calibrated to the engine experimental data are important for 

developing models for vehicle applications. The model should be able to make reliable 

predictions for both steady-state and transient engine operating conditions. It is also 

important to understand the factors that affect the SCR performance in the engine 

aftertreatment system.  

 

1.4 Goals and Objectives 
 

The goal of this research is to develop, validate and apply a high fidelity SCR model 

applicable to simulate the SCR in the engine conditions. To achieve this goal, coupled 
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experimental and modeling studies were carried out to determine the critical kinetic 

parameters controlling the dynamics of the SCR system performance under varying 

temperatures, space velocities, exhaust inlet species, inlet ammonia maldistribution 

levels and aging conditions with controlled DEF injection for a Cu-zeolite SCR catalyst 

and to quantify the variable impacts on ammonia storage and NOx conversion. The 

specific objectives developed to meet the research goal are as follows:  

 

1. Develop an engine test cell setup with instruments and a data acquisition system for 

both steady state and transient aftertreatment system testing 

 

2. Develop a Cu-zeolite SCR model from the model originally developed for Fe-zeolite 

reactor data [23] by modifying the mass transfer correlations and the global reaction 

mechanisms to simulate the Cu-zeolite experimental data 

 

3. Develop the SCR engine test procedures and conduct SCR engine experiments to 

collect both steady-state and transient data for the purpose of calibrating the SCR 

model and validating the model performance  

 

4. Process the SCR reactor experimental data to characterize the SCR performance 

and determine the internal SCR states under different space velocities and 

temperatures. Use the data to calibrate the high fidelity SCR model by determining 

the model storage capacities and the critical reaction kinetic parameters 

 

5. Use the SCR engine experimental data to calibrate the SCR model by determining 

the NH3 storage parameters and the reaction kinetic parameters. The SCR model 

parameters identified from the reactor data based are used as a starting point for the 

SCR model calibration with engine data. Validate the model performance against 

SCR transient engine experimental data. Compare the SCR models separately 

calibrated to reactor and engine experimental data 

 

6. Characterize NH3 maldistribution profiles with two mixers, e.g. a production and a 

swirl mixer at the SCR inlet, through experimental studies and data analysis. 



9 
 

Determine the NH3 maldistribution effects on the SCR performance in terms of NOx 

conversion, NH3 slip and NH3 storage. Quantify the ammonia maldistribution effect 

on the SCR kinetic parameters  

 

7. Determine the hydrothermal aging effects on the SCR performance and kinetics from 

Spaci-IR data. 

 

1.5 Dissertation Outline 
 

This chapter presented a brief background of the research. The increasingly stringent 

emission and fuel consumption regulations as well as the typical diesel engine 

aftertreatment systems to meet the regulations were introduced. This was followed by a 

description of the research motivation, research goals and objectives. 

 

Chapter 2 provides a literature review of the SCR system development as well as the 

significant studies related to this thesis. Information about SCR characteristics, 

experimental and modeling studies from the published works are summarized and 

presented. The thesis research findings from the experimental and modeling advances 

are presented in Chapters 4 and 5 and they are compared to the published works.  

 

Chapter 3 provides detailed information about the test cell setup and test procedures for 

collecting SCR data. The engine test cell will be introduced with information about the 

engine, dynamometer, aftertreatment system, and specific instruments to collect 

temperature, pressure drop, flow rates, and emissions data. The test procedures and 

test matrix of the SCR engine experiments including steady state, transient, and NH3 

maldistribution tests are given in this chapter. The reactor test setup along with the test 

protocols developed at ORNL and test conditions for both ordinary and space-IR reactor 

tests are also introduced. 

 

Chapter 4 describes the 1D high fidelity SCR model and the model calibration 

procedures. The SCR model equations for mass transfer, heat transfer, storage 
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equation, reaction mechanism and the reaction rate calculations are introduced to give 

the detailed description of the model. Procedures for calibrating the model separately to 

reactor data sets and engine steady state data are also presented in this chapter. 

 

Chapter 5 presents the model calibration results as well as the performance of the 

calibrated model. The model calibrated to the reactor and engine data are validated by 

comparing the simulation results with the experimental measurements. The differences 

in the model parameters identified from the reactor and engine data are presented and 

the reason for the differences will be explained. The experimental and modeling studies 

of the hydrothermal aging effects on the SCR performance and kinetics are presented.  

 

Chapter 6 is a summary of the accomplishments of this research, and the conclusions 

from the experimental and modeling studies. Recommendations about the future 

research directions are presented. 
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Chapter 2.   
 
Literature Review 
 

A literature review of the aspects related to the SCR studies including experimental and 

modeling efforts from published research are presented in this chapter. A discussion of 

the advances of this thesis related to the past accomplishments is presented.  

 

2.1 Emission Control Technologies 
 

As discussed in the Introduction, the diesel emission regulations require research and 

development in emission control technologies. Diesel industry has had to meet the 

transient cycle emission standards since 1988 [24]. From 1988 to 2002, the diesel 

emission standards for NOx and PM were met mainly by improving the engine 

technologies including retarding injection timing, better engine breathing design, 

improved electronic engine controls, increased fuel injection pressure, higher fuel 

quality, etc. Some engines in the 1990s used a DOC to reduce the PM concentration to 

meet the standards. 

 

The EPA 2002 regulations reduced the NOx by 50%, from 4.0 to 2.0 g/bhp∙hr while the 

PM standard was maintained at 0.1 g/bhp∙hr. The NOx emission standards was met via 

application of exhaust gas recirculation (EGR) which was widely used for gasoline and 

light-duty and heavy-duty diesel engines [25,26]. EGR works by recirculating a fraction 

of exhaust gas back into the cylinder. This lowers the in-cylinder flame temperature thus 

reducing the level of NOx thermal formation. However, the application of EGR on heavy-

duty diesel engines sacrificed the fuel consumption, reduced the engine durability and 

increased the PM emissions. The trade-off effects between the NOx and PM emissions 
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[27] made it challenging to significantly reduce both emissions through engine 

technologies to meet the EPA 2007 and 2010 standards.  

 

Research on the aftertreatment technologies including the PM filter and catalytic NOx 

reduction increased. An integrated aftertreatment system with DOC, DPF and SCR was 

investigated. The combined application of a DPF and a SCR on a heavy-duty diesel 

engine was reported to realize higher than 95% PM filtration efficiency and 85% NOx 

reduction on the European Stationary Cycle test procedure (ESC) cycle [24]. 

 

The PM standard was further reduced from the EPA 2002 regulations by 90% and the 

NOx by 25% for the EPA 2007 regulations. The NOx and PM limits became 1.5 and 0.01 

g/bhp∙hr respectively. A diesel particulate filter (DPF) along with cooled EGR technology 

became the dominant solution for the heavy-duty diesel engines to meet the 2007 

emission regulations [8]. A DOC is typically installed before the DPF to oxidize CO, HC, 

NO to NO2 and the diesel fuel injected into the exhaust stream to thermally oxidize the 

PM retained in the DPF. The SCR was not required to meet the EPA 2007 regulations, 

but its advantages and the potential of higher NOx conversion efficiency had been 

proved and made it a promising technology to meet the 2010 emission standards. 

 

The SCR became widely used by the diesel industry in the 2010 to meet the EPA 2010 

regulations [28]. The NOx and PM limits were set to 0.02 and 0.01 g/bhp∙hr respectively. 

The NOx standard was met by the combination of SCR and cooled EGR while the PM 

was reduced by the catalyzed particulate filter (CPF). A DOC was installed before the 

CPF to oxidize HC, CO and NO to NO2. The application of the SCR enabled the engine 

to run with higher NOx levels for improved thermal efficiency. The increased NO2 level 

produced by the DOC facilitates the passive regeneration of the CPF, reducing the fuel 

consumption caused by periodic CPF active regeneration. For the heavy-duty diesel 

engine applications, the SCR was usually installed after the CPF. A decomposition tube 

with a DEF injector was installed between the CPF and the SCR. The injector supplies 

urea water solution into the exhaust. The NH3 produced from urea decomposition is the 

reductant reacting with NOx on the SCR catalytic surface.  
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2.2 Catalytic NOx Reduction 
 

Catalytic NOx reduction technologies have been used for emission control since the 

1970’s in industries for coal fired and diesel power plants [29,30]. The SCR catalyst 

formulations at that time included iron oxide, aluminum oxide, TiO2-based catalyst, and 

others. Among those formulations, the TiO2 based catalyst developed in 1973 had many 

advantages and were commercially implemented for stationary applications. At the same 

time, because of the growing concerns about PM and NOx emissions from diesel 

engines, efforts to implement catalytic NOx reduction technology into diesel trucks were 

initiated in 1992 in Europe. A TiO2- V2O5 type extruded SCR catalyst coupled with urea 

injection and metering system named SINOx [31] was installed into two heavy-duty 

diesel trucks by Siemens AG and Siemens Westinghouse for on-road tests. The urea 

water solution with urea concentration of 32.5% by weight which provided lowest 

crystallization point was selected as the reducant. The NOx reduction efficiency achieved 

60-80% during the 200,000 mile truck life and it proved that the SCR system in a diesel 

truck was able to meet Europe IV and V NOx emission regulations [32]. In 1998, the 

Siemens-Westinghouse was requested to prepare the system for production by 

European truck manufactures including Daimler Chrysler and MAN [33]. 

 

Because of the success of the SINOx system in Europe, US companies started to 

demonstrate and evaluate the system in U.S. trucks in 1999 [33]. A representative study 

of the urea-SCR system with TiO2-V2O5 type catalyst was carried out in both an engine 

test cell and in a heavy-duty diesel truck [34]. The test results showed 56 and 71 % NOx 

reduction over the cold and hot US transient cycles respectively with low NH3 slip level. 

A NOx reduction efficiency of 86% was achieved over a steady state cycle. A NOx sensor 

calibrated to chemiluminescence NOx detector (CLD) was used for NOx measurement 

before and after the SCR system in road tests. The test results confirmed the average 

NOx reduction efficiency of 65% with the urea consumption rate of 94 miles per gallon 

(mpg). Other following studies also proved that the SCR system combined with DPF was 

able to meet the EPA 2007 regulations and potentially the 2010 regulations, but may 

need ultra-low sulfur diesel fuel and effective feedback NOx control strategies [35,36].  
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The NOx regulations for heavy-duty diesel engines in 2010 were further reduced by 80 % 

compared to the EPA 2007 regulations. It required the application of the urea – SCR 

system along with the DOC/DPF. To make this happen, several different SCR 

formulations were developed to provide better NOx reduction efficiency and catalyst 

durability. Extensive experimental efforts along with the modeling studies and control 

strategy development were carried out to further improve the system performance. 

Studies are also being carried out to reduce the aftertreatment system complexity and 

system cost by integrating SCR catalyst with the DPF. A study showed that a combined 

SCR on filter (SCRF) system with DOC installed upstream is able to provide similar NOx 

reduction performance compared to a traditional channel flow Cu-zeolite SCR after 

extended hydrothermal aging equivalent to 120,000 mile catalyst life [37]. 

 

2.3 SCR Formulations 
 

As mentioned in the previous section, the TiO2 based catalyst with active components of 

V2O5 or WO2 used in stationary applications was then applied to diesel engine NOx 

reduction as the first generation of the SCR catalyst. It provided 90% NOx reduction 

between the range of 300 and 500°C. The effective operating temperature of the TiO2-

V2O5 catalyst is more active with the support of WO2. Its activity is usually limited to 

below 550°C because of the low melting point of V2O5 [38]. This limits its application in 

heavy-duty diesel engines because the SCR will be periodically exposed to temperature 

above 550°C when actively regenerating the DPF which is typically installed upstream of 

the SCR. The vanadia catalyst supported by titania is another formulation for stationary 

and diesel applications. It provides promising low temperature performance during cold 

start period with superior sulfur resistance and reasonable thermal durability [39,40]. A 

vanadia SCR catalyst was reported to be thermally stable under accelerated aging 

conditions which is equivalent to a 120,000 mile catalyst life [41]. A diesel aftertreatment 

system with vanadia based SCR placed upstream of the DOC/DPF showed higher than 

95% NOx reduction over the Europe transient cycle (ETC) [42]. However, installing the 

SCR before the DOC/DPF exposes the catalyst directly to engine exhaust coming out of 

the turbocharger. The HC and PM contents in the exhaust affect the SCR performance 
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by blocking the active catalyst sites and cause catalyst deactivation when oxidizing the 

HC and PM loaded on the catalyst at high temperatures.  

 

The new generation of the SCR with metal based zeolite catalysts showed improved 

NOx reduction activities and thermal durability compared to the TiO2 and vanadia. As a 

result, iron (Fe) and copper (Cu) zeolite SCR catalysts were selected for the heavy-duty 

diesel applications to meet the NOx emission regulations. The characteristics of the Fe-

zeolite and Cu- zeolite SCR from different references [43-51] are compared and 

summarized as below. 

 

• Cu-zeolite SCR provides better NOx reduction efficiency than Fe-zeolite SCR at 

the temperatures below 350°C while Fe-zeolite SCR performs better at higher 

temperatures.  

 

• Both catalysts have improved thermal durability in comparison to other catalytic 

formations, but extremely high temperature still can deactivate the catalysts. The 

not-to-exceed temperature is 775°C and 925°C respectively for Cu-zeolite and 

Fe-zeolite catalysts. 

 

• Both catalysts show the ability to oxidize NH3 at temperatures above 300°C, and 

Cu-zeolite is more active than Fe-zeolite for oxidizing NH3, resulting in less 

available NH3 for the NOx reduction reactions. This also explains why NOx 

reduction efficiency over Fe-zeolite is higher than that of Cu-zeolite at 

temperatures higher than 350°C. 

 

• Cu-zeolite SCR has higher NH3 storage capacity than Fe-zeolite SCR. The NOx 

reduction efficiency of both catalysts is dependent on the amount of NH3 

adsorbed on the catalyst surface. High temperature NOx reduction efficiency for 

both catalysts keeps increasing with increasing of NH3 stored on the catalyst. 

However, lower temperature NOx reduction on Fe-zeolite SCR is inhibited by 

extra NH3 storage caused by active SCR sites being covered by NH3. But Cu-

zeolite SCR is not affected by its high NH3 storage capacity.  
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• The NOx reduction efficiency over Cu-zeolite SCR is less dependent on SCR 

inlet NO2/NOx ratio compared to that of the Fe-zeolite. However, the Fe-zeolite 

SCR catalyst shows better NOx reduction activity than the Cu-zeolite with an 

optimal of NO2/NOx ratio of 0.5. 

 

• The NO + NH3 reaction at lower temperatures is subjected to inhibition effects 

over the Fe-zeolite SCR, causing a reduction in the NO conversion efficiency 

shown in Figure 2.1. This effect was not observed over a Cu-zeolite SCR 

catalyst. 

 

• The Fe-zeolite SCR catalyst is forms more N2O in the presence of excess NO2 

compared to the Cu-zeolite SCR. 

 

• For temperatures lower than 275°C, both catalysts tend to form surface nitrates 

with NO2 and NH3 in the feed stream. The surface nitrates can be decomposed 

at high temperatures or reduced through reactions with NO. However, the 

cumulated surface nitrates on the catalytic surface are difficult to reduce when 

the NO fraction is low at temperatures below 275°C, causing an inhibition effects 

on the NOx reduction efficiency. 

 

 
Figure 2.1: NOx conversion performance at 200°C of Fe and Cu-zeolite SCR with 350 

ppm of NO and 350 ppm of NH3 in the gas flow [50] 
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Both Fe and Cu-zeolite SCR catalysts have their advantages and disadvantages. 

Studies were carried out to combine both catalysts in order to obtain better performance 

compared to each individual formulation. The experimental results of a combined Fe-

zeolite and Cu-zeolite catalyst was presented in reference [47]. In this study, a Fe-zeolite 

SCR was placed in front of a Cu-zeolite SCR. Different percentage combinations of the 

two catalysts were tested in a flow reactor. The results showed that the combined 

catalyst showed higher NOx conversion efficiency at both high and low temperature 

which cannot be realized by a single catalyst formulation. It also concluded that a setup 

with 33% Fe-zeolite and 67% Cu-zeolite provided best steady-state NOx conversion 

performance. However, it was reported that the transient performance of the combined 

catalyst is not as good as the Cu-zeolite SCR at the temperatures below 300°C [47]. 

Another study was conducted to test three different combinations of the Fe-zeolite and 

Cu-zeolite catalysts. The 33% Fe-zeolite + 67 % Cu-zeolite was tested first and similar 

results were reported [52]. The second test was performed with the “mixed washcoat 

consisting equal fraction of Fe- and Cu-zeolites”. The performance of this setup reached 

the average performance of the two catalysts [52]. The third setup tested was a dual 

layer system consisting of a layer of Fe-zeolite washcoat on top of a Cu-zeolite layer 

with the fraction of 33% and 67% for each formulation respectively. This combination 

achieved better performance than the other setups and each individual catalyst 

formulation [52]. 

2.4 SCR Experimental Studies  
 

The SCR experimental studies include flow reactor tests, engine test cell tests, and on 

road tests. The representative experimental studies will be reviewed in this section.  

 

2.4.1 SCR Reactor Testing 
 

The flow reactor tests provide opportunities to collect SCR data under specific conditions 

that cannot be easily achieved in the engine testing environment. In a reactor setup, the 

temperature is typically controlled or maintained by an oven with temperature feedback 

control. Synthetic exhaust flow generated from calibration gas cylinders is used in 
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reactor tests so that the inlet concentration of each species can be individually 

controlled. The test protocols can be designed for certain modeling or characterization 

purposes. The typical flow reactor hardware setups and reactor test design can be found 

in references [43,46,50,53-58]. The purposes of those reactor tests included collecting 

data for studying the SCR performance under different conditions and the SCR kinetics, 

mass transfer limitations, SCR poisoning by HC and sulfur contents, thermal aging and 

other factors affecting the SCR performance.  

 

In reference [43], a flow reactor was setup to test the zeolite based SCR catalysts using 

a compact four step protocol. The basic components of the synthetic exhaust flow 

consisted of 10% O2, 8% CO2, 7% H2O and balanced with N2. NO, NO2 and NH3 were 

turned on and off at each different segment of the protocol to generate different NO2/NOx 

ratios and NH3/NOx ratios (ANR) at the SCR inlet. The flow rates of different gases were 

controlled by mass flow controllers. The test protocol used in the tests facilitated studies 

of oxidation reactions between NO and NO2, NOx storage on the catalyst, NOx 

conversion, NH3 slip and storage under SCR reaction conditions with different NO2/NOx 

ratios, NH3 oxidation and storage under NH3 saturation condition, and reactions between 

NOx and storage NH3 after NH3 is turned off. The data collected from the reactor tests 

were used for SCR performance characterization and determining the kinetic parameters 

of the major SCR reactions [43].  

 

Reactor studies to determine the influences of the NO2/NOx ratio and the ANR on Fe-

zeolite and Cu-zeolite SCR performance were presented in references [56,59]. The test 

results showed that Cu-zeolite SCR stored more NH3 and had better NO reduction 

activity but poor NO2 reduction performance under low temperatures because the 

formation of surface nitrates are more stable on Cu-zeolite SCR catalyst. The Fe-zeolite 

SCR gave better performance when the inlet NO2/NOx ratio was higher than 0.5. At 

temperatures from 350 to 400°C, with the ANR slightly higher than one can significantly 

improve NOx reduction efficiency without forming any NH3 slip. At low temperatures 

when ammonia storage capacity is high, reducing ANR to slightly lower than 1 can 

reduce NH3 slip level without significant impact on NOx conversion efficiency. However, 

from a control viewpoint, it is still challenging to optimize the amount of NH3 stored on 
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the SCR for different engine operating conditions to maximize NOx reduction efficiency 

and reduce NH3 slip, especially for transient engine operating conditions. 

 

A new reactor test technique usually called “Spaci-MS” or Spaci-FTIR” (depending on 

which emission analyzer is used for emission measurements) has been developed and 

recently presented in the literature. The technique allows measuring the internal 

gaseous concentrations in catalyst monoliths [60-63]. The application of the Spaci-MS 

technique is limited compared to the Spaci-FTIR because of the difficulty in measuring 

low level of NH3 in the presence of N2 and H2O using the mass spectrometer. A typical 

setup schematic of the Spaci-FTIR test is shown in Figure 2.2. In reference [63], a gas 

phase MKS MultiGas 2030 FTIR was used for internal gaseous measurements of a Fe-

zeolite SCR using the Spaci technique. A micro capillary that can be extended into 

different axial locations of catalyst monoliths was used to draw gas flow into the FTIR. 

Because the volume of the sampling gas from catalyst channels is limited compared to 

the gas cell of the FTIR, the sample gas was diluted with N2 under a specific ratio before 

feeding to the FTIR. The measured concentrations multiplied by the dilution ratio gave 

the gas concentrations at different axial locations. Compared to traditional reactor 

experiments, the spaci test results gave a better insight of the changes in gaseous 

concentrations along the catalyst channel and the relative reaction rate at different axial 

locations. With a carefully designed test protocol, the Spaci-FTIR technique also 

provides opportunities of determining the axial NH3 storage distribution, which is 

important to modeling and control strategy development efforts.  

 

 
Figure 2.2: A schematic of the Spaci-FTIR test setup: “(1, 2, 3): thermocouples; (4) 
hollow quartz rods for gas preheating and distribution; (5) quartz tube reactor; (6) 
monolith Fe-zeolite catalyst; (7) insulation material; (8) fused silica capillary.”[63] 
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An alternative testing procedure was introduced in reference [64] to achieve the axial 

resolved measurements for a Cu-zeolite SCR by coating the core sample with a different 

length of catalytic washcoat. However, keeping the washcoat loading density consistent 

for different core samples tested was a problem. 

 

The reactor testing technique provides opportunities for the SCR characterization and 

kinetics analysis. However, it simplifies the SCR exposure conditions in engine 

applications by introducing gaseous NH3 as reductant instated of urea water solution. 

The more complex engine exhaust conditions including the urea decomposition, flow, 

temperature and species maldistribution were not considered in the reactor tests. 

 

2.4.2 SCR Engine Testing 
 

The engine testing environment allows the SCR to be exposed to the real engine 

exhaust conditions. In an engine test cell, the engine is coupled with a dynamometer to 

control the engine speed and torque. Both steady-state and transient SCR tests can be 

performed in an engine test cell. Procedures for performing transient aftertreatment 

system tests in an engine dynamometer test cells can be found in reference [65].  

 

A study of the performance of both Fe-zeolite and Cu-zeolite SCR catalysts were carried 

out in an engine test cell at Johnson Matthey Inc. [66]. The test cell consisted of a Model 

Year 2007 US medium duty diesel engine coupled with a 600 HP AC dynamometer. The 

aftertreatment system consisted of DOC, CPF, and SCR. A MKS FTIR and a 

Chemiluminescence NOx detector were used for emission measurements. Ultra-low 

sulfur diesel and the 32.5% urea water solution were used in the tests. Steady state 

tests under different temperature and space velocity conditions with three different 

NH3/NOx ratios (0.8, 1.0 and 1.3) and transient tests with a developed urea injection 

strategy were performed for both catalysts. The engine test results showed similar 

results with the reactor test results and confirmed the conclusion that Cu-zeolite 

provided better performance under low temperatures and better tolerance to the inlet 
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NO2/NOx ratio. The paper also concluded that the Cu-zeolite SCR is less tolerant to the 

sulfur poisoning compared to the Fe-zeolite SCR.  

 

Reference [67] presented a detailed engine aftertreatment system test procedure and a 

experimental data collection strategy to develop a “virtual diesel aftertreatment exhaust 

line” consisting of DOC, DPF, SCR, and ammonia oxidation catalyst (AMOX) models. 

The test cell consisted of a 13 L 355 kW diesel engine that met EPA 2007 regulations. 

The aftertreatment system setup consisted of a DOC, a DPF, two Fe-zeolite SCR bricks 

and an AMOX catalyst. A measurement setup for collecting the data used for model 

development and calibration was introduced in the paper. A FTIR was setup for emission 

measurements before and after each catalyst while a LDS Laser Diode analyzer was 

used for tailpipe NH3 measurements. The emissions at the SCR inlet was not measured 

using the analyzers because of the possible presence of incomplete urea decomposition 

products. Temperatures at different locations of the aftertreatment system as well as 

temperature gradients in the DOC and DPF substrates were measured. Pressure before 

and after each catalyst brick and the engine out PM were also measured. A 

measurement program specially designed for the purpose of calibrating the models was 

introduced to collect data under various conditions. The determined SCR test conditions 

included low, medium and high exhaust mass flow rates with post-DPF temperatures 

from 200 to 380°C as well as the DPF regeneration conditions. The performance of the 

calibrated virtual exhaust line was validated against transient test cycles. The possible 

applications of the virtual exhaust line were also introduced. However, a drawback of the 

test setup is that the gaseous concentrations after a catalyst brick might not be uniformly 

distributed. This would cause incorrect emission measurements when sampling right 

after the brick, especially after the SCR when the urea injected upstream is not well 

mixed with the exhaust flow. 

 

On road vehicle tests were conducted to test the system reliability, durability and field 

performance under real driving conditions [36,68,69]. Portable emission analyzers or 

sensors are required for emission measurements during on road vehicle testing. The 

vehicle aged catalyst after significant driving hours can be used for laboratory testing to 

study the aging effects on the SCR performance. The on road tests did not contribute to 
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studying the characteristics of the SCR or developing the SCR model, therefore it will not 

be discussed in further detail. 

2.5 SCR Modeling Studies 
 

A SCR model usually consists of chemical reaction mechanisms and their associated 

kinetics, mass balances of gaseous species, and an energy balance. This section will be 

focusing on the literature that are related to the SCR reaction mechanisms, modeling of 

the mass transfer and heat transfer for the SCR system. 

 

2.5.1 SCR Reaction Mechanisms 
 

As discussed in previous sections, a calibrated high fidelity SCR model is important for 

system characterization, optimization, control strategy and OBD development. Selection 

of the SCR reaction mechanisms is important for a SCR model to simulate the reaction 

system. The experimental and modeling findings and accomplishments about the SCR 

reaction mechanisms from the literature are presented. The global chemical reactions for 

the urea SCR system include urea decomposition reactions that produce NH3 and the 

SCR reactions that take place on the catalytic surface. 

 

For the urea-SCR, the reductant is introduced by injecting the urea-water solution into 

the exhaust stream. A numerical model simulating the interaction of the spray and the 

surrounding exhaust gas is presented in reference [70]. The injected urea water solution 

then goes through a complex process to produce NH3. NH3 is released through 

hydrolysis and thermal decomposition of the aqueous urea. After the urea-water solution 

is injected, evaporation of the water from small droplets formed by high pressure 

injection leads to formation of solid or molten urea as shown in Equation 2.1, followed by 

a urea decomposition process which can be divided into two steps [71-74]. The first step 

is the hydrolysis process of the molten urea producing ammonia and isocyanic acid are 

given in Reaction 2.2. Then in the second step, hydrolysis of isocyanic acid takes place 

and produces ammonia and CO2 as given in Reaction 2.3. Isocyanic acid is stable in the 

gas phase and requires a catalytic surface to accelerate the hydrolysis reaction [75].  



 

23 
 

 

The modeling studies to simulate the urea injection and decomposition process can be 

found in the literature [70,76,77]. However, because of the complexity of this process, it 

was not included in most of the SCR models. It was assumed that gas phase NH3 

instead of urea and its incomplete decomposition products was present at the SCR inlet. 

 

The ammonia formation process may occur all the way from injection of the urea-water 

solution until the mixed flow passes the first section of the SCR catalyst, and its 

completion is dependent on the exhaust temperature. Each of the reactions given in 2.1, 

2.2, and 2.3 starts at the temperature of 193, 250, and 400°C respectively [71]. At 

exhaust temperatures below 300 C, less than 20% of urea decomposition is complete 

before going into the SCR and the rest of urea decomposition process takes place on 

the SCR catalyst surface [73]. This is considered to be one reason that the SCR 

performance in the engine environment is lower than in the reactor tests [77]. 

Additionally, the process shown in Equation 2.1 cannot be complete under situations of 

low exhaust temperature and poor mixing, leading to urea deposits or urea crystallization 

formation on the exhaust pipes.  

 

The urea decomposition process is complex and has several pathways forming side 

products including (CNOH)3 (cyanuric acid) and C3H6N6 (melamine), as reported in 

reference [78]. The pathway reactions are not significant and no by-products have been 

observed post SCR, but the byproducts can form solid deposits in the exhaust pipe or on 

the catalyst surface. These factors can significantly affect the SCR performance when 

applied to engine exhaust. For vehicle applications, urea injection is not initiated at low 

exhaust temperature conditions in order to prevent large amounts of urea formatting 

deposits. 

 

 (NH2)2CO (aqueous) → (NH2)2CO (molten) + x H2O     2.1 

 (NH2)2CO (molten) → NH3 + HNCO     2.2 

 HNCO + H2O → NH3 + CO2    2.3 
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A laboratory and engine study of the urea deposit formation and vaporization on Fe-

zeolite and Cu-zeolite SCR catalysts is presented in reference [72]. A core SCR sample 

was tested with laboratory urea dripping onto the catalyst in a flow reactor at a space 

velocity of 15,000 hr-1 and temperatures from 150 to 350 C. In the engine tests, urea 

decomposition products and solid deposits were analyzed. A powder X-ray diffraction 

(XRD) analyzer and a Mattson Instruments Cygnus 100 FTIR were used for analyzing 

the diffraction patterns and the infrared spectra of the solid deposits collected from the 

reactor and engine tests. An MKS FTIR was used to measure the urea decomposition 

products in the engine tests. The results showed that the deposits formed in reactor 

tests were similar to the samples collected from engine tests. The urea- related deposits 

were formed below a temperature of 300°C and large fraction of the deposits (more than 

95 %) can be vaporized at temperatures higher than 350°C. The solid deposits formed 

contained a series of components including urea and urea decomposition byproducts 

(biuret, cyanuric acid, .etc.). Based on the analysis of a thermal gravimetric test, it was 

determined that different components vaporized at different temperatures.  

 

The SCR reaction mechanisms are complex and include a series of pathway reactions. 

However, several global reactions were selected in the literature to represent the 

complex reaction mechanisms. The global NOx reduction reactions take place between 

the species in the surface phase (an assumed thin layer on the catalytic surface) and the 

NH3 stored on the catalyst. The NH3 adsorption/desorption reaction shown in Reaction 

2.4 is considered as the first step of the SCR reaction mechanisms. The stored NH3 then 

reacts with other species in the surface phase. S* refers to the storage sites on the 

catalyst and NH3* refers to the stored NH3. Most of the SCR models published have only 

one type of NH3 storage site which stores NH3 and supports all SCR reactions. However, 

Choi proved that there were two types of reaction sites on a SCR catalytic surface by 

performing temperature-programmed desorption (TPD) tests over the SCR catalyst [79]. 

