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Abstract

In recent years, advanced metering infrastructure (AMI) has been the main research
focus due to the traditional power grid has been restricted to meet development
requirements. There has been an ongoing effort to increase the number of AMI devices
that provide real-time data readings to improve system observability. Deployed AMI
across distribution secondary networks provides load and consumption information for
individual households which can improve grid management. Significant upgrade costs
associated with retrofitting existing meters with network-capable sensing can be made
more economical by using image processing methods to extract usage information
from images of the existing meters. This thesis presents a new solution that uses online
data exchange of power consumption information to a cloud server without modifying
the existing electromechanical analog meters. In this framework, application of a
systematic approach to extract energy data from images replaces the manual reading
process. One case study illustrates the digital imaging approach is compared to the

averages determined by visual readings over a one-month period.
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Chapter 1

INTRODUCTION TO
ADVANCED METERING

INFRASTRUCTURE

In recent years, smart grid vision has been widely promoted to address the energy
sustainability with integration of advanced sensors and technologies onto the existing
power infrastructure. The current status of power grid has been improved with new
regulations of energy policies with enhanced reliability. Through the rapid expansion
of intelligent communication infrastructure, the vision varies from each country. For
example, the authority of China has set ambitious goals to clearly achieve their top-

down priorities to massively deploy phasor measurement units in substation network,



whereas in North America has the bottom-up approaches, i.e., to integrate renewable
energy in transmission system as the same time deploy the “smart” IP-based meters
in distribution networks. Overall, the vision has set a higher standards for electricity
safety, energy usage efficiency, environmental protection as well as operational re-
siliency. Advanced metering infrastructure (AMI) is one of them has been prioritized
for providing consumers with additional options for them to use energy at home. The
interdisciplinary efforts with communication experts would revolutionize the power

industry that has been referred as a “smarter” grid as a ultimate goal.

One benefit of being part of the AMI initiative is to enhance the communication
between customers and utilities. This transition provides an option for consumers to
decide when they would work on their laundry, when they will start charging their
electrical car, when they should turn off the lights, etc. Recently, modern science
and technology developed including the transition with the use of communication
and information technologies, the promotion of environment protection procedures,
and the upgrade of operating systems, the technological advance would tremendously
improve AMI communication architecture. Other issues include asset management,
energy conservation as well as emission reduction, largely deploying AMI systems
would be part of the important milestones for the vision [3]. AMI is an integral of
the modern communication infrastructure for distribution grid that will be connected

with the dispatching control centers [4].



1.1 Hierarchical Structure of AMI network

AMI is a network management system consisted of “smart” IP-based meters installed
in the side of users, the data management console located in the data monitoring cen-
ter, and the communication network to transmit the relevant electricity information.
The modern communication technology has been able to be extended to the home
area network (HAN), local area network (LAN), and wide area network (WAN) to

enhance the transmission efficiency in different regions with various area sizes.

Figure 1.1 demonstrates the fundamental structure of AMI. The “smart” meter has
the ability to measure approximate real-time electricity information, e.g., the three-
phase voltage and current, real and apparent power, frequency, and energy consump-
tion. The collected data will transmit to the data management center via the pre-
setting communication network. The data transmission network can be public net-
works or appropriative networks such as power line communications (PLC), fixed
radio frequency (RF), and the power supply administration [5]. The relevant data
collected from “smart” meters are received and stored in the data center which have
to pre-set enough storage space, and then the gathered data will be sent to the man-
agement console for modeling and analysis. The data management system is capable
of monitoring and supervising relative electricity information via Web browsers. In

addition, the functions of AMI control and operation, dynamic electricity price billing,



and feedback of customer service can be achieved in this system. In order to improve
the security level in the management port, there should always be a firewall between
data reception and management system to ensure only users with special access have
the ability to check and administrate relevant data. The bi-directional flow of in-
formation between the consumers and the customer billing center provides the data

resolution up to 15 minutes per cycle [5].

Data Communication

; Data Reception & M ¢
Collection Network ata Reception anagemen

= @, :

- Transmission
Smart Network Web Usage
Meter \ Display

’ Firewall
AMI Operation
Billing & Program
Customer Service Management

Figure 1.1: Communication Infrastructure of AMI System.

The AMI system is part of the communication framework for distribution grid. Ini-
tially, the automatic meter reading (AMR) is implemented to improve the metering
accuracy as well as cost reduction of labor that would constantly for them to read the
kWh information at consumers premier. As the relative communication technology
advances and the interactivity between utilities and consumers increases, the advan-
tages and benefits of AMI system has evolved from AMR to AMI with additional

control variables on demand response. Below are the major benefits summarized for



AMI:

1)

Utilization of AMI information between utilities and consumers for optimal energy

usage.

AMI provides close-to-real-time information to utilities.

AMI also has demand response features that allows consumers to opt-in during

the peak hours of the day/season.

AMI is a paradigm to share electricity usage information between consumers and
dispatching control center when pricing scheme would affect their energy usage

behavior [6].

The detection module for power quality can be setup in “smart” meter to facilitate

inspection within a distribution system [7].

AMI would increase the system observability that can be used in operational mode
and other application such as cross-domain data validation against cybertamper-

ing.

The increased system observability would help system dispatchers to pinpoint

faulted segment of secondary distribution network [8].

Consumers would be able to make an economical decision based on the pricing

information and their desire when/what to use energy.



1.2 AMR versus AMI

The major distinction between AMI and AMR is the control variables. While AMR
would transmit energy usage information to the customer billing center, the AMI
would enable the control capability between the utilities and customers if they choose
to opt out from the peak load period that would be incentivized. The new paradigm
would enable consumers to be more pro-active in participating the electricity mar-
ket. Both AMR and AMI replace the site manual reading by utility crew. The
features of AMR is similar as AMI, which it transfers the data of household energy
consumption, meter status, as well as diagnostics to customer billing center mainly
for collecting billing information [9, 10]. AMI is a predecessor of AMR that provides
next-generation functionalities with IP-based metering solutions. Table 1.1 shows
the differences between AMI and AMR. From the users and operational perspective,
this table summarizes the important aspects of the system-large metering implemen-
tation for dynamic pricing market that would engage consumers participation. This
[P-based metering solutions would also provide information to the consumers in order
for them to make a sound, economical decision. As this is not internationally used
for operational purpose, some approximation of instantenous values of the power con-
sumption / energy usage would be sufficient enough for the collection of household

billing information.



Table 1.1
Comparison between AMI and AMR.

AMI AMR
Collect data according Typically gather data
Data Collection to pre-set. Support monthly, daily at
real-time reading. most.

Communication Mode | Two-way Communication. | One-way Communication.
Engineering, operations
asset-management,
planning departments,
customer service,
billing,
and metering [11].
Users can manage
the working time of devices
and communicate with
“smart” devices.
Pricing Model Dynamic prices. Fixed prices.

Benefited Parties Billing and metering.

User Operation Not applicable.

Comparing between the two, the computational power has exponentially improved
over last decade. The embedded system of the AMI devices can be designed with
a more robust capability for communication. As the power of such device improves,
including more information as well as with increased frequency of information ex-
change is desired. In addition to that, the functionalities of IP-based “smart” meters
also include load control, prediction of potential fault location within the secondary
network, event reports such as unavailability of the meters as well as firmware update
for enhancing the functionalities of the IP-based meters. Most upgrades are being

updated with patches for data security and reliability.



