

Michigan Technological University

Create the Future Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports - Open

Dissertations, Master's Theses and Master's Reports

2013

A SCR Model based on Reactor and Engine Experimental Studies for a Cu-zeolite Catalyst

Xiaobo Song Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Part of the Mechanical Engineering Commons Copyright 2013 Xiaobo Song

Recommended Citation

Song, Xiaobo, "A SCR Model based on Reactor and Engine Experimental Studies for a Cu-zeolite Catalyst", Dissertation, Michigan Technological University, 2013. https://digitalcommons.mtu.edu/etds/582

Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the <u>Mechanical Engineering Commons</u>

A SCR MODEL BASED ON REACTOR AND ENGINE EXPERIMENTAL STUDIES FOR A CU-ZEOLITE CATALYST

By

Xiaobo Song

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

In Mechanical Engineering – Engineering Mechanics

MICHIGAN TECHNOLOGICAL UNIVERSITY

2013

This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering – Engineering Mechanics

Department of Mechanical Engineering – Engineering Mechanics

Dissertation Co-Advisor:	Dr. John H. Johnson
Dissertation Co-Advisor:	Dr. Jeffrey D. Naber
Committee Member:	Dr. Gordon P. Parker
Committee Member:	Dr. Jason M. Keith

Department Chair: Dr. William Predebon

Table of Contents

List of F	igur	es	vi
List of 7	Table	es	xiv
Acknow	/ledg	jements	xvi
Abstrac	:t		xviii
Chapte	r 1.	Introduction	1
1.1	Ba	ckground	1
1.2	HD	D Aftertreatment Systems	2
1.3	Мс	tivation	6
1.4	Go	als and Objectives	7
1.5	Dis	ssertation Outline	9
Chapte	r 2.	Literature Review	11
2.1	En	nission Control Technologies	11
2.2	Са	talytic NO _x Reduction	13
2.3	SC	R Formulations	14
2.4	SC	R Experimental Studies	17
2.4	.1	SCR Reactor Testing	17
2.4	.2	SCR Engine Testing	20
2.5	SC	R Modeling Studies	22
2.5	5.1	SCR Reaction Mechanisms	22
2.5	.2	Mass Transfer	
2.5	.3	Heat and Energy Transfer	33
2.6	SC	R Deactivation Effects	
2.6	5.1	SCR HC Poisoning Effect	

	2.6.2	2	SCR Thermal Aging Effects	. 36
:	2.6.3	3	Maldistribution Effects	. 37
2.7	7	Sun	nmary	. 39
Chap	oter	3.	Experimental Setup and Test Procedures	.42
3.1	1	Eng	ine Test Cell Setup	.42
3.2	2	Eng	ine, Fuel and Aftertreatment System	.43
:	3.2. ⁻	1	Engine and Dynamometer	.43
:	3.2.2	2	Fuel Properties	.43
:	3.2.3	3	Engine Aftertreatment System	.44
:	3.2.4	4	Exhaust Heater	.46
:	3.2.	5	Test Cell Layout	.48
3.3	3	Mea	asurements and Data Acquisition System	.49
:	3.3.′	1	Temperature Measurement	.49
:	3.3.2	2	Pressure Measurement	.51
:	3.3.3	3	Exhaust Mass Flow Rate Measurement	. 51
:	3.3.4	4	Gaseous Emissions	. 52
:	3.3.	5	Particulate Matter	. 54
:	3.3.6	6	Data Acquisition System	. 54
3.4	4	Stea	ady – State SCR Engine Tests	. 56
:	3.4. ⁻	1	Test Matrix	. 56
:	3.4.2	2	Test Procedures	. 57
3.5	5	Trai	nsient SCR Engine Tests	. 60
:	3.5.	1	Test Cell Setup for Transient Tests	. 60
:	3.5.2	2	Surrogate HD-FTP Cycle Development	. 61
:	3.5.3	3	Test Matrix	. 64
	3.5.4	4	Test Procedures	.65

3.	.6	San	nple Line Test	67
3.	.7	NH	3 Maldistribution Tests	69
3.	.8	Flo	w Reactor Tests	72
	3.8.	1	Flow Reactor Setup	72
	3.8.	2	Catalyst Sample	73
	3.8.	3	Test Protocol	73
	3.8.	4	NH ₃ TPD Test	77
	3.8.	5	Test Matrix	78
3.	.9	Spa	aci-IR Reactor Tests	79
Cha	pter	4.	SCR Model Development and Calibration	82
4.	.1	SCI	R Model Overview	82
	4.1.	1	Mass Transfer Equations	83
	4.1.	2	NH ₃ Storage Equations	84
	4.1.	3	Heat Transfer Equations	84
	4.1.	4	Reaction Mechanism	85
4.	.2	SCI	R Model Calibration with Spaci-IR Data	88
	4.2.	1	1-Site Model Analysis	89
	4.2.	2	2-Site Model Analysis	95
4.	.3	SCI	R Model Calibration with Flow Reactor Data	99
	4.3.	1	Model Calibration Procedures	99
	4.3.	2	NH ₃ Storage Parameters	.101
	4.3.	3	NH ₃ Oxidation Parameters	.104
	4.3.	4	NO + NH ₃ SCR Reaction Parameters	.105
	4.3.	5	NO ₂ + NH ₃ SCR Reaction Parameters	.106
	4.3.	6	NO _x + NH ₃ SCR Reaction Parameters	.107
4.	.4	San	nple Line Model Development	.109

4.	5	SCF	R Model Calibration with Engine Data	112
Cha	pter	5.	Results and Discussion	117
5.	1	Con	nparison of Model Parameters	117
5.	2	SCF	R Model Calibrated to Reactor Data	122
	5.2.	1	Model Simulation of TPD Experiments	123
	5.2.	2	Model Simulation of Isothermal Reactor Experiments	125
5.	3	SCF	R Model Calibrated to Engine Data	128
	5.3.	1	Model Simulation of Steady State Engine Experiments	128
	5.3.	2	Model Simulation of Transient Engine Experiments	131
	5.3.	3	Simulation of NO ₂ /NO _x Ratio Effects	136
5.	4	NH₃	Maldistribution Data and Simulation of Maldistribution Effects	138
	5.4.	1	NH ₃ Maldistribution Experimental Results	138
	5.4.	2	NH ₃ Maldistribution Effects on SCR Performance	145
	5.4.	3	Maldistribution Effects on SCR Model Parameters	149
5.	5	SCF	R Thermal Aging Data and Effects	152
Cha	pter	6.	Summary and Conclusions	163
6.	1	Sum	nmary	163
6.	2	Con	clusions	165
6.	3	Rec	ommendations	167
Refe	eren	ces .		169
App	endi	x A.	IMR-MS Start up and Calibration procedures	181
App	endi	x B.	Calibration of the DEF Injector	182
App	endi	x C.	Calculation of SCR Actual Space Velocity	184
App	endi	x D.	Fuel Mass Flow Rate Calculation for Transient Test	185
Арр	endi	x E.	Calibration of the NH_3 Sensor	186
Арр	endi	x F.	Processing of the Spaci-IR Data	188

Appendix G.	Selection of Reactor Data for Model Calibration	193
Appendix H.	Simulation Results of TPD Experiments	196
Appendix I.	Simulation Results of Isothermal Reactor Tests	198
Appendix J.	Simulations of Steady State Engine Experiments	208
Appendix K.	Simulation Results of Transient SCR Experiments	212
Appendix L.	Results for the NH_3 Maldistribution Tests	217
Appendix M.	Permission to Use Copyrighted Material	220

List of Figures

Figure 3.13: Switches used for switching between manual control mode and external
voltage control mode61
Figure 3.14: Engine conditions of the HD-FTP cycle and the developed surrogate HD-
FTP cycle63
Figure 3.15: Comparison the experimental measurements for different runs of the
developed surrogate HD-FTP cycle63
Figure 3.16: SCR inlet NO, NO $_2$ concentrations, SCR inlet temperature, and SCR
standard space velocity during the surrogate HD-FTP cycle64
Figure 3.17: Engine conditions and control voltages for the transient test
Figure 3.18: Comparison of NH_3 slip measurements from the IMR-MS, the NH_3 (NH_3 ,
SNR) and the NO _x sensors (NO _x , SNR)68
Figure 3.19: Sampling probes for different radial measurement locations
Figure 3.20: Gaseous sampling positions at the outlet face of the 1st SCR brick71
Figure 3.21: Test protocol showing the inlet gas concentrations for reactor testing74
Figure 3.22: Test protocol for NH_3 TPD experiments
Figure 3.23: Test protocol of the Spaci-IR reactor tests
Figure 4.1: Overconsumption of NH_3 with respect to NO under standard SCR conditions
and NH ₃ oxidized during step 3 (Space Velocity = 60,000 hr ⁻¹)88
Figure 4.2: NH_3 storage at each test temperature91
Figure 4.3: 1-site model simulated NO_x concentration at different axial locations at
equilibrium state of NO_x + NH_3 reaction section compared to experimental
results94
Figure 4.4: 1-site model simulated NH_3 concentration at different axial locations at
equilibrium state of NO_x + NH_3 reaction section compared to experimental
results
Figure 4.5: Simulated cumulative NH_3 stored for the 1-site model as a function of axial
position compared to experimental results
Figure 4.6: 2-site model simulated NO _x concentration at different axial locations at
equilibrium state of NO_x + NH_3 protocol section compared to experimental
results97

Figure 4.7: 1-site model simulated NH_3 concentration at different axial locations at
equilibrium state of NO _x + NH ₃ protocol section compared to experimental results
Figure 4.8: Simulated cumulative NH_3 stored of the 1-site model as a function of axial
position compared to experimental results
Figure 4.9: NH ₃ stored on the catalyst at step 2 of the protocol for each reactor test condition
Figure 4.10: Arrhenius plot of reaction rate constants for NH ₃ adsorption and desorption
on two sites (Square: SV = 60,000 hr ⁻¹ , Diamonds: 90,000 hr ⁻¹ , Circle:
120,000 hr ⁻¹)
Figure 4.11: Arrhenius plot of reaction rate constants for NH ₃ oxidation reactions
(Square: SV = 60,000 hr ⁻¹ , Diamonds:90,000 hr ⁻¹ , Circle: 120,000 hr ⁻¹) 104
Figure 4.12: Arrhenius plot of reaction rate constants for the two standard SCR reactions
and NO oxidation reaction (Square: SV = 60,000 hr ⁻¹ , Diamonds:90,000 hr ⁻¹ ,
Circle: 120,000 hr ⁻¹)106
Figure 4.13: Arrhenius plot of reaction rate constants for slow SCR reactions and N_2O
formation reaction (Square: SV = 60,000 hr ⁻¹ , Diamonds:90,000 hr ⁻¹ , Circle:
120,000 hr ⁻¹)107
Figure 4.14: Arrhenius plot of reaction rate constants for fast SCR reaction (Square: SV
= 60,000 hr ⁻¹ , Diamonds: 90,000hr ⁻¹ , Circle: 120,000hr ⁻¹)
Figure 4.15: Sample line model predicted NH_3 compared to the IMR-MS measure during
103.8 ppm NH_3 calibration gas as a step input
Figure 4.16: Sample line model predicted NH_3 compared to the IMR- MS measured NH_3
using NH_3 sensor measurement during engine test as the input (Red: NH_3
sensor measurement, Green: IMR-MS measurement, Blue: Sample line
model predictions)
Figure 4.17: Arrhenius plots of reaction rate constant for each reaction in the SCR model
based on the engine data114
Figure 5.1: Comparison of the kinetic parameters for adsorption and desorption
reactions on site 1119
Figure 5.2: Comparison of the kinetic parameters for adsorption and desorption
reactions on site 2

Figure 5.3: Comparison of the kinetic parameters for the standard SCR reactions121 Figure 5.4: Comparison of the kinetic parameters for the fast and slow SCR reactions Figure 5.5: Comparison of SCR outlet NH_3 between model simulation and TPD reactor experimental results for the space velocity of 60,000hr⁻¹.....123 Figure 5.6: Model simulated NH₃ coverage fraction for TPD reactor test for the space velocity of 60,000 hr⁻¹.....124 Figure 5.7: SCR outlet concentrations of NO, NO₂, NH₃, and N₂O, comparison between SCR model simulation and experimental measurements. Test conditions: SV = 90,000 hr⁻¹, Temperature = 300°C.....126 Figure 5.8: Calculated NH₃ stored on the catalyst during certain steps of the reactor protocol for the SV of 90,000 hr⁻¹ and the temperature of 300°C128 Figure 5.9: Comparison of the SCR outlet gaseous concentrations between simulation results and experimental measurements for test point 2 in Table 3.11 with the temperature of 376°C. (Sim1: SCR model predicted NH₃; Sim2: NH₃ slip processed by the sample line model).....130 Figure 5.10: Model simulation compared to experimental results for the surrogate HD-FTP transient test 1 with manual control of DEF injection132 Figure 5.11: Cumulative NO_x, NH₃ and NO_x conversion efficiency of the surrogate HD – FTP cycle, compare between simulation and experimental results for Figure 5.12: Model predicted NH_3 storage on the catalyst during surrogate HD-FTP cycle Figure 5.13: Model predicted SCR outlet temperature for the surrogate HD-FTP test..136 Figure 5.14: Distribution profile of NO with the average ANR of 0 for test point 1139 Figure 5.15: Distribution profile of NO₂ with the average ANR of 0 for test point 1......140 Figure 5.16: Distribution profile of NO_x with the average ANR of 0 for test point 1......140 Figure 5.17: Distribution profile of NO with the average ANR of 0.3 for test point 1141 Figure 5.18: Distribution profile of NO₂ with the average ANR of 0.3 for test point 1....141 Figure 5.19: Distribution profile of NO_x with the average ANR of 0.3 for test point 1....142 Figure 5.20: Distribution profile of NH₃ with the average ANR of 0.3 for test point 1142 Figure 5.21: Distribution profile of ANR with the average ANR of 0.3 for test point 1...143

Figure 5.22: Distribution of ANR after installing swirl mixer for condition for test point 5
Figure 5.23: Schematic showing the setup of the model for maldistribution effects
simulation
Figure 5.24: Probability distribution function of maldistribution factors for the UI of 0.7,
0.8 and 0.9146
Figure 5.25: Setup of the SCR inlet concentrations for simulation
Figure 5.26: NO _x reduction efficiency and NH_3 slip as a function of average ANR for
different UI148
Figure 5.27: NH_3 storage as a function of average ANR for different UI
Figure 5.28: Single channel SCR model simulation results with calibration to reactor data
compared to engine experimental data150
Figure 5.29: Contour plot of the maldistribution factors applied to each channel of the 24-
channel model with parameters developed from the reactor data
Figure 5.30: Multi-channel model simulation results compared to engine experimental
data152
Figure 5.31: Test protocol for SCR hydrothermal aging tests
Figure 5.32: Comparison of Cumulative NH_3 stored between de-greened and aged
catalysts156
Figure 5.33: Axial NO _x and NH ₃ distribution profiles at steps 4 and 7 under the
temperature of 350°C157
Figure 5.34: NH ₃ storage as a function of temperature for de-greened and aged catalysts
Figure 5.35: Experimental and simulated cumulative NH_3 stored under NH_3 saturation
condition for both de-greened and aged catalysts
Figure 5.36: Arrhenius form plot of the NH ₃ oxidation reaction rate constants
Figure 5.37: Arrhenius form plot of the reaction rate constants for standard and fast SCR
reactions
Figure B.1: DEF injector calibration curve
Figure F.1: Gaseous concentrations of NO, NO_2 and NH_3 at the 0.6 of the catalyst length
under temperature of 250°C

 Figure F.2: NO_x concentrations at equilibrium state of NO_x + NH₃ and NO + NH₃ sections as a function of axial position for three temperatures	Figure F.2. NO _x concentrations at equilibrium state of NO _x + Nn ₃ and NO + Nn ₃ sections
 Figure F.3: NO_x concentrations at equilibrium state of NO_x + NH3 and NO + NH₃ sections as a function of axial position for three temperatures	as a function of avial position for three temperatures
sections as a function of axial position for three temperatures	· · ·
 Figure F.4: NH₃ storage as a function of axial position for the temperature of 250°C192 Figure F.5: NH₃ storage as a function of axial position for the temperature of 300°C192 Figure F.6: NH₃ storage as a function of axial position for the temperature of 350°C193 Figure G.1: SCR inlet and outlet concentrations for 200°C and 60k hr⁻¹ SV	
 Figure F.5: NH₃ storage as a function of axial position for the temperature of 300°C192 Figure F.6: NH₃ storage as a function of axial position for the temperature of 350°C193 Figure G.1: SCR inlet and outlet concentrations for 200°C and 60k hr⁻¹ SV	
 Figure F.6: NH₃ storage as a function of axial position for the temperature of 350°C193 Figure G.1: SCR inlet and outlet concentrations for 200°C and 60k hr⁻¹ SV	
 Figure G.1: SCR inlet and outlet concentrations for 200°C and 60k hr⁻¹ SV	
 Figure H.1: Comparison of SCR outlet NH₃ between simulation and experimental results for the space velocity of 90,000 hr⁻¹	
for the space velocity of 90,000 hr ⁻¹	-
 Figure H.2: Simulated NH₃ coverage fraction for TPD test for the space velocity of 90,000 hr⁻¹	
 90,000 hr⁻¹	
 Figure H.3: Comparison of SCR outlet NH₃ between simulation and experimental results for the space velocity of 120,000 hr⁻¹	
for the space velocity of 120,000 hr ⁻¹	90,000 hr ⁻¹ 196
Figure H.4: Simulated NH3 coverage fraction for TPD test for the space velocity of 120,000 hr ⁻¹	
120,000 hr ⁻¹	for the space velocity of 120,000 hr ⁻¹ 197
Figure I.1: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 200° C	Figure H.4: Simulated NH_3 coverage fraction for TPD test for the space velocity of
Figure I.2: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 250° C	120,000 hr ⁻¹
Figure I.3: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 300° C	Figure I.1: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 200°C198
Figure I.4: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 350° C	Figure I.2: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 250°C198
Figure I.5: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 400°C200 Figure I.6: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 200°C200 Figure I.7: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 225°C201 Figure I.8: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 250°C201 Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C	Figure I.3: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 300°C199
Figure I.6: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 200°C	Figure I.4: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 350°C199
Figure I.7: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 225°C201 Figure I.8: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 250°C201 Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202	Figure I.5: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 400°C200
Figure I.8: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 250°C201 Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202	Figure I.6: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 200°C200
Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202	Figure I.7: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 225°C201
Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202	
	Figure I.8: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 250°C201
Figure 1.11 Model simulation vs. reactor data $SV = 90 \text{ k/hr}$ Temp = 325°C 203	
	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202
Figure I.12: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 350°C203	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202
	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202 Figure I.11: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 325°C203
Figure I.13: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 375°C204	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202 Figure I.11: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 325°C203 Figure I.12: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 350°C203
Figure I.13: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 375°C204 Figure I.14: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 400°C204	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C
	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275° C
Figure I.13: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 375°C204	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C202 Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C202 Figure I.11: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 325°C203 Figure I.12: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 350°C203
	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C
Figure I.14: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 400°C204	Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275° C

Figure I.17: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 250°C206
Figure I.18: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 300°C206
Figure I.19: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 350°C207
Figure I.20: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 400°C207
Figure J.1: Model simulation compared to steady state engine data for test point 1 with
the SCR inlet temperature of 400°C208
Figure J.2: Model simulation compared to steady state engine data for test point 3 with
the SCR inlet temperature of 353°C208
Figure J.3: Model simulation compared to steady state engine data for test point 4 with
the SCR inlet temperature of 331°C209
Figure J.4: Model simulation compared to steady state engine data for test point 5 with
the SCR inlet temperature of 301°C209
Figure J.5: Model simulation compared to steady state engine data for test point 6 with
the SCR inlet temperature of 278°C210
Figure J.6: Model simulation compared to steady state engine data for test point 7 with
the SCR inlet temperature of 252°C210
Figure J.7: Model simulation compared to steady state engine data for the repeat of test
point 7 with the SCR inlet temperature of 252°C211
Figure J.8: Model simulation compared to steady state engine data for the repeat of test
point 4 with the SCR inlet temperature of 330°C211
Figure K.1: Simulated concentrations compared to experimental measurements of
transient experiment 2212
Figure K.2: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient
experiment 2212
Figure K.3: Simulated concentrations compared to experimental measurements of
transient experiment 3213
Figure K.4: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient
experiment 3213
Figure K.5: Simulated concentrations compared to experimental measurements of
transient experiment 4214
Figure K.6: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient
experiment 4214

Figure K.7: Simulated concentrations compared to experimental measurements of	
transient experiment 5	215
Figure K.8: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transie	ent
experiment 5	215
Figure K.9: Simulated concentrations compared to experimental measurements of	
transient experiment 6	216
Figure K.10: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of trans	ient
experiment 6	216
Figure L.1: Distribution profile of the SCR inlet ANR for test point 1	217
Figure L.2: Distribution profile of the SCR inlet ANR for test point 2	217
Figure L.3: Distribution profile of the SCR inlet ANR for test point 3	218
Figure L.4: Distribution profile of the SCR inlet ANR for test point 4	218
Figure L.5: Distribution profile of the SCR inlet ANR for test point 5	219
Figure L.6: Distribution profile of the SCR inlet ANR for test point 6	219

List of Tables

Table 3.1: Specifications of 2010 Cummins ISB engine	43
Table 3.2: Fuel properties for the ULSD used for SCR testing	44
Table 3.3: Specifications of the catalysts in 2010 Cummins ISB engine aftertreatment	
system	45
Table 3.4: Engine operating points for de-greening the aftertreatment system	45
Table 3.5: Specifications of thermocouples used in ISB aftertreatment system	50
Table 3.6: Specification of differential pressure transducers	51
Table 3.7: Monitoring mass and the ion source for each measured species	53
Table 3.8: Specifications of calibration gases for IMR-MS	53
Table 3.9: Specifications of the NO_x sensor and NH_3 sensor	54
Table 3.10: Description of the data acquisition system	55
Table 3.11: Engine speed/load points for SCR tests	57
Table 3.12: Test matrix of transient SCR tests	65
Table 3.13: Test matrix for the NH_3 maldistribution test	72
Table 3.14 Details of the core SCR sample	73
Table 3.15: Gas species concentrations for each test step of the reactor test protocol.	75
Table 3.16: Test Matrix for reactor testing	78
Table 3.17: Details of each step of the Spaci-IR test protocol	80
Table 3.18: Test matrix of the Spaci-IR tests	80
Table 4.1: Reactions included in the model and reaction rate calculation for each	
reaction	87
Table 4.2: Identified NH ₃ storage capacity, <i>Aads/Ades</i> and <i>Eads–Edes</i> for 1-site model.	91
Table 4.3: Identified NH_3 storage capacity, <i>Aads/Ades</i> and <i>Eads–Edes</i> for the storage st	ites
of the 2-site model	96
Table 4.4: Identified NH ₃ storage parameters	103
Table 4.5: Identified NH_3 oxidation parameters	105
Table 4.6: Identified model parameters for standard SCR reactions and NO oxidation	
reaction	106

Table 4.7: Identified model parameters for slow SCR reactions and N ₂ O formation	
reaction	107
Table 4.8: Identified model parameters for fast SCR reaction	108
Table 4.9: SCR model calibration results based on the reactor data	109
Table 4.10: Optimized model parameters of each temperature run for the SCR mod	el
based on the engine data	115
Table 4.11: SCR model calibration results based on the engine data	116
Table 5.1: SCR model parameters of the calibrated SCR model along with literature	;
values	118
Table 5.2: Cost function values for each gas species from comparison of SCR outle	t
concentrations between model simulation and experimental measureme	ents
	127
Table 5.3: Cost function values for each gas species of the model simulation with	
identified model parameter	131
Table 5.4: Cost function values of model simulation compared to experimental	
measurements for transient tests	134
Table 5.5: Simulation results of NO ₂ /NO _x ratio effects	138
Table 5.6: Test results for the NH_3 maldistribution tests	145
Table 5.7: Simulation conditions for maldistribution effect study	147
Table 5.8: Cost values for simulation results from the single and multi-channel mode	els
	152
Table 5.9: Details for each step of the Spaci-IR aging test protocol	154
Table 5.10: Details for each step of the Spaci-IR aging test protocol	158
Table 5.11: Kinetic parameters for NH ₃ oxidation reaction	160
Table 5.12: Kinetic parameters for the standard and fast SCR reactions	161
Table E.1: NH ₃ sensor calibration results	187
Table G.1: Reactor experimental data sets with marked steps (×) that were not used	d for
model calibration	

Acknowledgements

I would like to take this opportunity to thank every individual or institution that supported, assisted and helped me in any way to complete this thesis.

Foremost, I would like to express my deepest appreciation to my advisors, Dr. John Johnson and Dr. Jeffrey Naber for providing the opportunity and the continuous support for me to pursue my PhD degree. Without their persistent guidance and help this thesis would not have been possible. I would like to thank Dr. Gordon Parker for his engagement and inputs through the research process. I would like to thank Dr. Jason Keith and Dr. Gordon Parker for being on my research committee.

I would like to thank the past and present team members in the Heavy Duty Diesel testing and modeling groups. Their assistance and help made it possible for me to complete the experimental and modeling work. I would like to thank Josh Pihl at Oak Ridge National Laboratory for providing and explaining the reactor data. I would like to thank the industry partners Cummins, John Deere and Johnson Matthey for evaluating the SCR model and giving helpful comments to make improvement. I would also like to thank the U.S. Department of Energy for the financial support under award number of DE-EE0000204. Thanks to John Deere for providing part of the financial support during the last semester of my thesis research.

Last but not least, I would like thank my friends and family for their unconditional support and encouragement. Words cannot express my gratitude.

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

A NO_x reduction efficiency higher than 95% with NH₃ slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NO_x standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH₃ maldistribution and aging effects, and the details are presented.

SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH₃ maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model.

The effect of the SCR inlet NO₂/NO_x ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NO_x and the overall NO_x conversion efficiency of the cycle are highest with a NO₂/NO_x ratio of 0.5. The outlet NH₃ is lowest for the NO₂/NO_x ratio greater than 0.6.

A combined engine experimental and simulation study was performed to quantify the NH_3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH_3 and NH_3/NO_x ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after

installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NO_x reduction efficiency and 10-20 ppm increase in the NH₃ slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH₃ maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data.

The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH₃ stored on the catalyst under NH₃ saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH₃ storage capacity (94.6 compared to 138 gmol/m³), different NH₃ adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH₃ oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments.

Chapter 1.

Introduction

1.1 Background

The diesel engine is known for its thermal efficiency, durability, and reliability. It is the main power source for medium and heavy-duty on-road vehicles including trucks, buses, off-road vehicles and industrial equipment. Diesel engines are also used as a power source for passenger cars and light-duty trucks particularly in Europe. The annual diesel fuel consumption in the United States is more than 40 billion gallons and up to 93% of the diesel is consumed by on road heavy-duty diesel (HDD) engines [1]. The energy demand for heavy trucks is predicted to increase by 20% in 2035 compared to 2010 [2].

Despite the advantages and the popularity of the diesel engine, diesel emissions are considered as adverse to human health and the atmosphere. Diesel combustion products include carbon monoxide (CO), unburned hydrocarbons (HC), carbon dioxide (CO₂) which is a greenhouse gas, nitrogen oxides (NO_x) which is the sum of nitric oxide (NO) and nitrogen dioxide (NO₂), and particulate matter (PM). The diesel fuel currently used in the U.S. contains less than 15 parts per million (ppm) of sulfur, low levels of sulfur oxidation products (<1 ppm) including sulfur dioxide (SO₂) and sulfur trioxide (SO₃) are thus emitted from the diesel engine.

Starting in 1974, the U.S. Environmental Protection Agency (EPA) and other organizations began to develop regulations for diesel engine emissions [3]. Those standards and regulations have become more stringent in the past 30 years. An evolution of regulations for HDD engines is shown in Figure 1.1. The U.S. EPA on-Road HDD regulations for 2010 were 0.2 and 0.01g/bhp·hr for NO_x and PM respectively, which

are a magnitude lower than the EPA 1998 regulations. The European emission standard shows the similar trend. From EURO III regulation which was in effect in 2000 to EURO VI which will be in effect in 2013, the NO_x and PM limits are reduced from 3.8 and 0.075 g/bhp·hr to 0.3 and 0.0075 g/bhp·hr respectively. The upcoming 2014-2018 fuel consumption standards [4] necessitate the optimization of passive oxidation of PM in order to reduce the frequency of active regenerations, thus reducing the fuel consumption in additional to the engine changes. At the same time, extensive research has been carried out to reduce diesel emission levels by more than a magnitude to meet the regulations [5-13].

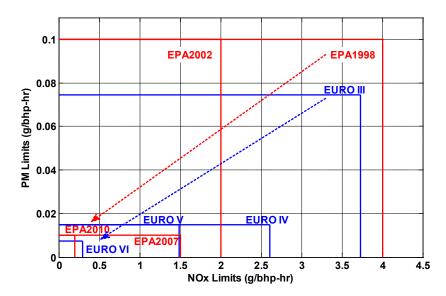


Figure 1.1: An evolution of U.S. EPA and Europe regulations for HDD engines [14]

1.2 HDD Aftertreatment Systems

It has not been possible to reduce emissions to meet the EURO V and EPA 2010 regulations by only improving the engine technologies. Therefore, aftertreatment systems have been developed to reduce PM and NO_x to meet the regulations [8,9]. A typical aftertreatment system for HDD engines for EURO V and EPA 2010 is shown in Figure 1.2. The system consists of a diesel oxidation catalyst (DOC), catalyzed

particulate filter (CPF), selective catalytic reduction (SCR) system with urea injection, and an ammonia oxidation catalyst (AMOX).

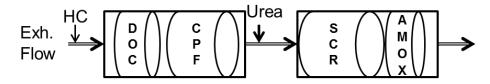


Figure 1.2: Typical layout of HDD engine aftertreatment system

The DOC is a flow through device with square channels open at both ends with a honeycomb structure. The DOC is used for oxidizing CO and HC, and converting NO to NO₂. The NO_x in the diesel engine out exhaust typically contains less than 10% of NO₂ [15]. Oxidation of NO to NO₂ through the DOC provides additional NO₂ for passively regenerating the CPF and for providing optimal NO₂/NO_x ratio for better SCR NO_x reduction efficiency [16]. This will be discussed in detail in later sections. The CO conversion efficiency across the DOC can approach 100% for normal engine operating conditions. The HC and NO conversion efficiencies across the DOC are functions of temperature and space velocity. Typically the HC conversion efficiency increases with increased temperature. The NO to NO₂ conversion efficiency is dependent upon the catalyst formation, temperature and operating space velocity. A maximum NO to NO₂ conversion efficiency of about 65% occurs at the temperature of $325^{\circ}C$.

The CPF is a filter that collects PM contained in the exhaust in and on the substrate wall. It is a wall flow device with every other channel open in the inlet face but each open inlet face channel is closed in the outlet face. Therefore, the exhaust going into the inlet channel has to pass through the porous substrate wall to get to the outlet channel and exit the filter. The filtration efficiency of the CPF can reach 97% once a PM cake layer forms on the substrate wall. As PM is being loaded in and on the wall, the pressure drop across the CPF increases thus increasing the back pressure of the engine which results in lower efficiency and higher fuel consumption [17]. The NO₂ generated by the DOC from oxidizing NO can react with PM in the CPF at relatively low temperatures (>250°C) to reduce the pressure drop across the CPF. This process is known as NO₂ assisted

oxidation. Above 400°C, thermal or O_2 oxidation also occurs at a significant rate. When there is no external energy source, this process of oxidation is called "passive oxidation". However, this method is not always effective because of the temperature and PM to NO_x ratio is not sufficient to oxidize PM by passive oxidation. In order to effectively remove the PM retained in the CPF and maintain the pressure drop at low levels, an active regeneration process by injection of diesel fuel either late in the cycle (in-cylinder or in the exhaust)t is carried out. The fuel is oxidized in the DOC, and this generates an increase in temperature which with excess O_2 in the exhaust gas oxidizes the PM retained in the CPF.

The urea SCR system is the leading technology for NO_x reduction in HDD engines which uses a urea-water solution as reductant to reduce NO_x on the SCR catalyst surface. A urea water solution with urea concentration of 32.5% by weigh is used as the reductant for automotive applications and HDD applications in the US. This solution goes by different names including diesel exhaust fluid (DEF) in the U.S. or Ad-Blue in Europe. The DEF is introduced to the exhaust stream by an injector located before the SCR bricks (see Figure 1.2). Typically there is a mixing tube between the injector and SCR bricks to help mix the urea with the exhaust flow and accelerate the urea hydrolysis and decomposition process. The desired urea decomposition product is ammonia (NH₃), which will be adsorbed on the catalyst surface, and the stored NH₃ reacts with NO_x on the catalyst surface through a number of pathways to form H₂O and N₂. This stored ammonia can also be used as a reductant without going through a hydrolysis or decomposition process, but compared to the urea-water solution, it is extremely toxic and difficult to store.

The SCR substrate or brick is a flow through device with square channels open at both ends with a typical channel density of 400 cells per square inch (CPSI). This honeycomb like structure is the catalyst carrier made from various ceramic materials including titanium oxide and cordierite. The channels are covered with active catalytic components. Those components are typically oxides of base metals including vanadium and tungsten, zeolites, and precious metals [18,19]. Oxides of vanadium and tungsten are usually less expensive and perform well under temperatures below 500 °C. However, their thermal durability is a problem for applications with temperatures above 500°C generated by the active regeneration of the CPF [20]. Zeolite catalysts have better low temperature performance and the capability of remaining active at high temperatures of 600°C and transient temperatures of up to 850°C [21]. Iron (Fe) and copper (Cu) zeolite catalysts are two popular choices for SCR systems installed downstream of the CPF [10]. The performance of the catalysts will be described in detail in the next chapter.

A typical aftertreatment system also consists of an ammonia oxidation catalyst (AMOX) after the SCR. For the urea SCR, under situations of over injecting urea, low exhaust temperature, and with the SCR being aged, ammonia slip (ammonia going through the SCR without being fully converted) will be present at the SCR outlet. Ammonia is harmful to human health and the environment and is usually required to be below 10-30 ppm. The AMOX is commonly placed after the SCR bricks to oxidize ammonia to N₂ and H₂O.

Other ways to reduce NO_x emissions include engine based exhaust gas recirculation (EGR), and aftertreatment based lean NO_x traps (LNT). EGR works by recirculation of a certain fraction of the exhaust gas back into the cylinders. This lowers the adiabatic flame temperature thus reducing the level of thermal formation of NO_x. All diesel engines now incorporate the EGR technology. The NO_x reduction efficiency higher than 95% is highly desirable for highway heavy-duty applications to meet the EPA 2010 NO_x regulations [12]. However, using only EGR is not sufficient to meet the EPA 2010 NO_x regulation and a higher level of EGR increases the PM concentration in the exhaust so that fuel consumption will be increased because more fuel needs to be used for CPF active regeneration. LNT is HC based NO_x reduction method typically used on light-duty applications. LNT works by trapping NO_x on the zeolite surface. When the storage of the trap is full, a rich regeneration process is run by introducing HC into exhaust to react with the trapped NO_x and produce H₂O and N₂[10].

1.3 Motivation

Effective NO_x control for the HDD engine is becoming more important to meet the fuel consumption and emission regulations. It requires high NO_x reduction efficiency (>90%), and low ammonia slip (<30 ppm) under a wide range of operating conditions for the SCR system. Understanding the SCR characteristics is becoming more imperative for system improvement. Well-designed SCR experiments are necessary to characterize the SCR performance and the effects of different variables including temperature, space velocity and inlet gas composition. However, the SCR system is a complex non-linear system in which there is limited ability to measure the internal states directly. In order to improve the understanding of the SCR system and the chemical kinetics, extensive experimental studies along with modeling efforts are required. An SCR model calibrated to experimental data provides possibilities to estimate the SCR states which cannot be directly measured.

Furthermore, it is time intensive and costly to use the conventional experimental approach to develop the SCR system because there are a significant number of variables that need to be considered when designing and optimizing the system. These variables include dimensions, wall thickness, cell density of the catalyst, fuel and urea injection control strategies, etc. Changes in each variable can cause differences in the overall system performance. However, running an accurate simulation model in conjunction with the experimental approach allows simulating a wider range of different scenarios, which then takes less time and is more cost effective. As a result, a high fidelity SCR model developed based on experimental studies is able to simulate a wide range of scenarios in a timely and cost efficient way.

A well developed and accurately calibrated SCR model is able to predict the SCR internal states which cannot be directly or easily measured. Those states include the gaseous concentrations at different axial locations of the catalyst as well as the NH₃ stored on the catalyst. The SCR performance is highly dependent on the NH₃ coverage on the catalyst surface. For the application of the SCR on diesel engines, the system is exposed to highly transient conditions. This makes the SCR difficult to reach steady

state operating conditions. As a result, the ability of a SCR model to correctly predict the internal states under transient conditions is important to SCR state estimation and SCR model based control strategies. A high fidelity SCR model calibrated to engine data can serve as a basis for further developing a SCR estimator model that estimates the SCR states in real time [22]. This is meaningful for developing the OBD system and model based control strategies for on-vehicle applications.

Extensive SCR data are required to develop and calibrate the SCR model. Testing the SCR in a flow reactor is an efficient first step in studying the basic characteristics of the catalyst. Simulated exhaust flow generated from different gas cylinders are used in SCR reactor tests and gaseous NH₃ is used as reductant. The test conditions including gas flow rate, temperature, and SCR inlet gaseous concentrations can be precisely controlled. With carefully designed test protocols and procedures, the SCR reactor tests provide opportunities for characterization of the SCR performance and analyzing the reactions taking place as well as the kinetic parameters involved in the reactions.

However, the flow reactor test environment is much simpler than the real SCR exposure conditions in the engine aftertreatment system. The reactor studies provide accurate performance characterization and kinetic analysis of the SCR catalyst but do not account for the more complex conditions (complex urea decomposition process, maldistribution of NH₃ .etc.) which could occur in engine applications. As a result, well-designed SCR engine tests and a model calibrated to the engine experimental data are important for developing models for vehicle applications. The model should be able to make reliable predictions for both steady-state and transient engine operating conditions. It is also important to understand the factors that affect the SCR performance in the engine aftertreatment system.

1.4 Goals and Objectives

The goal of this research is to develop, validate and apply a high fidelity SCR model applicable to simulate the SCR in the engine conditions. To achieve this goal, coupled

experimental and modeling studies were carried out to determine the critical kinetic parameters controlling the dynamics of the SCR system performance under varying temperatures, space velocities, exhaust inlet species, inlet ammonia maldistribution levels and aging conditions with controlled DEF injection for a Cu-zeolite SCR catalyst and to quantify the variable impacts on ammonia storage and NO_x conversion. The specific objectives developed to meet the research goal are as follows:

- Develop an engine test cell setup with instruments and a data acquisition system for both steady state and transient aftertreatment system testing
- Develop a Cu-zeolite SCR model from the model originally developed for Fe-zeolite reactor data [23] by modifying the mass transfer correlations and the global reaction mechanisms to simulate the Cu-zeolite experimental data
- Develop the SCR engine test procedures and conduct SCR engine experiments to collect both steady-state and transient data for the purpose of calibrating the SCR model and validating the model performance
- 4. Process the SCR reactor experimental data to characterize the SCR performance and determine the internal SCR states under different space velocities and temperatures. Use the data to calibrate the high fidelity SCR model by determining the model storage capacities and the critical reaction kinetic parameters
- 5. Use the SCR engine experimental data to calibrate the SCR model by determining the NH₃ storage parameters and the reaction kinetic parameters. The SCR model parameters identified from the reactor data based are used as a starting point for the SCR model calibration with engine data. Validate the model performance against SCR transient engine experimental data. Compare the SCR models separately calibrated to reactor and engine experimental data
- 6. Characterize NH₃ maldistribution profiles with two mixers, e.g. a production and a swirl mixer at the SCR inlet, through experimental studies and data analysis.

Determine the NH_3 maldistribution effects on the SCR performance in terms of NO_x conversion, NH_3 slip and NH_3 storage. Quantify the ammonia maldistribution effect on the SCR kinetic parameters

 Determine the hydrothermal aging effects on the SCR performance and kinetics from Spaci-IR data.

1.5 Dissertation Outline

This chapter presented a brief background of the research. The increasingly stringent emission and fuel consumption regulations as well as the typical diesel engine aftertreatment systems to meet the regulations were introduced. This was followed by a description of the research motivation, research goals and objectives.

Chapter 2 provides a literature review of the SCR system development as well as the significant studies related to this thesis. Information about SCR characteristics, experimental and modeling studies from the published works are summarized and presented. The thesis research findings from the experimental and modeling advances are presented in Chapters 4 and 5 and they are compared to the published works.

Chapter 3 provides detailed information about the test cell setup and test procedures for collecting SCR data. The engine test cell will be introduced with information about the engine, dynamometer, aftertreatment system, and specific instruments to collect temperature, pressure drop, flow rates, and emissions data. The test procedures and test matrix of the SCR engine experiments including steady state, transient, and NH₃ maldistribution tests are given in this chapter. The reactor test setup along with the test protocols developed at ORNL and test conditions for both ordinary and space-IR reactor tests are also introduced.

Chapter 4 describes the 1D high fidelity SCR model and the model calibration procedures. The SCR model equations for mass transfer, heat transfer, storage

equation, reaction mechanism and the reaction rate calculations are introduced to give the detailed description of the model. Procedures for calibrating the model separately to reactor data sets and engine steady state data are also presented in this chapter.

Chapter 5 presents the model calibration results as well as the performance of the calibrated model. The model calibrated to the reactor and engine data are validated by comparing the simulation results with the experimental measurements. The differences in the model parameters identified from the reactor and engine data are presented and the reason for the differences will be explained. The experimental and modeling studies of the hydrothermal aging effects on the SCR performance and kinetics are presented.

Chapter 6 is a summary of the accomplishments of this research, and the conclusions from the experimental and modeling studies. Recommendations about the future research directions are presented.

Chapter 2.

Literature Review

A literature review of the aspects related to the SCR studies including experimental and modeling efforts from published research are presented in this chapter. A discussion of the advances of this thesis related to the past accomplishments is presented.

2.1 Emission Control Technologies

As discussed in the Introduction, the diesel emission regulations require research and development in emission control technologies. Diesel industry has had to meet the transient cycle emission standards since 1988 [24]. From 1988 to 2002, the diesel emission standards for NO_x and PM were met mainly by improving the engine technologies including retarding injection timing, better engine breathing design, improved electronic engine controls, increased fuel injection pressure, higher fuel quality, etc. Some engines in the 1990s used a DOC to reduce the PM concentration to meet the standards.

The EPA 2002 regulations reduced the NO_x by 50%, from 4.0 to 2.0 g/bhp·hr while the PM standard was maintained at 0.1 g/bhp·hr. The NO_x emission standards was met via application of exhaust gas recirculation (EGR) which was widely used for gasoline and light-duty and heavy-duty diesel engines [25,26]. EGR works by recirculating a fraction of exhaust gas back into the cylinder. This lowers the in-cylinder flame temperature thus reducing the level of NO_x thermal formation. However, the application of EGR on heavy-duty diesel engines sacrificed the fuel consumption, reduced the engine durability and increased the PM emissions. The trade-off effects between the NO_x and PM emissions

[27] made it challenging to significantly reduce both emissions through engine technologies to meet the EPA 2007 and 2010 standards.

Research on the aftertreatment technologies including the PM filter and catalytic NO_x reduction increased. An integrated aftertreatment system with DOC, DPF and SCR was investigated. The combined application of a DPF and a SCR on a heavy-duty diesel engine was reported to realize higher than 95% PM filtration efficiency and 85% NO_x reduction on the European Stationary Cycle test procedure (ESC) cycle [24].

The PM standard was further reduced from the EPA 2002 regulations by 90% and the NO_x by 25% for the EPA 2007 regulations. The NO_x and PM limits became 1.5 and 0.01 g/bhp·hr respectively. A diesel particulate filter (DPF) along with cooled EGR technology became the dominant solution for the heavy-duty diesel engines to meet the 2007 emission regulations [8]. A DOC is typically installed before the DPF to oxidize CO, HC, NO to NO₂ and the diesel fuel injected into the exhaust stream to thermally oxidize the PM retained in the DPF. The SCR was not required to meet the EPA 2007 regulations, but its advantages and the potential of higher NO_x conversion efficiency had been proved and made it a promising technology to meet the 2010 emission standards.

The SCR became widely used by the diesel industry in the 2010 to meet the EPA 2010 regulations [28]. The NO_x and PM limits were set to 0.02 and 0.01 g/bhp·hr respectively. The NO_x standard was met by the combination of SCR and cooled EGR while the PM was reduced by the catalyzed particulate filter (CPF). A DOC was installed before the CPF to oxidize HC, CO and NO to NO₂. The application of the SCR enabled the engine to run with higher NO_x levels for improved thermal efficiency. The increased NO₂ level produced by the DOC facilitates the passive regeneration of the CPF, reducing the fuel consumption caused by periodic CPF active regeneration. For the heavy-duty diesel engine applications, the SCR was usually installed after the CPF. A decomposition tube with a DEF injector was installed between the CPF and the SCR. The injector supplies urea water solution into the exhaust. The NH₃ produced from urea decomposition is the reductant reacting with NO_x on the SCR catalytic surface.

2.2 Catalytic NO_x Reduction

Catalytic NO_x reduction technologies have been used for emission control since the 1970's in industries for coal fired and diesel power plants [29,30]. The SCR catalyst formulations at that time included iron oxide, aluminum oxide, TiO₂-based catalyst, and others. Among those formulations, the TiO₂ based catalyst developed in 1973 had many advantages and were commercially implemented for stationary applications. At the same time, because of the growing concerns about PM and NO_x emissions from diesel engines, efforts to implement catalytic NO_x reduction technology into diesel trucks were initiated in 1992 in Europe. A TiO₂- V₂O₅ type extruded SCR catalyst coupled with urea injection and metering system named SINOx [31] was installed into two heavy-duty diesel trucks by Siemens AG and Siemens Westinghouse for on-road tests. The urea water solution with urea concentration of 32.5% by weight which provided lowest crystallization point was selected as the reducant. The NO_x reduction efficiency achieved 60-80% during the 200,000 mile truck life and it proved that the SCR system in a diesel truck was able to meet Europe IV and V NO_x emission regulations [32]. In 1998, the Siemens-Westinghouse was requested to prepare the system for production by European truck manufactures including Daimler Chrysler and MAN [33].

Because of the success of the SINOx system in Europe, US companies started to demonstrate and evaluate the system in U.S. trucks in 1999 [33]. A representative study of the urea-SCR system with TiO_2 - V_2O_5 type catalyst was carried out in both an engine test cell and in a heavy-duty diesel truck [34]. The test results showed 56 and 71 % NO_x reduction over the cold and hot US transient cycles respectively with low NH₃ slip level. A NO_x reduction efficiency of 86% was achieved over a steady state cycle. A NO_x sensor calibrated to chemiluminescence NO_x detector (CLD) was used for NO_x measurement before and after the SCR system in road tests. The test results confirmed the average NO_x reduction efficiency of 65% with the urea consumption rate of 94 miles per gallon (mpg). Other following studies also proved that the SCR system combined with DPF was able to meet the EPA 2007 regulations and potentially the 2010 regulations, but may need ultra-low sulfur diesel fuel and effective feedback NO_x control strategies [35,36].

The NO_x regulations for heavy-duty diesel engines in 2010 were further reduced by 80 % compared to the EPA 2007 regulations. It required the application of the urea – SCR system along with the DOC/DPF. To make this happen, several different SCR formulations were developed to provide better NO_x reduction efficiency and catalyst durability. Extensive experimental efforts along with the modeling studies and control strategy development were carried out to further improve the system performance. Studies are also being carried out to reduce the aftertreatment system complexity and system cost by integrating SCR catalyst with the DPF. A study showed that a combined SCR on filter (SCRF) system with DOC installed upstream is able to provide similar NO_x reduction performance compared to a traditional channel flow Cu-zeolite SCR after extended hydrothermal aging equivalent to 120,000 mile catalyst life [37].