Reference [23] also showed that adding a second reaction site which only supports NH3 

adsorption and desorption to the Fe-zeolite SCR model improved the model 

performance. A second reaction site improves the NH3 adsorption and desorption 

performance of the model and adds more kinetic parameters to be identified. 
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 NH3 + S* ↔ NH3*    2.4 
 

As described in the literature [80-86], there are three dominant global reactions between 

the stored NH3, NO and NO2 taking place on the SCR surface for different SCR 

formulations including TiO2-based, titania-based, Cu-zeolite, and Fe-zeolite SCR. The 

first global reaction introduced is called the standard SCR reaction which takes equal 

molar of NH3 and NO to react in the presence of O2. This chemical reaction is shown in 

Reaction 2.5 [82]. It was reported in reference [50] that the catalyst exhibited two 

separate functions on two types of catalyst sites under standard SCR condition. The 

catalyst support behaved as an acid site which adsorbed NH3 while the transition metal 

oxidized NO and formed “surface NOx adsorption complexes” which react with NH3 

afterwards [50]. The excess NH3 in the gas flow has more effect on the NO oxidation 

process for the Fe-zeolite SCR than the Cu-zeolite SCR and it explains the NH3 

inhibition effects observed over Fe-zeolite SCR. However, this mechanism and 

explanation is still debatable and the detailed mechanism of the standard SCR reaction 

is still under investigation.  

 4 NH3 + 4 NO + O2 → 4 N2 + 6 H2O.    2.5 
 

This reaction plays an important role for NOx reduction if the SCR is placed in front of the 

DOC and the CPF because about 90% of diesel engine out NOx is NO. For applications 

where the SCR is located after a DOC and CPF, the NOx composition will be different 

because of the NO and NO2 involved reactions across these first two components. In the 

situation with the SCR inlet molecular NO/NO2 ratio of 1, the second global SCR reaction 

which is given in Reaction 2.6 will become dominant. It is called fast SCR reaction 

because it has the highest reaction rate among all global SCR reactions reported. As a 

result, controlling the SCR inlet NO/NO2 ratio close to unity will promote the fast SCR 

reaction and improve NOx reduction efficiency [87].  

 

 2 NO + 2 NO2 + 4 NH3→4 N2 + 6 H2O    2.6 
 

The fast SCR reaction was reported to be a combination of a series of step reactions 

over a Fe-zeolite SCR catalyst [49]. This reaction mechanism was separated into two 

steps which were the formation of ammonia nitrates and consumption of ammonia 
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nitrates. The reactions included in the first step are given in Reactions 2.7-2.10, and the 

reactions included in the second step are given in Reactions 2.11-2.13. It can be seen 

that there are several intermediate products that can be consumed right away. Those 

intermediate products include nitrous acid (HONO), nitric acid (HNO3) and ammonium 

nitrate (NH4NO3). 

 2 NO2 ↔N2O4    2.7 

 N2O4 + H2O ↔ HONO + HNO3    2.8 

 NH3 + HONO ↔ N2 + 2 H2O     2.9 

 NH3 + HNO3 ↔ NH4NO3     2.10 

 NH4NO3 ↔ NH3 + HNO3     2.11 

 HNO3 + NO ↔ NO2 + HONO     2.12 

 NH3 + HONO → N2 + 2 H2O.    2.13 

 

A study of a copper-on-alumina SCR catalyst reported the surface nitrates formation 

impacts the NH3 oxidation in presence of NO [88]. Reference [89] reported a “NOx self-

inhibition effect” below the temperature of 300°C over a Cu-zeolite SCR catalyst. It also 

concluded that the effect was caused by the NOx and ammonium nitrate formed from 

NOx and NH3 under low temperatures occupying and blocking the active catalytic site. 

Reference [48] reported a similar phenomenon which was the fast SCR reaction being 

blocked by NH3 over a Fe-zeolite SCR catalyst. All these phenomena can be explained 

by the mechanisms introduced above. When NH3 is present in the exhaust flow, the 

HNO3 formed when NO2 and H2O react with NH3 to form NH4NO3 (Reaction 2.10) which 

is stable at low temperatures. The reaction rate of Reaction 2.11 which releases HNO3 is 

limited by the low temperature, causing no HNO3 to react with NO. So the reason of the 

inhibition was not actually because of the NH3 blocking the fast SCR reaction, but the 

NH4NO3 formation interrupted the following step reactions. Reducing NH3 concentration 

at this point would help move the step reactions forward to increase NO reduction 

efficiency. As a result, from the application point of view, high NO2 accompanied with 

high NH3 concentrations at the SCR inlet should be avoided at low temperatures 

because of the surface ammonium nitrate formation inhibiting the NOx reduction 

performance as discussed above.  
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A chemical model of an integrated SCR-on-DPF system was introduced in Reference 

[90]. The model included the ammonium nitrate formation from NO2 and NH3 which is a 

reversible reaction as shown in Reaction 2.14. The ammonium nitrate formed can 

adsorb and desorb from the catalyst storage site. A similar mechanism for the nitrates 

formation was also included in a kinetic model for a V2O5-WO3/TiO2 urea-SCR catalyst 

[91]. 

 

 2 NH3 + 2 NO2 + S*↔ NH4NO3*+ N2 +  H2O    2.14 

 

The reaction between NO2 and NH3 on a SCR catalyst is slower than the reactions 

described in Reactions 2.5 and 2.6. It is called the slow SCR reaction and is shown in 

Reaction 2.15.  

 

 4 NH3 + 3 NO2 → 7/2 N2 + 6 H2O    2.15 
 

In addition to the slow SCR reaction, there are pathway reactions generating N2O in the 

NH3-NO2 reaction mechanisms [73] with the pathway reactions given in Reaction 2.16 

and 2.17. The amount of N2O formed from NH3-NO2 reaction mechanisms over Fe-

zeolite SCR is temperature dependent. N2O generated is greatest between the 

temperature range of 300 and 350°C, then drops off at both lower and higher 

temperatures [23]. The Cu-zeolite SCR tends to form less N2O than the Fe-zeolite. 

 

 6 NH3 + 8 NO2→7 N2O + 9 H2O    2.16 

 4 NH3 + 4 NO2 + O2  → 4 N2O + 6 H2O    2.17 
 

Another N2O formation reaction can be expressed as the global reaction  

 2 NH3 + 2 NO2 → N2O + N2 + 3H2O.    2.18 
 

N2O formation is also observed even if there is no NO2 in the SCR inlet stream for a Cu-

zeolite SCR at temperatures higher than 250°C with peak formation rate between 300 

and 350°C [87]. However, this NO2 formed is not stable in the presence of NH3, and it is 
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assumed that N2O is consumed as fast as it is produced under certain situations, so N2O 

exists for only a short period of time [23]. This N2O consumption reaction is given as  

 

 3 N2O + 2 NH3 → 4 N2 + 3 H2O                  2.19 
 

The ammonia oxidation reaction needs to also be taken into consideration for SCR 

chemical mechanisms, especially for temperatures higher than 300°C [92]. The 

ammonia oxidation reaction proceeds selectively to N2 (given in Reaction 2.20)instead of 

NO (given in Reaction 2.21) [51,93]. The selectivity to N2 is greater than 90% at the 

temperatures below 600°C, and the selectivity to NO may only start at temperatures 

higher than 500°C for the Fe-zeolite catalyst [93]. It was reported that byproducts 

including NO, NO2, and N2O were detected in NH3 oxidation products at temperatures 

above 400°C for a Cu-zeolite SCR as shown in Figure 2.3 [46], which is evidence that 

NH3 is oxidized to NOx. However, no byproduct was found below 400°C [37]. The 

activation energy of Reaction 2.20 is estimated to be about 20 kcal/gmol over a Fe-

zeolite catalyst, and 24 kcal/gmol over a vanadium-based catalyst [51].  

 

 4 NH3 + 3 O2  → 2 N2 + 3 H2O    2.20 

 NH3 + 5/4 O2  → NO + 3/2 H2O     2.21 
 

 
Figure 2.3: NH3 oxidation in the absence of NOx as a function of temperature over a Cu-

based SCR under the space velocity of 30,000 hr-1 [46] 
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It is described in references [43,94] that both the NO2 decomposition reaction and the 

NO oxidation reaction are taking place on the SCR catalytic surface. NO2 is decomposed 

to NO at temperatures higher than 450°C on a Cu-zeolite catalyst, and this NO2 

reduction reaction is reversible, which means that NO can also be oxidized to NO2. NO 

oxidation to NO2 never exceeds 10% at any temperatures [94]. The activation energy of 

the NO2 reduction reaction was reported to be substantially higher than the NO oxidation 

reaction [43]. This reversible reaction is given as 

 

 2 NO + O2 ↔ 2 NO2 .    2.22 
 

In reference [23], it was presented that overconsumption of NH3 under standard SCR 

reaction conditions was determined for a Fe-zeolite SCR catalyst based on reactor 

experimental data. It consumed more NH3 to reduce a certain amount of NO and the 

NH3 oxidation reactions were not able to explain the missing NH3. A second standard 

SCR reaction shown in Reaction 2.23 with NH3/NO ratio of 5/3 in the reactants was 

introduced. The 2nd standard SCR reaction is the combination of the standard SCR 

reaction (2.5) and the reaction of NH3 oxidation to NO (2.21). At low temperatures when 

NH3 oxidation to NO did not take place, NH3 overconsumption under NO + NH3 reaction 

condition was still observed, hence it is reasonable to add the 2nd reaction. 

 

 5 NH3 + 3 NO + 9/4 O2 → 4 N2 + 15/2 H2O   2.23 
 

A Cu-zeolite SCR model was introduced in reference [94]. A 1-D numerical kinetic model 

for Cu-zeolite SCR was developed and calibrated based on reactor experimental data. 

The model is capable of simulating the SCR reactions and predicting SCR outlet NO, 

NO2, NH3 and N2O concentrations. H2O storage and desorption was included in the 

model to improve the temperature prediction performance during the cold start period. 

The model had a single storage site that supported NH3 adsorption, desorption and other 

SCR reactions including standard, fast, slow SCR reactions, N2O formation, two NH3 

oxidation reactions, NO oxidation reaction which is a reversible reaction of the NO2 

decomposition reaction, and an unusual reaction shown in Reaction 2.24 which can 

explain the phenomenon that the NO2 to NO conversion in the presence of NH3 was 

greater than the NO2 decomposition reaction in absence of NH3. The model was 
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calibrated to reactor data and the model performance was validated to transient engine 

data. It was found more challenging for the model to predict the engine data because a 

series of factors including errors in the model inlet NH3 concentrations, simple rate 

equations for the reaction mechanisms, incomplete urea decomposition and NH4NO3 

deposition in engine tests. 

 

 2 NH3 + 3 NO2 → 3 NO + N2 + 3 H2O   2.24 
 

Although the SCR reaction mechanisms have been studied and presented in the 

literature, it is not able to cover all the step reactions and pathways that are taking place 

in the SCR. It is also too complex for a model to include all the SCR reactions. Careful 

selection of the global chemical reactions mechanisms is important in developing a 

model that effectively simulates the SCR reaction system. 

 

2.5.2 Mass Transfer 
 

A simplified one-dimensional SCR model which considers one single SCR channel is 

used by many researchers in order to reduce model computation time. SCR models over 

different catalytic formulations including Vanadia-titania SCR [95,96], Fe-zeolite SCR 

[97,98], Cu-zeolite SCR [94] have been published. For the SCR models published, Eley-

Rideal mechanism which assumes only one of the reactants gets adsorbed on the 

catalytic surface and reacts with other reactants in the surface phase is commonly used 

to model the reaction mechanisms over the SCR catalyst. It’s assumed that NH3 is the 

only species adsorbed on the catalyst, and the adsorbed NH3 reacts with other species 

in the surface phase. Gaseous species in the surface phase are assumed to be 

transported from the gas phase which refers to the bulk flow through the catalyst 

channel.  

 

The mass transfer process is a factor affecting the SCR performance. Modeling the 

mass transfer between gases in gas and surface phases is important for developing the 

SCR model and improving the model accuracy in the mass transfer controlled regime 

[99].  
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The importance of modeling the mass transfer of channel flow catalysts have been 

addressed and studied [100-102]. Many studies on correlations of the Sherwood number 

which refers to a dimensionless mass transfer coefficient have been reported in the 

literature. The Sherwood number (Sh) correlations (a represent of the ratio between 

convective and diffusive mass transport) for difference channel shapes can be found in 

references [100,101]. A correlation for the Sherwood number for automobile catalyst 

converter applications was developed based on monolith reactor tests and was 

introduced in Reference [103]. The correlation of the Sherwood number is given in 

Equation 2.25. 

 

 0.4830.766 ( Re ) , ( .8 )0 130d Re SdS S
L

c
L

h c < ⋅ ⋅ <= ⋅ ⋅ ⋅  2.25 

 

Where, d and L are the diameter and the length of the channel. Re is the Reynolds 

number which is the ratio of inertial force to viscous force. Sc is the Schmidt number 

which represents the ratio of the momentum diffusivity and mass diffusivity. The 

calculations of Re and Sc are given in Equations 2.26 and 2.27 respectively. 

 Re HQD
A

ρ
µ

=      2.26 

 Sc
D
µ
ρ

=      2.27 

 

Where, ρ is the density of the exhaust flow, Q is the standard volumetric flow rate, DH is 

the hydraulic diameter of the catalyst channel, μ is the dynamic viscosity of the exhaust 

flow in, A is the cross sectional area of the channel, D is the mass diffusivity. 

 

A comparison of the Sherwood number correlation shown in Equation 2.25 above with 

several other correlations in the literature given in Equations 2.28, 2.29 and 2.30 was 

presented in reference [104].  

 

 0.452.976 (1 0.095 Re )dSh Sc
L

= ⋅ + ⋅ ⋅ ⋅
 

  2.28 
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 0.45 0.560.705 ( Re)dSh Sc
L

= ⋅ ⋅ ⋅
 

   2.29 

 0.452.709 ( Re )LSh Sc
z

= ⋅ ⋅ ⋅
 

   2.30 

 

Where, z is the axial distance from the inlet the channel. And L is the length of the 

catalyst channel. The results showed that each correlation showed a different Sherwood 

number distribution along the channel length because of the differences in catalyst 

specifications. Different Sherwood number correlations can affect the SCR model 

performance. 

 

The mass transfer effects on the SCR model performance was studied in reference 

[104,105]. It was concluded that the higher Sherwood number resulted in better NOx 

conversion performance and the effects increased along with increase in the 

temperature and space velocity. The mass transfer effect on the SCR reactions is a 

function of the temperature and NO2/NOx ratio. At low temperatures when there is NO2 

present, the change in Sherwood number on the NOx conversion becomes more obvious 

[104].  

 

The mass transfer process discussed above is classified as external mass transfer, 

which refers to the diffusion process of the species in bulk flow to the catalytic surface. 

Other mass transfer processes in a SCR catalyst include: (1) the diffusion of species in 

the pores of the catalyst washcoat which referred as internal mass transfer (2) the 

diffusion of species within the nano pores of the zeolite crystallites (3) the convective 

flow through the channels of the monolithic catalyst [99,106]. The effects of both external 

and internal mass transfer on different SCR reactions over Fe-and Cu-zeolite SCR 

catalysts were studied through reactor tests with different catalyst dimensions and 

washcoat loadings [99]. The washcoat diffusion limitations on different reactions were 

determined: (1) the NH3 oxidation was affected by washcoat diffusion for both Fe-and 

Cu-zeolite SCR while the effects under low temperatures over the Cu-zeolite SCR was 

more pronounced (2) the diffusion limitations for the standard SCR reaction were 

important for both formulations in different temperature ranges (3) the washcoat diffusion 

limitations were observed for the fast and slow SCR reactions over both catalyst 
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formulations in the temperature range of 300 to 500 C (4) the NO oxidation reaction was 

not affected by the washcoat diffusion [99]. 

 

2.5.3 Heat and Energy Transfer 
 

Modeling of the heat and energy transfer for the heavy-duty diesel aftertreatment system 

is usually applied to the DOC and CPF since there are significant temperature gradients 

when oxidizing the HC and PM. The SCR temperatures are more constant from inlet to 

the out under steady state conditions because of the small enthalpy change for the SCR 

reactions. A temperature difference of less than 4°C between the inlet and outlet of the 

catalyst was observed from the Fe-zeolite SCR experimental data [23]. Isothermal 

assumption was made for most of the published SCR models. When operating under 

transient engine conditions, the temperature gradients in the SCR catalyst cannot be 

neglected because of the heat transfer between the exhaust flow, the substrate and the 

ambient. Including the heat transfer in the SCR model is important for improving the 

simulation results under transient conditions. 

 

The modeling of heat transfer for a DOC catalyst was introduced in the literature 

[107,108]. The heat transfer between exhaust flow and the substrate and between the 

substrate and the ambient were considered. Two energy balance equations respectively 

for the gas phase and the substrate were used to model the heat transfer. 

 

2.6 SCR Deactivation Effects 
 

Although the durability of the Fe- and Cu- SCR catalysts has been proved as discussed 

in previous sections, the activity of the catalysts may become deactivated after being 

exposed to HC or sulfur compounds and long terms of hydrothermal conditions. Other 

factors including the uniformity of the exhaust flow and the gaseous concentrations 

going into the SCR also affects the overall SCR performance in terms of NOx conversion 

efficiency and NH3 slip. The HC poisoning, thermal aging, as well as the maldistribution 

effects on the SCR will be discussed in this section. Ultra-low sulfur diesel with sulfur 
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concentration of less than 15 ppm is used in the US since 2006, therefore, the sulfur 

poisoning effect is negligible [46].  

 

2.6.1 SCR HC Poisoning Effect 
 

Diesel fuel is a combination of several thousand hydrocarbons including saturated 

hydrocarbons and aromatic hydrocarbons, .etc. The unburned hydrocarbons in diesel 

exhaust compete with ammonia for occupying active SCR catalytic sites below 

temperatures of 300°C [109], as a result, blocking the active sites and reducing NOx 

reduction performance of the SCR [110,111]. For heavy-duty diesel engine applications, 

the SCR is typically used in a combination with a DOC and CPF in front of the SCR, 

which under normal conditions oxidize most of hydrocarbons in the diesel exhaust. In the 

case of a DOC and/or CPF failure, the SCR will be exposed to higher concentrations of 

hydrocarbons. Alternatively, in applications such as light-duty vehicles, the SCR is 

located right after the turbocharger and the hydrocarbons go directly into the SCR in this 

situation. As a result, it is important to understand the effect of hydrocarbons on SCR 

performance. 

 

A study of the effect of hydrocarbons on a low temperature SCR was carried out on a 

bench reactor system [111]. Decane, ethylene and benzene were used as surrogate 

hydrocarbons representing the main components of diesel hydrocarbons. It was 

observed that NOx reduction over the SCR was inhibited with injection of the surrogate 

hydrocarbons. Benzene showed the most negative effect on NOx reduction activity. A 

series of tests were also carried out to determine suitable conditions for regenerating a 

SCR poisoned by hydrocarbons [111]. 

 

A study of hydrocarbon effect on a urea SCR was also performed and introduced in 

reference [110,112]. Toluene was used as a representative hydrocarbon and the 

experimental work was carried out on a bench reactor system. Hydrocarbon inhibition of 

the NO oxidation, hydrocarbon storage, and hydrocarbon effect on the SCR reactions 

were studied. It was concluded that the toluene adsorbed on the catalyst sites has 
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inhibition effects on SCR reactions. More effects were observed under lower 

temperatures because of the greater toluene adsorption which blocked the active SCR 

sites. A higher ammonia oxidation rate was observed in the presence of toluene at 

temperatures higher than 350°C. A model describing hydrocarbon storage on the SCR 

and the hydrocarbon effect on NO oxidation and NO2 dissociation was developed, and 

the model prediction was validated against the experimental data. The hydrocarbon 

poisoning effect on SCR performance was confirmed for both ULSD and biodiesel 

through experiments carried out in both a bench reactor and an engine test cell [109]. 

 

The influence of hydrocarbon storage on a Fe-zeolite and a Cu-zeolite SCR was studied 

in both a bench reactor and an engine test cell [113]. It was reported that both Fe-zeolite 

and Cu-zeolite SCR can store hydrocarbons up to 21 g/L at a temperature of 200°C. A 

SCR being exposed to a temperature ramp after storing excessive hydrocarbons may 

cause irreversible thermal damage to the catalyst because of the exotherm resulting 

from the oxidation of stored hydrocarbons. A Cu-zeolite SCR formulation with less 

hydrocarbon storage capacity can avoid the high exotherm from oxidation of stored 

hydrocarbons [113].  

 

The HC poisoning effect on the SCR performance and modeling of the HC effects are 

still open research areas. Effectively designed experiments are required to study the 

mechanisms of HC inhibition on SCR reactions. On the modeling aspects, only models 

of HC storage and the HC effect on NO oxidation are available from the literature. 

Engine experimental data shows low engine out HC levels (about 100 ppmC) and the 

HC conversion efficiency across the DOC and CPF is close to 100%. Therefore, the HC 

level at SCR inlet is low when the SCR is located after the DOC and CPF in heavy-duty 

diesel engine aftertreatment systems. The chance of seeing a significant level of 

hydrocarbons at the SCR inlet only happens under multiple system failures including 

DOC and CPF failure and engine injector failure. As a result, it is not important to study 

the hydrocarbon poisoning effects on SCR kinetics under normal operating conditions for 

heavy-duty diesel applications. 
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2.6.2 SCR Thermal Aging Effects 
 

The SCR is periodically exposed to high temperatures (> 550 C) during the CPF active 

regeneration conditions. The SCR capability of reducing NOx may deteriorate over time 

as a result of thermal deactivation. The thermal durability and thermal aging effect of the 

Cu-zeolite SCR were studied [44,114]. It has been shown from the studies that 

extremely high temperatures (800 - 900 C) can permanently damage the SCR catalyst, 

but the application-relevant aging conditions have a small effect on the performance of 

the Cu-zeolite SCR. A 5-10% of reduction in NOx conversion efficiency was reported 

from a vehicle aged SCR at the end of the vehicle life [114].  

 

The SCR performance under different levels of hydrothermal aging (also known as 

steam aging or steam treatment) conditions was evaluated. Compared to a de-greened 

catalyst, the experimental results show that progressive hydrothermal aging of the Cu-

zeolite SCR up to 850°C for 10 hours leads to [44,114]:  

 

1. limited (< 5%) increase in NOx conversion below 400°C,  

2. significant decrease in NOx conversion above 450°C (> 20% at 500°C),  

3. increase in NO conversion to NO2 throughout the reaction temperature range,  

4. increase in NH3 oxidation and selectivity to NOx, and  

5. negligible change in NH3 storage capacity.  

 

Progressive hydrothermal aging of the Cu-zeolite SCR up to 900°C for 10 hours leads to 

[44,114]:  

 

1. substantial loss of NOx conversion,  

2. substantial degradation of NO conversion to NO2,  

3. substantial degradation of NH3 oxidation, and  

4. substantial degradation of NH3 storage capacity. This degradation is irreversible 

because of the SCR structure collapsing caused by extreme hydrothermal aging. 

 



 

37 
 

A study of the thermal durability of the SCR catalyst which is used in GM light-duty 

trucks was in traduced in reference [115]. The performance of the SCR catalysts aged in 

lab reactors, lab oven, and on vehicles were compared. Both lab reactor aging under 

850°C for 12 hours and oven aging under 850°C for 54 hours can simulate the 

performance of 135,000 mile vehicle aged catalysts. This study confirmed the aging 

effect discussed above, and damage equations for a reactor aged SCR were developed 

and are given in Figure 2.4. The functions are water content and catalyst formulation 

dependent. It was also concluded that water content can accelerate the SCR thermal 

aging by comparing lab reactor aging and oven aging [115]. Modeling of the thermal 

aging effect is ongoing and publications about the modeling studies were planned, but 

no results have been published. 

 
Figure 2.4: Damage equations for reactor aging of Cu-chabazite SCR with space 

velocity of 30,000 hr-1 and 5% H2O [115] 

 

2.6.3 Maldistribution Effects  
 

It has been well known that the NH3 slip will be present at the SCR outlet under the 

conditions of the ANR being higher than then stoichiometric ratio. With an ANR lower or 

equal to the stoichiometric ratio, the nonuniformly distributed NH3 caused by poor mixing 

of the injected urea and exhaust flow may result in higher ANR at certain SCR inlet 



 

38 
 

areas which then forms NH3 slip. The effects on the NH3 maldistribution on the SCR 

performance cannot be neglected in engine applications. 

 

The uniformity of the interested parameter at the SCR inlet can be represented by the 

uniformity index (UI) which ranges from 0 to 1. A UI of one represents perfectly uniform 

distribution. The uniformity of both NOx and NH3 at the SCR inlet were discussed. The 

calculation of UI is given in Equation 2.31.  

 1
2

i avg i
i

avg total

v v A
UI

v A

− ⋅
= −

∑
   2.31 

 

Where, vi is the interested local parameter at the ith cell of the inlet face which the area 

of Ai. vavg is the average of all vi values. Atotal is the inlet area of the catalyst. 

 

The effects of the uniformity indices on the SCR performance were studied in reference 

[116] through simulation based on a vanadium SCR model which was divided into 

several parallel zones to enable the ability of using non – uniform input. A relationship 

between the simulated NOx conversion efficiency and NH3 slip as a function of the ANR 

uniformity is shown in Figure 2.5. The results showed reduction in NOx conversion and 

increase in NH3 slip with decrease of ANR uniformity.  

 

 
Figure 2.5: NOx conversion efficiency and NH3 slip as a function ANR uniformity [116] 
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Another simulation study of the ANR uniformity effects on the “NH3 slip limited NOx 

conversion efficiency” of the SCR for both steady state and transient conditions was 

presented in reference [117]. Several copies of a SCR model calibrated to Cu-zeolite 

SCR data were setup to run in parallel with different inlet ANR values. A probability 

distribution function (PDF) was used to generate the different ANRs based on beta 

distribution for a certain UI. The simulations were conducted for different steady state 

engine operating conditions as well as the heavy-duty FTP and SET emission test cycles 

to find the required UI for achieving the optimal SCR performance. The results showed 

that the UI requirements are different for different engine operating conditions with less 

critical UI requirements for moderate and high temperatures. It also concluded that 

higher UI was required for the heavy-duty FTP cycle than the SET cycle. The uniformity 

of the ANR at the SCR inlet can be improved by increasing urea injection performance, 

better mixer design, more efficient system configuration, etc [118-121].  

 

The nonuniformity of the exhaust flow going into the SCR is another factor that might 

affect the SCR performance because of the nonuniformly distributed space velocity for 

different regions of the catalyst. The flow nonuniformity effects were studied by a few 

researchers mainly through Computational Fluid Dynamics (CFD) analysis 

[120,122,123]. It was not investigated by most of the SCR modeling studies.  

 

2.7 Summary 
 

Due to the standards of the 2010 emission regulations, aftertreatment systems with a 

DOC, CPF and urea-SCR are used for heavy-duty diesel engines. Because of the prior 

performance of the exchange metal based SCR catalysts, the Fe-and Cu-zeolite SCR 

are used for NOx reduction. Flow reactor experimental studies provided opportunities to 

study the catalyst performance under wide a range of conditions and for various catalyst 

kinetic properties. At the same time, engine experimental studies under steady state and 

transient conditions were necessary to understand the SCR performance under complex 

engine exhaust conditions.  
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Efforts were carried out for developing SCR kinetic models. The Eley-Rideal mechanism 

which assumes only one of the reactants gets adsorbed on the catalytic surface and 

reacts with other reactants is typically used to model the reaction mechanisms over the 

SCR catalyst. NH3 is assumed to be the only species being adsorbed on the catalyst and 

the stored NH3 reacts with other species in the surface phase which is transported from 

species in the bulk flow (the gas phase). External mass transfer between species in gas 

and surface phases was considered in published high fidelity models. The reduced order 

models neglected the mass transfer process and allow species in the gas phase to react 

with the stored NH3. Limitations of internal mass transfer and other mass transfer 

processes on the SCR performance are being studied. Most of the SCR models have 

only one type of NH3 storage site which stores NH3 and supports all SCR reactions. 

Adding a second site improves the NH3 adsorption and desorption performance of the 

model but this also adds more parameters to identify. In this study, 2-site modeling 

approach was adopted to simulate both species concentrations and the NH3 storage. 

 

The major global SCR reactions included in the published models were similar. The 

detailed SCR reaction mechanisms are still under investigation. Urea decomposition, 

solid deposit formation from injected urea and nitrates formation under SCR reaction 

conditions were considered by a few models but excluded by most of the studies. SCR 

models were commonly calibrated against reactor data and validated against engine 

experimental data. SCR models calibrated to engine experimental data are important for 

on-vehicle model based control strategy and OBD development. In this study, a global 

reaction mechanism was selected to represent the reaction system for the Cu-zeolite 

catalyst. The SCR model was developed to simulate the catalyst performance for engine 

exhaust conditions.  

 

The factors affecting the SCR performance were studied. Those factors include HC 

poisoning, thermal aging, etc. For heavy-duty diesel applications, the chance for the 

SCR to see high concentrations of HC is limited. Modeling efforts are being carried out 

to include these effects. Modeling the HC effects is problematic because a single HC 

type cannot represent the complex HC compounds in the diesel exhaust. The thermal 

aging effects on the SCR performance was studied through reactor experiments. 
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Modeling results of the thermal aging effects on the SCR performance and the kinetics 

have not been reported. The NH3 distribution at the SCR inlet is not uniform in engine 

environments. The NH3 maldistribution needs to be quantified through SCR engine 

experiments. The NH3 maldistribution effects on the SCR performance were studied 

mainly through model simulation. It is considered to be one of the factors that causing 

the different SCR performance between reactor and engine testing environments. 

Coupled experimental and modeling studies were performed in this thesis research to 

determine the SCR inlet NH3 maldistribution profiles and to investigate its effects on the 

catalyst performance and the kinetics. A modeling study of the thermal aging effects on 

the SCR performance and kinetics is also presented in this thesis. 
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Chapter 3.   
 
Experimental Setup and Test Procedures  
 

This chapter presents the engine test cell setup for both steady-state and transient SCR 

engine experiments, the reactor experimental setup for both flow reactor and Spaci-IR 

experiments including the test matrixes and test procedures. The SCR maldistribution 

experiments are also explained. 