1.3 AMI Communication Infrastructure

The communication infrastructure of an AMI consists of the IP-based devices of
“smart” meter, communication network between the customer billing center and the
consumers as well as the servers of meter data management system (MDMS). These

are the integral parts of an AMI system that are described in the next subsections.

1.3.1 “Smart” Meter

The IP-based “smart” energy meters are the instrumentation to transmit energy usage
between customers and billing center. It provides the data transmission interface to
connect communication network and the data acquisition unit. Figure 1.2 shows an
example of electromechanical analog meter and IP-based energy meter depicted in
Figures 1.2(A) and (B), respectively. Unlike the electromechanical analog meter, the
“smart” meter displays digital numbers on its panel. Crew who visits the consumer
premise site would understand how to interpret the angle of arrows on the display of

the electromechanical analog meter.

The measurement variables of the IP-based meters include kilowatt hour (kWh),

kilowatt (KW), voltage (V), or ampere (A). Pre-setting the measuring interval for 10
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Figure 1.2: Existing Analog Meter and the New IP-based Energy Meter.
“See [1] for picture that this material is in the public domain.”

or 15 minutes, and then utilizing the open two-way communication for the purpose
of monitoring, information verification, and diagnotics. These meters may have the
privileges to receive real-time dynamic electricity price from the market authority

that would include demand response features.

1.3.2 Setup of AMI Communication

As the only medium during information transfer, the AMI communication network
provides secure and effective services to ensure data exchange. Two communication
modes, wired or wireless, are available in AMI communication system. Regarding the
wired mode, three main methods, which are serial communication, ethernet, as well

as optical fiber communication, are described briefly below.



1)

Serial Communication: This communication mode is originally designed to trans-
fer data over large distances. In the AMI system, the IP-based meter sends data
one bit at a time, sequentially, over one data cable connected with the serial com-
munication port in the meter. Sometimes, the serial communication can also be

utilized with other modes, e.g., ethernet or the optical fiber [12].

Ethernet Communication: As one of the most economical and widely used modes
in networking technologies for local area (LAN) or larger networks, ethernet can
be used in the IP-based meters. The data cable connects the ethernet interface
in the meter with the data collector for wired communication. Optimizing data
transfer across multiple sites, some network protocols are available at the ethernet
level include transmission control protocol (TCP) or ModBus [13]. ModBus can
accelerate data transfer by integrating revelent electricity information into the

data module installed in the IP-based meters [14].

Optical Fiber Communication: This mode is the optimized technology from eth-
ernet. This method performs rectilinear data transfer via converting electronic
signals to light signals, which could send data packages to destinations with dif-
ferent distances immediately [15]. The major disadvantage of this method is the
exorbitant price. Generally, an AMI system collects data from a region first and

then transmit via optical fiber.

10



As a practical matter, an AMI system needs wireless communication mode to provide

continuous, fast, and stable data transfer for optimizing datacenter operations within

local arecas as well as wide areas. Two wireless methods extensive used in the AMI

system are Wi-Fi and embedded system. Below will describe these two methods

roughly.

1)

Wi-Fi: It is the most common technology in wireless communication. The im-
plementation procedure in AMI is to establish wireless base stations that have to
guarantee the provided network is capable of covering all IP-based meters. The
base stations connected with each other through the network bridge between dif-
ferent wireless access points [16]. In addition, the choice of meter installation site
is important. Before install the wireless devices, a site survey of each installation
location has to detect the strength of signal and interference around each meter

to make sure the communication quality.

Embedded System: Comparing with other wireless communication modes, embed-
ded system is a comprehensive method. Besides more stable information trans-
mission, it allows users to combine multiple communication modes based on their
definite requirements to complete the data transfer [17]. The embedded system

can provide the optimal solution for wireless communication in an AMI system.

11



In addition, the global system for mobile (GSM), general packet radio service (GPRS),
and 3G/4G network could also be applied in AMI system [18]. Since the exploita-
tion of AMI system, the option of advanced communication technologies has become
increasing complex. The implementers should consider more circumstances such as
reliability, operating maintenance, or capital spending to select the suitable communi-
cation mode. The communication of AMI rely on three networks: home area network
(HAN), neighborhood area network (NAN), and wide area network (WAN) [19]. The

basic communication infrastructure of an AMI system is illustrated in Figure 1.3.

.&_’

Firewall
Concentrator

F 3

1

Heating E]ectrl(:lty

Gas Water
Home Area

Figure 1.3: Communication Infrastructure of AMI System.

Regarding a complete AMI system, the measured information which could be trans-
mitted is not just electric power data; it could also gather the consumption informa-
tion of water, gas, or heating. The main function of HAN is to integrate additional
data and send them to relevant “smart” meters. Then, the data is sent through NAN
which is sometimes also identified as local area network (LAN) or field area network
(FAN) [19] to connect meters and concentrators. In the end, the WAN will connect
the concentrator or the single “smart” meter to the head end system (HES) which

has the ability to communicate with meters directly and also could be known as a

12



meter control system [19]. Between WAN and HES, there will always be a firewall or

special approval protocol to guarantee the security of data transmission.

1.3.3 Meter Data Management System (MDMS)

As the key component in the AMI system, the meter data management system
(MDMS) performs long term data storage and monitoring for the vast quantities
of usage information delivered by IP-based meters. The data is typically imported
to the MDMS first for preprocessing, e.g., verification, filtering, and disposing, before
making it available for billing and analysis. Also, the MDMS can interact with some
functional systems such as a power on or off control system or a dynamic prices sys-
tem [20]. The working procedure of the MDMS is shown in Figure 1.4. The MDMS
can obtain the timely data report to do the energy consumption forecasting, load

capacities reporting, and customer service feedback [21].

Making full use of the gathered information is an important benefit of the AMI
system. Apart from compiling the timely data, the MDMS can also maintain the data
integrity even without data transfer, which means the MDMS can store the measured
data under network disconnecting situation. Currently, many electrical companies are
planning to establish the MDMS based on the existing metering system to promote

work efficiency and performance.
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Figure 1.4: Flowchart of MDMS Working Process.

1.4 Survey on Current Deployment and Possible

Improvements

With the improvement of automation and practical ability in management of the
electric power business, partial function of the AMR system has trended toward AMI
system features that evolved from simple meter reading performance to be capable
of monitoring the real-time information, assessing the electricity, remote controlling,
automatic billing and other features. For the proven and stable electricity business,

the AMR occupies a large proportion of market shares while the AMI technology that

14



only has the operational experience of three to four years which means it is still in

the probational stage. The future deployment of an AMI combines with the problems

which occurred in campus AMI system.

1)

Before confirming the service model and preliminary scheme, we need to complete
the user requirement analysis and feasibility survey to reach the goal of resources
and capital conservation to improve work efficiency. For example, at Michigan
Tech, the first-phase deployment of the AMI system has been accomplished, and
it has been capable of providing high percentage coverage of system observability.
When the second-phase deployment is implemented successfully, the AMI system
will be able to monitor more than 80 percent of the energy consumption infor-
mation. That will leave around 17 buildings dispersed located on campus that
deploy the rest of the electricity data. The constructor will not deploy the AMI
structure in these buildings based on the principles of maximum efficiency and

implementation difficulty.

Communication network is the core part of the whole AMI system because it is
the only medium to connect meters, monitoring terminals, the database, and the
data management system. How to improve the performance in a communication
network that contains security and stability should be one of the major steps for
future development of the AMI system. During the summer in 2013, the commu-

nication network of the AMI system in Michigan Tech was made public because
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of the upgrade of the campus network. Anyone who can log into the Michigan
Tech account can also observe the data management system and supervise the
operating status of the power supply system without any restrictions. Under nor-
mal circumstances, only the administrative users and managers have the access

via passing a virtual private network (VPN) identification.

