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i. Abstract 
 

The Mount Meager Volcanic Complex (MMVC) in south-western British Columbia is 
a potentially active, hydrothermally altered massif comprising a series of steep, 
glaciated peaks. Climatic conditions and glacial retreat has led to the further 
weathering, exposure and de-buttressing of steep slopes composed of weak, 
unconsolidated material. This has resulted in an increased frequency of landslide 
events over the past few decades, many of which have dammed the rivers 
bordering the Complex. The breach of these debris dams presents a risk of flooding 
to the downstream communities. Preliminary mapping showed there are numerous 
sites around the Complex where future failure could occur. Some of these areas are 
currently undergoing progressive slope movement and display features to support this 
such as anti-scarps and tension cracks. The effect of water infiltration on stability 
was modelled using the Rocscience program Slide 6.0. The main site of focus was 
Mount Meager in the south- east of the Complex where the most recent landslide 
took place. Two profiles through Mount Meager were analysed along with one other 
location in the northern section of the MMVC, where instability had been detected. 
The lowest Factor of Safety (FOS) for each profile was displayed and an estimate of 
the volume which could be generated was deduced. A hazard map showing the 
inundation zones for various volumes of debris flows was created from simulations 
using LAHARZ. Results showed the massif is unstable, even before infiltration. 
Varying the amount of infiltration appears to have no significant impact on the FOS 
annually implying that small changes of any kind could also trigger failure. Further 
modelling could be done to assess the impact of infiltration over shorter time 
scales. The Slide models show the volume of material that could be delivered to 
the Lillooet River Valley to be of the order of 109 m3 which, based on the 
LAHARZ simulations, would completely inundate the valley and communities 
downstream. A major hazard of this is that the removal of such a large amount 
of material has the potential to trigger an explosive eruption of the geothermal 
system and renew volcanic activity. Although events of this size are infrequent, 
there is a significant risk to the communities downstream of the complex. 

 
 
 
 
 
 
 
 
 
 
 

6 
 



 

 

1. Introduction 
 

In this paper, analyses on slope stability of Mount Meager will be carried out 
through numerical modelling to identify areas of possible future failure and 
conditions needed for failure to occur. Mapping of various areas of the Mount 
Meager Volcanic Complex (MMVC) was undertaken to identify other areas of 
possible future failures using Google Earth. Numerical modelling of profiles through 
Mount Meager allows determination of unstable areas and possible failure planes. 
Estimates of the volume of material that could be generated can be deduced from 
these profiles and modelled to calculate the likely extent this material could reach if 
a failure of that size were to occur. This can then be used to determine the risk to 
the population of Pemberton Meadows and Pemberton. According to Simpson et 
al., (2006) there is a possibility that flows greater than 108  m3  can occur at MMVC, 
however the current risk of a debris flow reaching populated areas is 1 in 2400 
years. 
 
The MMVC is a potentially active and very geologically unstable region of the 
Garibaldi Volcanic Belt in south-west British Columbia (BC), Canada (Fig. 1) (Simpson 
et al., 2006). The MMVC is a snow and ice covered series of peaks with steep 
glaciated slopes composed of hydrothermally altered volcanic material (Fig. 2) 
(Friele & Clague, 2004; Simpson et al., 2006). These unstable slopes combined with 
glacial melt and high precipitation levels have the potential for the generation of 
large debris flows. Holm et al. (2004) investigated landslide activity in nineteen 
alpine basins in this region and found that the highest concentration of rock slope 
failures occur in the MMVC volcanics. 
 

 

 

 

 

 

 

  

Fig. 1. Location map of the MMVC and 2010 landslide in south-western BC in relation to local communities 
(from Guthrie et al., 2012) 
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Mount Meager is a Quaternary stratovolcano in the south-east of the volcanic 
complex which rises 2,650 m asl. (Fig. 3) (Friele & Clague, 2004). Meager Creek runs 
along the southern limit of the complex and flows into Lillooet River, which runs the 
length of the northern and eastern valleys surrounding the complex. Mount Meager is 
possibly the most unstable mountain massif in Canada (Friele & Clague, 2004; Friele et 
al. 2008), making Meager Creek Basin one of the most geomorphically active and 
hazardous areas in the Canadian Cordillera (Bovis & Jokob, 2000). Although the last 
known eruption from Mount Meager was approximately 2,360 years BP (Hickson et 
al., 1999; Bovis & Jokob, 2000; Simpson et al., 2006; Friele et al., 2008) there is still 
potential for very explosive eruptions. 
 

 
 

Many landslides and debris flows have occurred in this region, unrelated to 
volcanic activity. Slope failures are fairly frequent events due to weakening and 
destabilization of the slopes and climatic conditions. There have been a minimum of 
twenty five landslides at the MMVC with a volume of 0.5 x 106 m3 or greater in the 
last 10,000 years (Guthrie et al., 2012). At least six landslides have formed 
temporary dams in the last 60 years (Bovis & Jakob, 2000) which have later failed 
and caused risk of flooding downstream, the most recent debris avalanche being in 
August 2010 in Meager Creek. This was one of the largest landslides to have occurred 
globally since 1945, making it a significant event (Guthrie et al., 2012). The MMVC is 
therefore a site of interest for analysing stability, with particular focus on Capricorn 
Creek, where most historical failures have occurred. 
 
The Lillooet River flows downstream in Pemberton Valley towards the town of 
Pemberton. Pemberton is a small town, with a population of around 3,800, 
located approximately 55 – 75 km downstream and with associated rural areas of 
Pemberton Meadows, with a population of 200 located 32 – 55 km downstream of 

Fig. 2. Main peaks of the MMVC as viewed from the East (from Simpson et al., 2006). 

 

8 
 



 

 

Mount Meager (Fig. 1) (Friele et al. 2008). Evidence from drilling in the Lillooet 
River Valley suggests that at least three volcanic flows with origins somewhere 
within the MMVC have reached now populated areas of the valley (Friele & Clague, 
2004). Some of this evidence has been investigated further by Simpson et al. (2006), 
who have found deposits from three large volume (>108 m3) debris flows in the 
Pemberton Valley and confirmed risk to Pemberton. 
 
 
 

 

 

 

 

 

 

 

 

2. Geology 
 

The MMVC composes part of the Coast Mountains located in south-west British 
Columbia, approximately 150 km north of Vancouver. It is part of the Garibaldi 
Volcanic Belt formed as a result of the subduction of the Juan de Fuca plate 
beneath the North American plate (Hickson et al., 1999). The complex consists of 
several peaks of volcanic rock ranging in age from Pliocene to Holocene (Guthrie et 
al., 2012), the youngest of which is Mount Meager. Radiometric ages of the 
volcanics range from 2.2 Ma (K-Ar) to 2350 BP (radiocarbon) (Hickson et al., 1999). 
 
The volcanic rocks composing the complex range in composition from basalt to 
rhyolite where the dominant products are from three main periods of volcanism; 
early and late stage rhyodacite and a middle period of andesite (Read, 1990). There 
are a wide range of  products  including  basalt,  andesite  and  rhyodacite  flows,  
rhyodacite  domes  and pyroclastics (Hickson et al., 1999). Read (1990) identified 
nine volcanic assemblages which compose the bulk of the MMVC, underlain by a 
granodioritic basement. 

Fig. 3. Mount Meager and site location within the MMVC (from Bovis & Jakob, 2000). 
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There are three main volcanic assemblages composing Mount Meager; Pylon 
Assemblage (P3), Capricorn Assemblage (P5) and Plinth Assemblage (P6) (Fig. 4). 
The Pylon Assemblage, the most extensive unit of the complex, is andesite. Overlying 
this is the Capricorn assemblage which is weathered rhyodacite. The top 600 m 
of Mount Meager is of the Plinth Assemblage. It is a rhyodacite plug/lava dome 
that forms this peak (Read, 1990). The volcanic material is generally poorly 
consolidated and prone to catastrophic collapse (Bovis & Jakob, 2000). 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The complex is severely affected by hydrothermal alteration, weakening the 
material and increasing the chances of slope failure (Bovis & Jakob, 2000; Friele & 
clague, 2004; Friele et al., 2008). The volcanics and basement are subject to rapid 
weathering (Bovis & Jakob, 2000). The central and northern parts of the complex 
however, are less altered as there is more ice cover, hence the rock slopes are slightly 

Fig. 4. Geological map of the MMVC. P3 is andesite, P5 is altered rhyodacite and P6 is 
rhyodacite (See Read, (1990) for details on each assemblage). 
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more stable. Mass movement events in the north are therefore less frequent than in 
the south of the complex, though there have been large debris flows at Job and 
Affliction Creeks (Jordan, 1994). 
 
There are fifteen small basins which drain the complex, all capable of delivering 
large debris flows and avalanches (Bovis & Jakob, 2000). Water seepage is primarily 
from the basement rock feeding hot springs at various creeks around the site (Read, 
1990). 
 
Most of the MMVC was ice covered during the last Pleistocene glaciation. Glacial 
erosion, stages of advance and retreat and thawing of permafrost have contributed 
to the large scale destabilisation of the massif (Guthrie et al., 2012). Valleys carved 
during periods of glaciation show erosional over-steepening and deep-seated 
movement features (Holm et al., 2004). Glacial retreat has also caused the 
formation of sackung (sagging) features where slopes have been undercut due to 
the removal of buttress support. The MMVC basins show greater slope 
undercutting along Neoglacial trimlines than those in a granitic basin (Holm et al., 
2004). 
 
In 1994 Capricorn Glacier covered about 2.9 km2 (20%) of Capricorn Creek basin 
as opposed to approximately 6.3 km2 (44%) during the Neoglacial maximum, as 
indicated by limit moraines and trimlines. The glacier has retreated by around 3 km 
and downwasted by over 200 m since that time (Bovis & Jakob, 2000). Devastation 
Glacier was also much larger, extending 4 km into Devastation Creek in 1932 
(Mokievsky-Zubok, 1977). 
 
Mass movement activity at the MMVC is unusually high. This is due to a combination 
of steep, high relief areas carved in the weak rocks, humid climate and rapid 
recession of the glaciers over the last 150 years (Bovis & Jakob, 2000). 
 
 
 
 

3. Landslide History 
 

3.1. Prehistoric and Historic Activity 
 

Rock avalanches and debris flows at the MMVC have been dated back as far as 
7,900 years BP, with identification of at least fifteen separate events during 
prehistoric time (Table 1). Most of these occurred at Job Creek in the north of the 
complex and at the creeks south of the complex around the Devastator and Pylon 
Peak. Units dated at 2400 BP correlate with the last known eruption of the MMVC 
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(Friele et al., 2008). All other failures are believed to have had non-eruptive triggers 
meaning they were ‘cold’ mass wasting events (Stewart et al., 2003). 
 