2.3 SCR Formulations

As mentioned in the previous section, the TiO_2 based catalyst with active components of V_2O_5 or WO_2 used in stationary applications was then applied to diesel engine NO_x reduction as the first generation of the SCR catalyst. It provided 90% NO_x reduction between the range of 300 and 500°C. The effective operating temperature of the TiO₂- V_2O_5 catalyst is more active with the support of WO₂. Its activity is usually limited to below 550°C because of the low melting point of V₂O₅ [38]. This limits its application in heavy-duty diesel engines because the SCR will be periodically exposed to temperature above 550°C when actively regenerating the DPF which is typically installed upstream of the SCR. The vanadia catalyst supported by titania is another formulation for stationary and diesel applications. It provides promising low temperature performance during cold start period with superior sulfur resistance and reasonable thermal durability [39,40]. A vanadia SCR catalyst was reported to be thermally stable under accelerated aging conditions which is equivalent to a 120,000 mile catalyst life [41]. A diesel aftertreatment system with vanadia based SCR placed upstream of the DOC/DPF showed higher than 95% NO_x reduction over the Europe transient cycle (ETC) [42]. However, installing the SCR before the DOC/DPF exposes the catalyst directly to engine exhaust coming out of the turbocharger. The HC and PM contents in the exhaust affect the SCR performance

by blocking the active catalyst sites and cause catalyst deactivation when oxidizing the HC and PM loaded on the catalyst at high temperatures.

The new generation of the SCR with metal based zeolite catalysts showed improved NO_x reduction activities and thermal durability compared to the TiO_2 and vanadia. As a result, iron (Fe) and copper (Cu) zeolite SCR catalysts were selected for the heavy-duty diesel applications to meet the NO_x emission regulations. The characteristics of the Fezeolite and Cu- zeolite SCR from different references [43-51] are compared and summarized as below.

- Cu-zeolite SCR provides better NO_x reduction efficiency than Fe-zeolite SCR at the temperatures below 350°C while Fe-zeolite SCR performs better at higher temperatures.
- Both catalysts have improved thermal durability in comparison to other catalytic formations, but extremely high temperature still can deactivate the catalysts. The not-to-exceed temperature is 775°C and 925°C respectively for Cu-zeolite and Fe-zeolite catalysts.
- Both catalysts show the ability to oxidize NH₃ at temperatures above 300°C, and Cu-zeolite is more active than Fe-zeolite for oxidizing NH₃, resulting in less available NH₃ for the NO_x reduction reactions. This also explains why NO_x reduction efficiency over Fe-zeolite is higher than that of Cu-zeolite at temperatures higher than 350°C.
- Cu-zeolite SCR has higher NH₃ storage capacity than Fe-zeolite SCR. The NO_x reduction efficiency of both catalysts is dependent on the amount of NH₃ adsorbed on the catalyst surface. High temperature NO_x reduction efficiency for both catalysts keeps increasing with increasing of NH₃ stored on the catalyst. However, lower temperature NO_x reduction on Fe-zeolite SCR is inhibited by extra NH₃ storage caused by active SCR sites being covered by NH₃. But Cu-zeolite SCR is not affected by its high NH₃ storage capacity.

- The NO_x reduction efficiency over Cu-zeolite SCR is less dependent on SCR inlet NO₂/NO_x ratio compared to that of the Fe-zeolite. However, the Fe-zeolite SCR catalyst shows better NO_x reduction activity than the Cu-zeolite with an optimal of NO₂/NO_x ratio of 0.5.
- The NO + NH₃ reaction at lower temperatures is subjected to inhibition effects over the Fe-zeolite SCR, causing a reduction in the NO conversion efficiency shown in Figure 2.1. This effect was not observed over a Cu-zeolite SCR catalyst.
 - The Fe-zeolite SCR catalyst is forms more N_2O in the presence of excess NO_2 compared to the Cu-zeolite SCR.
- For temperatures lower than 275°C, both catalysts tend to form surface nitrates with NO₂ and NH₃ in the feed stream. The surface nitrates can be decomposed at high temperatures or reduced through reactions with NO. However, the cumulated surface nitrates on the catalytic surface are difficult to reduce when the NO fraction is low at temperatures below 275°C, causing an inhibition effects on the NO_x reduction efficiency.

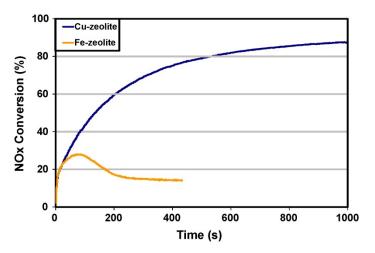


Figure 2.1: NO_x conversion performance at 200°C of Fe and Cu-zeolite SCR with 350 ppm of NO and 350 ppm of NH₃ in the gas flow [50]

Both Fe and Cu-zeolite SCR catalysts have their advantages and disadvantages. Studies were carried out to combine both catalysts in order to obtain better performance compared to each individual formulation. The experimental results of a combined Fezeolite and Cu-zeolite catalyst was presented in reference [47]. In this study, a Fe-zeolite SCR was placed in front of a Cu-zeolite SCR. Different percentage combinations of the two catalysts were tested in a flow reactor. The results showed that the combined catalyst showed higher NO_x conversion efficiency at both high and low temperature which cannot be realized by a single catalyst formulation. It also concluded that a setup with 33% Fe-zeolite and 67% Cu-zeolite provided best steady-state NO_x conversion performance. However, it was reported that the transient performance of the combined catalyst is not as good as the Cu-zeolite SCR at the temperatures below 300°C [47]. Another study was conducted to test three different combinations of the Fe-zeolite and Cu-zeolite catalysts. The 33% Fe-zeolite + 67 % Cu-zeolite was tested first and similar results were reported [52]. The second test was performed with the "mixed washcoat consisting equal fraction of Fe- and Cu-zeolites". The performance of this setup reached the average performance of the two catalysts [52]. The third setup tested was a dual layer system consisting of a layer of Fe-zeolite washcoat on top of a Cu-zeolite layer with the fraction of 33% and 67% for each formulation respectively. This combination achieved better performance than the other setups and each individual catalyst formulation [52].

2.4 SCR Experimental Studies

The SCR experimental studies include flow reactor tests, engine test cell tests, and on road tests. The representative experimental studies will be reviewed in this section.

2.4.1 SCR Reactor Testing

The flow reactor tests provide opportunities to collect SCR data under specific conditions that cannot be easily achieved in the engine testing environment. In a reactor setup, the temperature is typically controlled or maintained by an oven with temperature feedback control. Synthetic exhaust flow generated from calibration gas cylinders is used in reactor tests so that the inlet concentration of each species can be individually controlled. The test protocols can be designed for certain modeling or characterization purposes. The typical flow reactor hardware setups and reactor test design can be found in references [43,46,50,53-58]. The purposes of those reactor tests included collecting data for studying the SCR performance under different conditions and the SCR kinetics, mass transfer limitations, SCR poisoning by HC and sulfur contents, thermal aging and other factors affecting the SCR performance.

In reference [43], a flow reactor was setup to test the zeolite based SCR catalysts using a compact four step protocol. The basic components of the synthetic exhaust flow consisted of 10% O₂, 8% CO₂, 7% H₂O and balanced with N₂. NO, NO₂ and NH₃ were turned on and off at each different segment of the protocol to generate different NO₂/NO_x ratios and NH₃/NO_x ratios (ANR) at the SCR inlet. The flow rates of different gases were controlled by mass flow controllers. The test protocol used in the tests facilitated studies of oxidation reactions between NO and NO₂, NO_x storage on the catalyst, NO_x conversion, NH₃ slip and storage under SCR reaction conditions with different NO₂/NO_x ratios, NH₃ oxidation and storage under NH₃ saturation condition, and reactions between NO_x and storage NH₃ after NH₃ is turned off. The data collected from the reactor tests were used for SCR performance characterization and determining the kinetic parameters of the major SCR reactions [43].

Reactor studies to determine the influences of the NO₂/NO_x ratio and the ANR on Fezeolite and Cu-zeolite SCR performance were presented in references [56,59]. The test results showed that Cu-zeolite SCR stored more NH₃ and had better NO reduction activity but poor NO₂ reduction performance under low temperatures because the formation of surface nitrates are more stable on Cu-zeolite SCR catalyst. The Fe-zeolite SCR gave better performance when the inlet NO₂/NO_x ratio was higher than 0.5. At temperatures from 350 to 400°C, with the ANR slightly higher than one can significantly improve NO_x reduction efficiency without forming any NH₃ slip. At low temperatures when ammonia storage capacity is high, reducing ANR to slightly lower than 1 can reduce NH₃ slip level without significant impact on NO_x conversion efficiency. However, from a control viewpoint, it is still challenging to optimize the amount of NH₃ stored on the SCR for different engine operating conditions to maximize NO_x reduction efficiency and reduce NH_3 slip, especially for transient engine operating conditions.

A new reactor test technique usually called "Spaci-MS" or Spaci-FTIR" (depending on which emission analyzer is used for emission measurements) has been developed and recently presented in the literature. The technique allows measuring the internal gaseous concentrations in catalyst monoliths [60-63]. The application of the Spaci-MS technique is limited compared to the Spaci-FTIR because of the difficulty in measuring low level of NH₃ in the presence of N₂ and H₂O using the mass spectrometer. A typical setup schematic of the Spaci-FTIR test is shown in Figure 2.2. In reference [63], a gas phase MKS MultiGas 2030 FTIR was used for internal gaseous measurements of a Fezeolite SCR using the Spaci technique. A micro capillary that can be extended into different axial locations of catalyst monoliths was used to draw gas flow into the FTIR. Because the volume of the sampling gas from catalyst channels is limited compared to the gas cell of the FTIR, the sample gas was diluted with N₂ under a specific ratio before feeding to the FTIR. The measured concentrations multiplied by the dilution ratio gave the gas concentrations at different axial locations. Compared to traditional reactor experiments, the spaci test results gave a better insight of the changes in gaseous concentrations along the catalyst channel and the relative reaction rate at different axial locations. With a carefully designed test protocol, the Spaci-FTIR technique also provides opportunities of determining the axial NH_3 storage distribution, which is important to modeling and control strategy development efforts.

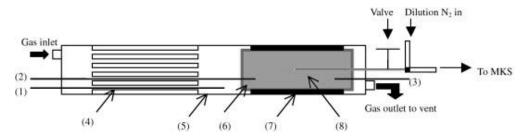


Figure 2.2: A schematic of the Spaci-FTIR test setup: "(1, 2, 3): thermocouples; (4) hollow quartz rods for gas preheating and distribution; (5) quartz tube reactor; (6) monolith Fe-zeolite catalyst; (7) insulation material; (8) fused silica capillary."[63]

An alternative testing procedure was introduced in reference [64] to achieve the axial resolved measurements for a Cu-zeolite SCR by coating the core sample with a different length of catalytic washcoat. However, keeping the washcoat loading density consistent for different core samples tested was a problem.

The reactor testing technique provides opportunities for the SCR characterization and kinetics analysis. However, it simplifies the SCR exposure conditions in engine applications by introducing gaseous NH_3 as reductant instated of urea water solution. The more complex engine exhaust conditions including the urea decomposition, flow, temperature and species maldistribution were not considered in the reactor tests.

2.4.2 SCR Engine Testing

The engine testing environment allows the SCR to be exposed to the real engine exhaust conditions. In an engine test cell, the engine is coupled with a dynamometer to control the engine speed and torque. Both steady-state and transient SCR tests can be performed in an engine test cell. Procedures for performing transient aftertreatment system tests in an engine dynamometer test cells can be found in reference [65].

A study of the performance of both Fe-zeolite and Cu-zeolite SCR catalysts were carried out in an engine test cell at Johnson Matthey Inc. [66]. The test cell consisted of a Model Year 2007 US medium duty diesel engine coupled with a 600 HP AC dynamometer. The aftertreatment system consisted of DOC, CPF, and SCR. A MKS FTIR and a Chemiluminescence NO_x detector were used for emission measurements. Ultra-low sulfur diesel and the 32.5% urea water solution were used in the tests. Steady state tests under different temperature and space velocity conditions with three different NH_3/NO_x ratios (0.8, 1.0 and 1.3) and transient tests with a developed urea injection strategy were performed for both catalysts. The engine test results showed similar results with the reactor test results and confirmed the conclusion that Cu-zeolite provided better performance under low temperatures and better tolerance to the inlet

 NO_2/NO_x ratio. The paper also concluded that the Cu-zeolite SCR is less tolerant to the sulfur poisoning compared to the Fe-zeolite SCR.

Reference [67] presented a detailed engine aftertreatment system test procedure and a experimental data collection strategy to develop a "virtual diesel aftertreatment exhaust line" consisting of DOC, DPF, SCR, and ammonia oxidation catalyst (AMOX) models. The test cell consisted of a 13 L 355 kW diesel engine that met EPA 2007 regulations. The aftertreatment system setup consisted of a DOC, a DPF, two Fe-zeolite SCR bricks and an AMOX catalyst. A measurement setup for collecting the data used for model development and calibration was introduced in the paper. A FTIR was setup for emission measurements before and after each catalyst while a LDS Laser Diode analyzer was used for tailpipe NH_3 measurements. The emissions at the SCR inlet was not measured using the analyzers because of the possible presence of incomplete urea decomposition products. Temperatures at different locations of the aftertreatment system as well as temperature gradients in the DOC and DPF substrates were measured. Pressure before and after each catalyst brick and the engine out PM were also measured. A measurement program specially designed for the purpose of calibrating the models was introduced to collect data under various conditions. The determined SCR test conditions included low, medium and high exhaust mass flow rates with post-DPF temperatures from 200 to 380°C as well as the DPF regeneration conditions. The performance of the calibrated virtual exhaust line was validated against transient test cycles. The possible applications of the virtual exhaust line were also introduced. However, a drawback of the test setup is that the gaseous concentrations after a catalyst brick might not be uniformly distributed. This would cause incorrect emission measurements when sampling right after the brick, especially after the SCR when the urea injected upstream is not well mixed with the exhaust flow.

On road vehicle tests were conducted to test the system reliability, durability and field performance under real driving conditions [36,68,69]. Portable emission analyzers or sensors are required for emission measurements during on road vehicle testing. The vehicle aged catalyst after significant driving hours can be used for laboratory testing to study the aging effects on the SCR performance. The on road tests did not contribute to

studying the characteristics of the SCR or developing the SCR model, therefore it will not be discussed in further detail.

2.5 SCR Modeling Studies

A SCR model usually consists of chemical reaction mechanisms and their associated kinetics, mass balances of gaseous species, and an energy balance. This section will be focusing on the literature that are related to the SCR reaction mechanisms, modeling of the mass transfer and heat transfer for the SCR system.

2.5.1 SCR Reaction Mechanisms

As discussed in previous sections, a calibrated high fidelity SCR model is important for system characterization, optimization, control strategy and OBD development. Selection of the SCR reaction mechanisms is important for a SCR model to simulate the reaction system. The experimental and modeling findings and accomplishments about the SCR reaction mechanisms from the literature are presented. The global chemical reactions for the urea SCR system include urea decomposition reactions that produce NH₃ and the SCR reactions that take place on the catalytic surface.

For the urea-SCR, the reductant is introduced by injecting the urea-water solution into the exhaust stream. A numerical model simulating the interaction of the spray and the surrounding exhaust gas is presented in reference [70]. The injected urea water solution then goes through a complex process to produce NH_3 . NH_3 is released through hydrolysis and thermal decomposition of the aqueous urea. After the urea-water solution is injected, evaporation of the water from small droplets formed by high pressure injection leads to formation of solid or molten urea as shown in Equation 2.1, followed by a urea decomposition process which can be divided into two steps [71-74]. The first step is the hydrolysis process of the molten urea producing ammonia and isocyanic acid are given in Reaction 2.2. Then in the second step, hydrolysis of isocyanic acid takes place and produces ammonia and CO_2 as given in Reaction 2.3. Isocyanic acid is stable in the gas phase and requires a catalytic surface to accelerate the hydrolysis reaction [75].

$$(NH_2)_2CO \text{ (aqueous)} \rightarrow (NH_2)_2CO \text{ (molten)} + x H_2O$$
 2.1

$$(NH_2)_2CO \text{ (molten)} \rightarrow NH_3 + HNCO$$
 2.2

$$HNCO + H_2O \rightarrow NH_3 + CO_2$$
 2.3

The modeling studies to simulate the urea injection and decomposition process can be found in the literature [70,76,77]. However, because of the complexity of this process, it was not included in most of the SCR models. It was assumed that gas phase NH_3 instead of urea and its incomplete decomposition products was present at the SCR inlet.

The ammonia formation process may occur all the way from injection of the urea-water solution until the mixed flow passes the first section of the SCR catalyst, and its completion is dependent on the exhaust temperature. Each of the reactions given in 2.1, 2.2, and 2.3 starts at the temperature of 193, 250, and 400°C respectively [71]. At exhaust temperatures below 300 C, less than 20% of urea decomposition is complete before going into the SCR and the rest of urea decomposition process takes place on the SCR catalyst surface [73]. This is considered to be one reason that the SCR performance in the engine environment is lower than in the reactor tests [77]. Additionally, the process shown in Equation 2.1 cannot be complete under situations of low exhaust temperature and poor mixing, leading to urea deposits or urea crystallization formation on the exhaust pipes.

The urea decomposition process is complex and has several pathways forming side products including (CNOH)₃ (cyanuric acid) and $C_3H_6N_6$ (melamine), as reported in reference [78]. The pathway reactions are not significant and no by-products have been observed post SCR, but the byproducts can form solid deposits in the exhaust pipe or on the catalyst surface. These factors can significantly affect the SCR performance when applied to engine exhaust. For vehicle applications, urea injection is not initiated at low exhaust temperature conditions in order to prevent large amounts of urea formatting deposits.

A laboratory and engine study of the urea deposit formation and vaporization on Fezeolite and Cu-zeolite SCR catalysts is presented in reference [72]. A core SCR sample was tested with laboratory urea dripping onto the catalyst in a flow reactor at a space velocity of 15,000 hr⁻¹ and temperatures from 150 to 350 C. In the engine tests, urea decomposition products and solid deposits were analyzed. A powder X-ray diffraction (XRD) analyzer and a Mattson Instruments Cygnus 100 FTIR were used for analyzing the diffraction patterns and the infrared spectra of the solid deposits collected from the reactor and engine tests. An MKS FTIR was used to measure the urea decomposition products in the engine tests. The results showed that the deposits formed in reactor tests were similar to the samples collected from engine tests. The urea- related deposits were formed below a temperature of 300°C and large fraction of the deposits (more than 95 %) can be vaporized at temperatures higher than 350°C. The solid deposits formed contained a series of components including urea and urea decomposition byproducts (biuret, cyanuric acid, .etc.). Based on the analysis of a thermal gravimetric test, it was determined that different components vaporized at different temperatures.

The SCR reaction mechanisms are complex and include a series of pathway reactions. However, several global reactions were selected in the literature to represent the complex reaction mechanisms. The global NO_x reduction reactions take place between the species in the surface phase (an assumed thin layer on the catalytic surface) and the NH₃ stored on the catalyst. The NH₃ adsorption/desorption reaction shown in Reaction 2.4 is considered as the first step of the SCR reaction mechanisms. The stored NH₃ then reacts with other species in the surface phase. S^{*} refers to the storage sites on the catalyst and NH₃^{*} refers to the stored NH₃. Most of the SCR models published have only one type of NH₃ storage site which stores NH₃ and supports all SCR reactions. However, Choi proved that there were two types of reaction sites on a SCR catalytic surface by performing temperature-programmed desorption (TPD) tests over the SCR catalyst [79]. Reference [23] also showed that adding a second reaction site which only supports NH₃ adsorption and desorption to the Fe-zeolite SCR model improved the model performance. A second reaction site improves the NH₃ adsorption and desorption performance of the model and adds more kinetic parameters to be identified.

$$NH_3 + S^* \leftrightarrow NH_3^*$$
 2.4

As described in the literature [80-86], there are three dominant global reactions between the stored NH₃, NO and NO₂ taking place on the SCR surface for different SCR formulations including TiO₂-based, titania-based, Cu-zeolite, and Fe-zeolite SCR. The first global reaction introduced is called the *standard SCR reaction* which takes equal molar of NH₃ and NO to react in the presence of O₂. This chemical reaction is shown in Reaction 2.5 [82]. It was reported in reference [50] that the catalyst exhibited two separate functions on two types of catalyst sites under standard SCR condition. The catalyst support behaved as an acid site which adsorbed NH₃ while the transition metal oxidized NO and formed "surface NO_x adsorption complexes" which react with NH₃ afterwards [50]. The excess NH₃ in the gas flow has more effect on the NO oxidation process for the Fe-zeolite SCR than the Cu-zeolite SCR and it explains the NH₃ inhibition effects observed over Fe-zeolite SCR. However, this mechanism and explanation is still debatable and the detailed mechanism of the standard SCR reaction is still under investigation.

$$4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}.$$
 2.5

This reaction plays an important role for NO_x reduction if the SCR is placed in front of the DOC and the CPF because about 90% of diesel engine out NO_x is NO. For applications where the SCR is located after a DOC and CPF, the NO_x composition will be different because of the NO and NO_2 involved reactions across these first two components. In the situation with the SCR inlet molecular NO/NO_2 ratio of 1, the second global SCR reaction which is given in Reaction 2.6 will become dominant. It is called *fast SCR reaction* because it has the highest reaction rate among all global SCR reactions reported. As a result, controlling the SCR inlet NO/NO_2 ratio close to unity will promote the fast SCR reaction and improve NO_x reduction efficiency [87].

$$2 \text{ NO} + 2 \text{ NO}_2 + 4 \text{ NH}_3 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$
 2.6

The fast SCR reaction was reported to be a combination of a series of step reactions over a Fe-zeolite SCR catalyst [49]. This reaction mechanism was separated into two steps which were the formation of ammonia nitrates and consumption of ammonia nitrates. The reactions included in the first step are given in Reactions 2.7-2.10, and the reactions included in the second step are given in Reactions 2.11-2.13. It can be seen that there are several intermediate products that can be consumed right away. Those intermediate products include nitrous acid (HONO), nitric acid (HNO₃) and ammonium nitrate (NH_4NO_3).

$$2 \text{ NO}_2 \leftrightarrow \text{N}_2\text{O}_4$$
 2.7

$$N_2O_4 + H_2O \leftrightarrow HONO + HNO_3$$
 2.8

$$NH_3 + HONO \leftrightarrow N_2 + 2 H_2O$$
 2.9

$$NH_3 + HNO_3 \leftrightarrow NH_4NO_3$$
 2.10

$$NH_4NO_3 \leftrightarrow NH_3 + HNO_3$$
 2.11

$$HNO_3 + NO \leftrightarrow NO_2 + HONO$$
 2.12

$$NH_3 + HONO \rightarrow N_2 + 2 H_2O. \qquad 2.13$$

A study of a copper-on-alumina SCR catalyst reported the surface nitrates formation impacts the NH₃ oxidation in presence of NO [88]. Reference [89] reported a "NO_x selfinhibition effect" below the temperature of 300°C over a Cu-zeolite SCR catalyst. It also concluded that the effect was caused by the NO_x and ammonium nitrate formed from NO_x and NH₃ under low temperatures occupying and blocking the active catalytic site. Reference [48] reported a similar phenomenon which was the fast SCR reaction being blocked by NH₃ over a Fe-zeolite SCR catalyst. All these phenomena can be explained by the mechanisms introduced above. When NH₃ is present in the exhaust flow, the HNO₃ formed when NO₂ and H₂O react with NH₃ to form NH₄NO₃ (Reaction 2.10) which is stable at low temperatures. The reaction rate of Reaction 2.11 which releases HNO₃ is limited by the low temperature, causing no HNO_3 to react with NO. So the reason of the inhibition was not actually because of the NH₃ blocking the fast SCR reaction, but the NH_4NO_3 formation interrupted the following step reactions. Reducing NH₃ concentration at this point would help move the step reactions forward to increase NO reduction efficiency. As a result, from the application point of view, high NO₂ accompanied with high NH₃ concentrations at the SCR inlet should be avoided at low temperatures because of the surface ammonium nitrate formation inhibiting the NO_x reduction performance as discussed above.

A chemical model of an integrated SCR-on-DPF system was introduced in Reference [90]. The model included the ammonium nitrate formation from NO₂ and NH₃ which is a reversible reaction as shown in Reaction 2.14. The ammonium nitrate formed can adsorb and desorb from the catalyst storage site. A similar mechanism for the nitrates formation was also included in a kinetic model for a V_2O_5 -WO₃/TiO₂ urea-SCR catalyst [91].

$$2 \text{ NH}_3 + 2 \text{ NO}_2 + \text{S}^* \leftrightarrow \text{NH}_4 \text{NO}_3^* + \text{N}_2 + \text{H}_2 \text{O}$$
 2.14

The reaction between NO_2 and NH_3 on a SCR catalyst is slower than the reactions described in Reactions 2.5 and 2.6. It is called the *slow SCR reaction* and is shown in Reaction 2.15.

$$4 \text{ NH}_3 + 3 \text{ NO}_2 \rightarrow 7/2 \text{ N}_2 + 6 \text{ H}_2\text{O}$$
 2.15

In addition to the slow SCR reaction, there are pathway reactions generating N_2O in the NH_3 - NO_2 reaction mechanisms [73] with the pathway reactions given in Reaction 2.16 and 2.17. The amount of N_2O formed from NH_3 - NO_2 reaction mechanisms over Fezeolite SCR is temperature dependent. N_2O generated is greatest between the temperature range of 300 and 350°C, then drops off at both lower and higher temperatures [23]. The Cu-zeolite SCR tends to form less N_2O than the Fe-zeolite.

$$6 \text{ NH}_3 + 8 \text{ NO}_2 \rightarrow 7 \text{ N}_2 \text{O} + 9 \text{ H}_2 \text{O}$$
 2.16

$$4 \text{ NH}_3 + 4 \text{ NO}_2 + \text{O}_2 \rightarrow 4 \text{ N}_2\text{O} + 6 \text{ H}_2\text{O}$$
 2.17

$$2 \text{ NH}_3 + 2 \text{ NO}_2 \rightarrow \text{N}_2\text{O} + \text{N}_2 + 3\text{H}_2\text{O}.$$
 2.18

 N_2O formation is also observed even if there is no NO_2 in the SCR inlet stream for a Cuzeolite SCR at temperatures higher than 250°C with peak formation rate between 300 and 350°C [87]. However, this NO_2 formed is not stable in the presence of NH_3 , and it is assumed that N_2O is consumed as fast as it is produced under certain situations, so N_2O exists for only a short period of time [23]. This N_2O consumption reaction is given as

$$3 N_2O + 2 NH_3 \rightarrow 4 N_2 + 3 H_2O$$
 2.19

The ammonia oxidation reaction needs to also be taken into consideration for SCR chemical mechanisms, especially for temperatures higher than 300°C [92]. The ammonia oxidation reaction proceeds selectively to N_2 (given in Reaction 2.20)instead of NO (given in Reaction 2.21) [51,93]. The selectivity to N_2 is greater than 90% at the temperatures below 600°C, and the selectivity to NO may only start at temperatures higher than 500°C for the Fe-zeolite catalyst [93]. It was reported that byproducts including NO, NO₂, and N₂O were detected in NH₃ oxidation products at temperatures above 400°C for a Cu-zeolite SCR as shown in Figure 2.3 [46], which is evidence that NH₃ is oxidized to NO_x. However, no byproduct was found below 400°C [37]. The activation energy of Reaction 2.20 is estimated to be about 20 kcal/gmol over a Fe-zeolite catalyst, and 24 kcal/gmol over a vanadium-based catalyst [51].

$$4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 3 \text{ H}_2 \text{O} \qquad \qquad 2.20$$

$$NH_3 + 5/4 O_2 \rightarrow NO + 3/2 H_2O$$
 2.21

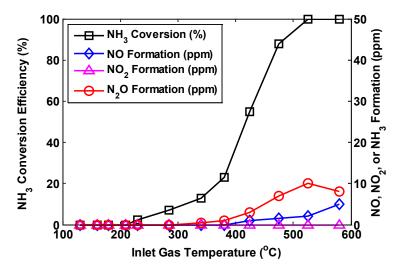


Figure 2.3: NH_3 oxidation in the absence of NO_x as a function of temperature over a Cubased SCR under the space velocity of 30,000 hr⁻¹ [46]

It is described in references [43,94] that both the NO₂ decomposition reaction and the NO oxidation reaction are taking place on the SCR catalytic surface. NO₂ is decomposed to NO at temperatures higher than 450°C on a Cu-zeolite catalyst, and this NO₂ reduction reaction is reversible, which means that NO can also be oxidized to NO₂. NO oxidation to NO₂ never exceeds 10% at any temperatures [94]. The activation energy of the NO₂ reduction reaction was reported to be substantially higher than the NO oxidation reaction [43]. This reversible reaction is given as

$$2 \text{ NO} + \text{O}_2 \leftrightarrow 2 \text{ NO}_2$$
. 2.22

In reference [23], it was presented that overconsumption of NH₃ under standard SCR reaction conditions was determined for a Fe-zeolite SCR catalyst based on reactor experimental data. It consumed more NH₃ to reduce a certain amount of NO and the NH₃ oxidation reactions were not able to explain the missing NH₃. A second standard SCR reaction shown in Reaction 2.23 with NH₃/NO ratio of 5/3 in the reactants was introduced. The 2^{nd} standard SCR reaction is the combination of the standard SCR reaction (2.5) and the reaction of NH₃ oxidation to NO (2.21). At low temperatures when NH₃ oxidation to NO did not take place, NH₃ overconsumption under NO + NH₃ reaction condition was still observed, hence it is reasonable to add the 2^{nd} reaction.

$$5 \text{ NH}_3 + 3 \text{ NO} + 9/4 \text{ O}_2 \rightarrow 4 \text{ N}_2 + 15/2 \text{ H}_2\text{O}$$
 2.23

A Cu-zeolite SCR model was introduced in reference [94]. A 1-D numerical kinetic model for Cu-zeolite SCR was developed and calibrated based on reactor experimental data. The model is capable of simulating the SCR reactions and predicting SCR outlet NO, NO₂, NH₃ and N₂O concentrations. H₂O storage and desorption was included in the model to improve the temperature prediction performance during the cold start period. The model had a single storage site that supported NH₃ adsorption, desorption and other SCR reactions including standard, fast, slow SCR reactions, N₂O formation, two NH₃ oxidation reactions, NO oxidation reaction which is a reversible reaction of the NO₂ decomposition reaction, and an unusual reaction shown in Reaction 2.24 which can explain the phenomenon that the NO₂ to NO conversion in the presence of NH₃ was greater than the NO₂ decomposition reaction in absence of NH₃. The model was calibrated to reactor data and the model performance was validated to transient engine data. It was found more challenging for the model to predict the engine data because a series of factors including errors in the model inlet NH_3 concentrations, simple rate equations for the reaction mechanisms, incomplete urea decomposition and NH_4NO_3 deposition in engine tests.

$$2 \text{ NH}_3 + 3 \text{ NO}_2 \rightarrow 3 \text{ NO} + \text{N}_2 + 3 \text{ H}_2\text{O}$$
 2.24

Although the SCR reaction mechanisms have been studied and presented in the literature, it is not able to cover all the step reactions and pathways that are taking place in the SCR. It is also too complex for a model to include all the SCR reactions. Careful selection of the global chemical reactions mechanisms is important in developing a model that effectively simulates the SCR reaction system.

2.5.2 Mass Transfer

A simplified one-dimensional SCR model which considers one single SCR channel is used by many researchers in order to reduce model computation time. SCR models over different catalytic formulations including Vanadia-titania SCR [95,96], Fe-zeolite SCR [97,98], Cu-zeolite SCR [94] have been published. For the SCR models published, Eley-Rideal mechanism which assumes only one of the reactants gets adsorbed on the catalytic surface and reacts with other reactants in the surface phase is commonly used to model the reaction mechanisms over the SCR catalyst. It's assumed that NH₃ is the only species adsorbed on the catalyst, and the adsorbed NH₃ reacts with other species in the surface phase. Gaseous species in the surface phase are assumed to be transported from the gas phase which refers to the bulk flow through the catalyst channel.

The mass transfer process is a factor affecting the SCR performance. Modeling the mass transfer between gases in gas and surface phases is important for developing the SCR model and improving the model accuracy in the mass transfer controlled regime [99].

The importance of modeling the mass transfer of channel flow catalysts have been addressed and studied [100-102]. Many studies on correlations of the Sherwood number which refers to a dimensionless mass transfer coefficient have been reported in the literature. The Sherwood number (*Sh*) correlations (a represent of the ratio between convective and diffusive mass transport) for difference channel shapes can be found in references [100,101]. A correlation for the Sherwood number for automobile catalyst converter applications was developed based on monolith reactor tests and was introduced in Reference [103]. The correlation of the Sherwood number is given in Equation 2.25.

$$Sh = 0.766 \cdot (\frac{d}{L} \cdot \text{Re} \cdot Sc)^{0.483}, \quad (0.8 < \frac{d}{L} \cdot Re \cdot Sc < 130)$$
 2.25

Where, *d* and *L* are the diameter and the length of the channel. *Re* is the Reynolds number which is the ratio of inertial force to viscous force. *Sc* is the Schmidt number which represents the ratio of the momentum diffusivity and mass diffusivity. The calculations of *Re* and *Sc* are given in Equations 2.26 and 2.27 respectively.

$$Re = \frac{\rho Q D_H}{\mu A}$$
 2.26

$$Sc = \frac{\mu}{\rho D}$$
 2.27

Where, ρ is the density of the exhaust flow, Q is the standard volumetric flow rate, D_H is the hydraulic diameter of the catalyst channel, μ is the dynamic viscosity of the exhaust flow in, A is the cross sectional area of the channel, D is the mass diffusivity.

A comparison of the Sherwood number correlation shown in Equation 2.25 above with several other correlations in the literature given in Equations 2.28, 2.29 and 2.30 was presented in reference [104].

$$Sh = 2.976 \cdot (1 + 0.095 \cdot \frac{d}{L} \cdot \text{Re} \cdot Sc)^{0.45}$$
 2.28

$$Sh = 0.705 \cdot (\frac{d}{L} \cdot \text{Re})^{0.45} \cdot Sc^{0.56}$$
 2.29

$$Sh = 2.709 \cdot \left(\frac{L}{z} \cdot \operatorname{Re} \cdot Sc\right)^{0.45}$$
 2.30

Where, z is the axial distance from the inlet the channel. And L is the length of the catalyst channel. The results showed that each correlation showed a different Sherwood number distribution along the channel length because of the differences in catalyst specifications. Different Sherwood number correlations can affect the SCR model performance.

The mass transfer effects on the SCR model performance was studied in reference [104,105]. It was concluded that the higher Sherwood number resulted in better NO_x conversion performance and the effects increased along with increase in the temperature and space velocity. The mass transfer effect on the SCR reactions is a function of the temperature and NO_2/NO_x ratio. At low temperatures when there is NO_2 present, the change in Sherwood number on the NO_x conversion becomes more obvious [104].

The mass transfer process discussed above is classified as external mass transfer, which refers to the diffusion process of the species in bulk flow to the catalytic surface. Other mass transfer processes in a SCR catalyst include: (1) the diffusion of species in the pores of the catalyst washcoat which referred as internal mass transfer (2) the diffusion of species within the nano pores of the zeolite crystallites (3) the convective flow through the channels of the monolithic catalyst [99,106]. The effects of both external and internal mass transfer on different SCR reactions over Fe-and Cu-zeolite SCR catalysts were studied through reactor tests with different catalyst dimensions and washcoat loadings [99]. The washcoat diffusion limitations on different reactions were determined: (1) the NH₃ oxidation was affected by washcoat diffusion for both Fe-and Cu-zeolite SCR while the effects under low temperatures over the Cu-zeolite SCR was more pronounced (2) the diffusion limitations for the standard SCR reaction were important for both formulations in different temperature ranges (3) the washcoat diffusion limitations were both catalyst

formulations in the temperature range of 300 to 500 C (4) the NO oxidation reaction was not affected by the washcoat diffusion [99].

2.5.3 Heat and Energy Transfer

Modeling of the heat and energy transfer for the heavy-duty diesel aftertreatment system is usually applied to the DOC and CPF since there are significant temperature gradients when oxidizing the HC and PM. The SCR temperatures are more constant from inlet to the out under steady state conditions because of the small enthalpy change for the SCR reactions. A temperature difference of less than 4°C between the inlet and outlet of the catalyst was observed from the Fe-zeolite SCR experimental data [23]. Isothermal assumption was made for most of the published SCR models. When operating under transient engine conditions, the temperature gradients in the SCR catalyst cannot be neglected because of the heat transfer between the exhaust flow, the substrate and the ambient. Including the heat transfer in the SCR model is important for improving the simulation results under transient conditions.

The modeling of heat transfer for a DOC catalyst was introduced in the literature [107,108]. The heat transfer between exhaust flow and the substrate and between the substrate and the ambient were considered. Two energy balance equations respectively for the gas phase and the substrate were used to model the heat transfer.

2.6 SCR Deactivation Effects

Although the durability of the Fe- and Cu- SCR catalysts has been proved as discussed in previous sections, the activity of the catalysts may become deactivated after being exposed to HC or sulfur compounds and long terms of hydrothermal conditions. Other factors including the uniformity of the exhaust flow and the gaseous concentrations going into the SCR also affects the overall SCR performance in terms of NO_x conversion efficiency and NH₃ slip. The HC poisoning, thermal aging, as well as the maldistribution effects on the SCR will be discussed in this section. Ultra-low sulfur diesel with sulfur concentration of less than 15 ppm is used in the US since 2006, therefore, the sulfur poisoning effect is negligible [46].

2.6.1 SCR HC Poisoning Effect

Diesel fuel is a combination of several thousand hydrocarbons including saturated hydrocarbons and aromatic hydrocarbons, .etc. The unburned hydrocarbons in diesel exhaust compete with ammonia for occupying active SCR catalytic sites below temperatures of 300° C [109], as a result, blocking the active sites and reducing NO_x reduction performance of the SCR [110,111]. For heavy-duty diesel engine applications, the SCR is typically used in a combination with a DOC and CPF in front of the SCR, which under normal conditions oxidize most of hydrocarbons in the diesel exhaust. In the case of a DOC and/or CPF failure, the SCR will be exposed to higher concentrations of hydrocarbons. Alternatively, in applications such as light-duty vehicles, the SCR is located right after the turbocharger and the hydrocarbons go directly into the SCR in this situation. As a result, it is important to understand the effect of hydrocarbons on SCR performance.

A study of the effect of hydrocarbons on a low temperature SCR was carried out on a bench reactor system [111]. Decane, ethylene and benzene were used as surrogate hydrocarbons representing the main components of diesel hydrocarbons. It was observed that NO_x reduction over the SCR was inhibited with injection of the surrogate hydrocarbons. Benzene showed the most negative effect on NO_x reduction activity. A series of tests were also carried out to determine suitable conditions for regenerating a SCR poisoned by hydrocarbons [111].

A study of hydrocarbon effect on a urea SCR was also performed and introduced in reference [110,112]. Toluene was used as a representative hydrocarbon and the experimental work was carried out on a bench reactor system. Hydrocarbon inhibition of the NO oxidation, hydrocarbon storage, and hydrocarbon effect on the SCR reactions were studied. It was concluded that the toluene adsorbed on the catalyst sites has

inhibition effects on SCR reactions. More effects were observed under lower temperatures because of the greater toluene adsorption which blocked the active SCR sites. A higher ammonia oxidation rate was observed in the presence of toluene at temperatures higher than 350°C. A model describing hydrocarbon storage on the SCR and the hydrocarbon effect on NO oxidation and NO₂ dissociation was developed, and the model prediction was validated against the experimental data. The hydrocarbon poisoning effect on SCR performance was confirmed for both ULSD and biodiesel through experiments carried out in both a bench reactor and an engine test cell [109].

The influence of hydrocarbon storage on a Fe-zeolite and a Cu-zeolite SCR was studied in both a bench reactor and an engine test cell [113]. It was reported that both Fe-zeolite and Cu-zeolite SCR can store hydrocarbons up to 21 g/L at a temperature of 200°C. A SCR being exposed to a temperature ramp after storing excessive hydrocarbons may cause irreversible thermal damage to the catalyst because of the exotherm resulting from the oxidation of stored hydrocarbons. A Cu-zeolite SCR formulation with less hydrocarbon storage capacity can avoid the high exotherm from oxidation of stored hydrocarbons [113].

The HC poisoning effect on the SCR performance and modeling of the HC effects are still open research areas. Effectively designed experiments are required to study the mechanisms of HC inhibition on SCR reactions. On the modeling aspects, only models of HC storage and the HC effect on NO oxidation are available from the literature. Engine experimental data shows low engine out HC levels (about 100 ppmC) and the HC conversion efficiency across the DOC and CPF is close to 100%. Therefore, the HC level at SCR inlet is low when the SCR is located after the DOC and CPF in heavy-duty diesel engine aftertreatment systems. The chance of seeing a significant level of hydrocarbons at the SCR inlet only happens under multiple system failures including DOC and CPF failure and engine injector failure. As a result, it is not important to study the hydrocarbon poisoning effects on SCR kinetics under normal operating conditions for heavy-duty diesel applications.

2.6.2 SCR Thermal Aging Effects

The SCR is periodically exposed to high temperatures (> 550 C) during the CPF active regeneration conditions. The SCR capability of reducing NO_x may deteriorate over time as a result of thermal deactivation. The thermal durability and thermal aging effect of the Cu-zeolite SCR were studied [44,114]. It has been shown from the studies that extremely high temperatures (800 - 900 C) can permanently damage the SCR catalyst, but the application-relevant aging conditions have a small effect on the performance of the Cu-zeolite SCR. A 5-10% of reduction in NO_x conversion efficiency was reported from a vehicle aged SCR at the end of the vehicle life [114].

The SCR performance under different levels of hydrothermal aging (also known as steam aging or steam treatment) conditions was evaluated. Compared to a de-greened catalyst, the experimental results show that progressive hydrothermal aging of the Cu-zeolite SCR up to 850°C for 10 hours leads to [44,114]:

- 1. limited (< 5%) increase in NO_x conversion below 400°C,
- 2. significant decrease in NO_x conversion above 450°C (> 20% at 500°C),
- 3. increase in NO conversion to NO₂ throughout the reaction temperature range,
- 4. increase in NH₃ oxidation and selectivity to NO_x, and
- 5. negligible change in NH_3 storage capacity.

Progressive hydrothermal aging of the Cu-zeolite SCR up to 900°C for 10 hours leads to [44,114]:

- 1. substantial loss of NO_x conversion,
- 2. substantial degradation of NO conversion to NO₂,
- 3. substantial degradation of NH₃ oxidation, and
- 4. substantial degradation of NH₃ storage capacity. This degradation is irreversible because of the SCR structure collapsing caused by extreme hydrothermal aging.

A study of the thermal durability of the SCR catalyst which is used in GM light-duty trucks was in traduced in reference [115]. The performance of the SCR catalysts aged in lab reactors, lab oven, and on vehicles were compared. Both lab reactor aging under 850°C for 12 hours and oven aging under 850°C for 54 hours can simulate the performance of 135,000 mile vehicle aged catalysts. This study confirmed the aging effect discussed above, and damage equations for a reactor aged SCR were developed and are given in Figure 2.4. The functions are water content and catalyst formulation dependent. It was also concluded that water content can accelerate the SCR thermal aging by comparing lab reactor aging and oven aging [115]. Modeling of the thermal aging effect is ongoing and publications about the modeling studies were planned, but no results have been published.

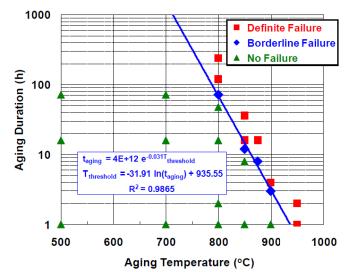


Figure 2.4: Damage equations for reactor aging of Cu-chabazite SCR with space velocity of 30,000 hr⁻¹ and 5% H₂O [115]

2.6.3 Maldistribution Effects

It has been well known that the NH_3 slip will be present at the SCR outlet under the conditions of the ANR being higher than then stoichiometric ratio. With an ANR lower or equal to the stoichiometric ratio, the nonuniformly distributed NH_3 caused by poor mixing of the injected urea and exhaust flow may result in higher ANR at certain SCR inlet

areas which then forms NH_3 slip. The effects on the NH_3 maldistribution on the SCR performance cannot be neglected in engine applications.

The uniformity of the interested parameter at the SCR inlet can be represented by the uniformity index (UI) which ranges from 0 to 1. A UI of one represents perfectly uniform distribution. The uniformity of both NO_x and NH_3 at the SCR inlet were discussed. The calculation of UI is given in Equation 2.31.

$$UI = 1 - \frac{\sum_{i} \left| v_i - v_{avg} \right| \cdot A_i}{2v_{avg} A_{total}}$$
 2.31

Where, v_i is the interested local parameter at the *i*th cell of the inlet face which the area of A_i . v_{avg} is the average of all v_i values. A_{total} is the inlet area of the catalyst.

The effects of the uniformity indices on the SCR performance were studied in reference [116] through simulation based on a vanadium SCR model which was divided into several parallel zones to enable the ability of using non – uniform input. A relationship between the simulated NO_x conversion efficiency and NH₃ slip as a function of the ANR uniformity is shown in Figure 2.5. The results showed reduction in NO_x conversion and increase in NH₃ slip with decrease of ANR uniformity.

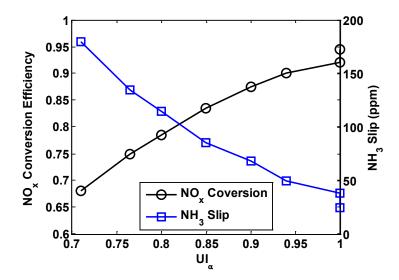


Figure 2.5: NO_x conversion efficiency and NH₃ slip as a function ANR uniformity [116]

Another simulation study of the ANR uniformity effects on the "NH₃ slip limited NO_x conversion efficiency" of the SCR for both steady state and transient conditions was presented in reference [117]. Several copies of a SCR model calibrated to Cu-zeolite SCR data were setup to run in parallel with different inlet ANR values. A probability distribution function (PDF) was used to generate the different ANRs based on beta distribution for a certain UI. The simulations were conducted for different steady state engine operating conditions as well as the heavy-duty FTP and SET emission test cycles to find the required UI for achieving the optimal SCR performance. The results showed that the UI requirements for moderate and high temperatures. It also concluded that higher UI was required for the heavy-duty FTP cycle than the SET cycle. The uniformity of the ANR at the SCR inlet can be improved by increasing urea injection performance, better mixer design, more efficient system configuration, etc [118-121].

The nonuniformity of the exhaust flow going into the SCR is another factor that might affect the SCR performance because of the nonuniformly distributed space velocity for different regions of the catalyst. The flow nonuniformity effects were studied by a few researchers mainly through Computational Fluid Dynamics (CFD) analysis [120,122,123]. It was not investigated by most of the SCR modeling studies.

2.7 Summary

Due to the standards of the 2010 emission regulations, aftertreatment systems with a DOC, CPF and urea-SCR are used for heavy-duty diesel engines. Because of the prior performance of the exchange metal based SCR catalysts, the Fe-and Cu-zeolite SCR are used for NO_x reduction. Flow reactor experimental studies provided opportunities to study the catalyst performance under wide a range of conditions and for various catalyst kinetic properties. At the same time, engine experimental studies under steady state and transient conditions were necessary to understand the SCR performance under complex engine exhaust conditions.