An integral system combined with hardware and software, also it should have an
alarm system to ensure valid and efficient operating. An advanced feature of an
AMI system is the telemetered capability to feedback with fault indicators that
trigger a disturbance alarm to the data center in real-time. The current AMI
system can only estimate the running states by checking metering information.
From the last half of 2013 to present, an error appeared in the UPPCO meters; the
connection of the network interface adapter in the meter was disconnected. The
power information can be detected in an input terminal rather than an output
port, which means the data can be shown to the power supply company but can
not display in the campus internal database. We lost the real-time monitoring

function of the overall consumption.
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1.5 Enhancement of Metering Infrastructure in

Distribution Grid

In the metering infrastructure, “smart” meters in the power grid could be treated
as sensors or measuring points spread over the whole network. Using communica-
tion facilities and information system provided by the electric company or relevant
department, AMI is capable of offering the much more timely and effective measure-
ment. Furthermore, the communication network in the AMI system can support some
advanced applications in a power grid, e.g., power distribution automation and auto-
mated management in a substation. In the meantime, the operating state could be
estimated and checked by the presented data from AMI. Therefore, the AMI system
is regarded as the first step to establish smart power grid. After the implementation
of AMI, the electricity providers will progressively achieve advanced capabilities such

as distribution operation, asset management, and a series of analysis and modeling.
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Chapter 2

CAMPUS DISTRIBUTION GRID

As the first major milestone and the fundamental structure of the overall smart
power grid, AMI measures, collects, and analyzes data about energy usage and power
quality from the terminal “smart” meters, and achieves valid data exchange between
the distribution dispatching center and customer billing network [22, 23]. In most US
power utilities, the coverage of the AMI system has risen from 8.7 percent in 2010 to
about 30.2 percent in 2013 [24] and the reliability rate is around 99.7 percent [25].
Due to the critical role of information exchange in distribution grids, real-time data
acquisition is one of the primary tasks in a distribution grid that constantly pulls the

usage information to a central database using IP-based communication network [26].
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2.1 Current Status of AMI Deployment

The current status of AMI deployment in Michigan Tech is still in a fledging period.
The initial AMI deployment was commissioned on 10 campus buildings since the first
quarter of 2012. These metered buildings sometimes represent more than half of en-
ergy consuming loads and, after the deployment of the second-phase, the AMI system
will cover more than 80 percent of campus power consumption information. Due to
the budgetary constraints, deploying “smart” electronic meters for the remaining per-
centage of unmetered buildings may not be cost efficient. Although the accomplished
infrastructure provides high percentage coverage of system observability, the energy
usages for those buildings fluctuate over time. The current structure of completed
AMI has the ability to provide the observation of up to 65% of the energy usages for

the campus distribution system.

Figure 2.1 illustrates the campus distribution grid. In this figure, the dark grey
circles represent accomplished phase-one buildings with “smart” IP-based meters.
The capital A module shows the substation in this grid while B represents the terminal
port of the system. There is one substation and four generating units in building 41
which is also the facilities management site. There are three existing distribution
feeders and each building is connected to a primary feeder and a backup feeder. As

shown in the map, there are many remaining buildings needed to be considered in
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the future to achieve entire grid intellectualization at campus-wide. The numbers on

this map represent building numbers.
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Figure 2.1: The Deployment Status of Campus AMI (Ten Buildings with
IP-Based Building Meters). “The base map in this picture is captured from
Google Map which is in the public domain.”
Figure 2.2 shows the deployment status of campus distribution grid for the fiscal year
of 2012 to 2013, which also contains the building numbers and corresponding names,

annual and average energy consumption, and the energy consumption percentage of

each building.
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According to this figure, the accomplished phase-one AMI system covered around 63
percent of power consumption in the whole campus power grid for last year, while
the observation of both phase-one and phase-two deployments will rise to around 83
percent. That would be the initial target of the campus AMI construction and we
may not continue to install AMI in the remaining buildings anymore because of the
consideration of efficiency and cost reduction. There will be more than 15 buildings
left which only hold less than 20 percent of campus consumption observation. Al-
though the energy usage of Daniell Hights (DH) is about 5 percent, which is large
enough to regard, this building represents the campus living quarters which consists
of many dispersive units. Consulting campus-wide distribution grid map, we could
discover the region of DH is large and the locations of units are scattered. The AMI

construct process in DH would be inconvenient and have a high cost.

Over the past decade, the annual energy expenditure for campus energy usage is es-
timated to be millions of dollars consistently for all campus buildings. Determining
how to promote energy consumption awareness has been one of the major steps for
reducing energy usage. With the accurate and timely information, the monitoring
element has the capacity to detect energy quality and running states of the distri-
bution system while the management console will be able to realize troubleshooting
and electricity controlling [6, 27, 28]. This means that the distribution substation can
guarantee high-efficiency electricity supply and control the power distribution capac-

ity according to the real-time data feedback to reach the goal of energy conservation
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[29].

2.2 Deployed Metering Infrastructure

The real-time data acquisition ability is one of the prime advantages in a distribution
grid. The IP-based meter is one of the basic facilities for collecting, processing, and
communicating real-time data in modern smart power grids [30]. The implemented
intelligent structure with IP-based meters in the campus distribution grid is monitored
by the AX supervisor which is a flexible network server applied in operations where
multiple Niagara AX controllers based on Java application control engine (JACE), can
be networked together [31]. Figure 2.3 is the architecture of data acquisition system
for metering campus distribution loads using AX supervisor. The timely energy
consumption information will be displayed on the energy meter as well as uploaded
to the Internet through the IP-based Internet link module (ILM) [32]. Within the
existing system, the IP-based metering data could be browsed and supervised using a
web supervisor and browser through specific virtual private network access and then

saved to the campus data server.
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Annual
Energy Average 2
e Ny kWh | Annual kown | T3 %
2l 37 Wadsworth Hall 2,948,727 336.61 9.28%
Z [38/40 McNair Hall 781,205 89.18 2.46%
& 31 Douglas Houghton Hall 436,236 49.8 1.37%
L8 Dow Env. Sci. and Engg. Building 3,756,535 428.83 11.82%
o f-fr 12 Minerals and Materials (M&M) Engineering | 2,415,005 275.69 7.60%
% § 19 Chemical Sciences and Engineering Building | 1,758,005 200.69 5.53%
£ £ 18 U. J. Noblet Forestry & Wood Products 1,523,728 173.94 4.79%
17 J. R. Van Pelt and Opie Library 1,488,891 169.96 4.68%
§ 24 Student Development Complex (SDC) 1,903,834 217.33 5.99%
;f od Electrical Energy Resources Center 1,797,805 205.23 5.66%
é 24 Ice Arena (SDC) 1,229,887 140.4 3.87%
Total Metering Coverage for Phase 1: 20,039,858]  2287.66 63.06%
10 Mechanical Engg. & Engineering Mechanics | 1,537,124 175.47 4.84%
= 15 Fisher Hall 751,665 85.81 2.37%
E’ 34 Memorial Union Building 1,000,512 114.21 3.15%
_? | Administration 504,165 57.55 1.59%
E 14 Grover C. Dillman Hall 445,884 50.9 1.40%
& 11 Walker Arts and Humanities Center 789,125 90.08 2.48%
g 12 Benedict Lab 346,176 39.52 1.09%
o 28 Rekhi Hall 771,563 88.08 2.43%
10 Rozsa Center for the Performing Arts 207,205 23.65 0.65%
Total Metering Coverage for Future Deployment: 4,816,295 549.81 83.05%
32 Daniell Heights 1,640,007 187.22 5.16%
96 Portage Health Center 221,000 25.23 0.70%
41 Central Heating Plant 185,521 21.18 0.58%
5 Academic Offices 120,973 13.81 0.38%
9 Alumni House 108,216 12.35 0.34%
4 Facilities Motor Pool 103,365 11.8 0.33%
50 Gates Tennis Center 108,265 12.36 0.34%
g 4 ROTC Building 60,487 6.9 0.19%
s 24 Fitness Center 61,087 6.97 0.19%
5 16 Public Safety 5,741 0.66 0.02%
13 Hamar House 30,384 3.47 0.10%
43 Lakeside Laboratory 11,209 1.28 0.04%
81 Gen Building 134,370 15.34 0.42%
48 Hillside Hall 696,181 79.47 2.19%
100 Great Lake Research Center 1,840,756 210.13 5.79%
U#l SDC Lights 21,140 2.41 0.07%
U#2 Sharon Ave. 38,260 4.37 0.12%
Total Annual kWh: 31,780,239 3,628 100.00%