During historic time there have been ten recorded debris flows and rock 
avalanches, most occurring at Capricorn Creek in the south-east of the complex 
(Guthrie et al., 2012). A section of Mount Meager failed in July 1998 in Capricorn 
Creek (Fig. 5). An estimated 1.2 x 106 m3 of material was displaced after record 
breaking high temperatures were recorded that same month (Bovis and Jakob, 
2000). A glacially de- buttressed slope collapsed leading to a debris flow in 
Devastation Creek in July 1975 (Holm et al., 2004) after a similar pattern of high 
temperatures which probably caused extensive snow melt (Bovis and Jakob, 2000). 
This was another large volume event with 1.2 x 107 m3  of material released (Friele et 
al., 2008; Guthrie et al., 2012) which killed four people in Meager Creek (Mokievsky-
Zubok, 1977). Guthrie et al., (2012) also documented a smaller failure of 0.5 x 106  

m3  from 2009 to the left of the 1998 failure site (Fig. 5). 
 

Debris flows with an estimated total volume of >105 m3 occurred at Capricorn Creek 
in 1998, 1972, 1944-45 and 1933-34 according to Bovis & Jakob (2000) giving a 
short return period of 17 years for large events. They also found that other large 
mass movements of unknown magnitude took place in 1909, 1873, 1841 and 1669 
as indicated from tree ring records. 
 

The 2010 debris avalanche occurred on the 6th August and was the tenth mass flow 
with a volume greater than 0.5 x 106 m3 at the MMVC since 1850, and the sixth 
largest over the Holocene (Fig. 6) (Guthrie et al., 2012). The 2010 event occurred at 
Capricorn Creek with the failure of the southern side of Mount Meager, which flowed 
into Meager Creek and Lillooet River, temporarily damming both rivers (Fig. 7). 
The volume of material which failed during this event was estimated at 48.5 x 106 m3 

(Guthrie et al., 2012). This was the most recent event. 
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Fig. 5. Detachment zones of the 1998 and 2009 
failures on the southern side of Mount Meager 
(from Guthrie et al., 2012). 

 

Fig. 6. Detachment zone of the 2010 failure on 
the southern face of Mount Meager. A helicopter 
is circled for scale (from Guthrie et al., 2012). 

 

Fig. 7. The 2010 debris flow deposit from Capricorn Creek entering Meager Creek and Lillooet 
River, damming both rivers (from Guthrie et al., 2012). 
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3.2. Triggering Mechanisms 
  

There have been multiple triggering mechanisms recognised at the MMVC. The 2400 
BP failures were a result of volcanism at that time. This was a large eruption with 
tephra reaching as far as Alberta, 530 km to the east of the eruption vent and 
multiple associated units in Lillooet River Valley (Hickson et al., 1999). All other 
identified events have had other triggers, many unknown. The main cause behind 
recent slope failures around the volcanic complex is a combination of weak rock 
and de-buttressing due to glacial retreat. Failure of the more altered material can 
then trigger rock avalanches in the overlying material (Friele & Clague, 2004). The 
retreat of ice exposes rock and removes support destabilising the slopes. Climatic 
conditions also appear to have a large impact on stability as most failures occur 
during warm periods when snow and ice melt is at its highest, for example, the 1998 
and 2010 failures both occurred in summer, after a period of high temperature. This 

Table 1. All known historic and prehistoric landslides from the MMVC with a volume ≥ 0.5 x 106  m3 

(from Guthrie et al., 2012). 
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infiltration of water combined with de-buttressing and the effect of the 
hydrothermal system beneath the Complex causes intense weathering and 
alteration of the rocks, weakening them. The 1998 event can be linked with a 
specific climatic trigger, however evidence shows that glacial down-wasting and de-
buttressing since the end of the Neoglacial maximum were important precursors 
(Bovis & Jakob, 2000). For prehistoric failures, which do not correlate with an 
eruption, the triggering mechanism(s) is/are harder to determine. The 7900 BP 
and 4400 BP events from Pylon Peak had an estimated combined volume of 6-7 x 

108m3. The triggers for these events are unknown, but may have resulted from 
earthquakes or magma upwelling at shallow depths. They may also have occurred 
without a specific trigger and due to the progressive weakening of rocks (Friele & 
Clague, 2004). 
 

4. Study Site 
 

Capricorn Creek is one of the largest basins to drain the southern flank of MMVC. 
It enters Meager Creek at a right angle which promotes deposition and blockage as 
opposed to downstream transportation. This means that Meager Creek is very 
susceptible to creating landslide dams (Bovis & Jakob, 2000). 
 
Mount Meager itself is a rhyodacite plug forming the top 600 m of the peak, with 
steep slopes (Fig. 8). Surrounding the plug is altered rhyodacite, which overlays 
andesite flow layers. Below this is the granodiorite basement. These are the four 
main units composing the bulk of the site of interest and focus. There is also a lot 
of loose debris and glacial material around Mount Meager and down Capricorn 
Creek into Meager Creek. 
 
Meager Creek is filled with deposits from various debris flows and rock avalanches to 
a depth of over 250 m (Read, 1990). There are seven creeks from the southern side of 
the MMVC which feed Meager Creek with material from the complex. These are, 
from left to right, Devastation Creek, Boundary Creek, No Good Creek, Angel Creek, 
Pylon Creek, Canyon Creek and Capricorn Creek (Fig. 9) (Simpson et al., 2006). The 
most active of these is Capricorn Creek, with at least six events of 0.5 x 106 m3 or 
greater in volume since 1850. Devastation Creek appears to be the next most active 
creek, with three large landslides within the past century (Guthrie et al., 2012). 
 
Due to this high frequency of events at Capricorn Creek, Mount Meager is the 
main focus of this study, analysing its stability and possible future events in this area. 
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5. Mapping 
 
Preliminary mapping of the entire complex using Google Earth shows there are 
many more sites of possible instability, and areas which appear to be already failing 
(Fig. 10). Images show there are bulges, fractures and slumping, terrace-like features 
around the complex which is supported by literature describing sackungs at various 
locations 

 
 

 

  

 

 

 

 

 

 

Fig. 8. Rhyodacite plug forming the peak of Mount 
Meager (from Read, 1990) 

 
Fig. 9. Creeks on the southern side of the 
MMVC entering Meager Creek  (from Simpson 
et al., 2006) 

 

Fig. 10. Preliminary map of the MMVC. Areas in red show sections of possible instability as seen using 
Google Earth and areas that are already failing as found in literature. The literature describes most of 
the same areas as found when mapping, validating the use of Google Earth as a useful tool for 
detecting areas which appear unstable. Black lines show fractures and terracing (Image from Google 
Earth, 2010). 
 

N 

0 km 5 km 
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5.1. Features Indicating Movement 
 

Sackungs are sagging features on slopes which indicate slow, deep-seated, rock-
mass creep (Fig. 11) (Hewitt et al., 2008). Bovis & Evans (1996) suggest that sackungs 
may also be without a deep-seated shear surface. Tension cracks, grabens and anti-
slope scarps are features that are attributed to sackung type progressive movement 
(Bovis & Evans, 1996; Bovis & Jakob, 2000). Large scale slope sagging has been 
recognised in hard, fractured, crystalline, intrusive rocks like in the Coast 
Mountains and have been commonly identified on steep slopes and flanking 
detachment zones around the MMVC, including Affliction, Capricorn and East and 
West Devastation Creeks (Bovis & Evans, 1996). This implies these features are 
likely precursors to failure. Evidence to support this was seen in Capricorn Creek, 
where extensive tension cracks and scarps were observed adjacent to the 1998 
failure site. These cracks and scarps would have facilitated rapid infiltration of 
meltwater in late July (Bovis & Jakob, 2000). Tension cracks in Capricorn Creek, as 
well as various other failure locations, are still visible in images from Google Earth. 
 
Anti-slope scarps appear to result from toppling (Bovis & Evans, 1996) and be 
best developed in areas of glaciation where there has been a rapid change in stress 
(Bovis, 1982). This is consistent with the idea that sackungs result from de-buttressing 
of slopes (Bovis, 1990). These scarps may be antithetic faults for deep-seated failure 
planes. 

 
5.2. Affliction Creek 

 

Affliction Creek, in the north-west of the MMVC, is split into two tributaries within 
the Complex, which join and flow as one into Lillooet River. On the western side 
of each tributary there is an area where slope sagging appears to be taking place 
(Fig. 12). The sloping scarps can clearly be seen using Google Earth. This would 
indicate slow movement such as rotational creep. 

 
 
   
 

 

 
Cracks 

Fig. 11. Sackungs (anti-slope scarps and 
trenches) in Lillooet River Valley, north of 
Pemberton (from Hewitt et al., 2008). 
 

Fig. 12. Slope sagging (sackungs) at Affliction 
Creek in relation to the LIA glacial trimline. View 
to the north (from Holm et al., 2004). 
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This indication is supported by Bovis (1982; 1990), who mapped features at one of 
these sites at Affliction Creek, and found clear evidence of anti-slope scarp 
development since the Neoglacial maximum in the mid-19th Century. Since this time 
they suggest there has been approximately 100 m of glacial down-wasting in the 
Creek, which likely affects slope stability through the removal of lateral support 
from over-steepened rock faces. Ground motion vectors indicate rotational sagging 
and the amount of material estimated to be affected at Affliction Creek is 3 x 
107m3 (Bovis, 1990). Evidence from studies by Bovis (1990) suggests that tension 
cracks started in the northern section of the study site and propagated southwards. 
This is consistent with initiation by glacial down-wasting as glacial retreat occurred 
from north to south. 

 

5.3. Devastation Creek 
 

Terraces can be seen within the material in East Devastation Creek. The ridge to 
the west of Devastation Creek displays numerous linear fractures, many of which are 
perpendicular to the majority. The fractures follow weaker planes in the rock down 
to the valley. Images show snow collected in these fractures, so may be expanded 
as a result of freeze-thaw processes. The block at the end of the ridge, directly 
above the valley, displays what appear to be a series of anti-scarps (Fig. 13). If this 
end block failed, the rock fall would likely dam Meager Creek. 

 

 

 

 

 

 

 

 

 

 

 

 

0 km 1 km 

 
 

Fig. 13. West Devastation Creek showing the block at the end of the ridge which appears to be a 
site of instability. The black lines within the block section show prominent anti-slope scarps 
suggesting slope sagging and progressive movement. The other black lines show the main fractures 
at higher elevation of the ridge (Image adapted from Google Earth 2010). 
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Literature supports that Devastation Creek is also affected by slope movement. 
The ridge displays a prominent discontinuous series of anti-slope scarps, which 
cover a 1.1 km wide area, extending for approximately 2.6 km, roughly parallel to 
contours. Failures have led to the recession of Devastation Creek and the 
undercutting of slopes. These steep undercuts have caused the slopes to become 
susceptible to slow gravitational movement, creating numerous scarps (Bovis & 
Evans, 1996). The material composing the Devastator Assemblage underlies 
numerous locations where past landslides have occurred. Potential instabilities still 
remain in this material (Friele & Clague, 2004). East Devastation Creek is concerning 
as it is undergoing small scale settlement movements and is underlain by altered 
pyroclastic rocks and flows (Friele et al., 2008). The presence of linears adjacent to 
the headscarps of previous failures indicates there is potential for catastrophic rock 
failures in the vicinity of slopes traversed by these linears (Bovis & Evans, 1996). 
 