 

3.1 Engine Test Cell Setup 
 

The Michigan Tech diesel engine test cell was designed for acquiring diesel 

aftertreatment system experimental data for the DOC, CPF, and SCR. A picture of the 

test cell is shown in Figure 3.1. Various parameters affecting the performance of the 

aftertreatment system can be measured and recorded during an experiment.  

 
Figure 3.1: Picture of the diesel engine test cell at MTU 
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3.2 Engine, Fuel and Aftertreatment System 
 

3.2.1 Engine and Dynamometer 
 

A 2010 Cummins ISB 224 kW (300 hp) engine which meets the U.S. EPA 2010 emission 

regulations is used in the study. The specifications of the engine are given in Table 3.1. 

The dynamometer coupled to the engine is an eddy current dynamometer from Eaton 

Corp., with a maximum power capacity of 370 kW (500 hp) from 1700 to 7000 rpm. The 

speed and torque of the engine is controlled by a Digalog Model 1022A controller which 

is set to ‘Speed Control’ mode.  It regulates the engine speed by regulating 

dynamometer speed at certain desired values. The engine torque is controlled by 

varying the fuel flow rate supplied to the engine through a manually controlled rheostat. 

In-cylinder fuel injectors were used for injecting diesel fuel into the exhaust to initiate the 

CPF active regeneration process. 

 

Table 3.1: Specifications of 2010 Cummins ISB engine 

Model Cummins ISB 224 kW (300 hp) 
Year of Manufacture 2010 

Cylinders 6 
Bore & Stroke 107 x 124 mm 
Displacement 409 in3 (6.7 L) 

Aspiration Turbocharged 
Aftercooling Cummins Charge Air Cooler 

Turbocharger Variable Geometry Turbocharger (VGT) 
Rate Speed and Power 2600 RPM and 224 kW 

Peak Torque 895 N·m @1600 RPM 
EGR system Electronically controlled and cooled 

 

3.2.2 Fuel Properties 
 

Two batches of ultra-low sulfur diesel (ULSD) were used for SCR testing. The fuel was 

analyzed in the Cummins lab to determine the chemical properties. The fuel properties 

are shown in Table 3.2.  
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Table 3.2: Fuel properties for the ULSD used for SCR testing 

 ULSD -1 ULSD -2 
API. Gravity at 15.6°C 35.6 33.4 
SP. Gravity at 15.6°C 0.847 0.858 
Viscosity at 40°C 2.290 2.609 
Total Sulfur (ppm) 7 12 
Initial Boiling Point (°C) 168 172 
Final Boiling Point (°C) 340 359 
ICP for metals (ppm) <1 <1 
Water Content (ppm) 92 348 
IR for % Biodiesel 0 <0.1 
Higher Heating Value (MJ/kg) 45.60 45.21 
Lower Heating Value (MJ/kg) 42.80 42.55 

 

3.2.3 Engine Aftertreatment System 
 

The engine is equipped with in-cylinder fuel injector for active CPF regeneration and a 

full aftertreatment system including DOC, CPF, SCR, and AMOX. Each catalyst is 

mounted in a stainless steel can that can be removed from the exhaust line. The 

specifications of each catalyst are shown in Table 3.3. There are two SCR bricks with 

the length of 6 inches each. 

 

The aftertreatment system was de-greened before running tests and collecting data, 

because the performance of the catalysts may change during the first period of 

operation. The de-greening process was carried out based on the information provided 

by Cummins. The de-green conditions consisted of 12 engine operating points, with the 

engine exhaust running through the aftertreatment system for 1 hour for each engine 

operating condition. The engine operating points were provided by Cummins and are 

given in Table 3.4 
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Table 3.3: Specifications of the catalysts in 2010 Cummins ISB engine aftertreatment 
system 

 DOC CPF SCR AMOX 
Material Cordierite Cordierite Cordierite Cordierite 

 Diameter (inch) 9.50 9.50 10.50 10.50 
 Length (inch) 4 12 12* 4 
Cell Geometry Square Square Square Square 

Total Volume (L) 4.65 13.94 17.03 5.68 
Open Volume (L) 3.92 NA 14.41 4.80 
Cell Density /in2 400 200 400 400 
Cell Width (mil) 46 59 46 46 

Filtration Area (in3) NA 1.99e4 NA NA 
Open Frontal Area (in2) 60.00 24.43 73.29 73.29 

Channel Wall Thickness (mil) 4 12 4 4 
Wall density (g/cm3) 1.2 1.2 1.2 1.2 

Porosity 35% 59% 35% 35% 
Mean Pore Size (µm) NA 15 NA NA 
Number of inlet cells 2.84e4 0.71e4 3.46e4 3.46e4 

* There are 2 6-inch long SCR bricks with 1.5 inches space in between 

 

Table 3.4: Engine operating points for de-greening the aftertreatment system 

Degreen 
Point Speed Load Air Mass 

Flowrate 
Fuel Mass 
Flowrate 

Exhaust Mass 
Flowrate 

SCR Inlet 
Temperature 

 (rpm) (N∙m) (kg/min) (kg/min) (kg/min) (°C) 
1 1614 215 6.69 0.21 6.90 265 
2 1615 453 8.05 0.32 8.37 362 
3 1594 670 9.17 0.39 9.56 444 
4 1594 867 10.4 0.51 10.9 485 
5 1975 220 9.33 0.21 9.54 287 
6 1975 415 10.3 0.35 10.6 357 
7 1975 665 12.9 0.46 13.3 412 
8 1975 875 15.4 0.63 16.1 437 
9 2327 229 12.6 0.27 12.9 290 
10 2327 440 14.0 0.43 14.5 357 
11 2327 665 17.1 0.60 17.7 399 
12 2327 885 19.2 0.77 19.9 444 
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3.2.4 Exhaust Heater 
 

A 25 kW exhaust heater designed and manufactured by Watlow Electric Manufacturing 

Company was integrated into the ISB engine test cell for the purpose of expanding the 

testing temperature range and improved steady-state temperature control. The heater 

was installed before the DOC in order to raise the temperature of exhaust flow going 

through the entire aftertreatment system. It enables the aftertreatment catalysts to be 

evaluated under different temperatures without changing the exhaust flow rate and 

engine operating conditions. The temperature effects on the catalysts performance can 

be isolated by utilizing the heater. Since the heater outlet temperature is controlled by an 

independent PID controller, it is able to maintain the exhaust temperature of the 

aftertreatment system more constant regardless of the slight changes in engine 

operating conditions. The heater capability of heating up the exhaust is shown in Figure 

3.2. With an exhaust mass flow rate of 4.45 kg/min, the temperature of the exhaust can 

be increased 250°C by the heater. For an exhaust mass flow rate of 11.7 kg/min, a 

temperature increase of 125°C can be achieved by the heater.  

 

 

Figure 3.2: The heating capability of the heater as a function of the exhaust mass flow 
rate going through the heater 
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The effects of the heater on the emissions were evaluated by taking emission 

measurements and PM samples under different heater operating conditions. The DOC 

inlet NO2/NOx ratio affected by the heating element temperature of the heater is shown 

in Figure 3.3. The engine operating condition was maintained at 1300 rpm and 240 N∙m. 

A DOC inlet NO2/NOx ratio of 4.8% was observed with the heater off. After turning on the 

heater, the ratio keeps decreasing when the heating element temperature is increasing, 

meaning that more NO2 in the exhaust is oxidized through the heater as its temperature 

increases.  

 

 

Figure 3.3: The DOC inlet NO2/NOx ratio as a function of the heating element 
temperature 

 

Similarly, the DOC inlet PM concentrations as a function of the heating element 

temperature is given in Figure 3.4. The engine operating conditions for the test was 

maintained at 2500 rpm and 245 N∙m. The error bars in this figure represent the plus 

and minus the standard error for the PM samples taken. A decreasing trend can be 

observed in the PM concentration, showing that the heater oxidizes more PM at higher 

temperatures. 
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Figure 3.4: The DOC inlet PM concentration as a function of the heating element 
temperature 

 

3.2.5 Test Cell Layout 
 

The layout of the engine and aftertreatment system is shown in Figure 3.5. The engine 

exhaust is routed through a four-inch diameter exhaust pipe. There are two paths for the 

exhaust to go through. One path called baseline leads directly to the building exhaust 

ventilation system without passing through the aftertreatment system.  The other path is 

called trapline which has full aftertreatment system components. Exhaust flow can be 

controlled to go through either path by opening and closing the corresponding pneumatic 

valves located at the junction of the two paths. When it goes to the trapline, the first 

component is the DOC with an exhaust mixer in front to improve the mixing of the fuel 

and exhaust gas going into the DOC during the active regeneration process. The 25kW 

exhaust heater described in Section 3.2.4 was installed before the DOC to raise or 

maintain the exhaust temperature when necessary. The next component is the CPF, 

followed by a decomposition tube with the DEF injector mounted on it, and then the SCR 

catalysts. There is a mixer in between the DEF injector and SCR inlet face to improve 

the mixing of the injected DEF droplets and the exhaust gas stream. Another mixer is 

installed after the SCR bricks, before the production NOx sensor, ammonia sensor, and 

the emission sampling probe. The purpose of this mixer is to make sure that the exhaust 
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gas is uniform and the sensors and analyzers are measuring the same gas components. 

The AMOX was removed from the trap line for the purposes of measuring ammonia slip 

downstream of the SCR during DEF injection. The distance between the SCR 

downstream sampling location and the SCR outlet face as well as the mixer improve the 

mixing of the exhaust gas being measured by multiple instruments.  

 

 
Figure 3.5: Schematic of the ISB engine test cell setup with instrumentation 

 

3.3 Measurements and Data Acquisition System 

3.3.1 Temperature Measurement 
 

The catalysts performance is highly dependent on exhaust temperatures. Temperatures 

at different locations throughout the exhaust pipes and in the catalyst substrates are 

measured using type K thermocouples provided by Watlow. The thermocouples used in 

the substrates and exhaust pipes are listed in Table 3.5. 
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Table 3.5: Specifications of thermocouples used in ISB aftertreatment system 
Location Type Diameter Length Watlow Part # Body material Quantity 

DOC K 0.020” 12” AX1078701 Stainless Steel 9 
CPF K 0.032” 12” AX1078801 Stainless Steel 12 
SCR K 0.020” 12” AX1078701 Stainless Steel 22 
SCR K 0.020” 16” n/a Stainless Steel 4 
Other K 0.125” 6” ACGF00Q060U4000 Stainless Steel 7 

 

The thermocouple layout in the DOC, CPF, and SCR substrates is carefully selected in 

order to determine both radial and axial temperature gradients within the substrates. The 

thermocouple layout in the DOC, CPF, and SCR are given in Figure 3.6, 3.7, and 3.8 

respectively.  

 
Figure 3.6  DOC thermocouple layout (Unit: inch) 

 
   Figure 3.7: CPF thermocouple layout (Unit: inch) 
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 Figure 3.8: SCR thermocouple layout (Unit: inch) 

 

3.3.2 Pressure Measurement 
 

The barometric pressure of the test cell and the pressure drops across the Laminar Flow 

Element (LFE), DOC, CPF, and SCR substrates are continuously monitored by five 

different sensors. The barometric pressure is measured using a pressure transducer and 

the pressure drops are measured using four differential pressure transducers. The 

details about the sensors for differential pressures across the LFE, DOC, CPF, and the 

barometric pressure can be found in reference [124], while the information for the 

differential pressure across the SCR is given in Table 3.6. 

 

Table 3.6: Specification of differential pressure transducers 

Parameter Manufacture Part No. Sensor 
Type Range Unit Sensor 

Output 
DP across 

 SCR 
Omega 

Engineering 
PX409-

2.5DWU5V 
Differential 
Pressure 0.0~17.2 kPa 0~5 

Vdc 
 

3.3.3 Exhaust Mass Flow Rate Measurement 
 

The exhaust mass flow rate is considered as the summation of engine intake air and fuel 

mass flow rates. The intake air standard volumetric flow rate is calculated based on the 

measured pressure drop generated by the intake air flow through the LFE. The standard 
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volumetric flow rate is then converted to mass flow rate using standard density of the 

intake air under reference conditions (1atm pressure and 20°C). The fuel mass flow rate 

is measured by an AVL fuel system. The system measures the time for flowing 0.4 kg of 

fuel to the engine. By dividing the 0.4 kg of fuel by the time in seconds used for 

consuming the fuel gives the fuel mass flow rate in units of kg/sec. Adding the fuel mass 

flow rate to the intake air mass flow rate gives the exhaust mass flow rate. This 

measurement process and calculation equations are described in detail in reference 

[124]. 

 

3.3.4 Gaseous Emissions  
 

The gaseous emissions are measured using two different analyzers and also by 

production sensors. One of the analyzers is an AVL AMA 4000 exhaust gas analyzer 

which is able to measure total hydrocarbon (THC), O2, CO2, CO, and NOx (or NO). 

Detailed information about the analyzer and calibration gases used for adjusting the 

analyzer can be found in reference [124].  The analyzer consists of a flame ionization 

detector (FID) for THC measurement, a paramagnetic analyzer for O2 measurement, an 

infra-red detector (IRD) for CO and CO2 measurement, and a chemiluminescence 

detector (CLD) for NOx and NO measurement. The CLD is able to measure both NOx 

and NO but it cannot measure the two concentrations at the same time, since it must be 

switched between NOx and NO measurement mode.  

 

For the SCR tests, continuous NO, NO2, and NH3 concentration measurements are 

required, so an Airsense ion molecule reaction mass spectrometer (IMR-MS) was set up 

for the SCR tests [125]. The MS is setup to measure NO, NO2, NH3, and O2. The 

monitoring mass and the ion source for each measured species are given in Table 3.7. 

N2O measurement is also desired for the SCR tests, but because of the interference 

issue, accurate N2O measurement cannot be measured by the MS.  
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Table 3.7: Monitoring mass and the ion source for each measured species 

Components Detection levels in 
ppb at 100 msec 

Monitoring 
Mass (amu) Ionisatior 

NH3 Ammonia 120 17 Hg 
NO Nitrogen monoxide 100 30 Hg 
NO2 Nitrogen dioxide 50 46 Hg 
O2 Oxygen < 5 ppm 33 Xe 

 

A list of calibration gases for calibrating the IMR-MS is given in Table 3.8. The IMR – MS 

start up and calibration procedures are given in Appendix A. 

Table 3.8: Specifications of calibration gases for IMR-MS  

Component Span gas Concentration Units Accuracy 
NH3 NH3, N2 balance 103.8 ppm ± 2% 
NO NO, N2 balance 515.4 ppm ± 1% 
NO2 NO2, Air balance 99.05 ppm ± 2% 
O2 NO2, Air balance 20.9 % N/A 

 

The stainless steel sampling lines connecting the analyzers and sampling locations in 

the aftertreatment system are heated to 190°C to keep exhaust gas at a temperature 

that prevents water from condensing and to minimize the other gases from adsorbing on 

the sampling lines.   

 

There are two UniNOx sensors installed in the production aftertreatment system. They 

are mounted at the engine outlet and the SCR outlet for NOx measurement. A picture of 

the NOx sensor is given in Figure 3.9. It consists of a NGK sensing element with a 

Continental control unit. A Delphi ammonia sensor shown in Figure 3.10 is installed at 

the SCR outlet for ammonia slip measurement. The specifications of the NOx and NH3 

sensors are given in Table 3.9. Data transmission with both sensors is based on 

controller-area network (CAN) communication.  



 

54 
 

  
Figure 3.9: Production NOx sensor Figure 3.10: Delphi ammonia sensor 

 

Table 3.9: Specifications of the NOx sensor and NH3 sensor 

 Measurement Range Resolution Voltage 
Range 

Operating 
Temperature 

NOx 
sensor 

NOx 
concentration 

0-1500 
ppm 0.1 ppm 12-32 V 100-800°C 

NH3 
sensor 

NH3 
concentration 

0-1500 
ppm 0.1 ppm 13.5-32 V 200-500°C 

 

3.3.5 Particulate Matter 
 

The engine out particular matter (PM) concentration is measured during the test to 

provide data for potential CPF modeling work. The PM samples are taken by doing a hot 

sampling from the engine exhaust flow. The PM is sampled on a 47 mm diameter glass 

fiber filter using the stack-sampler. Detailed  information about PM sample collection is 

available in references [124] and [126]. 

3.3.6 Data Acquisition System 
 

National Instruments (NI) system was setup and a corresponding LabView program was 

created to collect temperature, pressure, engine speed/load data, and CAN messages. 

The hardware system consists of two NI Compact DAQ 8-Slot USB Chassis with 

multiple NI modules plugged in for collecting or generating different types of signals. The 

chassis is connected to the desktop computer through two separate USB cables. The 

detailed information about the modules being used is listed in Table 3.10. The CAN 

communication setup uses a separate USB-CAN interface which is connected to the 

desktop computer through another USB cable.  
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3.4 Steady – State SCR Engine Tests  
 

The primary objective of the SCR engine tests is to acquire data suitable for SCR model 

calibration and state estimation strategy development. This requires measurements of 

exhaust temperature, NO, NO2, and NH3 concentrations before and after the SCR for a 

variety of different steady-state and transient conditions.  

 

SCR model calibration requires pre and post SCR measurements over a wide range of 

exhaust conditions (temperatures, flow rates, NO2/NOx ratios, and NH3/NOx ratios). 

Engine operating conditions were selected to cover a wide range of exhaust 

temperature, and SCR inlet NO2/NOx ratios. The DEF injection flow rate commands were 

selected to realize different SCR ammonia to NOx ratios (ANR) for each test point. 

Knowing the flow rate of DEF injected into the exhaust is required. Since there is not a 

direct measurement of DEF, an open loop DEF flow rate calibration method was 

developed and is described in Appendix B. 

 

3.4.1 Test Matrix 
 

The engine speed/load points, shown in Table 3.11, were selected to span an exhaust 

temperature range from 250 to 400°C, which reflects typical engine operating conditions.  

Point 8 is selected as a baseline point, this point was run before and after each SCR test 

point to make sure that the engine operating condition and instrumentation are 

repeatable for each test. Test point 1 and 4 were repeated to verify the repeatability of 

the test. Lower than 250°C temperature points were avoided because of potential urea 

deposit formation in the exhaust pipe. For each engine test point, the DEF injection rate 

was set to realize five different NH3/NOx ratios of 0.3, 0.5, 0.8, 1.0, and 1.2. Test plan 

execution facilitates acquisition of both steady-state and transient species 

concentrations and temperature responses suitable for both SCR model calibration and 

the estimator development. 
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Table 3.11: Engine speed/load points for SCR tests 

Test  
Point 

Speed Load 
Exhaust 
 Mass 

Flowrate 
SCR inlet 

 Temp 
Std. SCR 

Space 
Velocity 

Act. 
SCR 

Space 
Velocity* 

SCR 
Inlet 
 NO 

SCR 
Inlet  
NO2 

NO2/NOx  
ratio 

(rpm) (N∙m) (kg/min) (°C) (k hr-1) (k hr-1) (ppm) (ppm) none 
1 1501 608 7.40 399 23.9 58.9 462 295 0.39 
2 1715 500 7.90 376 25.3 60.1 185 160 0.46 
3 1980 420 8.38 353 26.8 61.5 115 187 0.62 
4 2097 342 8.43 331 27.0 59.8 97 176 0.64 
5 2063 273 8.99 301 28.8 60.6 78 220 0.74 
6 2153 194 9.40 278 30.1 60.8 80 199 0.71 
7 2173 143 9.76 252 31.3 60.2 110 120 0.52 
8 1600 475 7.25 366 22.9 53.5 197 208 0.51 

*Calculation of the space velocities is given in Appendix C. 

 

3.4.2 Test Procedures 
 

The test consists of three parts. First, the engine is run at the baseline condition to check 

the repeatability of the engine and instrumentation. Second, both DOC and CPF inlet 

and outlet gaseous emissions and engine out PM samples are taken to provide data for 

DOC and CPF model calibration. Third, the engine is run with varying DEF injection 

rates to collect SCR response data. The procedures are shown in the flow chart in 

Figure 3.11. 

 

During the SCR tests, the transient responses are required. Therefore, carefully timed 

switching of the IMR-MS between measurement points is needed since a single IMR – 

MS is used. The SCR outlet measurements have the highest priority. It is also important 

to detect any changes in the SCR inlet concentrations over a long test. The NOx sensors 

can be used to give real-time indications of SCR inlet condition changes and provide a 

“trigger” to make a measurement upstream of the SCR. 
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Adjust engine 
speed&load to 

desired test point

Start in-cylinder HC 
dosing to clean up CPF 

and SCR

Start up the engine

Slow down the engine 
to idle and shut down.

Take DOC 
measurements

Ramp up to 
baseline condition

Record gases species 
concentrations

Take PM Samples

Take SCR upstream 
measurement to determine 

SCR inlet conditions

Keep measuring at SCR 
downstream to record transient SCR 

response to urea injection

Change urea injection rate 
to another ANR according 
to the test protocol

Protocol 
finished?

N

Run baseline again to 
confirm the repeatbility

Y

 
Figure 3.11: Flow chart of SCR test procedures 

A step-by-step description of the test procedure illustrated in Figure 3.11 is described in 

the following steps: 

1) Set exhaust flow to trapline. Startup engine and idle for 2 minutes. This slow 

ramp-up is only necessary for the first portion of a test and can be performed 

faster when the engine and dynamometer are warmed up. 

 

2) Check that all sensors are providing output and are being recorded. 

 

3) Slowly increase throttle control and dyno control to baseline condition (1600 rpm, 

475 N·m).   
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4) Start in-cylinder HC dosing to clean up the CPF and SCR. Monitor the pressure 

drop across the CPF and NH3 slip at SCR outlet. Wait until the pressure drop 

across the CPF has stabilized and NH3 slip falls below 3 ppm.  

 

5) Stop in-cylinder HC dosing, and wait until all the temperatures across the 

exhaust system are stabilized. Take gaseous samples to make sure the engine 

and instrumentation operation are repeatable.  

 

6) Adjust speed/load to achieve the test point. Keep adjusting the intercooler control 

valve to adjust cooling water flow through the intercooler, until intake air 

temperature has stabilized at 50°C. 

 

7) Wait until all temperatures across the aftertreatment system are stabilized. Start 

recording gas species concentrations at different sampling locations for 6 

minutes at each location. 

 

8) Take three engine out PM samples, 10 minutes for each sample. 

 

9) Record gas species concentrations at CPF outlet to determine SCR inlet 

conditions, and calculate the DEF injection rate needed for desired ANR. 

 

10) Switch to SCR downstream sampling location and start DEF injection. 

 

11) Keep measuring downstream of the SCR to record the transient SCR response 

to DEF injection. Once the SCR is in equilibrium state (a state that no NOx is 

being further reduced and there is a stabilized ammonia slip). Change DEF 

injection rate for another ANR based on the DEF injection schedule given in 

Figure 3.12. 

 

12) Repeat step 11 until the DEF injection schedule is complete. 

 

13) Stop DEF injection, wait until no NOx is reduced and no NH3 slip is observed. 
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14) Change engine speed/load to baseline point, and take gaseous measurements at 

different sampling locations to double check the repeatability of the engine and 

instrumentation operation. 

 

15) Slow down the engine to idle, keep engine idling for a couple of minutes before 

cutting off the fuel supply. 

 

 
Figure 3.12: Scheduled SCR inlet ANR for steady state SCR engine test 

 

3.5 Transient SCR Engine Tests  
 

3.5.1 Test Cell Setup for Transient Tests 
 

The engine test cell was developed to have the capability of running transient cycle 

tests. A NI analog output module (NI 9263) was added into the data acquisition system 

to provide scheduled external voltage for controlling the dynamometer speed and engine 

throttle position. The switch on the front panel of the dynamometer controller and the 

switch newly added (shown in Figure 3.13) gives the capability of switching between the 

previous manual control mode and external voltage control mode. A LabView program 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Time (min)

SC
R 

In
le

t
NH

3 
/ N

O
x 

Ra
tio



 

61 
 

was then created to drive the analog output module to generate desired voltage outputs 

to control both speed and fuel flow rate. The program can either take manual input 

values or read data points from a pre-created data file. The data file should contain 

desired voltage points which represent different engine speed and load conditions in a 

specified test cycle.   

 

 
Figure 3.13: Switches used for switching between manual control mode and external 

voltage control mode 

 

3.5.2 Surrogate HD-FTP Cycle Development 
 

HD-FTP transient test cycle is used in the U.S. for emission testing of diesel engines for 

heavy-duty diesel vehicle. Four different typical driving conditions are simulated in the 

20-minute long cycle which consists of a series of driving and motoring segments [127]. 

It is important to validate the SCR model performance under transient conditions. In 

order to collect SCR data under typical transient exhaust conditions, a surrogate HD-

FTP test cycle was developed to simulate the representative transients and make it 

possible to run transient tests in the engine test cell. The development procedure for the 

surrogate HD-FTP cycle is described. 

 

The normalized engine conditions in terms of percent of full speed and percent of full 

torque as shown in plot (a) of Figure 3.14 were first scaled to the ISB engine according 

to the engine performance curve. Since the eddy-current dynamometer used in the test 

cell was not capable of running the motoring segments, the motoring points of the cycle 

were replaced by idle conditions. The scaled ISB engine conditions without the motoring 

segments are shown as plot (b) of Figure 3.14. Then the cycle was simplified by 

smoothing the speed and torque curves so that the cycle consisted of fewer engine 
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operating conditions but still keeps the typical transient segments. The simplified cycle 

consisted of 38 different engine operating conditions with transition between engine 

operating points as shown in plot (c) of Figure 3.14.  

 

The engine speed and torque were controlled by voltage signals generated from the NI 

9236 analog output module. The LabView program used for testing reads a pre-defined 

input data file which contains the time history voltage signals corresponding to the 

engine speed and torque for the cycle. The analog output module generates the desired 

voltage signals for controlling the dynamometer speed and the fuel flow rate to the 

engine.  

 

The repeatability of the cycle in terms of engine speed/torque, exhaust flow rate, exhaust 

temperature, and engine out NOx concentration measured by the NOx sensor were 

validated by comparing the measurements of multiple runs of the developed cycle as 

shown in Figure 3.15. The cycle was started at a specific engine operating condition to 

keep the SCR conditions during the cycle consistent. The engine operating conditions as 

well as the exhaust conditions of the cycle were repeatable except a spike in exhaust 

mass flow rate and engine out NOx concentration at about 13 minutes. For a warmed up 

engine, it is feasible to use a single analyzer for transient testing by separately 

measuring inlet and outlet conditions of the catalyst during separate runs of the same 

cycle since the cycle is repeatable.  
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Figure 3.14: Engine conditions of the HD-FTP cycle and the developed surrogate HD-

FTP cycle 

 

 
Figure 3.15: Comparison the experimental measurements for different runs of the 

developed surrogate HD-FTP cycle 
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3.5.3 Test Matrix 
 

The transient trends in SCR inlet concentrations of NO and NO2, SCR inlet temperature 

and standard SCR space velocity over the developed surrogate HD-FTP cycle are 

shown in Figure 3.16.  

 

 
Figure 3.16: SCR inlet NO, NO2 concentrations, SCR inlet temperature, and SCR 

standard space velocity during the surrogate HD-FTP cycle 
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of the cycle was determined by the control strategy implanted in the engine ECM. The 

ECM parameter was manually overwritten to achieve 0.3, 0.5, 0.8, 1.0, and 1.2 times of 

the default overall DEF injection rate for the full cycle. Another transient test was 

conducted with manual control of DEF injection. The DEF injection was manually turned 

on and off to study both NH3 adsorption and desorption under transient conditions. The 

IMR-MS was used for emission measurements for the transient experiments.  
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Table 3.12: Test matrix of transient SCR tests 

Test No. DEF Injection 
Level 

1 Manual 
2 1.2 
3 1.0 
4 0.8 
5 0.5 
6 0.3 

 

3.5.4 Test Procedures 
 

A CPF active regeneration process was carried out before running each transient cycle 

in order to oxidize the PM mass retained in the CPF and NH3 stored in the SCR. The 

CPF active regeneration was carried out under the engine operating condition of 1600 

rpm and 475 N∙m with a target CPF inlet temperature of 550°C for 15 minutes or until the 

pressure drop across the CPF was constant. After the CPF active regeneration process, 

the engine was run at a steady state condition for 10 minutes as shown in subplot (a) 

Figure 3.17 to in order to lower the aftertreatment system temperature to 250°C. The 

transient operating conditions from 10 to 20 minutes shown in Figure 3.17 was run 

before starting the surrogate FTP cycle. The purpose of this was to move the EGR valve 

in order to prevent any valve sticking problem. The following 20 minutes segment which 

is between 20 and 40 minutes is the surrogate HD-FTP cycle. The DEF injection was off 

before the 20 minute time point to start the surrogate HD-FTP cycle with zero NH3 

storage on the catalyst. The engine operating condition was switched back to steady 

state after finishing the cycle. Subplot (b) of the Figure 3.17 shows the voltage signals 

used for driving the engine to perform the transient tests. 
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Figure 3.17: Engine conditions and control voltages for the transient test 

 

For each of the transient tests in the test matrix shown in Table 3.12, the surrogate HD-

FTP cycle was run with continuous emission measurements taken from downstream of 

the CPF to determine the SCR inlet concentrations for the cycle. Then the emission 

measurement point was switched to the downstream SCR position for outlet 

concentration measurements during the 2nd run of the cycle with upstream DEF 

injections. The intake air flow rate, pressure drops and temperatures were continuously 

monitored and recorded during each cycle. Gaseous concentrations of NO, NO2 and 

NH3 were measured using the IMR- MS, and the HC, CO, CO2, and O2 concentrations 

were recorded by the AVL Pierburg five gas analyzer. The fuel flow rate measuring 

principle of the AVL fueling system made it unable to measure real time fuel flow rate for 

transient cycle. The air/fuel ratio back calculated from the exhaust and the measured 

intake air flow rate was used to calculate the fuel flow rates during the transient cycle. 

The calculation procedure is given in Appendix D. The transient experimental data were 

used for validating the SCR model performance. 
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3.6 Sample Line Test 
 

It was noticed during the steady-state SCR tests that the NH3 slip measurements from 

the IMR-MS were delayed because of the NH3 adsorption on the sample line wall. Using 

the delayed NH3 measurements in the SCR model calibration process without correction 

causes an error in the model kinetic parameters. As a result, it is important to quantify 

the NH3 adsorption and desorption process in the sample line and take it into 

consideration during calibration of the SCR model. 