Figure 2.2: Deployment Status for Each Building with Annual kWh for
Fiscal Year 2012-2013.
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The monitoring interface of the web supervisor is capable for observing measurements
with different units. All of the observation is useful for observing the real-time con-
sumption and estimating the operating status. Figures 2.4 and 2.5 illustrate the web
user interfaces of measurement variables for the phase-one deployed buildings and

UPPCO meter, which is applied for monitoring campus total energy consumption.

LIPPCO1 Meter

Total_KWH 934299733308E32 ]
Total_KVarH 0.0 kvA-hr
LastCalckw 0.0 kw
LastCalckVar 0.0 kvar
Instw 0.0 kw
TnstiVar 0.0 kvA-hr
InstKVA 0.0 kVA
Frequency 0.0 Hz
AmpsPhasea 0.0A
VoltsPhaseA 0.0V
AmpsPhaseB 0.0A
VoltsPhaseB 0.0V
AmpsPhaseC 0.0A
VoltsPhaseC 0.0V
THD_A_Amps 0.0
THD_A_Valts 0.0
RealtimeInstw 3221279488.0 kW
ProjectedInsticw 0.0 kw
AccumulatedInstkw 0.0 kw
RealtimeInstkVA 0.0 kVA
ProjectedInstkVA 0.0 kvA
AccumulatedInstKVA }0167556649827E 37

Figure 2.4: Example of Web-Based User Interface for Substation Injection
Points (UPPCO1 Meter).
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ChemSci4a0_RealPower 134.0 kw MME430_RealPawer 277.0 kw
ChemSci480_ApparentPower 191.0 kVA MIME480_ApparentPower 337.0 kVA
Chemsci4an_volt AR 482.7V MME430_Volt_AB 473.3V
ChemSci480_Volt_BC 452.0V MME480_Volt_BC 480.9 V
Chemsci4a0_Volt AC 480,7V MME420_Volt_AC 4816V
ChemSe480_Current_A 222.0A MME430_Current_A 409.0 A
ChemSci480_Current B 226.0 A MME480_Current_B 3920A
ChemSci480_Current_C 193.0 A MME480_Current_C 338.0 A
Chem5c480_Freguency 59.9Hz MME430_Frequency 60,0 Hz
ChemSci4a0_KivH 3214778.8 kW-hr MME480_KWH 4306960.0 KW-hr
DOW208_RealPower 100.3 ki Forestry208_RezlPower 77.5 kw
DOW208_ApparentPower 112.8 kVA Forestry208_ApparentPower 34.0 kva
DOW208_Volt_AB 208.8V Forestry208_Volt_AB 210.3V
DOW208_Volt_BC 208.3V Forestry208_Volt_BC 2084V
DOW208_Volt_AC 09,8V Forestry208_Volt AC 209.8V
DOW208_Current_A 268.8 A Forestry208_Current_A 278.5 A
DOW208_Current_B 268.3 A Forestry208_Current_B 214.3 A
DOW208_Current_C 356.2 A Forestry208_Current_C 252.0 A
DOW 208 _Frequency 60,0 Hz Foresiry208_Frequency 60,0 Hz
DOW208_KWH 19365480, kiti-hr Forestry208_KWH 11554262.0 kW-hr

Figure 2.5: Example of Web-Based User Interface for Phase-One Deployed
Buildings.

These two figures depicted the web supervisor to observe the usage information in-
cluding real power, apparent power, three phases voltages and currents, frequency,
and energy for each metered building. Also, we can check and download needed
data based on different time durations which contain last year, year to date, last
month, last week, yesterday, and the current day. The time interval of each mea-
sured data is 10 minutes. Furthermore, there are two UPPCO meters in the campus
power supply substation but only one on working state at one time. In addition, five
buildings which include the Chemical Engineering building, Minerals and Materials
(M&M) Engineering building, Dow Environment Science and Engineering building,

Electrical Energy Resources Center (EERC), and U. J. Noblet Forestry and Wood
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Products building are constructed with two types of transformers which are applied
with 208-V and 480-V separately. The transformer 208-V is primarily responsible
for consumption limited electrical appliances such as light and power outlets, while
the transformer 480-V is in charge of large electric facilities like air conditioning and

laboratory equipment.

For security reasons to restrict the critical information of the campus metering
database, the administrative users can manage the systems by tunneling through
virtual private network (VPN) connection to campus intranet [33, 34]. Within the
campus Intranet, subnets of different buildings are connected and are routed through
the campus-wide communication backbone network to other internal networks for
real-time information sharing. As mentioned, due to the budgetary constraints, de-
ploying IP-based meters for the remainders of unmetered buildings may not be cost
efficiency. Inventing a new method with reasonable price which is to increase a greater
number of metering points for the lower priority buildings that pictorially acquire en-
ergy information from existing electromechanical meters. Instead, dedicated IP-based
energy meters is necessary and the proposed framework will be described in detail in

Chapter 3.

28



2.3 Distribution Feeders

The campus substation is the node that connects the power injection sources from
UPPCO transmission network to three distribution feeders. Figure 2.6 demonstrates
current feeder operating status for each building in the campus distribution grid.
Every building in this system is electrically connected either by one of the two feeders

at a time, which one connected as primary and the other as backup.

The detailed topology connections of three feeders in campus distribution grid is
shown in Figure 2.7, where red line represents feeder one, green represents feeder two,
and blue as feeder three. The connections in between each building and feeders are

connected with switches.
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NUM Name Feeder | | Feeder 2 | Feeder 3
2 Substation ON ON ON
37 Wadsworth Hall OFF ON

38/39/40 Mcnair Hall ON OFF
31 Douglas Houghton Hall OFF ON
8 Dow Env. OFF ON
7 Electrical Energy Resources Center ON OFF
10 Rozsa Center ON OFF
32 Daniel Heights ON OFF
100 Great Lakes Lab ON OFF
48 Hillside Hall ON OFF
41 Central Heating Plant ON OFF
43 Ground Maintenance ON OFF
81 Power Generation Building ON
11 Walker Arts and Humanities Center ON
12 M&M Eng. ON
18 Forestry ON
20 Mechanical Eng. & Eng. Mechanics ON
15 Fisher Hall ON
14 Grover C.Dillman Hall ON
28 Rekhi Hall ON
6 ANNEX Building OFF
13 Hamar House ON
5 Academic Offices
4 ROTC Building
9 Alumni House
12 Benedict Lab
16 Public Safty
19 Chemical Sci.&Eng.