5.4. Job Creek 
 

Job Creek is situated in the north of the complex. Preliminary mapping shows there 
to be deformation on the Eastern side of the creek. The deformation appears to 
have formed a slight bulge on the western side of Plinth Peak (Fig. 14). 
 
Job Creek is composed of hydrothermally altered rocks and is one of the sources 
for major prehistoric failures and edifice collapses (Friele et al., 2008). This is thought 
to be the origin for one of the three major debris flow deposits in Lillooet River 
Valley, identified by Simpson et al. (2006). There are many large unstable masses 
within the MMVC capable of generating future edifice collapse, one of the most likely 
of these sites to fail being the eastern side of Job Creek (Friele et al., 2008). 
 
 

 

 

 

 

 

 

 

 

 
 

Fig. 14. Deformation in Job Creek, on the western flank of Plinth Peak. Mount Meager can be seen in 
the background behind Plinth (Image adapted from Google Earth 2010). 
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5.5  The Flanks of the Devastator and Pylon 
 

There are several areas of possible future failures identified through mapping of 
the Complex. Areas where scarps and/or terraces are present include, from left to 
right, the west side of Boundary creek (Fig. 15), a section between Boundary Creek 
and No Good Creek (Fig. 15), the east side of No Good Creek (Fig. 16), the east side 
of Angel Creek (Fig. 16) and the east side of Canyon Creek (Fig. 17). 
 
According to Holm et al. (2004), Angel Creek will likely experience a future increase 
in debris flow activity as the basin reaches its storage capacity (Fig. 18). Friele et al. 
(2008) state that Angel Creek is a major source of edifice collapse and due to its 
composition of hydrothermally altered material the flanks of Pylon are likely sites for 
future failures. 
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Fig. 15. Devastation Creek (left), Bounday Creek 
(center) and No Good Creek (right) below the 
Devastator Peak. Shaded sections are areas of 
possible future failure, where slumping appears to 
be occurring. (Image adapted from Google Earth 
2010). 
 

Fig. 16. Slumping indicating possible future 
failure (shaded area) on the eastern side of No 
Good Creek, below the Devastator and 
terracing (black lines) on the eastern side of 
Angel Creek, below Pylon Peak (Image adapted 
from Google Earth 2010). 
 

 
 

0 km 2 km 

Fig. 17. The shaded areas are possible future 
failures based on slumping of the eastern side of 
Canyon Creek, below Pylon Peak (Image 
a d a p t e d  from Google Earth 2010). 
 
 

Fig. 18. Angel Creek is expected to have an 
increase in debris flow activity as the basin 
reaches its storage capacity (from Friele & 
Clague, 2004). 
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5.6 Capricorn Creek 
 

Cracks and fractures can be identified within Capricorn Creek and around Mount 
Meager. There are numerous scars in and around the detachment zones where 
previous failures have occurred. 
 
Tension cracks and scarps were observed around the detachment zone of the 
1998 failure, as previously mentioned, (Fig. 19) in photographs dating back to 
1948. This indicates there was a period of 50 year of progressive slope movement 
prior to failure (Bovis & Jakob, 2000). Bovis & Evans (1996) stated that there 
were on-going gravitational slope movements at Capricorn Creek which, like at 
Devastation Creek, implies a potential for future rock failures in the area 
surrounding slopes traversed by linears. Failures have occurred in Capricorn Creek 
three times since then, in 1998, 2009 and 2010. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Black toothed lines show anti-slope scarps and tension cracks around the 
detachment zone of the 1998 failure of Mount Meager (from Bovis & Jakob, 2000). 
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6. Methodology 
 

6.1 Creating the Profiles 
 

The aim of modelling was to determine the effects of infiltration on slope stability, 
with the amount of annual infiltration as the varying parameter. Infiltration was 
chosen as the focus as precipitation appears to be the cause of most landslides in 
BC (Jakob & Lambert, 2009). 
 
The slope stability of Mount Meager was analysed using two cross sections through 
the peak and leading down to either Lillooet Valley or Meager Creek. The Digital 
Elevation Model (DEM) used was ASTER image derived from the USGS database via 
Earth Explorer (http://earthexplorer.usgs.gov/). The image was taken 17th October 
2011, 14 months after the most recent failure of the peak. The DEM was imported 
into ENVI (a Geographical Information System (GIS) program) where the profiles 
were taken. The directions of the profiles taken ran North – South (N-S) into 
Meager Creek and South West – North East into Lillooet River Valley. These 
profiles were each imported into Rocscience’s Slide 6.0, where the stability was 
modelled. Slide 6.0 is one the most comprehensive slope stability analysis 
software currently available.  There are many options and parameters that can be 
programmed and tested so most conditions acting on, or affecting a slope can be 
modelled and computed. Once imported, the external boundary was traced and 
scaled. The vertical scale was obtained from the ENVI profiles. The base of the 
Complex starts at around 500 m asl and reaches around 2,600 m. 

 
6.2 Modelling 

 

The rocks modelled were determined from geological maps in Read (1990) and Friele 
& Clague (2004), dependant on which assemblages the profiles passed through. The 
material boundaries for the southern half of the Complex were determined using 
the map in Friele & Clague (2004), as the topographic contours were also 
displayed. This was in correlation with other literature which found that the 
basement-volcanic rock contact was high (1,500 – 2,000 m) in Capricorn Creek, and 
also in Affliction Creek and Canyon Creek (Jordan, 1994; Bovis & Evans, 1996). The 
elevation of the material boundaries in the northern half were estimated using Read 
(1990). The external geology was verified in some places using Google Earth images 
and photographs from the field where basement rock and flow layers could be 
identified. Each layer was assigned a material. No profiles or information 
regarding the internal structure of the Complex were found. The internal structures 
of the models are therefore assumed (Fig. 20). 
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When classifying a material it is important to identify from which background it is 
being assessed. From a volcanological viewpoint all materials modelled (rhyodacite, 
andesite, granodiorite, etc.) are categorised as rocks. However, from a 
geomechanical viewpoint the strength and consistency of the material could 
categorise them differently, for example, if these materials are disintegrated they 
have a more soil like structure and would behave more like a soil. Therefore a 
strength model of generalised Hoek-Brown (rock) was assigned only to the 
rhyodacite and Mohr-Coulomb (soil) was assigned to all other material due to 
alteration. 
 

6.3 Back Analysis 
 

To test and verify the material properties and parameters used a back analysis 
was conducted. This allowed verification for accurate and realistic future 
modelling. The back analysis used the model to ensure failure of an already known 
failure plane. The most recent failure of Mount Meager was in August 2010, so 
various values were tested for each material to determine a structure that modelled 
that failure. The profile used ran N-S through Mount Meager and across Capricorn 
Creek passing through the failed slope face. The profile was taken using a DEM image 
from 2011, which therefore showed the current topography. To form the profile 
from before 2010, data from Guthrie et al., (2012) was used to reconstruct the  
topography.  Parameters were changed and tested until conditions were met where 

2010 failure plane 

M6: Rhyodacite flows 
composing part of Plinth. 
Depth and extent of 
flows are unknown. 

 

M3: Granodioritic basement. To maintain a water
table at intermediate or high elevation after
infiltration the basement material needs to be 
largely impermeable. The internal structure is 
simple as the structure and activity of the 
hydrothermal system is unknown. 

 

M5: Breccia remnants. 
Internal extent of the
breccia is unknown. 

 

M4: Altered Rhyodacite
around rhyodacite peaks 
of Meager and Plinth. 
Depth is unknown so 
assumed based on 
assumptions made for the 
underlying andesite flows. 

M1: Rhyodacite Plug forming the 
peak of Mount Meager. Location, 
width and shape of the conduit is 
assumed with a simple structure for 
ease of modelling. 

M2: Andesite forming the upper area 
of the south of the complex. Flow 
layers are slightly inclined as seen 
using Google Earth and as inferred 
from the geological and topographical 
map in Friele & Clague (2004). 

Fig. 20. Model and assumed internal structure for the N-S profile through Mount Meager. Each 
material is labelled along with the 2010 failure plane. 
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failure occurred along the exact failure plane required. 
 

6.4 Project Settings 
 

In the project settings, under the general section, the stress units were set to 
‘metric’, the time units set to ‘years’ and the permeability units to ‘meters/second’. 
The direction of failure was selected as left to right. The method selected was Bishop 
Simplified. This is a commonly used method which is typically applied to irregular, 
non-circular, non- rotational surfaces (Hungr et al., 1989), and is therefore best 
applicable to the specified failure plane for 2010. In the groundwater section the 
method was set as ‘water surface’. The advanced box was checked and transient 
groundwater selected. The MMVC is likely to have low permeability materials, 
causing excess pore pressure due to slow dissipation, therefore transient 
groundwater analysis is required to simulate these effects (Rocscience, 2010). 
Transient stages were then set to 11 representing years 2000 to 2010, with each one 
selected to calculate the Factor of Safety (FOS). The sensitivity analysis option was 
selected under the statistics section. 
 
Under surface options, a non-circular surface type was selected, with a block 
search method. This method determines the FOS for a specified block, with a 
specific failure plane created, therefore being the ideal method to use for the 2010 
failure plane in the back analysis. The block search method can only be used for 
non-circular slip surfaces and works well for multi-material models. 

 
6.5 Material Properties 

 

The materials used were determined from geological maps and descriptions in 
Read (1990). For the N-S section there were six materials modelled; the 
rhyodacite plug (Material (M)1), andesite (M2), granodiorite (M3), altered rhyodacite 
(M4), breccia (M5) and Plinth rhyodacite (M6). The unit weight of each material was 
set to 20.5 kN/m3. This was the value found from the 1998 debris flow deposit by 
Bovis & Jakob (2000), who considered the sedimentary characteristics of the 
deposit to be representative of the material properties at the time of deposition. 
The strength type for M1 and M6 was set as Generalised Hoek-Brown, and the other 
four materials as Mohr-Coulomb. As M1 is a plug and M6 is in the northern, less 
altered part of the Complex, the material is expected to be less weathered than the 
other materials hence slightly stronger. The other materials are classed as soils as 
they are subjected to more weathering and hydrothermal alteration and are 
therefore broken and fragmented as opposed to just fractured, having a more soil-
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like consistency. The strength parameters (e.g. Uniaxial Compressive Strength 
(UCS), Geological Strength Index (GSI), cohesion and phi) were chosen using 
Rocscience’s RocData 4.0. 
 
With the exception of M6, which is more intact and solid as opposed to altered, 
all materials have GSI values within the range for disintegrated or blocky structure 
and poor surface conditions. M6 has been classified as being blocky with good/fair 
surface conditions. The Intact UCS for M6 is at the lower end of the range for 
rhyolite. M3, M4 and M5 have been given UCS values in the range of highly 
weathered or altered rock. M1 and M2 have a slightly higher value falling into the 
next category of rocks that can be easily indented with a firm blow (Table 2). M2 
needed to be slightly stronger than M3 as according to Friele & Clague (2004) the flow 
layers of Pylon Peak are less altered than the base rock. These ranges of parameter 
values are justifiable based on literature describing the weakness and alteration of 
the material composing the complex (Bovis & Jakob, 2000; Friele & Clague, 2004; 
Friele et al., 2008). 
 