 

A NH3 sensor was installed at the end of the steady-state testing phase. The sensor was 

located near the NOx sensor which was also downstream of the SCR.  The location of 

the sensors was 1.5 m from the outlet face of the 2nd SCR catalyst to allow the gas 

species to be uniformly mixed. A mixer was installed between the SCR outlet face and 

the sensors to improve the mixing and make sure that the NH3 sensor, NOx sensor and 

the emission analyzers are measuring the same exhaust gas components when 

measuring downstream of the SCR.  

 

An engine test for comparison of the NH3 measurements from the IMR-MS, the NH3 

sensor, and the NOx sensor (which is cross sensitive to NH3) was conducted. A 

calibration of the NOx sensor is shown in Equation 3.1. The test was performed for a 

SCR inlet temperature of 300 °C and a SCR space velocity of 60 k hr-1. The SCR inlet 

concentrations of NO, NO2, and available NH3 formed from the DEF injection are given 

in the top plot of Figure 3.18. Similar to the steady state test procedure presented in the 

previous section, the gas sampling was first taken at the SCR inlet with the engine 

running at steady state to determine the inlet concentrations of NO and NO2. The DEF 

injection rate command for the desired SCR inlet ANR was then back calculated. Then 

the gas sampling was switched to downstream of the SCR to measure the outlet 

concentrations of NO, NO2, and NH3 slip with upstream DEF injection. The SCR outlet 

concentrations of NO, NO2 and NH3 from the IMR – MS and the sensors are given in the 

bottom plot of Figure 3.18. The NH3 sensor measurements were calibrated to the IMR-

MS as described in Appendix E. The SCR inlet ANR was set to 2.0 for this test to get 

close to 100% of NOx reduction so that the measurement from the NOx sensor was the 
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NH3 concentration instead of a combination of NOx and NH3 concentrations between 10 

and 30 minutes of the test time. The NOx sensor measurement shows different 

amplitude between 20 and 30 minutes probably because it has a different sensitivity to 

NH3 compared to the IMR-MS. 

 

 NOx = 1.21 NO + 0.85 NO2 + 1.05 NH3            3.1 
 

 
Figure 3.18: Comparison of NH3 slip measurements from the IMR-MS, the NH3 (NH3, 

SNR) and the NOx sensors (NOx, SNR) 

 

It can be observed from Figure 3.18 that the NH3 slip measurements from both sensors 

started just before 10 minutes. However, the IMR-MS measured NH3 slip was delayed 

by 2 minutes. After the DEF injection was turned off at 29 minutes, the NH3 slip 

measured by the NH3 sensor dropped faster than the IMR-MS. The NH3 sensor shows 

no slip beyond 35 minutes while the NH3 measurement from the IMR-MS was present 

until the end of the test at 40 minutes. This phenomenon was determined to be caused 

by the NH3 adsorption/desorption on the wall of the sample line. When exhaust gas flows 

through the heated sample line (190°C), the NH3 gets adsorbed on the sample line wall 

because of its adsorption properties. No NH3 can be detected by the analyzer until the 

NH3 breaks through the storage capacity of the sample line. After DEF injection was 

turned off, the NH3 slip gradually disappears from the exhaust stream going through the 
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sample line. The NH3 previously stored in the sample line starts to be slowly desorbed 

until no NH3 is stored in the sample line. 

 

The NH3 adsorption on the sample line wall needs to be quantified and taken into 

consideration when calibrating the SCR model to the engine IMR-MS experimental data. 

In order to characterize this phenomenon and eliminate the effect of NH3 measurement 

delay on the SCR kinetics study, another sample line test was conducted by measuring 

the NH3 calibration gas directly from a gas cylinder with known NH3 concentration of 

103.8 ppm using the IMR-MS with a sampling flow rate of 4 L/min. The calibration gas 

pressure was regulated to be atmospheric pressure using a 2-stage pressure regulator. 

The sample line was used to connect the gas cylinder and the analyzer. A valve was 

installed at the inlet of the sample line to switch sampling flow between the room air and 

the cylinder. The test was conducted to determine the IMR-MS analyzer response to a 

step input of a flow with known NH3 concentration in sample line. The data were used to 

develop a sample line model which simulates the NH3 adsorption and desorption 

processes. 

 

3.7 NH3 Maldistribution Tests 
 

The test cell was initially setup with emissions sampling location right after each of the 

SCR bricks. The preliminary test results with emission measurements taken close to the 

SCR outlet face showed unbalanced NH3 + NOx concentrations across the SCR during 

upstream DEF injection. The reason was determined to be that the injected DEF is not 

well mixed with the exhaust before going into the SCR, causing nonuniformity of NOx 

and NH3 after the SCR. The design of the sampling probe was not able to provide 

average concentration measurements across the diameter of the catalyst. After moving 

down from the SCR outlet sampling location further from the SCR outlet face and 

installing an exhaust mixer, the NH3 + NOx concentrations were balanced before and 

after the SCR. The NH3 maldistribution engine tests were aimed at determining the SCR 

inlet NH3 and ANR distribution profiles with different mixer setups. The test setup, 

procedures are introduced in this section. 
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The SCR inlet NH3 concentration cannot be directly measured using the emission 

analyzers because the urea injected into the exhaust flow may crystallize in the sample 

line and damage the analyzer. As a result, the SCR inlet NH3 maldistribution was 

determined by comparing the NOx distribution at the outlet face of the 1st SCR brick with 

and without the SCR upstream DEF injection. The distribution of the NOx reduced across 

the SCR with DEF injections was considered to be the NH3 distribution of the SCR inlet 

face. In order to determine the distribution profiles, gas sampling was taken from 

different radial positions downstream of the 1st SCR brick using ¼ inch stainless steel 

sampling probes shown in Figure 3.19. The measurement positions at the 1st SCR 

outlet face are shown in Figure 3.20. Sampling probes were extended into seven 

different radial positions from A, B, C, and D positions on the SCR can. A total of 28 

radial positions were sampled. The average of A4, B4, C4, and D4 measurements was 

considered as the center measurement. All the other 24 measurement points are located 

in the center of 24 equal inlet areas. 

 

 
Figure 3.19: Sampling probes for different radial measurement locations 
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Figure 3.20: Gaseous sampling positions at the outlet face of the 1st SCR brick 

 

The gaseous measurements of NO and NO2 at each of the positions were measured 

with and without the DEF injections. During the maldistribution test, the NO and NO2 

concentrations at each measurement location were first measured after the engine and 

aftertreatment system conditions reached steady state. Then, DEF injection was initiated 

upstream of the SCR. The NO and NO2 concentrations at each measurement location 

were measured again after the SCR reached steady state. The IMR-MS was used for 

the gaseous concentration measurements. The SCR NH3 concentration at each 

measurement location was determined by calculating the differences in NOx 

concentrations with and without the upstream DEF injection. 

 

The test matrix for the NH3 maldistribution test is shown in Table 3.13. A total of six tests 
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original mixer setup. Tests number 4, 5 and 6 were performed with a swirl mixer installed 

into the SCR inlet cone. 

 

Table 3.13: Test matrix for the NH3 maldistribution test 

Test 
No. 

Engine 
Speed  
(rpm) 

Engine 
Torque 
 (N∙m) 

Exh Mass 
 Flow  
Rate  

(kg/min) 

SCR  
Inlet  

Temp. 
(°C) 

SCR  
Inlet NO  
(ppm) 

SCR  
Inlet NO2 

 (ppm) 

SCR Inlet 
Average 

ANR 

1 1450 203 4.23 350 170 192 0.30 
2 2500 245 9.89 350 150 131 0.30 
3 2500 245 9.89 350 150 131 0.65 
4* 1450 200 4.20 300 229 120 0.30 
5* 1450 200 4.20 350 171 170 0.30 
6* 2500 240 10.0 350 146 126 0.30 

* Test No. 4, 5 and 6 were performed with an additional swirl mixer installed into the SCR inlet 
cone.  
 

3.8 Flow Reactor Tests  

3.8.1 Flow Reactor Setup 
 

The flow reactor SCR experiments were conducted in an automated flow reactor at Oak 

Ridge National Laboratory (ORNL). “The flow reactor uses synthetic exhaust gas 

mixtures to probe specific functions and properties of catalytic materials. Gas 

compositions were mixed from compressed gas bottles using mass flow controllers. 

Water vapor was introduced through a high performance liquid chromatography (HPLC) 

pump and a custom capillary injection vaporizer system. Two four-way pneumatically 

actuated switching valves directed the flow of NH3 and NOx either to the reactor or to an 

exhaust line, creating approximately stepwise changes in inlet gas composition. All of 

the stainless steel reactor gas lines were heated to roughly 200°C to prevent water 

condensation, adsorption of NH3, and formation of NH4NO3. The catalyst core sample 

was loaded in a 2.5 cm diameter quartz tube with custom stainless steel end caps and 

placed in a tube furnace to control the catalyst temperature. Type K thermocouples (0.5 

mm diameter) were deployed 5mm upstream, 5mm downstream, and at the midpoint 

inside the catalyst core sample to monitor catalyst temperatures. Gas concentrations 

upstream and downstream of the catalyst sample were measured with an MKS Multigas 
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2030HS Fourier Transform Infrared (FTIR) spectrometer.  A custom LabVIEW interface 

provided automated data acquisition and system control.” [128] 

 

3.8.2 Catalyst Sample 
 

The core sample used in the reactor tests came from another Cu-zeolite SCR catalyst 

used in the 2010 Cummins ISB engine. The core SCR sample was cut from the front 

face of the full size catalyst monolith. The details of the catalyst sample are given in 

Table 3.14. The core sample was de-greened in a laboratory furnace at 700°C for four 

hours under a flow of 20% O2 and 4.5% H2O in a balance of N2 before reactor 

experiments to stabilize the catalyst performance. 

 

Table 3.14 Details of the core SCR sample  

Catalyst material  Cu-zeolite 
Core diameter (cm) 2.0 
Core length (cm) 3.0 
Core volume* (cm3) 9.42 
Number of channels  162 

De-green condition 700°C for 4 hours, under 20% of O2,  
4.5% of H2O, balanced with N2 

* Used for space velocity and NH3 storage capacity calculations 
 

3.8.3 Test Protocol 
 

The reactor experiment protocol was developed to measure the key catalyst properties 

that control SCR NOx conversion performance. The isothermal protocol consisted of a 

series of step changes in inlet gas composition designed to measure NH3 inventories 

and reaction rates under both transient and steady state SCR operating conditions. The 

changes in inlet composition for a single run of the isothermal protocol are shown in 

Figure 3.21, while the detailed composition for each step in the protocol is shown in 

Table 3.15. The exhaust flow contains 5% of H2O and 5% of CO2 for all protocol steps to 

ensure relevance to exhaust conditions.  Each step in the protocol was allowed to run 
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until the outlet gas concentrations reached a steady state. The protocol was repeated 

over a range of temperatures and space velocities. 

 

 
Figure 3.21: Test protocol showing the inlet gas concentrations for reactor testing 
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Table 3.15: Gas species concentrations for each test step of the reactor test protocol 

Step Description NO 
(ppm) 

NO2 
(ppm) 

NH3 
(ppm) 

O2 
(%) 

H2O 
(%) 

CO2 
(%) 

1 stabilize 0 0 0 0 5 5 
2 NH3 adsorption 0 0 420 0 5 5 
3 NH3 oxidation 0 0 420 10 5 5 
4 NH3 desorption 0 0 0 10 5 5 

5 NH3 inventory: 
 NO2/NOx = 0.5 175 175 0 10 5 5 

6 SCR: NH3/ NOx= 1.2; 
 NO2/ NOx= 0.5 175 175 420 10 5 5 

7 NH3 inventory:  
NO2/ NOx = 0.5 175 175 0 10 5 5 

8 
SCR:  

NH3/ NOx = 1.0;  
NO2/ NOx= 0.5 

175 175 350 10 5 5 

9 NH3 inventory:  
NO2/ NOx= 0.5 175 175 0 10 5 5 

10 NO oxid:  
NO2/ NOx= 0.0 350 0 0 10 5 5 

11 
SCR:  

NH3/ NOx= 1.2;  
NO2/ NOx= 0.0 

350 0 420 10 5 5 

12 NH3 inventory:  
NO2/ NOx= 0.0 350 0 0 10 5 5 

13 
SCR:  

NH3/ NOx= 1.0;  
NO2/ NOx= 0.0 

350 0 350 10 5 5 

14 NH3 inventory:  
NO2/ NOx= 0.0 350 0 0 10 5 5 

15 NO2 decomposition:  
NO2/ NOx= 1.0 0 263 0 10 5 5 

16 
SCR:  

NH3/ NOx= 1.60;  
NO2/ NOx= 1.0 

0 263 420 10 5 5 

17 NH3 inventory:  
NO2/ NOx= 1.0 0 263 0 10 5 5 

18 
SCR:  

NH3/ NOx= 1.33;  
NO2/ NOx= 1.0 

0 263 350 10 5 5 

19 NH3 inventory:  
NO2/ NOx= 1.0 0 263 0 10 5 5 

20 clean:  
NO2/ NOx= 0.5 175 175 0 10 5 5 
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The following description of the test protocol is quoted from reference [128]. “The gas 

composition changes within the protocol were structured in an attempt to isolate key 

processes that occur over the SCR catalyst so that model parameter estimation could be 

performed on individual reactions or reaction subsets rather than the full SCR reaction 

mechanism. The protocol can be roughly divided into four sections. Step 1 of the 

protocol was used to stabilize the SCR conditions. The following section of the protocol 

(steps 2-5) focused on NH3 adsorption, desorption, and oxidation in the absence of NOx. 

The remaining three sections measured NH3 inventories and reaction rates under three 

different SCR regimes, as commonly defined by the NO2/NOx ratio: fast SCR (NO2/NOx 

= 0.5, steps 5-9), standard or NO SCR (NO2/NOx = 0.0, steps 10-14), and slow or NO2 

SCR (NO2/NOx = 1.0, steps 15-19). The NH3 storage section of the protocol began in 

step 2 with NH3 uptake measured in the absence of O2 and NOx.  This step yielded a 

measurement of the total NH3 storage capacity while avoiding the complications 

introduced by NH3 oxidation.  The rate of NH3 oxidation was measured in step 3 after O2 

was turned on. Step 4 measured the rate of NH3 desorption from the catalyst surface 

after NH3 was removed from the feed gas.  Finally, in step 5, any remaining NH3 on the 

catalyst surface was cleaned off with a 1:1 mixture of NO and NO2.  Integrating the NH3 

desorbed in step 4 and the NOx reduced by stored NH3 in step 5 yielded a measure of 

the NH3 storage under saturation conditions in the presence of O2. The three SCR 

sections of the protocol all followed the same pattern. As detailed in Table 3.15, the feed 

gas included O2 and NOx in all of the SCR steps. The first step in each SCR section 

stabilized the flow of NOx at the desired NO2/NOx ratio.  These steps also enabled 

measurement of the forward and reverse rates of the NO oxidation reaction (the reverse 

reaction is also referred to as NO2 decomposition below). Once the NOx concentrations 

stabilized, 420 ppm NH3 was turned on, corresponding to 20% excess NH3 relative to 

the amount needed to convert all of the NOx to N2.  After the SCR reactions came to 

steady state, the NH3 was turned off while NOx continued to flow.  Integrating the NOx 

reduced by the NH3 stored on the catalyst during this step yielded a measure of the NH3 

inventory under SCR conditions with excess NH3 in the feed. Once the catalyst surface 

had been cleaned, NH3 was restarted at a concentration of 350 ppm, corresponding to 

exactly the amount of NH3 needed to convert all of the incoming NOx to N2. Once again, 

the SCR reaction was allowed to come to a steady state, and then the NH3 was shut off 



 

77 
 

while NOx continued to flow. Integrating the NOx reduced by the stored NH3 allowed 

measurement of the NH3 inventory under stoichiometric SCR conditions.”  

3.8.4 NH3 TPD Test 
 

The following description of the temperature programmed desorption (TPD) experiments  

is quoted from reference [128]. “To further investigate the effects of temperature on NH3 

storage capacity and stability, TPD experiments were also conducted. Prior to the TPD 

experiment, the catalyst surface was cleaned by holding it at 500°C under 10% O2, 5% 

H2O, and 5% CO2 for 30 min. The sample was then cooled to 200 °C under the same 

gas mixture and the temperature was stabilized before O2 was shut off. The test protocol 

for the NH3 TPD experiments is shown in Figure 3.22. The inlet gas included 5% H2O 

and 5% CO2 during all steps of the experiment. The experiment began with an NH3 

adsorption step at 200°C under a nominal concentration of 420 ppm NH3. After the 

catalyst was saturated with NH3 (as evidenced by a steady state outlet concentration 

equal to the inlet concentration), the flow of NH3 was shut off and the catalyst was held 

at 200 °C while NH3 isothermally desorbed.  When the rate of desorption had slowed to 

the point that the outlet NH3 concentration dropped below 5 ppm, the catalyst 

temperature was increased to 500°C at a rate of 5°C min-1. This temperature was 

sufficiently high to remove all NH3 from the catalyst surface. The TPD experiments were 

used in validating the NH3 adsorption/desorption rates in the model.”  

 

 
Figure 3.22: Test protocol for NH3 TPD experiments 

0 50 100 150
0

100

200

300

400

500

Time (min)

NH
3 

Co
nc

. (
pp

m
)

 

 

Inlet NH3
Outlet NH3

0

100

200

300

400

500

SC
R 

In
le

t T
em

pe
ra

tu
re

 (
o C

)



 

78 
 

3.8.5 Test Matrix 
 

The reactor tests were conducted over a broad range of temperatures from 200 to 425 

°C and standard space velocities of 60,000, 90,000, and 120,000 hr-1. The standard 

SCR space velocity was calculated using 0°C and 1 atm pressure as a reference 

condition. The space velocity calculation is shown in Equation 3.2. 

 

 Std Volumetric Flow RateSV
Catalyst Volume

=          3.2 

 

The reactor test matrix is given in Table 3.16. For 60,000 and 120,000 hr-1, the 

isothermal experiment protocol was repeated at intervals of 50°C from 200 to 400°C. At 

90,000 hr-1, the protocol was repeated at 25°C intervals between 200 and 425°C. NH3 

TPD tests were conducted for each space velocity tested. The span of the broad 

temperature range allowed identification of the effect of the temperature on kinetic 

parameters as well as determination of pre-exponential factors and activation energies 

for each reaction included in the model. Different space velocity tests facilitated 

validation of the mass transfer modeling included in the SCR model. NH3 TPD 

experiments provided opportunities for validating the NH3 storage and 

adsorption/desorption parameters. 

 

Table 3.16: Test Matrix for reactor testing 

  Temperature (°C) 
TPD 

  200 225 250 275 300 325 350 375 400 425 

SV
(1

/h
r)

*  

60,000 √  √  √  √  √  √ 
90,000 √ √ √ √ √ √ √ √ √ √ √ 

120,000 √  √  √  √  √  √ 
* SV was calculated by Eq 3.2 using total volume of the SCR  
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3.9 Spaci-IR Reactor Tests 
 

The Spaci-FTIR testing was also developed and carried out at Oak Ridge National 

Laboratory to measure axially resolved concentrations internal to the SCR channels. The 

Cu-zeolite core SCR samples, 5 cm long with a diameter of 2 cm, were taken from the 

2010 Cummins ISB production catalyst. The core samples were also de-greened at 

700°C for four hours under a gas stream containing 20% O2 and 4.5% H2O and the 

balance being N2. The core sample was mounted in a micro flow bench-reactor system 

for reactor testing. The exhaust flow going through the core sample was generated from 

gas cylinders using mass flow controllers to control the flow rate of each gas. A furnace 

with feedback control was used to maintain the SCR temperature. A test protocol with 

nine steps is given in Figure 3.23. The details about the inlet conditions of each step of 

the protocol are shown in Table 3.17. The protocol was conducted to study the SCR 

response of NH3 saturation (step 2 of the protocol), NH3 inventory under NOX SCR 

condition (step 4: NO2/NOx= 0.5), and NH3 inventory under NO SCR condition (step 7: 

NO2/NO = 0). For each step of the protocol, the gas stream also contained 10% of O2, 

5% of H2O, 5% of CO2, with the balance being N2. 

 

 
Figure 3.23: Test protocol of the Spaci-IR reactor tests 
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Table 3.17: Details of each step of the Spaci-IR test protocol 

Step Description NO (ppm) NO2 (ppm) NH3 (ppm) 
1 Stabilize 0 0 0 
2 NH3 adsorption 0 0 350 
3 NH3 inventory: NO2/NOx = 0.5 175 175 0 
4 NH3/NOx = 1.0; NO2/NOx = 0.5 175 175 350 
5 NH3 inventory: NO2/NOx = 0.5 175 175 0 
6 Stabilize NO: NO2/NOx = 0.0 350 0 0 
7 NH3/ NOx = 1.0; NO2/NOx = 0.0 350 0 350 
8 NH3 inventory: NO2/NOx = 0.0 350 0 0 
9 Clean: NO2/NOx = 0.5 175 175 0 

 

Axially resolved gaseous concentrations in the core samples were measured by a FTIR 

with two capillaries sampling from one channel apart from each other near the center of 

the core sample. In order to increase the flow rate fed to the FTIR, the reactor pressure 

was controlled to be 1.25 bar and the capillary flow was diluted using a dilution ratio of 

about 10:1 with N2 before feeding the gas mixture into the FTIR. The actual 

concentrations in the reactor were equal to the FTIR measured concentrations times the 

dilution ratio. For each axial measurement location, the test protocol was conducted 

continuously. The test conditions were held constant until the measured gaseous 

concentrations reached a steady state for each step of the protocol. The measurement 

process was repeated for each axial measurement location and each test condition 

shown in Table 3.18. Another run was conducted for each test temperature measuring at 

the location of 0.4 cm in front of the inlet face to determine the inlet conditions. NH3 

storage on the catalyst under NH3 saturation, NOx SCR, and NO SCR conditions were 

calculated by integrating the NOx converted by stored NH3 after NH3 was turned off 

during step 3, 5, and 8 respectively.  

 

Table 3.18: Test matrix of the Spaci-IR tests 

Space Velocity 
(hr-1) 

Temperature 
(°C) 

Normalized Axial Measurement 
Location 

60,000 250 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 
60,000 300 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 
60,000 350 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 
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When processing the Spaci-IR data, it was determined that the exhaust flow rate for the 

SCR channel with the sampling capillary was higher than expected, resulting in a higher 

local space velocity. The reason was determined to be that the lowered local pressure 

caused by the sampling flow resulted in more flow into the channel. After comparing the 

NH3 storage for the same catalyst under the same conditions without the Spaci-IR 

technique, the actual space velocity of the Spaci-IR tests was estimated to be 70,000 

instead of 60,000 hr-1. 
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Chapter 4.   
 
SCR Model Development and Calibration 
 

The high fidelity Cu-zeolite SCR model was developed from an existing Fe-zeolite SCR 

model which was calibrated to reactor data [23]. The model was modified by changing 

the mass transfer correlation and adding the NH3 oxidation reaction with the oxidation 

selectivity to NO (Reaction 2.21) and the NO2 decomposition reaction (Reaction 2.22) 

which is the reversible reaction of the NO oxidation reaction. It was then calibrated to the 

Cu-zeolite SCR experimental data from both SCR reactor and engine experiments. The 

details of the model as well as the calibration procedures are described in this chapter. 

 

4.1 SCR Model Overview 
 

The model considers one single channel which is assumed to be one dimensional and 

divided into 10 finite elements in the axial direction from inlet to outlet. Three types of 

states including gas phase, surface phase and storage phase are associated with each 

axial element of the model. Gas phase refers to the bulk gas flowing through the 

channel. NH3 is assumed to be the only species that is stored on the catalytic surface. 

The SCR reactions take place between the species in surface and the storage NH3. The 

model consists of two NH3 storage sites with different properties. The 1st site supports 

NH3 adsorption and desorption reactions as well as all of the other SCR reactions. While 

at the same time, the 2nd site only adsorbs and desorbs NH3. Mass transfer takes places 

between the species in the gas phase and surface phase. Heat transfer between bulk 

flow and the substrate and between the substrate and the ambient is included in the 

model to simulate the SCR outlet temperatures under transient conditions.  
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4.1.1 Mass Transfer Equations 
 

Mass transfer between the gas phase and surface phase is included in the model. The 

mass balance equations for the gas phase and surface phase is given in Equations 4.1 

and 4.2. Equation 4.1 describes the mass balance for the gas phase, and Equation 4.2 

describes the mass balance for the surface phase. 

 

 
, ,

, ,( )
n n
g i g i n n

i g g i s i

C C
u A C C

t x
ε β
∂ ∂

= − − −
∂ ∂

               4.1 

 

 
,

, , ,(1 ) ( )
n
s i n n

i g g i s i i j j
j

C
A C C N R

t
ε β

∂
− = − −

∂ ∑           4.2 

 

i = NO, NO2, NH3,  

j = ads, des, fast SCR, standard SCR, slow SCR, etc. 

 

Where, ε is the void fraction of the catalyst, u is the speed of the exhaust flow, Ag is the 

geometric surface area and βi is the mass transfer coefficient shown in Equation 4.3. Cg 

and Cs are the gas phase and surface phase gaseous concentrations. 

 

 
, /i i m i hSh D dβ =          4.3 

 

Where, dh is the hydraulic diameter of the channel and Dm,i  is the molecular diffusivity of 

the ith species. Shi is the Sherwood number of the ith species and is shown in Equation 

4.4 [103]. 

 0.483

 0.766i
dSh Re Sc
L

 
 
 

= × ⋅ ⋅      4.4 

 

Where, d and L are the diameter and length of the channel. Re and Sc are the Reynolds 

number and Schmidt number. A multiplier factor of 4 was applied to the Sherwood 

number calculation when calibrating the model to better simulate the space velocity 

effects on the SCR performance. 
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4.1.2 NH3 Storage Equations 
 

The model assumes NH3 is the only species that can be stored on the catalyst and the 

stored NH3 react with other species in the surface phase. The storage equations for the 

two sites of the model are given in Equation 4.5. 

 

 







−=Ω

−−=Ω ∑

2222

1111

DesAds

j
jjDesAds

RR

RNRR

θ

θ
              4.5 

 

Where, j represents the reaction consuming the stored NH3. θi and Ωi (i = 1, 2) are the 

NH3 coverage fraction and the NH3 storage capacity of each site. R represents the 

reaction rate for each reaction. 

 

4.1.3 Heat Transfer Equations 
 

In order to predict the axial temperature gradients in the SCR as well as the outlet 

temperatures under transient conditions, the SCR model also includes heat transfer 

between the exhaust flow and the substrate as well as the heat transfer to the ambient. 

This is valuable for improving the model prediction performance under transient 

conditions by considering the axial temperature gradients in the model. The heat transfer 

equations for the SCR are given in Equations 4.6 and 4.7. Equation 4.6 is the gas phase 

energy balance equation and Equation 4.7 is the surface phase energy balance 

equation. The heat transfer to the ambient is empirical and is modeled through 

convection heat transfer from the outer surface of the channel with the heat transfer 

coefficient ha and an ambient temperature Ta. The heat release due to the SCR 

reactions is negligible and was set to zero in this model.  

 

 4 ( )g g
v g g w

w

dT dT
C u h T T

dt dx a
ρ ρ= − − −       4.6 
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2 2 2 2

44 ( ) ( )pw w i i
w w g g w a w a

ip w p w i

adT a H RC h T T h T T
dt a a a a MW

ρ −∆
= − − − +

− − ∑           4.7 

 

In equations 4.6 and 4.7, ρ and ρw refer to the density of the exhaust gas and the 

substrate wall. Tw, Tg, and Ta refer to the temperatures of the wall, gas, and the ambient. 

hg and ha refer to the heat transfer coefficients. ap and aw are the width of the monolith 

element and the open channel respectively.  

4.1.4 Reaction Mechanism 
 

The global reactions considered in the model are given in Table 4.1. It was assumed that 

the reactions were first order in the reactants. The assumption was previously tested 

against Fe-zeolite SCR reactor data [23]. As can be seen from the table, there were two 

NH3 storage sites with both sites supporting NH3 adsorption and desorption reactions but 

only the 1st site supporting all the other SCR reactions. The 2nd site performed as a 

storage site which only adsorbs and desorbs NH3. Other reactions taking place on the 1st 

site included two NH3 oxidation reactions with different selectivity to N2 and NO 

respectively, two standard SCR reactions with different equivalence ratio between NH3 

and NO in the reactants, the fast SCR reaction, the slow SCR reaction, NO oxidation 

(the reverse of which is NO2 decomposition), and an N2O formation reaction. 

 

R1 and 2 are the NH3 adsorption and desorption reactions on the 1st storage site. R3 

and 4 are the NH3 adsorption and desorption reactions on the 2nd storage site. R5 to 12 

are the SCR reactions that take place in the 1st storage site. There are two NH3 oxidation 

reactions (R5 and 6) showing NH3 oxidation selectivity to both N2 and NO. R7 and 8 are 

two standard SCR reactions which have different stoichiometry NH3/NOx ratio. The 2nd 

standard SCR reaction (R8) had a higher stoichiometric NH3 to NOx ratio and was used 

to explain the NH3 overconsumption observed from the reactor test results. R9 and 10 

are the fast and slow SCR reactions respectively. R11 is the NO oxidation reaction 

which is considered as a reversible reaction of the NO2 decomposition reaction. R12 is 

the N2O formation from NO2 and the stored NH3. The reaction rate calculation for each 
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reaction is also given in the table. The reaction rate constant was assumed to be in 

Arrhenius form as shown in Equation 4.8. 

 

 E
RTk Ae

−
=                                  4.8 

 

Where, A and E are the pre-exponential factor and activation energy. R is the universal 

gas constant and T is the temperature. 

 

The 2nd standard SCR reaction (R8 in Table 4.1) which has a higher NH3/NO 

stoichiometry was added in the reaction mechanism to account for the overconsumption 

of NH3 with respect to NO observed in reactor tests as given in Figure 4.1. The figure 

shows the molar ratio of consumed NH3 and NO during step 11 (ANR = 1.2) and 13 

(ANR = 1.0) of the reactor test protocol shown in Figure 3.21 It can be observed that this 

ratio is slightly higher than unity in the temperature range of 200 to 400°C, meaning that 

more NH3 was consumed than the NO reduced. Similar NH3 overconsumption 

phenomena were reported for both Fe-zeolite and Cu-zeolite SCR [63,87], and it was 

explained by the NH3 oxidation reactions that consume NH3.The reactor experimental 

data during step 3 of the test protocol showed that the NH3 oxidation reactions were not 

active at temperatures under 250°C as shown in Figure 4.1. The NH3 overconsumption 

was obvious in this temperature range. As a result, the reaction R8 which has a higher 

NH3/NO stoichiometry was added into the SCR reaction mechanism. 
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Figure 4.1: Overconsumption of NH3 with respect to NO under standard SCR conditions 
and NH3 oxidized during step 3 (Space Velocity = 60,000 hr-1) 

 

Expressions for the reaction rate for each reaction included in the model and the 

corresponding units of the reaction rate constant k are also given in Table 4.1. S1 and S2 

represent the two storage sites; NH*
3,1and NH*

3,2 are the NH3 adsorbed on the catalytic 

surface of each site. θi and Ωi (i = 1, 2) are the NH3 coverage fraction and the NH3 

storage capacity of each site. R and k represent the reaction rate and the reaction rate 

constant for each reaction. ηO2 is the oxygen concentration in terms of a mole fraction. 