17 Library

24 SDC

24 Ice Area

34 Memorial Union Building

1 Administration

50 Gates Tennis Center
96 Portage Health Center
U#1 SDC Parking Lot
U#l Fitness Center
U#l SDC Lights
U#2 Sharon Ave.

Figure 2.6: Primary and Backup Feeders for Each Building.
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In this diagram, yellow blocks express the phase-one buildings with IP-based meters.
There are three purple rectangles contained by buildings 7, 8, and 24 which represent
frequency disturbance recorder (FDR). The FDR is connected for transmitting fre-
quency information remotely via the Ethernet on 110V or 220V charge outlet [2]. The
EERC has also served as a host site for the Upper Peninsula of Michigan. Its commu-
nication backbone is under frequency monitoring network (FNET) by the University
of Tennessee Knoxville from EERC building. The other two FDRs are installed in
the first floor of Dow Environment Science and Engineering building and the power
control room in Student Development Complex (SDC). Taking EERC building as
an example, one of the three FDRs is located on 6th floor of EERC. The EERC is
connected to feeder 2 that serves the building consumption. Figure 2.8 illustrates
the material object of a FDR device and antenna setting. The revelent switches and
buttons are back of the device. The front lights only indicate the working state and
the measured values are shown in the grey screen. The signal receiver and emitter
in antenna shown in this figure should be placed around the area with better GPS

reception.

During power distribution and transmission, the power loss in feeders should also be
considered for loads modeling and estimating. In order to obtain the information
of power loss, it is necessary to measure the actual distance of feeders between each
building and the substation. Making the substation as the base and dividing all

campus buildings by three different feeders, we labeled the concrete feeder distance
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Figure 2.8: Frequency Disturbance Recorder (FDR) and GPS Antenna
Placement. “See [2] for picture that this material is in the public domain.”.

between each conjunction node by field measurement in Figure 2.9 where the unit
of distance is foot, the dark circles represent phase-one deployed buildings, and the

capital “F” represents FDR in this distribution system.
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In Figure 2.9, we could find the feeders with the longest length is from the substation
to building 95 and the value is only 6147 foot which is less than 1.2 mile. The
feeder utilized in campus-wide grid is named “AETNA INS WIRE 2AWG CU EPR
15KV 133 Percent INSUL LEVEL (220MIL)” that the resistance parameter is 0.964
/mile [35]. Doing a simple calculation, even the resistance in the longest part of the
feeder is small enough, which means the power loss in this grid is too insignificant to

consider.

2.4 Substation Transformers

As shown in the distribution grid map, phase-one cyberinfrastructure deployment
includes the selected 11 buildings. The installation and implementation of these new
devices is based on the load survey for each building per month by the facilities crews.
The primary focus of this phase is to monitor the ongoing campus-wide energy usage
by system operators in the control room. The selection of these locations includes
coordination with campus electricians in order to determine the type of metering
devices required. Depending on the manufacturer specifications of the instruments,
the connection type follows the instrumentation at the secondary side of distribution
transformers with a network interface provided via a Modbus connection. However,
the flexible current transformer (CT) connection type requires an additional three

sets of instrumentation for the two distribution transformers in each building with
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six total for both secondary sides of transformers, i.e., 480-V and 208-V. Table 2.1
below shows detailed information of transformers in phase-one cyberinfrastructure

deployment.
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2.5 Backup Generating Units at MTU Substation

In case of a fault or an emergency occurs at injection sources that could not meet the
power usage requirements of facilities management. There are four backup generators
connected in parallel to the campus substation to improve the reliability. Figure 2.10
illustrates the location of these local backup generators. Considering the appropriate
distance between the backup generators and the substation, the four backup gener-
ators are set at the Central Heating Plant Building, which would be convenient for
protecting and monitoring. The number of this building is 41 and the location of it
has been indicated with a red arrow on the partial campus map. Figure 2.11 shows
the schematic of the campus substation. The two UPPCO buses can transform their

operating status via the tie switch in between them.

Vi

Figure 2.10: Location and Campus-Wide Backup Generators. “The base
map in this picture is captured from Google Map which is in the public do-
main.”

The backup generators for each building are summarzized in Figure 2.12 in kilo Volt-

Ampere (kVA). Notice that not every building has backup generator. Those rows with
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Figure 2.11: Schematic for MTU Campus Substation.
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same color share with one backup generating unit; four different colors represents the
four backup generators. Some buildings have their independent power source for
backup that does not share with other buildings, e.g., buildings 38, 40, 12, 24, and

34. These buildings usually are equipped with a smaller unit.

The blue circles in Figure 2.13 represent the buildings have generators. Those building
generators are only for emergency life safety purpose. During the power outage, they
will be adequately used to light up the corridors, to start pumps, or sometimes for
one elevator to operate. All of the metered buildings have generators. The backup
generation rating ranges are from 125 kVA to 569 kVA and the total rating for these
generators are around 2.3 Mega Volt-Ampere (MVA), while the average load of system

is around 4.5 MVA.

The generators could not only provide the emergency power for the corresponding

buildings, they also supply the power to their adjacent buildings sometimes. Figure
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Backup
No. Name Generation (kVA)

Local | Access to

E‘ 37

_‘é 38/40 McNair Hall 156 0

= | 31 Douglas Houghton Hall 100 0
8 Dow Env. Sci. and Engg. Building 0 565
12 Minerals and Materials (M&M) Engineering 125 0

Phase 1
Phase 1(a)

J. R. Van Pelt and Opie Library

@ Student Development Complex (SDC)
e
Z
£
- Fisher Hall
g. Memorial Union Building
2 | GroverC.DillmanHall | - | - |
- _Walker Arts and Humanities Center | 125
£ Benedict Lab
z 28 Rekhi Hall | 0 569
95 Advanced Technology Center - -
32 Daniell Heights - -
96 Portage Health Center B -
41 Central Hea!ing Plant 565 0
5 Academic Offices - -
9 Alumni House - -
- 44 Facilities Motor Pool 0 565
E 50 Gates Tennis Center - -
‘= 4 ROTC Building - -
5 24 Fitness Center - -
16 Public Safety - -
13 Hamar House - -
43 Lakeside Laboratory - -
81 Gen Building - -
48 Hillside Hall - -
100 Great Lake Research Center - _

Figure 2.12: Buildings with Local Backup Generators and Electrical Con-
nections with Others.
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Figure 2.13: The Current Topology of the Buildings with Local Generat-
ing Units and Frequency Disturbance Recorders (FDR) in Blue and Green
Colors, Respectively. “The base map in this picture is captured from Google
Map which is in the public domain.”

2.14 illustrates the current clusters with generating units on campus buildings
cluster shared one generator. The primary requirement for each generator is to
the adequate power supply. Except that, the deployment of power supplies

depending on the topology of the grid network.