6.6 Water Table 
 

As there appears to be no seepage faces at high elevation within the MMVC, Jamieson 
& Freeze (1983) suggest the water table lies at an intermediate elevation. In the 
Slide models the water table has an intermediate position being placed at an 
elevation of 1,620 m, remaining below the surface until reaching the edge of the 
Complex. 

 
6.7 Hydraulic Properties 

 

The hydraulic properties are set under the Transient Groundwater tab. The 
hydraulic conductivities (Ks) of the materials required a lot of trial and error to obtain 
the desired effects on the water table and FOS at the right time. The hydraulic 
conductivity values (Table 2) for M2 and M4 was set at 1 x 10-7  m/s as suggested 
for volcanic material by Jamieson & Freeze (1983), using the Van Genuchten 
parameters for volcanic sand. This value however, did not have the effect needed 
if used for M1, and neither did their value for the granodioritic basement. For M1 
and M6 (both being rhyodacite) the value given was slightly lower (5 x 10-8 m/s), 
making the material more impermeable and using the simple model. The value 
used for M3 was of low permeability (3.17 x 10-13 m/s), in the range of 
unweathered marine clay (http://web.ead.anl.gov/resrad/datacoll/conuct.htm). The 
Van Genuchten parameters for clay were chosen. M5 was given a hydraulic 
classification of coarse sand with a hydraulic conductivity of 1 x 10-3 m/s. 
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6.8 Rainfall and Infiltration 

 

Infiltration is modelled by setting the transient boundary conditions and creating a 
new function. The type was set to ‘vertical infiltration with time’. The number of time 
stages represents how many years to model for and the infiltration is the amount, 
in meters per year, entering the groundwater. Once set, the conditions are applied to 
the required surfaces through selection. The time frame, as mentioned, is from 2000 
to 2010. Most precipitation at the MMVC falls as snow. According to Jamieson & 
Freeze (1983), the average annual precipitation for Mount Meager is around 2.54 
m/yr, and 14-17% of this enters the groundwater system. This gives an average 
infiltration of 0.36 m/yr. The data for the deviation from the average precipitation 
was obtained from the Canadian database on climate change 
(http://www.ec.gc.ca/adsc- cmda/default.asp?lang=en&n=30EDCA67-1). Using the 
average value and annual deviations, the annual amount of infiltration for the given 
time period was calculated and applied. 
 

6.9 Sensitivity Analysis 
 

To test the parameters and determine which ones had the biggest impact on the 
results a sensitivity analysis was conducted (Fig. 21). A range of values for each 
material parameter was provided and once the model had been interpreted in Slide 
a sensitivity plot was carried out under the statistics section. This showed a graph of 
the FOS values for the given range and therefore which material properties have the 
greatest effect on stability results. The UCS and unit weight of the rhyodacite plug 
(M1) were shown to have the greatest effect on the FOS. The rhyodacite plug has 
the greatest influence on stability as it composes the bulk of the failed area. Also, if 
stronger than the underlying material at the base of the slope it would support its 

Material Unit 
Weight 
(kN/m3) 

Strength Type GSI UCS 
(kN/m2) 

Cohesion 
(MPa) 

Phi 
(degrees) 

Ks (m/s) 

M1 20.5 Generalised Hoek-Brown 25 6000 - - 5e-8 
M2 20.5 Mohr-Coulomb 30 - 1309.24 17.61 1e-7 
M3 20.5 Mohr-Coulomb 28 - 1766.78 14.88 3.17e-13 

M4 20.5 Mohr-Coulomb 20 - 583.81 13.87 1e-7 
M5 20.5 Mohr-Coulomb 28 - 819.6 15.33 1e-3 
M6 20.5 Generalised Hoek-Brown 65 100,000 - - 5e-8 
M7 20.5 Mohr-Coulomb 15 - 83.87 9.26 1e-3 

Table 2. Summary of the main parameters and values used for all materials modelled in Slide. 
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own weight, hence a higher UCS would increase stability. The graph also shows the 
FOS then decreases again as the unit weight increases further as the material is then 
too heavy to support its own weight. 
 
 

 
 

 

 

 

 

 

 

 

 

 
6.10 Interpretation 

 

Once all parameters were provided, the model was computed under the analysis 
tab. Once computation was complete, the model was interpreted displaying the 
FOS for each of the specified stages as conditions change. 
 
A second model was used showing all possible failure planes for the years 2000-2010 
to ensure the weakest part of the section was the location where the 2010 failure 
actually occurred. Failure in both directions was simulated. The search method 
was changed from ‘block search’ to ‘grid search’, which shows circular slip. Auto-grid 
was selected to automatically calculate possible failure planes in the direction 
selected. 
 

6.11 Forward Modelling 
 

Once the back analysis was completed, the infiltration was modelled and computed 
for 2011 and 2012 and projected forward for 2013 and 2014, using extreme 
infiltration values, displaying any unstable planes along the profile. This showed the 
areas of greatest weakness, with possible future landslide events, and the section 
that could likely collapse. In this model the initial water table position was  located at 
higher elevation as seepage could be seen from areas of the 2010 failure plane. This 

Rhyodacite Plug: UCS Intact (kN/m2) 
 

Rhyodacite Plug: Unit Weight (kN/m3) 

Fig. 21. Sensitivity plot for all material properties and their influence on the factor of safety. The UCS 
(red line) and unit weight (green line) for the rhyodacite plug have the greatest effect. The other lines 
define other properties as shown in the legend. 
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projection was also done for the SW-NE profile and one other location within the 
Complex where instability had been detected through mapping. These sites were in 
areas of previous landslide activity and displayed either anomalous bulging or 
sackungs. 
 

6.12 LAHARZ 
 

Hazard mapping was undertaken to determine what volume of debris flow would 
need to be generated in order to reach the town of Pemberton and cause disruption 
to roads, railways and the population. This was done using a program called 
LAHARZ, which provides an automated method to map potential areas of inundation. 
It runs with GIS to create a hazard map showing a lahar-inundation hazard zone for 
each volume entered (Schilling, 1998). A Natural Colour Landsat TM image of the 
MMVC was downloaded into ArcGIS to form the basis of the map. A DEM 
covering the area from the MMVC to Pemberton, obtained from the United States 
Geological Survey (USGS) database, was also downloaded and cut to a sensible size 
for lahar analysis to be carried out. Infrastructure data was imported to form layers 
showing features that could be affected, such as roads, railways and streams, to 
show flow in the valley, hence likely paths a lahar/debris flow would follow 
(www.geocomm.com). Fill, flow direction and flow accumulation raster files were 
generated from the DEM in order to simulate lahar flows. There were eight debris 
flows of various volumes, from 106  m3  to 5 x 108 m3, simulated in Matlab using 
the program LAHARZ. The ASCII files generated were then converted to raster files 
and imported into ArcGIS to form layers from which a hazard map for Pemberton 
was produced. The raster files needed to be projected into the same co-ordinate 
system as the DEM (WGS_84_UTM) in order to align with the base map and 
features. Once all the features were in place the hazard map was created in the 
Layout view. 
 
 
 
 

7 Results 
 

7.1 Factor of Safety 
 

The results present the FOS values for the back analysis and forward modelling of 
the Slide models and therefore slope stability, as a result of varied infiltration. The 
results on the extent of various volumes of debris flows simulated in LAHARZ are 
also presented along with the ArcGIS inundation hazard map created from flow 
simulations. 
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A slope with a factor of safety (FOS) value > 1.5 is classified as being stable. Slopes 
with 1.3 < FOS < 1.5 are classed as moderately unstable, 1 < FOS < 1.3 as inherently 
unstable and a FOS < 1 is at failure (Hoek, 2007). A FOS below 1.3 indicates 
instability, however with Slide information on the possible types and speed of 
failure is not provided. To determine this, other forms of modelling and local 
geological knowledge is required. Many sites within the MMVC are failing, but are 
slow, mass moving creep failures (e.g. Affliction Creek). These slow moving areas 
could however, develop into faster, more destructive failures if conditions change, 
such as increased infiltration, magma upwelling and glacial movements. 
 

7.2 Before Failure 
 

In all models for the N-S profile of Mount Meager, the water table reached the 
surface at stage 1 (first stage of infiltration added). The ‘before failure’ model, which 
determines failure along the 2010 failure plane, shows that at the initial stage 
(before infiltration began) the FOS was at 1.2. When annual infiltration begins, the 
FOS drops to just above 1 and gradually decreases over the stages down to 0.963 at 
the final stage (representing 2010) (Fig. 22). 
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6.1.  

Fig. 22. N-S profile. Slide model and back analysis up to the 2010 failure. A) Model before 
analysis showing profile and assumed internal structure. Materials and the 2010 failure plane are 
labelled. B) Initial stage showing FOS of the specified plane before infiltration. This shows that the 
southern side of Mount Meager was already inherently unstable without water. C) Final stage of 
analysis representing 2010. Water table is at the surface (pink line) and the FOS has decreased to 
0.963 
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7.3 All Failures 
 

Conditions were applied to all areas along the N-S profile to verify the lowest FOS was 
at the 2010 failure site. The northern section of the Complex displayed a higher 
FOS, suggesting the values used were realistic. If the FOS was lower than at the 2010 
site, it would suggest this area should have failed instead. At the initial stage, the 
northern half appears stable with a FOS of 1.4. Again, when infiltration is added 
the FOS decreases significantly, but remains at 0.994 throughout. This area displays a 
deep failure surface, which includes a large portion of Plinth and section of Meager 
Peak. Some stages show a lower FOS of 0.845 for a small area on the northern side of 
Mount Meager (Fig. 23). The southern section of the profile had an initial FOS of 
1.012 and decreased to a minimum of 0.882 with infiltration. All failure planes with 
a FOS below 1.04 occurred at Mount Meager Peak. Failure planes with a FOS above 
this also occurred in the southern section of the model, towards Pylon Peak (Fig. 24). 
 

7.4 After Failure 
 

‘After failure’ models, which attempt to predict areas of possible future failures, 
shows that in the southern half of the profile, all failures below FOS 1.2 occur on 
the very southern section, and not at Mount Meager Peak. This has important 
implications for hazard assessment as this area is directly above Meager Creek. 
Large landslides here could lead to damming of the river and future breach leading 
to widespread flooding downstream. The lowest FOS is 1.075 (Fig. 25) with a few 
failure planes with FOS lower than 1.1 and many below 1.2. In the northern half the 
lowest FOS is 0.998 with many planes having a FOS less than 1.1. These surfaces are 
all very deep and many include a large section of Mount Meager as well as Plinth (Fig. 
26). 
 