Efforts were carried out for developing SCR kinetic models. The Eley-Rideal mechanism which assumes only one of the reactants gets adsorbed on the catalytic surface and reacts with other reactants is typically used to model the reaction mechanisms over the SCR catalyst. NH₃ is assumed to be the only species being adsorbed on the catalyst and the stored NH₃ reacts with other species in the surface phase which is transported from species in the bulk flow (the gas phase). External mass transfer between species in gas and surface phases was considered in published high fidelity models. The reduced order models neglected the mass transfer process and allow species in the gas phase to react with the stored NH₃. Limitations of internal mass transfer and other mass transfer processes on the SCR performance are being studied. Most of the SCR models have only one type of NH₃ storage site which stores NH₃ and supports all SCR reactions. Adding a second site improves the NH₃ adsorption and desorption performance of the model but this also adds more parameters to identify. In this study, 2-site modeling approach was adopted to simulate both species concentrations and the NH₃ storage.

The major global SCR reactions included in the published models were similar. The detailed SCR reaction mechanisms are still under investigation. Urea decomposition, solid deposit formation from injected urea and nitrates formation under SCR reaction conditions were considered by a few models but excluded by most of the studies. SCR models were commonly calibrated against reactor data and validated against engine experimental data. SCR models calibrated to engine experimental data are important for on-vehicle model based control strategy and OBD development. In this study, a global reaction mechanism was selected to represent the reaction system for the Cu-zeolite catalyst. The SCR model was developed to simulate the catalyst performance for engine exhaust conditions.

The factors affecting the SCR performance were studied. Those factors include HC poisoning, thermal aging, etc. For heavy-duty diesel applications, the chance for the SCR to see high concentrations of HC is limited. Modeling efforts are being carried out to include these effects. Modeling the HC effects is problematic because a single HC type cannot represent the complex HC compounds in the diesel exhaust. The thermal aging effects on the SCR performance was studied through reactor experiments.

Modeling results of the thermal aging effects on the SCR performance and the kinetics have not been reported. The NH₃ distribution at the SCR inlet is not uniform in engine environments. The NH₃ maldistribution needs to be quantified through SCR engine experiments. The NH₃ maldistribution effects on the SCR performance were studied mainly through model simulation. It is considered to be one of the factors that causing the different SCR performance between reactor and engine testing environments. Coupled experimental and modeling studies were performed in this thesis research to determine the SCR inlet NH₃ maldistribution profiles and to investigate its effects on the catalyst performance and the kinetics. A modeling study of the thermal aging effects on the SCR performance and kinetics is also presented in this thesis.

Chapter 3.

Experimental Setup and Test Procedures

This chapter presents the engine test cell setup for both steady-state and transient SCR engine experiments, the reactor experimental setup for both flow reactor and Spaci-IR experiments including the test matrixes and test procedures. The SCR maldistribution experiments are also explained.

3.1 Engine Test Cell Setup

The Michigan Tech diesel engine test cell was designed for acquiring diesel aftertreatment system experimental data for the DOC, CPF, and SCR. A picture of the test cell is shown in Figure 3.1. Various parameters affecting the performance of the aftertreatment system can be measured and recorded during an experiment.

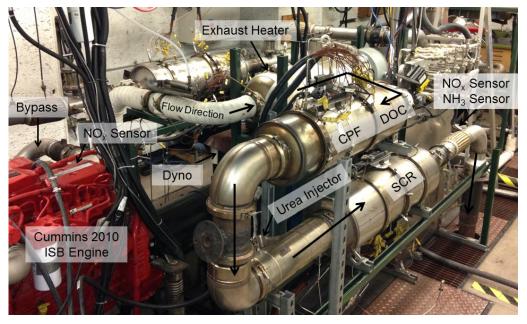


Figure 3.1: Picture of the diesel engine test cell at MTU

3.2 Engine, Fuel and Aftertreatment System

3.2.1 Engine and Dynamometer

A 2010 Cummins ISB 224 kW (300 hp) engine which meets the U.S. EPA 2010 emission regulations is used in the study. The specifications of the engine are given in Table 3.1. The dynamometer coupled to the engine is an eddy current dynamometer from Eaton Corp., with a maximum power capacity of 370 kW (500 hp) from 1700 to 7000 rpm. The speed and torque of the engine is controlled by a Digalog Model 1022A controller which is set to 'Speed Control' mode. It regulates the engine speed by regulating dynamometer speed at certain desired values. The engine torque is controlled by varying the fuel flow rate supplied to the engine through a manually controlled rheostat. In-cylinder fuel injectors were used for injecting diesel fuel into the exhaust to initiate the CPF active regeneration process.

Model	Cummins ISB 224 kW (300 hp)		
Year of Manufacture	2010		
Cylinders	6		
Bore & Stroke	107 x 124 mm		
Displacement	409 in ³ (6.7 L)		
Aspiration	Turbocharged		
Aftercooling	Cummins Charge Air Cooler		
Turbocharger	Variable Geometry Turbocharger (VGT)		
Rate Speed and Power	2600 RPM and 224 kW		
Peak Torque	895 N·m @1600 RPM		
EGR system	Electronically controlled and cooled		

Table 3.1: Specifications of 2010 Cummins ISB engine

3.2.2 Fuel Properties

Two batches of ultra-low sulfur diesel (ULSD) were used for SCR testing. The fuel was analyzed in the Cummins lab to determine the chemical properties. The fuel properties are shown in Table 3.2.

	ULSD -1	ULSD -2
API. Gravity at 15.6°C	35.6	33.4
SP. Gravity at 15.6°C	0.847	0.858
Viscosity at 40°C	2.290	2.609
Total Sulfur (ppm)	7	12
Initial Boiling Point (°C)	168	172
Final Boiling Point (°C)	340	359
ICP for metals (ppm)	<1	<1
Water Content (ppm)	92	348
IR for % Biodiesel	0	<0.1
Higher Heating Value (MJ/kg)	45.60	45.21
Lower Heating Value (MJ/kg)	42.80	42.55

Table 3.2: Fuel properties for the ULSD used for SCR testing

3.2.3 Engine Aftertreatment System

The engine is equipped with in-cylinder fuel injector for active CPF regeneration and a full aftertreatment system including DOC, CPF, SCR, and AMOX. Each catalyst is mounted in a stainless steel can that can be removed from the exhaust line. The specifications of each catalyst are shown in Table 3.3. There are two SCR bricks with the length of 6 inches each.

The aftertreatment system was de-greened before running tests and collecting data, because the performance of the catalysts may change during the first period of operation. The de-greening process was carried out based on the information provided by Cummins. The de-green conditions consisted of 12 engine operating points, with the engine exhaust running through the aftertreatment system for 1 hour for each engine operating condition. The engine operating points were provided by Cummins and are given in Table 3.4

	DOC	CPF	SCR	AMOX
Matarial				
Material	Cordierite	Cordierite	Cordierite	Cordierite
Diameter (inch)	9.50	9.50	10.50	10.50
Length (inch)	4	12	12*	4
Cell Geometry	Square	Square	Square	Square
Total Volume (L)	4.65	13.94	17.03	5.68
Open Volume (L)	3.92	NA	14.41	4.80
Cell Density /in ²	400	200	400	400
Cell Width (mil)	46	59	46	46
Filtration Area (in ³)	NA	1.99e4	NA	NA
Open Frontal Area (in ²)	60.00	24.43	73.29	73.29
Channel Wall Thickness (mil)	4	12	4	4
Wall density (g/cm ³)	1.2	1.2	1.2	1.2
Porosity	35%	59%	35%	35%
Mean Pore Size (µm)	NA	15	NA	NA
Number of inlet cells	2.84e4	0.71e4	3.46e4	3.46e4

Table 3.3: Specifications of the catalysts in 2010 Cummins ISB engine aftertreatment system

* There are 2 6-inch long SCR bricks with 1.5 inches space in between

T I A A E I				
1 2010 $3/1$ $-$ 2000	onorating noi	nte tor da ara	aning the att	artraatmant evictam
				ertreatment system
				•••••••••••••••••••••••••••••••••••••••

Degreen Point	Speed	Load	Air Mass Flowrate	Fuel Mass Flowrate	Exhaust Mass Flowrate	SCR Inlet Temperature
	(rpm)	(N·m)	(kg/min)	(kg/min)	(kg/min)	(°C)
1	1614	215	6.69	0.21	6.90	265
2	1615	453	8.05	0.32	8.37	362
3	1594	670	9.17	0.39	9.56	444
4	1594	867	10.4	0.51	10.9	485
5	1975	220	9.33	0.21	9.54	287
6	1975	415	10.3	0.35	10.6	357
7	1975	665	12.9	0.46	13.3	412
8	1975	875	15.4	0.63	16.1	437
9	2327	229	12.6	0.27	12.9	290
10	2327	440	14.0	0.43	14.5	357
11	2327	665	17.1	0.60	17.7	399
12	2327	885	19.2	0.77	19.9	444

3.2.4 Exhaust Heater

A 25 kW exhaust heater designed and manufactured by Watlow Electric Manufacturing Company was integrated into the ISB engine test cell for the purpose of expanding the testing temperature range and improved steady-state temperature control. The heater was installed before the DOC in order to raise the temperature of exhaust flow going through the entire aftertreatment system. It enables the aftertreatment catalysts to be evaluated under different temperatures without changing the exhaust flow rate and engine operating conditions. The temperature effects on the catalysts performance can be isolated by utilizing the heater. Since the heater outlet temperature is controlled by an independent PID controller, it is able to maintain the exhaust temperature of the aftertreatment system more constant regardless of the slight changes in engine operating conditions. The heater capability of heating up the exhaust is shown in Figure 3.2. With an exhaust mass flow rate of 4.45 kg/min, the temperature of the exhaust can be increased 250°C by the heater. For an exhaust mass flow rate of 11.7 kg/min, a temperature increase of 125°C can be achieved by the heater.

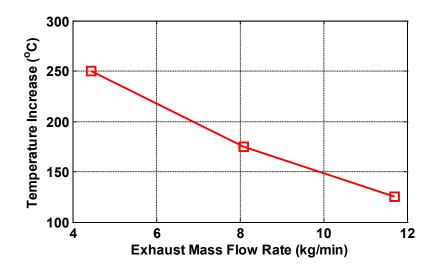


Figure 3.2: The heating capability of the heater as a function of the exhaust mass flow rate going through the heater

The effects of the heater on the emissions were evaluated by taking emission measurements and PM samples under different heater operating conditions. The DOC inlet NO₂/NO_x ratio affected by the heating element temperature of the heater is shown in Figure 3.3. The engine operating condition was maintained at 1300 rpm and 240 N·m. A DOC inlet NO₂/NO_x ratio of 4.8% was observed with the heater off. After turning on the heater, the ratio keeps decreasing when the heating element temperature is increasing, meaning that more NO₂ in the exhaust is oxidized through the heater as its temperature increases.

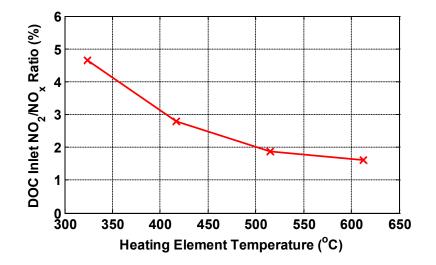


Figure 3.3: The DOC inlet NO_2/NO_x ratio as a function of the heating element temperature

Similarly, the DOC inlet PM concentrations as a function of the heating element temperature is given in Figure 3.4. The engine operating conditions for the test was maintained at 2500 rpm and 245 N·m. The error bars in this figure represent the plus and minus the standard error for the PM samples taken. A decreasing trend can be observed in the PM concentration, showing that the heater oxidizes more PM at higher temperatures.

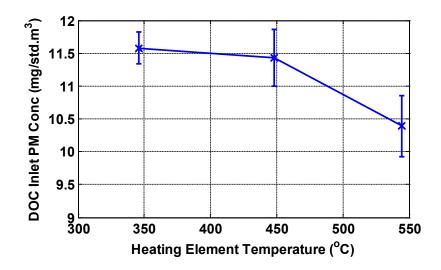


Figure 3.4: The DOC inlet PM concentration as a function of the heating element temperature

3.2.5 Test Cell Layout

The layout of the engine and aftertreatment system is shown in Figure 3.5. The engine exhaust is routed through a four-inch diameter exhaust pipe. There are two paths for the exhaust to go through. One path called baseline leads directly to the building exhaust ventilation system without passing through the aftertreatment system. The other path is called trapline which has full aftertreatment system components. Exhaust flow can be controlled to go through either path by opening and closing the corresponding pneumatic valves located at the junction of the two paths. When it goes to the trapline, the first component is the DOC with an exhaust mixer in front to improve the mixing of the fuel and exhaust gas going into the DOC during the active regeneration process. The 25kW exhaust heater described in Section 3.2.4 was installed before the DOC to raise or maintain the exhaust temperature when necessary. The next component is the CPF, followed by a decomposition tube with the DEF injector mounted on it, and then the SCR catalysts. There is a mixer in between the DEF injector and SCR inlet face to improve the mixing of the injected DEF droplets and the exhaust gas stream. Another mixer is installed after the SCR bricks, before the production NO_x sensor, ammonia sensor, and the emission sampling probe. The purpose of this mixer is to make sure that the exhaust gas is uniform and the sensors and analyzers are measuring the same gas components. The AMOX was removed from the trap line for the purposes of measuring ammonia slip downstream of the SCR during DEF injection. The distance between the SCR downstream sampling location and the SCR outlet face as well as the mixer improve the mixing of the exhaust gas being measured by multiple instruments.

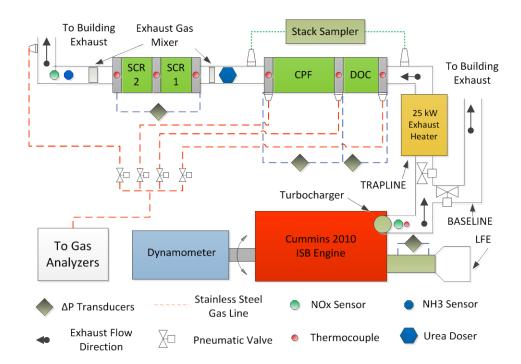


Figure 3.5: Schematic of the ISB engine test cell setup with instrumentation

3.3 Measurements and Data Acquisition System

3.3.1 Temperature Measurement

The catalysts performance is highly dependent on exhaust temperatures. Temperatures at different locations throughout the exhaust pipes and in the catalyst substrates are measured using type K thermocouples provided by Watlow. The thermocouples used in the substrates and exhaust pipes are listed in Table 3.5.

10010 0		Semeatione				,
Location	Туре	Diameter	Length	Watlow Part #	Body material	Quantity
DOC	K	0.020"	12"	AX1078701	Stainless Steel	9
CPF	K	0.032"	12"	AX1078801	Stainless Steel	12
SCR	K	0.020"	12"	AX1078701	Stainless Steel	22
SCR	K	0.020"	16"	n/a	Stainless Steel	4
Other	K	0.125"	6"	ACGF00Q060U4000	Stainless Steel	7

Table 3.5: Specifications of thermocouples used in ISB aftertreatment system

The thermocouple layout in the DOC, CPF, and SCR substrates is carefully selected in order to determine both radial and axial temperature gradients within the substrates. The thermocouple layout in the DOC, CPF, and SCR are given in Figure 3.6, 3.7, and 3.8 respectively.

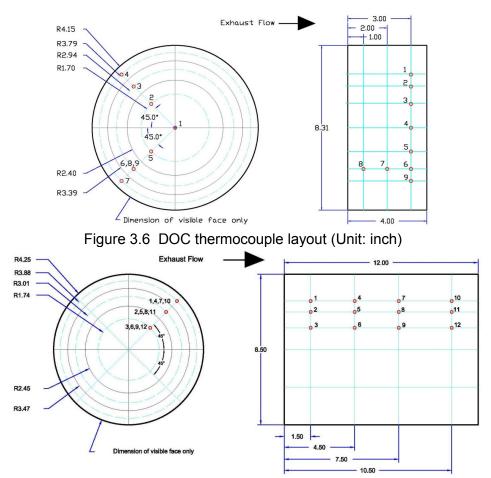


Figure 3.7: CPF thermocouple layout (Unit: inch)

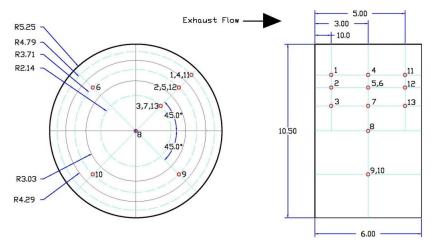


Figure 3.8: SCR thermocouple layout (Unit: inch)

3.3.2 Pressure Measurement

The barometric pressure of the test cell and the pressure drops across the Laminar Flow Element (LFE), DOC, CPF, and SCR substrates are continuously monitored by five different sensors. The barometric pressure is measured using a pressure transducer and the pressure drops are measured using four differential pressure transducers. The details about the sensors for differential pressures across the LFE, DOC, CPF, and the barometric pressure can be found in reference [124], while the information for the differential pressure across the SCR is given in Table 3.6.

I	able 3.6: Specif	rication of diffe	erential press	ure transdu	cers	
Parameter	Manufacture	Part No.	Sensor Type	Range	Unit	Sensor Output
DP across	Omega	PX409-	Differential	0.0~17.2	kPa	0~5
SCR	Engineering	2.5DWU5V	Pressure	0.0~17.2	кга	Vdc

3.3.3 Exhaust Mass Flow Rate Measurement

The exhaust mass flow rate is considered as the summation of engine intake air and fuel mass flow rates. The intake air standard volumetric flow rate is calculated based on the measured pressure drop generated by the intake air flow through the LFE. The standard

volumetric flow rate is then converted to mass flow rate using standard density of the intake air under reference conditions (1atm pressure and 20°C). The fuel mass flow rate is measured by an AVL fuel system. The system measures the time for flowing 0.4 kg of fuel to the engine. By dividing the 0.4 kg of fuel by the time in seconds used for consuming the fuel gives the fuel mass flow rate in units of kg/sec. Adding the fuel mass flow rate in the engine measurement process and calculation equations are described in detail in reference [124].

3.3.4 Gaseous Emissions

The gaseous emissions are measured using two different analyzers and also by production sensors. One of the analyzers is an AVL AMA 4000 exhaust gas analyzer which is able to measure total hydrocarbon (THC), O_2 , CO_2 , CO, and NO_x (or NO). Detailed information about the analyzer and calibration gases used for adjusting the analyzer can be found in reference [124]. The analyzer consists of a flame ionization detector (FID) for THC measurement, a paramagnetic analyzer for O_2 measurement, an infra-red detector (IRD) for CO and CO_2 measurement, and a chemiluminescence detector (CLD) for NO_x and NO measurement. The CLD is able to measure both NO_x and NO but it cannot measure the two concentrations at the same time, since it must be switched between NO_x and NO measurement mode.

For the SCR tests, continuous NO, NO₂, and NH₃ concentration measurements are required, so an Airsense ion molecule reaction mass spectrometer (IMR-MS) was set up for the SCR tests [125]. The MS is setup to measure NO, NO₂, NH₃, and O₂. The monitoring mass and the ion source for each measured species are given in Table 3.7. N₂O measurement is also desired for the SCR tests, but because of the interference issue, accurate N₂O measurement cannot be measured by the MS.

	Components	Detection levels in ppb at 100 msec	Monitoring Mass (amu)	Ionisatior
NH_3	Ammonia	120	17	Hg
NO	Nitrogen monoxide	100	30	Hg
NO ₂	Nitrogen dioxide	50	46	Hg
O ₂	Oxygen	< 5 ppm	33	Xe

Table 3.7: Monitoring mass and the ion source for each measured species

A list of calibration gases for calibrating the IMR-MS is given in Table 3.8. The IMR – MS start up and calibration procedures are given in Appendix A.

Component	Span gas	Concentration	Units	Accuracy
NH ₃	NH ₃ , N ₂ balance	103.8	ppm	± 2%
NO	NO, N ₂ balance	515.4	ppm	± 1%
NO ₂	NO ₂ , Air balance	99.05	ppm	± 2%
O ₂	NO ₂ , Air balance	20.9	%	N/A

Table 3.8: Specifications of calibration gases for IMR-MS

The stainless steel sampling lines connecting the analyzers and sampling locations in the aftertreatment system are heated to 190°C to keep exhaust gas at a temperature that prevents water from condensing and to minimize the other gases from adsorbing on the sampling lines.

There are two UniNOx sensors installed in the production aftertreatment system. They are mounted at the engine outlet and the SCR outlet for NO_x measurement. A picture of the NO_x sensor is given in Figure 3.9. It consists of a NGK sensing element with a Continental control unit. A Delphi ammonia sensor shown in Figure 3.10 is installed at the SCR outlet for ammonia slip measurement. The specifications of the NO_x and NH_3 sensors are given in Table 3.9. Data transmission with both sensors is based on controller-area network (CAN) communication.

Figure 3.9: Production NO_x sensor

Figure 3.10: Delphi ammonia sensor

	Measurement	Range	Resolution	Voltage Range	Operating Temperature
NO _x sensor	NO _x concentration	0-1500 ppm	0.1 ppm	12-32 V	100-800°C
NH ₃ sensor	NH ₃ concentration	0-1500 ppm	0.1 ppm	13.5-32 V	200-500°C

Table 3.9: Specifications of the NO_x sensor and NH₃ sensor

3.3.5 Particulate Matter

The engine out particular matter (PM) concentration is measured during the test to provide data for potential CPF modeling work. The PM samples are taken by doing a hot sampling from the engine exhaust flow. The PM is sampled on a 47 mm diameter glass fiber filter using the stack-sampler. Detailed information about PM sample collection is available in references [124] and [126].

3.3.6 Data Acquisition System

National Instruments (NI) system was setup and a corresponding LabView program was created to collect temperature, pressure, engine speed/load data, and CAN messages. The hardware system consists of two NI Compact DAQ 8-Slot USB Chassis with multiple NI modules plugged in for collecting or generating different types of signals. The chassis is connected to the desktop computer through two separate USB cables. The detailed information about the modules being used is listed in Table 3.10. The CAN communication setup uses a separate USB-CAN interface which is connected to the desktop computer through another USB cable.

L										
NO.	. Module	Position in chassis	Description	# of channels	Sampling rate (fs)	Passband	Down sampling rate	Digital filters applied	Channel No.	Signal
									ai0	Not being used
									ai1	UDOC sampling valve control
									ai 2	DDOC/DSCR1 sampling valve control
1	NI 9472	DAQ2Mod2	DAQ2Mod2 Digital Output	∞	N/A	N/A	N/A	N/A	ai3	UCPF sampling valve control
									ai4	USCR2 sampling valve control
									ai5	UDOC sampling valve control
									ai6, ai7	Not being used
2	NI 9213	DAQ2Mod6	DAQ2Mod6 T/C Module	16	16 L7	78Hz @ high speed	2Hz	Butterworth	ai0~15	Thermocouples
æ	NI 9213		DAQ2Mod7 T/C Module	16		mode	2Hz	6 order	ai0~15	Thermocouples
4	NI 9213	DAQ2Mod8	DAQ2Mod8 T/C Module	16	(Ingil)	14.4 Hz @ high	2Hz	lowpass	ai0~15	Thermocouples
ß	NI 9214	DAQ2Mod4	DAQ2Mod4 T/C Module	16	Inpade	resolution mode	2Hz	fc=1 Hz	ai0~15	Thermocouples
									ai0	Not being used
U				5		O AEOfc	1-1-C		ai1	Differential Pressure of DOC
0	1076 IN	CHUNICARA		4		SI:04-0	7117		ai 2	Differential Pressure of DPF
									ai 3	Differential Pressure of LFE
								Butterworth	ai0	Barometric Pressure
٢				5		O AECE	- 10	6 order	ai1	Not being used
`	4076 IN			+		S1:04:0	7117	lowpass	ai 2	not being used
								fc=1 Hz	ai3	Differential Pressure of SCR
									ai0	Engine Torque
0	N1 072 A			5	1657b H-	O AE2fe	217		ai1	Engine Speed
0	4076 IN			4		<1:0 1 :0	7117		ai 2	Temperature
									ai3	Relative Humidity
									ai0	External voltage for speed control
6	NI 9263	DAQ3Mod3	DAQ3Mod3 Analog output	4	n/a	n/a	n/a	n/a	ai1	External voltage for throttle control
									ai2, ai3	Not being used
10	USB-8473	CANO	CAN interface	10	250k b/s	N/A	2Hz	N/A	CANO	NOx sensors, NH3 sensor

Table 3.10: Description of the data acquisition system

3.4 Steady – State SCR Engine Tests

The primary objective of the SCR engine tests is to acquire data suitable for SCR model calibration and state estimation strategy development. This requires measurements of exhaust temperature, NO, NO₂, and NH₃ concentrations before and after the SCR for a variety of different steady-state and transient conditions.

SCR model calibration requires pre and post SCR measurements over a wide range of exhaust conditions (temperatures, flow rates, NO_2/NO_x ratios, and NH_3/NO_x ratios). Engine operating conditions were selected to cover a wide range of exhaust temperature, and SCR inlet NO_2/NO_x ratios. The DEF injection flow rate commands were selected to realize different SCR ammonia to NO_x ratios (ANR) for each test point. Knowing the flow rate of DEF injected into the exhaust is required. Since there is not a direct measurement of DEF, an open loop DEF flow rate calibration method was developed and is described in Appendix B.

3.4.1 Test Matrix

The engine speed/load points, shown in Table 3.11, were selected to span an exhaust temperature range from 250 to 400°C, which reflects typical engine operating conditions. Point 8 is selected as a baseline point, this point was run before and after each SCR test point to make sure that the engine operating condition and instrumentation are repeatable for each test. Test point 1 and 4 were repeated to verify the repeatability of the test. Lower than 250°C temperature points were avoided because of potential urea deposit formation in the exhaust pipe. For each engine test point, the DEF injection rate was set to realize five different NH₃/NO_x ratios of 0.3, 0.5, 0.8, 1.0, and 1.2. Test plan execution facilitates acquisition of both steady-state and transient species concentrations and temperature responses suitable for both SCR model calibration and the estimator development.

Test Point	Speed	Load	Exhaust Mass Flowrate	SCR inlet Temp	Std. SCR Space Velocity	Act. SCR Space Velocity*	SCR Inlet NO	SCR Inlet NO ₂	NO ₂ /NO _x ratio
	(rpm)	(N·m)	(kg/min)	(°C)	(k hr⁻¹)	(k hr⁻¹)	(ppm)	(ppm)	none
1	1501	608	7.40	399	23.9	58.9	462	295	0.39
2	1715	500	7.90	376	25.3	60.1	185	160	0.46
3	1980	420	8.38	353	26.8	61.5	115	187	0.62
4	2097	342	8.43	331	27.0	59.8	97	176	0.64
5	2063	273	8.99	301	28.8	60.6	78	220	0.74
6	2153	194	9.40	278	30.1	60.8	80	199	0.71
7	2173	143	9.76	252	31.3	60.2	110	120	0.52
8	1600	475	7.25	366	22.9	53.5	197	208	0.51

Table 3.11: Engine speed/load points for SCR tests

*Calculation of the space velocities is given in Appendix C.

3.4.2 Test Procedures

The test consists of three parts. First, the engine is run at the baseline condition to check the repeatability of the engine and instrumentation. Second, both DOC and CPF inlet and outlet gaseous emissions and engine out PM samples are taken to provide data for DOC and CPF model calibration. Third, the engine is run with varying DEF injection rates to collect SCR response data. The procedures are shown in the flow chart in Figure 3.11.

During the SCR tests, the transient responses are required. Therefore, carefully timed switching of the IMR-MS between measurement points is needed since a single IMR – MS is used. The SCR outlet measurements have the highest priority. It is also important to detect any changes in the SCR inlet concentrations over a long test. The NO_x sensors can be used to give real-time indications of SCR inlet condition changes and provide a "trigger" to make a measurement upstream of the SCR.

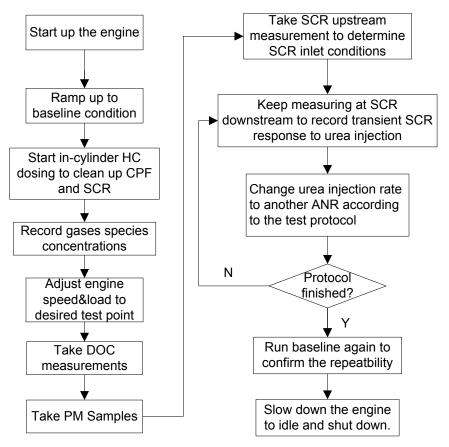


Figure 3.11: Flow chart of SCR test procedures

A step-by-step description of the test procedure illustrated in Figure 3.11 is described in the following steps:

- 1) Set exhaust flow to trapline. Startup engine and idle for 2 minutes. This slow ramp-up is only necessary for the first portion of a test and can be performed faster when the engine and dynamometer are warmed up.
- 2) Check that all sensors are providing output and are being recorded.
- Slowly increase throttle control and dyno control to baseline condition (1600 rpm, 475 N·m).

- 4) Start in-cylinder HC dosing to clean up the CPF and SCR. Monitor the pressure drop across the CPF and NH₃ slip at SCR outlet. Wait until the pressure drop across the CPF has stabilized and NH₃ slip falls below 3 ppm.
- 5) Stop in-cylinder HC dosing, and wait until all the temperatures across the exhaust system are stabilized. Take gaseous samples to make sure the engine and instrumentation operation are repeatable.
- Adjust speed/load to achieve the test point. Keep adjusting the intercooler control valve to adjust cooling water flow through the intercooler, until intake air temperature has stabilized at 50°C.
- 7) Wait until all temperatures across the aftertreatment system are stabilized. Start recording gas species concentrations at different sampling locations for 6 minutes at each location.
- 8) Take three engine out PM samples, 10 minutes for each sample.
- 9) Record gas species concentrations at CPF outlet to determine SCR inlet conditions, and calculate the DEF injection rate needed for desired ANR.
- 10) Switch to SCR downstream sampling location and start DEF injection.
- 11) Keep measuring downstream of the SCR to record the transient SCR response to DEF injection. Once the SCR is in equilibrium state (a state that no NO_x is being further reduced and there is a stabilized ammonia slip). Change DEF injection rate for another ANR based on the DEF injection schedule given in Figure 3.12.
- 12) Repeat step 11 until the DEF injection schedule is complete.
- 13) Stop DEF injection, wait until no NO_x is reduced and no NH_3 slip is observed.

- 14) Change engine speed/load to baseline point, and take gaseous measurements at different sampling locations to double check the repeatability of the engine and instrumentation operation.
- 15) Slow down the engine to idle, keep engine idling for a couple of minutes before cutting off the fuel supply.

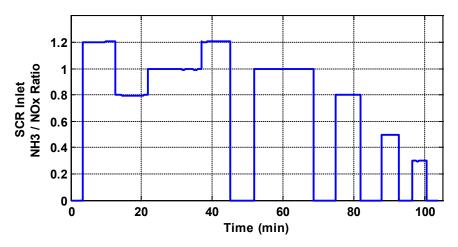


Figure 3.12: Scheduled SCR inlet ANR for steady state SCR engine test

3.5 Transient SCR Engine Tests

3.5.1 Test Cell Setup for Transient Tests

The engine test cell was developed to have the capability of running transient cycle tests. A NI analog output module (NI 9263) was added into the data acquisition system to provide scheduled external voltage for controlling the dynamometer speed and engine throttle position. The switch on the front panel of the dynamometer controller and the switch newly added (shown in Figure 3.13) gives the capability of switching between the previous manual control mode and external voltage control mode. A LabView program

was then created to drive the analog output module to generate desired voltage outputs to control both speed and fuel flow rate. The program can either take manual input values or read data points from a pre-created data file. The data file should contain desired voltage points which represent different engine speed and load conditions in a specified test cycle.

Figure 3.13: Switches used for switching between manual control mode and external voltage control mode

3.5.2 Surrogate HD-FTP Cycle Development

HD-FTP transient test cycle is used in the U.S. for emission testing of diesel engines for heavy-duty diesel vehicle. Four different typical driving conditions are simulated in the 20-minute long cycle which consists of a series of driving and motoring segments [127]. It is important to validate the SCR model performance under transient conditions. In order to collect SCR data under typical transient exhaust conditions, a surrogate HD-FTP test cycle was developed to simulate the representative transients and make it possible to run transient tests in the engine test cell. The development procedure for the surrogate HD-FTP cycle is described.

The normalized engine conditions in terms of percent of full speed and percent of full torque as shown in plot (a) of Figure 3.14 were first scaled to the ISB engine according to the engine performance curve. Since the eddy-current dynamometer used in the test cell was not capable of running the motoring segments, the motoring points of the cycle were replaced by idle conditions. The scaled ISB engine conditions without the motoring segments are shown as plot (b) of Figure 3.14. Then the cycle was simplified by smoothing the speed and torque curves so that the cycle consisted of fewer engine

operating conditions but still keeps the typical transient segments. The simplified cycle consisted of 38 different engine operating conditions with transition between engine operating points as shown in plot (c) of Figure 3.14.

The engine speed and torque were controlled by voltage signals generated from the NI 9236 analog output module. The LabView program used for testing reads a pre-defined input data file which contains the time history voltage signals corresponding to the engine speed and torque for the cycle. The analog output module generates the desired voltage signals for controlling the dynamometer speed and the fuel flow rate to the engine.

The repeatability of the cycle in terms of engine speed/torque, exhaust flow rate, exhaust temperature, and engine out NO_x concentration measured by the NO_x sensor were validated by comparing the measurements of multiple runs of the developed cycle as shown in Figure 3.15. The cycle was started at a specific engine operating condition to keep the SCR conditions during the cycle consistent. The engine operating conditions as well as the exhaust conditions of the cycle were repeatable except a spike in exhaust mass flow rate and engine out NO_x concentration at about 13 minutes. For a warmed up engine, it is feasible to use a single analyzer for transient testing by separately measuring inlet and outlet conditions of the catalyst during separate runs of the same cycle since the cycle is repeatable.

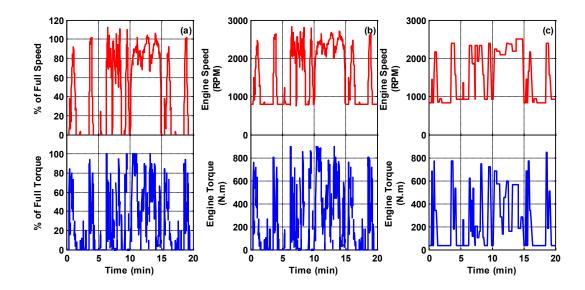


Figure 3.14: Engine conditions of the HD-FTP cycle and the developed surrogate HD-FTP cycle

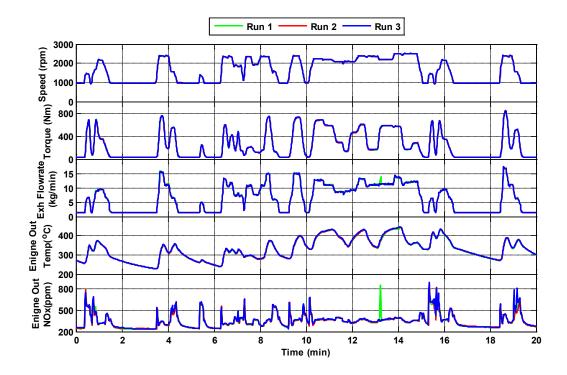


Figure 3.15: Comparison the experimental measurements for different runs of the developed surrogate HD-FTP cycle

3.5.3 Test Matrix

The transient trends in SCR inlet concentrations of NO and NO₂, SCR inlet temperature and standard SCR space velocity over the developed surrogate HD-FTP cycle are shown in Figure 3.16.

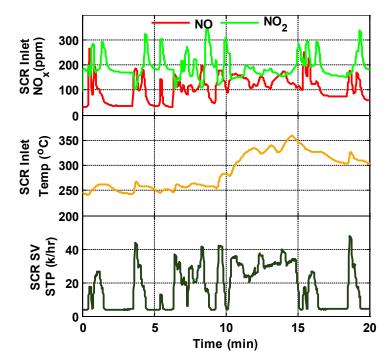


Figure 3.16: SCR inlet NO, NO₂ concentrations, SCR inlet temperature, and SCR standard space velocity during the surrogate HD-FTP cycle

Six transient runs with different DEF injection levels were conducted to collect transient SCR data. A transient test matrix is shown in Table 3.12. The default DEF injection level of the cycle was determined by the control strategy implanted in the engine ECM. The ECM parameter was manually overwritten to achieve 0.3, 0.5, 0.8, 1.0, and 1.2 times of the default overall DEF injection rate for the full cycle. Another transient test was conducted with manual control of DEF injection. The DEF injection was manually turned on and off to study both NH₃ adsorption and desorption under transient conditions. The IMR-MS was used for emission measurements for the transient experiments.

Test No.	DEF Injection Level
1	Manual
2	1.2
3	1.0
4	0.8
5	0.5
6	0.3

3.5.4 Test Procedures

A CPF active regeneration process was carried out before running each transient cycle in order to oxidize the PM mass retained in the CPF and NH_3 stored in the SCR. The CPF active regeneration was carried out under the engine operating condition of 1600 rpm and 475 N·m with a target CPF inlet temperature of 550°C for 15 minutes or until the pressure drop across the CPF was constant. After the CPF active regeneration process, the engine was run at a steady state condition for 10 minutes as shown in subplot (a) Figure 3.17 to in order to lower the aftertreatment system temperature to 250°C. The transient operating conditions from 10 to 20 minutes shown in Figure 3.17 was run before starting the surrogate FTP cycle. The purpose of this was to move the EGR valve in order to prevent any valve sticking problem. The following 20 minutes segment which is between 20 and 40 minutes is the surrogate HD-FTP cycle. The DEF injection was off before the 20 minute time point to start the surrogate HD-FTP cycle with zero NH_3 storage on the catalyst. The engine operating condition was switched back to steady state after finishing the cycle. Subplot (b) of the Figure 3.17 shows the voltage signals used for driving the engine to perform the transient tests.

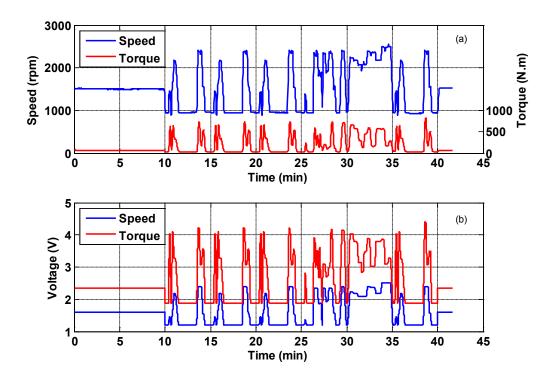
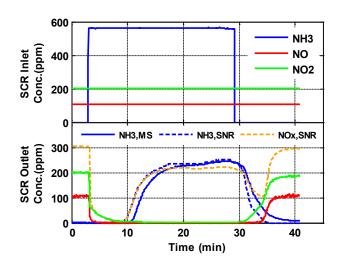


Figure 3.17: Engine conditions and control voltages for the transient test

For each of the transient tests in the test matrix shown in Table 3.12, the surrogate HD-FTP cycle was run with continuous emission measurements taken from downstream of the CPF to determine the SCR inlet concentrations for the cycle. Then the emission measurement point was switched to the downstream SCR position for outlet concentration measurements during the 2nd run of the cycle with upstream DEF injections. The intake air flow rate, pressure drops and temperatures were continuously monitored and recorded during each cycle. Gaseous concentrations of NO, NO₂ and NH₃ were measured using the IMR- MS, and the HC, CO, CO₂, and O₂ concentrations were recorded by the AVL Pierburg five gas analyzer. The fuel flow rate measuring principle of the AVL fueling system made it unable to measure real time fuel flow rate for transient cycle. The air/fuel ratio back calculated from the exhaust and the measured intake air flow rate was used to calculate the fuel flow rates during the transient cycle. The calculation procedure is given in Appendix D. The transient experimental data were used for validating the SCR model performance.


3.6 Sample Line Test

It was noticed during the steady-state SCR tests that the NH₃ slip measurements from the IMR-MS were delayed because of the NH₃ adsorption on the sample line wall. Using the delayed NH₃ measurements in the SCR model calibration process without correction causes an error in the model kinetic parameters. As a result, it is important to quantify the NH₃ adsorption and desorption process in the sample line and take it into consideration during calibration of the SCR model.

A NH₃ sensor was installed at the end of the steady-state testing phase. The sensor was located near the NO_x sensor which was also downstream of the SCR. The location of the sensors was 1.5 m from the outlet face of the 2^{nd} SCR catalyst to allow the gas species to be uniformly mixed. A mixer was installed between the SCR outlet face and the sensors to improve the mixing and make sure that the NH₃ sensor, NO_x sensor and the emission analyzers are measuring the same exhaust gas components when measuring downstream of the SCR.

An engine test for comparison of the NH₃ measurements from the IMR-MS, the NH₃ sensor, and the NO_x sensor (which is cross sensitive to NH₃) was conducted. A calibration of the NO_x sensor is shown in Equation 3.1. The test was performed for a SCR inlet temperature of 300 °C and a SCR space velocity of 60 k hr⁻¹. The SCR inlet concentrations of NO, NO₂, and available NH₃ formed from the DEF injection are given in the top plot of Figure 3.18. Similar to the steady state test procedure presented in the previous section, the gas sampling was first taken at the SCR inlet with the engine running at steady state to determine the inlet concentrations of NO and NO₂. The DEF injection rate command for the desired SCR inlet ANR was then back calculated. Then the gas sampling was switched to downstream of the SCR to measure the outlet concentrations of NO, NO₂ and NH₃ slip with upstream DEF injection. The SCR outlet concentrations of NO, NO₂ and NH₃ sensor measurements were calibrated to the IMR-MS as described in Appendix E. The SCR inlet ANR was set to 2.0 for this test to get close to 100% of NO_x reduction so that the measurement from the NO_x sensor was the

 NH_3 concentration instead of a combination of NO_x and NH_3 concentrations between 10 and 30 minutes of the test time. The NO_x sensor measurement shows different amplitude between 20 and 30 minutes probably because it has a different sensitivity to NH_3 compared to the IMR-MS.

$$NO_x = 1.21 NO + 0.85 NO_2 + 1.05 NH_3$$
 3.1

Figure 3.18: Comparison of NH_3 slip measurements from the IMR-MS, the NH_3 (NH_3 , SNR) and the NO_x sensors (NO_x , SNR)

It can be observed from Figure 3.18 that the NH₃ slip measurements from both sensors started just before 10 minutes. However, the IMR-MS measured NH₃ slip was delayed by 2 minutes. After the DEF injection was turned off at 29 minutes, the NH₃ slip measured by the NH₃ sensor dropped faster than the IMR-MS. The NH₃ sensor shows no slip beyond 35 minutes while the NH₃ measurement from the IMR-MS was present until the end of the test at 40 minutes. This phenomenon was determined to be caused by the NH₃ adsorption/desorption on the wall of the sample line. When exhaust gas flows through the heated sample line (190°C), the NH₃ gets adsorbed on the sample line wall because of its adsorption properties. No NH₃ can be detected by the analyzer until the NH₃ breaks through the storage capacity of the sample line. After DEF injection was turned off, the NH₃ slip gradually disappears from the exhaust stream going through the

sample line. The NH_3 previously stored in the sample line starts to be slowly desorbed until no NH_3 is stored in the sample line.

The NH₃ adsorption on the sample line wall needs to be quantified and taken into consideration when calibrating the SCR model to the engine IMR-MS experimental data. In order to characterize this phenomenon and eliminate the effect of NH₃ measurement delay on the SCR kinetics study, another sample line test was conducted by measuring the NH₃ calibration gas directly from a gas cylinder with known NH₃ concentration of 103.8 ppm using the IMR-MS with a sampling flow rate of 4 L/min. The calibration gas pressure was regulated to be atmospheric pressure using a 2-stage pressure regulator. The sample line was used to connect the gas cylinder and the analyzer. A valve was installed at the inlet of the sample line to switch sampling flow between the room air and the cylinder. The test was conducted to determine the IMR-MS analyzer response to a step input of a flow with known NH₃ concentration in sample line. The data were used to develop a sample line model which simulates the NH₃ adsorption and desorption processes.

3.7 NH₃ Maldistribution Tests

The test cell was initially setup with emissions sampling location right after each of the SCR bricks. The preliminary test results with emission measurements taken close to the SCR outlet face showed unbalanced $NH_3 + NO_x$ concentrations across the SCR during upstream DEF injection. The reason was determined to be that the injected DEF is not well mixed with the exhaust before going into the SCR, causing nonuniformity of NO_x and NH_3 after the SCR. The design of the sampling probe was not able to provide average concentration measurements across the diameter of the catalyst. After moving down from the SCR outlet sampling location further from the SCR outlet face and installing an exhaust mixer, the $NH_3 + NO_x$ concentrations were balanced before and after the SCR. The NH₃ maldistribution engine tests were aimed at determining the SCR inlet NH_3 and ANR distribution profiles with different mixer setups. The test setup, procedures are introduced in this section.

The SCR inlet NH₃ concentration cannot be directly measured using the emission analyzers because the urea injected into the exhaust flow may crystallize in the sample line and damage the analyzer. As a result, the SCR inlet NH₃ maldistribution was determined by comparing the NO_x distribution at the outlet face of the 1st SCR brick with and without the SCR upstream DEF injection. The distribution of the NO_x reduced across the SCR with DEF injections was considered to be the NH₃ distribution of the SCR inlet face. In order to determine the distribution profiles, gas sampling was taken from different radial positions downstream of the 1st SCR brick using ¼ inch stainless steel sampling probes shown in Figure 3.19. The measurement positions at the 1st SCR outlet face are shown in Figure 3.20. Sampling probes were extended into seven different radial positions from A, B, C, and D positions on the SCR can. A total of 28 radial positions were sampled. The average of A4, B4, C4, and D4 measurements was considered as the center measurement. All the other 24 measurement points are located in the center of 24 equal inlet areas.

Figure 3.19: Sampling probes for different radial measurement locations

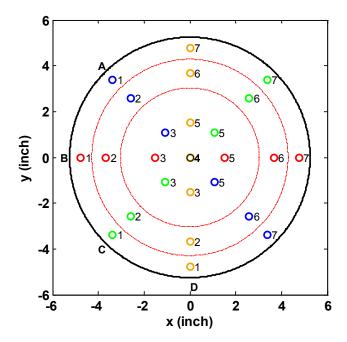


Figure 3.20: Gaseous sampling positions at the outlet face of the 1st SCR brick

The gaseous measurements of NO and NO₂ at each of the positions were measured with and without the DEF injections. During the maldistribution test, the NO and NO₂ concentrations at each measurement location were first measured after the engine and aftertreatment system conditions reached steady state. Then, DEF injection was initiated upstream of the SCR. The NO and NO₂ concentrations at each measurement location were measured again after the SCR reached steady state. The IMR-MS was used for the gaseous concentration measurements. The SCR NH₃ concentration at each measurement location was determined by calculating the differences in NO_x concentrations with and without the upstream DEF injection.

The test matrix for the NH_3 maldistribution test is shown in Table 3.13. A total of six tests were conducted. The two exhaust mass flow rates tested represented low and high flow rates of the engine along with two SCR inlet temperatures of 300 and 350°C. The SCR inlet temperature was controlled and maintained by using the 25 kW exhaust heater. Lower temperatures were avoided because of the potential formation of solid ammonium nitrate affecting the NH_3 balance. Higher temperatures were also not tested because of the increasing NH_3 oxidation rate. Tests number 1, 2 and 3 were performed with the

original mixer setup. Tests number 4, 5 and 6 were performed with a swirl mixer installed into the SCR inlet cone.

Test No.	Engine Speed (rpm)	Engine Torque (N·m)	Exh Mass Flow Rate (kg/min)	SCR Inlet Temp. (°C)	SCR Inlet NO (ppm)	SCR Inlet NO ₂ (ppm)	SCR Inlet Average ANR
1	1450	203	4.23	350	170	192	0.30
2	2500	245	9.89	350	150	131	0.30
3	2500	245	9.89	350	150	131	0.65
4*	1450	200	4.20	300	229	120	0.30
5*	1450	200	4.20	350	171	170	0.30
6*	2500	240	10.0	350	146	126	0.30

Table 3.13: Test matrix for the NH₃ maldistribution test

* Test No. 4, 5 and 6 were performed with an additional swirl mixer installed into the SCR inlet cone.