. Each

ensure

varies

Figure 2.15 demonstrates the new microgrid clusters and future studies. A generator
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Figure 2.14: Clustering a Collection of Buildings with Local Generating
Units based on Their Vicinity and Connectivity.

will lead a cluster. As shown on this figure, the light blue and red areas cover all
no generators buildings. The remaining buildings in the light blue area will connect
with the existing generators in the future, while there will be set a new generator
in each red area. The small squares in between different microgrids represent the
new remote-controllable switches. The distribution and the setting of the microgrids
shown on the figure are based on the optimal operations and cost effectiveness. Figure

2.16 illustrates the separated microgrids with corresponding number, name, and the
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generation capacity from Figure 2.15. We can treat each microgrid as one cluster.
The capacity of each cluster is based on the estimation of energy consumption in the
microgrid. Because there are no generators available in clusters 11, 12, and 13, the

generation capacity of these three clusters are 0 kVA.

Figure 2.15: Potential Future Setup for a Networked Microgrid.
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Cluster 1: Dow-Facilities
Cluster 13: Great-Lake
Generation: 0kVA

T,

Cluster 5: ROTC-Admin

Cluster 2: MEEM-EERC
Generation: 564kVA

D 17

Cluster 4: Wads-Dauglas
Generation: 2B8kVA

@ Cluster 3: M&M-Rosza
@ @ Generation: 250kVA

Cluster 6: Library-Fisher
Generation: 569kVA

Cluster 9: Safety-Forestry
Generation: 188kVA

Cluster 8: McNair-Daniel
Generation:
Loads:

Cluster 11: Daniel-All
Generation: OkVA

Cluster 7: SDC-Portage
Generation: 144kVA

Cluster 12: Lights
Generation: 0kVA

Figure 2.16: Cluster Numbering and its Total Capacity in kilo Voltage-
Ampere (kVA).
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Chapter 3

IMAGE EXTRACTION
ALGORITHM FOR
ELECTROMECHANICAL

ANALOG METERS

Increasing the number of metering points improves load observability. A higher rate of
AMI deployment occurred between 2010 and 2011 due to the Recovery Act Smart Grid
Investment Grant (SGIG) program [24] in addition to increased utility investments.

However, there is not sufficient data to determine the level of smart meter penetration
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beyond 2013. The IP-based electricity meter is the typical device used to collect real-
time consumption data in secondary distribution systems [30]. Due to the pivotal role
of information exchange between metering devices and the power distribution station,
data observation and management of IP-based AMI are considered important roles

in modernizing the distribution grid [36, 37].

Prevalent computing on mobile devices has revolutionized consumer electronic prod-
ucts and provided diverse applications in social networking. These devices are often
embedded with powerful processors that can be utilized to perform relatively de-
manding tasks [38, 39]. Every new mobile unit comes with incremental features that
can quickly become obsolete in the foreseeable future. The rapid pace of mobile
device technology development results in a large secondary market of inexpensive
devices with computing and imaging capability suitable for capturing and transmit-
ting power consumption information from existing analog meters based on reasonable
quality cameras. The contribution of this work is to establish a framework to perform
real-time energy information extraction from images of the existing electromechanical

analog meters.
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3.1 Comparison between Three Different Meter-

ing Infrastructures

Different from IP-based meters, the electromechanical analogy meter is incapable of
connecting with a network in any shape or form. Periodical human meter reading is
the only method to acquire the accurate energy information from a concrete electrical
building with mechanical meters. The electromechanical analogy meter uses four
pointers with different orders of magnitudes to show energy consumption. To extend
the working cycle of a meter, the displayed result should multiply a fixed parameter

such as 400 or 800 and it is typically calibrated in kilowatt hours (kWh).

There are four different types of analog meters equipped in the distribution grid at
Michigan Tech without data transmission performance. Type one is the meter denote
consumption number with pointers, while type two shows numbers in a grey screen
with detailed number information. Type three meter and type four meter are both
capable of representing power usage values by digital numbers. The usage values on
type three meters are shown on black screen with red laser number, while the other
is on a blue screen with grey words, separately. The main difference between these
two meters is the function of automatic display. Type four meter can only show data

information by pushing relative buttons below the screen. Figure 3.1 below shows
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these four types of analog and digital units that are not telemetered to the central

control system.

Type one

Type three Type four

Figure 3.1: Four Types of Energy Meters for Campus Distribution Grid:
Type 1: Analog with Pointers. Type 2: Analog without Pointer. Types 3
and 4: Non-telemetered Digital Meters.
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Table 3.1 shows a comparison between: conventional electromechanical meters, IP-
based “smart” meters, and the mobile device-based image extraction (IE) approach

for the task of extracting kW and kWh information through mobile device.

The major differences between the methods are the frequency of obtaining the con-
sumption data, equipment and installation costs, as well as data reliability and pri-
vacy. The low deployment and maintenance costs of the IE system are crucial for
the sustainability of technological transfer of information between the electromechan-
ical meters and the other two types. In addition, the IE approach may incentivize
consumers to engage with utilities other than through bill payment. As most util-
ity companies have databases that relate distribution transformers to the customers
connected to them, power flow analysis could be updated with high frequency or
on demand as needed in their distribution management system for more updated
real-time calculations. Cybertampering can be a major concern, due to potentially

malicious customers tampering or altering the metering values [49].

Although new “smart” meter devices provide an opportunity for consumers to reduce
their monthly utility charges, utilities may not realize near-term profits from their use
due to maintenance and installation costs. Hardware upgrade would affect the finance
of new technology and the concern of cost recovery. In addition, some consumers may
avoid “smart” meter installation due to concerns regarding the breadth of information

it could be recording.
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There are two major cost breakouts for an IP-based “smart” meter [42]. The total
cost is approximately $566 per device where it includes capital of the IP-based energy
devices, as well as operation and maintenance. The “smart” meters would remain one
of the expensive solutions in large-scale deployment. Currently, the utilities financial
priority and governmental external funding opportunities are the constraints which
leads to slower growth in term of the number of IP-based meters deployed. The
cost does not include a complete upgrade of IP-based metering devices. Typically,
technology changes every 5-10 years with higher performance and more sophisticated

features that may improve the quality of consumption datasets.

Most mobile devices today are embedded with camera features, assisted GPS, and
biometric sensor readers for user authentication purposes [50]. Mobile computing
has significantly improved over the past few years where the tech-savvy consumers
may utilize their older generation of devices for this purpose. If consumers decide
to participate in a program on data collection, then it might help to increase the
number of metering points within a distribution system. This active participation may
increase the number of observable points in a shorter timeframe. As summarized in
Table 1, these privacy and security parts remain a concern but can be further enhanced
with biometric authentication. Many consumers upgrade their mobile devices on a
two-year cycle with their old devices available for repurposing. Use of repurposed
mobile devices means that the primary cost of the IE approach would be the mounting

hardware with an estimated expense of $140.
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3.2 Campus Metering Testbed

The phase-one AMI deployment was commissioned at Michigan Tech can provide
approximately half of the total campus power consumption and load information
in real-time at an installation cost of $60,000. A low-cost solution was desired to
capture the remaining campus load with similar bandwidth. Although the upgraded
infrastructure provides a high percentage coverage of system observability today, it
may not in the future due to shifts in energy consumption as building usage changes.

Thus, a flexible method for acquiring load information is desirable.

Within the campus Intranet, subnets of different buildings are connected and are
routed through the campus-wide communication backbone network to other internal
networks for real-time information sharing. This demonstration project is to increase
a greater number of metering points for the lower priority buildings by deploying
mobile devices that pictorially acquire energy information from existing electrome-

chanical analog meters, instead of dedicated IP-based meters.
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3.2.1 Design of Timer Camera

The design concept of real-time data extraction from the typical mechanical meter is
to apply the live data transmission technology in cloud storage [51], which requires
information upload to the private cloud space through campus Intranet and complete
synchronization with the computer side. The pivotal component is the smart mobile
device with a self-designed application to achieve time-lapse photograph and cloud

sharing.