The ‘after failure’ modelling started with a higher water table as seepage could be 
seen from images taken after the 2010 failure. The lowest FOS values for the 
northern and southern sections did not change from the initial stage to the last 
stage, suggesting these areas may be insensitive to the infiltration values provided. 
Alternatively, as the FOS values are already low, even a small amount of infiltration 
in a year could raise the water table and render the slope unstable. The last large 
failure at Plinth occurred at the time of the last volcanic activity, suggesting this area 
could become more hazardous if volcanism is renewed. 
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The grids show a surface
area where the centre
points within a radius of 
a failure are defined. The
minimum FOS for each 
point is defined by the
colour. Red and orange
represents low FOS 
value. 

Fig. 23. N-S profile. Slide model and back analysis showing all failure planes below FOS of 1 for 
the northern side of the section. A) Model before analysis. Grids are for analysis using grid search 
in each direction. B) Initial stage showing FOS of the weakest plane before infiltration. This 
shows that the northern side of Mount Meager was moderately stable without water. C) Final stage 
of analysis representing 2010. Water table is at the surface (pink line) and the lowest FOS has 
decreased to 0.845. The deep failure plane shows a FOS of 0.994. The failure plane indicted at Mount 
Meager (FOS of 0.845) may have resulted in a relatively small rock fall onto Capricorn Glacier 
which would likely have gone unnoticed. The deep failure below Plinth (FOS of 0.994) shows it is at 
the point of failure. The speed of failure however cannot be determined using Slide. This therefore 
may indicate slow, progressive movement as seen at various locations around the MMVC. 
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Fig. 24. N-S profile. Slide model and back analysis showing all failure planes below FOS of 1 for 
the southern side of the section. A) Initial stage showing FOS of the weakest plane before 
infiltration. This shows that the southern side of Mount Meager was already at the point of 
failure. B) Final stage of analysis representing 2010. Water table is at the surface (pink line) and the 
lowest FOS has decreased to 0.882. All failure planes with a FOS below 1 are located at the peak of 
Mount Meager where the 2010 failure actually occurred. The grids show a surface area where the 
centre points within a radius of a failure are defined. The minimum FOS for each point is defined by 
the colour. Red and orange represents low FOS values 
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Fig. 25. N-S profile. Slide model for after failure in the southern section. Actual infiltration values were 
used for stages 1 and 2 (2011 and 2012) and extremes were used for stages 3 and 4 (2013 and 2014). 
A) Initial model with after failure topography. B) Initial stage showing the lowest FOS before 
infiltration. C) Final stage after infiltration displaying the lowest FOS. The weakest areas of the 
southern section are located on the flanks of Pylon. The grids show a surface area where the centre 
points within a radius of a failure are defined. The minimum FOS for each point is defined by the 
colour. Red and orange represents low FOS values. 
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7.5 South West – North East Profile 
 

A SW-NE profile through Mount Meager was also modelled testing stability of the 
eastern flank of Plinth Peak. With failure in the NE direction (Fig. 27), the weakest 
area at the initial stage (before infiltration) is in the deposits at the bottom of the 
profile, entering the valley with a FOS of 0.573. Once infiltration was added, the 
lowest FOS was 0.722. The FOS was higher after infiltration than in the initial 
stage, which is contradictory to the normal assumption, and to that shown in the 
other models. This is because the location of the weakest plane changes from a 
shallow failure plane to a deep failure plane, showing that infiltration has an effect 
at depth, reducing the FOS of deep planes. The FOS value, however, is very low 
suggesting failure. This may indicate that either there is slow, on-going, progressive 
failure, or no failure is occurring here and the material is stronger than assumed in the 
models. 

B 

A 

Fig. 26. N-S profile. Slide model for after failure in the northern section. Actual infiltration values 
were used for stages 1 and 2 (2011 and 2012) and extremes were used for stages 3 and 4 (2013 and 
2014). A) Initial stage showing the lowest FOS before infiltration. B) Final stage after infiltration 
displaying the lowest FOS. The FOS in the northern part of the profile is non-changing, but appears 
to be at failure. The grids show a surface area where the centre points within a radius of a failure are 
defined. The minimum FOS for each point is defined by the colour. Red and orange represents low FOS 
values. 
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Deposits 

Fig. 27. SW-NE profile. Slide model for after failure infiltration through Mount Meager and the 
eastern flank of Plinth. Actual infiltration values were used for stages 1 and 2 (2011 and 2012) and 
extremes were used for stages 3 and 4 (2013 and 2014). A) Initial profile with assumed internal 
structure. B) Initial stage showing the lowest FOS before infiltration. C) Final stage after infiltration 
displaying the lowest FOS. The eastern flank of Plinth appears to be at failure along many possible 
planes. The grids show a surface area where the center points within a radius of a failure are 
defined. The minimum FOS for each point is defined by the colour. Red and orange represents low 
FOS values. 
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There were many failure planes with a FOS below 1, most being deep failures 
and including the peak of Mount Meager (Fig. 27). The extreme infiltration values at 
stages 3 and 4 appear to have no impact on slope stability in this profile. Slope 
failure of the eastern flank of Plinth would have significant effects on communities 
downstream as it is situated directly above Lillooet River Valley. Damming and 
future breach of the dam could cause extensive flooding downstream. 
 
Failure to the SW shows an initial minimum for FOS is 0.912. The FOS increases 
slightly with each stage, the final stage having a lowest FOS of 0.918. This failure 
would remove the bulk of Meager Peak (Fig. 28). Failure here would travel down 
Capricorn Creek and likely dam Meager Creek and possibly Lillooet River. 
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Fig. 28. SW-NE profile. Slide model for after failure infiltration through Mount Meager and the 
eastern flank of Plinth. Actual infiltration values were used for stages 1 and 2 (2011 and 2012) and 
extremes were used for stages 3 and 4 (2013 and 2014). A) Initial stage showing the lowest FOS for the 
south-western face of Mount Meager Peak before infiltration. B) Final stage after infiltration 
displaying the lowest FOS. The south-west face of Mount Meager appears to be at failure. 
Material removed here would flow down Capricorn Creek into Meager Creek, likely damming the 
river. The grids show a surface area where the centre points within a radius of a failure are defined. 
The minimum FOS for each point is defined by the colour. Red and orange represents low FOS values. 
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7.6 Job Creek 
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Fig. 29. Job Creek/Plinth profile. Slide model for after failure infiltration for the western flank of Plinth 
into Job Creek. Actual infiltration values were used for stages 1 and 2 (2011 and 2012), two 
random, but similar values chosen for the following two stages and extremes for the last two stages. 
A) Initial profile with assumed internal structure. B) Initial stage showing the lowest FOS before 
infiltration. C) Final stage after infiltration displaying the lowest FOS. The western flank of Plinth 
has a FOS indicating instability along a deep failure plane. The grids show a surface area where the 
centre points within a radius of a failure are defined. The minimum FOS for each point is defined by 
the colour. Red and orange represents low FOS values.  
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Preliminary mapping showed there to be an area of possible instability in Job Creek 
on the western flank of Plinth. The initial stage shows that this area is already 
unstable before infiltration is added, having a FOS of 1.084. When infiltration is 
included the FOS drops to 1.077. At each stage the failure plane is deep, having 
implications for Lillooet River. The upper boundary of M2 appears slightly 
impermeable, causing a concentration of water within the upper material (M6). The 
model shows a large amount of internal flow (Fig. 29). 
 
All scenarios tested to verify parameters showed a gradual decrease in the FOS 
over time, as opposed to a sudden drop. This suggests the massif is generally 
weakening with time. Therefore, under current conditions, landslides are 
becoming more likely. Frequency of failures could therefore be expected to increase. 
 

7.7 Area and Volume Estimates 
 

An estimate of the area of material within the failure planes was calculated from 
the Slide models. As these models are 2-dimensional, Google Earth was used to 
determine an estimate volume by estimating the width of the surface area likely 
affected by failures at the possible sites identified. For the N-S profile, failure to the 
south (Pylon) has the capability to generate a landslide of the order of 3 x 109 m3 

and to the north (Plinth) a volume of 4 x 109 m3. For the SW-NE profile, failure to the 
north-east (eastern flank of Plinth) has the ability to generate a volume of the order of 
5 x 109 m3, and to the south (Mount Meager) a volume of around 7 x 107 m3. The 
western flank of Plinth (Job Creek) could fail with of volume of approximately 1 x 109 

m3. These failures are all along deep failure planes. 
 

7.8 LAHARZ Modelling 
 

Results from the LAHARZ models showed that a huge volume is needed for a 
lahar/debris flow to reach the town of Pemberton. A flow of approximately 108 

m3 would reach the outskirts of the Pemberton area and cause disruption to roads. It 
would take a flow with a volume of 3 x 108 m3 to reach the main part of the town 
and disrupt the railway. Most, if not all, of Pemberton town would be covered by 
a flow with a volume of 3.5 x 108 m3. With a flow of 5 x 108 m3, the whole valley 
would be inundated with material (Fig. 30). Volumes of this size can only be 
generated by large, deep-seated landslides and/or by the creation and failure of 
significantly large dams. 
 
Slide modelling shows that failures of the flanks of Pylon Peak, the northern and 
eastern flanks of Plinth, and the western flank of Plinth (Job Creek), have sufficiently 
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deep failure planes that could generate volumes of this size and greater. Mapping 
and literature research also suggests there are many other sites around the MMVC 
where deep failure could occur, such as at Affliction Creek and Devastation Creek. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

8. Analysis 
 

8.1 Hydrology 
 

In all N-S models the water table rose to the surface once infiltration started, 
regardless of the initial position. This indicates that, if the model parameters are 
correct, the water table would always be at high elevation within the Complex as 
opposed to intermediate elevation as previously thought. There is also a fairly 
continuous supply of water, either through rainfall or snow-melt, so the water table 
would not drop to intermediate level. At the initial stages, the lowest FOS was higher 
than those when infiltration was included. This confirms that the water infiltrated 
increases instability. It also shows that even without water the slopes are still 
unstable. 

Pemberton Meadows 

Pemberton 

Fig. 30. Hazard inundation map, using LAHARZ and ArcGIS, showing volumes and extent of various 
debris flow simulations originating from Mount Meager in Capricorn Creek. Flows overlain on a 
Natural Colour Landsat TM image (25/07/2010) (www.earthexplorer.usgs.gov). Infrastructure data 
from www.geocomm.com. 
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8.2 Factor of Safety 
 

All models showed a gradual decrease in the FOS with each stage. As there were 
no sudden drops in stability it can be assumed that no sudden or large changes are 
needed for failure to occur, as small changes can be sufficient to trigger the final 
failure. So while extremes, such as heavy rainfall or warm months, may be more 
likely to trigger landslides, the intervening periods of ‘normality’ must also be 
considered hazardous. 
 
Using imagery from Google Earth, it can be seen that there is a small bulge and cliff 
on the northern side of Mount Meager. The small area of failure (FOS of 0.845), 
modelled here, is considered to be at failure. It is also possible that this section has 
already failed onto the glacier unnoticed. 
 