3.8 Flow Reactor Tests

3.8.1 Flow Reactor Setup

The flow reactor SCR experiments were conducted in an automated flow reactor at Oak Ridge National Laboratory (ORNL). "The flow reactor uses synthetic exhaust gas mixtures to probe specific functions and properties of catalytic materials. Gas compositions were mixed from compressed gas bottles using mass flow controllers. Water vapor was introduced through a high performance liquid chromatography (HPLC) pump and a custom capillary injection vaporizer system. Two four-way pneumatically actuated switching valves directed the flow of NH₃ and NO_x either to the reactor or to an exhaust line, creating approximately stepwise changes in inlet gas composition. All of the stainless steel reactor gas lines were heated to roughly 200°C to prevent water condensation, adsorption of NH₃, and formation of NH₄NO₃. The catalyst core sample was loaded in a 2.5 cm diameter quartz tube with custom stainless steel end caps and placed in a tube furnace to control the catalyst temperature. Type K thermocouples (0.5 mm diameter) were deployed 5mm upstream, 5mm downstream, and at the midpoint inside the catalyst core sample to monitor catalyst temperatures. Gas concentrations upstream and downstream of the catalyst sample were measured with an MKS Multigas

2030HS Fourier Transform Infrared (FTIR) spectrometer. A custom LabVIEW interface provided automated data acquisition and system control." [128]

3.8.2 Catalyst Sample

The core sample used in the reactor tests came from another Cu-zeolite SCR catalyst used in the 2010 Cummins ISB engine. The core SCR sample was cut from the front face of the full size catalyst monolith. The details of the catalyst sample are given in Table 3.14. The core sample was de-greened in a laboratory furnace at 700°C for four hours under a flow of 20% O_2 and 4.5% H_2O in a balance of N_2 before reactor experiments to stabilize the catalyst performance.

Table 3.14 Details of the core SCR sample

Catalyst material	Cu-zeolite
Core diameter (cm)	2.0
Core length (cm)	3.0
Core volume* (cm ³)	9.42
Number of channels	162
Do groop condition	700°C for 4 hours, under 20% of O_2 ,
De-green condition	4.5% of H_2O , balanced with N_2

* Used for space velocity and NH₃ storage capacity calculations

3.8.3 Test Protocol

The reactor experiment protocol was developed to measure the key catalyst properties that control SCR NO_x conversion performance. The isothermal protocol consisted of a series of step changes in inlet gas composition designed to measure NH₃ inventories and reaction rates under both transient and steady state SCR operating conditions. The changes in inlet composition for a single run of the isothermal protocol are shown in Figure 3.21, while the detailed composition for each step in the protocol is shown in Table 3.15. The exhaust flow contains 5% of H₂O and 5% of CO₂ for all protocol steps to ensure relevance to exhaust conditions. Each step in the protocol was allowed to run

until the outlet gas concentrations reached a steady state. The protocol was repeated over a range of temperatures and space velocities.

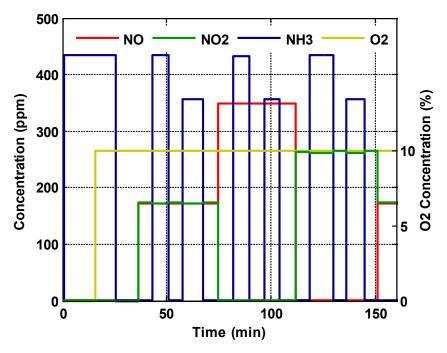


Figure 3.21: Test protocol showing the inlet gas concentrations for reactor testing

Step	Description	NO (ppm)	NO ₂ (ppm)	NH₃ (ppm)	O ₂ (%)	H ₂ O (%)	CO ₂ (%)
1	stabilize	0	0	0	0	5	5
2	NH ₃ adsorption	0	0	420	0	5	5
3	NH ₃ oxidation	0	0	420	10	5	5
4	NH ₃ desorption	0	0	0	10	5	5
5	NH_3 inventory: $NO_2/NO_x = 0.5$	175	175	0	10	5	5
6	SCR: NH ₃ / NO _x = 1.2; NO ₂ / NO _x = 0.5	175	175	420	10	5	5
7	NH_3 inventory: $NO_2/NO_x = 0.5$	175	175	0	10	5	5
8	SCR: NH ₃ / NO _x = 1.0; NO ₂ / NO _x = 0.5	175	175	350	10	5	5
9	NH ₃ inventory: NO ₂ / NO _x = 0.5	175	175	0	10	5	5
10	NO oxid: NO ₂ / NO _x = 0.0	350	0	0	10	5	5
11	SCR: NH ₃ / NO _x = 1.2; NO ₂ / NO _x = 0.0	350	0	420	10	5	5
12	NH ₃ inventory: NO ₂ / NO _x = 0.0	350	0	0	10	5	5
13	SCR: NH ₃ / NO _x = 1.0; NO ₂ / NO _x = 0.0	350	0	350	10	5	5
14	NH ₃ inventory: NO ₂ / NO _x = 0.0	350	0	0	10	5	5
15	NO_2 decomposition: $NO_2/NO_x= 1.0$	0	263	0	10	5	5
16	SCR: NH ₃ / NO _x = 1.60; NO ₂ / NO _x = 1.0	0	263	420	10	5	5
17	NH ₃ inventory: NO ₂ / NO _x = 1.0	0	263	0	10	5	5
18	SCR: NH ₃ / NO _x = 1.33; NO ₂ / NO _x = 1.0	0	263	350	10	5	5
19	NH ₃ inventory: NO ₂ / NO _x = 1.0	0	263	0	10	5	5
20	clean: NO ₂ / NO _x = 0.5	175	175	0	10	5	5

Table 3.15: Gas species concentrations for each test step of the reactor test protocol

The following description of the test protocol is quoted from reference [128]. "The gas composition changes within the protocol were structured in an attempt to isolate key processes that occur over the SCR catalyst so that model parameter estimation could be performed on individual reactions or reaction subsets rather than the full SCR reaction mechanism. The protocol can be roughly divided into four sections. Step 1 of the protocol was used to stabilize the SCR conditions. The following section of the protocol (steps 2-5) focused on NH₃ adsorption, desorption, and oxidation in the absence of NO_x. The remaining three sections measured NH₃ inventories and reaction rates under three different SCR regimes, as commonly defined by the NO₂/NO_x ratio: fast SCR (NO₂/NO_x = 0.5, steps 5-9), standard or NO SCR (NO₂/NO_x = 0.0, steps 10-14), and slow or NO₂ SCR (NO₂/NO_x = 1.0, steps 15-19). The NH₃ storage section of the protocol began in step 2 with NH₃ uptake measured in the absence of O₂ and NO_x. This step yielded a measurement of the total NH₃ storage capacity while avoiding the complications introduced by NH_3 oxidation. The rate of NH_3 oxidation was measured in step 3 after O_2 was turned on. Step 4 measured the rate of NH_3 desorption from the catalyst surface after NH₃ was removed from the feed gas. Finally, in step 5, any remaining NH₃ on the catalyst surface was cleaned off with a 1:1 mixture of NO and NO₂. Integrating the NH_3 desorbed in step 4 and the NO_x reduced by stored NH₃ in step 5 yielded a measure of the NH₃ storage under saturation conditions in the presence of O₂. The three SCR sections of the protocol all followed the same pattern. As detailed in Table 3.15, the feed gas included O₂ and NO_x in all of the SCR steps. The first step in each SCR section stabilized the flow of NO_x at the desired NO₂/NO_x ratio. These steps also enabled measurement of the forward and reverse rates of the NO oxidation reaction (the reverse reaction is also referred to as NO₂ decomposition below). Once the NO_x concentrations stabilized, 420 ppm NH₃ was turned on, corresponding to 20% excess NH₃ relative to the amount needed to convert all of the NO_x to N_2 . After the SCR reactions came to steady state, the NH₃ was turned off while NO_x continued to flow. Integrating the NO_x reduced by the NH₃ stored on the catalyst during this step yielded a measure of the NH₃ inventory under SCR conditions with excess NH₃ in the feed. Once the catalyst surface had been cleaned, NH₃ was restarted at a concentration of 350 ppm, corresponding to exactly the amount of NH₃ needed to convert all of the incoming NO_x to N₂. Once again, the SCR reaction was allowed to come to a steady state, and then the NH₃ was shut off

while NO_x continued to flow. Integrating the NO_x reduced by the stored NH_3 allowed measurement of the NH_3 inventory under stoichiometric SCR conditions."

3.8.4 NH₃ TPD Test

The following description of the temperature programmed desorption (TPD) experiments is quoted from reference [128]. "To further investigate the effects of temperature on NH_3 storage capacity and stability, TPD experiments were also conducted. Prior to the TPD experiment, the catalyst surface was cleaned by holding it at 500°C under 10% O_2 , 5% H₂O, and 5% CO₂ for 30 min. The sample was then cooled to 200 °C under the same gas mixture and the temperature was stabilized before O₂ was shut off. The test protocol for the NH₃ TPD experiments is shown in Figure 3.22. The inlet gas included 5% H_2O and 5% CO₂ during all steps of the experiment. The experiment began with an NH₃ adsorption step at 200°C under a nominal concentration of 420 ppm NH₃. After the catalyst was saturated with NH₃ (as evidenced by a steady state outlet concentration equal to the inlet concentration), the flow of NH_3 was shut off and the catalyst was held at 200 °C while NH₃ isothermally desorbed. When the rate of desorption had slowed to the point that the outlet NH_3 concentration dropped below 5 ppm, the catalyst temperature was increased to 500°C at a rate of 5°C min⁻¹. This temperature was sufficiently high to remove all NH₃ from the catalyst surface. The TPD experiments were used in validating the NH₃ adsorption/desorption rates in the model."

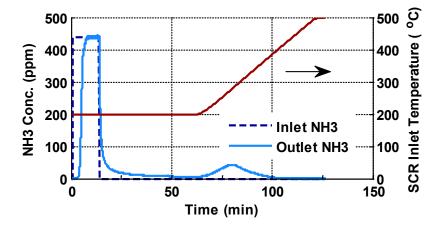


Figure 3.22: Test protocol for NH₃ TPD experiments

3.8.5 Test Matrix

The reactor tests were conducted over a broad range of temperatures from 200 to 425 °C and standard space velocities of 60,000, 90,000, and 120,000 hr⁻¹. The standard SCR space velocity was calculated using 0°C and 1 atm pressure as a reference condition. The space velocity calculation is shown in Equation 3.2.

$$SV = \frac{Std \quad Volumetric \quad Flow \quad Rate}{Catalyst \quad Volume}$$
3.2

The reactor test matrix is given in Table 3.16. For 60,000 and 120,000 hr⁻¹, the isothermal experiment protocol was repeated at intervals of 50°C from 200 to 400°C. At 90,000 hr⁻¹, the protocol was repeated at 25°C intervals between 200 and 425°C. NH₃ TPD tests were conducted for each space velocity tested. The span of the broad temperature range allowed identification of the effect of the temperature on kinetic parameters as well as determination of pre-exponential factors and activation energies for each reaction included in the model. Different space velocity tests facilitated validation of the mass transfer modeling included in the SCR model. NH₃ TPD experiments provided opportunities for validating the NH₃ storage and adsorption/desorption parameters.

		Temperature (°C)						TPD				
		200	225	250	275	300	325	350	375	400	425	IFD
רוו) [*]	60,000									\checkmark		
(1/hr)	90,000				\checkmark					\checkmark	\checkmark	
SV	120,000											

Table 3.16: Test Matrix for reactor testing

* SV was calculated by Eq 3.2 using total volume of the SCR

3.9 Spaci-IR Reactor Tests

The Spaci-FTIR testing was also developed and carried out at Oak Ridge National Laboratory to measure axially resolved concentrations internal to the SCR channels. The Cu-zeolite core SCR samples, 5 cm long with a diameter of 2 cm, were taken from the 2010 Cummins ISB production catalyst. The core samples were also de-greened at 700°C for four hours under a gas stream containing 20% O₂ and 4.5% H₂O and the balance being N₂. The core sample was mounted in a micro flow bench-reactor system for reactor testing. The exhaust flow going through the core sample was generated from gas cylinders using mass flow controllers to control the flow rate of each gas. A furnace with feedback control was used to maintain the SCR temperature. A test protocol with nine steps is given in Figure 3.23. The details about the inlet conditions of each step of the protocol are shown in Table 3.17. The protocol was conducted to study the SCR response of NH₃ saturation (step 2 of the protocol), NH₃ inventory under NO_x SCR condition (step 4: NO₂/NO_x= 0.5), and NH₃ inventory under NO SCR condition (step 7: NO₂/NO = 0). For each step of the protocol, the gas stream also contained 10% of O₂, 5% of H₂O, 5% of CO₂, with the balance being N₂.

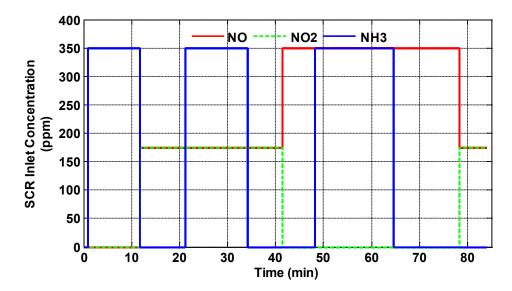


Figure 3.23: Test protocol of the Spaci-IR reactor tests

Step	Description	NO (ppm)	NO ₂ (ppm)	NH ₃ (ppm)
1	Stabilize	0	0	0
2	NH ₃ adsorption	0	0	350
3	NH_3 inventory: $NO_2/NO_x = 0.5$	175	175	0
4	NH ₃ /NO _x = 1.0; NO ₂ /NO _x = 0.5	175	175	350
5	NH_3 inventory: $NO_2/NO_x = 0.5$	175	175	0
6	Stabilize NO: $NO_2/NO_x = 0.0$	350	0	0
7	$NH_3/NO_x = 1.0; NO_2/NO_x = 0.0$	350	0	350
8	NH_3 inventory: $NO_2/NO_x = 0.0$	350	0	0
9	Clean: $NO_2/NO_x = 0.5$	175	175	0

Table 3.17: Details of each step of the Spaci-IR test protocol

Axially resolved gaseous concentrations in the core samples were measured by a FTIR with two capillaries sampling from one channel apart from each other near the center of the core sample. In order to increase the flow rate fed to the FTIR, the reactor pressure was controlled to be 1.25 bar and the capillary flow was diluted using a dilution ratio of about 10:1 with N₂ before feeding the gas mixture into the FTIR. The actual concentrations in the reactor were equal to the FTIR measured concentrations times the dilution ratio. For each axial measurement location, the test protocol was conducted continuously. The test conditions were held constant until the measured gaseous concentrations reached a steady state for each step of the protocol. The measurement process was repeated for each axial measurement location and each test condition shown in Table 3.18. Another run was conducted for each test temperature measuring at the location of 0.4 cm in front of the inlet face to determine the inlet conditions. NH₃ storage on the catalyst under NH₃ saturation, NO_x SCR, and NO SCR conditions were calculated by integrating the NO_x converted by stored NH₃ after NH₃ was turned off during step 3, 5, and 8 respectively.

Table 3.18: Test matrix of the Spaci-IR tests

Space Velocity (hr ⁻¹)	Temperature (°C)	Normalized Axial Measurement Location
60,000	250	0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8
60,000	300	0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8
60,000	350	0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8

When processing the Spaci-IR data, it was determined that the exhaust flow rate for the SCR channel with the sampling capillary was higher than expected, resulting in a higher local space velocity. The reason was determined to be that the lowered local pressure caused by the sampling flow resulted in more flow into the channel. After comparing the NH_3 storage for the same catalyst under the same conditions without the Spaci-IR technique, the actual space velocity of the Spaci-IR tests was estimated to be 70,000 instead of 60,000 hr⁻¹.

Chapter 4.

SCR Model Development and Calibration

The high fidelity Cu-zeolite SCR model was developed from an existing Fe-zeolite SCR model which was calibrated to reactor data [23]. The model was modified by changing the mass transfer correlation and adding the NH₃ oxidation reaction with the oxidation selectivity to NO (Reaction 2.21) and the NO₂ decomposition reaction (Reaction 2.22) which is the reversible reaction of the NO oxidation reaction. It was then calibrated to the Cu-zeolite SCR experimental data from both SCR reactor and engine experiments. The details of the model as well as the calibration procedures are described in this chapter.

4.1 SCR Model Overview

The model considers one single channel which is assumed to be one dimensional and divided into 10 finite elements in the axial direction from inlet to outlet. Three types of states including gas phase, surface phase and storage phase are associated with each axial element of the model. Gas phase refers to the bulk gas flowing through the channel. NH₃ is assumed to be the only species that is stored on the catalytic surface. The SCR reactions take place between the species in surface and the storage NH₃. The model consists of two NH₃ storage sites with different properties. The 1st site supports NH₃ adsorption and desorption reactions as well as all of the other SCR reactions. While at the same time, the 2nd site only adsorbs and desorbs NH₃. Mass transfer takes places between the substrate and surface phase. Heat transfer between bulk flow and the substrate and between the substrate and the ambient is included in the model to simulate the SCR outlet temperatures under transient conditions.

4.1.1 Mass Transfer Equations

Mass transfer between the gas phase and surface phase is included in the model. The mass balance equations for the gas phase and surface phase is given in Equations 4.1 and 4.2. Equation 4.1 describes the mass balance for the gas phase, and Equation 4.2 describes the mass balance for the surface phase.

$$\varepsilon \frac{\partial C_{g,i}^n}{\partial t} = -u \frac{\partial C_{g,i}^n}{\partial x} - \beta_i A_g (C_{g,i}^n - C_{s,i}^n)$$

$$4.1$$

$$(1-\varepsilon)\frac{\partial C_{s,i}^n}{\partial t} = \beta_i A_g (C_{g,i}^n - C_{s,i}^n) - \sum_j N_{i,j} R_j$$

$$4.2$$

 $i = NO, NO_2, NH_3,$ j = ads, des, fast SCR, standard SCR, slow SCR, etc.

Where, ε is the void fraction of the catalyst, *u* is the speed of the exhaust flow, A_g is the geometric surface area and β_i is the mass transfer coefficient shown in Equation 4.3. C_g and C_s are the gas phase and surface phase gaseous concentrations.

$$\beta_i = Sh_i D_{m,i} / d_h \tag{4.3}$$

Where, d_h is the hydraulic diameter of the channel and $D_{m,i}$ is the molecular diffusivity of the *i*th species. *Sh_i* is the Sherwood number of the *i*th species and is shown in Equation 4.4 [103].

$$Sh_i = 0.766 \times \left(\frac{d}{L} \cdot Re \cdot Sc\right)^{0.483}$$
 4.4

Where, d and L are the diameter and length of the channel. Re and Sc are the Reynolds number and Schmidt number. A multiplier factor of 4 was applied to the Sherwood number calculation when calibrating the model to better simulate the space velocity effects on the SCR performance.

4.1.2 NH₃ Storage Equations

The model assumes NH_3 is the only species that can be stored on the catalyst and the stored NH_3 react with other species in the surface phase. The storage equations for the two sites of the model are given in Equation 4.5.

$$\begin{cases} \Omega_1 \theta_1 = R_{Ads1} - R_{Des1} - \sum_j N_j R_j \\ \Omega_2 \theta_2 = R_{Ads2} - R_{Des2} \end{cases}$$

$$4.5$$

Where, *j* represents the reaction consuming the stored NH₃. θ_i and Ω_i (*i* = 1, 2) are the NH₃ coverage fraction and the NH₃ storage capacity of each site. *R* represents the reaction rate for each reaction.

4.1.3 Heat Transfer Equations

In order to predict the axial temperature gradients in the SCR as well as the outlet temperatures under transient conditions, the SCR model also includes heat transfer between the exhaust flow and the substrate as well as the heat transfer to the ambient. This is valuable for improving the model prediction performance under transient conditions by considering the axial temperature gradients in the model. The heat transfer equations for the SCR are given in Equations 4.6 and 4.7. Equation 4.6 is the gas phase energy balance equation and Equation 4.7 is the surface phase energy balance equation. The heat transfer to the ambient is empirical and is modeled through convection heat transfer from the outer surface of the channel with the heat transfer coefficient h_a and an ambient temperature T_a . The heat release due to the SCR reactions is negligible and was set to zero in this model.

$$\rho C_v \frac{dT_g}{dt} = -\rho u \frac{dT_g}{dx} - h_g \frac{4}{a_w} (T_g - T_w)$$

$$4.6$$

$$\rho_{w}C_{w}\frac{dT_{w}}{dt} = h_{g}\frac{4a_{w}}{a_{p}^{2} - a_{w}^{2}}(T_{g} - T_{w}) - h_{a}\frac{4a_{p}}{a_{p}^{2} - a_{w}^{2}}(T_{w} - T_{a}) + \sum_{i}\frac{-\Delta H_{i}R_{i}}{MW_{i}}$$
4.7

In equations 4.6 and 4.7, ρ and ρ_w refer to the density of the exhaust gas and the substrate wall. T_w , T_g , and T_a refer to the temperatures of the wall, gas, and the ambient. h_g and h_a refer to the heat transfer coefficients. a_p and a_w are the width of the monolith element and the open channel respectively.

4.1.4 Reaction Mechanism

The global reactions considered in the model are given in Table 4.1. It was assumed that the reactions were first order in the reactants. The assumption was previously tested against Fe-zeolite SCR reactor data [23]. As can be seen from the table, there were two NH_3 storage sites with both sites supporting NH_3 adsorption and desorption reactions but only the 1st site supporting all the other SCR reactions. The 2^{nd} site performed as a storage site which only adsorbs and desorbs NH_3 . Other reactions taking place on the 1^{st} site included two NH_3 oxidation reactions with different selectivity to N_2 and NO respectively, two standard SCR reactions with different equivalence ratio between NH_3 and NO in the reactants, the fast SCR reaction, the slow SCR reaction, NO oxidation (the reverse of which is NO_2 decomposition), and an N_2O formation reaction.

R1 and 2 are the NH₃ adsorption and desorption reactions on the 1st storage site. R3 and 4 are the NH₃ adsorption and desorption reactions on the 2nd storage site. R5 to 12 are the SCR reactions that take place in the 1st storage site. There are two NH₃ oxidation reactions (R5 and 6) showing NH₃ oxidation selectivity to both N₂ and NO. R7 and 8 are two standard SCR reactions which have different stoichiometry NH₃/NO_x ratio. The 2nd standard SCR reaction (R8) had a higher stoichiometric NH₃ to NO_x ratio and was used to explain the NH₃ overconsumption observed from the reactor test results. R9 and 10 are the fast and slow SCR reactions respectively. R11 is the NO oxidation reaction which is considered as a reversible reaction of the NO₂ decomposition reaction. R12 is the N₂O formation from NO₂ and the stored NH₃. The reaction rate calculation for each

reaction is also given in the table. The reaction rate constant was assumed to be in Arrhenius form as shown in Equation 4.8.

$$k = Ae^{-\frac{E}{RT}}$$
 4.8

Where, A and E are the pre-exponential factor and activation energy. R is the universal gas constant and T is the temperature.

The 2^{nd} standard SCR reaction (R8 in Table 4.1) which has a higher NH₃/NO stoichiometry was added in the reaction mechanism to account for the overconsumption of NH₃ with respect to NO observed in reactor tests as given in Figure 4.1. The figure shows the molar ratio of consumed NH₃ and NO during step 11 (ANR = 1.2) and 13 (ANR = 1.0) of the reactor test protocol shown in Figure 3.21 It can be observed that this ratio is slightly higher than unity in the temperature range of 200 to 400°C, meaning that more NH₃ was consumed than the NO reduced. Similar NH₃ overconsumption phenomena were reported for both Fe-zeolite and Cu-zeolite SCR [63,87], and it was explained by the NH₃ oxidation reactions that consume NH₃.The reactor experimental data during step 3 of the test protocol shown in Figure 4.1. The NH₃ overconsumption was obvious in this temperature range. As a result, the reaction R8 which has a higher NH₃/NO stoichiometry was added into the SCR reaction mechanism.

reaction
each
for
included in the model and reaction rate calculation for each reactio
n rate ci
nodel and reaction r
and r
model
the
.⊆
ð
ğ
ы С
.⊑
: Reactions included in the mo
Re
÷
4
Table 4.1:

No.	Description	Reaction Equation	Reaction Rate Equations	Unit of k
R1	Adsorption (Site 1)	$NH_3 + S_1 \rightarrow NH_{3,1}^*$	$R_{Ads,I} = k_{Ads,I} C_{NH3,S} (I - \theta_I) \Omega_I$	m³/gmol∙s
R2	Desorption (site 1)	$NH^{*}_{3,1} \rightarrow NH_{3} + S_{1}$	$R_{Des,l}=k_{Des,l}\; heta_{l}\Omega_{l}$	1/S
R3	Adsorption (Site 2)	$NH_3 + S_2 \rightarrow NH^*_{3,2}$	$R_{Ads,2} = k_{Ads,2} \ C_{NH3,S} \ (I - \theta_2) \Omega_2$	m³/gmol∙s
R4	Desorption (Site 2)	$NH^{*}_{3,2} \rightarrow NH_3 + S_2$	$R_{Des,2}=k_{Des,2}\; heta_2\Omega_2$	1/S
R5	NH ₃ Oxidation1 (Site 1)	$4NH^{3,1}_{3,1} + 3O_2 \rightarrow 2N_2 + 6H_2O$	$R_{OxiI,NH3} = k_{OxiI,INH3} \ \eta_{O2} heta_I \Omega_I$	1/S
R6	NH ₃ Oxidation2 (Site 1)	4 NH $^{*}_{3,1}$ + 5 O ₂ \rightarrow 4 NO + 6 H ₂ O	$R_{_{OXi2,NH3}}=k_{_{OXi2,NH3}}\eta_{_{O2}} heta_{_{I}}\Omega_{_{I}}$	1/S
R7	Standard SCR 1 (Site 1)	$4NH^{3,1}_{3,1} + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$	$R_{Std,I} = k_{Std,I} \ C_{NO,S} \eta_{O2} heta_I \Omega_I$	s∙lomol∕°m
R8	Standard SCR 2 (Site 1)	$5NH^{3,1}_{3,1}$ + $3NO$ + $9/4$ $O_2 \rightarrow 4N_2$ +15/2 H_2O	$R_{Std,2}=k_{Std,2}\ C_{NO,S}\eta_{O2} heta_I\Omega_I$	m³/gmol·s
R9	Fast SCR (Site 1)	$4NH^{3,1}_{3,1}$ + 2NO + 2 NO ₂ \rightarrow 4N ₂ + $6H_2O$	$R_{Fst} = k_{Fst} C_{NO,S} C_{NO2,S} heta_I \Omega_I$	m ⁶ /gmol ² ·s
R10	Slow SCR (Site 1)	$4NH^{3,1}_{3,1} + 3 NO_2 \rightarrow 7/2N_2 + 6H_2O$	$R_{Slo} = k_{Slo} C_{NO2,S} heta_I \Omega_I$	s∙lomol∙s
R11	NO Oxidation and NO ₂ decomposition (Site 1)	2 NO + $O_2 \leftrightarrow 2NO_2$	$R_{Oxi,NO} = k_{Oxi,NO} = K_{Oxi,NO} (C_{NO}, s\eta_{O2}^{0.5} - C_{NO2}/kp)$	1/S
R12	N ₂ O Formation (Site 1)	$6NH^{3,1}_{3,1}$ + 8 $NO_2 \rightarrow 7N_2O+ 9H_2O$	$R_{N2O}=k_{N2O}C_{NO2,S} heta_I \Omega_I$	s∙lomol∙s

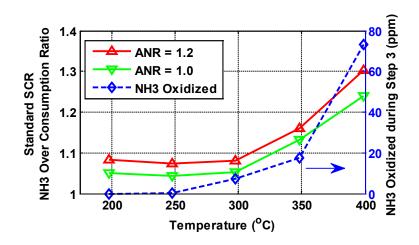


Figure 4.1: Overconsumption of NH₃ with respect to NO under standard SCR conditions and NH₃ oxidized during step 3 (Space Velocity = 60,000 hr⁻¹)

Expressions for the reaction rate for each reaction included in the model and the corresponding units of the reaction rate constant *k* are also given in Table 4.1. S₁ and S₂ represent the two storage sites; $NH^*_{3,1}$ and $NH^*_{3,2}$ are the NH₃ adsorbed on the catalytic surface of each site. θ_i and Ω_i (*i* = 1, 2) are the NH₃ coverage fraction and the NH₃ storage capacity of each site. *R* and *k* represent the reaction rate and the reaction rate constant for each reaction. η_{O2} is the oxygen concentration in terms of a mole fraction. The equation for calculating the reaction rate constant is given as Equation 4.9.

$$k = A \cdot \exp(-E / RT) \tag{4.9}$$

Where, A is the pre-exponential and E is the activation energy for each reaction, R is the universal gas constant, T is the temperature.

4.2 SCR Model Calibration with Spaci-IR Data

The Spaci-IR data provided good insights about the SCR internal states including gaseous concentrations and the NH₃ storage along the catalyst channel. Only SCR inlet and outlet concentrations were collected from the traditional reactor tests and the SCR internal states were unknown. It was difficult to validate the internal state predictions

from a model capable of correctly predicting the outlet concentrations. The model performance in terms of internal states predictions can be verified by the Spaci-IR test results. Furthermore, instead of calibrating the model to simulate the time history of the SCR outlet species concentrations, the Spaci-IR experimental data provided a novel approach to quantify the relationships between the critical kinetic model parameters.

As can be seen from the SCR reaction equations, the NH₃ stored on the catalyst participates in all SCR reactions. As a result, the NH₃ storage capacity of each model site Ω_i (i = 1, 2) are key parameters that need to be identified first. The total NH₃ storage capacity of the catalyst can be calculated by integrating the NO_x reduced by stored NH₃ during step 3 of the protocol. Since there were two storage sites in the model, how to separate the total storage capacity between each site became a unique problem to solve. The gas phase concentrations were assumed to be equal to the surface phase concentrations in this analysis. For the purpose of simplifying the calculation, a 1-site model was used to compute the total ammonia storage capacity.

4.2.1 1-Site Model Analysis

The steady-state portion of the experimental data at step 2 of the protocol shown in Figure 3.23 and Table 3.17, which is the NH₃ saturation section, was used for the storage analysis. The time rate of change of stored NH₃ was zero and the reaction rate of the adsorption reaction was equal to that of the desorption reaction when the catalyst reached the equilibrium state. This leads to Equation 4.10 in which the left hand side is the NH₃ adsorption rate and the right hand side of the equation is the desorption rate. The reaction rate constant for the adsorption and desorption reactions are assumed to be in Arrhenius form as shown in Equation 4.11.

$$k_{ads,i}C_{NH3,i}(1-\theta_i)\Omega = k_{des,i}\theta_i\Omega$$
4.10

$$k_j = A_j \exp(-E_j / RT_i)$$
 4.11

Where, the subscript *i* represents the *i*th test temperature (250, 300, or 350°C) and *j* is reaction index. The quantity *k* is the reaction rate constant for the reactions, *C* is the gas concentration, θ is the NH₃ coverage fraction which is a ratio of the NH₃ storage at each temperature and Ω_i is the storage capacity Ω , shown in Equation 4.12.

$$\theta_i = \Omega_i / \Omega$$
 4.12

The relationship between the reaction rate constants of adsorption and desorption reactions given in Equation 4.13 can be derived by substituting Equation 4.12 into Equation 4.10 and rearranging the equation.

$$k_{ads,i} / k_{des,i} = \Omega_i / (C_{NH3,i} (\Omega - \Omega_i))$$

$$4.13$$

The left hand side of Equation 4.13 can be rearranged by replacing the reaction rate constants by Equation 4.11 for NH_3 adsorption and desorption reactions shown in Equation 4.14. As a result, Equation 4.15 can be obtained from Equations 4.13 and 4.14.

$$k_{ads,i} / k_{des,i} = \frac{A_{ads} \exp(-E_{ads} / RT_i)}{A_{des} \exp(-E_{des} / RT_i)} = \frac{A_{ads}}{A_{des}} \exp(-\frac{E_{ads} - E_{des}}{RT_i})$$

$$4.14$$

$$\frac{A_{ads}}{A_{des}}\exp(-\frac{E_{ads}-E_{des}}{RT_i}) = \Omega_i / (C_{NH3,i}(\Omega - \Omega_i))$$
4.15

Equation 4.16 was derived by taking the natural log of both sides of Equation 4.15 and rearranging the equation. Three unknown terms showing the relationships between the pre-exponentials and activation energies of the NH₃ adsorption and desorption relations as well as the storage capacity Ω are present in the equation. The NH₃ concentrations C_{NH3} and the NH₃ storage Ω_i at different axial positions of the catalyst can be quantified from the Spaci-IR test results for the three temperatures tested (250, 300 and 350°C). The procedures for the NH₃ storage calculation are shown in Appendix F. Three identical equations can be obtained from Equation 4.16 for the three temperatures tested. The three unknown terms in Equation 4.16 can be quantified by solving the equation set for the three temperature runs.

$$\ln(\frac{A_{ads}}{A_{des}}) - \frac{(E_{ads} - E_{des})}{RT_i} = \ln(\frac{\Omega_i}{C_{NH3,i}}) - \ln(\Omega - \Omega_i)$$
4.16

The calculated Ω_i for 250, 300, and 350°C are $\Omega_1 = 84.4$, $\Omega_2 = 63.8$, and $\Omega_3 = 37.7$ gmol/m³ as shown in Figure 4.2. A linear relationship between NH₃ storage and temperature in this temperature range for the same catalyst formation was reported when O_2 was not present in the stream. Ω_3 was below the dotted red line generated from Ω_1 and Ω_2 because NH₃ was oxidized at the temperature of 350°C. The NH₃ oxidation resulted in less NH₃ storage than expected. In order to eliminate the effect of NH₃ oxidation, $\Omega_3^* = 43.1$ gmol/m³ which fell on the line from the two lower temperature tests was used. After substituting the known parameters for each temperature, a set of three equations were available for solving the three unknown terms. One meaningful solution was shown in Table 4.2. The NH₃ adsorption reaction was typically considered as non-activated reaction with activation energy of zero. As a result, the activation energy for desorption reaction is equal to 41.3 kJ/gmol.

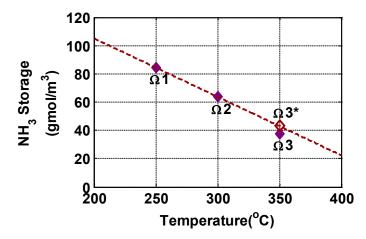


Figure 4.2: NH₃ storage at each test temperature

Table 4.2: Identified NH₃ storage capacity, *Aads/Ades* and *Eads–Edes* for 1-site model

Parameter	Value	Unit
Ω	108	gmol/m ³
Aads / Ades	2.84 e-2	none
Eads – Edes	41.3	kJ/gmol

The NH₃ oxidation at 350°C was used to calculate the relationship between the reaction rate constant of NH₃ adsorption reaction and NH₃ oxidation to N₂. The 2nd NH₃ oxidation reaction was not considered because it was reported that the NH₃ oxidation to NO is not significant below a temperature of 550°C [94]. By considering the NH₃ oxidation reaction, the NH₃ storage equation can be written as shown in Equation 4.17. Equation 4.18 can be derived by substituting reaction rate equations of NH₃ adsorption, desorption and oxidation reactions as well as Equation 4.12 into Equation 4.17. With the identified relationships above, the ratio of the reaction rate constant for NH₃ adsorption and oxidation reaction can be quantified by solving Equations 4.16 (*i* = 3) and 4.18. The calculation results showed that $k_{ads}/k_{oxil} = 1.63$ at the temperature of 350 °C.

$$\Omega \theta = R_{ads} - R_{des} - 4R_{oxi1} = 0 \tag{4.17}$$

$$k_{ads,3}C_{NH3,3}(1-\frac{\Omega_3}{\Omega}) - k_{des,3}\frac{\Omega_3}{\Omega} = 4k_{oxi1,3}\eta_{o2}\frac{\Omega_3}{\Omega}$$
4.18

The next step was to calculate the activation energy and pre-exponential constant of the fast SCR reaction using steady state portions of step 4 and 5 ($NO_x + NH_3$ SCR condition). Fast SCR reaction was dominant with a NO_2/NO_x ratio equal to 0.5. Other SCR reactions were not considered under this condition in order to simplify the calculation. The changing rates of gaseous concentrations for both gas and surface phase are zero under the SCR equilibrium state, meaning that the concentrations at different axial positions don't change with time when reaching the equilibrium state. Under this condition, Equation 4.19 can be derived from the mass balance equations for both gas and surface phases shown in Equations 4.1 and 4.2 based on the assumption that the gas phase concentrations are equal to the surface phase concentrations.

$$-u\frac{\partial C_{g,i}}{\partial x} = \sum_{j} N_{i,j}R_{j}$$

$$4.19$$

Based on the assumption that only the fast SCR reaction takes place under this condition, Equation 4.19 can be rewritten as given in Equation 4.20. The reaction rate equation for the fast SCR reaction is shown in Equation 4.21.

$$-u\frac{\partial C_{g,NH_3}}{\partial x} = -2u\frac{\partial C_{g,NO}}{\partial x} = -2u\frac{\partial C_{g,NO_2}}{\partial x} = R_{ads} - R_{des} = 4R_{fst}$$
4.20

$$R_{fst} = k_{fst} C_{NO_s} C_{NO_s} \Omega \theta$$
4.21

Axially resolved measurements of NH₃, NO, and NO₂ provided rich data for calculating the fast SCR reaction rate constants through Equations 4.20 and 4.21. k_{fst} on each axial element divided by two axial measurement locations was calculated using the axial measurements under each temperature for NH₃, NO, and NO₂ respectively. The calculated k_{fst} at 3 temperatures for each element was then plotted in Arrhenius form for the purpose of determining the activation energy and pre-exponential constant. The results was $E_{fst} \cong 53.8$ kJ/gmol, the A_{fst} was not constant along the axial locations and ranged from 1.63e8 to 1.36e9 m⁶/gmol²·s with low values at the front of the catalyst and high values at the end of the catalyst.

With the identification results presented above, the 1-site SCR model was run with a different set of parameters following the identified values and relationships between parameters. It was found that a one storage site model was not able to correctly simulate both axial gas concentrations and NH₃ storage distributions. After tuning the model parameters following the relationships determined above, the model was able to make correct predictions of axial concentrations under the NO_x + NH₃ SCR section. The model simulated NO_x and NH₃ concentrations at different axial locations of the catalyst compared to experimental results are given in Figures 4.3 and 4.4.

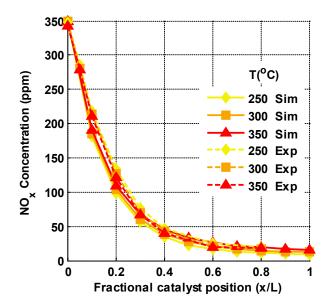


Figure 4.3: 1-site model simulated NO_x concentration at different axial locations at equilibrium state of NO_x + NH₃ reaction section compared to experimental results

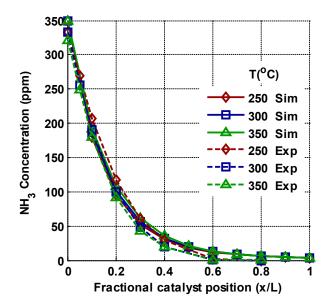


Figure 4.4: 1-site model simulated NH_3 concentration at different axial locations at equilibrium state of $NO_x + NH_3$ reaction section compared to experimental results

The NH_3 storage as a function of axial location under NH_3 saturation and $NO_x + NH_3$ sections is given in Figure 4.5. It can be seen that the storage capacity under NH_3

saturation condition was correctly predicted. The NH₃ storage during the NO_x + NH₃ SCR condition was underestimated. This was because the NH₃ being adsorbed on the catalyst under the NO_x SCR condition was consumed more quickly than expected through SCR reactions at the same time. Reducing the reaction rate of the fast SCR reaction can compensate for the NH₃ storage during the NO_x SCR condition. It led to prediction errors in gaseous concentrations. The solution to correct the NH₃ storage prediction without affecting the gas concentration prediction was to add the 2nd storage site which supported only NH₃ adsorption and desorption.

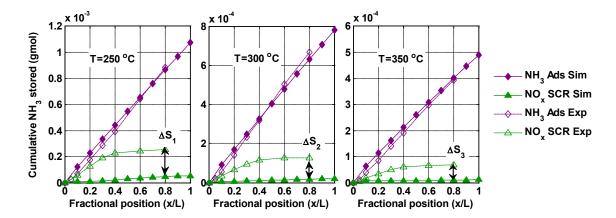


Figure 4.5: Simulated cumulative NH₃ stored for the 1-site model as a function of axial position compared to experimental results

4.2.2 2-Site Model Analysis

As shown in Figure 4.5, the differences in NH₃ storage between model simulation and experimental results under NO_x + NH₃ SCR condition (Δ S1, Δ S2 and Δ S3) were considered to be the NH₃ stored on the 2nd site. As a result, the NH₃ storage for each temperature on the 2nd site was calculated to be 34.7, 21.1 and 7.6 gmol/m³. By solving the set of equations derived from Equation 4.16 for the 2nd site at three temperatures, the storage capacity Ω_2 , A_{ads2}/A_{des2} , and $E_{ads2}-E_{des2}$ can be solved The meaningful solution for this set of equations was $\Omega_2 = 39.1$ gmol/m³, $A_{ads2}/A_{des2} = 1.66e-6$, and $E_{ads2}-E_{des2} = -$ 89.2 kJ/gmol. Similarly, the adsorption reaction on the 2nd site was considered as a nonactivated reaction, and E_{ads2} was set to zero, resulting in E_{des2} = 89.2 kJ/gmol.

Adding the 2^{nd} site without reducing the NH₃ storage capacity of the 1^{st} site resulted in overestimation of the NH₃ stored during the NH₃ saturation section of the test protocol. The NH₃ storage capacity of site 1 needs to be reduced after adding the 2^{nd} site. The 2-site model with identified parameters above was run to determine how much NH₃ was actually stored on the 2^{nd} site. Then the difference in NH₃ storage between the NH₃ storage on the 2^{nd} site and the experimentally found storage was considered to be the storage on the 1^{st} site.

Simulation results showed that about 39.5, 30.0, and 20.5 gmol/m³ of NH₃ was stored on the 2nd site under NH₃ saturation condition for 250, 300, and 350 °C respectively. The differences between storage values on the 2nd site and the experimentally found values shown in Figure 4.2 were 44.9, 33.8, and 17.2 gmol/m³ for 250, 300, and 350°C respectively, and those values were considered as the NH₃ storage on the 1st site after adding the 2nd site. Then the storage capacity of the 1st site (Ω_1), A_{adsl}/A_{desl} , and $E_{adsl}-E_{desl}$ were also updated through re-solving the equation set derived from Equation 4.16 for each temperature. The solution was: $\Omega_1 = 55.5$ gmol/m³, $A_{adsl}/A_{desl} = 1.28e-2$, $E_{adsl}-E_{desl} =$ -45.4 kJ/gmol. Again E_{adsl} was set to be zero since the NH₃ adsorption reaction was considered as non-activated reaction. The identified storage parameters and the relationships for the two storage sites are given in Table 4.3.

Parameter	Value	Units
Ω_1	55.5	gmol/m ³
Ω_2	39.1	gmol/m ³
Aads1 / Ades1	1.28 e -2	none
Eads1 - Edes1	- 45.4	kJ/gmol
Aads2 / Ades2	1.66 e -6	none
Eads2 – Edes2	- 89.2	kJ/gmol

Table 4.3: Identified NH₃ storage capacity, *Aads/Ades* and *Eads–Edes* for the storage sites of the 2-site model

After determining the storage parameters for each site, the model kinetic parameters of the remaining reactions taking place on the first site were updated following the parameter identification process presented in the previous section. The comparisons between the model simulation results using the parameters constrained by the identified relationships and the experimental results are given in Figures 4.6, 4.7 and 4.8. Figures 4.6 and 4.7 show the comparison of axially resolved NO_x and NH₃ concentrations at each temperature between simulation and experimental results under the NO_x SCR condition of the protocol. The difference in concentrations between temperatures is not significant and the model is able to capture this feature. The simulated concentrations also follow the same trend along the axial location. More than 90% of the NO_x reduction took place in the first half of the catalyst length. There is not NH₃ available for NO_x reduction after the fractional location (x/L) 0.6. A low level of NO_x (< 20 ppm) is still present after this position.

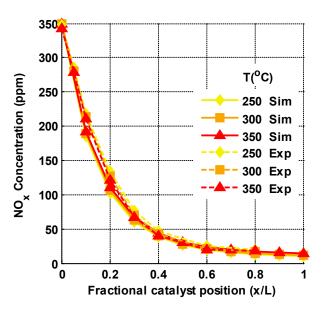


Figure 4.6: 2-site model simulated NO_x concentration at different axial locations at equilibrium state of NO_x + NH_3 protocol section compared to experimental results

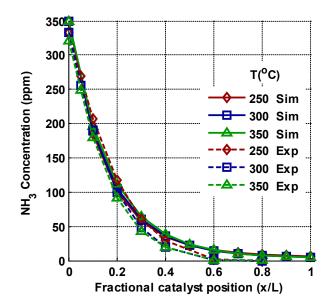


Figure 4.7: 1-site model simulated NH_3 concentration at different axial locations at equilibrium state of $NO_x + NH_3$ protocol section compared to experimental results

Figure 4.8 shows comparisons of the cumulative NH_3 stored on the catalyst at each axial measurement location for three temperatures under NH_3 saturation and NO_x SCR conditions of the protocol. The NH_3 stored under NH_3 saturation condition shows close to a linear increase along the axis for all three temperatures. The model can correctly predict this phenomenon except that it is slightly higher than the experimental results for the 350°C data. The storage differences between NH_3 saturation and NO_x SCR conditions are considered to be caused by consumption of stored NH_3 through SCR reactions changing the equilibrium state. The experimental results show that the NH_3 is completely consumed before fractional position 0.6. The model gives a slightly different trend for the temperature of 250°C, but the simulation results show good agreement with the experimental results for higher temperatures of 300 and 350°C.

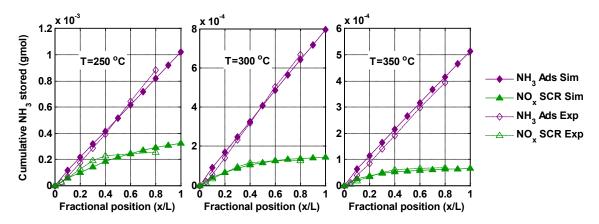


Figure 4.8: Simulated cumulative NH₃ stored of the 1-site model as a function of axial position compared to experimental results

The model parameter relationships identified through calibration to the Spaci-IR data served as a basis for developing a SCR model calibration for the reactor data.

4.3 SCR Model Calibration with Flow Reactor Data

SCR model parameters including the NH_3 storage capacities for each of the two sites, as well as *A* and *E* for each of the twelve SCR reactions in Table 4.1 need to be identified by calibrating the model against the reactor experimental data. The SCR model calibration was targeted at matching the model simulated gaseous concentrations with downstream SCR experimental time history data for both the steady state and transient segments of the protocol. Only certain reactor data were selected for model calibration as discussed in Appendix G [128].