The equation for calculating the reaction rate constant is given as Equation 4.9.  

 

Where, A is the pre-exponential and E is the activation energy for each reaction, R is the 

universal gas constant, T is the temperature. 

 

4.2 SCR Model Calibration with Spaci-IR Data 
 

The Spaci-IR data provided good insights about the SCR internal states including 

gaseous concentrations and the NH3 storage along the catalyst channel. Only SCR inlet 

and outlet concentrations were collected from the traditional reactor tests and the SCR 

internal states were unknown. It was difficult to validate the internal state predictions 
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from a model capable of correctly predicting the outlet concentrations. The model 

performance in terms of internal states predictions can be verified by the Spaci-IR test 

results. Furthermore, instead of calibrating the model to simulate the time history of the 

SCR outlet species concentrations, the Spaci-IR experimental data provided a novel 

approach to quantify the relationships between the critical kinetic model parameters. 

 

As can be seen from the SCR reaction equations, the NH3 stored on the catalyst 

participates in all SCR reactions. As a result, the NH3 storage capacity of each model 

site Ωi (i = 1, 2) are key parameters that need to be identified first. The total NH3 storage 

capacity of the catalyst can be calculated by integrating the NOx reduced by stored NH3 

during step 3 of the protocol. Since there were two storage sites in the model, how to 

separate the total storage capacity between each site became a unique problem to 

solve. The gas phase concentrations were assumed to be equal to the surface phase 

concentrations in this analysis. For the purpose of simplifying the calculation, a 1-site 

model was used to compute the total ammonia storage capacity.  

 

4.2.1 1-Site Model Analysis 
 

The steady-state portion of the experimental data at step 2 of the protocol shown in 

Figure 3.23 and Table 3.17, which is the NH3 saturation section, was used for the 

storage analysis. The time rate of change of stored NH3 was zero and the reaction rate 

of the adsorption reaction was equal to that of the desorption reaction when the catalyst 

reached the equilibrium state. This leads to Equation 4.10 in which the left hand side is 

the NH3 adsorption rate and the right hand side of the equation is the desorption rate. 

The reaction rate constant for the adsorption and desorption reactions are assumed to 

be in Arrhenius form as shown in Equation 4.11. 

 

 
, 3, ,(1 )ads i NH i i des i ik C kθ θ− Ω = Ω      4.10 

 exp( / )j j j ik A E RT= −      4.11 
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Where, the subscript i represents the ith test temperature (250, 300, or 350°C) and j is 

reaction index. The quantity k is the reaction rate constant for the reactions, C is the gas 

concentration, θ is the NH3 coverage fraction which is a ratio of the NH3 storage at each 

temperature and Ωi is the storage capacity Ω, shown in Equation 4.12.  

 

The relationship between the reaction rate constants of adsorption and desorption 

reactions given in Equation 4.13 can be derived by substituting Equation 4.12 into 

Equation 4.10 and rearranging the equation. 

 

The left hand side of Equation 4.13 can be rearranged by replacing the reaction rate 

constants by Equation 4.11 for NH3 adsorption and desorption reactions shown in 

Equation 4.14. As a result, Equation 4.15 can be obtained from Equations 4.13 and 4.14. 

 

 

Equation 4.16 was derived by taking the natural log of both sides of Equation 4.15 and 

rearranging the equation. Three unknown terms showing the relationships between the 

pre-exponentials and activation energies of the NH3 adsorption and desorption relations 

as well as the storage capacity Ω are present in the equation. The NH3 concentrations 

CNH3 and the NH3 storage Ωi at different axial positions of the catalyst can be quantified 

from the Spaci-IR test results for the three temperatures tested (250, 300 and 350°C). 

The procedures for the NH3 storage calculation are shown in Appendix F. Three identical 

equations can be obtained from Equation 4.16 for the three temperatures tested. The 

three unknown terms in Equation 4.16 can be quantified by solving the equation set for 

the three temperature runs. 

 /i iθ = Ω Ω     4.12 

 , , 3,/ / ( ( ))ads i des i i NH i ik k C= Ω Ω−Ω     4.13 

 , ,
exp( / )/ exp( )
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A E RT A RT
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The calculated Ωi for 250, 300, and 350°C are Ω1 = 84.4, Ω2 = 63.8, and Ω3 = 37.7 

gmol/m3 as shown in Figure 4.2. A linear relationship between NH3 storage and 

temperature in this temperature range for the same catalyst formation was reported 

when O2 was not present in the stream. Ω3 was below the dotted red line generated from 

Ω1 and Ω2 because NH3 was oxidized at the temperature of 350°C. The NH3 oxidation 

resulted in less NH3 storage than expected. In order to eliminate the effect of NH3 

oxidation, Ω3
* = 43.1 gmol/m3 which fell on the line from the two lower temperature tests 

was used. After substituting the known parameters for each temperature, a set of three 

equations were available for solving the three unknown terms. One meaningful solution 

was shown in Table 4.2. The NH3 adsorption reaction was typically considered as non-

activated reaction with activation energy of zero. As a result, the activation energy for 

desorption reaction is equal to 41.3 kJ/gmol.  

 
Figure 4.2: NH3 storage at each test temperature 

Table 4.2: Identified NH3 storage capacity, Aads/Ades and Eads– Edes for 1-site model 

Parameter Value Unit 
Ω 108 gmol/m3 
Aads / Ades   2.84 e-2 none 
Eads – Edes   41.3 kJ/gmol 
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The NH3 oxidation at 350°C was used to calculate the relationship between the reaction 

rate constant of NH3 adsorption reaction and NH3 oxidation to N2. The 2nd NH3 oxidation 

reaction was not considered because it was reported that the NH3 oxidation to NO is not 

significant below a temperature of 550°C [94]. By considering the NH3 oxidation reaction, 

the NH3 storage equation can be written as shown in Equation 4.17. Equation 4.18 can 

be derived by substituting reaction rate equations of NH3 adsorption, desorption and 

oxidation reactions as well as Equation 4.12 into Equation 4.17. With the identified 

relationships above, the ratio of the reaction rate constant for NH3 adsorption and 

oxidation reaction can be quantified by solving Equations 4.16 (i = 3) and 4.18. The 

calculation results showed that kads/koxi1 = 1.63 at the temperature of 350 °C. 

 

The next step was to calculate the activation energy and pre-exponential constant of the 

fast SCR reaction using steady state portions of step 4 and 5 (NOx + NH3 SCR 

condition). Fast SCR reaction was dominant with a NO2/NOx ratio equal to 0.5. Other 

SCR reactions were not considered under this condition in order to simplify the 

calculation. The changing rates of gaseous concentrations for both gas and surface 

phase are zero under the SCR equilibrium state, meaning that the concentrations at 

different axial positions don’t change with time when reaching the equilibrium state. 

Under this condition, Equation 4.19 can be derived from the mass balance equations for 

both gas and surface phases shown in Equations 4.1 and 4.2 based on the assumption 

that the gas phase concentrations are equal to the surface phase concentrations.  

 

Based on the assumption that only the fast SCR reaction takes place under this 

condition, Equation 4.19 can be rewritten as given in Equation 4.20. The reaction rate 

equation for the fast SCR reaction is shown in Equation 4.21. 

 14 0ads des oxiR R RθΩ = − − =      4.17 
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Axially resolved measurements of NH3, NO, and NO2 provided rich data for calculating 

the fast SCR reaction rate constants through Equations 4.20 and 4.21. kfst on each axial 

element divided by two axial measurement locations was calculated using the axial 

measurements under each temperature for NH3, NO, and NO2 respectively. The 

calculated kfst at 3 temperatures for each element was then plotted in Arrhenius form for 

the purpose of determining the activation energy and pre-exponential constant. The 

results was Efst ≅ 53.8 kJ/gmol, the Afst was not constant along the axial locations and 

ranged from 1.63e8 to 1.36e9 m6/gmol2∙s with low values at the front of the catalyst and 

high values at the end of the catalyst.  

 

With the identification results presented above, the 1-site SCR model was run with a 

different set of parameters following the identified values and relationships between 

parameters. It was found that a one storage site model was not able to correctly simulate 

both axial gas concentrations and NH3 storage distributions. After tuning the model 

parameters following the relationships determined above, the model was able to make 

correct predictions of axial concentrations under the NOx + NH3 SCR section. The model 

simulated NOx and NH3 concentrations at different axial locations of the catalyst 

compared to experimental results are given in Figures 4.3 and 4.4.  

 

 3 2, ,,2 2 4g NH g NOg NO
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u u u R R R

x x x
∂ ∂∂

− = − = − = − =
∂ ∂ ∂

     4.20 
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Figure 4.3: 1-site model simulated NOx concentration at different axial locations at 

equilibrium state of NOx + NH3 reaction section compared to experimental results 

 

 
Figure 4.4: 1-site model simulated NH3 concentration at different axial locations at 

equilibrium state of NOx + NH3 reaction section compared to experimental results 

 

The NH3 storage as a function of axial location under NH3 saturation and NOx + NH3 

sections is given in Figure 4.5. It can be seen that the storage capacity under NH3 
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saturation condition was correctly predicted. The NH3 storage during the NOx + NH3 

SCR condition was underestimated. This was because the NH3 being adsorbed on the 

catalyst under the NOx SCR condition was consumed more quickly than expected 

through SCR reactions at the same time. Reducing the reaction rate of the fast SCR 

reaction can compensate for the NH3 storage during the NOx SCR condition. It led to 

prediction errors in gaseous concentrations. The solution to correct the NH3 storage 

prediction without affecting the gas concentration prediction was to add the 2nd storage 

site which supported only NH3 adsorption and desorption.  

 

 

Figure 4.5: Simulated cumulative NH3 stored for the 1-site model as a function of axial 
position compared to experimental results 
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As shown in Figure 4.5, the differences in NH3 storage between model simulation and 
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the set of equations derived from Equation 4.16 for the 2nd site at three temperatures, 

the storage capacity Ω2, Aads2/Ades2, and Eads2-Edes2 can be solved The meaningful solution 
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89.2 kJ/gmol. Similarly, the adsorption reaction on the 2nd site was considered as a non-

activated reaction, and Eads2 was set to zero, resulting in Edes2 = 89.2 kJ/gmol. 

Adding the 2nd site without reducing the NH3 storage capacity of the 1st site resulted in 

overestimation of the NH3 stored during the NH3 saturation section of the test protocol. 

The NH3 storage capacity of site 1 needs to be reduced after adding the 2nd site. The 2-

site model with identified parameters above was run to determine how much NH3 was 

actually stored on the 2nd site. Then the difference in NH3 storage between the NH3 

stored on the 2nd site and the experimentally found storage was considered to be the 

storage on the 1st site.  

 

Simulation results showed that about 39.5, 30.0, and 20.5 gmol/m3 of NH3 was stored on 

the 2nd site under NH3 saturation condition for 250, 300, and 350 °C respectively. The 

differences between storage values on the 2nd site and the experimentally found values 

shown in Figure 4.2 were 44.9, 33.8, and 17.2 gmol/m3 for 250, 300, and 350°C 

respectively, and those values were considered as the NH3 storage on the 1st site after 

adding the 2nd site. Then the storage capacity of the 1st site (Ω1), Aads1/Ades1, and Eads1-Edes1 

were also updated through re-solving the equation set derived from Equation 4.16 for 

each temperature. The solution was: Ω1 = 55.5 gmol/m3, Aads1/Ades1 = 1.28e-2, Eads1-Edes1 = 

-45.4 kJ/gmol. Again Eads1 was set to be zero since the NH3 adsorption reaction was 

considered as non-activated reaction. The identified storage parameters and the 

relationships for the two storage sites are given in Table 4.3. 

 

Table 4.3: Identified NH3 storage capacity, Aads/Ades and Eads– Edes for the storage sites 
of the 2-site model 

Parameter Value Units 
Ω1 55.5 gmol/m3 
Ω2 39.1 gmol/m3 

Aads1 / Ades1 1.28 e -2 none 
Eads1 – Edes1 - 45.4 kJ/gmol 
Aads2 / Ades2 1.66 e -6 none 
Eads2 – Edes2 - 89.2 kJ/gmol 

 

After determining the storage parameters for each site, the model kinetic parameters of 

the remaining reactions taking place on the first site were updated following the 
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parameter identification process presented in the previous section. The comparisons 

between the model simulation results using the parameters constrained by the identified 

relationships and the experimental results are given in Figures 4.6, 4.7 and 4.8. Figures 

4.6 and 4.7 show the comparison of axially resolved NOx and NH3 concentrations at 

each temperature between simulation and experimental results under the NOx SCR 

condition of the protocol. The difference in concentrations between temperatures is not 

significant and the model is able to capture this feature. The simulated concentrations 

also follow the same trend along the axial location. More than 90% of the NOx reduction 

took place in the first half of the catalyst length. There is not NH3 available for NOx 

reduction after the fractional location (x/L) 0.6. A low level of NOx (< 20 ppm) is still 

present after this position.  

 

 
Figure 4.6: 2-site model simulated NOx concentration at different axial locations at 
equilibrium state of NOx + NH3 protocol section compared to experimental results 
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Figure 4.7: 1-site model simulated NH3 concentration at different axial locations at 
equilibrium state of NOx + NH3 protocol section compared to experimental results 

 

Figure 4.8 shows comparisons of the cumulative NH3 stored on the catalyst at each axial 
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Figure 4.8: Simulated cumulative NH3 stored of the 1-site model as a function of axial 

position compared to experimental results 
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participates in all SCR reactions. As a result, the NH3 storage capacities of each site 

needs to be identified along with the adsorption and desorption reaction rate constant for 

each test condition as a first step in the model calibration. The next step is to manually 

tune the reaction rate constant (k) for each SCR reaction to find the best fit between 

model simulation and experimental measurements for each test condition. Each reaction 

can be calibrated individually by using the data of certain segments of the test protocol 

as described in the previous sections. The third step is to carry out an optimization 

method using the manually found approximate reaction rate constants as a basic 

calibration. The optimization method called a MATLAB “fmincon” function was used to 

determine the set of reaction rate constants for the reactions which gave the lowest cost 

function value. The cost function value for each species is defined as the accumulative 

absolute error between the model prediction and the experimental measurement divided 

by the simulation time. The equation calculating the cost function value for each species 

is given in Equation 4.22. 

 

Where Costi is the cost function for gas species i (i =NO, NO2, NH3). t0 and tend are the 

start and stop time in seconds for the simulation. Ci,sim and Ci,exp are the model simulated 

and experimentally measured gas concentrations for the gas species i respectively. The 

fourth step is to plot the optimal reaction rate constants for each reaction determined 

following the optimization process for each test condition described above in Arrhenius 

form. The process is then to find the linear trend line of the plotted points. The slope and 

intercept of the trend line were used to calculate the activation energy and pre-

exponential of each reaction using Equation 4.23. 
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m is the slope and c is the intercept of the trend line. The confidence interval for the 

activation energy of each reaction was calculated from the standard error of the slope of 

each trend line in the Arrhenius plot. 

 

4.3.2 NH3 Storage Parameters 
 

NH3 stored on the SCR during step 2 of the protocol was calculated by integrating the 

difference between the SCR inlet and outlet NH3 concentrations for each temperature 

and space velocity tested. Calculation results are shown in Figure 4.9. It is clear from the 

figure that the catalyst stored more NH3 at lower temperatures. The NH3 stored is close 

to a linear relationship with temperatures between 250 and 350°C for each space 

velocity tested. The highest NH3 storage observed was 76.2 gmol/m3, which was under 

the condition of 200°C and 60,000 hr-1 space velocity. In order to get the correct NH3 

storage prediction under this condition or even lower temperatures, the total storage 

capacity of the model should be higher than this value. In addition, the total storage 

capacity must be partitioned between the two storage sites. The NH3 adsorption and 

desorption rates of R1-4 also affect the NH3 stored on the catalyst. Different 

combinations of the model parameters including the storage capacity on each site, and 

the NH3 adsorption and desorption reaction rate constants for each site were used in the 

simulation to find the best possible fit by comparing the simulation results with the 

experimental measurements during steps 2-4 for each of the test conditions. Since one 

reaction rate constant works for one temperature and the TPD test covered a wide 

temperature range, the TPD data were not used in this process. In this step, the NH3 

adsorption reaction was considered as a non-activated reaction with a rate constant 

independent of temperatures, with a resulting activation energy equal to 0. 
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Figure 4.9: NH3 stored on the catalyst at step 2 of the protocol for each reactor test 
condition 

 

After manual tuning of the model parameters, the optimization method was carried out to 

further optimize the model parameters using the manually found approximate 

parameters as a starting point. The optimization method was conducted for steps 2-4 of 

the test protocol for each test condition. A total of 6 model parameters including the NH3 

storage capacity on each of the two sites and NH3 adsorption /desorption reaction rate 

constants for each of the two sites were identified for every test condition through the 

procedure presented above.  
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as shown in Figure 4.10 to find the A and E of the reactions. The slopes and the 

intercepts of the fit trend lines in Figure 4.10 were used for calculation of A and E for 

adsorption and desorption reactions on the two sites using Equation 4.23. The standard 
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activation energy of the reaction. The storage parameter identification results are given 
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on each storage site to constrain activation energy to be zero. The results show that the 

activation energy of NH3 desorption on the 2nd site is higher than that on the 1st site. This 

means that the NH3 stored on the second site needs more energy to be desorbed from 

the catalyst. The bigger difference between NH3 adsorption and desorption reaction rate 

constants under lower temperatures explains why the SCR stores more NH3 at lower 

temperature conditions. 

 

 
Figure 4.10: Arrhenius plot of reaction rate constants for NH3 adsorption and desorption 

on two sites (Square: SV = 60,000 hr-1, Diamonds: 90,000 hr-1, Circle: 120,000 hr-1) 

 

Table 4.4: Identified NH3 storage parameters 

Ω1 43.0 gmol/m3 
Ω2 39.3 gmol/m3 

 m c A E (kJ/gmol) 
R1: Ads1 0 1.92 6.80E+00 m3/gmol.s 0 
R2: Des1 -5.27 ± 0.64 6.25 5.20E+03           1/s 52.5±5.31 
R3: Ads2 0 4.77 1.17E+02 m3/gmol.s 0 
R4: Des2 -9.12 ± 0.56 14.5 1.97E+06            1/s 71.6±4.67 
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4.3.3 NH3 Oxidation Parameters 
 

Reactor data from step 3 of the protocol was used to calibrate the NH3 oxidation 

reactions (R 5 and 6) which are the major reactions taking place on the 1st site during 

this step except the adsorption and desorption reactions. The reaction R6 forms NO 

which reacts with NH3 through standard SCR reactions. The standard SCR reactions at 

step 3 were not calibrated in this step of the calibration process because of their 

insignificant effect on the results. Similar to the parameter identification process 

described in the previous section, a manual tuning of the reaction rate constants was 

followed by the optimization method. The process was conducted for step 3 of the 

protocol under each test condition. The optimal reaction rate constants for the NH3 

oxidation reactions obtained after the optimization process were plotted in Arrhenius 

form which is given as Figure 4.11. A and E for each NH3 oxidation reaction were 

calculated using the slope and intercept trend lines according to Equation 4.23 and are 

given in Table 4.5. Both NH3 oxidation reactions have relatively low reaction rate 

constants. The effect of temperature on the 2nd oxidation reaction is more obvious 

because of its higher activation energy.  

 

 
Figure 4.11: Arrhenius plot of reaction rate constants for NH3 oxidation reactions 

(Square: SV = 60,000 hr-1, Diamonds:90,000 hr-1, Circle: 120,000 hr-1) 
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Table 4.5: Identified NH3 oxidation parameters 

Reaction m c A(1/s) E (kJ/gmol) 
R5: Oxi1 -10.5 ± 0.52 11.5 1.02E+05 87.3 ± 4.34 
R6: Oxi2 -27.3 ± 1.08 33.1 2.27E+14 227 ± 8.94 

 

4.3.4 NO + NH3 SCR Reaction Parameters 
 

With the model parameters identified in the previous sections, the model calibration was 

then focused on the individual SCR reactions. Although fast SCR reaction (R9) is 

dominant during NOx+NH3 SCR steps 5 to 9 of the protocol, other reactions including 

standard SCR, slow SCR, NO oxidation, NH3 oxidation, and N2O formation also take 

place because of the presence of both NO and NO2 in the exhaust stream. Fewer 

reactions take place during NO+SCR steps 10 to 14. The major reactions during this 

segment include 1st and 2nd standard SCR reaction and NO oxidation reaction (R7, 8, 

and 11). Other reactions taking place in this segment of the protocol includes NH3 

adsorption/desorption, NH3 oxidation reactions, and NO2 involved SCR reactions 

because of the possible NO2 formation through the NO oxidation reaction. The 

determined model parameters for NH3 adsorption/desorption and NH3 oxidation 

reactions were used but not optimized in this step of the calibration process. The NO2 

involved SCR reactions were also not calibrated in this step because of their insignificant 

effect on the results. The parameter identification process was conducted for steps 10 to 

14 of the protocol for all test conditions and the identified optimal reaction rate constants 

were plotted in Arrhenius form as shown in Figure 4.12 and the A and E of each reaction 

are given in Table 4.6. The 1st standard SCR reaction has a higher reaction rate 

constant, meaning that it is the dominant reaction among the three reactions during the 

NO + NH3 SCR steps 10 to 14. 
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Figure 4.12: Arrhenius plot of reaction rate constants for the two standard SCR reactions 

and NO oxidation reaction (Square: SV = 60,000 hr-1, Diamonds:90,000 hr-1, Circle: 
120,000 hr-1) 

Table 4.6: Identified model parameters for standard SCR reactions and NO oxidation 
reaction 

Reaction m c A E (kJ/gmol) 
R7: Std1 -8.99 ± 0.31 19.4 2.74E+08 m3/gmol.s  74.8±2.60 
R8: Std2 -8.67 ± 0.77 16.1 9.71E+06 m3/gmol.s 72.1±6.37 

R11: NO Oxi -6.69 ± 0.45 10.6 3.99E+04           1/s 55.6±3.75 
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previous section, the NO2 decomposition reaction is the reversible reaction of the NO 

oxidation reaction which was already calibrated as discussed in the previous section, 

leaving parameters for the slow SCR reaction and the N2O formation reaction to identify 

in this step of the calibration. As discussed in Appendix G, certain parts of the reactor 

data at low temperatures were not suitable for model calibration purposes. As a result, 

only high temperature runs were considered in this part of the calibration. After 
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conducting the parameter identification process for the two reactions during steps 15 to 

19 for the high temperature runs, the identified reaction rate constants were plotted in 

Arrhenius form shown in Figure 4.13 and the A and E of each reaction are given in Table 

4.7.  

 
Figure 4.13: Arrhenius plot of reaction rate constants for slow SCR reactions and N2O 

formation reaction (Square: SV = 60,000 hr-1, Diamonds:90,000 hr-1, Circle: 120,000 hr-1) 
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R10: Slow SCR -11.8 ± 1.21 22.9 9.67E+09  98.2±10.0 
R12: N2O Form. -9.65 ± 1.09 15.2 4.05E+06 80.2±9.13 
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Table 4.8. Compared to the other SCR reactions discussed above, the fast SCR reaction 

has the highest reaction rate constant which means it results in the highest reaction rate 

under the same temperature conditions. 

 

 
Figure 4.14: Arrhenius plot of reaction rate constants for fast SCR reaction  (Square: SV 

= 60,000 hr-1, Diamonds: 90,000hr-1, Circle: 120,000hr-1) 

 

Table 4.8: Identified model parameters for fast SCR reaction 

Reaction m c A (m6/gmol2.s) E (kJ/gmol) 
R9: Fast SCR -4.76 ± 0.86 20.8 1.03E+09 39.6±7.13 

 

The identified model parameters for the model calibration to the reactor experimental 
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Table 4.9:  SCR model calibration results based on the reactor data 

Ω1 43.0 gmol/m3 

Ω2 39.3 gmol/m3 

Reaction m c A E (kJ/gmol) 

Ads1 0 1.92 6.80 E+00 m3/gmol.s 0 

Des1 -5.27 ± 0.64 6.25 5.20 E+02 1/s 43.8 ± 5.31 

Ads2 0 4.77 1.17 E+01 m3/gmol.s 0 

Des2 -9.12 ± 56 14.5 1.97 E+06 1/s 75.7 ± 4.67 

NH3 Oxi1 -10.5 ± 0.52 11.5 1.02E+05 1/s 87.3 ± 4.34 

NH3 Oxi2 -27.3 ± 1.08 33.1 2.27E+14 1/s 227 ± 8.94 

Std1 -8.99 ± 0.31 19.4 2.74 E+08 m3/gmol.s 74.8 ± 2.60 

Std2 -8.66 ± 0.77 16.1 9.71 E+06 m3/gmol.s 72.0 ± 6.37 

NO Oxi -6.69 ± 0.45 10.6 3.99 E+04 1/s 55.6 ± 3.75 

Slow -11.8 ± 1.21 22.9 9.67 E+09 m3/gmol.s 98.2 ± 10.0 

N2O Form. -9.65 ± 1.10 15.2 4.05 E+06 m3/gmol.s 80.2 ± 9.13 

Fast -4.76 ± 0.86 20.8 1.03 E+09 m6/gmol2.s 39.5 ± 7.13 
 

4.4 Sample Line Model Development  
 

As discussed in the previous section, the NH3 slip measurements from the IMR-MS were 

delayed because of the NH3 adsorption on the sample line wall. Using the delayed NH3 

measurements in the SCR model calibration process without correction will cause an 

error in the model kinetic parameters. As a result, it is important to quantify the NH3 

adsorption and desorption process in the sample line and take it into consideration 

during calibration of the SCR model with the engine data.  

 

A sample line model which simulates the NH3 adsorption and desorption process in the 

sample line was developed to reduce the effect of the process on the SCR model 
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calibration. The model considers the sample line as a NH3 storage site with certain NH3 

storage capacity and includes NH3 adsorption and desorption reactions. The storage 

capacity and the reaction rate constant of each reaction are temperature dependent. 

Since the sample line was constantly heated to 190°C, the storage capacity and the 

reaction rate constants are considered to be constants. As a result, three model 

parameters including NH3 storage capacity of the sample line and two reaction rate 

constants for NH3 adsorption and desorption reactions need to be identified by 

calibrating the model to the experimental data from the sample line tests discussed in 

the previous section. 

 

As shown in Figure 4.15, the NH3 calibration gas from the gas cylinder with a NH3 

concentration of 103.8 ppm was used as a step input to the sample line model. The IMR-

MS measurement was switched to sampling from the cylinder at 3 minutes to study the 

NH3 adsorption process in the sample line. After the NH3 measurement from the 

analyzer reached steady state, the gas sampling was switched to room air at 28 minutes 

to study the NH3 desorption process in the sample line. The output NH3 concentration of 

the sample line model was from the measurement of the IMR-MS. The NH3 storage 

capacity of the sample line was calculated by integrating the difference between the 

model input and output NH3 concentrations during NH3 adsorption. The reaction rate 

constants for adsorption and desorption reactions were tuned to match the model 

simulated outlet NH3 with the NH3 measurements from the IMR-MS. A manual 

calibration along with an optimization method was conducted to find the optimal model 

parameters which gave the smallest error between model simulation and experimental 

measurements. The identified optimal model parameters and the model simulation 

compared to experimental measurements are shown in Figure 4.15. The storage 

capacity of the sample line was determined to be 0.12gmol/m3. The adsorption and 

desorption reaction rate constants were 3.5m3/gmol.s and 0.01 1/s respectively. 

 

As can be seen from Figure 4.15, the model can correctly simulate the NH3 

measurement delay caused by the NH3 adsorption in the sample line. The model 

simulation approaches to the steady state faster than the measurement probably 

because there are other factors affecting the measurement in the analyzer including pre-



 

111 
 

filter effect, slow response of the detector, etc. The NH3 desorption process from the 

sample line after 28 minutes can also be predicted by the sample line model.  

 

 
Figure 4.15: Sample line model predicted NH3 compared to the IMR-MS measure during 

103.8 ppm NH3 calibration gas as a step input 

The model performance was validated using another set of sample line experimental 

data from the SCR engine experiment as shown in Figure 4.16. The NH3 measurement 

from the NH3 sensor was considered to be real-time and used as the input to the sample 

line model. The NH3 measurements from the IMR-MS were used as the output to the 

model. The model predicted NH3 at the outlet of the sample line was compared to the 

IMR-MS measurements as shown in Figure 4.16. The results show good agreement 

between the model prediction and experimental measurements in terms of measurement 

delay and the transient adsorption/desorption process. The sample line model was used 

to post process the SCR model predicted NH3 to take into account the effect of the NH3 

measurement delay. 
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Figure 4.16: Sample line model predicted NH3 compared to the IMR- MS measured NH3 

using NH3 sensor measurement during engine test as the input (Red: NH3 sensor 
measurement, Green: IMR-MS measurement, Blue: Sample line model predictions) 

 

4.5 SCR Model Calibration with Engine Data  
 

The main focus of the SCR model calibration was to determine the optimal set of model 

parameters which gave the best agreement between the model simulation and the 

engine experimental measurements. The model parameters that need to be determined 

include A and E for the SCR reactions and the two storage capacities for the two storage 

sites. The model parameters from the SCR model calibrated to the reactor data were 

used as a starting calibration for the engine data based SCR model. A manual tuning of 

the parameters along with an optimization method was performed during the SCR 

engine data based model calibration process. 

 

The model was first run by manually varying the individual parameters to determine how 

the change in each parameter affects the simulation results. This determined the 

response of tuning each model parameter. Iterations of this procedure were performed 

to find the approximate set of parameters for each experimental run. This provided an 

initial set that were used as the starting parameters for the optimization method. The 

optimization method works by varying the parameters of the model to make predictions 

with the smallest error compared to experimental results. Similarly to the optimization 

process for calibration of the model with the reactor data, the error between simulation 
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results and experimental measurements were defined as the cost values that can be 

minimized by the MATLAB “fmincon” function. This procedure was also performed by 

optimizing different model parameters for each experimental run. A smaller weighing 

factor was used for NH3 when calculating the cost function value because measurement 

delay was known to be associated with the NH3 measurements from the IMR-MS. The 

model simulated NH3 will be post processed by a sample line model which simulates the 

NH3 measurement delay caused by NH3 adsorption and desorption in the sample line. 

