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Abstract

In recent years, advanced metering infrastructure (AMI) has been the main research

focus due to the traditional power grid has been restricted to meet development

requirements. There has been an ongoing effort to increase the number of AMI devices

that provide real-time data readings to improve system observability. Deployed AMI

across distribution secondary networks provides load and consumption information for

individual households which can improve grid management. Significant upgrade costs

associated with retrofitting existing meters with network-capable sensing can be made

more economical by using image processing methods to extract usage information

from images of the existing meters. This thesis presents a new solution that uses online

data exchange of power consumption information to a cloud server without modifying

the existing electromechanical analog meters. In this framework, application of a

systematic approach to extract energy data from images replaces the manual reading

process. One case study illustrates the digital imaging approach is compared to the

averages determined by visual readings over a one-month period.

xix





Chapter 1

INTRODUCTION TO

ADVANCED METERING

INFRASTRUCTURE

In recent years, smart grid vision has been widely promoted to address the energy

sustainability with integration of advanced sensors and technologies onto the existing

power infrastructure. The current status of power grid has been improved with new

regulations of energy policies with enhanced reliability. Through the rapid expansion

of intelligent communication infrastructure, the vision varies from each country. For

example, the authority of China has set ambitious goals to clearly achieve their top-

down priorities to massively deploy phasor measurement units in substation network,
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whereas in North America has the bottom-up approaches, i.e., to integrate renewable

energy in transmission system as the same time deploy the “smart” IP-based meters

in distribution networks. Overall, the vision has set a higher standards for electricity

safety, energy usage efficiency, environmental protection as well as operational re-

siliency. Advanced metering infrastructure (AMI) is one of them has been prioritized

for providing consumers with additional options for them to use energy at home. The

interdisciplinary efforts with communication experts would revolutionize the power

industry that has been referred as a “smarter” grid as a ultimate goal.

One benefit of being part of the AMI initiative is to enhance the communication

between customers and utilities. This transition provides an option for consumers to

decide when they would work on their laundry, when they will start charging their

electrical car, when they should turn off the lights, etc. Recently, modern science

and technology developed including the transition with the use of communication

and information technologies, the promotion of environment protection procedures,

and the upgrade of operating systems, the technological advance would tremendously

improve AMI communication architecture. Other issues include asset management,

energy conservation as well as emission reduction, largely deploying AMI systems

would be part of the important milestones for the vision [3]. AMI is an integral of

the modern communication infrastructure for distribution grid that will be connected

with the dispatching control centers [4].
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1.1 Hierarchical Structure of AMI network

AMI is a network management system consisted of “smart” IP-based meters installed

in the side of users, the data management console located in the data monitoring cen-

ter, and the communication network to transmit the relevant electricity information.

The modern communication technology has been able to be extended to the home

area network (HAN), local area network (LAN), and wide area network (WAN) to

enhance the transmission efficiency in different regions with various area sizes.

Figure 1.1 demonstrates the fundamental structure of AMI. The “smart” meter has

the ability to measure approximate real-time electricity information, e.g., the three-

phase voltage and current, real and apparent power, frequency, and energy consump-

tion. The collected data will transmit to the data management center via the pre-

setting communication network. The data transmission network can be public net-

works or appropriative networks such as power line communications (PLC), fixed

radio frequency (RF), and the power supply administration [5]. The relevant data

collected from “smart” meters are received and stored in the data center which have

to pre-set enough storage space, and then the gathered data will be sent to the man-

agement console for modeling and analysis. The data management system is capable

of monitoring and supervising relative electricity information via Web browsers. In

addition, the functions of AMI control and operation, dynamic electricity price billing,
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and feedback of customer service can be achieved in this system. In order to improve

the security level in the management port, there should always be a firewall between

data reception and management system to ensure only users with special access have

the ability to check and administrate relevant data. The bi-directional flow of in-

formation between the consumers and the customer billing center provides the data

resolution up to 15 minutes per cycle [5].

Figure 1.1: Communication Infrastructure of AMI System.

The AMI system is part of the communication framework for distribution grid. Ini-

tially, the automatic meter reading (AMR) is implemented to improve the metering

accuracy as well as cost reduction of labor that would constantly for them to read the

kWh information at consumers premier. As the relative communication technology

advances and the interactivity between utilities and consumers increases, the advan-

tages and benefits of AMI system has evolved from AMR to AMI with additional

control variables on demand response. Below are the major benefits summarized for
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AMI:

1) Utilization of AMI information between utilities and consumers for optimal energy

usage.

2) AMI provides close-to-real-time information to utilities.

3) AMI also has demand response features that allows consumers to opt-in during

the peak hours of the day/season.

4) AMI is a paradigm to share electricity usage information between consumers and

dispatching control center when pricing scheme would affect their energy usage

behavior [6].

5) The detection module for power quality can be setup in “smart” meter to facilitate

inspection within a distribution system [7].

6) AMI would increase the system observability that can be used in operational mode

and other application such as cross-domain data validation against cybertamper-

ing.

7) The increased system observability would help system dispatchers to pinpoint

faulted segment of secondary distribution network [8].

8) Consumers would be able to make an economical decision based on the pricing

information and their desire when/what to use energy.
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1.2 AMR versus AMI

The major distinction between AMI and AMR is the control variables. While AMR

would transmit energy usage information to the customer billing center, the AMI

would enable the control capability between the utilities and customers if they choose

to opt out from the peak load period that would be incentivized. The new paradigm

would enable consumers to be more pro-active in participating the electricity mar-

ket. Both AMR and AMI replace the site manual reading by utility crew. The

features of AMR is similar as AMI, which it transfers the data of household energy

consumption, meter status, as well as diagnostics to customer billing center mainly

for collecting billing information [9, 10]. AMI is a predecessor of AMR that provides

next-generation functionalities with IP-based metering solutions. Table 1.1 shows

the differences between AMI and AMR. From the users and operational perspective,

this table summarizes the important aspects of the system-large metering implemen-

tation for dynamic pricing market that would engage consumers participation. This

IP-based metering solutions would also provide information to the consumers in order

for them to make a sound, economical decision. As this is not internationally used

for operational purpose, some approximation of instantenous values of the power con-

sumption / energy usage would be sufficient enough for the collection of household

billing information.
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Table 1.1
Comparison between AMI and AMR.

AMI AMR

Data Collection
Collect data according
to pre-set. Support
real-time reading.

Typically gather data
monthly, daily at

most.
Communication Mode Two-way Communication. One-way Communication.

Benefited Parties

Engineering, operations
asset-management,

planning departments,
customer service,

billing,
and metering [11].

Billing and metering.

User Operation

Users can manage
the working time of devices

and communicate with
“smart” devices.

Not applicable.

Pricing Model Dynamic prices. Fixed prices.

Comparing between the two, the computational power has exponentially improved

over last decade. The embedded system of the AMI devices can be designed with

a more robust capability for communication. As the power of such device improves,

including more information as well as with increased frequency of information ex-

change is desired. In addition to that, the functionalities of IP-based “smart” meters

also include load control, prediction of potential fault location within the secondary

network, event reports such as unavailability of the meters as well as firmware update

for enhancing the functionalities of the IP-based meters. Most upgrades are being

updated with patches for data security and reliability.
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1.3 AMI Communication Infrastructure

The communication infrastructure of an AMI consists of the IP-based devices of

“smart” meter, communication network between the customer billing center and the

consumers as well as the servers of meter data management system (MDMS). These

are the integral parts of an AMI system that are described in the next subsections.

1.3.1 “Smart” Meter

The IP-based “smart” energy meters are the instrumentation to transmit energy usage

between customers and billing center. It provides the data transmission interface to

connect communication network and the data acquisition unit. Figure 1.2 shows an

example of electromechanical analog meter and IP-based energy meter depicted in

Figures 1.2(A) and (B), respectively. Unlike the electromechanical analog meter, the

“smart” meter displays digital numbers on its panel. Crew who visits the consumer

premise site would understand how to interpret the angle of arrows on the display of

the electromechanical analog meter.

The measurement variables of the IP-based meters include kilowatt hour (kWh),

kilowatt (KW), voltage (V), or ampere (A). Pre-setting the measuring interval for 10

8



Figure 1.2: Existing Analog Meter and the New IP-based Energy Meter.
“See [1] for picture that this material is in the public domain.”

or 15 minutes, and then utilizing the open two-way communication for the purpose

of monitoring, information verification, and diagnotics. These meters may have the

privileges to receive real-time dynamic electricity price from the market authority

that would include demand response features.