The achievement of the timer camera algorithm in programming language is not
complicated. The first step is to call the command for the camera in the device. Of
course, the accessary flashlight is also necessary especially in the dark environment.
Then, we need to add a countdown timer before the camera calling command. The
periodic timer can be set to capture pictures of the dial plate on electromechanical
meter once every 900 seconds which is 15 minutes. Furthermore, we have to append a
reset command at the end of the countdown timer to realize the automatic periodical
pictures being captured. Taken photos will be directly saved in the photo albums and

make sure the cloud photo sharing function is turned on.

The terminal console shows a series of photos taken from the mobile devices that show

the time stamps when those were taken that can be approximated with reasonable
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energy consumptions over certain period of time. The flowchart for the timer to take

photo snapshots is shown in Figure 3.2.

i Start. ;

Y

Call camera and

flashlight.

Y

Set countdown
timer.

A 4

Set reset function.

A 4

Save photos mn cloud
space.

v

Open cloud stream
synchronization
function.

Observation
and
analvsis,

Figure 3.2: Flowchart of Timer Camera Design Algorithm.

3.2.2 Operational Mode of Mobile Devices

The mobile device with timer camera application should be placed in front of the dial

plate with a stand support. The location selected should be under Wi-Fi coverage
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to ensure the continuity of data transmission. A better way to improve the quality
of transmission is to make sure there is sufficient data traffic for each device, which
means turning off other functions or applications in the mobile device during the image
acquiring procedure. In addition, the test place should have power outlets to provide
continuous power supply. The cloud-sync photo will appear at the data monitoring
terminal immediately [52] and ready for image extraction. The operating process
of mobile devices transfer pictorial data through wireless networks demonstrated in
Figure 3.3. This process is to gather close-to-real-time power observation to model

the loads for the remainder of unmetered buildings.

Mobile Terminal B _Dlm‘"_ Lt Load
Device Computer ‘;;r‘:;l:‘m Modeling &
odie Analysis

Figure 3.3: Image Snapshots to the Cloud with Key Processing Elements.

Figure. 3.4 depicts the overall framework of real-time data acquiring procedure which
includes mobile devices transfer pictorial data between wireless networks and the basic
architecture of the AX supervisor. The proposed framework transfers the image data
to a centralized database. Within the existing system, the [P-based meter data are
monitored with a web supervisor and browser through specific virtual private network
access and then saved to the campus data server. The proposed framework uses two-
way communication which means a one-side transmission delay would cause delay of

image transfer to the cloud. Reliability can be increased if there exists a Long-Term
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Evolution (LTE) network in addition to the Wi-Fi connection. This assumes the
repurposed devices are LTE enabled. Both reliability and latency can be negatively
impacted if there is poor wireless reception, which often increases with the distance
between the mobile device and the hotspot. Additional communication latencies are
introduced (i) between the device and the cloud, and (ii) between the cloud and
the data center of the server performing the data extraction. In our experiments,
the total latency was always less than one minute. As described later, test results
showed a maximum delay of one minute. The main threat of IE approach is that the

availability of wireless connections could sometimes be abruptly disconnected.
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3.2.3 Pictorial Data from Electromechanical Meters

Unlike IP-based “smart” meters, the electromechanical analog meters do not estab-
lish network connection and require periodic manual reading. The typical analog
meter has four pointers with different orders of magnitude to show scaled energy

consumption.

The overall approach for real-time data extraction from the typical mechanical meters
is to apply live image transmission technology with the information uploaded to a
private cloud storage [51] through the campus Intranet with synchronization achieved
at the terminal computer. The operational approach is to have a mobile device with

a timer camera application acquiring images every ¢ minutes.

The automatic upload function in the mobile device uploads the photo stream to
the private cloud through the Internet and then the photo appears at the monitor-
ing terminal computer immediately for image processing and the consumption data

extracting process [52].

Data samples of the [P-instrumented buildings were used to find a suitable value of c;
trading off frequency resolution, and phase lag with the size of datasets. Figure. 3.5 is
an example that illustrates the average values of time-activity curves of sample data

acquired from an [P-based meter with three different time durations. According to the
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purposed simulated visualization, we can estimate future power consumption during
the same time period to realize efficient power control and supply. The estimated
power in kW is determined based on a first-order finite difference of the two image

snapshots.

Emec(t) - Emec(t - 1)

c

Pest — (31)

According to the equation 3.1, E,..(t) and E,,..(t — 1) are the latest image snapshots

of the electromechanical analog meter If we restrict the interval to be every 10 minutes,

1

¢ using an hourly base.

then ¢ =

140 T T T T
Sample Data

per 15min average consumption
per 30min average consumption
per lhour average consumption

120

100

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time(Hour)

Figure 3.5: Proposed Simulation of Energy Consumption Using Sample
Data.
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3.3 Data Extraction from Snapshot Images

The real-time data acquired from existing electromechanical analog meters is imple-
mented to improve the observability of campus distribution grid without deploying
expensive [P-based wired meters. These mobile devices which are connected through
Wi-Fi to the cloud will provide real-time snapshots of operating states together with
the other 11 buildings containing IP-based meters. This reveals energy data variation
within a specific time period. Within a limited time duration, the curve illustrates
that the demanded quantity of energy consumption can be utilized to forecast or
adjust the system consumption as part of the studies. The trending information from
these devices is compared in order to generate common time-activity curves across

all metered buildings.

3.3.1 Data Extraction for Electromechanical Analog Meters

3.3.1.1 Image Segmentationn

The serviceable portions in the original image of the traditional mechanical meter
shown in Figure 3.6 (a) are the four dial plates. For the consideration of processing

time and identification effect, the idea here is to discard useless sections and keep
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the indispensable rectangle illustrated in Figure 3.6 (b) that contains all four dial
plates, based on the notion of image matrix segmentation. The automatic pointer
reading algorithm aims at an individual dial plate, which we need to separate the
extracted rectangle shown in Figure 3.6 (b) which then needs to be divided into four
squares that dial plates embedded as shown in Figure 3.6 (¢). Due to the fact that
the original shape of a recognized target is a standard circle, we can set the center of
each square as the circle’s center and half of the side of each square as the radius to
the corresponding circle. As a result, the four inscribed circles shown in Figure 3.6

(d) are the object that we will perform further analysis upon.

Figure 3.6: Image Segmentation in 4 Steps from (a) to (d).
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3.3.1.2 Digital Image Preprocessing

The change in light conditions can lead to color and contrast variance in the hand of
the dial. In order to avoid the identification error generated from this situation, the
first step is to produce parallel grayscale images from segmented targets. Discerning
grayscale images directly is often accompanied by random noise as well as diverse
shade degree in the reorganization zone of images. Here, we utilize grayscale image
binarization to acquire analyzable outcomes with little identification error. It should
be noted that the threshold value of binarization should be 0.6, which is larger than

the default value 0.5 to magnify the contrast ratio of white objects.

In addition, to improve resolution in the binary image, we apply specific mathematical
morphological operations to simplify the image initial data structure without changing
the basic configuration. These optimized operations are mainly based on dilating and
corroding [53]. The dilating operation expands and enhances the edge of the object
to dislodge or cover blank spots around object edges while the corroding operation
eliminates external pixels of object to reject “burrs” in edges. Dilating and corroding

smoothes the surface of objects.