4.3.1 Model Calibration Procedures

The model parameters from the existing Fe-zeolite SCR model and the relationships quantified from the Spaci-IR data served as the starting point for calibrating the SCR high fidelity model to the reactor data. The reaction rates of the SCR reactions are highly dependent on the NH_3 storage capability of the catalyst because the stored NH_3

participates in all SCR reactions. As a result, the NH₃ storage capacities of each site needs to be identified along with the adsorption and desorption reaction rate constant for each test condition as a first step in the model calibration. The next step is to manually tune the reaction rate constant (*k*) for each SCR reaction to find the best fit between model simulation and experimental measurements for each test condition. Each reaction can be calibrated individually by using the data of certain segments of the test protocol as described in the previous sections. The third step is to carry out an optimization method using the manually found approximate reaction rate constants as a basic calibration. The optimization method called a MATLAB "fmincon" function was used to determine the set of reaction rate constants for the reactions which gave the lowest cost function value. The cost function value for each species is defined as the accumulative absolute error between the model prediction and the experimental measurement divided by the simulation time. The equation calculating the cost function value for each species is given in Equation 4.22.

$$Cost_{i} = \frac{\sum_{t_{0}}^{t_{end}} |C_{i,Sim} - C_{i,Exp}|}{t_{end}}$$
4.22

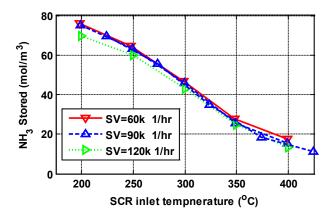
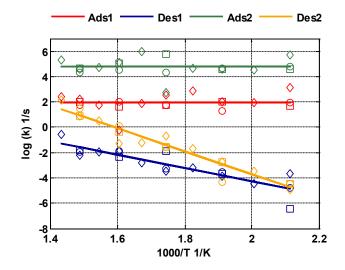
Where Cost_i is the cost function for gas species *i* (*i* =NO, NO₂, NH₃). t_0 and t_{end} are the start and stop time in seconds for the simulation. $C_{i,sim}$ and $C_{i,exp}$ are the model simulated and experimentally measured gas concentrations for the gas species *i* respectively. The fourth step is to plot the optimal reaction rate constants for each reaction determined following the optimization process for each test condition described above in Arrhenius form. The process is then to find the linear trend line of the plotted points. The slope and intercept of the trend line were used to calculate the activation energy and pre-exponential of each reaction using Equation 4.23.

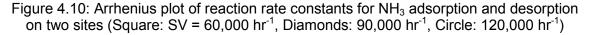
$$\begin{cases} A = e^c \\ E = -m \cdot R \end{cases}$$
 4.23

m is the slope and c is the intercept of the trend line. The confidence interval for the activation energy of each reaction was calculated from the standard error of the slope of each trend line in the Arrhenius plot.

4.3.2 NH₃ Storage Parameters

NH₃ stored on the SCR during step 2 of the protocol was calculated by integrating the difference between the SCR inlet and outlet NH₃ concentrations for each temperature and space velocity tested. Calculation results are shown in Figure 4.9. It is clear from the figure that the catalyst stored more NH_3 at lower temperatures. The NH_3 stored is close to a linear relationship with temperatures between 250 and 350°C for each space velocity tested. The highest NH₃ storage observed was 76.2 gmol/m³, which was under the condition of 200°C and 60,000 hr⁻¹ space velocity. In order to get the correct NH₃ storage prediction under this condition or even lower temperatures, the total storage capacity of the model should be higher than this value. In addition, the total storage capacity must be partitioned between the two storage sites. The NH₃ adsorption and desorption rates of R1-4 also affect the NH₃ stored on the catalyst. Different combinations of the model parameters including the storage capacity on each site, and the NH₃ adsorption and desorption reaction rate constants for each site were used in the simulation to find the best possible fit by comparing the simulation results with the experimental measurements during steps 2-4 for each of the test conditions. Since one reaction rate constant works for one temperature and the TPD test covered a wide temperature range, the TPD data were not used in this process. In this step, the NH_3 adsorption reaction was considered as a non-activated reaction with a rate constant independent of temperatures, with a resulting activation energy equal to 0.


Figure 4.9: NH₃ stored on the catalyst at step 2 of the protocol for each reactor test condition

After manual tuning of the model parameters, the optimization method was carried out to further optimize the model parameters using the manually found approximate parameters as a starting point. The optimization method was conducted for steps 2-4 of the test protocol for each test condition. A total of 6 model parameters including the NH₃ storage capacity on each of the two sites and NH₃ adsorption /desorption reaction rate constants for each of the two sites were identified for every test condition through the procedure presented above.

As discussed above, the initial storage capacity of the model was determined to be higher than 76.2 gmol/m³. For each test condition, the storage capacities and reaction rate constants for the NH₃ adsorption/desorption were optimized. The average of the optimal total storage capacities for all test conditions was considered to be the optimal storage capacity of the model. The optimal reaction rate constants for NH₃ adsorption and desorption reactions identified for each test condition was plotted in Arrhenius form as shown in Figure 4.10 to find the *A* and *E* of the reactions. The slopes and the intercepts of the fit trend lines in Figure 4.10 were used for calculation of *A* and *E* for adsorption and desorption reactions on the two sites using Equation 4.23. The standard deviation of the slope of each reaction was used to determine a confidence range for the activation energy of the reaction. The storage parameter identification results are given in Table 4.4. A trend line with the slope of zero was fitted for the NH₃ adsorption reaction

on each storage site to constrain activation energy to be zero. The results show that the activation energy of NH_3 desorption on the 2nd site is higher than that on the 1st site. This means that the NH_3 stored on the second site needs more energy to be desorbed from the catalyst. The bigger difference between NH_3 adsorption and desorption reaction rate constants under lower temperatures explains why the SCR stores more NH_3 at lower temperature conditions.

Ω1	43.0 gmol/m ³							
Ω2	39.3 gmol/m ³							
	m	m c A						
R1: Ads1	0	1.92	6.80E+00 m ³ /gmol.s	0				
R2: Des1	$\textbf{-5.27} \pm \textbf{0.64}$	6.25	5.20E+03 1/s	52.5±5.31				
R3: Ads2	0	4.77	1.17E+02 m ³ /gmol.s	0				
R4: Des2	$\textbf{-9.12} \pm \textbf{0.56}$	14.5	1.97E+06 1/s	71.6±4.67				

Table 4.4: Identified NH₃ storage parameters

4.3.3 NH₃ Oxidation Parameters

Reactor data from step 3 of the protocol was used to calibrate the NH₃ oxidation reactions (R 5 and 6) which are the major reactions taking place on the 1st site during this step except the adsorption and desorption reactions. The reaction R6 forms NO which reacts with NH₃ through standard SCR reactions. The standard SCR reactions at step 3 were not calibrated in this step of the calibration process because of their insignificant effect on the results. Similar to the parameter identification process described in the previous section, a manual tuning of the reaction rate constants was followed by the optimization method. The process was conducted for step 3 of the protocol under each test condition. The optimal reaction rate constants for the NH₃ oxidation reactions which is given as Figure 4.11. *A* and *E* for each NH₃ oxidation reaction were calculated using the slope and intercept trend lines according to Equation 4.23 and are given in Table 4.5. Both NH₃ oxidation reactions have relatively low reaction rate constants. The effect of temperature on the 2nd oxidation reaction is more obvious because of its higher activation energy.

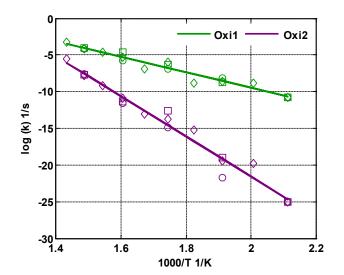


Figure 4.11: Arrhenius plot of reaction rate constants for NH₃ oxidation reactions (Square: SV = 60,000 hr⁻¹, Diamonds:90,000 hr⁻¹, Circle: 120,000 hr⁻¹)

Reaction	т	С	A(1/s)	E (kJ/gmol)
R5: Oxi1	$\textbf{-10.5}\pm0.52$	11.5	1.02E+05	87.3 ± 4.34
R6: Oxi2	$\textbf{-27.3} \pm \textbf{1.08}$	33.1	2.27E+14	227 ± 8.94

Table 4.5: Identified NH₃ oxidation parameters

4.3.4 NO + NH₃ SCR Reaction Parameters

With the model parameters identified in the previous sections, the model calibration was then focused on the individual SCR reactions. Although fast SCR reaction (R9) is dominant during NO_x+NH₃ SCR steps 5 to 9 of the protocol, other reactions including standard SCR, slow SCR, NO oxidation, NH₃ oxidation, and N₂O formation also take place because of the presence of both NO and NO₂ in the exhaust stream. Fewer reactions take place during NO+SCR steps 10 to 14. The major reactions during this segment include 1st and 2nd standard SCR reaction and NO oxidation reaction (R7, 8, and 11). Other reactions taking place in this segment of the protocol includes NH₃ adsorption/desorption, NH₃ oxidation reactions, and NO₂ involved SCR reactions because of the possible NO₂ formation through the NO oxidation reaction. The determined model parameters for NH₃ adsorption/desorption and NH₃ oxidation reactions were used but not optimized in this step of the calibration process. The NO₂ involved SCR reactions were also not calibrated in this step because of their insignificant effect on the results. The parameter identification process was conducted for steps 10 to 14 of the protocol for all test conditions and the identified optimal reaction rate constants were plotted in Arrhenius form as shown in Figure 4.12 and the A and E of each reaction are given in Table 4.6. The 1st standard SCR reaction has a higher reaction rate constant, meaning that it is the dominant reaction among the three reactions during the NO + NH₃ SCR steps 10 to 14.

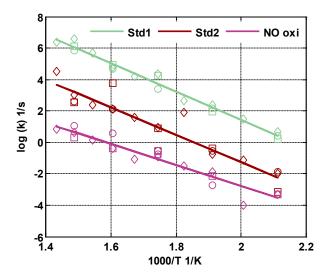


Figure 4.12: Arrhenius plot of reaction rate constants for the two standard SCR reactions and NO oxidation reaction (Square: SV = 60,000 hr⁻¹, Diamonds:90,000 hr⁻¹, Circle: 120,000 hr⁻¹)

Table 4.6: Identified model parameters for standard SCR reactions and NO oxidation reaction

Reaction	m	С	А	E (kJ/gmol)
R7: Std1	-8.99 ± 0.31	19.4	2.74E+08 m ³ /gmol.s	74.8±2.60
R8: Std2	$\textbf{-8.67} \pm 0.77$	16.1	9.71E+06 m ³ /gmol.s	72.1±6.37
R11: NO Oxi	$\textbf{-6.69} \pm \textbf{0.45}$	10.6	3.99E+04 1/s	55.6±3.75

4.3.5 NO₂ + NH₃ SCR Reaction Parameters

The reactions taking place during NO_2+NH_3 steps 15 to 19 include slow SCR reaction (R10), N_2O formation reaction (R12), NO_2 decomposition reaction (R11), NH_3 adsorption/desorption reactions (R 1-4), and the NO involved SCR reaction because of the possible NO formation through the NO_2 decomposition reaction. As discussed in the previous section, the NO_2 decomposition reaction is the reversible reaction of the NO oxidation reaction which was already calibrated as discussed in the previous section, leaving parameters for the slow SCR reaction and the N_2O formation reaction to identify in this step of the calibration. As discussed in Appendix G, certain parts of the reactor data at low temperatures were not suitable for model calibration purposes. As a result, only high temperature runs were considered in this part of the calibration. After

conducting the parameter identification process for the two reactions during steps 15 to 19 for the high temperature runs, the identified reaction rate constants were plotted in Arrhenius form shown in Figure 4.13 and the A and E of each reaction are given in Table 4.7.

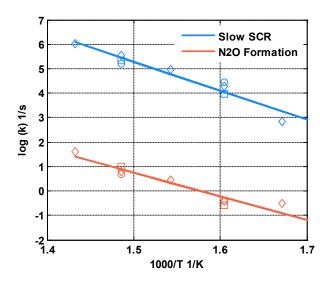


Figure 4.13: Arrhenius plot of reaction rate constants for slow SCR reactions and N_2O formation reaction (Square: SV = 60,000 hr⁻¹, Diamonds:90,000 hr⁻¹, Circle: 120,000 hr⁻¹)

Table 4.7: Identified model parameters for slow SCR reactions and N₂O formation reaction

Reaction	m	С	A (m³/gmol.s)	E (kJ/gmol)
R10: Slow SCR	-11.8 ± 1.21	22.9	9.67E+09	98.2±10.0
R12: N ₂ O Form.	$\textbf{-9.65} \pm \textbf{1.09}$	15.2	4.05E+06	80.2±9.13

4.3.6 NO_x + NH₃ SCR Reaction Parameters

With the parameters identified in previous sections, the calibration of the fast SCR reaction (R9) became the last step. The fast SCR reaction rate constant was optimized using reactor data from step 5 to 9 of the protocol following the same process as in the previous sections for all test conditions except the 200°C temperature data as discussed in Appendix G. The optimal reaction rate constant for each test condition was plotted in Arrhenius form as shown in Figure 4.14 and the *A* and *E* of the reaction are given in

Table 4.8. Compared to the other SCR reactions discussed above, the fast SCR reaction has the highest reaction rate constant which means it results in the highest reaction rate under the same temperature conditions.

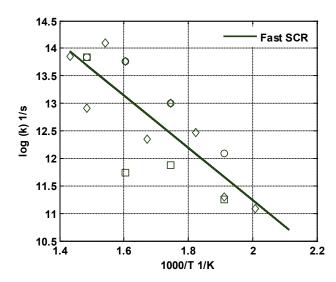


Figure 4.14: Arrhenius plot of reaction rate constants for fast SCR reaction (Square: SV = 60,000 hr⁻¹, Diamonds: 90,000hr⁻¹, Circle: 120,000hr⁻¹)

Table 4.8: Identified model	parameters for fast SCR reaction
-----------------------------	----------------------------------

Reaction	m	С	A (m ⁶ /gmol ² .s)	E (kJ/gmol)
R9: Fast SCR	$\textbf{-4.76} \pm \textbf{0.86}$	20.8	1.03E+09	39.6±7.13

The identified model parameters for the model calibration to the reactor experimental data are summarized and shown in Table 4.9.

Ω1	43.0 gmol/m ³							
Ω2	39.3 gmol/m ³							
Reaction	т	с	Α		A		E (kJ/gmol)	
Ads1	0	1.92	6.80 E+00	m³/gmol.s	0			
Des1	-5.27 ± 0.64	6.25	5.20 E+02	1/s	43.8 ± 5.31			
Ads2	0	4.77	1.17 E+01	m³/gmol.s	0			
Des2	-9.12 ± 56	14.5	1.97 E+06	1/s	75.7 ± 4.67			
NH ₃ Oxi1	-10.5 ± 0.52	11.5	1.02E+05	1/s	87.3 ± 4.34			
NH ₃ Oxi2	-27.3 ± 1.08	33.1	2.27E+14	1/s	$\textbf{227} \pm \textbf{8.94}$			
Std1	-8.99 ± 0.31	19.4	2.74 E+08	m³/gmol.s	74.8 ± 2.60			
Std2	-8.66 ± 0.77	16.1	9.71 E+06	m³/gmol.s	72.0 ± 6.37			
NO Oxi	-6.69 ± 0.45	10.6	3.99 E+04	1/s	55.6 ± 3.75			
Slow	-11.8 ± 1.21	22.9	9.67 E+09	m³/gmol.s	98.2 ± 10.0			
N ₂ O Form.	-9.65 ± 1.10	15.2	4.05 E+06	m³/gmol.s	80.2 ± 9.13			
Fast	-4.76 ± 0.86	20.8	1.03 E+09	m ⁶ /gmol ² .s	39.5 ± 7.13			

Table 4.9: SCR model calibration results based on the reactor data

4.4 Sample Line Model Development

As discussed in the previous section, the NH₃ slip measurements from the IMR-MS were delayed because of the NH₃ adsorption on the sample line wall. Using the delayed NH₃ measurements in the SCR model calibration process without correction will cause an error in the model kinetic parameters. As a result, it is important to quantify the NH₃ adsorption and desorption process in the sample line and take it into consideration during calibration of the SCR model with the engine data.

A sample line model which simulates the NH_3 adsorption and desorption process in the sample line was developed to reduce the effect of the process on the SCR model

calibration. The model considers the sample line as a NH₃ storage site with certain NH₃ storage capacity and includes NH₃ adsorption and desorption reactions. The storage capacity and the reaction rate constant of each reaction are temperature dependent. Since the sample line was constantly heated to 190°C, the storage capacity and the reaction rate considered to be constants. As a result, three model parameters including NH₃ storage capacity of the sample line and two reaction rate constants for NH₃ adsorption and desorption reactions need to be identified by calibrating the model to the experimental data from the sample line tests discussed in the previous section.

As shown in Figure 4.15, the NH₃ calibration gas from the gas cylinder with a NH₃ concentration of 103.8 ppm was used as a step input to the sample line model. The IMR-MS measurement was switched to sampling from the cylinder at 3 minutes to study the NH_3 adsorption process in the sample line. After the NH_3 measurement from the analyzer reached steady state, the gas sampling was switched to room air at 28 minutes to study the NH₃ desorption process in the sample line. The output NH₃ concentration of the sample line model was from the measurement of the IMR-MS. The NH₃ storage capacity of the sample line was calculated by integrating the difference between the model input and output NH_3 concentrations during NH_3 adsorption. The reaction rate constants for adsorption and desorption reactions were tuned to match the model simulated outlet NH₃ with the NH₃ measurements from the IMR-MS. A manual calibration along with an optimization method was conducted to find the optimal model parameters which gave the smallest error between model simulation and experimental measurements. The identified optimal model parameters and the model simulation compared to experimental measurements are shown in Figure 4.15. The storage capacity of the sample line was determined to be 0.12gmol/m³. The adsorption and desorption reaction rate constants were 3.5m³/gmol.s and 0.01 1/s respectively.

As can be seen from Figure 4.15, the model can correctly simulate the NH_3 measurement delay caused by the NH_3 adsorption in the sample line. The model simulation approaches to the steady state faster than the measurement probably because there are other factors affecting the measurement in the analyzer including pre-

filter effect, slow response of the detector, etc. The NH_3 desorption process from the sample line after 28 minutes can also be predicted by the sample line model.

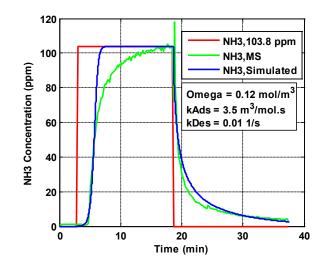


Figure 4.15: Sample line model predicted NH₃ compared to the IMR-MS measure during 103.8 ppm NH₃ calibration gas as a step input

The model performance was validated using another set of sample line experimental data from the SCR engine experiment as shown in Figure 4.16. The NH₃ measurement from the NH₃ sensor was considered to be real-time and used as the input to the sample line model. The NH₃ measurements from the IMR-MS were used as the output to the model. The model predicted NH₃ at the outlet of the sample line was compared to the IMR-MS measurements as shown in Figure 4.16. The results show good agreement between the model prediction and experimental measurements in terms of measurement delay and the transient adsorption/desorption process. The sample line model was used to post process the SCR model predicted NH₃ to take into account the effect of the NH₃ measurement delay.

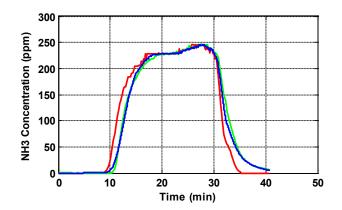


Figure 4.16: Sample line model predicted NH₃ compared to the IMR- MS measured NH₃ using NH₃ sensor measurement during engine test as the input (Red: NH₃ sensor measurement, Green: IMR-MS measurement, Blue: Sample line model predictions)

4.5 SCR Model Calibration with Engine Data

The main focus of the SCR model calibration was to determine the optimal set of model parameters which gave the best agreement between the model simulation and the engine experimental measurements. The model parameters that need to be determined include *A* and *E* for the SCR reactions and the two storage capacities for the two storage sites. The model parameters from the SCR model calibrated to the reactor data were used as a starting calibration for the engine data based SCR model. A manual tuning of the parameters along with an optimization method was performed during the SCR engine data based model calibration process.

The model was first run by manually varying the individual parameters to determine how the change in each parameter affects the simulation results. This determined the response of tuning each model parameter. Iterations of this procedure were performed to find the approximate set of parameters for each experimental run. This provided an initial set that were used as the starting parameters for the optimization method. The optimization method works by varying the parameters of the model to make predictions with the smallest error compared to experimental results. Similarly to the optimization process for calibration of the model with the reactor data, the error between simulation results and experimental measurements were defined as the cost values that can be minimized by the MATLAB "fmincon" function. This procedure was also performed by optimizing different model parameters for each experimental run. A smaller weighing factor was used for NH₃ when calculating the cost function value because measurement delay was known to be associated with the NH₃ measurements from the IMR-MS. The model simulated NH₃ will be post processed by a sample line model which simulates the NH₃ measurement delay caused by NH₃ adsorption and desorption in the sample line. The sample line model introduced in the previous section was incorporated into the SCR model simulation to eliminate the NH₃ measurement delay effects. This manual calibration combined with optimization process was performed for each set of experimental data for iterations to achieve optimal match between simulation and experimental results.

The N₂O formation, NO oxidation, and the 2^{nd} NH₃ oxidation reactions were not calibrated for the engine data based SCR model. Because of the interference issues between N₂O and interferent CO₂ which is present in the exhaust. The low levels of N₂O (< 100 ppm) concentrations cannot be accurately measured by the IMR-MS. The parameters for the N₂O formation reaction were retained from the reactor calibration. The effect of temperature on the NO oxidation and the 2^{nd} NH₃ oxidation reaction rate was not captured because of the measurement tolerance of the analyzer was not small enough to identify the reactions in the complex reaction mechanism.

The identified optimal model parameters for each run are given in Table 4.10. The reaction rate constants for each reaction were then plotted in Arrhenius form as shown in Figure 4.17. Run No. 1' and 4' are repeats of run 1 and 4. It can be observed from Figure 4.17 that the reaction rate constant for each reaction followed a linear trend in the Arrhenius form, meaning that the effect of the temperature on the reaction rates was well captured by the model. The slope *m* and the interception *c* of each fit trend line were used to calculate the pre-exponential constant and the activation energy of each reaction. The average of the determined NH₃ storage capacity for each site for all runs was considered to be the optimized storage capacity on each site.

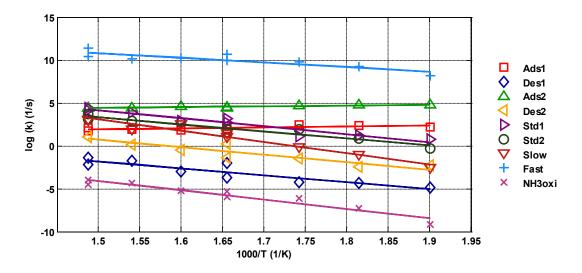


Figure 4.17: Arrhenius plots of reaction rate constant for each reaction in the SCR model based on the engine data

Table 4.10: Optimized model parameters of each temperature run for the SCR model based on the engine data

(s₊lomb/²m)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
אזין: אחצס (ו/s) איוס: א_חססאו	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00
R5: K_ NH3 0Xi (1/s)	1.97E-02	1.29E-02	5.38E-03	2.55E-03	2.15E-03	7.03E-04	1.45E-04	1.13E-02	2.95E-03
R8: k_fst (m ^{6/} gmol ² .s)	8.93E+04	2.53E+04	2.64E+04	2.05E+04	1.69E+04	1.07E+04	3.64E+03	3.51E+04	2.65E+04
R9: k_slow (a ³ /gmol.s)	1.96E+01	6.79E+00	1.27E+01	2.87E+00	9.14E-01	3.61E-01	7.87E-02	1.38E+01	1.87E+00
R7: k_std2 (m³/gmol.s)	1.90E+01	1.84E+01	1.52E+01	4.96E+00	6.67E+00	2.24E+00	7.60E-01	2.53E+01	5.96E+00
R6: k_std1 (a ^{s,} lomp\ ^s m)	7.38E+01	4.96E+01	1.77E+01	1.58E+01	3.18E+00	3.47E+00	2.06E+00	5.75E+01	1.38E+01
R4: k_des2 (1/s)	2.83E+00	1.18E+00	6.36E-01	2.41E-01	2.29E-01	8.38E-02	1.01E-01	2.87E+00	2.61E-01
R3: k_ads2 (m ³ /gmol.s)	8.31E+01	8.61E+01	9.81E+01	9.49E+01	1.04E+02	1.18E+02	1.17E+02	8.11E+01	9.99E+01
R2: k_des1 א2: k_des1	2.57E-01	1.82E-01	5.18E-02	2.53E-02	1.39E-02	1.29E-02	7.57E-03	1.25E-01	3.53E-02
tsbs_វ : FЯ (s.lomg\ ^s m)	5.99E+00	6.54E+00	6.01E+00	8.60E+00	1.20E+01	1.04E+01	9.26E+00	8.25E+00	7.60E+00
(gmol/m³) Omega2	34.7	39.1	38.1	31.2	36.7	33.3	34.9	37.5	38.2
(gmega ³) Omega ³	40.8	47.5	54.4	42.3	35.8	42.3	42.4	41.4	45.3
Temperature (C)	399	376	352	331	301	278	252	400	330
Run No.	~	2	ю	4	2	9	7	1	4

The calibration results are given in Table 4.11. The standard errors in the slopes of fitted lines were used to calculate the confidence intervals for the activation energy of each reaction. As discussed, the NH_3 adsorption reaction was normally considered as a non-activated reaction with the activation energy of zero in the literature [18]. Efforts were performed during the model calibration process to get the best fit while constraining the activation energy for the NH_3 adsorption reactions to be zero. However, it was not successful and the activation energy for the NH_3 adsorption reaction was calibrated with engine data which accounts for the complex urea decomposition process, nonuniformity of the NH_3 distribution in the engine exhaust system.

Ω1	43.6 gmol/m ³						
Ω2	36.0 gmol/m ³						
Reaction	т	С	A		E (kJ/gmol)		
Ads1	1.22 ± 0.49	0.49	1.08 E+00	m³/gmol.s	$\textbf{-10.2} \pm \textbf{4.04}$		
Des1	$\textbf{-8.12} \pm \textbf{1.45}$	1.45	3.22 E+04	1/s	67.5 ± 12.1		
Ads2	0.91 ± 0.14	0.14	2.11 E+01	m³/gmol.s	$\textbf{-7.60} \pm \textbf{1.12}$		
Des2	-8.71 ± 1.31	1.31	9.58 E+05	1/s	$\textbf{72.4} \pm \textbf{10.9}$		
Std1	$\textbf{-9.29} \pm 0.95$	0.95	7.18 E+07	m³/gmol.s	$\textbf{77.3} \pm \textbf{7.92}$		
Std2	$\textbf{-8.22}\pm0.88$	0.88	6.17 E+06	m³/gmol.s	68.4 ± 7.28		
Slow	-13.1 ± 1.11	1.11	7.13 E+09	m³/gmol.s	109 ± 9.21		
Fast	$\textbf{-5.44} \pm \textbf{1.15}$	1.15	1.76 E+08	m ⁶ /gmol ² .s	$\textbf{45.2} \pm \textbf{9.55}$		
NH ₃ Oxi.	-11.0 ± 1.10	1.10	2.33 E+05	1/s	91.1 ± 9.18		

Table 4.11: SCR model calibration results based on the engine data

Chapter 5.

Results and Discussion

The high fidelity SCR model calibration results developed from the reactor and engine experimental data and the applications of the model are discussed in this chapter. The model parameters between the calibrations developed from the reactor and engine data are compared. Differences in the model parameters were determined and the reasons causing the differences were investigated and are discussed. The NH₃ maldistribution at the SCR inlet during engine tests was quantified through engine experiments. The effects of the SCR inlet NO₂/NO_x ratio on the NO_x reduction efficiency and NH₃ slip under transient conditions was studied using the surrogate HD-FTP cycle. The effects of the NH₃ maldistribution on the SCR performance as well as on the kinetic parameters were studied through simulation approach using the calibrated high fidelity SCR model. The hydrothermal aging effects on the SCR performance as well as on the kinetic parameters are also discussed in this chapter.

5.1 Comparison of Model Parameters

The comparison of the model parameters identified based on reactor and engine experimental data is shown in Table 5.1. It can be seen that the storage capacities, Ω_1 and Ω_2 from both calibrations are comparable. There are differences in the kinetic parameters including the pre-exponential factors and activation energies for different SCR reactions.

Parameter	Calibration to reactor data	Calibration to engine data	References [18,43,129,130]	Unit
Ω1	4.30 E+01	4.36 E+01	1.20E+02	gmol/m ³
Ω2	3.93 E+01	3.60 E+01	-	gmol/m ³
A_ads1	6.80 E+00	1.08 E+00	-	m³/gmol·s
E_ads1	0	$\textbf{-10.2} \pm \textbf{4.04}$	0	kJ/gmol
A_des1	5.20 E+02	3.22 E+04	-	1/s
E_des1	43.8 ± 5.31	67.5 ± 12.1	96.1, 97.5	kJ/gmol
A_ads2	1.17 E+02	2.11 E+01	-	m³/gmol·s
E_ads2	0	$\textbf{-7.60} \pm \textbf{1.12}$	-	kJ/gmol
A_des2	1.97 E+06	9.58 E+05	-	1/s
E_des2	$\textbf{75.7} \pm \textbf{4.67}$	$\textbf{72.4} \pm \textbf{10.9}$	-	kJ/gmol
A_nh3oxi1	1.02 E+05	2.33 E+05	-	1/s
E_nh3oxi1	$\textbf{87.3} \pm \textbf{4.34}$	91.1 ± 9.18	177, 63.8	kJ/gmol
A_nh3oxi2	2.27 E+14	-	-	1/s
E_nh3oxi2	$\textbf{227} \pm \textbf{8.94}$	-	-	kJ/gmol
A_std	2.74 E+08	7.18 E+07	-	m³/gmol·s
E_std	74.8 ± 2.60	$\textbf{77.3} \pm \textbf{7.92}$	48.7, 88.0, 89.1	kJ/gmol
A_std2	9.71 E+06	6.17 E+06	-	m³/gmol·s
E_std2	$\textbf{72.1} \pm \textbf{6.37}$	68.4 ± 7.28	-	kJ/gmol
A_nooxi	3.99 E+04	-	-	1/s
E_nooxi	55.6 ± 3.75	-	23.4±1.80,-31.6, 56	kJ/gmol
A_slo	9.67E +09	7.13 E+09	-	m³/gmol·s
E_slo	98.2 ± 10.0	109 ± 9.21	58.3, 136.3	kJ/gmol
A_n2o	4.05 E+06	-	-	m³/gmol.s
E_n2o	80.2 ± 9.13	-	99.8±16.5, 48.2	kJ/gmol
A_fst	1.03 E+09	1.76 E+08	-	m ⁶ /gmol ² ·s
E_fst	39.6 ± 7.13	$\textbf{45.2} \pm \textbf{9.55}$	113, 32.1, 77.1	kJ/gmol

Table 5.1: SCR model parameters of the calibrated SCR model along with literature values

The major kinetic parameters for the SCR reactions from both models calibrated to the reactor and engine data are compared in Arrhenius form as shown in Figures 5.1-5.4.

It can be seen from Figures 5.1 and 5.2 that flat trend lines were fitted for the NH_3 adsorption reactions on both storage sites of the model calibrated to the reactor data, meaning that the reaction is non-activated with activation energy of zero. Negative activation energies were determined for the adsorption reactions when calibrating to the engine data to achieve the lowest cost function values. Differences in the desorption reaction can be seen in Figure 5.1. The desorption reaction on site 1 calibrated to the engine data has lower reaction rate constants and is more affected by the changes in temperature. The desorption reaction on site 2 are similar for the calibrations to the reactor and engine data.

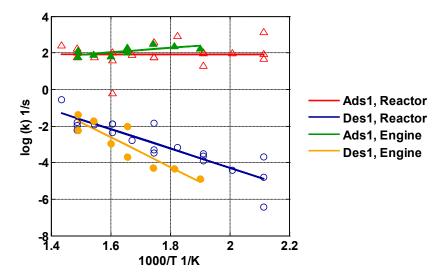


Figure 5.1: Comparison of the kinetic parameters for adsorption and desorption reactions on site 1



Figure 5.2: Comparison of the kinetic parameters for adsorption and desorption reactions on site 2

The comparison of the standard SCR reaction parameters between the two calibrations is shown in Figure 5.3. It can be seen that the reaction rate constants of the 2nd standard SCR reaction are lower than the 1st standard SCR reaction for both calibrations. Similar slopes of the trend lines indicate that the activation energies are similar for the reactions. The reaction rate constant of the 1st standard SCR reaction calibrated to the engine data is lower that than that calibrated to the reactor data. The reaction rate constants of the 2nd standard SCR reaction calibrated to the same reaction calibrated to the reactor data.

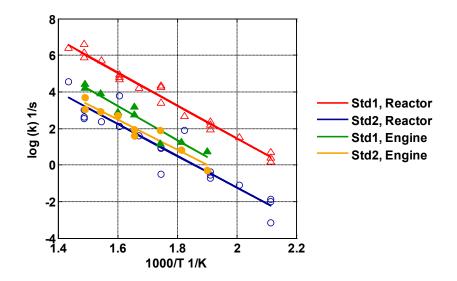


Figure 5.3: Comparison of the kinetic parameters for the standard SCR reactions

The comparisons of the kinetic parameters for the slow and fast SCR reactions between the two calibrations are shown in Figure 5.4. It can be seen that the highest reaction rate constants are associated with the fast SCR reaction. The slopes of the trendlines for the fast SCR reaction calibrated to the reactor and engine data are similar, meaning that similar activation energies were obtained for the two calibrations. The fast SCR reaction calibrated to the engine data has lower reaction rate constants as compared to the reactor data. The same trends are also valid for the slow SCR reaction calibrated to the reactor and engine data.

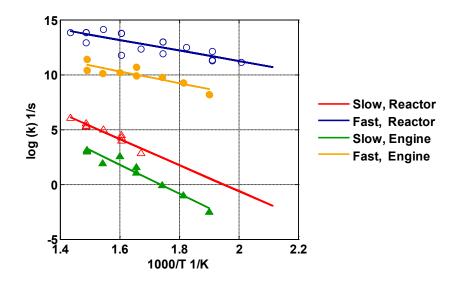


Figure 5.4: Comparison of the kinetic parameters for the fast and slow SCR reactions

Since the catalyst formulations tested in the reactor and engine test cell were the same, it was considered that the more complex engine testing environment caused the differences. The main differences between the reactor and engine tests were (1) complex urea decomposition process, (2) maldistribution of NH_3 going into the SCR. Of these differences, maldistribution was postulated to have the largest effect on the calibration. The NH_3 maldistribution effects will be discussed later in Section 5.4.

5.2 SCR Model Calibrated to Reactor Data

With identified storage capacities and kinetic parameters for each reaction, the model is able to capture the effect of temperature on reaction rates. Additionally, since the model included mass transfer and was calibrated against the experimental data of three different space velocities, the effect of space velocities on SCR performance can be predicted. The parameters identified from the reactor data are given in Table 5.1 along with the calibration based on the engine experimental data and the model parameters from the literature for Cu-zeolite SCR [18,43,129,130].

5.2.1 Model Simulation of TPD Experiments

Three sets of the NH₃ TPD experimental data were used for validation of the storage parameters including storage capacity and kinetic parameters for NH₃ adsorption and desorption reactions on each storage site of the model. The model simulated NH₃ concentrations at the SCR outlet compared to the experimental measurements for the space velocity of 60,000 hr⁻¹ are given in Figure 5.5. The model predicted SCR outlet NH₃ concentration agrees with the experimental measurements with a cost function value of 5.7. The comparison results confirm that the model is able to correctly predict the NH₃ adsorption and desorption under both isothermal and transient temperature conditions.

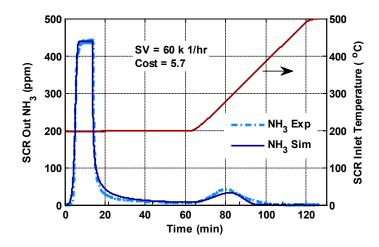


Figure 5.5: Comparison of SCR outlet NH₃ between model simulation and TPD reactor experimental results for the space velocity of 60,000hr⁻¹

Besides predicting the SCR outlet gaseous concentrations, the model is able to predict the SCR internal states including the NH_3 coverage fraction and NH_3 storage on the catalyst which cannot be directly measured. The NO_x reduction performance of the SCR highly depends on the amount NH_3 stored on the catalyst. Correctly predicting the NH_3 storage is important for model based control and SCR state estimation strategy development. The model predicted NH_3 coverage fractions on each site of the model for the space velocity of 60,000 hr^{-1} are given in Figure 5.6. Before NH_3 saturation at 8 minutes, the coverage fraction on both sites keeps increasing as NH_3 is loaded on the catalyst. After the NH₃ was turned off at 15 minutes, the NH₃ coverage fractions on both sites started to decrease. The 1st site desorbs faster than the 2nd site because the 1st site has a higher NH₃ desorption rate. At 65 minutes, about 90% of the NH₃ stored on the 1st site was desorbed, and only about 50% of the NH₃ stored on the 2nd site was desorbed. As temperature was increased, the NH₃ desorption from both sites was accelerated and resulted in a bump in the outlet NH₃ concentration shown in Figure 5.5. The NH₃ coverage fraction on both sites dropped to zero after the stored NH₃ completely desorbed from the catalyst. This ability of predicting the NH₃ coverage fraction which cannot be directly measured is valuable for the OBD and control applications.

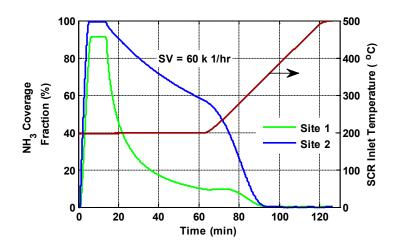


Figure 5.6: Model simulated NH₃ coverage fraction for TPD reactor test for the space velocity of 60,000 hr⁻¹

The model simulated NH_3 concentrations at SCR outlet compared to the experimental measurements as well as the predicted NH_3 coverage fractions on the storage sites for the space velocities of 90,000 and 120,000 hr⁻¹ are given in Appendix H. Similar agreement was observed between simulated and experimental results for different space velocities, indicating the space velocity effects on the NH_3 adsorption and desorption performance were captured by the model.

5.2.2 Model Simulation of Isothermal Reactor Experiments

The performance of the model calibrated to the reactor experimental data was further validated by running simulations over the full isothermal protocol for each tested temperature and space velocity. The model parameters form the calibration to the reactor data shown in Table 5.1 were used in the model. The activation energies in the middle of the confidence intervals determined for each reaction were used for the SCR reactions except the slow SCR and the N₂O formation reactions. Because only temperature runs above 300°C were used for calibration of the slow SCR and N₂O formation reactions, there are more uncertainties in the kinetic parameters in these two reactions. The activation energies for these two reactions were determined by further tuning the parameters in the identified confidence interval to achieve the best simulation results. The model simulated SCR outlet concentrations were compared to the experimental measurements. One typical comparison of SCR outlet NO, NO₂, NH₃, and N₂O concentrations for the temperature of 300°C and the SV of 90,000 hr⁻¹ with the inlet concentrations is shown in Figure 5.7. The simulation results compared to the experimental measurements for other test conditions are shown in Appendix I.

As shown in the figure, the model simulation results agrees with the experimental measurements except a minor over prediction of NH₃ slip under the protocol sections with NO₂/NO_x ratio of 0.5 (steps 7 and 9 in Table 3.15). The NO reduction efficiency of the protocol sections with NO₂/NO_x ratio of zero (steps 11 and s3 in Table 3.15) was slightly overestimated. The N₂O formation and NO₂ reduction efficiency of the protocol sections with NO₂/NO_x ratio of 1.0 (steps 16 and 18 in Table 3.15) was also slightly overestimated. The overall model prediction agrees well with the experimental data during both SCR steady state and transient sections when SCR inlet compositions were changed with a maximum simulation error of 25 ppm observed for NO. The maximum simulation errors for NO₂, NH₃ and N₂O are 20, 10 and 5 ppm respectively.

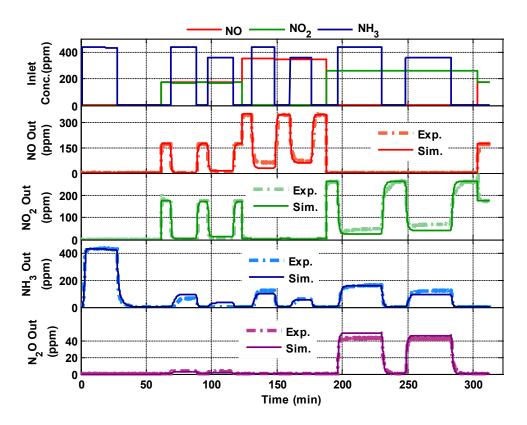


Figure 5.7: SCR outlet concentrations of NO, NO₂, NH₃, and N₂O, comparison between SCR model simulation and experimental measurements. Test conditions: SV = 90,000 hr⁻¹, Temperature = $300^{\circ}C$

The cost function values were used to quantify the agreements between the model simulation results and the experimental measurements. The cost function values of each gas species for all test conditions are given in Table 5.2. It can be observed that all simulation runs give cost function values comparable to the run shown in Figure 5.7 (90,000hr⁻¹, 300°C) except the low temperature test conditions (highlighted) as discussed in Appendix G. This means that the model gives similar agreement with the experimental measurements of the SCR outlet gaseous concentrations under different space velocity and temperature conditions. The space velocity and temperature effects on the reaction rates and the SCR performance are captured by the model.

SV	Temp.	Cost function value for species						
(hr⁻¹)	(°C)	NH ₃	NO	NO ₂	N ₂ O	Total		
	200	30.1	31.5	20.0	24.0	106		
	250	30.9	5.70	26.6	36.1	99.3		
60,000	300	8.79	4.79	5.08	6.05	24.7		
	350	11.6	4.12	3.95	4.94	24.7		
	400	12.0	6.84	4.72	6.15	29.7		
	200	53.8	34.4	29.5	32.6	150		
	225	17.6	13.0	19.2	25.7	75.6		
	250	23.7	4.93	20.6	27.5	76.7		
	275	30.9	6.44	23.8	30.1	91.3		
90,000	300	10.4	5.59	8.41	9.85	34.2		
30,000	325	10.2	7.57	3.81	4.45	26.0		
	350	10.4	6.86	4.30	5.20	26.8		
	375	10.8	6.05	4.25	5.38	26.5		
	400	12.3	5.81	4.87	6.21	29.2		
	425	12.1	6.62	4.73	6.09	29.5		
	200	51.4	47.6	34.3	37.1	170		
	250	55.2	22.5	20.4	22.1	120		
120,000	300	13.4	7.08	9.79	11.4	41.7		
	350	11.1	6.72	3.90	4.70	26.4		
	400	14.9	6.62	5.47	6.89	33.9		
60,000	TPD	5.70	0.00	0.00	0.00	5.70		
90,000	TPD	4.54	0.00	0.00	0.00	4.54		
120,000	TPD	3.99	0.00	0.00	0.00	3.99		

Table 5.2: Cost function values for each gas species from comparison of SCR outlet concentrations between model simulation and experimental measurements

The NH₃ storage predicted by the model was also validated through comparisons with the experimental results. The NH₃ storage on the catalyst under the equilibrium state of certain steps of the test protocol was calculated from experimental results and are given in Figure 5.8. The model simulation results are also shown in the figure for comparison. The x axes of the figure refers to the step number of the isothermal reactor test protocol. Step 2 is the NH₃ inventory section before O₂ was turned on. NH₃ oxidation reactions take place at step 3 and less NH₃ is stored compared to step 2. Steps 6 and 8 are the protocol sections with the NO₂/NO_x ratio of 0.5 and two different ANRs. Steps 11 and 13 are the protocol sections with NO₂/NO_x ratio of 0.0 and two different ANRs. Steps 16 and 18 are the protocol sections with NO_2/NO_x ratio of 1.0. It can be seen that the NH_3 stored during steps 6 to 18 are significantly less than step 2 because part of the NH_3 stored is being consumed by the SCR reactions. The model predicted NH_3 storage is comparable with the experimental results with the maximum simulation error of 11 gmol/m³.

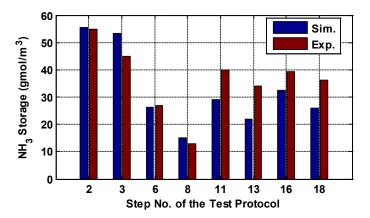


Figure 5.8: Calculated NH₃ stored on the catalyst during certain steps of the reactor protocol for the SV of 90,000 hr⁻¹ and the temperature of 300°C

5.3 SCR Model Calibrated to Engine Data

The model parameters identified from the steady state engine experimental data were shown in Table 5.1 in Section 5.2. The model simulations results were validated against both the steady state and the transient engine experimental data

5.3.1 Model Simulation of Steady State Engine Experiments

The performance of the SCR model with calibration to the steady state engine data was validated by running the simulation with a full set of identified parameters for each test condition and comparing the simulated SCR outlet concentrations of NO, NO₂, and NH₃ with experimental measurements. The cost function values for different gaseous species were used to evaluate the agreement between the simulation results and experimental measurements.

One comparison between the model simulation and experimental measurements of SCR outlet gaseous concentrations under the temperature of 376°C is given in Figure 5.9. The top subplot of the figure shows the SCR inlet concentrations of NO, NO₂ and NH₃. The bottom three subplots show the SCR outlet concentrations of NO, NO2 and NH3 compared between the model simulation and the experimental results. The NH_3 prediction from the SCR model based on the engine data shown as Sim.1 was post processed by the developed sample line model to take into consideration the NH₃ adsorption/desorption in the sample line. The simulated NH₃ processed by the sample line model is shown as Sim.2. It can be seen from Figure 5.9 that the simulation results follow the overall trend of the experimental measurements for NO and NO₂. The model is able to simulate the SCR outlet NO and NO₂ concentrations under both steady state and transient DEF injection conditions when it is switched between different DEF injection rates. The maximum simulation error for NO and NO₂ is 19 ppm. The model simulated NH₃ (Sim1) did not agree with the measured NH₃ concentration from the IMR-MS, and it was determined to be caused by the NH₃ adsorption and desorption phenomenon in the sample line. The simulated NH₃ corrected using the sample line model (Sim2) agrees with the time history experimental measurements with the maximum simulation error of 16 ppm.

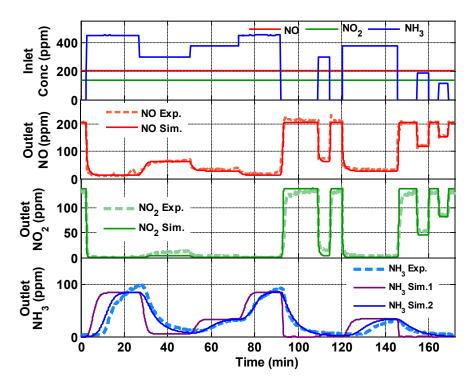


Figure 5.9: Comparison of the SCR outlet gaseous concentrations between simulation results and experimental measurements for test point 2 in Table 3.11 with the temperature of 376°C. (Sim1: SCR model predicted NH₃; Sim2: NH₃ slip processed by the sample line model)

The cost function values of all simulations for steady state SCR experiments are given in Table 5.3. The cost function value for NH_3 from both the SCR model simulation and the sample line model simulation are presented in the table. Since a smaller weighing factor was used for NH_3 in the cost function value calculation during the optimization process, the NH_3 simulation from the SCR model has a higher level of cost function compared to NO and NO_2 . This error was taken care of by the sample line model. It can be observed that the corrected NH_3 slip using the sample line model has smaller cost values compared to the SCR model predictions. The total cost values consider the NH_3 cost function value from the sample line instead of the SCR model. All runs have a comparable low level of cost function values compared to test point 2 which was shown in Figure 5.9 except test point 1 and its repeat which has high NO_x and NH_3 slip concentrations. The simulation errors are higher for this point. The comparisons between model simulation and experimental results for other test points are given in Appendix J.