1.3.2 Setup of AMI Communication

As the only medium during information transfer, the AMI communication network

provides secure and effective services to ensure data exchange. Two communication

modes, wired or wireless, are available in AMI communication system. Regarding the

wired mode, three main methods, which are serial communication, ethernet, as well

as optical fiber communication, are described briefly below.
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1) Serial Communication: This communication mode is originally designed to trans-

fer data over large distances. In the AMI system, the IP-based meter sends data

one bit at a time, sequentially, over one data cable connected with the serial com-

munication port in the meter. Sometimes, the serial communication can also be

utilized with other modes, e.g., ethernet or the optical fiber [12].

2) Ethernet Communication: As one of the most economical and widely used modes

in networking technologies for local area (LAN) or larger networks, ethernet can

be used in the IP-based meters. The data cable connects the ethernet interface

in the meter with the data collector for wired communication. Optimizing data

transfer across multiple sites, some network protocols are available at the ethernet

level include transmission control protocol (TCP) or ModBus [13]. ModBus can

accelerate data transfer by integrating revelent electricity information into the

data module installed in the IP-based meters [14].

3) Optical Fiber Communication: This mode is the optimized technology from eth-

ernet. This method performs rectilinear data transfer via converting electronic

signals to light signals, which could send data packages to destinations with dif-

ferent distances immediately [15]. The major disadvantage of this method is the

exorbitant price. Generally, an AMI system collects data from a region first and

then transmit via optical fiber.
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As a practical matter, an AMI system needs wireless communication mode to provide

continuous, fast, and stable data transfer for optimizing datacenter operations within

local areas as well as wide areas. Two wireless methods extensive used in the AMI

system are Wi-Fi and embedded system. Below will describe these two methods

roughly.

1) Wi-Fi : It is the most common technology in wireless communication. The im-

plementation procedure in AMI is to establish wireless base stations that have to

guarantee the provided network is capable of covering all IP-based meters. The

base stations connected with each other through the network bridge between dif-

ferent wireless access points [16]. In addition, the choice of meter installation site

is important. Before install the wireless devices, a site survey of each installation

location has to detect the strength of signal and interference around each meter

to make sure the communication quality.

2) Embedded System: Comparing with other wireless communication modes, embed-

ded system is a comprehensive method. Besides more stable information trans-

mission, it allows users to combine multiple communication modes based on their

definite requirements to complete the data transfer [17]. The embedded system

can provide the optimal solution for wireless communication in an AMI system.
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In addition, the global system for mobile (GSM), general packet radio service (GPRS),

and 3G/4G network could also be applied in AMI system [18]. Since the exploita-

tion of AMI system, the option of advanced communication technologies has become

increasing complex. The implementers should consider more circumstances such as

reliability, operating maintenance, or capital spending to select the suitable communi-

cation mode. The communication of AMI rely on three networks: home area network

(HAN), neighborhood area network (NAN), and wide area network (WAN) [19]. The

basic communication infrastructure of an AMI system is illustrated in Figure 1.3.

Figure 1.3: Communication Infrastructure of AMI System.

Regarding a complete AMI system, the measured information which could be trans-

mitted is not just electric power data; it could also gather the consumption informa-

tion of water, gas, or heating. The main function of HAN is to integrate additional

data and send them to relevant “smart” meters. Then, the data is sent through NAN

which is sometimes also identified as local area network (LAN) or field area network

(FAN) [19] to connect meters and concentrators. In the end, the WAN will connect

the concentrator or the single “smart” meter to the head end system (HES) which

has the ability to communicate with meters directly and also could be known as a
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meter control system [19]. Between WAN and HES, there will always be a firewall or

special approval protocol to guarantee the security of data transmission.

1.3.3 Meter Data Management System (MDMS)

As the key component in the AMI system, the meter data management system

(MDMS) performs long term data storage and monitoring for the vast quantities

of usage information delivered by IP-based meters. The data is typically imported

to the MDMS first for preprocessing, e.g., verification, filtering, and disposing, before

making it available for billing and analysis. Also, the MDMS can interact with some

functional systems such as a power on or off control system or a dynamic prices sys-

tem [20]. The working procedure of the MDMS is shown in Figure 1.4. The MDMS

can obtain the timely data report to do the energy consumption forecasting, load

capacities reporting, and customer service feedback [21].

Making full use of the gathered information is an important benefit of the AMI

system. Apart from compiling the timely data, the MDMS can also maintain the data

integrity even without data transfer, which means the MDMS can store the measured

data under network disconnecting situation. Currently, many electrical companies are

planning to establish the MDMS based on the existing metering system to promote

work efficiency and performance.
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Figure 1.4: Flowchart of MDMS Working Process.

1.4 Survey on Current Deployment and Possible

Improvements

With the improvement of automation and practical ability in management of the

electric power business, partial function of the AMR system has trended toward AMI

system features that evolved from simple meter reading performance to be capable

of monitoring the real-time information, assessing the electricity, remote controlling,

automatic billing and other features. For the proven and stable electricity business,

the AMR occupies a large proportion of market shares while the AMI technology that
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only has the operational experience of three to four years which means it is still in

the probational stage. The future deployment of an AMI combines with the problems

which occurred in campus AMI system.

1) Before confirming the service model and preliminary scheme, we need to complete

the user requirement analysis and feasibility survey to reach the goal of resources

and capital conservation to improve work efficiency. For example, at Michigan

Tech, the first-phase deployment of the AMI system has been accomplished, and

it has been capable of providing high percentage coverage of system observability.

When the second-phase deployment is implemented successfully, the AMI system

will be able to monitor more than 80 percent of the energy consumption infor-

mation. That will leave around 17 buildings dispersed located on campus that

deploy the rest of the electricity data. The constructor will not deploy the AMI

structure in these buildings based on the principles of maximum efficiency and

implementation difficulty.

2) Communication network is the core part of the whole AMI system because it is

the only medium to connect meters, monitoring terminals, the database, and the

data management system. How to improve the performance in a communication

network that contains security and stability should be one of the major steps for

future development of the AMI system. During the summer in 2013, the commu-

nication network of the AMI system in Michigan Tech was made public because
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of the upgrade of the campus network. Anyone who can log into the Michigan

Tech account can also observe the data management system and supervise the

operating status of the power supply system without any restrictions. Under nor-

mal circumstances, only the administrative users and managers have the access

via passing a virtual private network (VPN) identification.

3) An integral system combined with hardware and software, also it should have an

alarm system to ensure valid and efficient operating. An advanced feature of an

AMI system is the telemetered capability to feedback with fault indicators that

trigger a disturbance alarm to the data center in real-time. The current AMI

system can only estimate the running states by checking metering information.

From the last half of 2013 to present, an error appeared in the UPPCO meters; the

connection of the network interface adapter in the meter was disconnected. The

power information can be detected in an input terminal rather than an output

port, which means the data can be shown to the power supply company but can

not display in the campus internal database. We lost the real-time monitoring

function of the overall consumption.
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1.5 Enhancement of Metering Infrastructure in

Distribution Grid

In the metering infrastructure, “smart” meters in the power grid could be treated

as sensors or measuring points spread over the whole network. Using communica-

tion facilities and information system provided by the electric company or relevant

department, AMI is capable of offering the much more timely and effective measure-

ment. Furthermore, the communication network in the AMI system can support some

advanced applications in a power grid, e.g., power distribution automation and auto-

mated management in a substation. In the meantime, the operating state could be

estimated and checked by the presented data from AMI. Therefore, the AMI system

is regarded as the first step to establish smart power grid. After the implementation

of AMI, the electricity providers will progressively achieve advanced capabilities such

as distribution operation, asset management, and a series of analysis and modeling.
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Chapter 2

CAMPUS DISTRIBUTION GRID

As the first major milestone and the fundamental structure of the overall smart

power grid, AMI measures, collects, and analyzes data about energy usage and power

quality from the terminal “smart” meters, and achieves valid data exchange between

the distribution dispatching center and customer billing network [22, 23]. In most US

power utilities, the coverage of the AMI system has risen from 8.7 percent in 2010 to

about 30.2 percent in 2013 [24] and the reliability rate is around 99.7 percent [25].

Due to the critical role of information exchange in distribution grids, real-time data

acquisition is one of the primary tasks in a distribution grid that constantly pulls the

usage information to a central database using IP-based communication network [26].
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2.1 Current Status of AMI Deployment

The current status of AMI deployment in Michigan Tech is still in a fledging period.