The sample line model introduced in the previous section was incorporated into the SCR 

model simulation to eliminate the NH3 measurement delay effects. This manual 

calibration combined with optimization process was performed for each set of 

experimental data for iterations to achieve optimal match between simulation and 

experimental results. 

 

The N2O formation, NO oxidation, and the 2nd NH3 oxidation reactions were not 

calibrated for the engine data based SCR model. Because of the interference issues 

between N2O and interferent CO2 which is present in the exhaust. The low levels of N2O 

(< 100 ppm) concentrations cannot be accurately measured by the IMR-MS. The 

parameters for the N2O formation reaction were retained from the reactor calibration. 

The effect of temperature on the NO oxidation and the 2nd NH3 oxidation reaction rate 

was not captured because of the measurement tolerance of the analyzer was not small 

enough to identify the reactions in the complex reaction mechanism.  

 

The identified optimal model parameters for each run are given in Table 4.10. The 

reaction rate constants for each reaction were then plotted in Arrhenius form as shown in 

Figure 4.17. Run No. 1′ and 4′ are repeats of run 1 and 4. It can be observed from 

Figure 4.17 that the reaction rate constant for each reaction followed a linear trend in the 

Arrhenius form, meaning that the effect of the temperature on the reaction rates was well 

captured by the model. The slope m and the interception c of each fit trend line were 

used to calculate the pre-exponential constant and the activation energy of each 

reaction. The average of the determined NH3 storage capacity for each site for all runs 

was considered to be the optimized storage capacity on each site.  
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Figure 4.17: Arrhenius plots of reaction rate constant for each reaction in the SCR model 
based on the engine data 
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The calibration results are given in Table 4.11. The standard errors in the slopes of fitted 

lines were used to calculate the confidence intervals for the activation energy of each 

reaction. As discussed, the NH3 adsorption reaction was normally considered as a non-

activated reaction with the activation energy of zero in the literature [18]. Efforts were 

performed during the model calibration process to get the best fit while constraining the 

activation energy for the NH3 adsorption reactions to be zero. However, it was not 

successful and the activation energy for the NH3 adsorption reaction was determined to 

be negative for the SCR model. This was because the model was calibrated with engine 

data which accounts for the complex urea decomposition process, nonuniformity of the 

NH3 distribution in the engine exhaust system. 

 

Table 4.11:  SCR model calibration results based on the engine data 

Ω1 43.6 gmol/m3 
Ω2 36.0 gmol/m3 

Reaction m c A E (kJ/gmol) 
Ads1 1.22 ± 0.49 0.49 1.08 E+00 m3/gmol.s -10.2 ± 4.04 
Des1 -8.12 ± 1.45 1.45 3.22 E+04 1/s 67.5 ± 12.1 
Ads2 0.91 ± 0.14 0.14 2.11 E+01 m3/gmol.s -7.60 ± 1.12 
Des2 -8.71 ± 1.31 1.31 9.58 E+05 1/s 72.4 ± 10.9 
Std1 -9.29 ± 0.95 0.95 7.18 E+07 m3/gmol.s 77.3 ± 7.92 
Std2 -8.22 ± 0.88 0.88 6.17 E+06 m3/gmol.s 68.4 ± 7.28 
Slow -13.1 ± 1.11 1.11 7.13 E+09 m3/gmol.s 109 ± 9.21 
Fast -5.44 ± 1.15 1.15 1.76 E+08 m6/gmol2.s 45.2 ± 9.55 

NH3 Oxi. -11.0 ± 1.10 1.10 2.33 E+05 1/s 91.1 ± 9.18 
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Chapter 5.   
 
Results and Discussion 
 

The high fidelity SCR model calibration results developed from the reactor and engine 

experimental data and the applications of the model are discussed in this chapter. The 

model parameters between the calibrations developed from the reactor and engine data 

are compared. Differences in the model parameters were determined and the reasons 

causing the differences were investigated and are discussed. The NH3 maldistribution at 

the SCR inlet during engine tests was quantified through engine experiments. The 

effects of the SCR inlet NO2/NOx ratio on the NOx reduction efficiency and NH3 slip 

under transient conditions was studied using the surrogate HD-FTP cycle. The effects of 

the NH3 maldistribution on the SCR performance as well as on the kinetic parameters 

were studied through simulation approach using the calibrated high fidelity SCR model. 

The hydrothermal aging effects on the SCR performance as well as on the kinetic 

parameters are also discussed in this chapter. 

 

5.1 Comparison of Model Parameters 
 

The comparison of the model parameters identified based on reactor and engine 

experimental data is shown in Table 5.1. It can be seen that the storage capacities, Ω1 

and Ω2 from both calibrations are comparable. There are differences in the kinetic 

parameters including the pre-exponential factors and activation energies for different 

SCR reactions.  
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Table 5.1: SCR model parameters of the calibrated SCR model along with literature 
values 

Parameter Calibration to 
 reactor data 

Calibration to 
 engine data 

References 
[18,43,129,130] Unit 

Ω1 4.30 E+01 4.36 E+01 1.20E+02 gmol/m3 

Ω2 3.93 E+01 3.60 E+01 - gmol/m3 

A_ads1 6.80 E+00 1.08 E+00 - m3/gmol·s 

E_ads1 0 -10.2 ± 4.04 0 kJ/gmol 

A_des1 5.20 E+02 3.22 E+04 - 1/s 

E_des1 43.8 ± 5.31 67.5 ± 12.1 96.1, 97.5 kJ/gmol 

A_ads2 1.17 E+02 2.11 E+01 - m3/gmol·s 

E_ads2 0 -7.60 ± 1.12 - kJ/gmol 

A_des2 1.97 E+06 9.58 E+05 - 1/s 

E_des2 75.7 ± 4.67 72.4 ± 10.9 - kJ/gmol 

A_nh3oxi1 1.02 E+05 2.33 E+05 - 1/s 

E_nh3oxi1 87.3 ± 4.34 91.1 ± 9.18 177, 63.8 kJ/gmol 

A_nh3oxi2 2.27 E+14 - - 1/s 

E_nh3oxi2 227 ± 8.94 - - kJ/gmol 

A_std 2.74 E+08 7.18 E+07 - m3/gmol·s 

E_std 74.8 ± 2.60 77.3 ± 7.92 48.7, 88.0, 89.1 kJ/gmol 

A_std2 9.71 E+06 6.17 E+06 - m3/gmol·s 

E_std2 72.1 ± 6.37 68.4 ± 7.28 - kJ/gmol 

A_nooxi 3.99 E+04 - - 1/s 

E_nooxi 55.6 ± 3.75 - 23.4±1.80,-31.6, 56 kJ/gmol 

A_slo 9.67E +09 7.13 E+09 - m3/gmol·s 

E_slo 98.2 ± 10.0 109 ± 9.21 58.3, 136.3 kJ/gmol 

A_n2o 4.05 E+06 - - m3/gmol.s 

E_n2o 80.2 ± 9.13 - 99.8±16.5, 48.2 kJ/gmol 

A_fst 1.03 E+09 1.76 E+08 - m6/gmol2·s 

E_fst 39.6 ± 7.13 45.2 ± 9.55 113, 32.1, 77.1 kJ/gmol 
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The major kinetic parameters for the SCR reactions from both models calibrated to the 

reactor and engine data are compared in Arrhenius form as shown in Figures 5.1-5.4.  

 

It can be seen from Figures 5.1 and 5.2 that flat trend lines were fitted for the NH3 

adsorption reactions on both storage sites of the model calibrated to the reactor data, 

meaning that the reaction is non-activated with activation energy of zero. Negative 

activation energies were determined for the adsorption reactions when calibrating to the 

engine data to achieve the lowest cost function values. Differences in the desorption 

reaction can be seen in Figure 5.1. The desorption reaction on site 1 calibrated to the 

engine data has lower reaction rate constants and is more affected by the changes in 

temperature. The desorption reaction on site 2 are similar for the calibrations to the 

reactor and engine data. 

 
Figure 5.1: Comparison of the kinetic parameters for adsorption and desorption 

reactions on site 1 
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Figure 5.2: Comparison of the kinetic parameters for adsorption and desorption 

reactions on site 2 

 

The comparison of the standard SCR reaction parameters between the two calibrations 

is shown in Figure 5.3. It can be seen that the reaction rate constants of the 2nd standard 

SCR reaction are lower than the 1st standard SCR reaction for both calibrations. Similar 

slopes of the trend lines indicate that the activation energies are similar for the reactions. 

The reaction rate constant of the 1st standard SCR reaction calibrated to the engine data 

is lower that than that calibrated to the reactor data. The reaction rate constants of the 

2nd standard SCR reaction calibrated to the engine data are slightly higher that the same 

reaction calibrated to the reactor data.  
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Figure 5.3: Comparison of the kinetic parameters for the standard SCR reactions 

 

The comparisons of the kinetic parameters for the slow and fast SCR reactions between 

the two calibrations are shown in Figure 5.4. It can be seen that the highest reaction rate 

constants are associated with the fast SCR reaction. The slopes of the trendlines for the 

fast SCR reaction calibrated to the reactor and engine data are similar, meaning that 

similar activation energies were obtained for the two calibrations. The fast SCR reaction 

calibrated to the engine data has lower reaction rate constants as compared to the 

reactor data. The same trends are also valid for the slow SCR reaction calibrated to the 

reactor and engine data.  
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Figure 5.4: Comparison of the kinetic parameters for the fast and slow SCR reactions 

 

Since the catalyst formulations tested in the reactor and engine test cell were the same, 

it was considered that the more complex engine testing environment caused the 

differences. The main differences between the reactor and engine tests were (1) 

complex urea decomposition process, (2) maldistribution of NH3 going into the SCR. Of 

these differences, maldistribution was postulated to have the largest effect on the 

calibration. The NH3 maldistribution effects will be discussed later in Section 5.4. 
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With identified storage capacities and kinetic parameters for each reaction, the model is 

able to capture the effect of temperature on reaction rates. Additionally, since the model 

included mass transfer and was calibrated against the experimental data of three 

different space velocities, the effect of space velocities on SCR performance can be 

predicted. The parameters identified from the reactor data are given in Table 5.1 along 

with the calibration based on the engine experimental data and the model parameters 

from the literature for Cu-zeolite SCR [18,43,129,130]. 
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5.2.1 Model Simulation of TPD Experiments 
 

Three sets of the NH3 TPD experimental data were used for validation of the storage 

parameters including storage capacity and kinetic parameters for NH3 adsorption and 

desorption reactions on each storage site of the model. The model simulated NH3 

concentrations at the SCR outlet compared to the experimental measurements for the 

space velocity of 60,000 hr-1 are given in Figure 5.5. The model predicted SCR outlet 

NH3 concentration agrees with the experimental measurements with a cost function 

value of 5.7. The comparison results confirm that the model is able to correctly predict 

the NH3 adsorption and desorption under both isothermal and transient temperature 

conditions.  

 
Figure 5.5: Comparison of SCR outlet NH3 between model simulation and TPD reactor 

experimental results for the space velocity of 60,000hr-1 
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catalyst. After the NH3 was turned off at 15 minutes, the NH3 coverage fractions on both 

sites started to decrease. The 1st site desorbs faster than the 2nd site because the 1st site 

has a higher NH3 desorption rate. At 65 minutes, about 90% of the NH3 stored on the 1st 

site was desorbed, and only about 50% of the NH3 stored on the 2nd site was desorbed. 

As temperature was increased, the NH3 desorption from both sites was accelerated and 

resulted in a bump in the outlet NH3 concentration shown in Figure 5.5. The NH3 

coverage fraction on both sites dropped to zero after the stored NH3 completely 

desorbed from the catalyst. This ability of predicting the NH3 coverage fraction which 

cannot be directly measured is valuable for the OBD and control applications.  

 
Figure 5.6: Model simulated NH3 coverage fraction for TPD reactor test for the space 

velocity of 60,000 hr-1 

 

The model simulated NH3 concentrations at SCR outlet compared to the experimental 

measurements as well as the predicted NH3 coverage fractions on the storage sites for 

the space velocities of 90,000 and 120,000 hr-1 are given in Appendix H. Similar 
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space velocities, indicating the space velocity effects on the NH3 adsorption and 

desorption performance were captured by the model. 
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5.2.2 Model Simulation of Isothermal Reactor Experiments 
 

The performance of the model calibrated to the reactor experimental data was further 

validated by running simulations over the full isothermal protocol for each tested 

temperature and space velocity. The model parameters form the calibration to the 

reactor data shown in Table 5.1 were used in the model. The activation energies in the 

middle of the confidence intervals determined for each reaction were used for the SCR 

reactions except the slow SCR and the N2O formation reactions. Because only 

temperature runs above 300°C were used for calibration of the slow SCR and N2O 

formation reactions, there are more uncertainties in the kinetic parameters in these two 

reactions. The activation energies for these two reactions were determined by further 

tuning the parameters in the identified confidence interval to achieve the best simulation 

results. The model simulated SCR outlet concentrations were compared to the 

experimental measurements. One typical comparison of SCR outlet NO, NO2, NH3, and 

N2O concentrations for the temperature of 300°C and the SV of 90,000 hr-1 with the inlet 

concentrations is shown in Figure 5.7. The simulation results compared to the 

experimental measurements for other test conditions are shown in Appendix I. 

 

As shown in the figure, the model simulation results agrees with the experimental 

measurements except a minor over prediction of NH3 slip under the protocol sections 

with NO2/NOx ratio of 0.5 (steps 7 and 9 in Table 3.15). The NO reduction efficiency of 

the protocol sections with NO2/NOx ratio of zero (steps 11 and s3 in Table 3.15) was 

slightly overestimated. The N2O formation and NO2 reduction efficiency of the protocol 

sections with NO2/NOx ratio of 1.0 (steps 16 and 18 in Table 3.15) was also slightly 

overestimated. The overall model prediction agrees well with the experimental data 

during both SCR steady state and transient sections when SCR inlet compositions were 

changed with a maximum simulation error of 25 ppm observed for NO. The maximum 

simulation errors for NO2, NH3 and N2O are 20, 10 and 5 ppm respectively. 
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Figure 5.7: SCR outlet concentrations of NO, NO2, NH3, and N2O, comparison between 
SCR model simulation and experimental measurements. Test conditions: SV = 90,000 

hr-1, Temperature = 300°C  

 

The cost function values were used to quantify the agreements between the model 
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gas species for all test conditions are given in Table 5.2. It can be observed that all 
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(90,000hr-1, 300°C) except the low temperature test conditions (highlighted) as 

discussed in Appendix G. This means that the model gives similar agreement with the 

experimental measurements of the SCR outlet gaseous concentrations under different 

space velocity and temperature conditions. The space velocity and temperature effects 

on the reaction rates and the SCR performance are captured by the model. 
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Table 5.2: Cost function values for each gas species from comparison of SCR outlet 
concentrations between model simulation and experimental measurements 

SV  
(hr-1) 

Temp. 
(°C) 

Cost function value for species 
NH3 NO NO2 N2O Total 

60,000 

200 30.1 31.5 20.0 24.0 106 
250 30.9 5.70 26.6 36.1 99.3 
300 8.79 4.79 5.08 6.05 24.7 
350 11.6 4.12 3.95 4.94 24.7 
400 12.0 6.84 4.72 6.15 29.7 

90,000 

200 53.8 34.4 29.5 32.6 150 
225 17.6 13.0 19.2 25.7 75.6 
250 23.7 4.93 20.6 27.5 76.7 
275 30.9 6.44 23.8 30.1 91.3 
300 10.4 5.59 8.41 9.85 34.2 
325 10.2 7.57 3.81 4.45 26.0 
350 10.4 6.86 4.30 5.20 26.8 
375 10.8 6.05 4.25 5.38 26.5 
400 12.3 5.81 4.87 6.21 29.2 
425 12.1 6.62 4.73 6.09 29.5 

120,000 

200 51.4 47.6 34.3 37.1 170 
250 55.2 22.5 20.4 22.1 120 
300 13.4 7.08 9.79 11.4 41.7 
350 11.1 6.72 3.90 4.70 26.4 
400 14.9 6.62 5.47 6.89 33.9 

60,000 TPD 5.70 0.00 0.00 0.00 5.70 
90,000 TPD 4.54 0.00 0.00 0.00 4.54 

120,000 TPD 3.99 0.00 0.00 0.00 3.99 
 

The NH3 storage predicted by the model was also validated through comparisons with 

the experimental results. The NH3 storage on the catalyst under the equilibrium state of 

certain steps of the test protocol was calculated from experimental results and are given 

in Figure 5.8. The model simulation results are also shown in the figure for comparison. 

The x axes of the figure refers to the step number of the isothermal reactor test protocol. 

Step 2 is the NH3 inventory section before O2 was turned on. NH3 oxidation reactions 

take place at step 3 and less NH3 is stored compared to step 2. Steps 6 and 8 are the 

protocol sections with the NO2/NOx ratio of 0.5 and two different ANRs. Steps 11 and 13 

are the protocol sections with NO2/NOx ratio of 0.0 and two different ANRs. Steps 16 and 
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18 are the protocol sections with NO2/NOx ratio of 1.0. It can be seen that the NH3 stored 

during steps 6 to 18 are significantly less than step 2 because part of the NH3 stored is 

being consumed by the SCR reactions. The model predicted NH3 storage is comparable 

with the experimental results with the maximum simulation error of 11 gmol/m3. 

 

 
Figure 5.8: Calculated NH3 stored on the catalyst during certain steps of the reactor 

protocol for the SV of 90,000 hr-1 and the temperature of 300°C 

 

5.3 SCR Model Calibrated to Engine Data 
 

The model parameters identified from the steady state engine experimental data were 

shown in Table 5.1 in Section 5.2. The model simulations results were validated against 

both the steady state and the transient engine experimental data 

 

5.3.1 Model Simulation of Steady State Engine Experiments 
 

The performance of the SCR model with calibration to the steady state engine data was 

validated by running the simulation with a full set of identified parameters for each test 

condition and comparing the simulated SCR outlet concentrations of NO, NO2, and NH3 

with experimental measurements. The cost function values for different gaseous species 

were used to evaluate the agreement between the simulation results and experimental 

measurements.  
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One comparison between the model simulation and experimental measurements of SCR 

outlet gaseous concentrations under the temperature of 376°C is given in Figure 5.9. 

The top subplot of the figure shows the SCR inlet concentrations of NO, NO2 and NH3. 

The bottom three subplots show the SCR outlet concentrations of NO, NO2 and NH3 

compared between the model simulation and the experimental results. The NH3 

prediction from the SCR model based on the engine data shown as Sim.1 was post 

processed by the developed sample line model to take into consideration the NH3 

adsorption/desorption in the sample line. The simulated NH3 processed by the sample 

line model is shown as Sim.2. It can be seen from Figure 5.9 that the simulation results 

follow the overall trend of the experimental measurements for NO and NO2. The model is 

able to simulate the SCR outlet NO and NO2 concentrations under both steady state and 

transient DEF injection conditions when it is switched between different DEF injection 

rates. The maximum simulation error for NO and NO2 is 19 ppm. The model simulated 

NH3 (Sim1) did not agree with the measured NH3 concentration from the IMR-MS, and it 

was determined to be caused by the NH3 adsorption and desorption phenomenon in the 

sample line. The simulated NH3 corrected using the sample line model (Sim2) agrees 

with the time history experimental measurements with the maximum simulation error of 

16 ppm. 
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Figure 5.9: Comparison of the SCR outlet gaseous concentrations between simulation 

results and experimental measurements for test point 2 in Table 3.11 with the 
temperature of 376°C. (Sim1: SCR model predicted NH3; Sim2: NH3 slip processed by 

the sample line model) 

 

The cost function values of all simulations for steady state SCR experiments are given in 

Table 5.3. The cost function value for NH3 from both the SCR model simulation and the 

sample line model simulation are presented in the table. Since a smaller weighing factor 

was used for NH3 in the cost function value calculation during the optimization process, 

the NH3 simulation from the SCR model has a higher level of cost function compared to 

NO and NO2. This error was taken care of by the sample line model. It can be observed 

that the corrected NH3 slip using the sample line model has smaller cost values 

compared to the SCR model predictions. The total cost values consider the NH3 cost 

function value from the sample line instead of the SCR model. All runs have a 

comparable low level of cost function values compared to test point 2 which was shown 

in Figure 5.9 except test point 1 and its repeat which has high NOx and NH3 slip 

concentrations. The simulation errors are higher for this point. The comparisons between 

model simulation and experimental results for other test points are given in Appendix J.  
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Table 5.3: Cost function values for each gas species of the model simulation with 
identified model parameter 

Run  
No. NO NO2 

NH3  
SCR  

Model 

NH3  
Sample 

Line 
 Model 

Total 

1 18.8 10.9 18.8 13.3 43.0 
2 6.91 5.90 17.0 5.20 18.0 
3 3.54 4.71 11.3 7.57 15.8 
4 4.75 5.47 7.94 5.78 16.0 
5 4.57 10.5 10.0 6.04 21.1 
6 3.72 6.84 5.89 4.80 15.4 
7 6.32 7.15 3.37 3.26 16.7 
1' 10.1 8.60 18.2 9.95 28.6 
4' 4.34 5.36 6.03 3.71 13.4 

 

5.3.2 Model Simulation of Transient Engine Experiments  
 

SCR transient experimental data from the surrogate HD-FTP tests were used to validate 

the SCR model performance under transient engine conditions. The model parameters 

were varied in the confidence range determined from the engine data to get the best fit 

for the transient data. A comparison between model simulation and experimental 

measurements for transient test 1 shown in Table 3.12 is given in Figure 5.10. The 

changes in the SCR inlet NO and NO2 concentrations, temperatures and space 

velocities for the cycle are shown in Figure 3.16 in Section 3.5. In this test, the SCR inlet 

NO, NO2 and NH3 concentrations are shown in the top subplot. The Inlet NH3 

concentration was calculated based on the exhaust mass flow rate and the DEF injection 

rate as described in Appendix B. In this test, the DEF injection was manually turned on 

at 2 minutes to study the NH3 adsorption under transient conditions. The DEF injection 

was turned off at 15 minutes to allow NH3 desorption under transient conditions. The 

DEF injection rate between the 2 and 15 minutes was determined by a default control 

strategy implanted in the engine ECM. The model simulated SCR downstream NO, NO2, 

and NH3 concentrations were compared to the experimental measurements as shown in 

Figure 5.10. The NH3 concentration measurements are from the NH3 sensor and the 

simulation was run without the sample line model incorporated. It can be seen that the 
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simulation results follow the experimental measurements. The simulation errors in NO 

and NO2 are obvious after 15 minutes when the DEF injection was turned off. The 

simulated NH3 concentration is also lower than the measured NH3 concentration around 

15 minutes. The model predicted species concentrations follow a similar time trend as 

the experimental measurement results. 

 

 
Figure 5.10: Model simulation compared to experimental results for the surrogate HD-

FTP transient test 1 with manual control of DEF injection 

 

The SCR inlet and outlet cumulative NOx and NH3 as well as the NOx conversion 

efficiency of the cycle from both simulation and experiments are shown in Figure 5.11. It 

can be seen that the model is able to simulate the cumulative SCR outlet NOx and NH3 

with simulation errors of 1.9 and 1.1 g for NOx and NH3 respectively at the end of the 

cycle. The prediction of NOx conversion efficiency of the cycle agrees with the 

experimental results for most of the cycle. The simulation errors mainly exist at the last 

section of the cycle after the DEF injection was turned off at 15 minutes. The model 
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simulation results compared to the experimental measurements for the five other 

transient SCR experiments are given in Appendix K. 

 
Figure 5.11: Cumulative NOx, NH3 and NOx conversion efficiency of the surrogate HD – 

FTP cycle, compare between simulation and experimental results for transient test 1 

 

The cost function value of each gas for the transient test 1 shown in Figure 5.10 is given 
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transient test 1 with results shown in Figure 5.10, higher total cost function values (62.8 

compared to 48.4) were observed for transient test 2 with the DEF injection level of 1.2. 

This is because higher amplitude of NH3 slip was generated because of overdosing of 

the DEF during this experiment and the difference in model simulated and experimental 

measured NH3 was also higher. The cost function values from all the experiments are 

comparable, meaning that similar simulation results were obtained.  
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Table 5.4: Cost function values of model simulation compared to experimental 
measurements for transient tests 

  Cost function value 

Test No. DEF Inj 
Level NH3 NO NO2 Total 

1 Manual 11.1 13.1 24.1 48.4 
2 1.2 46.4 8.20 8.20 62.8 
3 1.0 10.6 9.90 9.48 30.0 
4 0.8 5.10 11.6 13.7 30.4 
5 0.5 0 17.8 23.7 41.5 
6 0.3 0 19.0 21.8 40.8 

 

Higher errors in NO and NO2 can be noticed for transient tests 5 and 6 with the DEF 

injection level of 0.5 and 0.3 respectively. One possible explanation is that the NOx 

reduction performance of the SCR highly depends on the NH3 stored on the catalyst. 

Under the low level of DEF injection, the NH3 stored on the catalyst is less (shown in 

Figure 5.12) and is more affected by the changes in SCR space velocity and 

temperature. Under higher DEF injection level conditions, the NH3 stored on the catalyst 

is higher, and a slight change in the NH3 storage resulting from a change in the space 

velocity and temperature has relatively less of an effect on the NOx conversion 

efficiency. The cost function values in NH3 of transient tests 5 and 6 are 0 because no 

NH3 slip was formed for both model simulation and experiments. Other factors including 

repeatability of the cycle, analyzer measurement error, and neglecting several SCR 

reactions (N2O formation, 2nd NH3 oxidation reaction and NO oxidation reaction) in the 

model also contribute to the difference between model simulation and experimental 

results.  
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Figure 5.12: Model predicted NH3 storage on the catalyst during surrogate HD-FTP cycle 

tests 1-6  

 

The model predicted SCR outlet temperatures compared to the experimental 

measurements as well as the measured inlet temperatures for the surrogate HD-FTP 

test are given in Figure 5.13. The subplot (a) shows the measured SCR inlet and outlet 

temperatures compared with the model predicted SCR outlet temperatures. It can be 

seen that the outlet temperature follows a similar trend as the inlet temperature. A 

maximum temperature difference of 30°C was observed. The differences were caused 

by the heat transfer between the gas flow, the substrate and the ambient. The heat 

transfer equations with the heat transfer coefficients identified from the temperature data 

were incorporated in the SCR model to simulate the outlet temperature (Section 4.1.3). 

The coefficients for heat transfer between gas flow and the substrate and between the 

substrate and the ambient were determined to be 13.5 and 0.015 W/m2/K respectively. 

The subplot (b) shows the error between the simulated and experimentally measured 

SCR outlet temperatures (TSim-TExp). It can be seen that the model predictions follow the 

same trend as the measured outlet temperature. The amplitude and the response to the 

change in the inlet temperature were correctly predicted with simulation errors within the 

± 5°C range for most of the cycle. The biggest error is about 8°C around 18 minutes in 

the cycle.  
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temperature gradients in the SCR catalyst can be considered in the different axial model 

elements (described in Section 4.1.3), thus improving the simulation accuracy. 

 

 
Figure 5.13: Model predicted SCR outlet temperature for the surrogate HD-FTP test 

 

5.3.3 Simulation of NO2/NOx Ratio Effects 
 

The NO2/NOx ratio at the SCR inlet is an important factor that affects the NOx reduction 

performance of the SCR. In engine applications with DOC and CPF installed before the 

SCR, the NO2/NOx ratio going into the SCR is dependent on the DOC oxidation 

performance as well as the passive regeneration process in the CPF[131]. Reference 

[132] indicated that aging of the DOC lowers the NO to NO2 conversion efficiency across 

the DOC and changes the NO2/NOx ratio at the SCR inlet. In this study, the NO2/NOx 

ratio effects on the NOx reduction performance, NH3 slip and NH3 storage under 

transient conditions were investigated through model simulations with the SCR model 

calibrated to the engine data.  
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The model was setup to simulate the SCR performance during the surrogate HD-FTP 

cycle. The model inlet NOx concentrations were set to be equal to the inlet NOx 

measurements during the cycle test while the NO2/NOx ratio was varied from 0 to 1 in 

the model. The temperature and exhaust mass flow rate measured from the transient 

test remained in the model. A constant inlet ANR of 1 was used for different NO2/NOx 

ratios. The cumulative NOx and NH3 at both SCR inlet and outlet, NH3 stored on the 

catalyst and the overall NOx reduction efficiency were quantified for each NO2/NOx ratio 

simulation. 

 

The simulation results are summarized and given in Table 5.5. The cumulative inlet NH3 

is constant for all runs. The cumulative mass of the inlet NOx increases with increased 

NO2/NOx ratio because of the higher molecular weight for NO2 compared to NO and the 

increasing fraction of NO2. The cumulative SCR outlet NH3 is 1.70 grams for the 

NO2/NOx ratio of 0 and it decreases with the NO2/NOx ratio approaching 0.5. The outlet 

NH3 is lowest for the NO2/NOx ratio greater than 0.6. The NH3 stored on the catalyst at 

the end of the cycle dropped from 3.4 to 0.08 grams when the inlet NO2/NOx ratio was 

varied from 0 to 1. The fast SCR reaction is becoming dominant when the NO2/NOx ratio 

approaches 0.5 and the greater reaction rate of the fast SCR reaction compared to the 

standard SCR reaction results in a higher consumption rate of the stored NH3. When the 

NO2/NOx ratio approaches 1, the slow SCR reaction becomes dominant. The stored NH3 

still decreases although the reaction rate for the slow SCR reaction is low. This is 

because the slow SCR reaction with a stoichiometric NH3/NOx ratio is higher than 1 

(1.33) and consumes more NH3 to reduce the amount of NO2. The cumulative outlet NOx 

and the overall NOx conversion efficiency of the cycle is highest with the NO2/NOx ratio 

of 0.5, meaning that the optimal NOx reduction performance under the surrogate HD-

FTP transient conditions is achieved with a NO2/NOx ratio of 0.5. 