When testing for all failure surfaces, before the 2010 failure, the weakest place 
was shown to be the south side of the peak of Mount Meager. This can be 
assumed to be accurate as the failed surface was one of the many possible planes 
displayed. This can therefore also act as verification for the relative parameter 
values as the lowest FOS, hence weakest area, was where failure actually occurred. 
 

8.3 South West – North East Profile 
 

The SW-NE profile shows that the south-west face of Mount Meager is unstable. 
If failure occurs here the material will flow down Capricorn Creek, into Meager Creek 
and possibly into Lillooet River. This could be a similar event to the 2010 failure of 
Mount Meager, leading to damming of the rivers and a later breach of the debris 
dam. The eastern flank of Plinth, with failure in a north-eastern direction, has a low 
FOS indicating it is at the point of failure. These failure planes are deep, and if a 
landslide occurred in this location a huge bulk of Plinth would be removed 
damming the Lillooet River and causing a risk of flooding downstream, if suddenly 
breached. A greater hazard, if failure occurred here, would be the possibility of the 
triggering of an explosive eruption. The amount of material that could potentially be 
removed would cause unloading and depressurisation of the magma chamber 
below, which may in turn trigger explosive activity. 
 

8.4 Job Creek 
 

Slide analysis of Job Creek indicates the western flank of Plinth is unstable. This, 
according to literature, is one of the locations where future failure is expected to 
occur. The topographic profile shows there is a flat part mid-slope. This, combined 
with the deep failure planes displayed, suggests this area may be undergoing 
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progressive slope movement of the sackung type, similar to Affliction Creek. If this is 
the case, the flat area may be an antithetic fault. This however, is difficult to 
confirm using Google Earth, as the area is snow covered, hence underlying details 
cannot be observed in images. 
 

8.5 Modelling Extremes 
 

When modelling future possibilities, extreme infiltration showed no difference 
from average values. This strengthens the argument above that small changes are 
sufficient to trigger failure, and extreme changes are not essential. Although there is 
correlation between extreme conditions and chances of failure, there are many 
landslides that do not correlate with such events. 
 

8.6 The Effect of Snow Coverage 
 
The Slide models show annual changes and not seasonal changes, however literature 
on historical failures shows that most landslides occur during the summer months. 
This correlates with higher temperatures and greater rainfall (as opposed to 
snowfall) and snow-melt, leading to higher infiltration. Satellite images obtained 
from the USGS database display the seasonal variation in snow coverage. When 
mapped using ArcGIS, a difference in the area of snow coverage between July 2010 

and April 2011 was approximately 27.5 km2 showing a large amount of melting 
occurs during the summer. Locally, the areas where snow and ice cover 
retreats/melts the most are at sites where large landslides are commonly known to 
recur. 
 
To avoid creating greater uncertainty and adding complexities to the models, 
permafrost layers and melt were not taken into consideration for slope stability 
modelling. However, permafrost is believed to act as an impermeable layer, and 
is undergoing considerable degrading due to the warming climate, hence adding to 
destabilising slopes (Geertsema et al., 2006; 2010; Clague, 2013). 
 

8.7 Model Assumptions and Validity 
 
Many assumptions were made for the models. Exact rock parameters were unknown, 
so guidance was taken from images of the volcanic Complex and Rocscience’s 
RocData program. The internal structure of the Complex is unknown. The exact 
position of the water table is also unknown, and few studies have been done to 
test hydraulic properties of the materials composing the MMVC, therefore large 
assumptions are made here also. Most properties were tried and tested in the 
back analysis using the 2010 failure data. The accuracy of annual infiltration values 
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relies on having an accurate initial value of the average infiltration. There is more 
precipitation at high elevation, but as there is no recording equipment at these 
locations, precipitation, and therefore the average, is assumed, leading to a 
possible under- or over-estimation. Precipitation combines rainfall and snowfall, so 
infiltration from snow-melt is included in the overall infiltration and not considered 
separately. As mentioned previously, there is a lack of data on the hydrology of 
the MMVC, hence internal flow movement is unknown. Any effect the glacier has 
on internal flow is therefore not considered in the models. It should also be 
noted that the Slide models are 2-D, so do not take into consideration 3- D effects, 
such as buttressing and snow loading, which could increase the Factor of Safety. 
There may also be strong internal compressive stresses holding the massif together, 
allowing only superficial failures to occur and preventing large, deep failures from 
becoming more frequent events (van Wyk de Vries & Matela, 1998). 
 

8.8 Future Failure 
 
The N-S profile section cuts through the side of a cirque between Angel Creek and 
Pylon Creek. The forward modelling results indicate this southern section is unstable, 
having a FOS of just above 1. This is an area which has previously been identified by 
Holm et al. (2004) as a probable location for future failure. They state that there are 
Little Ice Age (LIA) end moraines in Angel Creek which act as catchments for debris 
flows in the upper area of the cirque. Debris flow activity may increase sharply in 
the lower part of the creek when the basin reaches its storage capacity. 
 

8.9 Volumes 
 
The estimated volumes that can still be generated at the MMVC could be greater 

than 109 m3, the largest originating from the northern and eastern flanks of 
Plinth Peak. These volumes do not account for any entrainment of water and 
material after detachment, so volumes of the debris flows would likely be larger. 
According to the LAHARZ simulations and hazard map, the Lillooet River Valley and 
town of Pemberton would be completely inundated with material if a deep failure 
occurred in locations modelled in the Slide profiles. These possible failures 
appear to be larger than any previous events at the MMVC. 
 

8.10 Technical Problems 
 
During modelling, various technical problems were encountered. A small range of 
hydraulic conductivity values caused errors in the results, mainly affecting the 
pore pressures. Issues in the coding occasionally caused the water table to 
disappear. Groundwater analysis could be computed separately, but occasionally 
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displayed some errors in finding groundwater data when computing the slope 
stability. It would appear that infiltration caused most of the problems. Solving these 
technical issues, and making changes to correct for them, was a time consuming 
process and required help from Rocscience directly. Some of the problems were 
not fully resolved however changes were made to work around them. Issues may 
have arisen due to the large scale of the models analysed. Slide is usually used for 
much smaller sections than those for this project. 
 
 

9. Discussion 
 

9.1 Future Failure 
 
As most of the MMVC is underlain by altered and highly weathered volcanic rock, it 
can be expected that more large landslides will occur in the future (Friele & Clague, 
2004). There is likely to be high frequency activity at Capricorn Creek and 
Devastation Creek due to the abundance of readily mobilised material available. 
These are just two of the many areas where poorly consolidated material in the 
Complex has been uncovered and de-buttressed as a result of glacial retreat (Bovis & 
Jakob, 2000). Angel Creek may also experience increased activity as the LIA end 
moraines, which act as catchments for debris flows in the basin, reach and exceed 
their storage capacity (Holm et al., 2004). 
 
Preliminary mapping shows there are areas which appear to be unstable and 
displaying features associated with instability, such as sackungs and fractures. The 
main sites of potential failure seen when mapping are consistent with those 
identified by Friele et al. (2008); Devastation Creek, East Job Creek and the flanks 
of the Devastator and Pylon Peak. Friele et al. (2008) state that the potential failure 
area at Devastation Creek is ten times larger than the 1975 failure and could 

generate a volume on the order of 108 m3. According to the LAHARZ results, this 
would reach the outskirts of the Pemberton area and cause disruption to transport. 

Partial collapses could have volumes around 106 – 108 m3. Instability on the 
southern flanks around Pylon Peak is confirmed in the N-S profile of the Slide 
models, with a calculated FOS little over 1. 
 
Large scale deglaciation can cause unloading and depressurisation in volcanic 
systems leading to a risk of triggering an explosive eruption (Clague, 2013). The 
Slide models show some of the possible failure planes to be deep, which could 

remove approximately 5 x 109 m3 of the Complex material. As the MMVC is 
classified as potentially active, this could be a realistic hazard for this region. The 
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occurrence of small, frequent earthquakes beneath the Meager Massif indicates 
shallow magmatic activity, supporting the possibility of renewed volcanism in the 
future (Friele et al., 2008). Earthquakes at the MMVC are one of the triggering 
mechanisms for slope failures (Simpson et al., 2006). Many landslides at the MMVC 
have caused damming of rivers. A large landslide could create a significantly sizeable 
dam, which could cause widespread flooding downstream upon failing. According to 
the Slide models this is a realistic possibility at Plinth, with both the eastern and 
western flanks displaying deep failure planes. The valley below the eastern flank of 
Plinth is where the deposits from the last volcanic eruption of the MMVC are 
located. 
 

9.2 Climate Change 
 
When discussing landslides in British Columbia the main triggers associated with 
these failures are earthquakes and climate. Climate refers to meteorological 
conditions, intense rainfall and rapid snowmelt, long-term climate trends, frost 
wedging, and thawing permafrost (Geertsema et al., 2010). Geertsema et al. (2006) 
suggest there is a link between climate change and the increase in occurrence of 
landslides in northern BC. Landslides in mountainous regions may be especially 
responsive to any increase in temperature (Geertsema et al., 2010). Geertsema et 
al. (2006) show there is a general positive correlation between years of high 
temperatures and rainfall with landslide occurrence. This is supported by Jakob & 
Lambert (2009), who have found that climate models predict an increase in rainfall 

within the 21st Century, and therefore an increase in the frequency of landslide 
occurrence. They state that most landslides in coastal BC are triggered by 
hydroclimatic events, mainly prolonged rainfall followed by, or associated with, a 
period of intense rainfall. However, they have found there to be no persistent trend 
in rainfall intensity over the past four decades. In BC, shallow failures are typically 
associated with periods of heavy rainfall or rapid snowmelt. However, due to a 
sparse climatological network in valley bottoms, the data on amount of rainfall 
occurring is not representative of the weather at landslide locations. Large deep 
failures usually have a delayed response to precipitation, suggesting long term 
climate trends influence deep landslides. Rapid or delayed melting of above average 
snowfall can increase landslide activity. Melt water infiltrates cracks and fractures 
causing joint expansion through freeze-thaw processes (Geertsema et al., 2010). 
 
Hewitt et al., (2008) support the claim that climate events can trigger landslides. 
Various scenarios of climate change suggest the winters in the Coast Mountains 
region will become wetter and warmer, experiencing more intense rainfall later 
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during this century (Friele et al., 2008; Jakob & Lambert, 2009). All large historic 
landslides within the Meager Creek watershed have occurred in summer, either 
during or following warm spells (Friele & Clague, 2004; Huggel et al., 2012), leading 
to greater snow and ice melt, likely triggering failure due to the increase in pore 
pressures (Friele & Clague, 2004). Geertsema et al. (2010) state that global climate 
change could be affecting landslide rates in mountain ranges around the world. In 
the Alps and BC, permafrost may be degrading due to the warmer climate, 
decreasing slope stability (Geertsema et al., 2006; 2010). 
 