The initial AMI deployment was commissioned on 10 campus buildings since the first

quarter of 2012. These metered buildings sometimes represent more than half of en-

ergy consuming loads and, after the deployment of the second-phase, the AMI system

will cover more than 80 percent of campus power consumption information. Due to

the budgetary constraints, deploying “smart” electronic meters for the remaining per-

centage of unmetered buildings may not be cost efficient. Although the accomplished

infrastructure provides high percentage coverage of system observability, the energy

usages for those buildings fluctuate over time. The current structure of completed

AMI has the ability to provide the observation of up to 65% of the energy usages for

the campus distribution system.

Figure 2.1 illustrates the campus distribution grid. In this figure, the dark grey

circles represent accomplished phase-one buildings with “smart” IP-based meters.

The capital A module shows the substation in this grid while B represents the terminal

port of the system. There is one substation and four generating units in building 41

which is also the facilities management site. There are three existing distribution

feeders and each building is connected to a primary feeder and a backup feeder. As

shown in the map, there are many remaining buildings needed to be considered in
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the future to achieve entire grid intellectualization at campus-wide. The numbers on

this map represent building numbers.

Figure 2.1: The Deployment Status of Campus AMI (Ten Buildings with
IP-Based Building Meters).“The base map in this picture is captured from
Google Map which is in the public domain.”

Figure 2.2 shows the deployment status of campus distribution grid for the fiscal year

of 2012 to 2013, which also contains the building numbers and corresponding names,

annual and average energy consumption, and the energy consumption percentage of

each building.
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According to this figure, the accomplished phase-one AMI system covered around 63

percent of power consumption in the whole campus power grid for last year, while

the observation of both phase-one and phase-two deployments will rise to around 83

percent. That would be the initial target of the campus AMI construction and we

may not continue to install AMI in the remaining buildings anymore because of the

consideration of efficiency and cost reduction. There will be more than 15 buildings

left which only hold less than 20 percent of campus consumption observation. Al-

though the energy usage of Daniell Hights (DH) is about 5 percent, which is large

enough to regard, this building represents the campus living quarters which consists

of many dispersive units. Consulting campus-wide distribution grid map, we could

discover the region of DH is large and the locations of units are scattered. The AMI

construct process in DH would be inconvenient and have a high cost.

Over the past decade, the annual energy expenditure for campus energy usage is es-

timated to be millions of dollars consistently for all campus buildings. Determining

how to promote energy consumption awareness has been one of the major steps for

reducing energy usage. With the accurate and timely information, the monitoring

element has the capacity to detect energy quality and running states of the distri-

bution system while the management console will be able to realize troubleshooting

and electricity controlling [6, 27, 28]. This means that the distribution substation can

guarantee high-efficiency electricity supply and control the power distribution capac-

ity according to the real-time data feedback to reach the goal of energy conservation
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[29].

2.2 Deployed Metering Infrastructure

The real-time data acquisition ability is one of the prime advantages in a distribution

grid. The IP-based meter is one of the basic facilities for collecting, processing, and

communicating real-time data in modern smart power grids [30]. The implemented

intelligent structure with IP-based meters in the campus distribution grid is monitored

by the AX supervisor which is a flexible network server applied in operations where

multiple Niagara AX controllers based on Java application control engine (JACE), can

be networked together [31]. Figure 2.3 is the architecture of data acquisition system

for metering campus distribution loads using AX supervisor. The timely energy

consumption information will be displayed on the energy meter as well as uploaded

to the Internet through the IP-based Internet link module (ILM) [32]. Within the

existing system, the IP-based metering data could be browsed and supervised using a

web supervisor and browser through specific virtual private network access and then

saved to the campus data server.
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Figure 2.2: Deployment Status for Each Building with Annual kWh for
Fiscal Year 2012-2013.
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The monitoring interface of the web supervisor is capable for observing measurements

with different units. All of the observation is useful for observing the real-time con-

sumption and estimating the operating status. Figures 2.4 and 2.5 illustrate the web

user interfaces of measurement variables for the phase-one deployed buildings and

UPPCO meter, which is applied for monitoring campus total energy consumption.

Figure 2.4: Example of Web-Based User Interface for Substation Injection
Points (UPPCO1 Meter).
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Figure 2.5: Example of Web-Based User Interface for Phase-One Deployed
Buildings.

These two figures depicted the web supervisor to observe the usage information in-

cluding real power, apparent power, three phases voltages and currents, frequency,

and energy for each metered building. Also, we can check and download needed

data based on different time durations which contain last year, year to date, last

month, last week, yesterday, and the current day. The time interval of each mea-

sured data is 10 minutes. Furthermore, there are two UPPCO meters in the campus

power supply substation but only one on working state at one time. In addition, five

buildings which include the Chemical Engineering building, Minerals and Materials

(M&M) Engineering building, Dow Environment Science and Engineering building,

Electrical Energy Resources Center (EERC), and U. J. Noblet Forestry and Wood
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Products building are constructed with two types of transformers which are applied

with 208-V and 480-V separately. The transformer 208-V is primarily responsible

for consumption limited electrical appliances such as light and power outlets, while

the transformer 480-V is in charge of large electric facilities like air conditioning and

laboratory equipment.

For security reasons to restrict the critical information of the campus metering

database, the administrative users can manage the systems by tunneling through

virtual private network (VPN) connection to campus intranet [33, 34]. Within the

campus Intranet, subnets of different buildings are connected and are routed through

the campus-wide communication backbone network to other internal networks for

real-time information sharing. As mentioned, due to the budgetary constraints, de-

ploying IP-based meters for the remainders of unmetered buildings may not be cost

efficiency. Inventing a new method with reasonable price which is to increase a greater

number of metering points for the lower priority buildings that pictorially acquire en-

ergy information from existing electromechanical meters. Instead, dedicated IP-based

energy meters is necessary and the proposed framework will be described in detail in

Chapter 3.
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2.3 Distribution Feeders

The campus substation is the node that connects the power injection sources from

UPPCO transmission network to three distribution feeders. Figure 2.6 demonstrates

current feeder operating status for each building in the campus distribution grid.

Every building in this system is electrically connected either by one of the two feeders

at a time, which one connected as primary and the other as backup.

The detailed topology connections of three feeders in campus distribution grid is

shown in Figure 2.7, where red line represents feeder one, green represents feeder two,

and blue as feeder three. The connections in between each building and feeders are

connected with switches.
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Figure 2.6: Primary and Backup Feeders for Each Building.
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In this diagram, yellow blocks express the phase-one buildings with IP-based meters.

There are three purple rectangles contained by buildings 7, 8, and 24 which represent

frequency disturbance recorder (FDR). The FDR is connected for transmitting fre-

quency information remotely via the Ethernet on 110V or 220V charge outlet [2]. The

EERC has also served as a host site for the Upper Peninsula of Michigan. Its commu-

nication backbone is under frequency monitoring network (FNET) by the University

of Tennessee Knoxville from EERC building. The other two FDRs are installed in

the first floor of Dow Environment Science and Engineering building and the power

control room in Student Development Complex (SDC). Taking EERC building as

an example, one of the three FDRs is located on 6th floor of EERC. The EERC is

connected to feeder 2 that serves the building consumption. Figure 2.8 illustrates

the material object of a FDR device and antenna setting. The revelent switches and

buttons are back of the device. The front lights only indicate the working state and

the measured values are shown in the grey screen. The signal receiver and emitter

in antenna shown in this figure should be placed around the area with better GPS

reception.

During power distribution and transmission, the power loss in feeders should also be

considered for loads modeling and estimating. In order to obtain the information

of power loss, it is necessary to measure the actual distance of feeders between each

building and the substation. Making the substation as the base and dividing all

campus buildings by three different feeders, we labeled the concrete feeder distance
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Figure 2.8: Frequency Disturbance Recorder (FDR) and GPS Antenna
Placement.“See [2] for picture that this material is in the public domain.”.

between each conjunction node by field measurement in Figure 2.9 where the unit

of distance is foot, the dark circles represent phase-one deployed buildings, and the

capital “F” represents FDR in this distribution system.
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In Figure 2.9, we could find the feeders with the longest length is from the substation

to building 95 and the value is only 6147 foot which is less than 1.2 mile. The

feeder utilized in campus-wide grid is named “AETNA INS WIRE 2AWG CU EPR

15KV 133 Percent INSUL LEVEL (220MIL)” that the resistance parameter is 0.964

/mile [35]. Doing a simple calculation, even the resistance in the longest part of the

feeder is small enough, which means the power loss in this grid is too insignificant to

consider.

2.4 Substation Transformers

As shown in the distribution grid map, phase-one cyberinfrastructure deployment

includes the selected 11 buildings. The installation and implementation of these new

devices is based on the load survey for each building per month by the facilities crews.