 

This conclusion leads one to envision an engine-aftertreatment system model for the 

ECU that would control the SCR inlet NO2/NOx ratio to around 0.5 in order to achieve the 

highest NOx conversion efficiency with minimum NH3 slip.  
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Table 5.5: Simulation results of NO2/NOx ratio effects 

Inlet 
NO2/NOx  

Ratio 

Inlet  
NH3 

Inlet  
NOx 

Outlet  
NH3 

Outlet  
NOx 

NH3  
Stored 

NOx Conversion 
Efficiency 

(g) (g) (g) (g) (g) (%) 
0.0 24.9 44.0 1.70 15.7 3.40 64.3 
0.1 24.9 46.4 1.33 13.7 2.89 70.5 
0.2 24.9 48.7 0.96 11.5 2.32 76.4 
0.3 24.9 51.1 0.63 9.30 1.69 81.8 
0.4 24.9 53.4 0.38 7.40 1.08 86.1 
0.5 24.9 55.8 0.22 6.60 0.60 88.2 
0.6 24.9 58.1 0.18 7.80 0.33 86.6 
0.7 24.9 60.5 0.19 10.6 0.21 82.5 
0.8 24.9 62.8 0.20 14.0 0.13 77.7 
0.9 24.9 65.1 0.20 17.6 0.09 73.0 
1.0 24.9 67.5 0.19 21.2 0.08 68.6 

 

5.4 NH3 Maldistribution Data and Simulation of Maldistribution 
Effects 
 

As discussed in Section 5.1, The NH3 maldistribution at the SCR inlet is considered to be 

one of the reasons causing the differences in kinetic parameters between the model 

calibrations developed based on reactor and engine experimental data. In this section, 

the NH3 maldistribution level at the SCR inlet was quantified. The NH3 maldistribution 

effects on the model parameters as well as on the SCR performance in terms of NOx 

conversion efficiency and NH3 slip are studied and discussed in this section.  

 

5.4.1 NH3 Maldistribution Experimental Results 
 

The experimental setup and test procedure were introduced in Section 3.7 and the NH3 

maldistribution test matrix is shown in Table 3.13. The uniformity index (UI) shown in 

Equation 5.1 was introduced to quantify the nonuniformity of the species concentrations. 

 



 

139 
 

 
2

1
( ) /

1

n

i
i

x x n
UI

x
=

−
= −

∑
 

   5.1 

Where, 𝑥𝑖 is the gaseous concentration measurement at each location. �̅� is the average 

of all concentration measurements at different locations, and n is the total number of 

measurements. All measurement points, except the center location, were used in the UI 

calculation. An UI of 1.0 means the distribution is uniform and lower UI means less 

uniformity. The data process procedures and test results for test point 1 shown in Table 

3.13 are described as follows.  

 

The distributions of NO, NO2 and NOx concentrations downstream of the SCR without 

the DEF injection (ANR = 0) for test point 1 are given in Figures 5.14-5.16. It can be 

observed that the UI for NO, NO2 and NOx are 0.99, 0.98 and 0.99 respectively. All the 

measurements are within the ± 5 ppm confidence range of the analyzer, indicating that 

the NOx distribution without the DEF injection is uniform. The test point 2 also showed 

the similar results for the distribution of NOx without the upstream DEF injection. As a 

result, it was safe to assume uniform distribution of NOx without upstream DEF injection. 

For the other test conditions in Table 3.13, only downstream NOx distribution during the 

DEF injection was measured. 

 
Figure 5.14: Distribution profile of NO with the average ANR of 0 for test point 1 
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Figure 5.15: Distribution profile of NO2 with the average ANR of 0 for test point 1 

 
Figure 5.16: Distribution profile of NOx with the average ANR of 0 for test point 1 
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injection, it can be concluded that the maldistribution of NH3 generated from the injected 

DEF caused the nonuniformity.  

 
Figure 5.17: Distribution profile of NO with the average ANR of 0.3 for test point 1 

 
Figure 5.18: Distribution profile of NO2 with the average ANR of 0.3 for test point 1 
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Figure 5.19: Distribution profile of NOx with the average ANR of 0.3 for test point 1 

The differences between the NOx distribution profiles with and without the DEF injection 

shown in Figures 5.16 and 5.19 were considered to be the result of the distribution of 

NH3 at the SCR inlet. The determined distribution of NH3 for the average ANR of 0.3 with 

the UI of 0.79 is shown in Figures 5.20. The determined distribution of ANR is shown in 

Figure 5.21 with a UI of 0.79 with the average ANR of 0.3.  

 
Figure 5.20: Distribution profile of NH3 with the average ANR of 0.3 for test point 1 
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Figure 5.21: Distribution profile of ANR with the average ANR of 0.3 for test point 1 

 

Test number 4, 5 and 6 in Table 3.13 were performed with an additional swirl mixer 

installed into the SCR inlet cone to further mix the injected DEF with the exhaust flow. 

The determined ANR distribution at the SCR inlet for test number 5 is given in Figure 

5.22. Figure 5.21 shows the determined ANR distribution under the same test condition 

but without the swirl mixer. It can be seen that the uniformity of ANR at the SCR inlet 
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Figure 5.22: Distribution of ANR after installing swirl mixer for condition for test point 5 

 

The NH3 maldistribution test results are summarized and shown in Table 5.6. The 
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maldistribution effects on the SCR performance were determined through simulation 

studies as introduced in the following section. 

 

Table 5.6: Test results for the NH3 maldistribution tests 

Test 
No. 

Exh 
Mass 
Flow 
Rate 

(kg/min) 

SCR 
Inlet 

Temp. 
(°C) 

SCR 
Inlet 

Average 
ANR 

SCR 
Inlet 

Average 
NH3 

(ppm) 

Standard 
Deviation 

in SCR 
inlet NH3 

(ppm) 

UI of 
Determined 
SCR inlet 
NH3 and 

ANR 
1 4.23 350 0.30 106 22.2 0.79 
2 9.89 350 0.30 82 19.6 0.76 
3 9.89 350 0.65 179 38.9 0.78 
4* 4.20 300 0.30 108 9.41 0.91 
5* 4.20 350 0.30 104 9.76 0.91 
6* 10.0 350 0.30 83 9.38 0.89 

        * Test No. 4, 5 and 6 were performed with an additional swirl mixer in the SCR inlet cone.  
 

5.4.2 NH3 Maldistribution Effects on SCR Performance 
 

A series of simulation studies were carried out for different SCR conditions to 

understand the NH3 maldistribution effects on the SCR performance. A multi-channel 

model based on the high fidelity SCR model calibrated to the reactor data was setup for 

the simulation. The model contained 24 separate channels with different inlet ANR levels 

to simulate the inlet NH3 maldistribution. A schematic of the model setup is shown in 

Figure 5.23. As shown in the figure, the average ANR was multiplied by a maldistribution 

factor A(i) for each individual channel. The maldistribution factors representing different 

UIs were generated from a normal distributions based on a mean value of 1.0 and 

different standard deviations. The probability distribution function of the maldistribution 

factors for the UI of 0.7, 0.8, and 0.9 is given in Figure 5.24. The average of the outlet 

concentrations from each channel were considered as the simulated outlet 

concentrations. The model also gave predictions of gaseous concentrations and NH3 

storage at different axial locations of each channel. 
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Figure 5.23: Schematic showing the setup of the model for maldistribution effects 

simulation 

 

 
Figure 5.24: Probability distribution function of maldistribution factors for the UI of 0.7, 

0.8 and 0.9 

 

A four-step simulation protocol for the NO2/NOx ratio of 0 shown in Figure 5.25 was 

devised to investigate the maldistribution effects on the NH3 storage and of NOX 

reduction efficiency. The inlet gases also include 7.0% H2O, 8.0% CO2, and 10.0% O2 to 

simulate a typical engine exhaust gas condition. The complete set of simulation 

conditions is given in Table 5.7. Three SCR temperatures and one space velocity of 

60,000 hr-1 with NO2/NOX ratio of 0, 0.5 and 1.0 were simulated. For each simulation 

condition, the average inlet ANR was changed from 0.6 to 1.2 with a interval of 0.2. For 

each average ANR of each condition, three different maldistribution levels with UI of 0.7, 

0.8, 0.9 and a uniform condition (UI = 1.0) were simulated.  
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Figure 5.25: Setup of the SCR inlet concentrations for simulation 

 

Table 5.7: Simulation conditions for maldistribution effect study 

Space  
Velocity (hr-1) 

SCR  
Temp. (°C) 

NO2/NOx  
Ratio 

Average  
ANR UI 

60,000 250, 300, 350 0, 0.5, 1.0 0.6, 0.8, 1.0, 1.2 0.7, 0.8, 0.9, 1.0 
 

The simulated NOX reduction efficiencies and NH3 slip as a function of the average ANR 

for different UIs under the SCR temperature of 300°C and NO2/NOX ratio of 0.0 is shown 

in Figures 5.26 and 5.27. It can be observed that the decrease in UI reduced the NOX 

reduction and increased the NH3 slip when the average inlet ANR is above 0.6. When 

changing the UI from 0.7 to 1.0 with an average of 1.0, the NOX reduction efficiency was 

increased by 10% and the NH3 slip was reduced by 15 ppm. The SCR performance with 

UIs of 0.9 and 1.0 is close. The UI effects were similar for the average ANR of 1.0 and 

1.2 and were less obvious with lower average ANRs. This is because all of the NH3 

participates with the NOX reduction reactions when the average ANR is low. When the 

average ANR is close to 1.0, the inlet ANR of certain channels might get higher than 1.0. 

The excessive NH3 left after reacting with NOX exits the channel as NH3 slip. The NH3 

storage was not significantly affected by the different values of UI. 
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Figure 5.26: NOx reduction efficiency and NH3 slip as a function of average ANR for 

different UI 

 

 
Figure 5.27: NH3 storage as a function of average ANR for different UI 

 

Similar effects were observed in the other simulation runs. The NOx reduction was 

reduced by 5-10% with 10 to 20 ppm increase in NH3 slip for the different conditions. 
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The NH3 slip can be oxidized with the ammonia oxidation catalyst (AMOX) in the 

production aftertreatment system. However, reducing the SCR outlet NH3 through 

optimal mixing helps reduce the DEF consumption. Smaller maldistribution effects were 

observed with a NO2/NOx ratio of 1.0. This is probably because the NOx reduction is 

kinetic limited under this situation because of the low reaction rates of the slow SCR 

reaction mechanisms. 

 

5.4.3 Maldistribution Effects on SCR Model Parameters 
 

As discussed above, there were differences in the SCR model parameters when 

calibrated to reactor versus engine test cell data as shown in Table 5.1. In order to 

determine if the NH3 maldistribution is a factor causing the differences, a simulation 

study of the engine experimental data was carried out by running the reactor data based 

model with multiple channels and nonuniform inlet NH3. 

 

A comparison of the SCR model simulation from a single channel model calibrated to the 

engine data compared to the steady state SCR engine test results is shown in Figure 

5.9. The test condition for this run was 1720 rpm, 503 N∙m with a SCR inlet temperature 

of 376°C. The test was performed before the additional swirl mixer was installed. It can 

be seen that the model is able to follow the time histories of the SCR outlet NO, NO2, 

and NH3. Because of the different model parameters in the SCR model calibrated to 

reactor data, simulation results of the same set of engine experimental data using a 

single channel reactor data based model showed obvious disagreements with the data. 

The comparison of SCR reactor data based model simulation results with engine data is 

given in Figure 5.28. It can be seen that the model simulated results show higher NOx 

conversion efficiency and lower NH3 slip compared to the experimental data during the 

DEF injection periods. It should be noted that the sample line model was incorporated in 

order to compare the simulated NH3 slip with the IMR-MS measurements.  
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Figure 5.28: Single channel SCR model simulation results with calibration to reactor data 

compared to engine experimental data 

 

In order to take the NH3 maldistribution effect into account when running the simulation, 

the multi-channel model was setup with model parameters developed from the reactor 

data to simulate the engine experimental data. The model also contained 24 channels 

with a different inlet NH3 concentration for each channel. The inlet NH3 concentration of 

each channel was assigned by applying a maldistribution factor generated based on the 

maldistribution test results. A contour plot of the normalized maldistribution factors 

applied to each channel is shown in Figure 5.29. The set of maldistribution factors has a 

mean value of 1.0 and UI of 0.79 which is the same as the maldistribution test results.  
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Figure 5.29: Contour plot of the maldistribution factors applied to each channel of the 24-

channel model with parameters developed from the reactor data 

 

The average of outlet concentrations from each channel is considered as the model 

simulated outlet concentrations. The multi-channel model simulation results compared to 

the engine experimental data is shown in Figure 5.30. It can be observed that the 

simulation results still showed lower outlet NO and higher NO2 concentrations. The 

simulated NH3 slip post processed by the sample line model follows the time history of 

the engine experimental data. The cost functions values for NO, NO2, and NH3 for the 

simulation results from both the single and multi-channel models are given in Table 5.8. 

Lower overall cost function values were achieved by considering the NH3 maldistribution 

with the multi – channel model. Compared to the single model simulation results with 

model parameters based on reactor data shown in Figure 5.28, the multi-channel model 

with same model parameters gave simulation results which are closer to the engine 

experimental data by taking maldistribution effects into consideration. The conclusion is 

that the maldistribution effect is a factor causing the different model parameters between 

the SCR model calibrated to reactor and engine experimental data. The SCR model 

calibrated to the engine data takes the complex engine exhaust conditions into account 

and is able to simulate the SCR system with those effects.  
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Figure 5.30: Multi-channel model simulation results compared to engine experimental 

data 

 

Table 5.8: Cost values for simulation results from the single and multi-channel models 

 NO NO2 NH3 Total 
Single Channel Model 21.9 5.52 8.90 36.3 
Multi Channel Model 14.1 7.15 5.50 26.8 

 

5.5 SCR Thermal Aging Data and Effects 
 

The representative published experimental studies of the thermal aging effects on the 

SCR catalyst have been introduced in Section 2.6. It was concluded that the thermal 

aging deactivates the NOx reduction performance of the SCR and reduces the NH3 

storage capacity. However, no modeling or kinetics study of the thermal aging effects 

has been published. In this study, both a de-greened and hydrothermally aged Cu-

zeolite SCR catalyst were tested with the improved Spaci-IR technique developed at 

ORNL to reveal the thermal aging effects on the axially resolved concentration and 
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storage profiles. The experimental data also provided opportunities for analyzing the 

aging effects on the SCR kinetics from the modeling aspect. 

 

In order to prevent undesired high local space velocity observed from previous Spaci-IR 

experiments, several improvements were made for the thermal aging testing. Those 

improvements include (1) four capillaries with bigger diameters (0.65 mm outer 

diameter) were used to sample from four different SCR channels, (2) longer core SCR 

sample so that there is higher exhaust mass flow rate going into each channel for a 

given space velocity, (3) Higher SCR inlet NOx and NH3 concentrations to increase 

measurable concentration levels at different axial locations and (4) lower reactor 

pressure [133].  

 

Both the de-greened and aged Cu-zeolite SCR core samples were 8 cm in length and 2 

cm in diameter. The de-green condition was 700°C for four hours with 20 % O2, 4.5 % 

H2O and balance N2 while the aging condition was 800°C for 16 hours under same gas 

compositions to simulate 220,000 km of vehicle aging [115]. The samples were tested 

under three temperatures of 250, 300 and 350°C and a constant space velocity of 

40,000 hr-1. A simplified eight step test protocol shown in Figure 5.31 was conducted 

with concentrations being measured at nine different axial locations of the catalyst 

channel for each temperature. The detailed information about each step of the protocol 

is shown in Table 5.9. The experimental data were used to quantify the axial 

concentration and NH3 storage profiles for both the de-greened and aged catalysts. The 

data process procedures are similar to the procedures introduced in Appendix F. 
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Figure 5.31: Test protocol for SCR hydrothermal aging tests 

 

Table 5.9: Details for each step of the Spaci-IR aging test protocol  

Step Description NO (ppm) NO2 (ppm) NH3 (ppm) 
1 Stabilize 0 0 0 
2 NH3 saturation 0 0 500 
3 NH3 inventory,   NO2/NOx = 0 500 0 0 
4 NH3/NOx = 1.0;  NO2/NOx = 0 500 0 500 
5 NH3 inventory:   NO2/NOx = 0 500 0 0 
6 Stabilize NO,     NO2/NOx = 0.5 250 250 0 
7 NH3/ NOx = 1.0; NO2/NOx = 0.5 250 250 500 
8 NH3 inventory,   NO2/NOx = 0.5 250 250 0 

 

A comparison of the cumulative NH3 stored on the catalyst at the equilibrium state of 

steps 2, 4 and 7 as functions of fractional axial position under different temperatures are 

shown in Figure 5.32. For both aging conditions, it can be seen that the NH3 stored 

decreases under all conditions with increase in temperature. Step 2 of the protocol is the 

NH3 saturation condition with highest storage levels. The cumulative NH3 stored 

increases linearly with the axial length of the catalyst channel. The last measurement 

point near the end of the channel showed a different trend because of the heavier 

washcoat loading on the substrate. Compared to the de-greened catalyst, the NH3 

stored on the aged catalyst is about 30% lower at all three temperatures. This is 

because the thermal aging “reduces the number and/or the stability of the NH3 storage 

sites” [133]. Step 4 is the standard SCR condition with a NO2/NOx ratio of 0 and ANR of 
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1. The stored NH3 kept increasing from the inlet to outlet under the temperature of 250°C 

with a lowered increasing rate towards the end of the catalyst channel. This is because 

the NH3 concentration decreases along the catalyst length and the storage is a function 

of the NH3 concentration. The stored NH3 stopped increasing from 0.4 of the catalyst 

length under the temperature of 350°C, meaning that there is no NH3 storage after the 

0.4 axial location. The reason is that the NH3 is completely converted in the first 0.4 

catalyst length. The difference in the NH3 stored between this condition and the NH3 

saturation condition were consumed by the reactions between NO and the NH3. The NH3 

stored on the aged catalyst is lower than the de-greened catalyst but the smaller 

differences were observed compared to the NH3 saturation condition (Step 2). Step 4 is 

the fast SCR condition with a NO2/NOx ratio of 0.5 and ANR of 1. It can be seen that the 

NH3 stored on the catalyst is about 50% less compared to the standard SCR reaction 

under all three temperatures. This is because the fast SCR reaction with a much higher 

reaction rate is dominant under this condition and consumes more stored NH3, resulting 

in less NH3 storage at the equilibrium state compared to the standard SCR reaction. 

Similarly, the cumulative NH3 stored stopped increasing after 0.4 of the catalyst length 

under all three temperatures, meaning that the NH3 persisted shorter after entering the 

SCR than the standard SCR reaction. The differences in the NH3 stored between the de-

greened and aged catalysts are not obvious at step 4 except the first 4 measurement 

locations under 250 and 300°C. The reason for this is a combination of the decrease in 

the NH3 storage capability and the different axial concentration profiles. 
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Figure 5.32: Comparison of Cumulative NH3 stored between de-greened and aged 

catalysts 

The axial NOx and NH3 concentration distribution profiles under the temperature 350°C 

for both de-greened and aged catalysts are shown in Figure 5.33. It can be seen the NH3 

concentrations at the last measurement position are zero for both aging conditions. The 

aging effect on the SCR outlet NOx concentrations is small with a difference less than 8 

ppm at the last axial measurement position. That means that the hydrothermal aging 

does not significantly change the overall conversion efficiencies for NOx and NH3 under 

the space velocity of 40,000 hr-1. Obvious differences in axial NOx and NH3 

concentration profiles were observed internal the SCR channel. Compared to the de-

greened catalyst, the concentration profiles for the aged catalyst were shifted towards 

the outlet direction of the catalyst, meaning relatively higher NOx and NH3 concentrations 

at different axial locations and slower NOx and NH3 conversion rates. The reduced NH3 

storage capability along with the different axial concentration profiles resulted in the 

differences and similarities in stored NH3 at steps 4 and 7 shown in Figure 5.32. From 

the NOx and NH3 concentration profiles at step 7 shown in Figure 5.33, it can be 

observed that the NH3 concentration agrees with the NOx concentration for the de-

greened catalyst. The NH3 concentration is slightly lower than the NOx concentration for 

the aged catalyst, indicating that there is a slight NH3 overconsumption. This could be 

explained by a relatively higher NH3 oxidation reaction rate for the aged catalyst under 

this temperature. It was reported in reference [44,114] that hydrothermal aging under 

850°C for 10 hours may lead to an increase in the NH3 oxidation reaction and the 

oxidation selectivity to NOx. The slower conversion rate of NOx and NH3 and the different 
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concentration profiles observed from the aged catalyst can be explained by lowered 

reaction rate caused by thermal aging. This could be due to a reduction in NH3 storage 

capability or a decrease in reaction rate constant cause by deactivation of the catalytic 

material or both. However, “it’s not clear if these two impacts are independent or directly 

related” [133]. In order to answer this question, a modeling study was conducted to 

further study the characteristics of the catalysts with different aging conditions and 

explain the hydrothermal aging effects on the kinetics of the SCR.  

 
Figure 5.33: Axial NOx and NH3 distribution profiles at steps 4 and 7 under the 

temperature of 350°C 

 

A modeling procedure based on the Spaci-IR data was introduced in Section 4.2. A 

similar procedure was carried out for both de-greened and aged catalysts to determine 

the aging effects on the kinetic parameters from the modeling perspective. For the 

purpose of simplifying the calculation, a 1-site modeling approach was used to compute 

the total ammonia storage. The first step was to determine the storage capacity of the 

catalysts. The NH3 storage as a function of temperature for both de-greened and aged 

catalysts are shown in Figure 5.34. Based on the NH3 storage and Equation 4.16 which 

was previously derived from the model equations, the total storage capacity of the 

catalysts (Ω), and the relationships of the kinetic parameters between the NH3 

adsorption and desorption reactions (Aads/Ades, Eads-Edes) can be calculated. The 

results for both catalysts are shown in Table 5.10. Zero activation energy was applied to 

the adsorption reaction because it was typically considered as a non-activated reaction. 
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It can be seen through the comparison in Table 5.10 that the storage capacity of the 

catalyst is reduced by 30% after the hydrothermal aging. The lowered desorption 

reaction activation energy and a different Aads/Ades ratio indicates that the adsorption 

and desorption properties of the catalyst are also changed. 

 

 
Figure 5.34: NH3 storage as a function of temperature for de-greened and aged catalysts 

 

Table 5.10: Details for each step of the Spaci-IR aging test protocol  

Parameter De-greened Aged Unit 
Ω 138 94.6 gmol/m3 

Aads / Ades   4.29 e-2 3.67 e-1 none 
Eads 0 0 kJ/gmol 
Edes   38.2 28.6 kJ/gmol 

 

A comparison of cumulative NH3 stored under the NH3 saturation condition (step 2) 

between the experimental and model simulation results is shown in Figure 5.35. It can 

be seen that the model is able to simulate the NH3 storage under different temperatures 

for both de-greened and aged catalysts. The last axial measurement point does not 

agree with the simulation results because the heavier washcoat loading at the end of the 

core catalyst sample (due to the catalyst manufacturing process) was not considered in 

the model.  
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Figure 5.35: Experimental and simulated cumulative NH3 stored under NH3 saturation 

condition for both de-greened and aged catalysts 

 

The kinetics for the NH3 oxidation, standard SCR and fast SCR reactions were then 

analyzed based on the model equations and the experimental results from steps 2, 4 

and 7 of the test protocol. The NH3 adsorption, desorption and oxidation reactions take 

place at step 2 of the test protocol. The equilibrium state depends on the reaction rates 

of the three reactions as shown in Equation 4.17. The axial gradients in NH3 

concentration is caused by the NH3 oxidation reaction as shown in Equation 4.19. Along 

with the storage parameters identified above, the kinetic parameters for the NH3 

oxidation reaction were quantified. Here it was assumed that the oxidation is selective to 

N2. A comparison in the determined pre-exponential factor and activation energy for the 

NH3 oxidation reaction between de-greened and aged catalysts is shown in Table 5.11. 

Compared to the de-greened catalyst, the thermal aging caused about 20 kJ/gmol 

decrease in the activation energy and more than one magnitude decrease in the pre-

exponential factor. A visualized comparison of the reaction rate constants in Arrhenius 

form is shown in Figure 5.36. It can be seen that the decrease in pre-exponential factor 

and the activation energy resulted in higher reaction rate constants for the aged catalyst 

for the temperatures studied. This agrees with the findings in reference [44,114].  
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Table 5.11: Kinetic parameters for NH3 oxidation reaction 

 Aoxi (1/s) Eoxi (kJ/gmol) 
De-greened 1.35e4 86.0 

Aged 5.81e2 66.3 
 

 

Figure 5.36: Arrhenius form plot of the NH3 oxidation reaction rate constants 

 

A similar analysis was carried out to compare the kinetics of the standard and fast SCR 

reactions based on the experimental data at steps 4 and 7 of the test protocol. The 

standard and fast SCR reactions are dominant at steps 4 and 7 respectively and the 

assumption that only the dominant reaction takes place at certain steps was made to 

exclude the effects of unimportant reactions and simplify the analysis. The axial 

concentration gradient as a function of the reaction rates is given in Equation 4.19. The 

reaction rate equations for the standard and fast SCR reactions can be found in Table 

4.1. The parameters in the equations except the reaction rate constants can be 

computed from the experimental data. The parameters include flow velocity, axial 

concentration gradients, local gaseous concentration and local NH3 storage, leaving the 

reaction rate constant to be solved. As a result, the reaction rate constants for the 

standard and fast SCR reactions on each axial element defined by the two measurement 

points can be determined by solving Equation 4.19 and the reaction rate equations. 

Compared to the NH3 concentration profile at step 2, the axial NOx and NH3 gradients at 

steps 4 and 7 are much larger because of the reaction rates of the standard and fast 

SCR reactions are higher than the NH3 oxidation reaction. The NOx and NH3 

concentrations as well as the concentration gradients dropped close to zero at the rear 

1.5 1.6 1.7 1.8 1.9 2
-11

-10

-9

-8

-7

-6

1000/T (1/K)

lo
g(

k)

 

 

De-greened
Aged



 

161 
 

half of the catalyst channel. Slight scatter in experimental measurements may cause big 

errors in the reaction rate constant calculation results. As a result, only the first three 

axial elements with significant gaseous concentration and gradient levels were 

considered in the analysis. After the calculations, the averaged reaction rate constants of 

the first three elements were plotted in Arrhenius form for both standard and fast SCR 

reactions as shown in Figure 5.37. The pre-exponential factor and the activation energy 

for each reaction were calculated based on the Arrhenius plot and are given in Table 

5.12. It can be observed that the hydrothermal aging has effects on both the standard 

and the fast SCR reactions by reducing the activation energy as well as the pre-

exponential factor. The effect on the fast SCR reaction is more obvious since the 

reaction rate constant decreases by about one magnitude. The effect becomes more 

obvious at 350°C because of the different activation energies. The effect on the standard 

SCR reaction is not obvious as compared to the fast SCR reaction. 

 

 
Figure 5.37: Arrhenius form plot of the reaction rate constants for standard and fast SCR 

reactions 

Table 5.12: Kinetic parameters for the standard and fast SCR reactions 

Parameter De-greened Aged Units 
Afst  1.40e8 6.13e6 m6/gmol2·s 
Efst  52.8 41.6 kJ/gmol 
Astd  9.99e4 2.33e4 m3/gmol·s 
Estd 47.3 39.9 kJ/gmol 
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To summarize, the hydrothermal aging condition of 800°C for 16 hours has effects on 

both the NH3 storage capability of the catalyst and the kinetic parameters of the major 

SCR reactions. Both factors contributed to the change in the axial storage and 

concentration profiles observed from the experiments. It should be noted that the 

analysis was based on a series of assumptions and simplified calculations with the 

purpose of revealing the changes in the kinetic parameters caused by different aging 

conditions.  
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Chapter 6.   
 
Summary and Conclusions 
 

The goal of this research was to develop a high fidelity SCR model that simulates the 

NOx conversion, NH3 slip and NH3 storage and determine the critical kinetic parameters 

controlling the dynamics of the SCR system performance under varying temperatures, 

space velocities, exhaust inlet species, inlet ammonia maldistribution levels as well as 

hydrothermal aging with controlled DEF injection for a Cu-zeolite SCR catalyst and 

quantify their impacts on ammonia storage and NOx conversion. A further goal that 

evolved from this research was to explain why the kinetic parameters of the model 

calibrated to the reactor data were different than the parameters calibrated to the engine 

data. The goals have been met through coupled experimental and modeling studies. The 

purpose of the model development and the engine data has been to support the 

development of a reduced order SCR estimator model. The accomplishments and the 

findings from the study as well as the recommendations for the future work are given in 

this chapter. 

 

6.1 Summary 
 

A high fidelity multi-step global kinetic 1D 2-site SCR model with mass transfer, heat 

transfer and SCR chemical reactions was developed for a Cu-zeolite catalyst. The model 

simulates the axially resolved gaseous concentrations in the gas and surface phases, 

gas and wall temperatures as well as the NH3 storage in the catalyst.  

 

An engine-dynamometer test setup with a full production aftertreatment system was 

developed and instrumented for experimental studies of the diesel aftertreatment system 

under various conditions. The SCR engine experimental data suitable for system 

characterization and model development were collected in the test cell. The test cell is 
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capable of running both steady state and automated transient cycle tests. A surrogate 

HD-FTP cycle was developed to simulate the representative transients in order to study 

the aftertreatment system performance under typical transient conditions in the test cell. 

An exhaust heater was installed to independently control the temperature of the exhaust 

gas into the aftertreatment system. 

 

Steady state SCR engine experiments were performed to collect the SCR data under 

different temperatures and varying upstream DEF injection conditions. A series of 

transient SCR experiments with different DEF injection levels were performed. 

 

The Cu-zeolite SCR core taken from an identical catalyst was tested in a flow reactor at 

ORNL using test protocols designed to study the SCR performance under different 

space velocities, temperatures and inlet gaseous compositions. A Spaci-IR technique 

was utilized to measure the axially resolved gaseous concentrations in the SCR catalyst 

to quantify the axial concentration and NH3 storage profiles. The reactor data were used 

for calibration of the high fidelity SCR model to determine the storage capacities and the 

kinetic parameters associated with different SCR reactions included in the model. A 

calibration procedure and the identified model parameters were presented. The 

simulation results of the calibrated model were compared to the experimental results. 

 

The high fidelity SCR model was calibrated to the steady state engine experimental data 

using the model parameters identified from the reactor data as a basis. A different set of 

the model parameters were determined for the SCR engine data. The heat transfer 

coefficients were identified from the temperature measurements during the transient 

cycle tests. The calibrated model was validated by simulating both the steady state and 

transient experiments and comparing the simulation results with the experimental 

measurements. The model and the kinetic parameters have been used by Surenahalli, 

et al to develop a reduced order SCR estimator model [22].  