9.3 Glacial Hazard 
 
Glaciation and deglaciation are key factors affecting the distribution, magnitude, 
frequency and behaviour of rock avalanches (Hewitt et al. 2008). The Coast 
Mountains of BC are one of the places that have experienced the greatest ice loss 

over the 20th Century. Glacial thinning and retreat appears to be responsible for 
many rock failures in mountain regions during this time (Clague, 2013). This is 
ultimately dependent on climate change (Hewitt et al., 2008). Post-LIA retreat is one 
of many factors influencing landslide activity in the Coast Mountains of BC. The 
spatial frequency of surficial failures within the Neoglacial limit and the occurrence 
of rock falls along glacial trimlines have increased, hence the chances of large 
catastrophic failures in weak rocks have also increased. Many landslides at the 
MMVC have been triggered by glacial de-buttressing, such as Devastation Creek 
(1975) and Capricorn Creek (1998) (Holm et al., 2004). Capricorn Basin and 
Devastation Basin show similar patterns of catastrophic failure as a result of involving 
slopes which have undergone de-buttressing (Bovis & Jakob, 2000). 
 
Temperatures in glaciated mountains are usually below freezing; however, warm 
periods cause a rapid rise in temperature hence melting of snow and ice. Melt-
water then infiltrates cracks and fractures increasing water pressure and producing 
extensional forces on already weak rock masses. The thawing of permafrost is 
also possibly related to slope failure as permafrost melt infiltrates fractures at 
high elevations (Clague, 2013). Holm et al. (2004) found that basins within the MMVC 
generally displayed greater slope undercutting along Neoglacial trimlines than 
granitic basins, showing that glacial retreat weakened and destabilised slopes more 
at this Complex. The frequency and magnitude of landslides is therefore substantially 
higher in and around the MMVC than other areas. All basins at the MMVC studied by 
Holm et al. (2004) exhibited evidence of non-catastrophic gravitational slope 
deformation. Deep- seated slope movement or large scale catastrophic failure 
associated with Neoglacial retreat, is more commonly observed in weak rocks such 
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as the quaternary volcanics of the MMVC. All large failures of these rocks occur 
within areas of previous gravitational slope deformation and directly above slopes 
which have been undercut by Neoglacial scour. 
Preliminary mapping of the MMVC shows that the main areas of instability are 
located at in valleys which have undergone the most extensive glacial retreat, such as 
Affliction Creek and Devastation Creek. 
 
Many slope failures at MMVC originate as rock avalanches and transform into 
debris flows. This style of failure is rare and does not fit with conventional 
classification. Catastrophic Glacial Multi-Phase Mass movement (CGMM) is a new 
term created to describe events of this kind. Failure usually initiates as a rock or 
ice avalanche, which transforms into an ultra-high speed flow (>30 m/s), then 
into a debris flow. A key feature of these phenomena is that transformation from 
rock avalanche to debris flow is a result of fluidisation. The Devastation Creek failure 
in 1975 is an example of a CGMM event (Petrakov et al., 2008). Volcanic rock was 
displaced beneath the glacial bed leading to a downstream advance of an 

approximately 2.5 x 106 m3 section of the glacier snout (Mokievsky-Zubok, 1977; 
Petrakov et al., 2008). The material became saturated in water and ice substantially 
increasing its volume becoming a debris flow. The trigger for the slide was mainly due 
to the action of melt water from the glacier. It is suggested that prior to the final 
trigger, the main mass needs to be in a state of preparedness for catastrophic 
failure. CGMM events repeat in the same area, but with no clear return period. 
Evidence for this is that there have been three catastrophic events documented at 

Devastation Glacier during the 20th century (Petrakov et al. 2008). 
 

9.4 Hydrology 
 
Groundwater dynamics and position of the water table within a volcanic edifice 
have significant implications on volcanic hazards with slope failure, lahar generation 
and phreatic eruptions strongly influenced by water table elevation (Hurwitz et al., 
2003). This is supported by the Slide models in Section 7 which show the massif 
to have a slightly higher FOS at the initial stage of each location before infiltration 
is added and when the water table is positioned at a lower elevation. In fully 
saturated material the fluid pressure is positive reducing the effective stress, thus 
increasing the likelihood of slope failure. A deep water table would therefore mean 
there cannot be sufficiently high enough fluid pressures to enhance potential for 
failure above. The main problem however, is that knowledge of water table 
positions and geometry is limited as little direct evidence can be obtained from 
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active volcanic cones. This is due to the difficulty of having drill holes on or within 
the vicinity of volcanic summits (Hurwitz et al., 2003). Also, the MMVC is glaciated 
mountain terrain with numerous geologic units and hydraulic properties so is one 
of the most complex hydrologic landscape to describe (Winter, 2001). 
Results from simulations indicates the permeability structure of the edifice and 
underlying material has dominant  control on the elevation of  the water table and 
distribution of pressures.  Previous numerical simulations of heat transport and 
groundwater flow of Quaternary volcanics in the Cascades determined permeabilities 

on the order of 10-14 m2. However, the permeability structure is subject to the 
greatest uncertainty. 
 
Variations in precipitation recharge rate also have a large impact on water table 
elevation. Extensive ice caps could restrict recharge at the summit and on the 
upper flanks. The water table may be relatively deep with low recharge from 
precipitation and high permeability, and saturated if high recharge and low 
permeability. Along sloping surfaces, seepage usually occurs in the lower sections 
of the slope, and the upper sections receive precipitation recharge. However, 
seeping areas can become non- seeping if the seepage rate becomes positive, and 
non-seeping areas can become seeping, if the pressure rises above that of the 
atmosphere. 
 
These parameters do not stay constant over geologic time as the edifice evolves. 
There may be positive feedback between the water table elevation and 
hydrothermal alteration as alteration tends to decrease mechanical strength and 
permeability (Hurwitz et al., 2003). 
 

9.5 LAHARZ 
 
Research by Simpson et al. (2006) has found three large volume debris flow deposits 
in the Lillooet River Valley. According to this research the town of Pemberton is 
built on top of lahar deposits from one of these huge volume events. This is 
evidence that failures of this size are possible and, although rare events, plans 
for mitigation and evacuation should be in place in preparation for one of these 
large scale flows. The three large volume debris flows found in the Lillooet River 

Valley all had volumes above 108 m3. The oldest debris flow unit was deposited 

around 6,250 years BP with a volume of 108 – 109 m3. The middle unit from 4,400 

years BP had a volume of 2 x 108 m3 and the youngest of the flows, deposited 

around 2,600 years BP had a volume of 108 – 109 m3. These volumes are likely to 
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be the minimum due to erosion and burial within the valley (Friele et al., 2008). 
Failures of this size appear to be infrequent events, as suggested by the dates of 
these flows, however they should be considered in building and development 
regulations. Events on a smaller scale happen more frequently, as mentioned 
previously. 
According to a risk assessment by Friele et al. (2008), the residents of the 

Pemberton settlements are vulnerable to debris flows of between 107 – 108 m3, 
which could reach the upstream limits of the settlements areas and debris flows of 

108 – 109 m3, which would completely inundate the whole Lillooet River Valley up 
to 75 km from Mount Meager volcano. As this region of BC does not have any risk 
standards in place, Friele et al. (2008) used international standards from Australia, 
Hong Kong and the United Kingdom to determine risk to the residents of the areas 
in question. They concluded that individuals in the Pemberton areas are 5.4 times 
more at risk than is acceptable. 
 
Results modelled in LAHARZ by Simpson et al. (2006) show that a lahar with a volume 

of 108 m3 reaches the same extent as a lahar with a volume of 5 x 107 m3 

according to models done for this study. This flow may possibly extend as far as 
Pemberton Meadows (~55 km downstream of Mount Meager). According to Simpson 

et al. (2006) a volume of 109 m3 would be required to inundate the valley and 

town of Pemberton; however according to this study, a volume of 5 x 108 m3 

would be sufficient. Models from this study therefore suggest a smaller volume is 
required to reach settlements and cause inundation of the valley than previous 
studies have found. This therefore implies the risk to Pemberton and surrounding 
settlements may be higher than first calculated. 
 
This difference between the results however, is likely due to an alternative origin for 
the initial LAHARZ modelling chosen by Simpson et al. (2006). Their map displaying the 
distal flow simulations originates in Job Creek on the northern side of the MMVC, so 
having a greater distance from Pemberton than models in this study. However, 
they state that distal inundation zones are similar to those of models originating at 
other Creeks around the Complex. The DEMs used in this study may be different to 
those used by Simpson et al. (2006) as the date of acquisition for the DEMs would 
be in line with the date of the research undertaken. Those used for this study are 
therefore likely to be more recent, hence having a slightly differing topography. 
Various other factors also contribute to the extent a flow will travel, so these need 
to be considered further when producing an accurate hazard map. 
As mentioned previously, mitigation plans need to be developed in preparation 
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for debris flows of this scale. Even though they are infrequent events, the Slide 
models show that the MMVC still has the capacity to deliver flows of this 
magnitude. If not already in place, early warning systems should be implemented 
due to the knowledge that most landslides in the MMVC occur without warning. 
Flows of this size would likely overcome many mitigation strategies in the valley so 
it would be important to have a good evacuation plan in place. 
 

9.6 Overview of Similar Failures in British Columbia 
 

i. Southern British Columbia 
 
The following four examples are of areas in southern BC, near the MMVC, where 
previous failures and movements have been documented. 
 
Mount Cayley is a stratovolcano and one of the three volcanic centres of the 
Garibaldi Volcanic Belt, along with Mount Meager and Mount Garibaldi (Stewart 
et al., 2003). Several large landslides have originated from the western flank of 
Cayley during historic time with frequent occurrence of smaller debris flows which 
disrupted access to the area (Friele & Clague, 2004). Many of these landslides have 
blocked Squamish River and caused flooding (Hickson et al., 1999; Friele & Clague, 
2004). 
 
The Cheam landslide, which occurred approximately 5,000 years ago, is one of 

the largest events in British Columbia with a volume of 17 x 107 m3 (Hewitt et al., 
2008). 
 
Deformation through toppling movements has been documented at Mount Currie, 
which is located close to the town of Pemberton (Bovis & Evans, 1996). 
 
The Hope Slide, a debris avalanche event, of 1965, was comparable in size to the 
2010 failure at Mount Meager (Guthrie et al., 2012). Prior to failure, there had been 
long term deformation, where sackungs and linears had been observed (Bovis & 
Evans, 1996; Hewitt et al., 2008), suggesting a relationship between deformation on a 
long time scale and slope failure. The 1965 landslide entrained water and generated a 
debris flow in the valley (Hewitt et al., 2008). 
 

ii. Northern British Columbia 
 
Similarly, several large landslides have been documented in northern BC. The 
following are just six examples. 
 
The Muskwa flow of 1979 was classified as a rock slump-earth flow, involving both 
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rock and soil. It was a large failure with a volume of 15 x 106 m3, which created a 
dam in Muskwa River. The dam was later partially breached. 
 