Run No.	NO	NO ₂	NH₃ SCR Model	NH₃ Sample Line Model	Total
1	18.8	10.9	18.8	13.3	43.0
2	6.91	5.90	17.0	5.20	18.0
3	3.54	4.71	11.3	7.57	15.8
4	4.75	5.47	7.94	5.78	16.0
5	4.57	10.5	10.0	6.04	21.1
6	3.72	6.84	5.89	4.80	15.4
7	6.32	7.15	3.37	3.26	16.7
1'	10.1	8.60	18.2	9.95	28.6
4'	4.34	5.36	6.03	3.71	13.4

Table 5.3: Cost function values for each gas species of the model simulation with identified model parameter

5.3.2 Model Simulation of Transient Engine Experiments

SCR transient experimental data from the surrogate HD-FTP tests were used to validate the SCR model performance under transient engine conditions. The model parameters were varied in the confidence range determined from the engine data to get the best fit for the transient data. A comparison between model simulation and experimental measurements for transient test 1 shown in Table 3.12 is given in Figure 5.10. The changes in the SCR inlet NO and NO₂ concentrations, temperatures and space velocities for the cycle are shown in Figure 3.16 in Section 3.5. In this test, the SCR inlet NO, NO₂ and NH₃ concentrations are shown in the top subplot. The Inlet NH₃ concentration was calculated based on the exhaust mass flow rate and the DEF injection rate as described in Appendix B. In this test, the DEF injection was manually turned on at 2 minutes to study the NH₃ adsorption under transient conditions. The DEF injection was turned off at 15 minutes to allow NH_3 desorption under transient conditions. The DEF injection rate between the 2 and 15 minutes was determined by a default control strategy implanted in the engine ECM. The model simulated SCR downstream NO, NO₂, and NH₃ concentrations were compared to the experimental measurements as shown in Figure 5.10. The NH₃ concentration measurements are from the NH₃ sensor and the simulation was run without the sample line model incorporated. It can be seen that the

simulation results follow the experimental measurements. The simulation errors in NO and NO₂ are obvious after 15 minutes when the DEF injection was turned off. The simulated NH_3 concentration is also lower than the measured NH_3 concentration around 15 minutes. The model predicted species concentrations follow a similar time trend as the experimental measurement results.

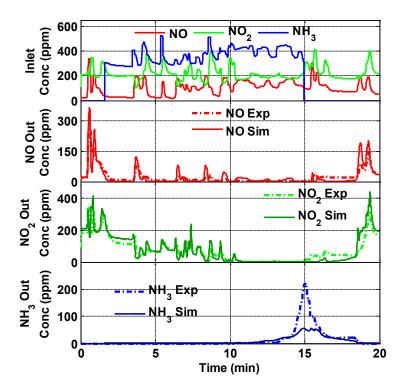


Figure 5.10: Model simulation compared to experimental results for the surrogate HD-FTP transient test 1 with manual control of DEF injection

The SCR inlet and outlet cumulative NO_x and NH_3 as well as the NO_x conversion efficiency of the cycle from both simulation and experiments are shown in Figure 5.11. It can be seen that the model is able to simulate the cumulative SCR outlet NO_x and NH_3 with simulation errors of 1.9 and 1.1 g for NO_x and NH_3 respectively at the end of the cycle. The prediction of NO_x conversion efficiency of the cycle agrees with the experimental results for most of the cycle. The simulation errors mainly exist at the last section of the cycle after the DEF injection was turned off at 15 minutes. The model simulation results compared to the experimental measurements for the five other transient SCR experiments are given in Appendix K.

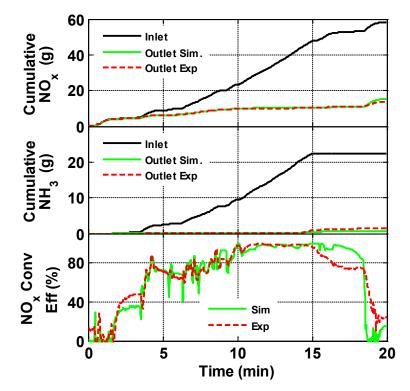


Figure 5.11: Cumulative NO_x , NH_3 and NO_x conversion efficiency of the surrogate HD – FTP cycle, compare between simulation and experimental results for transient test 1

The cost function value of each gas for the transient test 1 shown in Figure 5.10 is given in Table 5.4. The cost function values of each species for each transient test shown in the test matrix of Table 3.12 in Section 3.5 are also given in Table 5.4. Compared to the transient test 1 with results shown in Figure 5.10, higher total cost function values (62.8 compared to 48.4) were observed for transient test 2 with the DEF injection level of 1.2. This is because higher amplitude of NH_3 slip was generated because of overdosing of the DEF during this experiment and the difference in model simulated and experimental measured NH_3 was also higher. The cost function values from all the experiments are comparable, meaning that similar simulation results were obtained.

		Cost function value					
Test No.	DEF Inj Level	NH ₃	NO	NO ₂	Total		
1	Manual	11.1	13.1	24.1	48.4		
2	1.2	46.4	8.20	8.20	62.8		
3	1.0	10.6	9.90	9.48	30.0		
4	0.8	5.10	11.6	13.7	30.4		
5	0.5	0	17.8	23.7	41.5		
6	0.3	0	19.0	21.8	40.8		

Table 5.4: Cost function values of model simulation compared to experimental measurements for transient tests

Higher errors in NO and NO₂ can be noticed for transient tests 5 and 6 with the DEF injection level of 0.5 and 0.3 respectively. One possible explanation is that the NO_x reduction performance of the SCR highly depends on the NH₃ stored on the catalyst. Under the low level of DEF injection, the NH₃ stored on the catalyst is less (shown in Figure 5.12) and is more affected by the changes in SCR space velocity and temperature. Under higher DEF injection level conditions, the NH₃ stored on the catalyst is higher, and a slight change in the NH₃ storage resulting from a change in the space velocity and temperature has relatively less of an effect on the NO_x conversion efficiency. The cost function values in NH₃ of transient tests 5 and 6 are 0 because no NH₃ slip was formed for both model simulation and experiments. Other factors including repeatability of the cycle, analyzer measurement error, and neglecting several SCR reactions (N₂O formation, 2nd NH₃ oxidation reaction and NO oxidation reaction) in the model also contribute to the difference between model simulation and experimental results.

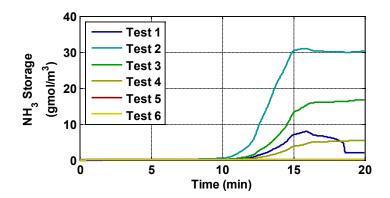


Figure 5.12: Model predicted NH_3 storage on the catalyst during surrogate HD-FTP cycle tests 1-6

The model predicted SCR outlet temperatures compared to the experimental measurements as well as the measured inlet temperatures for the surrogate HD-FTP test are given in Figure 5.13. The subplot (a) shows the measured SCR inlet and outlet temperatures compared with the model predicted SCR outlet temperatures. It can be seen that the outlet temperature follows a similar trend as the inlet temperature. A maximum temperature difference of 30°C was observed. The differences were caused by the heat transfer between the gas flow, the substrate and the ambient. The heat transfer equations with the heat transfer coefficients identified from the temperature data were incorporated in the SCR model to simulate the outlet temperature (Section 4.1.3). The coefficients for heat transfer between gas flow and the substrate and between the substrate and the ambient were determined to be 13.5 and 0.015 W/m²/K respectively. The subplot (b) shows the error between the simulated and experimentally measured SCR outlet temperatures (T_{Sim}-T_{Exp}). It can be seen that the model predictions follow the same trend as the measured outlet temperature. The amplitude and the response to the change in the inlet temperature were correctly predicted with simulation errors within the ± 5°C range for most of the cycle. The biggest error is about 8°C around 18 minutes in the cycle.

The results showed that the model is able to predict the SCR outlet temperatures under transient conditions. By considering the heat transfer in the SCR model, the axial

temperature gradients in the SCR catalyst can be considered in the different axial model elements (described in Section 4.1.3), thus improving the simulation accuracy.

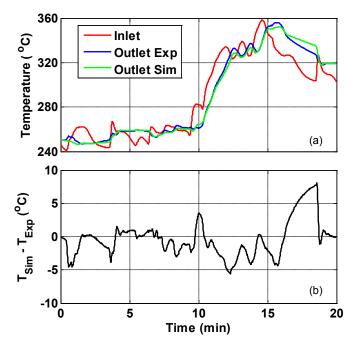


Figure 5.13: Model predicted SCR outlet temperature for the surrogate HD-FTP test

5.3.3 Simulation of NO₂/NO_x Ratio Effects

The NO₂/NO_x ratio at the SCR inlet is an important factor that affects the NO_x reduction performance of the SCR. In engine applications with DOC and CPF installed before the SCR, the NO₂/NO_x ratio going into the SCR is dependent on the DOC oxidation performance as well as the passive regeneration process in the CPF[131]. Reference [132] indicated that aging of the DOC lowers the NO to NO₂ conversion efficiency across the DOC and changes the NO₂/NO_x ratio at the SCR inlet. In this study, the NO₂/NO_x ratio effects on the NO_x reduction performance, NH₃ slip and NH₃ storage under transient conditions were investigated through model simulations with the SCR model calibrated to the engine data.

The model was setup to simulate the SCR performance during the surrogate HD-FTP cycle. The model inlet NO_x concentrations were set to be equal to the inlet NO_x measurements during the cycle test while the NO_2/NO_x ratio was varied from 0 to 1 in the model. The temperature and exhaust mass flow rate measured from the transient test remained in the model. A constant inlet ANR of 1 was used for different NO_2/NO_x ratios. The cumulative NO_x and NH_3 at both SCR inlet and outlet, NH_3 stored on the catalyst and the overall NO_x reduction efficiency were quantified for each NO_2/NO_x ratio simulation.

The simulation results are summarized and given in Table 5.5. The cumulative inlet NH_3 is constant for all runs. The cumulative mass of the inlet NO_x increases with increased NO_2/NO_x ratio because of the higher molecular weight for NO_2 compared to NO and the increasing fraction of NO₂. The cumulative SCR outlet NH₃ is 1.70 grams for the NO_2/NO_x ratio of 0 and it decreases with the NO_2/NO_x ratio approaching 0.5. The outlet NH_3 is lowest for the NO_2/NO_x ratio greater than 0.6. The NH_3 stored on the catalyst at the end of the cycle dropped from 3.4 to 0.08 grams when the inlet NO₂/NO_x ratio was varied from 0 to 1. The fast SCR reaction is becoming dominant when the NO₂/NO_x ratio approaches 0.5 and the greater reaction rate of the fast SCR reaction compared to the standard SCR reaction results in a higher consumption rate of the stored NH₃. When the NO_2/NO_x ratio approaches 1, the slow SCR reaction becomes dominant. The stored NH_3 still decreases although the reaction rate for the slow SCR reaction is low. This is because the slow SCR reaction with a stoichiometric NH₃/NO_x ratio is higher than 1 (1.33) and consumes more NH₃ to reduce the amount of NO₂. The cumulative outlet NO_x and the overall NO_x conversion efficiency of the cycle is highest with the NO₂/NO_x ratio of 0.5, meaning that the optimal NO_x reduction performance under the surrogate HD-FTP transient conditions is achieved with a NO_2/NO_x ratio of 0.5.

This conclusion leads one to envision an engine-aftertreatment system model for the ECU that would control the SCR inlet NO_2/NO_x ratio to around 0.5 in order to achieve the highest NOx conversion efficiency with minimum NH_3 slip.

Inlet NO ₂ /NO _x	Inlet NH₃	Inlet NO _x	Outlet NH₃	Outlet NO _x	NH₃ Stored	NO _x Conversion Efficiency
Ratio	(g)	(g)	(g)	(g)	(g)	(%)
0.0	24.9	44.0	1.70	15.7	3.40	64.3
0.1	24.9	46.4	1.33	13.7	2.89	70.5
0.2	24.9	48.7	0.96	11.5	2.32	76.4
0.3	24.9	51.1	0.63	9.30	1.69	81.8
0.4	24.9	53.4	0.38	7.40	1.08	86.1
0.5	24.9	55.8	0.22	6.60	0.60	88.2
0.6	24.9	58.1	0.18	7.80	0.33	86.6
0.7	24.9	60.5	0.19	10.6	0.21	82.5
0.8	24.9	62.8	0.20	14.0	0.13	77.7
0.9	24.9	65.1	0.20	17.6	0.09	73.0
1.0	24.9	67.5	0.19	21.2	0.08	68.6

Table 5.5: Simulation results of NO₂/NO_x ratio effects

5.4 NH₃ Maldistribution Data and Simulation of Maldistribution Effects

As discussed in Section 5.1, The NH₃ maldistribution at the SCR inlet is considered to be one of the reasons causing the differences in kinetic parameters between the model calibrations developed based on reactor and engine experimental data. In this section, the NH₃ maldistribution level at the SCR inlet was quantified. The NH₃ maldistribution effects on the model parameters as well as on the SCR performance in terms of NO_x conversion efficiency and NH₃ slip are studied and discussed in this section.

5.4.1 NH₃ Maldistribution Experimental Results

The experimental setup and test procedure were introduced in Section 3.7 and the NH_3 maldistribution test matrix is shown in Table 3.13. The uniformity index (UI) shown in Equation 5.1 was introduced to quantify the nonuniformity of the species concentrations.

$$UI = 1 - \frac{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 / n}}{\overline{x}}$$
 5.1

Where, x_i is the gaseous concentration measurement at each location. \bar{x} is the average of all concentration measurements at different locations, and *n* is the total number of measurements. All measurement points, except the center location, were used in the UI calculation. An UI of 1.0 means the distribution is uniform and lower UI means less uniformity. The data process procedures and test results for test point 1 shown in Table 3.13 are described as follows.

The distributions of NO, NO₂ and NO_x concentrations downstream of the SCR without the DEF injection (ANR = 0) for test point 1 are given in Figures 5.14-5.16. It can be observed that the UI for NO, NO₂ and NO_x are 0.99, 0.98 and 0.99 respectively. All the measurements are within the \pm 5 ppm confidence range of the analyzer, indicating that the NO_x distribution without the DEF injection is uniform. The test point 2 also showed the similar results for the distribution of NO_x without the upstream DEF injection. As a result, it was safe to assume uniform distribution of NO_x without upstream DEF injection. For the other test conditions in Table 3.13, only downstream NO_x distribution during the DEF injection was measured.

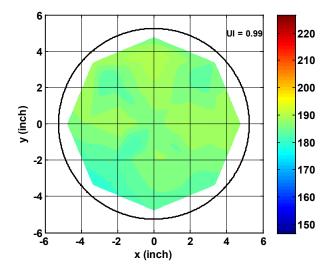


Figure 5.14: Distribution profile of NO with the average ANR of 0 for test point 1

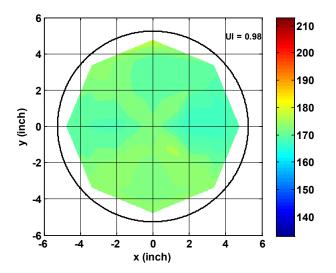


Figure 5.15: Distribution profile of NO_2 with the average ANR of 0 for test point 1

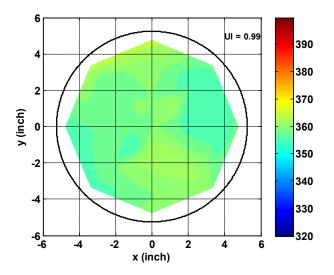


Figure 5.16: Distribution profile of NO_x with the average ANR of 0 for test point 1

The distributions of NO, NO₂ and NO_x concentrations downstream of the SCR with the DEF injection (ANR = 0.3) for test point 1 shown in Table 3.13 are given in Figures 5.17-5.19. The nonuniformity for NO, NO₂ and NO_x with the UI of 0.93, 0.89 and 0.91 were determined. By comparing the distribution profiles determined with and without the DEF

injection, it can be concluded that the maldistribution of NH_3 generated from the injected DEF caused the nonuniformity.

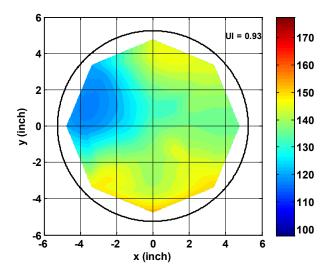


Figure 5.17: Distribution profile of NO with the average ANR of 0.3 for test point 1

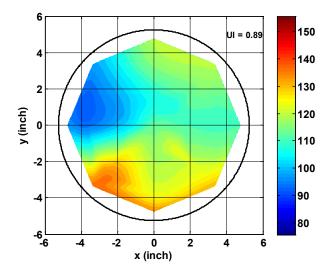


Figure 5.18: Distribution profile of NO_2 with the average ANR of 0.3 for test point 1

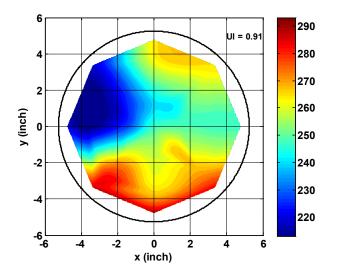


Figure 5.19: Distribution profile of NO_x with the average ANR of 0.3 for test point 1

The differences between the NO_x distribution profiles with and without the DEF injection shown in Figures 5.16 and 5.19 were considered to be the result of the distribution of NH_3 at the SCR inlet. The determined distribution of NH_3 for the average ANR of 0.3 with the UI of 0.79 is shown in Figures 5.20. The determined distribution of ANR is shown in Figure 5.21 with a UI of 0.79 with the average ANR of 0.3.

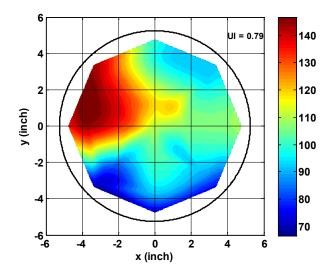


Figure 5.20: Distribution profile of NH_3 with the average ANR of 0.3 for test point 1

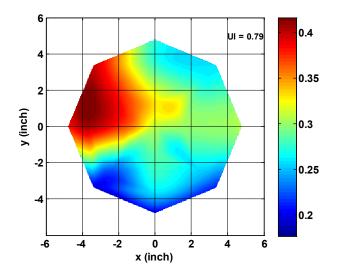


Figure 5.21: Distribution profile of ANR with the average ANR of 0.3 for test point 1

Test number 4, 5 and 6 in Table 3.13 were performed with an additional swirl mixer installed into the SCR inlet cone to further mix the injected DEF with the exhaust flow. The determined ANR distribution at the SCR inlet for test number 5 is given in Figure 5.22. Figure 5.21 shows the determined ANR distribution under the same test condition but without the swirl mixer. It can be seen that the uniformity of ANR at the SCR inlet was improved to a UI of 0.9 with the swirl mixer compared to below 0.8 without the mixer.

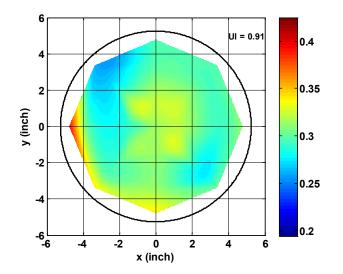


Figure 5.22: Distribution of ANR after installing swirl mixer for condition for test point 5

The NH₃ maldistribution test results are summarized and shown in Table 5.6. The contour plots of the SCR inlet ANR for all test conditions are shown in Appendix L. It can be seen that the SCR inlet NH₃ and the ANR distributions were not uniform (UI < 0.95) for all test conditions. From the comparison between test number 1 and 2, it can be observed that the changes in exhaust mass flow rate slightly affects the uniformity of the SCR inlet NH₃ and ANR. With the exhaust mass flow rate increased from 4.23 to 9.89 kg/min, the UI of the SCR inlet NH₃ and ANR was reduced from 0.79 to 0.76. From the comparison between test number 4 and 6, it can be seen that the change in the SCR inlet temperature did not affect the uniformity of the SCR inlet NH₃ and ANR. From the comparison between test number 2 and 3, it can be observed that slightly higher UI (0.78 compared to 0.76) was achieved with higher DEF injection rate which gave an average ANR of 0.65. The NH₃ uniformity is improved by installing the additional swirl mixer into the SCR inlet cone. The uniformity index of the NH₃ and ANR with the mixer is around 0.90 compared to below 0.80 without the mixer.

Because it is difficult to achieve different NH_3 maldistribution levels in the engine test cell, and it is time and cost consuming for running engine experiments, the NH_3

maldistribution effects on the SCR performance were determined through simulation studies as introduced in the following section.

Test No.	Exh Mass Flow Rate (kg/min)	SCR Inlet Temp. (°C)	SCR Inlet Average ANR	SCR Inlet Average NH₃ (ppm)	Standard Deviation in SCR inlet NH ₃ (ppm)	UI of Determined SCR inlet NH₃ and ANR
1	4.23	350	0.30	106	22.2	0.79
2	9.89	350	0.30	82	19.6	0.76
3	9.89	350	0.65	179	38.9	0.78
4*	4.20	300	0.30	108	9.41	0.91
5*	4.20	350	0.30	104	9.76	0.91
6*	10.0	350	0.30	83	9.38	0.89

Table 5.6: Test results for the NH₃ maldistribution tests

* Test No. 4, 5 and 6 were performed with an additional swirl mixer in the SCR inlet cone.

5.4.2 NH₃ Maldistribution Effects on SCR Performance

A series of simulation studies were carried out for different SCR conditions to understand the NH₃ maldistribution effects on the SCR performance. A multi-channel model based on the high fidelity SCR model calibrated to the reactor data was setup for the simulation. The model contained 24 separate channels with different inlet ANR levels to simulate the inlet NH₃ maldistribution. A schematic of the model setup is shown in Figure 5.23. As shown in the figure, the average ANR was multiplied by a maldistribution factor A(i) for each individual channel. The maldistribution factors representing different UIs were generated from a normal distributions based on a mean value of 1.0 and different standard deviations. The probability distribution function of the maldistribution factors for the UI of 0.7, 0.8, and 0.9 is given in Figure 5.24. The average of the outlet concentrations from each channel were considered as the simulated outlet concentrations. The model also gave predictions of gaseous concentrations and NH₃ storage at different axial locations of each channel.

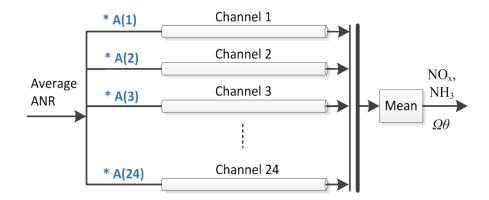


Figure 5.23: Schematic showing the setup of the model for maldistribution effects simulation

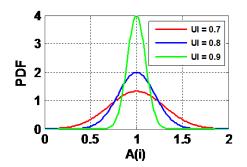


Figure 5.24: Probability distribution function of maldistribution factors for the UI of 0.7, 0.8 and 0.9

A four-step simulation protocol for the NO₂/NO_x ratio of 0 shown in Figure 5.25 was devised to investigate the maldistribution effects on the NH₃ storage and of NO_x reduction efficiency. The inlet gases also include 7.0% H₂O, 8.0% CO₂, and 10.0% O₂ to simulate a typical engine exhaust gas condition. The complete set of simulation conditions is given in Table 5.7. Three SCR temperatures and one space velocity of 60,000 hr⁻¹ with NO₂/NO_x ratio of 0, 0.5 and 1.0 were simulated. For each simulation condition, the average inlet ANR was changed from 0.6 to 1.2 with a interval of 0.2. For each average ANR of each condition, three different maldistribution levels with UI of 0.7, 0.8, 0.9 and a uniform condition (UI = 1.0) were simulated.

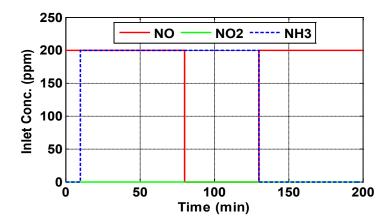


Figure 5.25: Setup of the SCR inlet concentrations for simulation

Table 5.7: Simulation conditions for maldistribution effect study

Space	SCR	NO₂/NO _x	Average	UI
Velocity (hr ⁻¹)	Temp. (°C)	Ratio	ANR	
60,000	250, 300, 350	0, 0.5, 1.0	0.6, 0.8, 1.0, 1.2	0.7, 0.8, 0.9, 1.0

The simulated NO_x reduction efficiencies and NH₃ slip as a function of the average ANR for different UIs under the SCR temperature of 300°C and NO₂/NO_x ratio of 0.0 is shown in Figures 5.26 and 5.27. It can be observed that the decrease in UI reduced the NO_x reduction and increased the NH₃ slip when the average inlet ANR is above 0.6. When changing the UI from 0.7 to 1.0 with an average of 1.0, the NO_x reduction efficiency was increased by 10% and the NH₃ slip was reduced by 15 ppm. The SCR performance with UIs of 0.9 and 1.0 is close. The UI effects were similar for the average ANR of 1.0 and 1.2 and were less obvious with lower average ANRs. This is because all of the NH₃ participates with the NO_x reduction reactions when the average ANR is low. When the average ANR is close to 1.0, the inlet ANR of certain channels might get higher than 1.0. The excessive NH₃ left after reacting with NO_x exits the channel as NH₃ slip. The NH₃ storage was not significantly affected by the different values of UI.

Figure 5.26: NOx reduction efficiency and $\rm NH_3$ slip as a function of average ANR for different UI

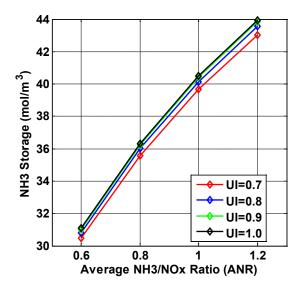


Figure 5.27: NH₃ storage as a function of average ANR for different UI

Similar effects were observed in the other simulation runs. The NO_x reduction was reduced by 5-10% with 10 to 20 ppm increase in NH_3 slip for the different conditions.

The NH₃ slip can be oxidized with the ammonia oxidation catalyst (AMOX) in the production aftertreatment system. However, reducing the SCR outlet NH₃ through optimal mixing helps reduce the DEF consumption. Smaller maldistribution effects were observed with a NO₂/NO_x ratio of 1.0. This is probably because the NO_x reduction is kinetic limited under this situation because of the low reaction rates of the slow SCR reaction mechanisms.

5.4.3 Maldistribution Effects on SCR Model Parameters

As discussed above, there were differences in the SCR model parameters when calibrated to reactor versus engine test cell data as shown in Table 5.1. In order to determine if the NH_3 maldistribution is a factor causing the differences, a simulation study of the engine experimental data was carried out by running the reactor data based model with multiple channels and nonuniform inlet NH_3 .

A comparison of the SCR model simulation from a single channel model calibrated to the engine data compared to the steady state SCR engine test results is shown in Figure 5.9. The test condition for this run was 1720 rpm, 503 N·m with a SCR inlet temperature of 376°C. The test was performed before the additional swirl mixer was installed. It can be seen that the model is able to follow the time histories of the SCR outlet NO, NO₂, and NH₃. Because of the different model parameters in the SCR model calibrated to reactor data, simulation results of the same set of engine experimental data using a single channel reactor data based model showed obvious disagreements with the data. The comparison of SCR reactor data based model simulation results with engine data is given in Figure 5.28. It can be seen that the model simulated results show higher NO_x conversion efficiency and lower NH₃ slip compared to the experimental data during the DEF injection periods. It should be noted that the sample line model was incorporated in order to compare the simulated NH₃ slip with the IMR-MS measurements.

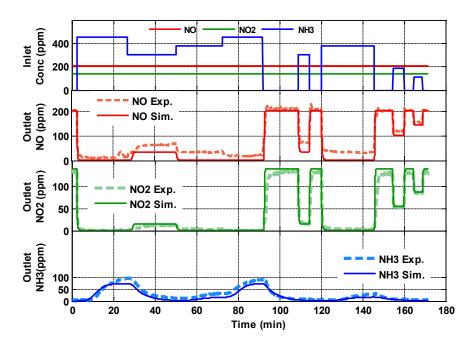


Figure 5.28: Single channel SCR model simulation results with calibration to reactor data compared to engine experimental data

In order to take the NH₃ maldistribution effect into account when running the simulation, the multi-channel model was setup with model parameters developed from the reactor data to simulate the engine experimental data. The model also contained 24 channels with a different inlet NH₃ concentration for each channel. The inlet NH₃ concentration of each channel was assigned by applying a maldistribution factor generated based on the maldistribution test results. A contour plot of the normalized maldistribution factors has a mean value of 1.0 and UI of 0.79 which is the same as the maldistribution test results.

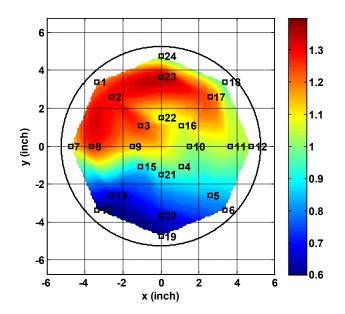


Figure 5.29: Contour plot of the maldistribution factors applied to each channel of the 24channel model with parameters developed from the reactor data

The average of outlet concentrations from each channel is considered as the model simulated outlet concentrations. The multi-channel model simulation results compared to the engine experimental data is shown in Figure 5.30. It can be observed that the simulation results still showed lower outlet NO and higher NO₂ concentrations. The simulated NH₃ slip post processed by the sample line model follows the time history of the engine experimental data. The cost functions values for NO, NO₂, and NH₃ for the simulation results from both the single and multi-channel models are given in Table 5.8. Lower overall cost function values were achieved by considering the NH₃ maldistribution with the multi – channel model. Compared to the single model simulation results with model parameters based on reactor data shown in Figure 5.28, the multi-channel model with same model parameters gave simulation results which are closer to the engine experimental data by taking maldistribution effects into consideration. The conclusion is that the maldistribution effect is a factor causing the different model parameters between the SCR model calibrated to reactor and engine experimental data. The SCR model calibrated to the engine data takes the complex engine exhaust conditions into account and is able to simulate the SCR system with those effects.

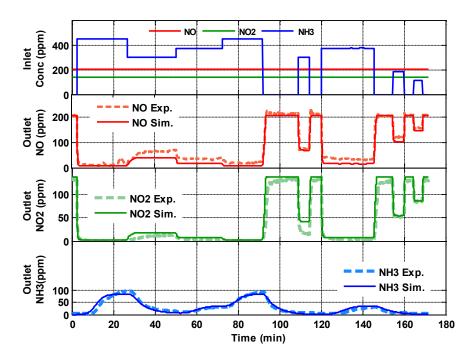


Figure 5.30: Multi-channel model simulation results compared to engine experimental data

Table 5.8: Cost values for simulation results from the single and multi-channel models

	NO	NO ₂	NH₃	Total
Single Channel Model	21.9	5.52	8.90	36.3
Multi Channel Model	14.1	7.15	5.50	26.8

5.5 SCR Thermal Aging Data and Effects

The representative published experimental studies of the thermal aging effects on the SCR catalyst have been introduced in Section 2.6. It was concluded that the thermal aging deactivates the NO_x reduction performance of the SCR and reduces the NH_3 storage capacity. However, no modeling or kinetics study of the thermal aging effects has been published. In this study, both a de-greened and hydrothermally aged Cuzeolite SCR catalyst were tested with the improved Spaci-IR technique developed at ORNL to reveal the thermal aging effects on the axially resolved concentration and

storage profiles. The experimental data also provided opportunities for analyzing the aging effects on the SCR kinetics from the modeling aspect.

In order to prevent undesired high local space velocity observed from previous Spaci-IR experiments, several improvements were made for the thermal aging testing. Those improvements include (1) four capillaries with bigger diameters (0.65 mm outer diameter) were used to sample from four different SCR channels, (2) longer core SCR sample so that there is higher exhaust mass flow rate going into each channel for a given space velocity, (3) Higher SCR inlet NO_x and NH_3 concentrations to increase measurable concentration levels at different axial locations and (4) lower reactor pressure [133].

Both the de-greened and aged Cu-zeolite SCR core samples were 8 cm in length and 2 cm in diameter. The de-green condition was 700°C for four hours with 20 % O_2 , 4.5 % H_2O and balance N_2 while the aging condition was 800°C for 16 hours under same gas compositions to simulate 220,000 km of vehicle aging [115]. The samples were tested under three temperatures of 250, 300 and 350°C and a constant space velocity of 40,000 hr⁻¹. A simplified eight step test protocol shown in Figure 5.31 was conducted with concentrations being measured at nine different axial locations of the catalyst channel for each temperature. The detailed information about each step of the protocol is shown in Table 5.9. The experimental data were used to quantify the axial concentration and NH_3 storage profiles for both the de-greened and aged catalysts. The data process procedures are similar to the procedures introduced in Appendix F.

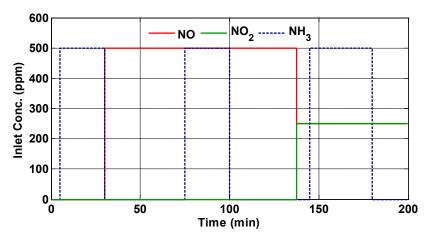


Figure 5.31: Test protocol for SCR hydrothermal aging tests

Table 5.9: Details for each s	step of the Spaci-IR aging test protocol

Step	Description	NO (ppm)	NO ₂ (ppm)	NH ₃ (ppm)
1	Stabilize	0	0	0
2	NH ₃ saturation	0	0	500
3	NH_3 inventory, $NO_2/NO_x = 0$	500	0	0
4	$NH_3/NO_x = 1.0; NO_2/NO_x = 0$	500	0	500
5	NH_3 inventory: $NO_2/NO_x = 0$	500	0	0
6	Stabilize NO, $NO_2/NO_x = 0.5$	250	250	0
7	NH ₃ / NO _x = 1.0; NO ₂ /NO _x = 0.5	250	250	500
8	NH_3 inventory, $NO_2/NO_x = 0.5$	250	250	0

A comparison of the cumulative NH₃ stored on the catalyst at the equilibrium state of steps 2, 4 and 7 as functions of fractional axial position under different temperatures are shown in Figure 5.32. For both aging conditions, it can be seen that the NH₃ stored decreases under all conditions with increase in temperature. Step 2 of the protocol is the NH₃ saturation condition with highest storage levels. The cumulative NH₃ stored increases linearly with the axial length of the catalyst channel. The last measurement point near the end of the channel showed a different trend because of the heavier washcoat loading on the substrate. Compared to the de-greened catalyst, the NH₃ stored on the aged catalyst is about 30% lower at all three temperatures. This is because the thermal aging "reduces the number and/or the stability of the NH₃ storage sites" [133]. Step 4 is the standard SCR condition with a NO₂/NO_x ratio of 0 and ANR of

1. The stored NH₃ kept increasing from the inlet to outlet under the temperature of 250°C with a lowered increasing rate towards the end of the catalyst channel. This is because the NH_3 concentration decreases along the catalyst length and the storage is a function of the NH₃ concentration. The stored NH₃ stopped increasing from 0.4 of the catalyst length under the temperature of 350°C, meaning that there is no NH₃ storage after the 0.4 axial location. The reason is that the NH_3 is completely converted in the first 0.4 catalyst length. The difference in the NH₃ stored between this condition and the NH₃ saturation condition were consumed by the reactions between NO and the NH₃. The NH₃ stored on the aged catalyst is lower than the de-greened catalyst but the smaller differences were observed compared to the NH_3 saturation condition (Step 2). Step 4 is the fast SCR condition with a NO₂/NO_x ratio of 0.5 and ANR of 1. It can be seen that the NH₃ stored on the catalyst is about 50% less compared to the standard SCR reaction under all three temperatures. This is because the fast SCR reaction with a much higher reaction rate is dominant under this condition and consumes more stored NH₃, resulting in less NH_3 storage at the equilibrium state compared to the standard SCR reaction. Similarly, the cumulative NH₃ stored stopped increasing after 0.4 of the catalyst length under all three temperatures, meaning that the NH_3 persisted shorter after entering the SCR than the standard SCR reaction. The differences in the NH₃ stored between the degreened and aged catalysts are not obvious at step 4 except the first 4 measurement locations under 250 and 300°C. The reason for this is a combination of the decrease in the NH₃ storage capability and the different axial concentration profiles.

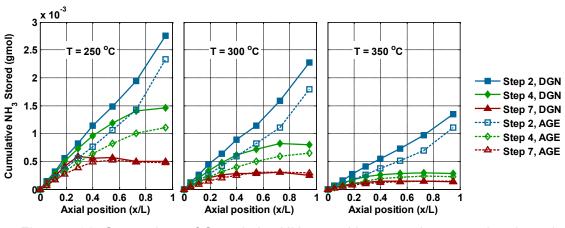


Figure 5.32: Comparison of Cumulative NH₃ stored between de-greened and aged catalysts

The axial NO_x and NH₃ concentration distribution profiles under the temperature 350°C for both de-greened and aged catalysts are shown in Figure 5.33. It can be seen the NH_3 concentrations at the last measurement position are zero for both aging conditions. The aging effect on the SCR outlet NO_x concentrations is small with a difference less than 8 ppm at the last axial measurement position. That means that the hydrothermal aging does not significantly change the overall conversion efficiencies for NO_x and NH₃ under the space velocity of 40,000 hr⁻¹. Obvious differences in axial NO_x and NH₃ concentration profiles were observed internal the SCR channel. Compared to the degreened catalyst, the concentration profiles for the aged catalyst were shifted towards the outlet direction of the catalyst, meaning relatively higher NO_x and NH₃ concentrations at different axial locations and slower NO_x and NH₃ conversion rates. The reduced NH₃ storage capability along with the different axial concentration profiles resulted in the differences and similarities in stored NH₃ at steps 4 and 7 shown in Figure 5.32. From the NO_x and NH₃ concentration profiles at step 7 shown in Figure 5.33, it can be observed that the NH₃ concentration agrees with the NO_x concentration for the degreened catalyst. The NH₃ concentration is slightly lower than the NO_x concentration for the aged catalyst, indicating that there is a slight NH₃ overconsumption. This could be explained by a relatively higher NH₃ oxidation reaction rate for the aged catalyst under this temperature. It was reported in reference [44,114] that hydrothermal aging under 850°C for 10 hours may lead to an increase in the NH₃ oxidation reaction and the oxidation selectivity to NO_x. The slower conversion rate of NO_x and NH₃ and the different concentration profiles observed from the aged catalyst can be explained by lowered reaction rate caused by thermal aging. This could be due to a reduction in NH₃ storage capability or a decrease in reaction rate constant cause by deactivation of the catalytic material or both. However, "it's not clear if these two impacts are independent or directly related" [133]. In order to answer this question, a modeling study was conducted to further study the characteristics of the catalysts with different aging conditions and explain the hydrothermal aging effects on the kinetics of the SCR.

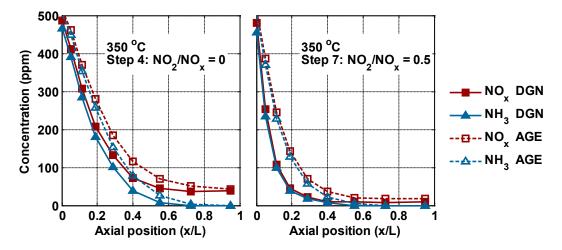


Figure 5.33: Axial NO_x and NH₃ distribution profiles at steps 4 and 7 under the temperature of 350° C

A modeling procedure based on the Spaci-IR data was introduced in Section 4.2. A similar procedure was carried out for both de-greened and aged catalysts to determine the aging effects on the kinetic parameters from the modeling perspective. For the purpose of simplifying the calculation, a 1-site modeling approach was used to compute the total ammonia storage. The first step was to determine the storage capacity of the catalysts. The NH₃ storage as a function of temperature for both de-greened and aged catalysts are shown in Figure 5.34. Based on the NH₃ storage and Equation 4.16 which was previously derived from the model equations, the total storage capacity of the catalysts (Ω), and the relationships of the kinetic parameters between the NH₃ adsorption and desorption reactions (Aads/Ades, Eads-Edes) can be calculated. The results for both catalysts are shown in Table 5.10. Zero activation energy was applied to the adsorption reaction because it was typically considered as a non-activated reaction.

It can be seen through the comparison in Table 5.10 that the storage capacity of the catalyst is reduced by 30% after the hydrothermal aging. The lowered desorption reaction activation energy and a different Aads/Ades ratio indicates that the adsorption and desorption properties of the catalyst are also changed.

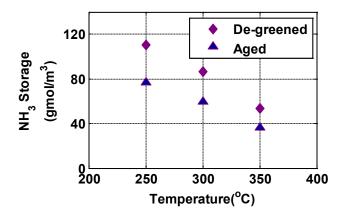


Figure 5.34: NH₃ storage as a function of temperature for de-greened and aged catalysts

Parameter	De-greened	Aged	Unit	
Ω	138	94.6	gmol/m ³	
Aads / Ades	4.29 e-2	3.67 e-1	none	
Eads	0	0	kJ/gmol	
Edes	38.2	28.6	kJ/gmol	

Table 5.10: Details for each step of the Spaci-IR aging test protocol

A comparison of cumulative NH₃ stored under the NH₃ saturation condition (step 2) between the experimental and model simulation results is shown in Figure 5.35. It can be seen that the model is able to simulate the NH₃ storage under different temperatures for both de-greened and aged catalysts. The last axial measurement point does not agree with the simulation results because the heavier washcoat loading at the end of the core catalyst sample (due to the catalyst manufacturing process) was not considered in the model.

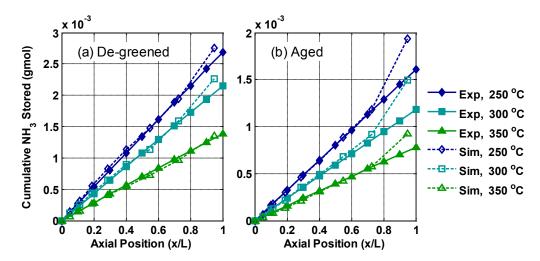


Figure 5.35: Experimental and simulated cumulative NH₃ stored under NH₃ saturation condition for both de-greened and aged catalysts

The kinetics for the NH₃ oxidation, standard SCR and fast SCR reactions were then analyzed based on the model equations and the experimental results from steps 2, 4 and 7 of the test protocol. The NH₃ adsorption, desorption and oxidation reactions take place at step 2 of the test protocol. The equilibrium state depends on the reaction rates of the three reactions as shown in Equation 4.17. The axial gradients in NH₃ concentration is caused by the NH₃ oxidation reaction as shown in Equation 4.19. Along with the storage parameters identified above, the kinetic parameters for the NH₃ oxidation reaction were quantified. Here it was assumed that the oxidation is selective to N_2 . A comparison in the determined pre-exponential factor and activation energy for the NH_3 oxidation reaction between de-greened and aged catalysts is shown in Table 5.11. Compared to the de-greened catalyst, the thermal aging caused about 20 kJ/gmol decrease in the activation energy and more than one magnitude decrease in the preexponential factor. A visualized comparison of the reaction rate constants in Arrhenius form is shown in Figure 5.36. It can be seen that the decrease in pre-exponential factor and the activation energy resulted in higher reaction rate constants for the aged catalyst for the temperatures studied. This agrees with the findings in reference [44,114].

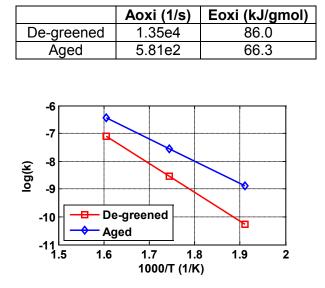


Table 5.11: Kinetic parameters for NH₃ oxidation reaction

Figure 5.36: Arrhenius form plot of the NH₃ oxidation reaction rate constants

A similar analysis was carried out to compare the kinetics of the standard and fast SCR reactions based on the experimental data at steps 4 and 7 of the test protocol. The standard and fast SCR reactions are dominant at steps 4 and 7 respectively and the assumption that only the dominant reaction takes place at certain steps was made to exclude the effects of unimportant reactions and simplify the analysis. The axial concentration gradient as a function of the reaction rates is given in Equation 4.19. The reaction rate equations for the standard and fast SCR reactions can be found in Table 4.1. The parameters in the equations except the reaction rate constants can be computed from the experimental data. The parameters include flow velocity, axial concentration gradients, local gaseous concentration and local NH₃ storage, leaving the reaction rate constant to be solved. As a result, the reaction rate constants for the standard and fast SCR reactions on each axial element defined by the two measurement points can be determined by solving Equation 4.19 and the reaction rate equations. Compared to the NH₃ concentration profile at step 2, the axial NO_x and NH₃ gradients at steps 4 and 7 are much larger because of the reaction rates of the standard and fast SCR reactions are higher than the NH_3 oxidation reaction. The NO_x and NH_3 concentrations as well as the concentration gradients dropped close to zero at the rear half of the catalyst channel. Slight scatter in experimental measurements may cause big errors in the reaction rate constant calculation results. As a result, only the first three axial elements with significant gaseous concentration and gradient levels were considered in the analysis. After the calculations, the averaged reaction rate constants of the first three elements were plotted in Arrhenius form for both standard and fast SCR reactions as shown in Figure 5.37. The pre-exponential factor and the activation energy for each reaction were calculated based on the Arrhenius plot and are given in Table 5.12. It can be observed that the hydrothermal aging has effects on both the standard and the fast SCR reactions by reducing the activation energy as well as the pre-exponential factor. The effect on the fast SCR reaction is more obvious since the reaction rate constant decreases by about one magnitude. The effect on the standard SCR reaction is not obvious as compared to the fast SCR reaction.

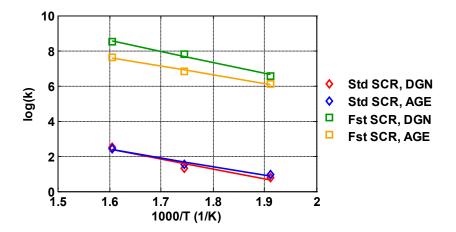


Figure 5.37: Arrhenius form plot of the reaction rate constants for standard and fast SCR reactions

Parameter	De-greened	Aged	Units	
Afst	1.40e8	6.13e6	m ⁶ /gmol ² ⋅s	
Efst	52.8	41.6	kJ/gmol	
Astd	9.99e4	2.33e4	m³/gmol·s	
Estd	47.3	39.9	kJ/gmol	

Table 5.12: Kinetic	parameters for the standard and fast SCR reactions

To summarize, the hydrothermal aging condition of 800° C for 16 hours has effects on both the NH₃ storage capability of the catalyst and the kinetic parameters of the major SCR reactions. Both factors contributed to the change in the axial storage and concentration profiles observed from the experiments. It should be noted that the analysis was based on a series of assumptions and simplified calculations with the purpose of revealing the changes in the kinetic parameters caused by different aging conditions.

Chapter 6.

Summary and Conclusions

The goal of this research was to develop a high fidelity SCR model that simulates the NO_x conversion, NH_3 slip and NH_3 storage and determine the critical kinetic parameters controlling the dynamics of the SCR system performance under varying temperatures, space velocities, exhaust inlet species, inlet ammonia maldistribution levels as well as hydrothermal aging with controlled DEF injection for a Cu-zeolite SCR catalyst and quantify their impacts on ammonia storage and NO_x conversion. A further goal that evolved from this research was to explain why the kinetic parameters of the model calibrated to the reactor data were different than the parameters calibrated to the engine data. The goals have been met through coupled experimental and modeling studies. The purpose of the model development and the engine data has been to support the development of a reduced order SCR estimator model. The accomplishments and the findings from the study as well as the recommendations for the future work are given in this chapter.

6.1 Summary

A high fidelity multi-step global kinetic 1D 2-site SCR model with mass transfer, heat transfer and SCR chemical reactions was developed for a Cu-zeolite catalyst. The model simulates the axially resolved gaseous concentrations in the gas and surface phases, gas and wall temperatures as well as the NH₃ storage in the catalyst.

An engine-dynamometer test setup with a full production aftertreatment system was developed and instrumented for experimental studies of the diesel aftertreatment system under various conditions. The SCR engine experimental data suitable for system characterization and model development were collected in the test cell. The test cell is capable of running both steady state and automated transient cycle tests. A surrogate HD-FTP cycle was developed to simulate the representative transients in order to study the aftertreatment system performance under typical transient conditions in the test cell. An exhaust heater was installed to independently control the temperature of the exhaust gas into the aftertreatment system.

Steady state SCR engine experiments were performed to collect the SCR data under different temperatures and varying upstream DEF injection conditions. A series of transient SCR experiments with different DEF injection levels were performed.