The primary focus of this phase is to monitor the ongoing campus-wide energy usage

by system operators in the control room. The selection of these locations includes

coordination with campus electricians in order to determine the type of metering

devices required. Depending on the manufacturer specifications of the instruments,

the connection type follows the instrumentation at the secondary side of distribution

transformers with a network interface provided via a Modbus connection. However,

the flexible current transformer (CT) connection type requires an additional three

sets of instrumentation for the two distribution transformers in each building with
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six total for both secondary sides of transformers, i.e., 480-V and 208-V. Table 2.1

below shows detailed information of transformers in phase-one cyberinfrastructure

deployment.
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2.5 Backup Generating Units at MTU Substation

In case of a fault or an emergency occurs at injection sources that could not meet the

power usage requirements of facilities management. There are four backup generators

connected in parallel to the campus substation to improve the reliability. Figure 2.10

illustrates the location of these local backup generators. Considering the appropriate

distance between the backup generators and the substation, the four backup gener-

ators are set at the Central Heating Plant Building, which would be convenient for

protecting and monitoring. The number of this building is 41 and the location of it

has been indicated with a red arrow on the partial campus map. Figure 2.11 shows

the schematic of the campus substation. The two UPPCO buses can transform their

operating status via the tie switch in between them.

Figure 2.10: Location and Campus-Wide Backup Generators.“The base
map in this picture is captured from Google Map which is in the public do-
main.”

The backup generators for each building are summarzized in Figure 2.12 in kilo Volt-

Ampere (kVA). Notice that not every building has backup generator. Those rows with
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Figure 2.11: Schematic for MTU Campus Substation.

same color share with one backup generating unit; four different colors represents the

four backup generators. Some buildings have their independent power source for

backup that does not share with other buildings, e.g., buildings 38, 40, 12, 24, and

34. These buildings usually are equipped with a smaller unit.

The blue circles in Figure 2.13 represent the buildings have generators. Those building

generators are only for emergency life safety purpose. During the power outage, they

will be adequately used to light up the corridors, to start pumps, or sometimes for

one elevator to operate. All of the metered buildings have generators. The backup

generation rating ranges are from 125 kVA to 569 kVA and the total rating for these

generators are around 2.3 Mega Volt-Ampere (MVA), while the average load of system

is around 4.5 MVA.

The generators could not only provide the emergency power for the corresponding

buildings, they also supply the power to their adjacent buildings sometimes. Figure
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Figure 2.12: Buildings with Local Backup Generators and Electrical Con-
nections with Others.
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Figure 2.13: The Current Topology of the Buildings with Local Generat-
ing Units and Frequency Disturbance Recorders (FDR) in Blue and Green
Colors, Respectively.“The base map in this picture is captured from Google
Map which is in the public domain.”

2.14 illustrates the current clusters with generating units on campus buildings. Each

cluster shared one generator. The primary requirement for each generator is to ensure

the adequate power supply. Except that, the deployment of power supplies varies

depending on the topology of the grid network.

Figure 2.15 demonstrates the new microgrid clusters and future studies. A generator
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Figure 2.14: Clustering a Collection of Buildings with Local Generating
Units based on Their Vicinity and Connectivity.

will lead a cluster. As shown on this figure, the light blue and red areas cover all

no generators buildings. The remaining buildings in the light blue area will connect

with the existing generators in the future, while there will be set a new generator

in each red area. The small squares in between different microgrids represent the

new remote-controllable switches. The distribution and the setting of the microgrids

shown on the figure are based on the optimal operations and cost effectiveness. Figure

2.16 illustrates the separated microgrids with corresponding number, name, and the
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generation capacity from Figure 2.15. We can treat each microgrid as one cluster.

The capacity of each cluster is based on the estimation of energy consumption in the

microgrid. Because there are no generators available in clusters 11, 12, and 13, the

generation capacity of these three clusters are 0 kVA.

Figure 2.15: Potential Future Setup for a Networked Microgrid.
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Figure 2.16: Cluster Numbering and its Total Capacity in kilo Voltage-
Ampere (kVA).
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Chapter 3

IMAGE EXTRACTION

ALGORITHM FOR

ELECTROMECHANICAL

ANALOG METERS

Increasing the number of metering points improves load observability. A higher rate of

AMI deployment occurred between 2010 and 2011 due to the Recovery Act Smart Grid

Investment Grant (SGIG) program [24] in addition to increased utility investments.

However, there is not sufficient data to determine the level of smart meter penetration
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beyond 2013. The IP-based electricity meter is the typical device used to collect real-

time consumption data in secondary distribution systems [30]. Due to the pivotal role

of information exchange between metering devices and the power distribution station,

data observation and management of IP-based AMI are considered important roles

in modernizing the distribution grid [36, 37].

Prevalent computing on mobile devices has revolutionized consumer electronic prod-

ucts and provided diverse applications in social networking. These devices are often

embedded with powerful processors that can be utilized to perform relatively de-

manding tasks [38, 39]. Every new mobile unit comes with incremental features that

can quickly become obsolete in the foreseeable future. The rapid pace of mobile

device technology development results in a large secondary market of inexpensive

devices with computing and imaging capability suitable for capturing and transmit-

ting power consumption information from existing analog meters based on reasonable

quality cameras. The contribution of this work is to establish a framework to perform

real-time energy information extraction from images of the existing electromechanical

analog meters.
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3.1 Comparison between Three Different Meter-

ing Infrastructures

Different from IP-based meters, the electromechanical analogy meter is incapable of

connecting with a network in any shape or form. Periodical human meter reading is

the only method to acquire the accurate energy information from a concrete electrical

building with mechanical meters. The electromechanical analogy meter uses four

pointers with different orders of magnitudes to show energy consumption. To extend

the working cycle of a meter, the displayed result should multiply a fixed parameter

such as 400 or 800 and it is typically calibrated in kilowatt hours (kWh).

There are four different types of analog meters equipped in the distribution grid at

Michigan Tech without data transmission performance. Type one is the meter denote

consumption number with pointers, while type two shows numbers in a grey screen

with detailed number information. Type three meter and type four meter are both

capable of representing power usage values by digital numbers. The usage values on

type three meters are shown on black screen with red laser number, while the other

is on a blue screen with grey words, separately. The main difference between these

two meters is the function of automatic display. Type four meter can only show data

information by pushing relative buttons below the screen. Figure 3.1 below shows
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these four types of analog and digital units that are not telemetered to the central

control system.

Figure 3.1: Four Types of Energy Meters for Campus Distribution Grid:
Type 1: Analog with Pointers. Type 2: Analog without Pointer. Types 3
and 4: Non-telemetered Digital Meters.
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Table 3.1 shows a comparison between: conventional electromechanical meters, IP-

based “smart” meters, and the mobile device-based image extraction (IE) approach

for the task of extracting kW and kWh information through mobile device.

The major differences between the methods are the frequency of obtaining the con-

sumption data, equipment and installation costs, as well as data reliability and pri-

vacy. The low deployment and maintenance costs of the IE system are crucial for

the sustainability of technological transfer of information between the electromechan-

ical meters and the other two types. In addition, the IE approach may incentivize

consumers to engage with utilities other than through bill payment. As most util-

ity companies have databases that relate distribution transformers to the customers

connected to them, power flow analysis could be updated with high frequency or

on demand as needed in their distribution management system for more updated

real-time calculations. Cybertampering can be a major concern, due to potentially

malicious customers tampering or altering the metering values [49].

Although new “smart” meter devices provide an opportunity for consumers to reduce

their monthly utility charges, utilities may not realize near-term profits from their use

due to maintenance and installation costs. Hardware upgrade would affect the finance

of new technology and the concern of cost recovery. In addition, some consumers may

avoid “smart” meter installation due to concerns regarding the breadth of information

it could be recording.
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There are two major cost breakouts for an IP-based “smart” meter [42]. The total

cost is approximately �566 per device where it includes capital of the IP-based energy

devices, as well as operation and maintenance. The “smart” meters would remain one

of the expensive solutions in large-scale deployment. Currently, the utilities financial

priority and governmental external funding opportunities are the constraints which

leads to slower growth in term of the number of IP-based meters deployed. The

cost does not include a complete upgrade of IP-based metering devices. Typically,

technology changes every 5-10 years with higher performance and more sophisticated

features that may improve the quality of consumption datasets.