The Mink Creek flow occurred in December 1993 or January 1994, with failure of 

sediments and soils. The volume of the flow was 2.5 x 106 m3 and also dammed 
the river. This event was preceded by a decade of warmer and wetter conditions. 
The Zymoetz failure of June 2002 was a rock slide-debris flow with a volume of 1.6 x 

106 m3, which caused damming of the Zymoetz River. This led to flooding 
upstream upon failure. This event ruptured the gas line, disrupting service to the 
surrounding areas. 
 
The Harold Price rock slide-debris flow also occurred in June 2002. The volume of 
failed material was equal to that of the Zymoetz failure. The degrading of permafrost 
is considered likely to have played a role in this failure. 
 
Pink Mountain also failed in June 2002 with a volume of 1 x 106 m3. This event 
was classified as a rock slide-debris avalanche. Failure occurred in an area of 
mountain top deformation and transformed into a debris avalanche. 
 
The McCauley Mountain rock slide in southern BC occurred around the same time as 
the three above. All June 2002 failures are believed to be associated with the 
delayed melting of an above-normal snow-pack (Geertsema et al., 2006). 
 

9.7 Future Work 
 
There are many assumptions in the modelling causing uncertainties and possible 
inaccuracies in the results. Materials composing the MMVC need to be tested 
and determined in order to constrain the range of values used in the models. This 
would involve undertaking some intensive, difficult and dangerous fieldwork, which 
was not done for this study. Infiltration is an important factor affecting slope 
stability, hence precipitation could be better monitored at high elevation sites 
around the Complex allowing for more accurate modelling of infiltration. Further 
modelling could also be undertaken to assess the impact of infiltration over shorter 
time scales as opposed to annual variations. Reliable values for rock and hydraulic 
properties can then be used to develop a threshold for materials composing the 
MMVC. The hydrology of the area is complex and largely unknown, however the 
location of the water table has significant impacts on volcanic hazards. This means 
the hydrology of the Complex needs to be refined in order to obtain more 
accurate and reliable analyses on slope stability. The position of permafrost layers 
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and thawing requires greater focus in order to refine the details of the modelling. 
 

10 Conclusions 
 
Regional tectonics, seismicity, geological structure, lithology, relief and climate are 
main factors which work together in preconditioning a slope for failure and in 
determining behaviour and activity of landslides (Hewitt et al., 2008). 
According to the hazard map produced by simulations using LAHARZ, it would take 
a large volume debris flow to reach the town of Pemberton, 65 km from Mount 
Meager. However, the MMVC has the potential to generate flows of this size as 
both Slide modelling and previous studies have found. Five main areas can be 
identified as currently having a greater likelihood of failure; West Devastation 
Creek, the southern flank of Pylon Peak, the bulge at Job Creek, Affliction Creek 
and the eastern flank of Plinth Peak. The first four of these locations have clearly 
visible unstable features and the fifth is a steep cliff, which failed during the last 
volcanic eruption. 
 
The warming climate and consequent glacial retreat has exposed many areas of 
poorly consolidated material and caused the de-buttressing of slopes around the 
MMVC. Many historic landslides have closely followed periods of above average 
temperatures and rainfall. However, annual infiltration modelled in Slide showed 
there were small, gradual decreases in the FOS with each stage, as opposed to a 
sudden drop resulting in failure. This indicates that all conditions should be viewed 
as hazardous to stability and that minor changes could trigger failure. The massif 
appears to be unstable, even without the presence of water, also supporting that 
minor changes could lead to failure. 
 
The Slide models indicate that the MMVC still has the capability for generating 
large volume debris flows. If failure occurred along a deep failure plane, volumes 

greater than 108 m3 could be delivered to Lillooet River, which would inundate 
the entire valley, including the town of Pemberton. Friele et al., (2008) believe a 

failure of the order of 108 m3 is both possible and likely to occur at Devastation 
Creek. These events are infrequent but can occur without warning and travel 
great distances. Deep failures would remove a large bulk of material which could 
cause unloading and depressurisation of the underlying magmatic system, which in 
turn could result in an explosive eruption and renewed volcanic activity at the 
Complex. The residents of Lillooet River Valley are at a greater risk than is acceptable 
and this needs to be recognised in order to reduce risk to as low as reasonably 
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possible. Evacuation plans need to account for events of this scale and be considered 
in planning. 
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12.1 License and Copyright Agreement for Guthrie et al., (2012). Figures 1, 5, 6, 7 
and Table 1. 
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Natural Hazards and Earth System Sciences Discussions whose original manuscript 
was received from 10 December 2007 on. The License and Copyright Agreement for 
articles based on manuscripts received before 10 December 2007 can be found here. 
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• They are authorized by their co-authors to enter into these arrangements. 
• The work described has not been published before (except in the form of an 
abstract or proceedings-type publication – including discussion papers – or as 
part of  a published lecture or  thesis), that  it is  not under  consideration for 
publication elsewhere, that its publication has been approved by all the author(s) and 
by the responsible authorities – tacitly or explicitly – of the institutes where the 
work has been carried out. 
• They secure the right to reproduce any material that has already been published 
or copyrighted elsewhere. 
• They agree to the following license and copyright agreement: 
 

Copyright 
 
 
• Copyright  on  any  article  is  retained  by  the  author(s).  Regarding  copyright 

transfers please see below. 
• Authors grant Copernicus Publications a license to publish the article and identify 
itself as the original publisher. 
• Authors grant Copernicus Publications commercial rights to produce hardcopy 
volumes of the journal for sale to libraries and individuals. 
• Authors grant any third party the right to use the article freely as long as its 
original authors and citation details are identified. 
• The   article   and   any   associated   published   material   is   distributed   under 
the Creative Commons Attribution 3.0 License: 
 

Creative Commons Attribution 3.0 License 
 
Anyone is free: 
 

    to Share — to copy, distribute and transmit the work 
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Under the following conditions: 
 

 
    Attribution. The original authors must be given credit. 
 

 
• For any reuse or distribution, it must be made clear to others what the license 

terms of this work are. 
• Any of these conditions can be waived if the copyright holders give permission. 
• Nothing in this license impairs or restricts the author's moral rights. 

 
The full legal code of this license. 

 

Copyright Transfers 
 
Many authors have strict regulations in their contract of employment regarding 
their works. A transfer of copyright to the institution or company is usual as well 
as the reservation of specific usage rights. Please note that in case of Open Access 
publications in combination with a Creative Commons License a transfer of the 
copyright to the institution is possible as it belongs to the author anyway and is 
not subject to the publisher. 
 
Any usage rights are regulated through the Creative Commons License. As 
Copernicus Publications is using the Creative Commons Attribution 3.0 License, 
anyone (the author, his/her institution/company, the publisher, as well as the public) 
is free to copy, distribute, transmit, and adapt the work as long as the original 
author is given credit (see above). Therefore, specific usage rights cannot be reserved 
by the author or his/her institution/company, and the publisher cannot include a 
statement "all rights reserved" in any published paper. 
 
A copyright transfer from the author to his/her institution/company will be expressed 
in a special "Copyright Statement" at the end of the publication rather than on the 
first page in the article citation header. Authors are asked to include the following 
sentence: "The author's copyright for this publication is transferred to 
institution/company". 
 
Crown Copyright 
 
The license and copyright agreement of Copernicus Publications respects the 
Crown copyright. For works written by authors affiliated with the British 
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Government and its institutions, a copyright statement will be included at the end of 
the publication. Authors are asked to use the following statement, which has been 
approved by the Information Policy department of The National Archives: 
 

The works published in this journal are distributed under the Creative Commons 
Attribution 3.0 License. This license does not affect the Crown copyright work, which 
is re-usable under the Open Government Licence (OGL). The Creative Commons 
Attribution 3.0 License and the OGL are interoperable and do not conflict with, 
reduce or limit each other. 
 
© Crown copyright YEAR 
 
 

Reproduction Request 
 
All articles published by Copernicus Publications are licensed under the Creative 
Commons Attribution 3.0 License (see details above) together with an author 
copyright. Therefore, there is no need from the publisher's side to allow/confirm a 
reproduction. We would suggest contacting the author to inform him/her about the 
further usage of the material. But as the author decided to publish the scientific 
results under the "CC- BY" license, he/she decided to share the work under the 
condition that the original authors must be given credit. 
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12.8. License for Google Earth. Figures 10, 13, 14, 15, 16 and 17. 
 

Use of images 
This article explains that: 

You can use Google Earth imagery for personal use, but cannot sell it to others. 
We're flattered to hear that you're further incorporating Google Earth into your 
online world. You can personally use an image from the application (for example on 
your website, on a blog or in a word document) as long as you preserve the copyrights 
and attributions including the Google logo attribution. However, you cannot sell these 
to others, provide them as part of a service, or use them in a commercial product 
such as a book or TV show without first getting a rights clearance from Google. 
https://support.google.com/earth/answer/21422?hl=en 
 
To determine if your proposed use of Content is acceptable, you should first read 
closely the applicable Terms of Service: 
• Google Maps/Google Earth Terms and Conditions 
• Google Maps/Google Earth APIs Terms of Service 

Your use of Content, as defined in the Terms of Service, in anything from marketing 
and promotional materials to films and books is first and foremost governed by the 
license provided in the applicable Terms of Service for the product. In certain 
circumstances, Google may be able to grant you a broader license to use the Content 
in a manner not covered in the Terms of Service. Plus, apart from any license granted 
to you by Google, your use of Content may be acceptable under principles of "fair 
use." 
Fair use is a concept under copyright law in the U.S. that, generally speaking, permits 
you to use a copyrighted work in certain ways without obtaining a license from the 
copyright holder. There are a variety of factors that affect whether your use of 
Content would be considered fair use, including the purpose and character of your 
use, the nature of the copyrighted work, the amount of the copyrighted material 
used, and the effect of your use upon the potential market for the copyrighted work. 
For example, there are differences between use in a for-fee service and use in a work 
of scholarship, or the use of a single map screenshot and the use of detailed map 
images for an entire country. There are similar, although generally more limited, 
concepts in other countries' copyright laws, including a concept known as "fair 
dealing" in a number of countries. That all being said... 
Please do not request that we interpret whether your use of Content is fair use. 
Google cannot tell you if your use of Content from our products would be fair use or 
would be considered fair dealing; these are legal analyses that depend on all of the 
specific facts of your proposed use. We suggest you speak with an attorney if you 
have questions regarding fair use of copyrighted works. 
No explicit permission is required for your print project. We are unable to sign any 
letter or contract specifying that your project has our explicit permission. 
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12.9 License agreement from USGS. Figure 30. 
 

Most U.S. Geological Survey (USGS) information resides in the public domain and may 
be used without restriction. When using information from USGS information 
products, publications, or Web sites, we ask that proper credit be given. 
Acknowledging or crediting the USGS as an information source can be provided by 
including a line of text citation such as those shown below. Note that some non USGS 
photographs, images, and/or graphics are used by the USGS with permission from the 
copyright holder. To use these copyrighted materials, you must obtain permission 
from the copyright holder under the copyright law. 
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