The Cu-zeolite SCR core taken from an identical catalyst was tested in a flow reactor at ORNL using test protocols designed to study the SCR performance under different space velocities, temperatures and inlet gaseous compositions. A Spaci-IR technique was utilized to measure the axially resolved gaseous concentrations in the SCR catalyst to quantify the axial concentration and NH₃ storage profiles. The reactor data were used for calibration of the high fidelity SCR model to determine the storage capacities and the kinetic parameters associated with different SCR reactions included in the model. A calibration procedure and the identified model parameters were presented. The simulation results of the calibrated model were compared to the experimental results.

The high fidelity SCR model was calibrated to the steady state engine experimental data using the model parameters identified from the reactor data as a basis. A different set of the model parameters were determined for the SCR engine data. The heat transfer coefficients were identified from the temperature measurements during the transient cycle tests. The calibrated model was validated by simulating both the steady state and transient experiments and comparing the simulation results with the experimental measurements. The model and the kinetic parameters have been used by Surenahalli, et al to develop a reduced order SCR estimator model [22].

The NH_3 measurement delay in the SCR engine experiments caused by the NH_3 adsorption in the sampling line was experimentally studied. A sample line model which simulates the NH_3 adsorption and desorption processes in the sample line was

developed. The model consists of a NH_3 storage site and includes NH_3 adsorption and desorption reactions. The model parameters including the NH_3 storage capacity in the sampling line, NH_3 adsorption and desorption reaction rates were determined from sample line experimental data.

The NH_3 maldistribution at the SCR inlet in the engine experiments were quantified through measuring the species concentrations at different radial locations of the SCR outlet face in the engine test cell. The effects of the NH_3 maldistribution on the SCR performance and the kinetic model parameters were studied through simulations with a multi-channel SCR model consisting of 24 SCR channels running in parallel. The differences in the kinetic model parameters between the models calibrated to the reactor and engine data were explained by the NH_3 maldistribution at the inlet to the SCR on the engine.

The hydrothermal aging effects were studied by comparing the Spaci-IR experimental results for both de-greened (at 700°C for 4 hours) and aged (at 800°C for 16 hours) SCR catalysts. The hydrothermal aging effects on the NH_3 storage capacity and the SCR reaction kinetics were quantified.

6.2 Conclusions

The 2-site modeling approach is necessary for the Cu-zeolite SCR. Adding the 2^{nd} site which adsorbs and desorbs NH₃ improved the prediction accuracy in the axially resolved NH₃ storage. A 2^{nd} standard SCR reaction with higher NH₃ to NO stoichiometric ratio is necessary for the model to simulate the NH₃ overconsumption observed under the standard SCR reaction conditions in the reactor experiments. The high fidelity SCR model calibrated to the reactor data is able to capture the effects of space velocity and temperature on the reaction rates. The calibrated model is able to simulate the SCR outlet concentrations of NO, NO₂, N₂O and NH₃ as well as the NH₃ storage under space velocities from 60,000 to 120,000 hr⁻¹ and temperatures from 200 to 425°C with simulation cost values consistently below 30.

The high fidelity SCR model calibrated to the engine data accounts for the complex engine exhaust conditions and is able to simulate the SCR outlet concentrations of NO, NO₂, NH₃ and NH₃ storage under steady state and transient conditions. A maximum temperature difference of 30°C was measured between the SCR inlet and outlet for the transient cycle. The difference was caused by the heat transfer between the gas flow, the substrate and the ambient. The heat transfer equations with heat transfer coefficients of 13.5 and 0.015 W/m²/K are necessary for the SCR model to predict the outlet temperatures under transient conditions. Considering the axial temperature gradients in the model helps improve the model simulation accuracy.

The effects of the SCR inlet NO₂/NO_x ratio on the NO_x reduction efficiency and the NH₃ slip were studied through simulation studies of the surrogate HD-FTP cycle. The simulation results showed that the SCR NO_x conversion efficiency is highest (88.2%) with an inlet NO₂/NO_x ratio of 0.5. The NH₃ stored on the catalyst decreased with increase in inlet NO₂/NO_x ratio under transient conditions. The NH₃ slip is minimum for the inlet NO₂/NO_x ratio greater than 0.6.

The NH₃ measurements from the emission analyzer were delayed by 3 to 6 minutes in the engine experiments. This phenomenon was determined to be caused by the NH₃ adsorption and desorption process in the sample line. The effect of this delay needs to be considered when calibrating the model to the experimental data. The sample line model developed from experimental data is able to simulate the NH₃ adsorption and desorption process in the sampling line. The NH₃ storage capacity for the sample line heated to 190°C was determined to be 0.12 gmol/m³. The NH₃ adsorption and desorption reaction rate constants were determined to be 3.5 m³/gmol·s and 0.01 1/s respectively. Incorporating the sampling model into the SCR model simulations reduced the simulation cost value by about 34% for the steady state time history NH₃ slip predictions.

Differences in the model parameters were observed from the model calibrations developed separately from the reactor and engine experimental data. This indicates that the SCR performed differently in the engine exhaust conditions than the reactor test

environments. The reactor experiments are important for characterization of the SCR performance and to study the basic kinetics of the catalyst. A SCR model calibrated to the engine data accounts for the complex engine environments and is suitable for on-vehicle control and diagnostic function developments.

The NH₃ maldistribution was determined to be present at the SCR inlet in the engine experiments and was quantified through experiments and data processing. The results showed that the uniformity index (UI) of the NH₃ at the SCR inlet is less than 0.8 with the original hardware setup and is improved to about 0.9 with a swirl mixer installed into the SCR inlet cone. The results of the simulation studies showed that the NH₃ maldistribution reduces the SCR NO_x reduction efficiency by 5 to 10% and increases the NH₃ slip about 10 to 20 ppm. The simulation results from a multi-channel SCR model with nonuniform NH₃ input confirmed that the NH₃ maldistribution contributes to the differences in the model parameters identified from the reactor and engine data. The SCR model calibrated to the engine data accounts for the NH₃ maldistribution phenomena and serves as a basis for developing the reduced order model and computationally efficient state estimators.

The hydrothermal aging condition of 800°C for 16 hours has effects on both the NH_3 storage capability of the catalyst and the kinetic parameters of the major SCR reactions. The NH_3 storage capacity was reduced from 138 to 94.6 gmol/m³ compared to a degreened catalyst (de-green condition: 700°C for 4 hours). The hydrothermal aging also resulted in different NH_3 adsorption/desorption kinetics and reduced activation energy/pre-exponential factor for NH_3 oxidation, standard and fast SCR reactions. Both the reduction in NH_3 storage capacity and change in SCR kinetics contributed to the changes in the axial storage and concentration profiles observed from the experiments.

6.3 Recommendations

An emission analyzer with the capability of measuring species including NO, NO₂, NH₃, N₂O and HNCO without interference is important for SCR testing. N₂O is produced in the

SCR under high NO_2/NO_x ratios and low temperatures and HNCO is one of the urea decomposition products that might be present in the exhaust. Measurements of these species are helpful for further understanding the urea decomposition process and the SCR performance. A FTIR that can measure multiple gaseous concentrations in the diesel exhaust is recommended for the SCR testing.

The SCR performance at low temperatures (< 250°C) should be given more attention in the engine experiments. In this study, the SCR inlet temperature was limited to above 250°C to prevent effects caused by the formation of solid urea crystallization. An injection system with higher injection pressure or other technologies improving the injection quality and better mixer designs might be helpful to reduce the urea crystallization at low temperatures.

It is recommended to collect the SCR reactor data in a wider temperature range which covers from the idle or low load to the CPF active regeneration conditions. Efforts should be made to calibrate the model to the wider temperature window to improve the calibration. The recommended temperature range is from 150 to 600°C.

The urea decomposition process is complex and directly affects the amount of available NH_3 at the SCR inlet. Understanding the urea decomposition process and correctly modeling the process would be helpful to determine the actual NH_3 concentration at the inlet of the SCR. Efforts are recommended to be made in the future to test and model the urea decomposition reactions. It requires overcoming the difficulties of measuring the urea decomposition products without causing damage to the analyzers. The ammonium nitrate formation and decomposition reactions are recommended to be added into the high fidelity SCR model to simulate the inhibition effects under temperatures below $300^{\circ}C$ and NO_2/NO_x ratios higher than 0.5. Supplemental reactor experiments are necessary for collecting SCR data suitable for calibration of the reactions.

An engine-aftertreatment system model for the ECM that controls the SCR inlet NO_2/NO_x ratio to around 0.5 is important in order to achieve the highest NO_x conversion efficiency with minimum NH_3 slip.

References

- 1. DOE/EIA, Alternatives to Traditional Transportation Fuels 2009, 2011
- U.S. Energy Information Administration, Annual Energy Outlook 2012 Early Release Overview, 2012
- 3. Yanowitz J, Mccormick RL, Graboski MS. In-Use Emissions from Heavy-Duty Diesel Vehicles. *Environmental Science & Technology* 2000;34:729-740, 2000.
- 4. EPA, DOT, NHTSA. Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles, 2011.
- 5. Johnson TV. Diesel Emission Control Last 12 Months in Review. SAE Technical Paper 2000-01-2817, 2000.
- Johnson TV. Diesel Emission Control: 2001 in Review. SAE Technical Paper 2002-01-0285, 2002.
- Johnson TV. Diesel Emission Control in Review The Last 12 Months. SAE Technical Paper 2003-01-0039, 2003.
- Johnson TV. Diesel Emission Control in Review. SAE Technical Paper 2007-01-0233, 2007.
- Timothy V. Johnson. Diesel Emission Control in Review. SAE Technical Paper 2008-01-0069, 2008.
- 10. Johnson TV. Diesel Emission Control in Review. SAE Technical Paper 2009-01-0121, 2009.
- 11. Johnson TV. Review of Diesel Emissions and Control. SAE Technical Paper 2010-01-0301, 2010.
- Johnson TV. Diesel Emissions in Review. SAE Technical Paper 2011-01-0304, 2011.
- 13. Johnson TV. Vehicular Emissions in Review. SAE Technical Paper 2012-01-0368, 2012.
- 14. Emission Standards, Available from: www.dieselnet.com.
- Kim CH, Qi G, Dahlberg K, Li W. Strontium-Doped Perovskites Rival Platinum Catalysts for Treating NO_x in Simulated Diesel Exhaust. *Science* 2010;327:1624-1627, 2010.

- Massimo Colombo, Isabella Nova, Enrico Tronconi. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. *Catalysis Today* 2010;151:223-230, 2010.
- 17. Fujii S, Asako T. Design Optimization of Non-Catalyzed DPF from Viewpoint of Back Pressure in Ash loading State. SAE Technical Paper 2011-01-2091, 2011.
- Chatterjee D, Burkhardt T, Weibel M, Nova I, Grossale A, Troncon E. Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters. SAE 2007-01-1136, 2007.
- Steven J. Schmieg, Jong-Hwan Lee. Evaluation of Supplier Catalyst Formulations for the Selective Catalytic Reduction of NO_x With Ammonia SAE Technical Paper 2005-01-3881, 2005.
- 20. Cloudt R, Willems F, Heijden Pvd. Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards. SAE Technical Paper 2009-01-0915, 2009.
- 21. Selective Catalytic Reduction, Available from: http://en.wikipedia.org/wiki/Selective_catalytic_reduction.
- Surenahalli HS, Parker GG, Johnson JH. Extended Kalman Filter Estimator for NH₃ Storage, NO, NO₂ and NH₃ Estimation in a SCR. SAE Technical Paper 2013-01-1581, 2013.
- Deland SB, Development and Parameter Identification of An Iron-Zeolite SCR Catalyst Model Using Reactor Data, Master's thesis. Houghton, MI: Michigan Technological University; 2010.
- Khair M, Lemaire J, Fischer S. Achieving Heavy-Duty Diesel NO_x/PM Levels Below the EPA 2002 Standards - An Integrated Solution. SAE Technical Paper 2000-01-0187, 2000.
- Khair M, Lemaire J, Fischer S. Integration of Exhaust Gas Recirculation, Selective Catalytic Reduction, Diesel Particulate Filters, and Fuel-Borne Catalyst for NO_x/PM Reduction. SAE Technical Paper 2000-01-1933, 2000.
- 26. Zelenka P, Aufinger H, Reczek W, Cartellieri W. Cooled EGR A Key Technology for Future Efficient HD Diesels. SAE Technical Paper 980190, 1998.
- 27. Baert RSG, Beckman DE, Veen A. Efficient EGR Technology for Future HD Diesel Engine Emission Targets. SAE Technical Paper 1999-01-0837, 1999.

- Charlton S, Dollmeyer T, Grana T. Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer. SAE Technical Paper 2010-01-1934, 2010.
- Hums E, Joisten M, Mtiller R, Sigling R, Spielmann H. Innovative Lines of SCR Catalysis" NO_x Reduction for Stationary Diesel Engine Exhaust Gas and Dioxin Abatement for Waste Incineration Facilities. *Catalysis Today* 1996;27(1996):29-34, 1996.
- Nakajima F, Hamada I. The State-of-the-art Technology of NO_x Control. *Catalysis Today* 1996;29:109-115, 1996.
- 31. Amon B, Fischer S, Hofmann L, Zürbig J. The SINOx System for Trucks to Fulfill the Future Emission Regulations. *Topics in Catalysis* 2001;16/17:187-191, 2001.
- Fritz N, Mathes W, Zuerbig J, Mueller R. On-Road Demonstration of NO_x Emission Control for Diesel Trucks with SINO_x Urea SCR System. SAE Technical Paper 1999-01-0111, 1999.
- Brodrick CJ, Farsh-chi M, Dwyer HA, Sperling D, Gouse SW, Doelling W, Hoelzer J, Jackson M. Urea-SCR System Demonstration and Evaluation for Heavy-Duty Diesel Trucks. SAE Technical Paper 1999-01-3722, 1999.
- Miller WR, Klein JT, Mueller R, Doelling W, Zuerbig J. The Development of Urea-SCR Technology for US Heavy Duty Trucks. SAE Technical Paper 2000-01-0190, 2000.
- Scarnegie B, Miller WR, Bernd Ballmert WD, Fischer S. Recent DPF/SCR Results Targeting US2007 and Euro 4/5 HD Emissions. SAE Technical Paper 2003-01-0774, 2003.
- McGeehan JA, Yeh S, Couch M. On the Road to 2010 Emissions: Field Test Results and Analysis with DPF-SCR System and Ultra Low Sulfur Diesel Fuel. SAE 2005-01-3716 2005.
- Cavataio G, Girard JW, Lambert CK. Cu/Zeolite SCR on High Porosity Filters: Laboratory and Engine Performance Evaluations. SAE Technical Paper 2009-01-0897, 2009.
- Kro[°]cher O, Elsener M. Combination of V₂O₅/WO₃-TiO₂, Fe-ZSM5, and Cu-ZSM5 Catalysts for the Selective Catalytic Reduction of Nitric Oxide with Ammonia. *Ind Eng Chem Res* 2008;47 (22):8588-8593, 2008.

- Girard JW, Montreuil C, Kim J, Cavataio G, Lambert C. Technical Advantages of Vanadium SCR Systems for Diesel NO_x Control in Emerging Markets. SAE Technical Paper 2008-01-1029, 2008.
- 40. Ura JA, Girard J, Cavataio G, Montreuil C, Lambert C. Cold Start Performance and Enhanced Thermal Durability of Vanadium SCR Catalysts. SAE Technical Paper 2009-01-0625, 2009.
- Chapman DM, Fu G, Augustine S, Crouse J, Zavalij L, Watson M, Perkins-Banks
 D. New Titania Materials with Improved Stability and Activity for Vanadia-Based
 Selective Catalytic Reduction of NO_x. SAE Technical Paper 2010-01-1179, 2010.
- Gekas I, Vressner A, Johansen K. NO_x Reduction Potential of V-SCR Catalyst in SCR/DOC/DPF Configuration Targeting Euro VI Limits from High Engine NO_x Levels. SAE Technical Paper 2009-01-0626, 2009.
- 43. Kamasamudram K, Currier NW, Chen X, Yezerets A. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol. *Catalysis Today* 2010;151:212–222, 2010.
- Fedeyko JM, Chen H-Y, Ballinger TH, Weigert EC, Chang H-L, Cox JP, Andersen PJ. Development of Thermally Durable Cu/SCR Catalysts. SAE Technical Paper 2009-01-0899, 2009.
- 45. Kamasamudram K, Currier N, Szailer T, Yezerets A. Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures. SAE Technical Paper 2010-01-1182, 2010.
- Cavataio G, Girard J, Patterson JE, Montreuil C, Cheng Y, Lambert CK. Laboratory Testing of Urea-SCR Formulations to Meet Tier 2 Bin 5 Emissions. SAE Technical Paper 2007-01-1575, 2007.
- 47. Girard J, Cavataio G, Snow R, Lambert C. Combined Fe-Cu SCR Systems with Optimized Ammonia to NO_x Ratio for Diesel NO_x Control. *SAE Int J Fuels Lubr* 2008;1:603-610, 2008.
- 48. Grossale A, Nova I, Tronconi E. Ammonia Blocking of the "Fast SCR" Reactivity over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment. *Journal of Catalysis* 2009;265:141-147, 2009.

- Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M. The Chemistry of the NO/NO₂–NH₃ "fast" SCR Reaction over Fe-ZSM5 Investigated by Transient Reaction Analysis. *Journal of Catalysis* 2008;256:312-322, 2008.
- 50. Fedeyko JM, Chen B, Chen H-Y. Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts. *Catalysis Today* 2010;151 231–236, 2010.
- Grossale A, Nova I, Tronconi E. Study of a Fe–zeolite-based System as NH₃-SCR Catalyst for Diesel Exhaust Aftertreatment. *Catalysis Today* 2008;136:18– 27, 2008.
- 52. Metkar PS, Harold MP, Balakotaiah V. Selective catalytic reduction of NO_x on combined Fe- and Cu-zeolite monolithiccatalysts: Sequential and dual layer configurations *Applied Catalysis B: Environmental* 2012;111–112:67–80, 2012.
- 53. Sjo[°]vall H, Blint RJ, Olsson L. Detailed Kinetic Modeling of NH₃ SCR over Cu-ZSM-5. *Applied Catalysis B: Environmental* 2009;92:138-153, 2009.
- Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweiler W. Effect of Oxygen Concentration on the NO_x Reduction with Ammonia over V₂O₅–WO₃/TiO₂ Catalyst. *Catalysis Today* 2006;113:208-214, 2006.
- 55. Goo JH, Irfan MF, Kim SD, Hong SC. Effects of NO₂ and SO₂ on Selective Catalytic Reduction of Nitrogen Oxides by Ammonia. *Chemosphere* 2007;67:718–723, 2007.
- Girard J, Snow R, Cabaralo G, Lambert C. The Influence of Ammonia to NO_x Ratio on SCR Performance. SAE Technical Paper 2007-01-1581, 2007.
- 57. Nova I, Colombo M, Tronconi E, Schmeisse V, Weibel M. The NH₃ Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study. SAE Technical Paper 2011-01-1319, 2011.
- 58. Uberoi M, Pereira CJ. External Mass Transfer Coefficients for Monolith Catalysts *Ind Eng Chem Res* 1996;35:113-116, 1996.
- Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M. NH₃–NO/NO₂ SCR for Diesel Exhausts Aftertreatment: Reactivity, Mechanism and Kinetic Modelling of Commercial Fe- and Cu-Promoted Zeolite Catalysts. *Top Catal* 2009;52:1837– 1841, 2009.

- Choi J-S, Partridge WP, Daw CS. Spatially Resolved In situ Measurements of Transient Species Breakthrough During Cyclic, Low-Temperature Regeneration of a Monolithic Pt/K/Al₂O₃ NO_x Storage-Reduction Catalyst. *Applied Catalysis A: General* 2005;293:24-40, 2005.
- Shakir O, Yezerets A, Currier NW, Epling WS. Spatially Resolving Concentration and Temperature Gradients during the Oxidation of Propylene on Pt/Al₂O₃. *Applied Catalysis A: General* 2009;365:301-308, 2009.
- Hou X, Epling WS, Schmieg SJ, Li W. Cu-Zeolite SCR Catalyst Thermal Deactivation Studied with FTIR Spatial Resolution. SAE Technical Paper 2011-01-1138, 2011.
- 63. Luo J-Y, Hou X, Wijayakoon P, Schmieg SJ, Li W, Epling WS. Spatially resolving SCR reactions over a Fe/zeolite catalyst. *Applied Catalysis B: Environmental* 2011;102:110-119, 2011.
- Henry C, Kamasamudram K, Currier N, Yezerets A. Axially Resolved Performance of Cu-Zeolite SCR Catalysts. SAE Technical Paper 2012-01-1084, 2012.
- 65. J. Arregle, V. Bermu'dez, J.R. Serrano, E. Fuentes. Procedure for engine transient cycle emissions testing in real time. *Experimental Thermal and Fluid Science* 2006;30:485-496, 2006.
- Castagnola M, Caserta J, Chatterjee S, Chen H-Y, Conway R, Fedeyko J, Klink W, Markatou P, Shah S, Walker A. Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications. SAE Technical Paper 2011-01-1329, 2011.
- 67. Cloudt R, Saenen J, Eijnden Evd, Rojer C. Virtual Exhaust Line for Model-based Diesel Aftertreatment Development. SAE Technical Paper 2010-01-0888, 2010.
- El-Behery A, Rideout G, Iretskaya S, Meloche E, Tadrous T, Rosenblatt D, Brown K. Development and Field Performance Validation of a Retrofit SCR System for on-Road Heavy-Duty Application. SAE Technical Paper 2010-01-1186, 2010.
- Walkowicz K, Na K, Robertson W, Sahay K, Bogdanoff M, Weaver C, Carlson R.
 On-Road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and

B99 on a Retrofit Urea-SCR Aftertreatment System. SAE Technical Paper 2009-01-2733, 2009.

- Abu-Ramadan E, Saha K, Li X. Numerical Modeling of the Impingement Process of Urea-Water Solution Spray on the Heated Walls of SCR Systems. SAE Technical Paper 2012-01-1301, 2012.
- Dong H, Shuai S, Wang J. Effect of Urea Thermal Decomposition on Diesel NO_x-SCR Aftertreatment Systems. SAE Technical Paper 2008-01-1544, 2008.
- 72. Xu L, Watkins W, Snow R, Graham G, McCabe R, Lambert C, III ROC. Laboratory and Engine Study of Urea-Related Deposits in Diesel Urea-SCR After-Treatment Systems. SAE Technical Paper 2007-01-1582, 2007.
- Sluder CS, Storey JME, Lewis SA, Lewis LA. Low Temperature Urea Decomposition and SCR Performance. SAE Technical Paper 2005-01-1858, 2005.
- Howard L. Fang, Herbert F.M. DaCosta. Urea thermolysis and NO_x reduction with and without SCR catalysts. *Applied Catalysis B: Environmental* 2003;46:17-34, 2003.
- 75. M. Kleemann, M. Elsener, M. Koebel, A. Wokaun. Hydrolysis of Isocyanic Acid on SCR Catalysts. *Ind Eng Chem Res* 2000;39:4120-4126, 2000.
- Abu-Ramadan E, Saha K, Li X. Modeling of the Injection and Decomposition Processes of Urea-Water-Solution Spray in Automotive SCR Systems. SAE Technical Paper 2011-01-1317, 2011.
- 77. McKinley TL, Alleyne AG. A Urea Decomposition Modeling Framework for SCR Systems. SAE Technical Paper 2009-01-1269, 2009.
- Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal Decomposition (Pyrolysis) of Urea in an Open Reaction Vessel. *Thermochimica Acta* 2004;424 131–142, 2004.
- 79. Choi E-Y, Nam I-S, Kim YG. TPD Study of Mordenite-Type Zeolites for Selective Catalytic Reduction of NO by NH₃. *Journal of Catalysts* 1996;161:597–604, 1996.
- Kato A, Matsuda S, Kamo T, Nakajima F, Kuroda H, Narita T. Reaction between NO, and NH₃, on Iron Oxide-Titanium Oxide Catalyst. *Phys Chem* 1981;85:4099-4102, 1981.

- Hamada I, Kato Y, Imada N, Kikkawa H, Yamada A. A Unique Titania-Based SCR NO_x Catalyst for Diesel Exhaust Emission Control. SAE Technical Paper 2005-01-1859, 2005.
- Narayanaswamy K, He Y. Modeling of Copper-Zeolite and Iron-Zeolite Selective Catalytic Reduction (SCR) Catalysts at Steady State and Transient Conditions. SAE Technical Paper 2008-01-0615, 2008.
- Schär CM, Onder CH, Geering HP. Control of an SCR Catalytic Converter System for a Mobile Heavy - Duty Application. *IEEE Transaction on Control* System Technology 2006;14:641-653, 2006.
- 84. Chi JN, DaCosta HFM. Modeling and Control of a Urea-SCR Aftertreatment System. SAE Technical Paper 2005-01-0966, 2005.
- Devarakonda M, Parker G, Johnson JH, Strots V, Santhanam S. Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System. SAE Technical Paper 2008-01-1324, 2008.
- Shost M, Noetzel J, Wu M-C, Sugiarto T, Bordewyk T, Fulks G, Fisher GB. Monitoring, Feedback and Control of Urea SCR Dosing Systems for NO_x Reduction: Utilizing an Embedded Model and Ammonia Sensing. SAE Technical Paper 2008-01-1325, 2008.
- 87. Colombo M, Nova I, Tronconi E. A Comparative Study of the NH₃-SCR Reactions over a Cu-zeolite and a Fe-zeolite Catalyst. *Catalysis Today* 2010;151:223-230, 2010.
- Centi G, Perathoner S, Biglino D, Giamello E. Adsorption and Reactivity of NO on Copper on - Alumina Catalysts. *Journal of Catalysis* 1995;152:75-92, 1995.
- Xu L, McCabe RW, Hammerle RH. NO_x Self-Inhibition in Selective Catalytic Reduction with Urea (Ammonia) over a Cu-Zeolite Catalyst in Diesel Exhaust. *Applied Catalysis B: Environmental* 2002;39:51–63, 2002.
- Schrade F, Brammer M, Schaeffner J, Langeheinecke K, Kraemer L. Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System. SAE Int J Engines 2012;5:958-974, 2012.
- Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M. Unifying Redox Kinetics for Standard and Fast NH₃ - SCR over a V₂O₅ - WO₃ / TiO₂ Catalyst. *AIChE Journal* 2009;55:1514-1529, 2009.

- 92. Forzatti P, Nova I, Tronconi E. Removal of NO_x from Diesel Exhausts: The New "Enhanced NH₃-SCR" Reaction. SAE Technical Paper 2010-01-1181, 2010.
- Devarakonda MN, Dynamic Modeling, Simulation and Development of Model-Based Control Strategies in a Urea-SCR Aftertreatment System in Heavy Duty Diesel Engines, PhD Thesis. Houghton: Michigan Technological University; 2007.
- 94. Watling TC, Tutuianu M, Desai MR, Dai J, Markatou P, Johansson A. Development and Validation of a Cu-Zeolite SCR Catalyst Model. SAE Technical Paper 2011-01-1299, 2011.
- 95. Lietti L, Nova I, Tronconi E, Forzatti P. Transient kinetic study of the SCR-DeNO_x reaction. *Catalysis Today* 1998;45:85-92, 1998.
- 96. Chatterjee D, Burkhardt T, Weibel M, Tronconi E, Nova I, Ciardelli C. Numerical Simulation of NO/NO₂/NH₃ Reactions on SCR-Catalytic Converters: Model Development and Applications. SAE Technical Paper 2006-01-0468, 2006.
- Markatou P, Dai J, Johansson A, Wassim Klink MC, Watling TC, Tutuianu M. Fe-Zeolite SCR Model Development, Validation and Application. SAE Technical Paper 2011-01-1304, 2011.
- 98. Schuler A, Votsmeier M, Malmberg S, Gieshoff J, Drochner A, Vogel H, Kiwic P. Dynamic Model for the Selective Catalytic Reduction of NO with NH₃ on Fe-Zeolite Catalysts. SAE Technical Paper 2008-01-1323, 2008.
- S.Metkar P, Balakotaiah V, Harold MP. Experimental Study of Masstransfer Limitations in Fe- and Cu-Zeolite-Based NH₃ - SCR Monolithic Catalysts. *Chemical EngineeringScience* 2011;66:5192–5203, 2011.
- Balakotaiah V, West DH. Shape Normalization and Analysis of The Mass Transfer Controlled Regime in Catalytic Monoliths. *Chemical Engineering Science* 2002;57:1269-1286, 2002.
- 101. West DH, Balakotaiah V, Jovanovic Z. Experimental and Theoretical Investigation of the Mass Transfer Controlled Regime in Catalytic Monoliths. *Catalysis Today* 2003;88:3-16, 2003.
- 102. Shamim R. Effect of Heat and Mass Transfer Coefficients on the Performance of Automotive Catalytic Converters. *International Journal of Engine Research* 2003;4:129-141, 2003.

- Ullah U, Waldram SP, Bennett CJ, Truex T. Monolithic Reactors: Mass Transfer Measurements under Reacting Conditions. *Chemical Engineering Science* 1992;47:2413–2418, 1992.
- 104. Kapas N, Shamim T, Laing P. Effect of Mass Transfer on the Performance of Selective Catalytic Reduction (SCR) Systems. *Journal of Engineering for Gas Turbines and Power* 2011;133:032801, 2011.
- 105. Santos A, Bahamonde A, Schmid M, Avila P, Garcı´a-Ochoa F. Mass Transfer Influences on the Design of Selective Catalytic Reduction (SCR) Monolithic Reactors. *Chemical Engineering and Processing* 1997;37:117–124, 1997.
- 106. Ruggeri MP, Nova I, Tronconi E. Experimental and Modeling Study of the Impact of Interphase and Intraphase Diffusional Limitations on the DeNO_x Efficiency of a V-Based Extruded Catalyst For NH₃–SCR Of Diesel Exhausts. *Chemical Engineering Journal* 2012;207–208:57–65, 2012.
- 107. Chatterjee D, Burkhardt T, Rappe T, Güthenk A, Weibel M. Numerical Simulation of DOC+DPF+SCR Systems: DOC Influence on SCR Performance. SAE Technical Paper 2008-01-0867, 2008.
- Surenahalli HS, Parker GG, Johnson JH, Devarakonda MN. A Kalman Filter Estimator for a Diesel Oxidation Catalyst during Active Regeneration of a CPF. 2012 American Control Conference 2012;4969 - 4974
- Williams A, Ratcliff M, Pedersen D, McCormick R. Effect of Unburned Methyl Esters on the NO_x Conversion of Fe-Zeolite SCR Catalyst. SAE Technical Paper 2009-01-2777, 2009.
- Devarakonda M, Tonkyn R, Herling D. Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study. SAE Technical Paper 2010-01-1171, 2010.
- Montreuil C, Lambert C. The Effect of Hydrocarbons on the Selective Catalyzed Reduction of NO_x over Low and High Temperature Catalyst Formulations. SAE Technical Paper 2008-01-1030, 2008.
- Devarakonda M, Tonkyn R, Tran D, Lee J, Herling D. Modeling Species Inhibition of NO Oxidation In Urea-SCR Catalysts for Diesel Engine NO_x Control. ICEF 2010-35054, 2010.

- 113. Girard J, Snow R, Cavataio G, Lambert C. Influence of Hydrocarbon Storage on the Durability of SCR Catalysts. SAE Technical Paper 2008-01-0767, 2008.
- 114. Cavataio G, Jen H-W, Warner JR, Girard JW, Kim JY, Lambert CK. Enhanced Durability of a Cu/Zeolite Based SCR Catalyst. SAE Technical Paper 2008-01-1025, 2008.
- 115. Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, Kim DH. Thermal Durability of Cu-CHA NH₃-SCR Catalysts for Diesel NO_x Reduction. *Catalysis Today* 2012;184:252-261, 2012.
- 116. Johansson Å, Wallin U, Karlsson M, Isaksson A, Bush P. Investigation on Uniformity Indices Used for Diesel Exhaust Aftertreatment Systems. SAE Technical Paper 2008-01-0613, 2008.
- 117. McKinley TL, Alleyne AG, Lee C-F. Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation. SAE Technical Paper 2010-01-0883, 2010.
- 118. Karlsson M, Wallin U, Fredholm S, Jansson J, Wahlström G-O, Schär CM, Onder CH, Guzzell L. A Combined 3D/Lumped Modeling Approach to Ammonia SCR After-treatment Systems: Application to Mixer Designs. SAE Technical Paper 2006-01-0469, 2006.
- 119. Hua L, Zhao Y-g, Hu J, Tao T, Shuai S-J. Comparison Between Air-Assisted and Airless Urea Spray for Diesel SCR System by PDA and CFD. SAE Technical Paper 2012-01-1081, 2012.
- Zhang X, Romzek M. 3-D Numerical Study of Flow Mixing in Front of SCR for Different Injection Systems. SAE Technical Paper 2007-01-1578, 2007.
- 121. Chen M, Williams S. Modelling and Optimization of SCR-Exhaust Aftertreatment Systems. SAE Technical Paper 2005-01-0969, 2005.
- Koltsakis GC, Samaras ZC, Echtle H, Chatterjee D, Markou P, Haralampous OA.
 Flow Maldistribution Effects on DPF Performance. SAE Technical Paper 2009-01-1280, 2009.
- Martin AP, Will NS, Bordet A, Cornet P, Gondoin C, Mouton X. Effect of Flow Distribution on Emissions Performance of Catalytic Converters. SAE Technical Paper 980936, 1998.

- 124. Hutton CR, An Experimental Investigation Into The Passive Oxidation Of Particulate Matter In A Catalyzed Particulate Filter, Master's Thesis. Michigan Technological University; 2010.
- 125. Ciardelli C, Nova I, Tronconi E, Ascherfeld M, Fabinski W. Combined Use of a Mass-Spectrometer and a UV Analyzer in the Dynamic Study of NH3-SCR for Diesel Exhaust Aftertreatment. *Topics in Catalysis* 2007;42-43:161-164, 2007.
- 126. Chilumukuru KP, An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter during Active Regeneration, Master's Thesis. Houghton: Michigan Technological University; 2008.
- 127. Emission Test Cycles: Heavy-Duty FTP Transient Cycle, Available from: http://dieselnet.com/standards/cycles/ftp_trans.php.
- Song X, Parker G, Johnson J, Naber J, Pihl J. A Modeling Study of SCR Reaction Kinetics from Reactor Experiments. SAE Technical Paper 2013-01-1576, 2013.
- Pant A, Schmieg SJ. Kinetic Model of NO_x SCR Using Urea on Commercial Cu-Zeolite Catalyst. *Ind Eng Chem Res* 2011;50:5490–5498, 2011.
- Metkar PS, P.Harold M, Balakotaiah V. Experimental and Kinetic Modeling Study of NH₃-SCR of NO_x on Fe-ZSM-5, Cu-chabazite and Combined Fe-and Cuzeolite Monolithic Catalysts. *Chemical Engineering Science* 2013;87:51–66, 2013.
- 131. Joo K, Jo J-H, Kim C, Lee J-h, Kim H-j. The Study of NO_x Reduction using Urea-SCR System with CPF and DOC for Light Duty Vehicle; the Diesel NO_x Reduction System. SAE Technical Paper 2008-01-1183, 2008.
- Shiel K, Naber J, Johnson J, Hutton C. Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel. SAE Technical Paper 2012-01-0837, 2012.
- 133. Song X, Parker G, Pihl J, Aging Impact on Ammonia Storage Report, Deliverable Report to DOE: DE-EE0000204-10,2013
- 134. Novaa I, Ciardellia C, Tronconia E, Chatterjeeb D, Weibelb M. NH₃-NO/NO₂ SCR for Diesel Exhausts After Treatment: Mechanism and Modelling of a Catalytic Converter. *Topics in Catalysis* 2007;42–43:43-46, 2007.

Appendix A. IMR-MS Start up and Calibration procedures

The analyzer needs to be turned on at least two days before the test to allow enough time for the analyzer to be warmed up when testing. The sensitivity of a cold analyzer is not stable and the measurements shift a lot. The source gas bottles in the analyzer should be turned on to flush the gas lines and remove any possible oxygen leaked into the system. The oxygen in the system may cause defects of the filament which generates electrons. The analyzer needs to be connected to the computer via a crossover cable for the initial startup. Switch on the power switch to turn on the analyzer. The display on the RF generator shows the status of the analyzer. As the analyzer warms up it will have a red LED bar on the display. It will go to Red-Green after the analyzer is ready for operation. Then turn on the computer which is connected to the analyzer and has V&F Viewer software installed. Open the V&F View and connect to the analyzer by selecting "Connect" from the menu item "File \rightarrow Connect". Then choose the right measurement method that was set up for the test from the upper part of the software interface. The procedures of setting up the measurement methods are available in the user manuals. Leave the analyzer under "Standby" or "Measure" condition to warm up.

The IMR-MS needs to be calibrated to the calibration gases before each test. The V&F Viewer software provides two ways of calibration including an automatic calibration of the interested species selected and manual calibration of each species. The procedure of the automatic calibration can be found in the user manual. To start a manual calibration, select the calibration channel which is associated with the interested calibration gas from the "Sample inlet" function on the upper part of the software interface. This enables the analyzer to start measuring the calibration gas. Wait until the signal gets stabilized. Then right click the interested species from the "Molecule List" on the left hand side of the software interface and select "Channel Calibration". Type in the calibration gas concentration and click OK. Then repeat the procedure for each species

that needs to be calibrated. The manual calibration should be performed after obtaining a good background by zeroing the analyzer with N_2 . A automatic calibration combined with manual calibration was usually performed to achieve a good calibration.

To shut down the analyzer, turn off the software first before switching off the power supply to prevent from losing data by switching off the power while running. Select "Shut down analyzer" from the tools menu of the V&F Viewer program to turn off the software. Then switch off the power switch located at the front panel of the analyzer. Then turn off the source gas bottle to prevent any possible leakage when not running.

Appendix B. Calibration of the DEF Injector

The NH₃ concentration at the SCR inlet generated from the DEF injection is determined by the DEF injection rate, urea properties, and exhaust flow rate. In order to achieve the desired NH₃ concentration, it is important to accurately control the DEF injection flow rate injected into the exhaust flow. The DEF injection rate is controlled by sending flow rate command to the engine ECM through the Cummins proprietary software which inter communicates with the engine ECM. The injector is calibrated to accurately give the desired DEF flow rate. A calibration process conducted without running the engine is described as follows:

- 1. Disconnect the injector from the mount on the exhaust pipe.
- 2. Position a 500 ml graduated cylinder underneath the DEF injector.
- 3. Start the DEF injection with a flow rate command of 0.02 ml/sec. Continue the injection until measurable volume of DEF is collected in the cylinder.
- 4. Remove the graduated cylinder and place it on a level surface. Wait until there are no bubbles in the DEF collected, and then record the volume of DEF that is injected

into the cylinder. Pour the DEF back to the tank, and start over at the next higher injection flow rate.

The relationship between the flow rate commands (Flowrate_Cmd) sent to the ECM and the actual DEF injection rates calculated (Flowrate_Act) is shown in Figure B.1. A linear trend line was added to characterize the relationship. The calibration process was repeated during the engine testing period to verify the repeatability of the injector. Two additional calibration curves are also given in Figure B.1.

The urea concentration of the DEF is 32.5% by weight. The decomposition of 1 urea molecule forms two NH₃ molecules through a series of reactions[76]. As a result, the calculation of the available SCR inlet NH₃ concentration when applying an injection command value of Flowrate_Cmd is given as the following equation.

$$C_{_{NH_3}} = \frac{Flowrate_{_{Act}} \times \rho_{_{DEF}} \times 0.325 \times \frac{2}{_{MW_{_{Urea}}}}}{\frac{Flowrate_{_{Exh}}}{_{MW_{_{Exh}}}}} = \frac{(Flowrate_{_{Cmd}} \times 1.0177 + 0.0013) \times \rho_{_{DEF}} \times 0.325 \times \frac{2}{_{MW_{_{Urea}}}}}{\frac{Flowrate_{_{Exh}}}{_{MW_{_{Air}}}}}$$

Where, ρ_{DEF} is the density of the DEF which is 1080kg/m³ under room condition. MW_{urea} is the molecular weight of the urea molecule which is 60 g/gmol, MW_{Exh} is the molecular weight of the exhaust gas and it is considered to be equal to that of air which is 28.8 g/gmol.

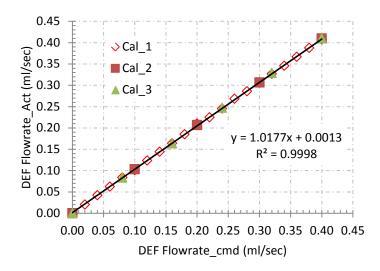


Figure B.1: DEF injector calibration curve

Appendix C. Calculation of SCR Actual Space Velocity

The calculations of the SCR actual and standard space velocities are described in this section. The SCR actual space velocity is the SCR space velocity under operating pressure and temperature conditions while the standard space velocity is calculated under a specific reference pressure and temperature. The space velocity was a ratio of the exhaust volumetric flow rate to the open catalyst volume as given in Equation C.1.The actual exhaust volumetric flow rate was the exhaust mass flow rate divided by the actual density of exhaust as shown in Equation C.2. In this calculation the actual exhaust density was assumed to be equal to the actual density of the air. The calculation of the actual air density is given in Equation C.3. Where, P is the absolute pressure in Pa, R is the specific gas constant for dry air and equal to 287 J/(kg·K). T is the SCR temperature in K. The standard exhaust volumetric flow rate was the exhaust mass flow rate divided by the standard density of exhaust as shown in Equation C.4. The standard density of the exhaust is assumed to be equal to the density of air under 1atm and 0°C. The catalyst volume used in Equation C.1 is the open volume of the catalyst which is the

open area times the catalyst length. The open volume was calculated by multiplying the area of each catalyst cell and the number of inlet cells. The open catalyst volume calculation is given in Equation C.5.

$$SV (hr^{-1}) = \frac{Exh \ Volumetric \ Flow \ Rate \ (m^3 / hr)}{Open \ Catalyst \ Volume \ (m^3)}$$
 C.1

Actual Exh Volumetric Flow Rate
$$(m^3/hr) = \frac{Exh Mass Flow Rate (kg/hr)}{Actual Exh Density (kg/m^3)}$$
 C.2

Actual Air Density
$$(kg/m^3) = \frac{P(Pa)}{R(J/kg \cdot K)T(K)}$$
 C.3

Standard Exh Volumetric Flow Rate
$$(m^3 / hr) = \frac{Exh Mass Flow Rate (kg / hr)}{Standard Exh Density (kg / m^3)}$$
 C.4

Open Catalyst Volume
$$(m^3) = \# of Cells \times Cell Width^2 (m^2) \times Catalyst Length (m)$$
 C.5

Appendix D. Fuel Mass Flow Rate Calculation for Transient Test

The exhaust mass flow rate is an important parameter to determine the SCR space velocity and is an input for the SCR model. The exhaust mass flow rate is the sum of the intake mass flow rate calculated from the pressure drop across the LFE and the measured fuel mass flow rate. Due to limitations of the AVL fuel system, real time fuel mass flow rate of the engine during transient cycles cannot be accurately measured. In order to determine the engine fuel mass flow rate, a calculation based on the exhaust measurements was performed.

In this calculation, it was assumed that the lean combustion products included only H_2O , and CO_2 with excess O_2 and N_2 . Other products including HC, NO_x , and PM were ignored because of their negligible levels compared to the other species to reduce calculation complexity. The diesel fuel composition was assumed to be $C_{12}H_{24}$. The combustion process is given in Equation D.1.

$$2 C_{12}H_{23} + a (O_2 + 3.76 N_2) = 24 CO_2 + 23 H_2O + y O_2 + 3.76a N_2$$
 D.1

Equation D.2 can be derived from the O_2 balance between the two sides of the reaction.

The model fraction of O_2 in the products time 100 is the wet O_2 concentration in percentage measured by the IMR-MS. This relationship is given in Equation D.3.

$$[O_2]w = 100 \text{ y} / (24 + 23 + \text{ y} + 3.76 \text{ a})$$
 D.3

The coefficient a for the air in reactant side and the coefficient y for the O2 in product side of Equation D.1 can be solved from Equation D.2 and D.3. The air fuel ratio was calculated based on the reactants on the left hand side of Equation D.1. The calculation is given in Equation D.4. The fuel mass flow rate can be determined by multiplying the calculated air fuel ratio with the measurement intake air mass flow rate.

$$A/F = a (16 \times 2 + 3.76 \times 14 \times 2) / [2 \times (12 \times 12 + 23 \times 1)]$$
 D.4

Appendix E. Calibration of the NH₃ Sensor

Experimental results show that the NH_3 slip measurements from the NH_3 sensor and the IMR-MS are off by about 10% because they have different sensitivity to NH_3 . In order to compare the NH_3 measurements from the NH_3 sensor and the IMR-MS, it is necessary to calibrate the NH_3 sensor to the IMR-MS so that they give equal measurements when

measuring the same gas components. The IMR-MS is calibrated before each test using the calibration gas with certified concentration of 103.8 ppm balancing with N_2 .

For calibration of the NH₃ sensor, SCR engine tests was performed with different upstream DEF injection rates to form different levels of NH₃ slip which is measured by both the NH₃ sensor and the IMR-MS at the same time. For each NH₃ slip level, the gas sample was taken continuously until the NH₃ measurements from both instruments reached steady state for 3 minutes. Another DEF injection rate was then carried out while continuing to measure NH₃ downstream of the SCR. The test setup has been introduced in the previous sections. The test was performed during the CPF regeneration process with a SCR inlet temperature of 510°C so that the SCR reached the equilibrium state more quickly because the NH₃ storage capacity of the SCR catalyst is significantly lower at higher temperatures. Then the steady state NH₃ measurements was calculated for each NH₃ level. The average of each calculated ratio was considered to be the factor used to scale the NH₃ sensor measurement to the IMR-MS measurement. The measured concentrations and the calculated ratios are given in Table E.1. The average of the calculated ratios was used as the NH₃ sensor calibration factor.

Speed	Load	Exh mass flowrate	SCR Inlet Temp	ANR	NH₃ Sensor	NH₃ MS	Ratio of NH₃ Conc.
rpm	N∙m	kg/min	°C	none	ppm	ppm	none
2310	281	11.17	514	0.00	0	0	-
2310	279	11.17	513	1.40	24	21	1.15
2310	276	11.18	514	1.60	46	38	1.21
2310	284	11.19	513	1.80	74	63	1.18
2310	276	11.18	514	2.00	94	81	1.17
2310	288	11.19	514	2.19	126	108	1.16
2310	285	11.20	517	0.00	0	5	-
						Average	1.17

Table E.1: NH₃ sensor calibration results

Appendix F. Processing of the Spaci-IR Data

The gaseous concentrations and the NH_3 storage at each axial measurement position under the equilibrium state of each test protocol step are important for the purpose of characterizing the SCR internal state and calibration of the SCR model. The gaseous concentrations can be calculated by averaging the measurement data recorded after the SCR reached equilibrium states. The NH_3 storage under different SCR conditions was calculated by integrating the NH_3 adsorbed on the catalyst or the NO_x reduced by the stored NH_3 and NH_3 slip after the NH_3 was turned off. The calculation procedures for the measurement locations of 0.6 of the catalyst length and the temperature of 250°C are introduced below. The gaseous concentrations of NO, NO_2 and NH_3 under this condition are shown in Figure F.1

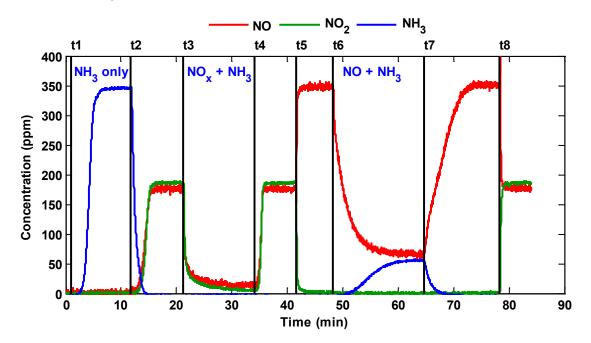


Figure F.1: Gaseous concentrations of NO, NO₂ and NH₃ at the 0.6 of the catalyst length under temperature of 250°C

The vertical black lines in Figure F.1 are the critical change points when the inlet gas composition was changed. The time of the change points were represented by t1-t8. As marked in the figure, the gaseous concentrations and NH_3 storage under the equilibrium states of NH_3 only, $NO_x + NH_3$, $NO + NH_3$ sections are important. The gaseous concentrations at the time points t2, t4, and t7 were considered as the equilibrium concentrations.