Most mobile devices today are embedded with camera features, assisted GPS, and

biometric sensor readers for user authentication purposes [50]. Mobile computing

has significantly improved over the past few years where the tech-savvy consumers

may utilize their older generation of devices for this purpose. If consumers decide

to participate in a program on data collection, then it might help to increase the

number of metering points within a distribution system. This active participation may

increase the number of observable points in a shorter timeframe. As summarized in

Table 1, these privacy and security parts remain a concern but can be further enhanced

with biometric authentication. Many consumers upgrade their mobile devices on a

two-year cycle with their old devices available for repurposing. Use of repurposed

mobile devices means that the primary cost of the IE approach would be the mounting

hardware with an estimated expense of �140.
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3.2 Campus Metering Testbed

The phase-one AMI deployment was commissioned at Michigan Tech can provide

approximately half of the total campus power consumption and load information

in real-time at an installation cost of �60,000. A low-cost solution was desired to

capture the remaining campus load with similar bandwidth. Although the upgraded

infrastructure provides a high percentage coverage of system observability today, it

may not in the future due to shifts in energy consumption as building usage changes.

Thus, a flexible method for acquiring load information is desirable.

Within the campus Intranet, subnets of different buildings are connected and are

routed through the campus-wide communication backbone network to other internal

networks for real-time information sharing. This demonstration project is to increase

a greater number of metering points for the lower priority buildings by deploying

mobile devices that pictorially acquire energy information from existing electrome-

chanical analog meters, instead of dedicated IP-based meters.
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3.2.1 Design of Timer Camera

The design concept of real-time data extraction from the typical mechanical meter is

to apply the live data transmission technology in cloud storage [51], which requires

information upload to the private cloud space through campus Intranet and complete

synchronization with the computer side. The pivotal component is the smart mobile

device with a self-designed application to achieve time-lapse photograph and cloud

sharing.

The achievement of the timer camera algorithm in programming language is not

complicated. The first step is to call the command for the camera in the device. Of

course, the accessary flashlight is also necessary especially in the dark environment.

Then, we need to add a countdown timer before the camera calling command. The

periodic timer can be set to capture pictures of the dial plate on electromechanical

meter once every 900 seconds which is 15 minutes. Furthermore, we have to append a

reset command at the end of the countdown timer to realize the automatic periodical

pictures being captured. Taken photos will be directly saved in the photo albums and

make sure the cloud photo sharing function is turned on.

The terminal console shows a series of photos taken from the mobile devices that show

the time stamps when those were taken that can be approximated with reasonable
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energy consumptions over certain period of time. The flowchart for the timer to take

photo snapshots is shown in Figure 3.2.

Figure 3.2: Flowchart of Timer Camera Design Algorithm.

3.2.2 Operational Mode of Mobile Devices

The mobile device with timer camera application should be placed in front of the dial

plate with a stand support. The location selected should be under Wi-Fi coverage
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to ensure the continuity of data transmission. A better way to improve the quality

of transmission is to make sure there is sufficient data traffic for each device, which

means turning off other functions or applications in the mobile device during the image

acquiring procedure. In addition, the test place should have power outlets to provide

continuous power supply. The cloud-sync photo will appear at the data monitoring

terminal immediately [52] and ready for image extraction. The operating process

of mobile devices transfer pictorial data through wireless networks demonstrated in

Figure 3.3. This process is to gather close-to-real-time power observation to model

the loads for the remainder of unmetered buildings.

Figure 3.3: Image Snapshots to the Cloud with Key Processing Elements.

Figure. 3.4 depicts the overall framework of real-time data acquiring procedure which

includes mobile devices transfer pictorial data between wireless networks and the basic

architecture of the AX supervisor. The proposed framework transfers the image data

to a centralized database. Within the existing system, the IP-based meter data are

monitored with a web supervisor and browser through specific virtual private network

access and then saved to the campus data server. The proposed framework uses two-

way communication which means a one-side transmission delay would cause delay of

image transfer to the cloud. Reliability can be increased if there exists a Long-Term
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Evolution (LTE) network in addition to the Wi-Fi connection. This assumes the

repurposed devices are LTE enabled. Both reliability and latency can be negatively

impacted if there is poor wireless reception, which often increases with the distance

between the mobile device and the hotspot. Additional communication latencies are

introduced (i) between the device and the cloud, and (ii) between the cloud and

the data center of the server performing the data extraction. In our experiments,

the total latency was always less than one minute. As described later, test results

showed a maximum delay of one minute. The main threat of IE approach is that the

availability of wireless connections could sometimes be abruptly disconnected.
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3.2.3 Pictorial Data from Electromechanical Meters

Unlike IP-based “smart” meters, the electromechanical analog meters do not estab-

lish network connection and require periodic manual reading. The typical analog

meter has four pointers with different orders of magnitude to show scaled energy

consumption.

The overall approach for real-time data extraction from the typical mechanical meters

is to apply live image transmission technology with the information uploaded to a

private cloud storage [51] through the campus Intranet with synchronization achieved

at the terminal computer. The operational approach is to have a mobile device with

a timer camera application acquiring images every c minutes.

The automatic upload function in the mobile device uploads the photo stream to

the private cloud through the Internet and then the photo appears at the monitor-

ing terminal computer immediately for image processing and the consumption data

extracting process [52].

Data samples of the IP-instrumented buildings were used to find a suitable value of c;

trading off frequency resolution, and phase lag with the size of datasets. Figure. 3.5 is

an example that illustrates the average values of time-activity curves of sample data

acquired from an IP-based meter with three different time durations. According to the
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purposed simulated visualization, we can estimate future power consumption during

the same time period to realize efficient power control and supply. The estimated

power in kW is determined based on a first-order finite difference of the two image

snapshots.

Pest =
Emec(t)− Emec(t− 1)

c
(3.1)

According to the equation 3.1, Emec(t) and Emec(t−1) are the latest image snapshots

of the electromechanical analog meter If we restrict the interval to be every 10 minutes,

then c = 1
6
using an hourly base.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

20

40

60

80

100

120

140

Time(Hour)

kW

Sample Data
per 15min average consumption
per 30min average consumption
per 1hour average consumption

Figure 3.5: Proposed Simulation of Energy Consumption Using Sample
Data.
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3.3 Data Extraction from Snapshot Images

The real-time data acquired from existing electromechanical analog meters is imple-

mented to improve the observability of campus distribution grid without deploying

expensive IP-based wired meters. These mobile devices which are connected through

Wi-Fi to the cloud will provide real-time snapshots of operating states together with

the other 11 buildings containing IP-based meters. This reveals energy data variation

within a specific time period. Within a limited time duration, the curve illustrates

that the demanded quantity of energy consumption can be utilized to forecast or

adjust the system consumption as part of the studies. The trending information from

these devices is compared in order to generate common time-activity curves across

all metered buildings.

3.3.1 Data Extraction for Electromechanical Analog Meters

3.3.1.1 Image Segmentationn

The serviceable portions in the original image of the traditional mechanical meter

shown in Figure 3.6 (a) are the four dial plates. For the consideration of processing

time and identification effect, the idea here is to discard useless sections and keep
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the indispensable rectangle illustrated in Figure 3.6 (b) that contains all four dial

plates, based on the notion of image matrix segmentation. The automatic pointer

reading algorithm aims at an individual dial plate, which we need to separate the

extracted rectangle shown in Figure 3.6 (b) which then needs to be divided into four

squares that dial plates embedded as shown in Figure 3.6 (c). Due to the fact that

the original shape of a recognized target is a standard circle, we can set the center of

each square as the circle’s center and half of the side of each square as the radius to

the corresponding circle. As a result, the four inscribed circles shown in Figure 3.6

(d) are the object that we will perform further analysis upon.

Figure 3.6: Image Segmentation in 4 Steps from (a) to (d).
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3.3.1.2 Digital Image Preprocessing

The change in light conditions can lead to color and contrast variance in the hand of

the dial. In order to avoid the identification error generated from this situation, the

first step is to produce parallel grayscale images from segmented targets. Discerning

grayscale images directly is often accompanied by random noise as well as diverse

shade degree in the reorganization zone of images. Here, we utilize grayscale image

binarization to acquire analyzable outcomes with little identification error. It should

be noted that the threshold value of binarization should be 0.6, which is larger than

the default value 0.5 to magnify the contrast ratio of white objects.

In addition, to improve resolution in the binary image, we apply specific mathematical

morphological operations to simplify the image initial data structure without changing

the basic configuration. These optimized operations are mainly based on dilating and

corroding [53]. The dilating operation expands and enhances the edge of the object

to dislodge or cover blank spots around object edges while the corroding operation

eliminates external pixels of object to reject “burrs” in edges. Dilating and corroding

smoothes the surface of objects.

Removing the H-connected element in the object applies the concept of dilating [53].