 

The NH3 measurement delay in the SCR engine experiments caused by the NH3 

adsorption in the sampling line was experimentally studied. A sample line model which 

simulates the NH3 adsorption and desorption processes in the sample line was 
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developed. The model consists of a NH3 storage site and includes NH3 adsorption and 

desorption reactions. The model parameters including the NH3 storage capacity in the 

sampling line, NH3 adsorption and desorption reaction rates were determined from 

sample line experimental data. 

 

The NH3 maldistribution at the SCR inlet in the engine experiments were quantified 

through measuring the species concentrations at different radial locations of the SCR 

outlet face in the engine test cell. The effects of the NH3 maldistribution on the SCR 

performance and the kinetic model parameters were studied through simulations with a 

multi-channel SCR model consisting of 24 SCR channels running in parallel. The 

differences in the kinetic model parameters between the models calibrated to the reactor 

and engine data were explained by the NH3 maldistribution at the inlet to the SCR on the 

engine. 

 

The hydrothermal aging effects were studied by comparing the Spaci-IR experimental 

results for both de-greened (at 700°C for 4 hours) and aged (at 800°C for 16 hours) SCR 

catalysts. The hydrothermal aging effects on the NH3 storage capacity and the SCR 

reaction kinetics were quantified.  

 

6.2 Conclusions 
 

The 2-site modeling approach is necessary for the Cu-zeolite SCR. Adding the 2nd site 

which adsorbs and desorbs NH3 improved the prediction accuracy in the axially resolved 

NH3 storage. A 2nd standard SCR reaction with higher NH3 to NO stoichiometric ratio is 

necessary for the model to simulate the NH3 overconsumption observed under the 

standard SCR reaction conditions in the reactor experiments. The high fidelity SCR 

model calibrated to the reactor data is able to capture the effects of space velocity and 

temperature on the reaction rates. The calibrated model is able to simulate the SCR 

outlet concentrations of NO, NO2, N2O and NH3 as well as the NH3 storage under space 

velocities from 60,000 to 120,000 hr-1 and temperatures from 200 to 425°C with 

simulation cost values consistently below 30.  
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The high fidelity SCR model calibrated to the engine data accounts for the complex 

engine exhaust conditions and is able to simulate the SCR outlet concentrations of NO, 

NO2, NH3
.and NH3 storage under steady state and transient conditions. A maximum 

temperature difference of 30°C was measured between the SCR inlet and outlet for the 

transient cycle. The difference was caused by the heat transfer between the gas flow, 

the substrate and the ambient. The heat transfer equations with heat transfer coefficients 

of 13.5 and 0.015 W/m2/K are necessary for the SCR model to predict the outlet 

temperatures under transient conditions. Considering the axial temperature gradients in 

the model helps improve the model simulation accuracy.  

 

The effects of the SCR inlet NO2/NOx ratio on the NOx reduction efficiency and the NH3 

slip were studied through simulation studies of the surrogate HD-FTP cycle. The 

simulation results showed that the SCR NOx conversion efficiency is highest (88.2%) 

with an inlet NO2/NOx ratio of 0.5. The NH3 stored on the catalyst decreased with 

increase in inlet NO2/NOx ratio under transient conditions. The NH3 slip is minimum for 

the inlet NO2/NOx ratio greater than 0.6. 

 

The NH3 measurements from the emission analyzer were delayed by 3 to 6 minutes in 

the engine experiments. This phenomenon was determined to be caused by the NH3 

adsorption and desorption process in the sample line. The effect of this delay needs to 

be considered when calibrating the model to the experimental data. The sample line 

model developed from experimental data is able to simulate the NH3 adsorption and 

desorption process in the sampling line. The NH3 storage capacity for the sample line 

heated to 190°C was determined to be 0.12 gmol/m3. The NH3 adsorption and 

desorption reaction rate constants were determined to be 3.5 m3/gmol∙s and 0.01 1/s 

respectively. Incorporating the sampling model into the SCR model simulations reduced 

the simulation cost value by about 34% for the steady state time history NH3 slip 

predictions. 

 

Differences in the model parameters were observed from the model calibrations 

developed separately from the reactor and engine experimental data. This indicates that 

the SCR performed differently in the engine exhaust conditions than the reactor test 
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environments. The reactor experiments are important for characterization of the SCR 

performance and to study the basic kinetics of the catalyst. A SCR model calibrated to 

the engine data accounts for the complex engine environments and is suitable for on-

vehicle control and diagnostic function developments. 

 

The NH3 maldistribution was determined to be present at the SCR inlet in the engine 

experiments and was quantified through experiments and data processing. The results 

showed that the uniformity index (UI) of the NH3 at the SCR inlet is less than 0.8 with the 

original hardware setup and is improved to about 0.9 with a swirl mixer installed into the 

SCR inlet cone. The results of the simulation studies showed that the NH3 

maldistribution reduces the SCR NOx reduction efficiency by 5 to 10% and increases the 

NH3 slip about 10 to 20 ppm. The simulation results from a multi-channel SCR model 

with nonuniform NH3 input confirmed that the NH3 maldistribution contributes to the 

differences in the model parameters identified from the reactor and engine data. The 

SCR model calibrated to the engine data accounts for the NH3 maldistribution 

phenomena and serves as a basis for developing the reduced order model and 

computationally efficient state estimators. 

 

The hydrothermal aging condition of 800°C for 16 hours has effects on both the NH3 

storage capability of the catalyst and the kinetic parameters of the major SCR reactions. 

The NH3 storage capacity was reduced from 138 to 94.6 gmol/m3 compared to a de-

greened catalyst (de-green condition: 700°C for 4 hours). The hydrothermal aging also 

resulted in different NH3 adsorption/desorption kinetics and reduced activation 

energy/pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both 

the reduction in NH3 storage capacity and change in SCR kinetics contributed to the 

changes in the axial storage and concentration profiles observed from the experiments. 

 

6.3 Recommendations 
 

An emission analyzer with the capability of measuring species including NO, NO2, NH3, 

N2O and HNCO without interference is important for SCR testing. N2O is produced in the 
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SCR under high NO2/NOx ratios and low temperatures and HNCO is one of the urea 

decomposition products that might be present in the exhaust. Measurements of these 

species are helpful for further understanding the urea decomposition process and the 

SCR performance. A FTIR that can measure multiple gaseous concentrations in the 

diesel exhaust is recommended for the SCR testing. 

 

The SCR performance at low temperatures (< 250°C) should be given more attention in 

the engine experiments. In this study, the SCR inlet temperature was limited to above 

250°C to prevent effects caused by the formation of solid urea crystallization. An 

injection system with higher injection pressure or other technologies improving the 

injection quality and better mixer designs might be helpful to reduce the urea 

crystallization at low temperatures.  

 

It is recommended to collect the SCR reactor data in a wider temperature range which 

covers from the idle or low load to the CPF active regeneration conditions. Efforts should 

be made to calibrate the model to the wider temperature window to improve the 

calibration. The recommended temperature range is from 150 to 600°C. 

 

The urea decomposition process is complex and directly affects the amount of available 

NH3 at the SCR inlet. Understanding the urea decomposition process and correctly 

modeling the process would be helpful to determine the actual NH3 concentration at the 

inlet of the SCR. Efforts are recommended to be made in the future to test and model 

the urea decomposition reactions. It requires overcoming the difficulties of measuring the 

urea decomposition products without causing damage to the analyzers. The ammonium 

nitrate formation and decomposition reactions are recommended to be added into the 

high fidelity SCR model to simulate the inhibition effects under temperatures below 

300°C and NO2/NOx ratios higher than 0.5. Supplemental reactor experiments are 

necessary for collecting SCR data suitable for calibration of the reactions. 

 

An engine-aftertreatment system model for the ECM that controls the SCR inlet NO2/NOx 

ratio to around 0.5 is important in order to achieve the highest NOx conversion efficiency 

with minimum NH3 slip.  
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Appendix A. IMR-MS Start up and 
Calibration procedures  
 

The analyzer needs to be turned on at least two days before the test to allow enough 

time for the analyzer to be warmed up when testing. The sensitivity of a cold analyzer is 

not stable and the measurements shift a lot. The source gas bottles in the analyzer 

should be turned on to flush the gas lines and remove any possible oxygen leaked into 

the system. The oxygen in the system may cause defects of the filament which 

generates electrons. The analyzer needs to be connected to the computer via a 

crossover cable for the initial startup. Switch on the power switch to turn on the analyzer. 

The display on the RF generator shows the status of the analyzer. As the analyzer 

warms up it will have a red LED bar on the display. It will go to Red-Green after the 

analyzer is ready for operation. Then turn on the computer which is connected to the 

analyzer and has V&F Viewer software installed. Open the V&F View and connect to the 

analyzer by selecting “Connect” from the menu item “File → Connect”. Then choose the 

right measurement method that was set up for the test from the upper part of the 

software interface. The procedures of setting up the measurement methods are 

available in the user manuals. Leave the analyzer under “Standby” or “Measure” 

condition to warm up. 

 

The IMR-MS needs to be calibrated to the calibration gases before each test. The V&F 

Viewer software provides two ways of calibration including an automatic calibration of 

the interested species selected and manual calibration of each species. The procedure 

of the automatic calibration can be found in the user manual. To start a manual 

calibration, select the calibration channel which is associated with the interested 

calibration gas from the “Sample inlet” function on the upper part of the software 

interface. This enables the analyzer to start measuring the calibration gas. Wait until the 

signal gets stabilized. Then right click the interested species from the “Molecule List” on 

the left hand side of the software interface and select “Channel Calibration”. Type in the 

calibration gas concentration and click OK. Then repeat the procedure for each species 
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that needs to be calibrated. The manual calibration should be performed after obtaining 

a good background by zeroing the analyzer with N2. A automatic calibration combined 

with manual calibration was usually performed to achieve a good calibration. 

 

To shut down the analyzer, turn off the software first before switching off the power 

supply to prevent from losing data by switching off the power while running. Select “Shut 

down analyzer” from the tools menu of the V&F Viewer program to turn off the software. 

Then switch off the power switch located at the front panel of the analyzer. Then turn off 

the source gas bottle to prevent any possible leakage when not running. 

 

Appendix B. Calibration of the DEF Injector 
 

The NH3 concentration at the SCR inlet generated from the DEF injection is determined 

by the DEF injection rate, urea properties, and exhaust flow rate. In order to achieve the 

desired NH3 concentration, it is important to accurately control the DEF injection flow 

rate injected into the exhaust flow. The DEF injection rate is controlled by sending flow 

rate command to the engine ECM through the Cummins proprietary software which inter 

communicates with the engine ECM. The injector is calibrated to accurately give the 

desired DEF flow rate. A calibration process conducted without running the engine is 

described as follows: 

 

1. Disconnect the injector from the mount on the exhaust pipe. 

 

2. Position a 500 ml graduated cylinder underneath the DEF injector. 

 

3. Start the DEF injection with a flow rate command of 0.02 ml/sec. Continue the 

injection until measurable volume of DEF is collected in the cylinder. 

 

4. Remove the graduated cylinder and place it on a level surface. Wait until there are 

no bubbles in the DEF collected, and then record the volume of DEF that is injected 
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into the cylinder. Pour the DEF back to the tank, and start over at the next higher 

injection flow rate.  

 

The relationship between the flow rate commands (Flowrate_Cmd) sent to the ECM and 

the actual DEF injection rates calculated (Flowrate_Act) is shown in Figure B.1. A linear 

trend line was added to characterize the relationship. The calibration process was 

repeated during the engine testing period to verify the repeatability of the injector. Two 

additional calibration curves are also given in Figure B.1. 

 

The urea concentration of the DEF is 32.5% by weight. The decomposition of 1 urea 

molecule forms two NH3 molecules through a series of reactions[76]. As a result, the 

calculation of the available SCR inlet NH3 concentration when applying an injection 

command value of Flowrate_Cmd  is given as the following equation. 

 

3

2 20.325 ( 1.0177 0.0013) 0.325Act DEF Cmd DEF
Urea Urea

NH
Exh Exh

Exh Air

Flowrate Flowrate
MW MWC Flowrate Flowrate

MW MW

ρ ρ× × × × + × × ×
= =

 
 

Where, ρDEF is the density of the DEF which is 1080kg/m3 under room condition. MWurea 

is the molecular weight of the urea molecule which is 60 g/gmol, MWExh is the molecular 

weight of the exhaust gas and it is considered to be equal to that of air which is 28.8 

g/gmol. 
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Figure B.1: DEF injector calibration curve 

 

Appendix C. Calculation of SCR Actual 
Space Velocity  
 

The calculations of the SCR actual and standard space velocities are described in this 

section. The SCR actual space velocity is the SCR space velocity under operating 

pressure and temperature conditions while the standard space velocity is calculated 

under a specific reference pressure and temperature. The space velocity was a ratio of 

the exhaust volumetric flow rate to the open catalyst volume as given in Equation 

C.1.The actual exhaust volumetric flow rate was the exhaust mass flow rate divided by 

the actual density of exhaust as shown in Equation C.2. In this calculation the actual 

exhaust density was assumed to be equal to the actual density of the air. The calculation 

of the actual air density is given in Equation C.3. Where, P is the absolute pressure in 

Pa, R is the specific gas constant for dry air and equal to 287 J/(kg·K). T is the SCR 

temperature in  K. The standard exhaust volumetric flow rate was the exhaust mass flow 

rate divided by the standard density of exhaust as shown in Equation C.4. The standard 

density of the exhaust is assumed to be equal to the density of air under 1atm and 0°C. 

The catalyst volume used in Equation C.1 is the open volume of the catalyst which is the 

y = 1.0177x + 0.0013 
R² = 0.9998 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

DE
F 

Fl
ow

ra
te

_A
ct

 (m
l/s

ec
) 

DEF Flowrate_cmd (ml/sec) 

Cal_1

Cal_2

Cal_3



 

185 
 

open area times the catalyst length. The open volume was calculated by multiplying the 

area of each catalyst cell and the number of inlet cells. The open catalyst volume 

calculation is given in Equation C.5. 

 

 
3

1
3

( / )( )
( )

Exh Volumetric Flow Rate m hrSV hr
Open Catalyst Volume m

− =                  C.1 

 

 3
3

( / )( / )
( / )

Exh Mass Flow Rate kg hrActual Exh Volumetric Flow Rate m hr
Actual Exh Density kg m

=       C.2 

 

 3 ( )( / )
( / ) ( )

P PaActual Air Density kg m
R J kg K T K

=
⋅  

            C.3 

 

 3
3

( / )( / )
( / )

Exh Mass Flow Rate kg hrStandard Exh Volumetric Flow Rate m hr
Standard Exh Density kg m

=      C.4 

 

 3 2 2( ) # ( ) ( )Open Catalyst Volume m of Cells Cell Width m Catalyst Length m= × ×    
C.5 

 

Appendix D. Fuel Mass Flow Rate 
Calculation for Transient Test 
 

The exhaust mass flow rate is an important parameter to determine the SCR space 

velocity and is an input for the SCR model. The exhaust mass flow rate is the sum of the 

intake mass flow rate calculated from the pressure drop across the LFE and the 

measured fuel mass flow rate. Due to limitations of the AVL fuel system, real time fuel 

mass flow rate of the engine during transient cycles cannot be accurately measured. In 

order to determine the engine fuel mass flow rate, a calculation based on the exhaust 

measurements was performed.  
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In this calculation, it was assumed that the lean combustion products included only H2O, 

and CO2 with excess O2 and N2. Other products including HC, NOx, and PM were 

ignored because of their negligible levels compared to the other species to reduce 

calculation complexity. The diesel fuel composition was assumed to be C12H24. The 

combustion process is given in Equation D.1. 

 2 C12H23 + a (O2 + 3.76 N2) = 24 CO2 + 23 H2O + y O2 + 3.76a N2        D.1 
 

Equation D.2 can be derived from the O2 balance between the two sides of the reaction. 

 

 2 a = 24 x 2 + 23 + 2 y        D.2 

 

The model fraction of O2 in the products time 100 is the wet O2 concentration in 

percentage measured by the IMR-MS. This relationship is given in Equation D.3.  

 

 [O2]w = 100 y / (24 + 23 + y + 3.76 a)      D.3 
 

The coefficient a for the air in reactant side and the coefficient y for the O2 in product 

side of Equation D.1 can be solved from Equation D.2 and D.3. The air fuel ratio was 

calculated based on the reactants on the left hand side of Equation D.1. The calculation 

is given in Equation D.4. The fuel mass flow rate can be determined by multiplying the 

calculated air fuel ratio with the measurement intake air mass flow rate. 

 

 A/F = a (16 x 2 + 3.76 x 14 x 2) / [2 x (12 x 12 + 23 x 1)]     D.4 
 

Appendix E. Calibration of the NH3 Sensor 
 

Experimental results show that the NH3 slip measurements from the NH3 sensor and the 

IMR-MS are off by about 10% because they have different sensitivity to NH3. In order to 

compare the NH3 measurements from the NH3 sensor and the IMR-MS, it is necessary 

to calibrate the NH3 sensor to the IMR-MS so that they give equal measurements when 
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measuring the same gas components. The IMR-MS is calibrated before each test using 

the calibration gas with certified concentration of 103.8 ppm balancing with N2.  

 

For calibration of the NH3 sensor, SCR engine tests was performed with different 

upstream DEF injection rates to form different levels of NH3 slip which is measured by 

both the NH3 sensor and the IMR-MS at the same time. For each NH3 slip level, the gas 

sample was taken continuously until the NH3 measurements from both instruments 

reached steady state for 3 minutes. Another DEF injection rate was then carried out 

while continuing to measure NH3 downstream of the SCR. The test setup has been 

introduced in the previous sections. The test was performed during the CPF 

regeneration process with a SCR inlet temperature of 510°C so that the SCR reached 

the equilibrium state more quickly because the NH3 storage capacity of the SCR catalyst 

is significantly lower at higher temperatures. Then the steady state NH3 measurements 

from both instruments were compared and the ratio between the two measurements was 

calculated for each NH3 level. The average of each calculated ratio was considered to be 

the factor used to scale the NH3 sensor measurement to the IMR-MS measurement. The 

measured concentrations and the calculated ratios are given in Table E.1. The average 

of the calculated ratios was used as the NH3 sensor calibration factor.  

 

Table E.1: NH3  sensor calibration results 

Speed Load 
Exh 

mass 
flowrate 

SCR 
Inlet 

Temp 
ANR NH3 

Sensor 
NH3 
MS 

Ratio of 
NH3 

Conc. 
rpm N·m kg/min °C none ppm ppm none 
2310 281 11.17 514 0.00 0 0 - 
2310 279 11.17 513 1.40 24 21 1.15 
2310 276 11.18 514 1.60 46 38 1.21 
2310 284 11.19 513 1.80 74 63 1.18 
2310 276 11.18 514 2.00 94 81 1.17 
2310 288 11.19 514 2.19 126 108 1.16 
2310 285 11.20 517 0.00 0 5 - 

      Average 1.17 
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Appendix F. Processing of the Spaci-IR 
Data 
 

The gaseous concentrations and the NH3 storage at each axial measurement position 

under the equilibrium state of each test protocol step are important for the purpose of 

characterizing the SCR internal state and calibration of the SCR model. The gaseous 

concentrations can be calculated by averaging the measurement data recorded after the 

SCR reached equilibrium states. The NH3 storage under different SCR conditions was 

calculated by integrating the NH3 adsorbed on the catalyst or the NOx reduced by the 

stored NH3 and NH3 slip after the NH3 was turned off. The calculation procedures for the 

measurement locations of 0.6 of the catalyst length and the temperature of 250°C are 

introduced below. The gaseous concentrations of NO, NO2 and NH3 under this condition 

are shown in Figure F.1 

 

Figure F.1: Gaseous concentrations of NO, NO2 and NH3 at the 0.6 of the catalyst length 
under temperature of 250°C 
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The vertical black lines in Figure F.1 are the critical change points when the inlet gas 

composition was changed. The time of the change points were represented by t1-t8. As 

marked in the figure, the gaseous concentrations and NH3 storage under the equilibrium 

states of NH3 only, NOx + NH3, NO + NH3 sections are important. The gaseous 

concentrations at the time points t2, t4, and t7 were considered as the equilibrium 

concentrations.  

 

The NH3 storage under the equilibrium of the NH3 only section was calculated by 

integrating the difference between inlet and measured outlet NH3 concentrations over 

the time period of this section. The calculation is given in Equation F.1. The NH3 storage 

values under during the NOx + NH3 and NO + NH3 sections were calculated by 

integrating the NOx reduced by the stored NH3 and NH3 slip after the inlet NH3 was 

turned off until the NH3 adsorbed on the catalyst was cleaned up. The calculation is 

given in Equation F.2 

 

Where, M is molar flow rate in gmol/min calculated based on the space velocity and the 

catalyst dimensions as shown in Equation F.3. Vcat is the catalyst volume calculated 

based on the diameter and length of the core sample. Pref and Tref are the reference 

pressure and temperature which were 1 atm and 0°C respectively. R is the global ideal 

gas constant. The space velocity of 70,000 hr-1 was used in the storage calculations. 

 

The storage calculations were also performed for the axial measurement position before 

the catalyst, which was the inlet measurement. This calculated storage accounted for the 

NH3 storage resulted from gas transportation in the sampling system of the analyzer and 

was subtracted from the SCR internal NH3 storage values.  

 ( )
2

3 3_ 3_
1

( )
t

sto in out
t

NH M NH NH t dt= ⋅ −∫     F.1 
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( 1)

3 _ _ 3_
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The gaseous concentrations and the NH3 storage calculations were conducted for 

different axial measurement positions and temperatures. The equilibrium state NOx and 

NH3 concentrations as a function of axial position at NOx + NH3 and NO + NH3 sections 

for three temperatures are shown in Figures F.2 and F.3. The equilibriums state NH3 

storage at different sections as a function of the axial position for different temperatures 

are shown in Figures F.4, F.5, and Figure F.6. 

 

Under the NH3 only conditions, the NH3 storage increased linearly along with the axial 

position, meaning that the NH3 was uniformly stored on the catalyst along the catalyst 

length. Under the NOx + NH3 conditions, the NH3 storage was increasing at the first half 

of the catalyst and reached constant after the position of 0.6. The NOx reduction 

reactions mainly took place on the first half of the catalyst and the NH3 was completely 

consumed at the position of 0.6, causing no NH3 stored after that position. Under the NO 

+ NH3 conditions, the SCR reaction took place along the catalyst length and higher NH3 

storage was observed than the NOx + NH3 conditions. The NH3 storage decreased as 

increase in SCR temperature, because higher temperature resulted in greater reaction 

rates that consuming more stored NH3. The temperature effects on the reaction rates of 

NO + NH3 SCR reactions were more obvious than the NOx + NH3 SCR relations, causing 

greater differences in axially resolved NOx concentrations between different 

temperatures. 
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Figure F.2: NOx concentrations at equilibrium state of NOx + NH3 and NO + NH3 sections 

as a function of axial position for three temperatures 

 
Figure F.3: NOx concentrations at equilibrium state of NOx + NH3 and NO + NH3 

sections as a function of axial position for three temperatures 
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Figure F.4: NH3 storage as a function of axial position for the temperature of 250°C 

 
Figure F.5: NH3 storage as a function of axial position for the temperature of 300°C 
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Figure F.6: NH3 storage as a function of axial position for the temperature of 350°C 

 

Appendix G. Selection of Reactor Data for 
Model Calibration 
 

The reactor data showed abnormal SCR behavior at temperatures below 300 °C. SCR 
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Figure G.1. An inhibition effect on the fast SCR reaction and slow SCR reaction is 

observed. The fast SCR section of the protocol with an ANR of 1.2 is shown in the plot 

between 90 and 300 minutes. It can be observed that NOx is completely reduced before 

100 minutes right after NH3 was introduced into the gas stream. After a high NOx 

reduction period between 100 and 150 minutes, the NOx downstream of the SCR started 

to increase, meaning that the NO and NO2 reduction reactions were being inhibited. 
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ANR was switched to 1.0 between the time periods of 330 and 600 minutes. Greater 

inhibition effect on the SCR reactions were observed with the slow SCR sections of the 

protocol between about 780 and 1000 minutes. Only 20 percent of NOx was reduced 

when the catalyst reached the equilibrium state. No such effects were observed during 

the standard SCR reaction sections because NOx reduction efficiency kept increasing 

with injection of NH3 before the catalyst reached the equilibrium state, as shown in the 

two sections with NH3 injection between 600 and 800 minutes. Since the inhibition only 

occurs when NO2 is in the feed gas, the most likely explanation is formation of NH4NO3 

on the catalyst surface.  NH4NO3 is stable at these low temperatures. As the surface 

loading of NH4NO3 increases, it could block active sites and/or pores in the zeolite, 

resulting in reduced catalytic activity. Similar phenomena was previously reported for V-

based and Fe-ZSM5 catalysts [49,134]. Reference [130] has proposed a model for Cu 

and Fe-zeolite SCR including this phenomena into the reaction mechanism. The formed 

NH4NO3 was considered to leave the catalyst in gaseous form instead of depositing on 

the catalyst surface. The model presented in this paper did not include the NH4NO3 

formation and decomposition reactions and was not able to make similar predictions at 

these sections, the reactor data showed such phenomenon was not used for model 

calibration. The reactor data sets or sections from a specific data set not used for model 

calibration are shown in Table G.1. 

 

Figure G.1: SCR inlet and outlet concentrations for 200°C and 60k hr-1 SV 
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Table G.1: Reactor experimental data sets with marked steps (×) that were not used for 
model calibration 

SV Temp. 
(°C) 

Step Number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

60k 
1/hr 

200       × × × ×       × × × × × 
250                 × × × × × 
300                     
350                     
400                     

90k 
1/hr 

200       × × × ×       × × × × × 
225                 × × × × × 
250                 × × × × × 
275                 × × × × × 
300                 × × × × × 
325                     
350                     
375                     
400                     
425                     

120k 
1/hr 

200       × × × ×       × × × × × 
250                 × × × × × 
300                 × × × × × 
350                     
400                     
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Appendix H. Simulation Results of TPD 
Experiments 

 
Figure H.1: Comparison of SCR outlet NH3 between simulation and experimental results 

for the space velocity of 90,000 hr-1 
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Figure H.3: Comparison of SCR outlet NH3 between simulation and experimental results 

for the space velocity of 120,000 hr-1 

 

 
Figure H.4: Simulated NH3 coverage fraction for TPD test for the space velocity of 

120,000 hr-1 
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Appendix I. Simulation Results of Isothermal 
Reactor Tests 

 
Figure I.1: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 200°C 

 
Figure I.2: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 250°C 
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Figure I.3: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 300°C 

 
Figure I.4: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 350°C 
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Figure I.5: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 400°C 

 
Figure I.6: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 200°C 
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Figure I.7: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 225°C 

 
Figure I.8: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 250°C 
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Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C 

 
Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C 
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Figure I.11: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 325°C 

 
Figure I.12: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 350°C 
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Figure I.13: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 375°C 

 
Figure I.14: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 400°C 
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Figure I.15: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 425°C 

 
Figure I.16: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 200°C 
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Figure I.17: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 250°C 

 
Figure I.18: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 300°C 
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Figure I.19: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 350°C 

 
Figure I.20: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 400°C 
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Appendix J. Simulations of Steady State 
Engine Experiments 

 
Figure J.1: Model simulation compared to steady state engine data for test point 1 with 

the SCR inlet temperature of 400°C 

 
Figure J.2: Model simulation compared to steady state engine data for test point 3 with 

the SCR inlet temperature of 353°C 
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Figure J.3: Model simulation compared to steady state engine data for test point 4 with 

the SCR inlet temperature of 331°C 

 
Figure J.4: Model simulation compared to steady state engine data for test point 5 with 

the SCR inlet temperature of 301°C 
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Figure J.5: Model simulation compared to steady state engine data for test point 6 with 

the SCR inlet temperature of 278°C 

 
Figure J.6: Model simulation compared to steady state engine data for test point 7 with 

the SCR inlet temperature of 252°C 
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Figure J.7: Model simulation compared to steady state engine data for the repeat of test 

point 7 with the SCR inlet temperature of 252°C 

 
Figure J.8: Model simulation compared to steady state engine data for the repeat of test 

point 4 with the SCR inlet temperature of 330°C 
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Appendix K. Simulation Results of 
Transient SCR Experiments 

 
Figure K.1: Simulated concentrations compared to experimental measurements of 

transient experiment 2 

 
Figure K.2: Simulated cumulative NOx, NH3 and NOx conversion efficiency of transient 

experiment 2 
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Figure K.3: Simulated concentrations compared to experimental measurements of 

transient experiment 3 

 
Figure K.4: Simulated cumulative NOx, NH3 and NOx conversion efficiency of transient 

experiment 3 
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Figure K.5: Simulated concentrations compared to experimental measurements of 

transient experiment 4 

 
Figure K.6: Simulated cumulative NOx, NH3 and NOx conversion efficiency of transient 

experiment 4 
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Figure K.7: Simulated concentrations compared to experimental measurements of 

transient experiment 5 

 
Figure K.8: Simulated cumulative NOx, NH3 and NOx conversion efficiency of transient 

experiment 5 
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Figure K.9: Simulated concentrations compared to experimental measurements of 

transient experiment 6 

 
Figure K.10: Simulated cumulative NOx, NH3 and NOx conversion efficiency of transient 

experiment 6 

0
100
200
300

In
le

t
C

on
c 

(p
pm

)

 

 
NO NO2 NH3

0

100

200

 

 

N
O

 O
ut

C
on

c 
(p

pm
) NO Exp

NO Sim

0
100
200
300

 

 

N
O

2 O
ut

C
on

c 
(p

pm
) NO2 Exp

NO2 Sim

0 5 10 15 20
0

20

40

 

 

Time (min)

N
H

3 O
ut

C
on

c 
(p

pm
)

NH3 Exp

NH3 Sim

0

20

40

60

C
um

ul
at

iv
e

N
O

x  (
g)

 

 
Inlet
Outlet Sim.
Outlet Exp

0

4

8

C
um

ul
at

iv
e

N
H

3  (
g)

 

 
Inlet
Outlet Sim.
Outlet Exp

0 5 10 15 20
0

20

40

60

Time (min)

N
O

x C
on

v
Ef

f (
%

)

 

 
Sim
Exp



 

217 
 

Appendix L. Results for the NH3 
Maldistribution Tests  

 
Figure L.1: Distribution profile of the SCR inlet ANR for test point 1 

 

 
Figure L.2: Distribution profile of the SCR inlet ANR for test point 2 
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Figure L.3: Distribution profile of the SCR inlet ANR for test point 3 

 

 
Figure L.4: Distribution profile of the SCR inlet ANR for test point 4 
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Figure L.5: Distribution profile of the SCR inlet ANR for test point 5 

 

 
Figure L.6: Distribution profile of the SCR inlet ANR for test point 6 
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