The NH₃ storage under the equilibrium of the NH₃ only section was calculated by integrating the difference between inlet and measured outlet NH₃ concentrations over the time period of this section. The calculation is given in Equation F.1. The NH₃ storage values under during the NO_x + NH₃ and NO + NH₃ sections were calculated by integrating the NO_x reduced by the stored NH₃ and NH₃ slip after the inlet NH₃ was turned off until the NH₃ adsorbed on the catalyst was cleaned up. The calculation is given in Equation F.2

$$NH_{3sto} = M \cdot \int_{t_1}^{t_2} (NH_{3_{in}} - NH_{3_{out}}(t)) dt$$
 F.1

$$NH_{3sto} = M \cdot \int_{t(i)}^{t(i+1)} \left(NO_{x_{in}} - NO_{x_{out}}(t) + NH_{3_{out}}(t) \right) dt, \qquad (i = 4, 7)$$
 F.2

Where, M is molar flow rate in gmol/min calculated based on the space velocity and the catalyst dimensions as shown in Equation F.3. V_{cat} is the catalyst volume calculated based on the diameter and length of the core sample. P_{ref} and T_{ref} are the reference pressure and temperature which were 1 atm and 0°C respectively. R is the global ideal gas constant. The space velocity of 70,000 hr⁻¹ was used in the storage calculations.

$$M = \frac{\dot{m}_{exh}}{MW_{exh}} = \frac{SV \cdot V_{cat}}{60} \cdot \frac{P_{ref}}{RT_{ref}}$$
F.3

The storage calculations were also performed for the axial measurement position before the catalyst, which was the inlet measurement. This calculated storage accounted for the NH_3 storage resulted from gas transportation in the sampling system of the analyzer and was subtracted from the SCR internal NH_3 storage values.

The gaseous concentrations and the NH_3 storage calculations were conducted for different axial measurement positions and temperatures. The equilibrium state NO_x and NH_3 concentrations as a function of axial position at $NO_x + NH_3$ and $NO + NH_3$ sections for three temperatures are shown in Figures F.2 and F.3. The equilibriums state NH_3 storage at different sections as a function of the axial position for different temperatures are shown in Figure F.6.

Under the NH₃ only conditions, the NH₃ storage increased linearly along with the axial position, meaning that the NH₃ was uniformly stored on the catalyst along the catalyst length. Under the NO_x + NH₃ conditions, the NH₃ storage was increasing at the first half of the catalyst and reached constant after the position of 0.6. The NO_x reduction reactions mainly took place on the first half of the catalyst and the NH₃ was completely consumed at the position of 0.6, causing no NH₃ stored after that position. Under the NO + NH₃ conditions, the SCR reaction took place along the catalyst length and higher NH₃ storage was observed than the NO_x + NH₃ conditions. The NH₃ storage decreased as increase in SCR temperature, because higher temperature resulted in greater reaction rates that consuming more stored NH₃. The temperature effects on the reaction rates of NO + NH₃ SCR reactions were more obvious than the NO_x + NH₃ SCR relations, causing greater differences in axially resolved NO_x concentrations between different temperatures.

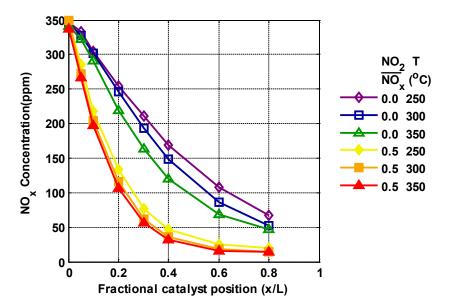


Figure F.2: NO_x concentrations at equilibrium state of NO_x + NH₃ and NO + NH₃ sections as a function of axial position for three temperatures

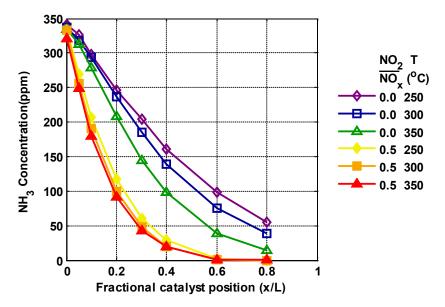


Figure F.3: NO_x concentrations at equilibrium state of NO_x + NH3 and NO + NH₃ sections as a function of axial position for three temperatures

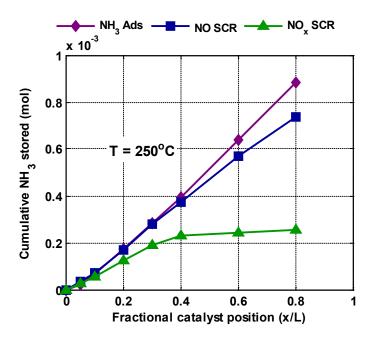


Figure F.4: NH₃ storage as a function of axial position for the temperature of 250°C

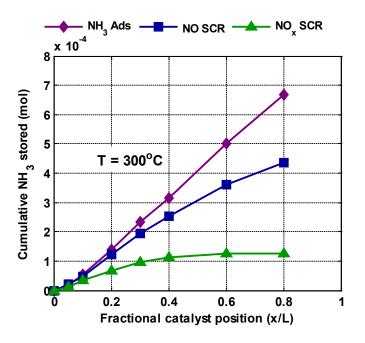


Figure F.5: NH₃ storage as a function of axial position for the temperature of 300°C

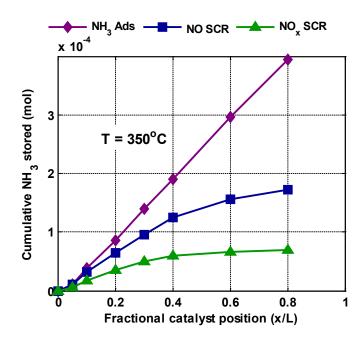


Figure F.6: NH₃ storage as a function of axial position for the temperature of 350°C

Appendix G. Selection of Reactor Data for Model Calibration

The reactor data showed abnormal SCR behavior at temperatures below 300 °C. SCR outlet concentrations of NH₃, NO, NO₂, and N₂O measured by the FTIR at a temperature of 200°C and SV of 60 k hr⁻¹ with corresponding inlet NO, NO₂, and NH₃ is given in Figure G.1. An inhibition effect on the fast SCR reaction and slow SCR reaction is observed. The fast SCR section of the protocol with an ANR of 1.2 is shown in the plot between 90 and 300 minutes. It can be observed that NO_x is completely reduced before 100 minutes right after NH₃ was introduced into the gas stream. After a high NO_x reduction period between 100 and 150 minutes, the NO_x downstream of the SCR started to increase, meaning that the NO and NO₂ reduction reactions were being inhibited. Finally, the catalyst reached an equilibrium state with stabilized NH₃ slip and NO_x downstream of the catalyst. The same inhibition effects were also observed when the

ANR was switched to 1.0 between the time periods of 330 and 600 minutes. Greater inhibition effect on the SCR reactions were observed with the slow SCR sections of the protocol between about 780 and 1000 minutes. Only 20 percent of NO_x was reduced when the catalyst reached the equilibrium state. No such effects were observed during the standard SCR reaction sections because NO_x reduction efficiency kept increasing with injection of NH_3 before the catalyst reached the equilibrium state, as shown in the two sections with NH_3 injection between 600 and 800 minutes. Since the inhibition only occurs when NO₂ is in the feed gas, the most likely explanation is formation of NH₄NO₃ on the catalyst surface. NH₄NO₃ is stable at these low temperatures. As the surface loading of NH₄NO₃ increases, it could block active sites and/or pores in the zeolite, resulting in reduced catalytic activity. Similar phenomena was previously reported for Vbased and Fe-ZSM5 catalysts [49,134]. Reference [130] has proposed a model for Cu and Fe-zeolite SCR including this phenomena into the reaction mechanism. The formed NH₄NO₃ was considered to leave the catalyst in gaseous form instead of depositing on the catalyst surface. The model presented in this paper did not include the NH₄NO₃ formation and decomposition reactions and was not able to make similar predictions at these sections, the reactor data showed such phenomenon was not used for model calibration. The reactor data sets or sections from a specific data set not used for model calibration are shown in Table G.1.

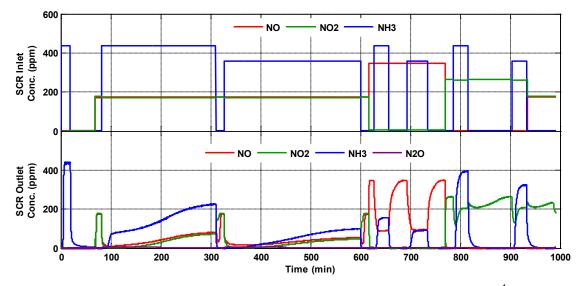


Figure G.1: SCR inlet and outlet concentrations for 200°C and 60k hr⁻¹ SV

sv	Temp. (°C)	Step Number																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
60k 1/hr	200						×	×	×	×							×	×	×	×	×
	250																×	×	×	×	×
	300																				
	350																				
	400																				
90k 1/hr	200						×	×	×	×							×	×	×	×	×
	225																×	×	×	×	×
	250																×	×	×	×	×
	275																×	×	×	×	×
	300																×	×	×	×	×
	325																				
	350																				
	375																				
	400																				
	425																				
120k 1/hr	200						×	×	×	×							×	×	×	×	×
	250																×	×	×	×	×
	300																×	×	×	×	×
	350																				
	400																				

Table G.1: Reactor experimental data sets with marked steps (\times) that were not used for model calibration

Appendix H. Simulation Results of TPD Experiments

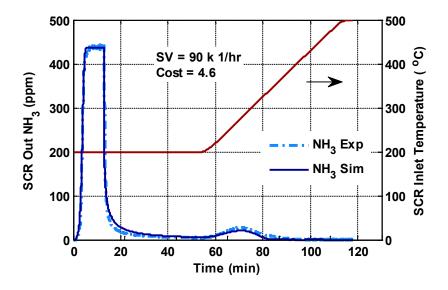


Figure H.1: Comparison of SCR outlet NH₃ between simulation and experimental results for the space velocity of 90,000 hr⁻¹

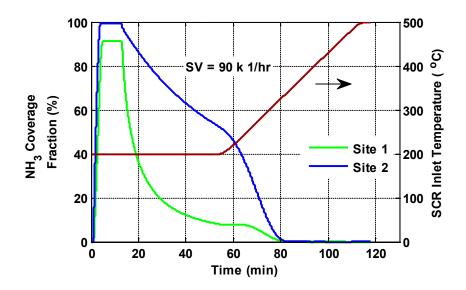


Figure H.2: Simulated NH_3 coverage fraction for TPD test for the space velocity of 90,000 hr⁻¹

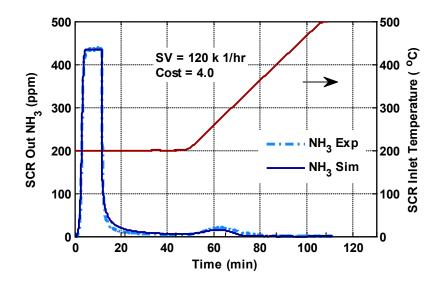


Figure H.3: Comparison of SCR outlet NH₃ between simulation and experimental results for the space velocity of 120,000 hr⁻¹

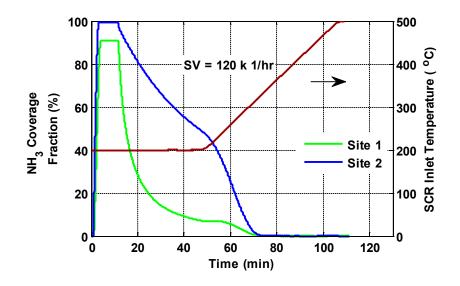


Figure H.4: Simulated NH_3 coverage fraction for TPD test for the space velocity of 120,000 hr⁻¹

Appendix I.Simulation Results of Isothermal Reactor Tests

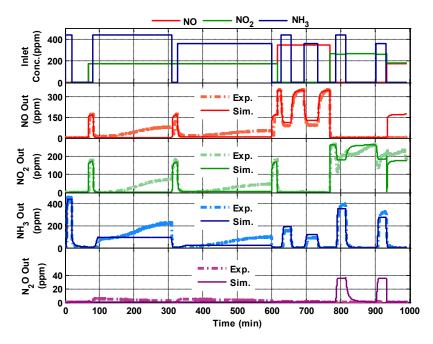


Figure I.1: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 200°C

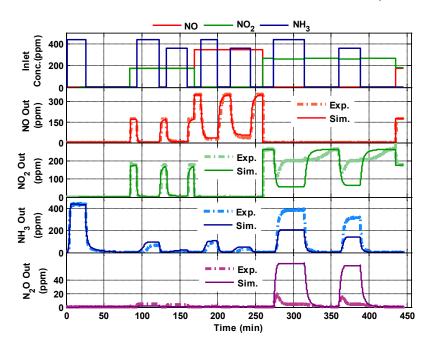


Figure I.2: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 250°C

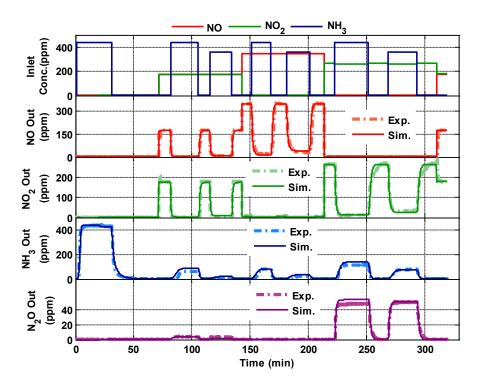


Figure I.3: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 300°C

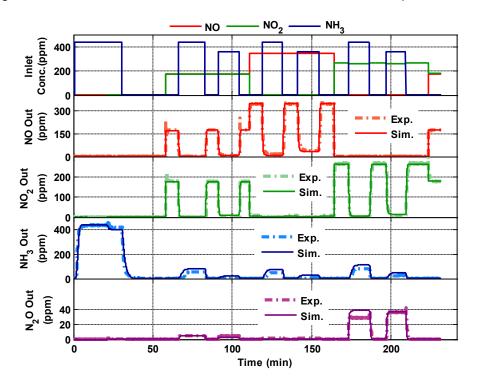


Figure I.4: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 350°C

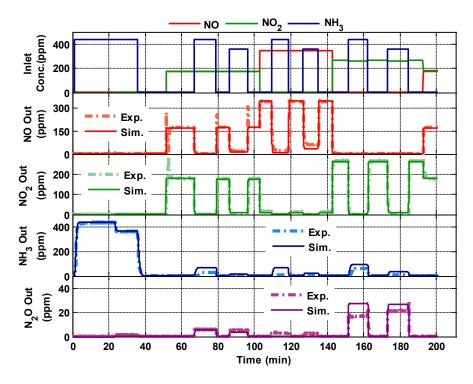


Figure I.5: Model simulation vs. reactor data, SV = 60 k/hr, Temp. = 400°C

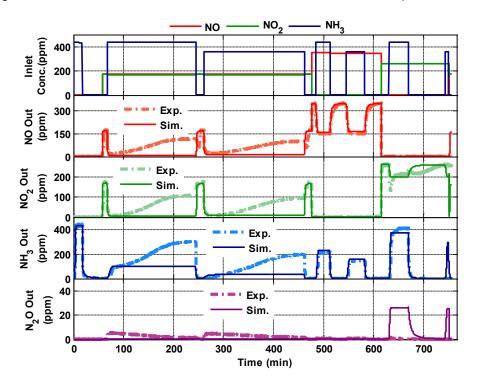


Figure I.6: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 200°C

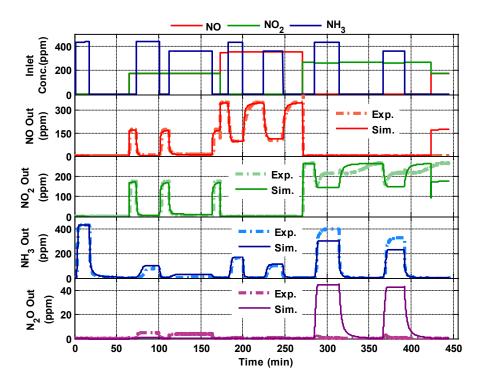


Figure I.7: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 225°C

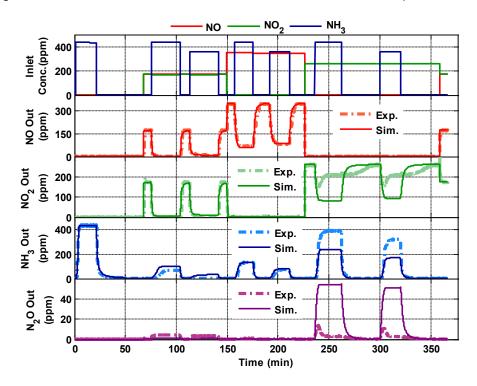


Figure I.8: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 250°C

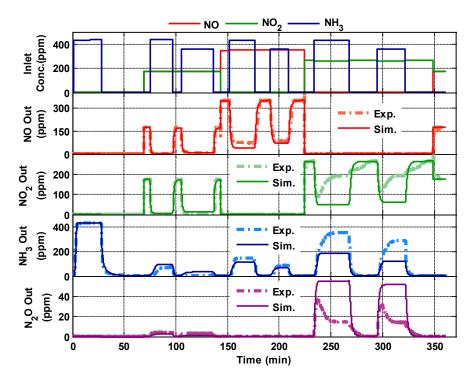


Figure I.9: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 275°C

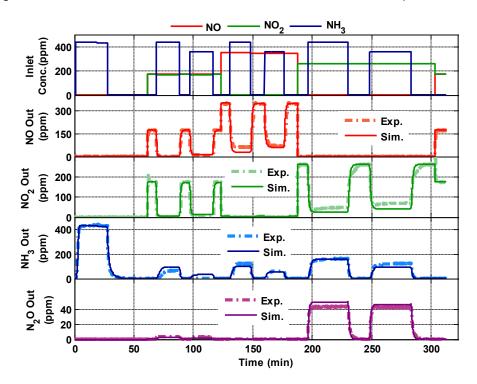


Figure I.10: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 300°C

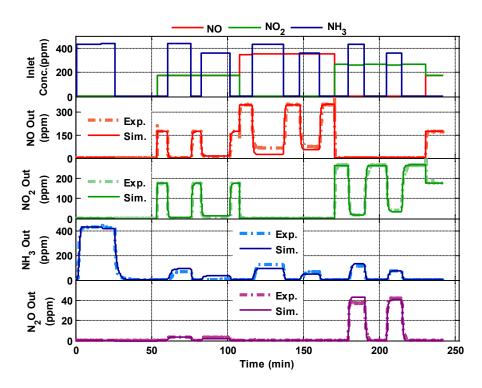


Figure I.11: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 325°C

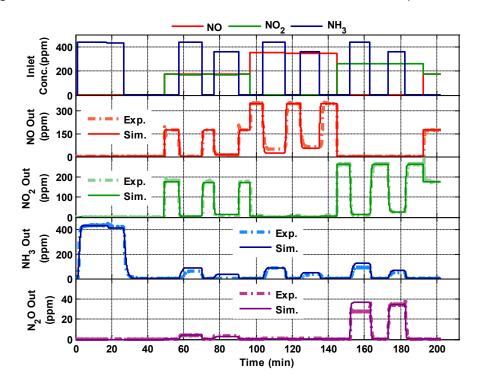


Figure I.12: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 350°C

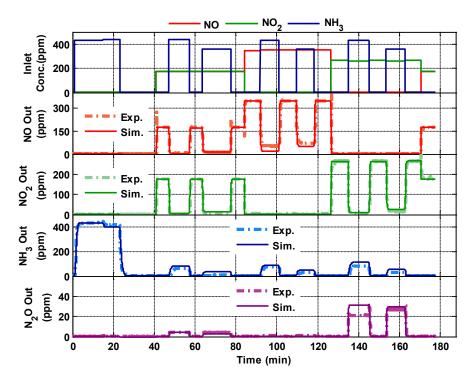


Figure I.13: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 375°C

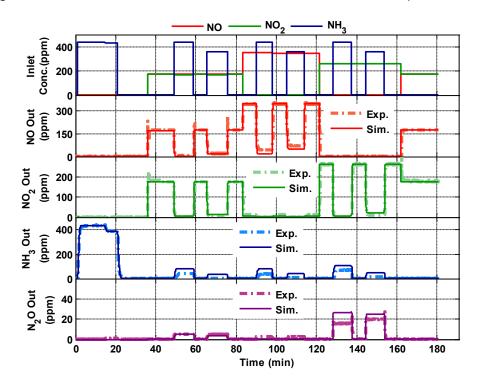


Figure I.14: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 400°C

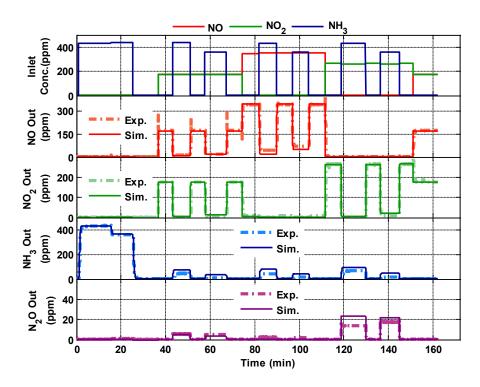


Figure I.15: Model simulation vs. reactor data, SV = 90 k/hr, Temp. = 425°C

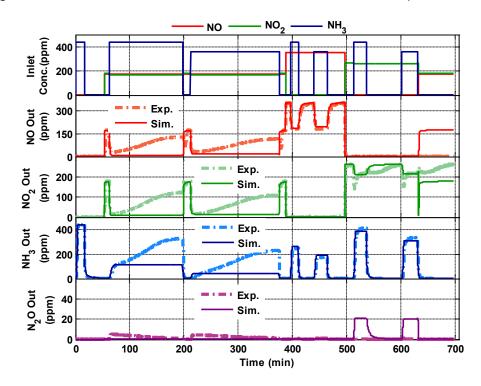


Figure I.16: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 200°C

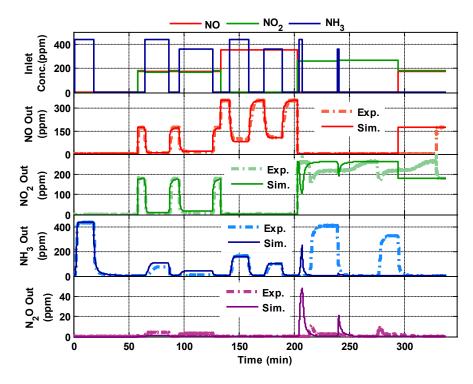


Figure I.17: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 250°C

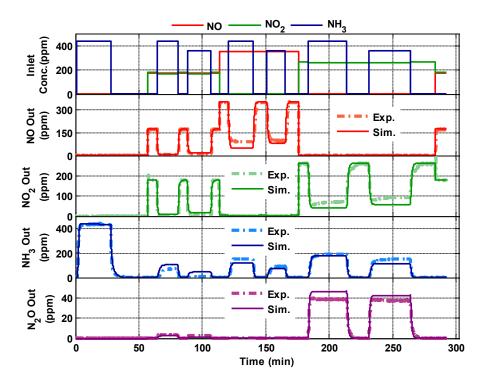


Figure I.18: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 300°C

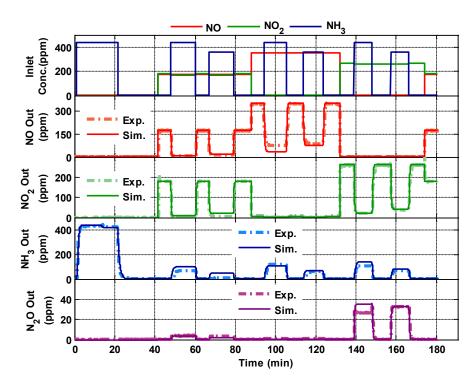


Figure I.19: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 350°C

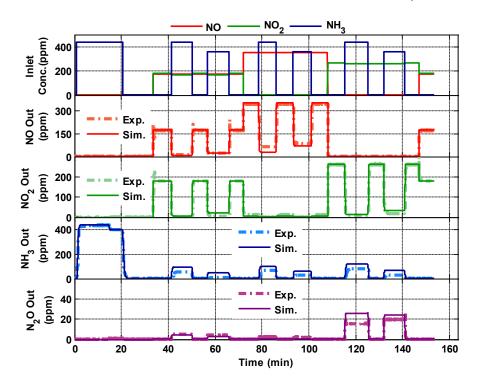


Figure I.20: Model simulation vs. reactor data, SV = 120 k/hr, Temp. = 400°C

Appendix J. Simulations of Steady State Engine Experiments

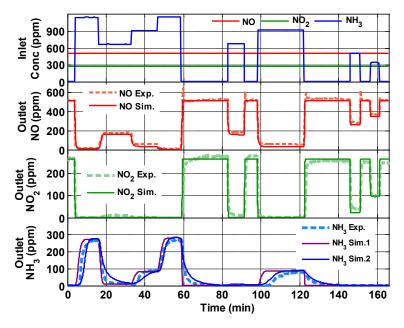


Figure J.1: Model simulation compared to steady state engine data for test point 1 with the SCR inlet temperature of 400°C

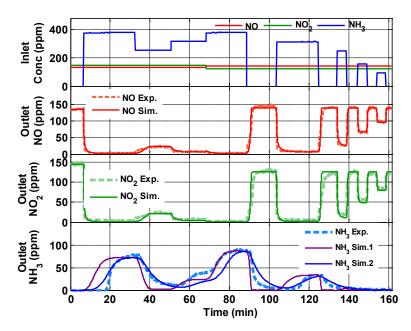


Figure J.2: Model simulation compared to steady state engine data for test point 3 with the SCR inlet temperature of 353°C

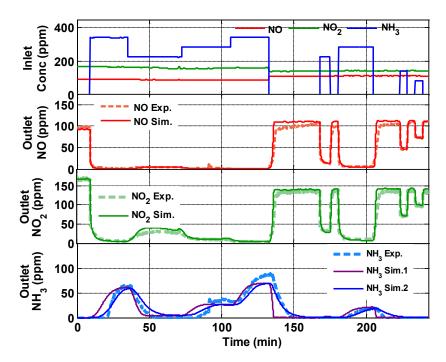


Figure J.3: Model simulation compared to steady state engine data for test point 4 with the SCR inlet temperature of 331°C

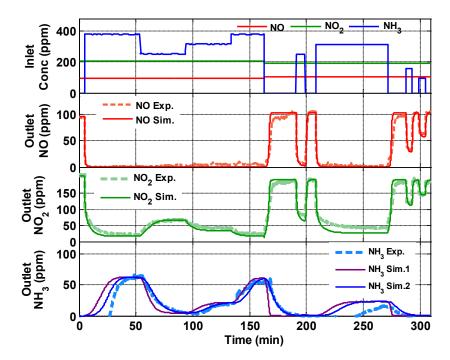


Figure J.4: Model simulation compared to steady state engine data for test point 5 with the SCR inlet temperature of 301°C

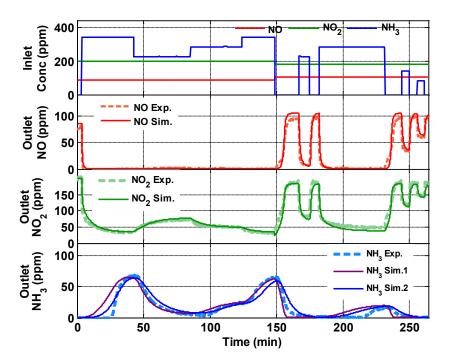


Figure J.5: Model simulation compared to steady state engine data for test point 6 with the SCR inlet temperature of 278°C

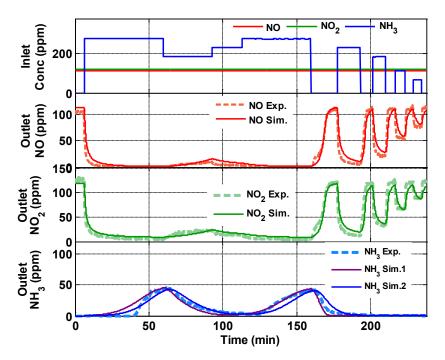


Figure J.6: Model simulation compared to steady state engine data for test point 7 with the SCR inlet temperature of 252°C

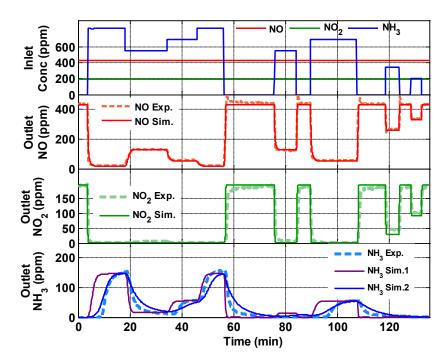


Figure J.7: Model simulation compared to steady state engine data for the repeat of test point 7 with the SCR inlet temperature of 252°C

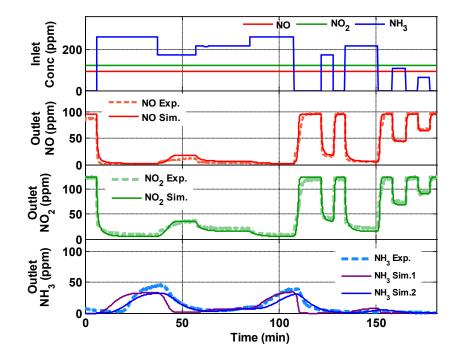


Figure J.8: Model simulation compared to steady state engine data for the repeat of test point 4 with the SCR inlet temperature of 330°C

Appendix K. Simulation Results of Transient SCR Experiments

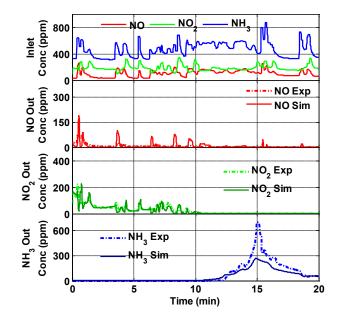


Figure K.1: Simulated concentrations compared to experimental measurements of transient experiment 2

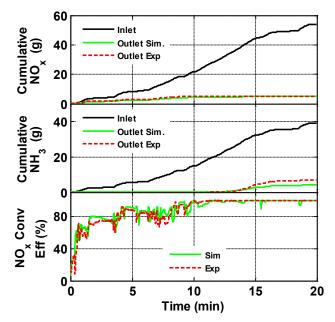


Figure K.2: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient experiment 2

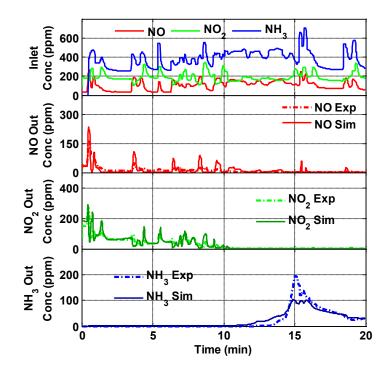


Figure K.3: Simulated concentrations compared to experimental measurements of transient experiment 3

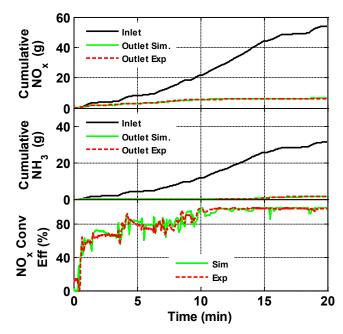


Figure K.4: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient experiment 3

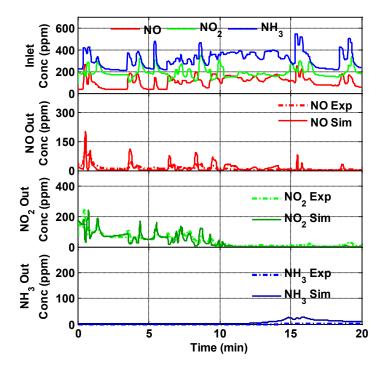


Figure K.5: Simulated concentrations compared to experimental measurements of transient experiment 4

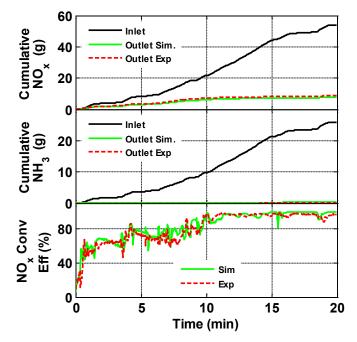


Figure K.6: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient experiment 4

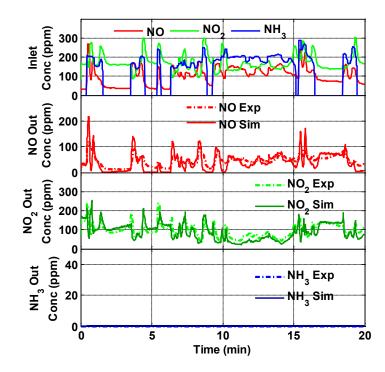


Figure K.7: Simulated concentrations compared to experimental measurements of transient experiment 5

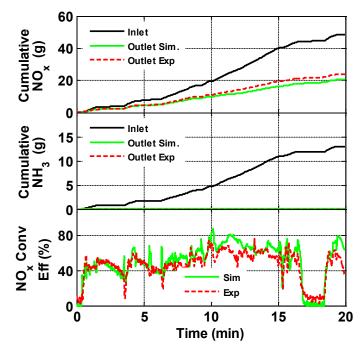


Figure K.8: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient experiment 5

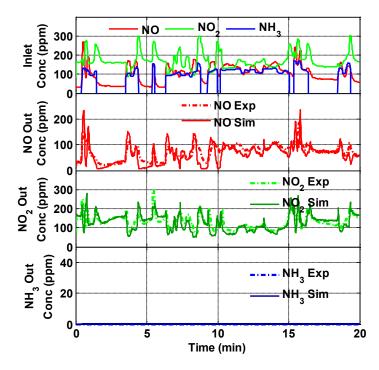


Figure K.9: Simulated concentrations compared to experimental measurements of transient experiment 6

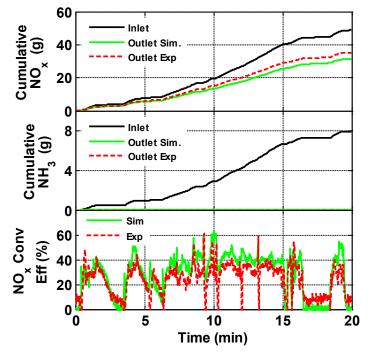


Figure K.10: Simulated cumulative NO_x , NH_3 and NO_x conversion efficiency of transient experiment 6

Appendix L. Results for the NH₃ Maldistribution Tests

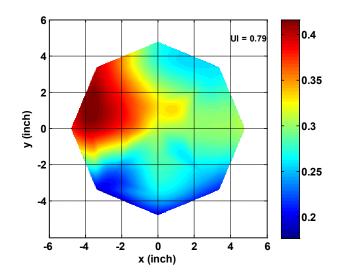


Figure L.1: Distribution profile of the SCR inlet ANR for test point 1

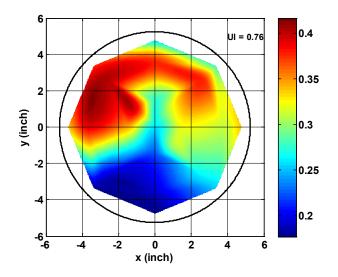


Figure L.2: Distribution profile of the SCR inlet ANR for test point 2

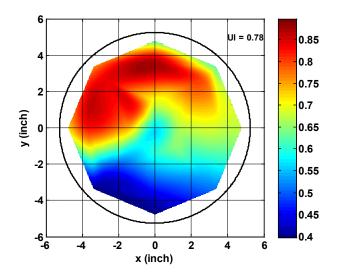


Figure L.3: Distribution profile of the SCR inlet ANR for test point 3

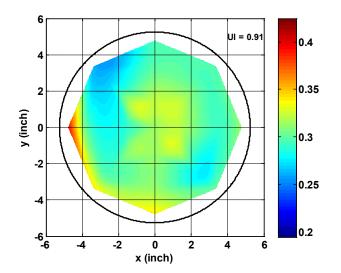


Figure L.4: Distribution profile of the SCR inlet ANR for test point 4

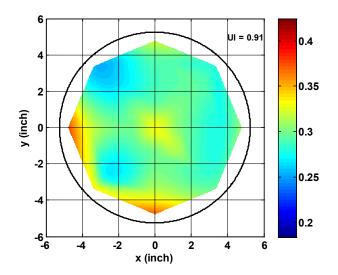


Figure L.5: Distribution profile of the SCR inlet ANR for test point 5

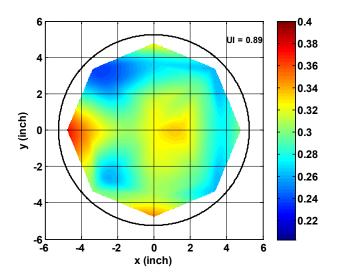


Figure L.6: Distribution profile of the SCR inlet ANR for test point 6

Appendix M. Permission to Use Copyrighted Material

Permission to Use Figure 2.1

ELSEVIER LICENSE TERMS AND CONDITIONS

Jul 05, 2013 This is a License Agreement between Xiaobo Song ("You") and Elsevier ("Elsevier") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier	Elsevier Limited The Boulevard,Langford Lane Kidlington,Oxford,OX5 1GB,UK
Registered Company Number	1982084
Customer name	Xiaobo Song
Customer address	1400 Townsend Dr
	HOUGHTON, MI 49931
License number	3182661168532
License date	Jul 05, 2013
Licensed content publisher	Elsevier
Licensed content publication	Catalysis Today
Licensed content title	Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts
Licensed content author	Joseph M. Fedeyko, Bin Chen, Hai-Ying Chen
Licensed content date	19 June 2010
Licensed content volume number	151
Licensed content issue number	3-4
Number of pages	6
Start Page	231

End Page	236
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	Νο
Will you be translating?	No
Order reference number	
Title of your thesis/dissertation	A SCR Model based on Reactor and Engine Experimental Studies for a Cu-zeolite Catalyst
Expected completion date	Aug 2013
Estimated size (number of pages)	200
Elsevier VAT number	GB 494 6272 12
Permissions price	0.00 USD
VAT/Local Sales Tax	0.00 USD / 0.00 GBP
Total	0.00 USD
Terms and Conditions	

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source,

permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the

licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. **Translation**: This permission is granted for non-exclusive world <u>English</u> rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article. If this license is to re-use 1 or 2 figures then

permission is granted for non-exclusive world rights in all languages.

16. **Website**: The following terms and conditions apply to electronic reserve and author websites:

Electronic reserve: If licensed material is to be posted to website, the web site is to be password-protected and made available only to bona fide students registered on a relevant course if[.] This license made in connection with was а course. This permission is granted for 1 year only. You may obtain a license for future website posting. All content posted to the web site must maintain the copyright information line on the

each bottom of image. A hyper-text must be included to the Homepage of the journal from which you are athttp://www.sciencedirect.com/science/journal/xxxxx or licensing the Elsevier homepage for books athttp://www.elsevier.com, and Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the bottom of each image, and the permission granted is limited to the personal version of your paper. You are not allowed to download and post the published electronic version of your article (whether PDF or HTML, proof or final version), nor may you scan the printed edition to create an electronic version. A hyper-text must be included to the journal Homepage of from which the you are licensing athttp://www.sciencedirect.com/science/journal/xxxxx . As part of our normal production process, you will receive an e-mail notice when your article appears on Elsevier's online service ScienceDirect (www.sciencedirect.com). That e-mail will include the article's Digital Object Identifier (DOI). This number provides the electronic link to the published article and should be included in the posting of your personal version. We ask that you wait until you receive this e-mail and have the DOI to do any posting.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses: Authors are permitted to place a brief summary of their work online only. A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com . All content posted to the web site must maintain the copyright information line on the bottom of each image. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

19. Website (regular and for author): A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx. or for books to the Elsevier homepage at http://www.elsevier.com

20. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission.

21. Other Conditions:

v1.6

If you would like to pay for this license now, please remit this license along with your payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should be in the form of a check or money order referencing your account number and this invoice number RLNK501059544.

Once you receive your invoice for this order, you may pay your invoice by credit card. Please follow instructions provided at that time.

Make Payment To: Copyright Clearance Center Dept 001 P.O. Box 843006 Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777.

Gratis licenses (referencing \$0 in the Total field) are free. Please retain this printable license for your reference. No payment is required.

Permissions to Use Figure 2.2

ELSEVIER LICENSE TERMS AND CONDITIONS

Jul 05, 2013

This is a License Agreement between Xiaobo Song ("You") and Elsevier ("Elsevier") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier	Elsevier Limited The Boulevard,Langford Lane Kidlington,Oxford,OX5 1GB,UK
Registered Company Number	1982084
Customer name	Xiaobo Song
Customer address	1400 Townsend Dr
	HOUGHTON, MI 49931
License number	3182670013899
License date	Jul 05, 2013
Licensed content publisher	Elsevier
Licensed content publication	Applied Catalysis B: Environmental
Licensed content title	Spatially resolving SCR reactions over a Fe/zeolite catalyst
Licensed content author	Jin-Yong Luo,Xuxian Hou,Prasanna Wijayakoon,Steven J. Schmieg,Wei Li,William S. Epling
Licensed content date	1 February 2011
Licensed content volume number	102
Licensed content issue number	1-2
Number of pages	10
Start Page	110
End Page	119
Type of Use	reuse in a thesis/dissertation
Intended publisher of new work	other

Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	Νο
Will you be translating?	No
Order reference number	
Title of your thesis/dissertation	A SCR Model based on Reactor and Engine Experimental Studies for a Cu-zeolite Catalyst
Expected completion date	Aug 2013
Estimated size (number of pages)	200
Elsevier VAT number	GB 494 6272 12
Permissions price	0.00 USD
VAT/Local Sales Tax	0.00 USD / 0.00 GBP
Total	0.00 USD
Terms and Conditions	

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and

all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. **Translation**: This permission is granted for non-exclusive world **English** rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article. If this license is to re-use 1 or 2 figures then permission is granted for non-exclusive world rights in all languages.

16. **Website**: The following terms and conditions apply to electronic reserve and author websites:

Electronic reserve: If licensed material is to be posted to website, the web site is to be password-protected and made available only to bona fide students registered on a if relevant course This license made connection with was in course. а This permission is granted for 1 year only. You may obtain a license for future website posting. All content posted to the web site must maintain the copyright information line on the bottom of each image, A hyper-text must be included to the Homepage of the journal from which you are athttp://www.sciencedirect.com/science/journal/xxxxx or the licensing Elsevier athttp://www.elsevier.com homepage for books and Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the bottom of each image, and the permission granted is limited to the personal version of your paper. You are not allowed to download and post the published electronic version of your article (whether PDF or HTML, proof or final version), nor may you scan the printed edition to create an electronic version. A hyper-text must be included to the Homepage of the iournal from which licensing vou are athttp://www.sciencedirect.com/science/journal/xxxxx. As part of our normal production process, you will receive an e-mail notice when your article appears on Elsevier's online service ScienceDirect (www.sciencedirect.com). That e-mail will include the article's Digital Object Identifier (DOI). This number provides the electronic link to the published article and should be included in the posting of your personal version. We ask that you wait until you receive this e-mail and have the DOI to do any posting.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses: Authors are permitted to place a brief summary of their work online only. A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com . All content posted to the web site must maintain the copyright information line on the bottom of each image. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

19. Website (regular and for author): A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx. or for books to the Elsevier homepage at http://www.elsevier.com

20. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission.

21. Other Conditions:

v1.6

If you would like to pay for this license now, please remit this license along with your payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should be in the form of a check or money order referencing your account number and this invoice number RLNK501059547.

Once you receive your invoice for this order, you may pay your invoice by credit card. Please follow instructions provided at that time.

Make Payment To: Copyright Clearance Center Dept 001 P.O. Box 843006 Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777.

Gratis licenses (referencing \$0 in the Total field) are free. Please retain this printable license for your reference. No payment is required.

Permissions to Use Figure 2.4

ELSEVIER LICENSE TERMS AND CONDITIONS

Jul 05, 2013

This is a License Agreement between Xiaobo Song ("You") and Elsevier ("Elsevier") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier	Elsevier Limited The Boulevard,Langford Lane Kidlington,Oxford,OX5 1GB,UK				
Registered Company Number	1982084				
Customer name	Xiaobo Song				
Customer address	1400 Townsend Dr				
	HOUGHTON, MI 49931				
License number	3182661370716				
License date	Jul 05, 2013				
Licensed content publisher	Elsevier				
Licensed content publication	Catalysis Today				
Licensed content title	Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOxreduction				
Licensed content author	Steven J. Schmieg,Se H. Oh,Chang H. Kim,David B. Brown,Jong H. Lee,Charles H.F. Peden,Do Heui Kim				
Licensed content date	30 April 2012				
Licensed content volume number	184				
Licensed content issue number 1					
Number of pages	10				
Start Page	252				
End Page	261				
Type of Use	reuse in a thesis/dissertation				
Intended publisher of new work	other				

Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	Νο
Will you be translating?	No
Order reference number	
Title of your thesis/dissertation	A SCR Model based on Reactor and Engine Experimental Studies for a Cu-zeolite Catalyst
Expected completion date	Aug 2013
Estimated size (number of pages)	200
Elsevier VAT number	GB 494 6272 12
Permissions price	0.00 USD
VAT/Local Sales Tax	0.00 USD / 0.00 GBP
Total	0.00 USD
Tanana and Can ditions	

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and

all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. **Translation**: This permission is granted for non-exclusive world **English** rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article. If this license is to re-use 1 or 2 figures then permission is granted for non-exclusive world rights in all languages.

16. **Website**: The following terms and conditions apply to electronic reserve and author websites:

Electronic reserve: If licensed material is to be posted to website, the web site is to be password-protected and made available only to bona fide students registered on a if relevant course This license made connection with was in course. а This permission is granted for 1 year only. You may obtain a license for future website posting. All content posted to the web site must maintain the copyright information line on the bottom of each image, A hyper-text must be included to the Homepage of the journal from which you are athttp://www.sciencedirect.com/science/journal/xxxxx or the licensing Elsevier athttp://www.elsevier.com homepage for books and Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the bottom of each image, and the permission granted is limited to the personal version of your paper. You are not allowed to download and post the published electronic version of your article (whether PDF or HTML, proof or final version), nor may you scan the printed edition to create an electronic version. A hyper-text must be included to the Homepage of the iournal from which licensing vou are athttp://www.sciencedirect.com/science/journal/xxxxx . As part of our normal production process, you will receive an e-mail notice when your article appears on Elsevier's online service ScienceDirect (www.sciencedirect.com). That e-mail will include the article's Digital Object Identifier (DOI). This number provides the electronic link to the published article and should be included in the posting of your personal version. We ask that you wait until you receive this e-mail and have the DOI to do any posting.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses: Authors are permitted to place a brief summary of their work online only. A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com . All content posted to the web site must maintain the copyright information line on the bottom of each image. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

19. Website (regular and for author): A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx. or for books to the Elsevier homepage at http://www.elsevier.com

20. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission.

21. Other Conditions:

v1.6

If you would like to pay for this license now, please remit this license along with your payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should be in the form of a check or money order referencing your account number and this invoice number RLNK501059545.

Once you receive your invoice for this order, you may pay your invoice by credit card. Please follow instructions provided at that time.

Make Payment To: Copyright Clearance Center Dept 001 P.O. Box 843006 Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777.

Gratis licenses (referencing \$0 in the Total field) are free. Please retain this printable license for your reference. No payment is required.