The edges of two objects in an image are connected by splashes during the process of

binarization. A scattered point connecting two edges is considered as an H-connection.
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To separate these two independent objects and generate the image, we need to remove

all unnecessary pixels. The operation of this procedure can be shown using an example

binary matrix: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

0 1 0 0

0 1 0 0

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)

which then becomes ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

Two rows of sequential pixels are connected by two splashes to construct an H-

connection in matrix 3.2. After the removing process, the H-connection is broken

and the two scattered points are eliminated in matrix 3.3.

The spur pixel is the redundant point or small branch that connects with the smooth

edges of a object that can be considered as a fraction of the rough edges of a neat

object. The process of deleting spur pixels is similar as corroding [53] that removes

end points of lines without removing small objects completely. The implementation
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procedure can also be described with a simple binary matrix example:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

1 1 1 0

1 1 0 0

1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.4)

which then becomes ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

1 1 0 0

1 1 0 0

1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

As shown in matrix 3.4, there is a spur pixel in the third column. In order to obtain

the objective result, disposing should eliminate the redundant point to transfer the

original matrix to matrix 3.5.

The inverted image is shown in Figure 3.7 and is ready for pointer extracting.

Figure 3.7: Exported Images After Segmentation and Preprocessing.
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3.3.1.3 Pointer Extraction Algorithm

Figure 3.8: Flowchart of Matrix Border Grayscale Detection Algorithm.

Figure 3.8 demonstrates the flowchart of the overview process of image data that is

extracted from pointer analog meters. The image data is transferred between mobile

devices and the cloud. This is presumed to be sent from consumers to the cloud,

and then the data transfer between cloud and customer billing center. The flowchart
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includes security verification, which includes following steps:

1. Estimated latitude and longitude position of the mobile device based on Wi-Fi

or assisted GPS information.

2. Each photo taken has the geotagging information that consists of latitude and

longitude. The geotagging feature has to be enabled on the mobile device.

3. Images are transferred to the database of customer billing center. Before the

data extraction begins, the geotagging information is verified together with the

username and address of the customer’s database.

4. If they matched, then the data extraction algorithm starts processing. If some

images violate the criteria that is expected, then those will be disregarded and

the data points will be indicated as bad ones and the result not to be considered.

An AMI system is expected to last between 15 and 20 years, while the life cycle of

proposed IE approach could vary significantly based on the device used. Similarly,

the IE cost is also highly variable depending on the availability of repurposed devices.

The time interval setting of transmitting the image datasets was set to be every

10 to 15 minutes. The Internet today has the bandwidth sending pictures through

Wi-Fi. Furthermore, the geotagging features from assisted GPS devices only shows

the location of the device rather than the position of the customer (since this is a

repurposed unit). These pictorial datasets do not include the name of the customer
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or their billing information.

Digital images stored on computer memory in bitmap format use a rectangular lattice.

In the dot matrix, each point is a pixel. Generally speaking, values of gray pixels

are divided into 256 scales: from the black color as 0 to the white color as 255 [54].

A colorful picture with the size of m × n is equivalent to m × n pixels with diverse

gray values, but a binary image only contains black and white pixels. Our pointer

extraction algorithm is based on the characteristics of the binary image matrix and

is designed to intercept a square border within an image as illustrated in Figure 3.9.

The angle Θ is found by superimposing a square onto the extracted image as shown

in Figure 3.9. The first and last intersections of the square with the boundaries of the

pointer pixels are used to find the pointer’s midpoint, also indicated on Figure 3.9.

Finally, the pointer’s angle is computed by the line segment connecting the circle

center to the pointer midpoint.

Figure 3.9: Intercepted Square Box with a Dial Plate Arrow within an
Image.
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When traversing the square to find the pointer intersection points sometimes spurious

pixels are found that can give a false positive intersection. These are filtered out if

their surrounding pixels are inverted. Depending on the midpoint and the center of a

circle, the offset angle, Θ, is calculated based on the pointer position in each quadrant

using the appropriate quadrant dependent version of Equation 3.6, where Xmid, Ymid

and Xcenter, Ycenter present the coordinate of the midpoint and center of the circle,

respectively.

The goal of the pointer extraction algorithm is to find the value, d, indicated by the

pointer. This is accomplished by first finding the angle the pointer makes with the

dial plate, Θ, and then using Equation. 3.7. For the fastest moving dial (most right)

the resolution of the algorithm is 3.6◦, which indicates n is equal to 2. For the first

three dial plates, the accuracy is in integer bits and the n should be equal to 1. Under

certain circumstances, the adjacent pointers on electromechanical analog meters may

have an inverse numerical plate, i.e., clockwise and counter-clockwise, in (3.7).

Θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
tan−1

(
|Xmid−Xcenter|
|Ymid−Ycenter|

)
+ θ0, θ0 =

{
0, quadrant 1

π, quadrant 3

tan−1
(

|Ymid−Ycenter|
|Xmid−Xcenter|

)
+ θ0, θ0 =

{
3π
2
, quadrant 2

π
2
, quadrant 4

(3.6)
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d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
trunc(Θ/(2π/10n)), clockwise

9− trunc(Θ/(2π/10n)), anticlockwise

(3.7)

3.3.2 Data Extraction for Energy Meters with Digital Unit

Display

In this section, we present the procedure how to extract the digital display from

the panel which also includes the image processing and image segmentation. The

algorithm will also be described in this section.

3.3.2.1 Digital Images Processing

Digital image processing is introduced here to systematically convert the pictorial

information into a binary number with two major steps, i.e., (1) conversion from

color picture to grayscale, and (2) binarization. As mentioned, the binarization is a

process to convert the original image into binary with more than 200 values indicating

near white color and zeros for black color. For the purpose of contracting the image

with black and white color, the threshold value has been set to 0.5 as its default

instead of 0.6. The threshold value with 0.6 was originally used for the pointer of the

analog images.
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3.3.2.2 Image Segmentation

Figure 3.10 (a) shows the image of automatic display number analog meter. After

grayscale processing, we could acquire Figure 3.10 (b). For the consideration of pro-

cessing area, a rectangle portion of the image is cropped, which is shown in Figure 3.10

(c). Then, the inverting corresponding binary version processing area is illustrated in

Figure 3.10 (d). The top number on the dial plate represents the energy consumption

data, which is the only data we are concerned with. Dividing this number string into

four independent numbers within four rectangles with the same height and width.

Figure 3.10 (e) shows the four objects will be further analyzed.

3.3.2.3 Comparison Algorithm for Pixel Differences

Same as the matrix border grayscale detection algorithm, the pixel differences com-

parison algorithm is also based on pixel analysis. The idea of his algorithm is relative

to the former one and the binary analyzable object only contains black and white

pixels.

First, we collect a numerical range for each object, which means we capture all num-

bers from 0 to 9 for all the four positions. Then, we save them as four independent

number libraries after acquiring the four inverting binary objects. After that, we
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Figure 3.10: Digital Images Preprocessing and Image Segmentation in 5
Steps: (a) Original Image. (b) Grayscale Image. (c) Binarization Outcome.
(d) Counter-color Outcome. (e) Analyzable Objects.

compare the pixels differences of the new pending images in each position with the

saved number libraries. The four numbers shown on each position with minimum

pixel differences are the final results we prefer to obtain. Figure 3.11 demonstrates

the overview flowchart of the pixel differences comparison algorithm.
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Figure 3.11: Flowchart of Pixel Differences Comparison Algorithm.
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Chapter 4

CASE STUDY

The image extraction (IE) approach was validated on a test case using the existing

electromechanical meters in a building connected to part of the Michigan Tech dis-

tribution system. The evaluation of time-activity curves is discussed in this section.

4.1 Decision to Select an Unmetered Building

In order to prove the proposed method can be simulated and validated using the

existing analog meters in remaining buildings, we should confirm at least three con-

ditions: what type of meters are in the objective building, does Wi-Fi cover this area,

and is there a power outlet to provide continuous power for simulation device. We
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process a statistical survey for remaining buildings and complete the two forms shown

in Figures 4.1 and 4.2.

Figure 4.1: Four Types of the Remaining Unmetered Buildings.

The statistical tables demonstrate most of the remaining buildings equipped with type

one electromechanical meters. There are only three type two meters even though six

buildings use this type of meter because some buildings share one meter to measure

the amount of electricity consumption. We mentioned the automatic reading algo-

rithm of the type three meter, but there are only two type three meters on campus.
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Figure 4.2: Wi-Fi and Outlet Availability for Unmetered Buildings.

Building 95 has type three meter (not telemetered) but it is not electrically connected

to the campus distribution grid. The other type three meter is installed in the Hill-

side Hall (building 48) that has the local archive, which is also not telemetered to the

central heating plant (CHP) database. However, this building has already achieved

real-time data monitoring even though its data can only be shown on the local archive.

To consider as part of the selection, the buildings that do not meet those two crite-

ria are not studied. The proposed extraction algorithm on electromechanical analog

meters with pointers can be used for the case study here.
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4.2 Test Case Setup

As shown in Chapter 2, Figure 2.1 shows the geographical map of the campus distri-

bution network with numbered buildings. The purposed IE system was tested in the

unmetered building 20, which is the Mechanical Engineering and Engineering Me-

chanics building (MEEM). This building was selected because of its relatively high

consumption relative to the other unmetered buildings and based on the additional

criteria considered for the study are to ensure that the location is equipped with

outlets and Wi-Fi availability. Building 20 had all of them. As the 120V supply

near a meter is pretty rare, a power cord is necessary to connect the wall outlet with

the device charger. In addition, the implementation of the proposed framework was

secured in the electrical room of building 20 and thus weather protection of the device

was not considered.

Two different types of electromechanical analog meters were present in MEEM electri-

cal room: 208-V and 480-V. The 208-V meter monitors low power-driven equipment

such as lighting and electronic locks while the 480-V meter detects high-power ma-

chinery loads. The case study was based on both meters, and the datasets obtained

from meter readings were recorded for nine days.

Two IE systems were deployed with the timer-camera application placed in front of
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the dial plates as shown in Figure 4.3. The captured images were automatically and

wirelessly uploaded to the server every 15 minutes and were also displayed on an

attached computer. The umbilical shown in the figure was for power only.

Figure 4.3: Actual Timer Camera Device in Operational Mode.

It should be noted here that the stored name format of the electromechanical meter

photo in cloud storage is the title “IMG” with a serial number, e.g. IMG 1110. There

are two methods to import a series of photos captured during a time duration into

the image data extracting program. The first is to utilize photo renamed software

like “Photo Cap” to rename each one as a digital form. An alternative process is

to utilize the programming functions to convert unidentified names into characters

strings, i.e., “strcat” command in Matlab or C language.
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4.3 Study Results

Converted meter readings were saved in an text file for subsequent analysis. The

change in power usage, extracted from the 15-minute sampled images and averaged

to hour increments, is shown in Figures 4.4 and 4.5 for both the 208-V and 480-V

circuits. The curve of the actual data from the 208-V circuit is similar to a bar chart

rather than the typical line chart because the energy consumption variability of the

low power devices was small between 15-minute updates.

From equation 3.1, the energy information (in kWh) on those analog meters can be

translated into average power (in kW). As the rotation of the electromechanical blade

can be slow (scale of 800), considering the time-activity curves of average consumption

with 15-minute, 30-minute, and an-hour timescale can help to estimate and predict

energy consumption over a longer period of time. The initial outcome of the datasets

is shown in Figures 4.6 and 4.7 which demonstrate the power estimates averaged

at three different time intervals. This illustrates the ability of the IE approach to

produce the trends of energy usage over time.

Table 4.1 illustrates the error rate analysis between the IE approach and manual

reading. Four time intervals for 1 day, 2 days, 5 days, and 7 days are shown

and corresponds to the range of dates 3/22/2014–3/23/2014, 3/22/2014–3/24/2014,
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Figure 4.4: Energy Consumption of Building-20 208-V Circuit Between
March 22, 2014 and March 30, 2014.

Figure 4.5: Energy Consumption of Building-20 480-V Circuit Between
March 22, 2014 and March 29, 2014.

3/22/2014–3/27/2014, and 3/22/2014–3/29/2014. Since the manual reading time

stamp was 6:00 pm (+/- 5 minutes), the nearest IE time stamp of 6:06 pm was cho-

sen. The error between the IE approach and manual reading was always less than

0.5%.
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Figure 4.6: Average Consumption for Building-20 208-V Circuit.

Figure 4.7: Average Consumption for Building-20 480-V Circuit.

Table 4.1
Error rate analysis

Number
of days

Image
taken
time
stamp

IE
approach
(kWh)

Manual
reading

timestamp

Actual
consumption

(kWh)

Error
rate (%)

1 6:06pm 3,440 6:00pm 3,431 0.26
2 6:06pm 6,920 6:00pm 6,888 0.46
5 6:06pm 17,240 6:00pm 17,189 0.30
7 6:06pm 24,220 6:00pm 24,134 0.36
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In addition to using the IE approach for continuous monitoring, it can also be used

for determining which buildings should be targeted for more sophisticated instru-

mentation deployment. Fig. 4.8 compares the IE-based penetration on the total

campus consumption with respect to the ten buildings smart meters and the rest of

the unmetered buildings. Time intervals of 6 h, 12 h, 1 d, 2 d, 5 d, and 7 d are shown.

Building 20’s consumption (labeled “Proposed Method” in the figure) is approxi-

mately 3.5% of the total (35 buildings) throughout the 6 time intervals from March

22, 2014 to April 1, 2014. In March 2014, the monthly consumption percentage of

building 20 is with the average values of 3.51%. This consistently indicates the es-

timation of energy consumption from the unmonitored building via the IE system

is reasonable. The energy consumption of building 20 is apparently higher than the

average consumption of each of the 25 unmetered buildings (labeled as “Analog Me-

ters”), which are the campus insignificant loads.

The statistics of the AMI are the accumulation values that sum up all 10 buildings

with smart meters. About one-fourth of the total consumptions, which is the remain-

der of the 25 buildings, does not have smart meters nor implemented with the IE

approach. Through the observation of those 6 piecharts, the proportion of energy

usage on those 10-building smart meters is estimated to be about 70 percent of total

campus consumption, which is considered the heavy loads of campus.
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Chapter 5

CONCLUSION AND FUTURE

WORK

Along with the evolution of information communication technology, the labor-

intensive meter reading has been replaced gradually by the IP-based metering in-

frastructure, which was introduced in recent years. An AMI is the second generation

of AMR system that has the demand response capability with control variables. This

IP-based metering devices constantly transmit the measurement values to the cus-

tomer billing centers. While this can improve the system reliability and power quality,

the large expansion of devices requires a cost justification to meet complete 100% de-

ployment which could take decades to meet the target. This transition from the

current practise to the IP-based communication infrastructure may remain at slower
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pace without governmental assistance. This setup can be costly in terms of mainte-

nance as well as security aspects that can be subject to tampered by the malicious

consumers. The drawbacks require multiple milestones of deployment by utilities

who would be able to incentivize consumers and how to engage them into this data

exchange with their repurposed mobile devices. This thesis has summarized the pros

and cons of the costly deployment of AMI and suggested an economical alternative.

With the use of campus-wide metering testbed and the generous supports by the

team from facilities management, it is believed that this work would largely impact

the progress of technological exploration with alternatives that would be cost effective

and sustainable. The current structure of AMI deployment is still in a fledging pe-

riod although the initial deployment was commissioned on 10 campus buildings since

January 2012. The accomplished infrastructure provides high percentage coverage of

system observability, and the energy usage for those buildings fluctuate over time.

The current AMI deployment has the coverage of up to 65 percent energy usages

during the peak time.

Besides the IP-based “smart” meter deployment, there are 3 frequency disturbance

recorders (FDR) have set up at each feeder for future research. This is a single-

phase phasor measurement unit (PMU) that would be used to determine the system

dynamics and stability for the study. Although this is not the main theme of this

thesis, these advanced sensor units would enhance the observability of the campus
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load monitoring.

The proposed method is designed to automatically extract data from images of elec-

tromechanical analog meters without real-time data observation ability. The proposed

framework requires a wireless network environment and continuous power supply in

the location of existing electromechanical meters, as well as Internet availability for

real-time transmission to the cloud. The algorithm includes image segmentation, dig-

ital image processing, and matrix border grayscale detection analysis. The analysis

in this algorithm is based on the four sub-dials rather than the whole plate surface.

The algorithm will keep working when the sub-dials retain circle shapes without con-

sidering the shape, size, diameter, or configuration of the whole plate. The primary

step in this algorithm is to binarize the original picture from colors to black and

white only. The real-time data acquired from existing electromechanical meters will

be fully implemented to improve the observability of the campus distribution grid

without deploying expensive IP-based wired meters. These mobile devices which are

connected through Wi-Fi to the cloud will provide real-time snapshots of operating

states together with the other 10 on campus buildings that have IP-Based meters.

The trending information from these devices will be compared in order to generate

the common time-activity curves across all metered buildings. This may reveal en-

ergy data variation within a specific time period. Within a limited time-frame, the

curve illustrates that the demanded quantity of energy consumption can be utilized

to forecast or to adjust the system consumption as part of the study.
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The simulation results show that the proposed method provides periodically extracted

data to generate time-activity curves with other IP-based metering devices. The

proposed application has been tested on one of the unmetered buildings which has

reasonably large consumptions among those. Considering the situation that the mo-

bile device could make an slight involuntary movement because of the gravity or

vibration, additional circle recognition algorithms should be considered to compen-

sate for camera position shift. Considerations to enumerate other types of analogy

meters would include in the studies and adaptation of existing modules in meeting

a manufacturer-specific requirement of their analog devices would be necessary. Al-

though this approach is in the experimental stage, it offers an alternative to improve

observability of the distribution network.

It is noted that there is still some future work that needs to be considered. There

are a few significant error results generated by the data acquiring algorithm of the

pointer analog meter. Setting a return value or false alarm if the current generated

result is much larger or smaller than the previous value will decrease the number

of significant errors, whereas the accuracy rating of these arranged images will be

influenced slightly. In addition, we will try to correct the precision to 0.01, which

means the reading accuracy will be percentile.

For the timer camera application algorithm, enhancement can be made to reconnect

the server while experiencing sudden Wi-Fi network disconnection. Furthermore,
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additional mobile devices would be deployed more in the future to study the load

patterns of the campus that will be applied to other unmetered buildings. As image

quantity may vary and in order to distinguish them, a threshold setting with differ-

ent criteria can guarantee the accuracies of location tags and time-stamps for each

taken photo image. For unmetered buildings with low receiption of Wi-Fi availability,

possible exploration of technologies, such as getting a cellular 4G Long-Term Evo-

lution (LTE) device may be an option. For the completeness of putting the mobile

devices for the rest of buildings, algorithms to extract different meter types will be

investigated.
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Appendix A

STATISTICAL RESULTS

Power and Energy Measurement Datasets for the

Ten Metered Buildings

This section provides the historical statistics of the metering information of power

and energy measurements from campus AMI system.

1. Figure A.1 shows results of the Building 19, which is the Chemical Sciences

and Engineering building. The top figure illustrates the time-activity curves

of the energy values in this building. The energy consuming is a cummulative

procedure, which means, after a time duration, the newly presented value must
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be equal to the original value plus the energy consumption of this time interval.

This is the reason that the energy values are incremental. According to the

time-activity curve of energy values, we observed there are two circuits in the

Chemical Sciences and Engineering building, which are 208-V and 480-V, sepa-

rately. The circuit with 208-V is primarily responsible for consumption limited

electrical appliances, e.g., light and power outlets, while the circuit with 480-V

is in charge of large electric facilities such as air conditioning and laboratory

equipment. The green line demonstrates the total consumption of this building,

which is the sum of two circuits. It should be mentioned that the black bars in

the figures represent different quarters of a year.

Unlike energy values, power values illustrate the specific amounts of power us-

ages for different time durations. The visualization result of the power value is

fluctuant because the electricity consumption in different time-frames is unfixed.

In addition, in the measurements of energy and power, if a fault appeared, the

corresponding return value in a time-stamp with a fault occurred is 0. Then,

we observed that the energy values of Building 19 are completely correct, while

there are four or five faults that happened in power measurement during the

whole time period.

2. Figure A.2 shows the results of Building 31, which is the Douglass Houghton Hall

(DHH). There is only one circuit in this building; we observed that the overall

trend is correct even though a couple of faults occurred. We can still consider
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Figure A.1: (19) Chemical Sciences and Engineering Building.

the energy measurement function in this system is under normal operation.

About the power values, there are three significant reductions in the time-

activity curve. Checking the timelines for these three abnormal conditions, we

observed all of these three durations covers the time duration from the beginning

of May to the end of August, which is the summer vacation in Michigan Tech.

Furthermore, DHH is a student dormitory, where most of the students living

here will be back home during this time period. From this, the historical archive
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result of power values in this building could be interpreted.

Figure A.2: (31) Douglass Houghton Hall (DHH).

3. Figure A.3 shows the energy and power values of the Building 17, which is the

J. R. Van Pelt and Opie Library. Similar with DHH, there is only one circuit

in library. Also, there are few faults in energy values but they do not affect

the overall cummulative trend. Because the library should provide a 24 hour

academic environment for students, there is an uninterrupted power supply

under normal circumstances. That is the reason that there are no obvious

decreases during the whole time period.

4. Figure A.4 shows the data results of McNair Hall, which is a student residence
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Figure A.3: (17) J. R. Van Pelt and Opie Library.

hall. As shown in the results, there are two circuits in this building, which are

responsible for controlling and monitoring the power supply of east and west

living quarters, separately. According to the energy result, we observed the

energy consumption of the west section of McNair Building is higher than the

east. In addition, the McNair west circuit has a perfect rise curve, while there

are some faults that existed in the rise of energy values in east McNair. Similar

with the power results in DHH, there are three obvious decreases in the power

time-activity curves of McNair Hall. Both of the energy and power measuring

functions in McNair Hall could be considered as normal.
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Figure A.4: (38/39/40) McNair Hall.

5. Figure A.5 shows the results of Building 7, which is the Electrical Energy Re-

search Center (EERC). There are three circuits that can be seen in the data

results of EERC, which are named as SUB1, SUB2, and SUB3, separately. The

SUB1 circuit is responsible for the power supply of the main building and large

electrical appliances. That is why it has more energy consumption than the

other two circuits. Comparing with previous results, we could affirm that, both

of the energy and power measurement functions in this building are running

correctly. There is one FDR unit in this building.
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Figure A.5: (7) Electrical Energy Research Center (EERC).

6. Figure A.6 shows the results of Building 24, which is the Student Development

Complex (SDC). This building is the gymnasium at Michigan Tech. Because

the constant refrigeration and illumination in the ice arena need to consume

large amounts of electric power, there is a designated circuit to guarantee the

power supply. The circuit named TA is responsible for the main building,

which contains the basketball courts, fitness center, swimming pool, and the

other facilities. The TB circuit is in charge of the power consumption of outdoor
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venues, which contains the football field and parking lots. Also, both of the time-

activity curves of energy and power values are shown appropriately. Another

FDR device is installed in this building.

Figure A.6: (24) Student Development Complex (SDC).

7. Figure A.7 shows the statistical results of Building 12, which is the Minerals

and Materials Engineering (M&M) building. Comparing with the data results

of the Chemical Science and Engineering building, we can infer that the energy

values of these two circuits are normal. However, the time-activity curve of

power values is unusual as we can not observe the values of circuit 208-V from
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the end of June 2013 until now. Different than with the system fault response,

the fault that appears here can be inferred as disconnecting, because the data

storage interface of this building is blank rather than full of zeros.

Figure A.7: (12) Minerals and Materials Engineering (M&M).

8. Figure A.8 shows the results of Building 8, which is the Dow Environmental Sci-

ence and Engineering building. Because numerous zeros existed in the historical

dataset of this building, which could be treated as the fault return values in the

data list, the values of the data fluctuated strongly during the past time period.

This is also the reason why the energy result seems like a bar chart rather than
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a rising curve. Regarding the power result, we found the time-activity curve is

similar to the result of M&M building, but the data results in the data sheet

are quite different. The power values in this building from the beginning of

February 2013 until now are zeros. Both of the abnormal data results indicate

the measurement functions in this building are damaged.

Figure A.8: (8) Dow Environmental Science and Engineering Building.

9. Figure A.9 shows the results of Building 18, which is the U. J. Noblet Forestry

and Wood Products building. Similar with the energy data result of the Dow

building, the energy cummulative curve in this building also seems like a bar
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chart and the results of the two circuits are covered by the total result. Ac-

cording to the energy data list, we observed the reason for this is the same as

the Dow building as to why many zeros existed. Comparing with the previous

results of power, we can infer that the power result here is under a normal

condition.

Figure A.9: (18) U. J. Noblet Forestry and Wood Products Building.

10. Figure A.10 shows the data time-activity curves of the energy and power values

of Building 37. Building 37 is Wadsworth Hall, which is also a student resi-

dence hall. Comparing with the previous results of power values, we observed

the power result is in normal working state, even though the summer vacation
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decreases are not distinct enough. The energy result in Wadsworth Hall is in-

teresting. The overall time-activity curve consists of several small cummulative

curves. According to the energy data list, the energy measurement function

in this building always restarts after an unfixed time duration. One reason for

this operation can be inferred that the growth rate of energy values is too fast

because the slope of each sub-curve is higher than the previous rising curves.

Figure A.10: (37) Wadsworth Hall.
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