Removing the H-connected element in the object applies the concept of dilating [53].
The edges of two objects in an image are connected by splashes during the process of

binarization. A scattered point connecting two edges is considered as an H-connection.
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To separate these two independent objects and generate the image, we need to remove
all unnecessary pixels. The operation of this procedure can be shown using an example

binary matrix:

1 1 1 1
0 1 0 0
(3.2)
0 1 0 0
1 1 1 1
which then becomes
1 1 1 1
0O 0 0 0
(3.3)
0O 0 0 0
1 1 1 1

Two rows of sequential pixels are connected by two splashes to construct an H-
connection in matrix 3.2. After the removing process, the H-connection is broken

and the two scattered points are eliminated in matrix 3.3.

The spur pixel is the redundant point or small branch that connects with the smooth
edges of a object that can be considered as a fraction of the rough edges of a neat
object. The process of deleting spur pixels is similar as corroding [53] that removes

end points of lines without removing small objects completely. The implementation
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procedure can also be described with a simple binary matrix example:

0O 0 0 0
1 1 1 O
(3.4)
1 1 0 0
1 1 0 O
which then becomes
0 0 0 O
1 1 0 0
(3.5)
1 1 0 0
1 1 0 0

As shown in matrix 3.4, there is a spur pixel in the third column. In order to obtain
the objective result, disposing should eliminate the redundant point to transfer the

original matrix to matrix 3.5.

The inverted image is shown in Figure 3.7 and is ready for pointer extracting.

Figure 3.7: Exported Images After Segmentation and Preprocessing.
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3.3.1.3 Pointer Extraction Algorithm

Estimate - —
: Save information
geographic ;
. : < into customer
information of —
: A database. Verify if
mobile device. / . : Bad
- / information FNO
~ data.
™ matches.
Enable .
cotagein Read geotagging
geotagging information from
feature on :
; . each picture.
L mobile device. ) J

Pre-Verification of In_l_portin_g Images

Corm

: [ Exactdial )| (Segregate) [
Circular | . L .. .
; . [plate enclosingf—{ useless k—position of dial
{interception. J i : '
- - / {_ squares. ) { sections. ) plates. _
Image S n |
- G Tl o Morphological Color
Grayscale. Binarization. = PR 08 ;
operations. conversion.

Check Matrix Confirm
coincident border center of
points. interception. circle.

NO;
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Obtain angle following .
trigonometric function. catresponding value
table to get data.

Figure 3.8: Flowchart of Matrix Border Grayscale Detection Algorithm.

Figure 3.8 demonstrates the flowchart of the overview process of image data that is
extracted from pointer analog meters. The image data is transferred between mobile
devices and the cloud. This is presumed to be sent from consumers to the cloud,

and then the data transfer between cloud and customer billing center. The flowchart
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includes security verification, which includes following steps:

1. Estimated latitude and longitude position of the mobile device based on Wi-Fi

or assisted GPS information.

2. Each photo taken has the geotagging information that consists of latitude and

longitude. The geotagging feature has to be enabled on the mobile device.

3. Images are transferred to the database of customer billing center. Before the
data extraction begins, the geotagging information is verified together with the

username and address of the customer’s database.

4. If they matched, then the data extraction algorithm starts processing. If some
images violate the criteria that is expected, then those will be disregarded and

the data points will be indicated as bad ones and the result not to be considered.

An AMI system is expected to last between 15 and 20 years, while the life cycle of
proposed IE approach could vary significantly based on the device used. Similarly,
the IE cost is also highly variable depending on the availability of repurposed devices.
The time interval setting of transmitting the image datasets was set to be every
10 to 15 minutes. The Internet today has the bandwidth sending pictures through
Wi-Fi. Furthermore, the geotagging features from assisted GPS devices only shows
the location of the device rather than the position of the customer (since this is a

repurposed unit). These pictorial datasets do not include the name of the customer
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or their billing information.

Digital images stored on computer memory in bitmap format use a rectangular lattice.
In the dot matrix, each point is a pixel. Generally speaking, values of gray pixels
are divided into 256 scales: from the black color as 0 to the white color as 255 [54].
A colorful picture with the size of m x n is equivalent to m x n pixels with diverse
gray values, but a binary image only contains black and white pixels. Our pointer
extraction algorithm is based on the characteristics of the binary image matrix and
is designed to intercept a square border within an image as illustrated in Figure 3.9.
The angle © is found by superimposing a square onto the extracted image as shown
in Figure 3.9. The first and last intersections of the square with the boundaries of the
pointer pixels are used to find the pointer’s midpoint, also indicated on Figure 3.9.
Finally, the pointer’s angle is computed by the line segment connecting the circle

center to the pointer midpoint.

(Xmid, sz‘d)
First arrow Last arrow
intersection intersection
point. ¥ 1’ point.
(Xcemer,Ycemer)
Superimpossed
by the
algorithm.

Figure 3.9: Intercepted Square Box with a Dial Plate Arrow within an
Image.
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When traversing the square to find the pointer intersection points sometimes spurious
pixels are found that can give a false positive intersection. These are filtered out if
their surrounding pixels are inverted. Depending on the midpoint and the center of a
circle, the offset angle, 0, is calculated based on the pointer position in each quadrant
using the appropriate quadrant dependent version of Equation 3.6, where X,,;4, Yinid
and X enter, Yeenter present the coordinate of the midpoint and center of the circle,

respectively.

The goal of the pointer extraction algorithm is to find the value, d, indicated by the
pointer. This is accomplished by first finding the angle the pointer makes with the
dial plate, ©, and then using Equation. 3.7. For the fastest moving dial (most right)
the resolution of the algorithm is 3.6°, which indicates n is equal to 2. For the first
three dial plates, the accuracy is in integer bits and the n should be equal to 1. Under
certain circumstances, the adjacent pointers on electromechanical analog meters may

have an inverse numerical plate, i.e., clockwise and counter-clockwise, in (3.7).

o 0, quadrant 1
tanfl <‘szd Xcenter|) + 9 , 0 — ’
|Ymid—YcenteT“ 0 0 7]'7 quadrant 3

@:

3
1 { |Yimia—Yeenter| 0 0 — 5, quadrant 2
tan ‘X 'd_X nt 'r| + 05 0 — T
e e Z, quadrant 4
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trunc(©/(27/10™)), clockwise
d= (3.7)

9 — trunc(©/(27/10")),  anticlockwise

3.3.2 Data Extraction for Energy Meters with Digital Unit

Display

In this section, we present the procedure how to extract the digital display from
the panel which also includes the image processing and image segmentation. The

algorithm will also be described in this section.

3.3.2.1 Digital Images Processing

Digital image processing is introduced here to systematically convert the pictorial
information into a binary number with two major steps, i.e., (1) conversion from
color picture to grayscale, and (2) binarization. As mentioned, the binarization is a
process to convert the original image into binary with more than 200 values indicating
near white color and zeros for black color. For the purpose of contracting the image
with black and white color, the threshold value has been set to 0.5 as its default
instead of 0.6. The threshold value with 0.6 was originally used for the pointer of the

analog images.
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3.3.2.2 Image Segmentation

Figure 3.10 (a) shows the image of automatic display number analog meter. After
grayscale processing, we could acquire Figure 3.10 (b). For the consideration of pro-
cessing area, a rectangle portion of the image is cropped, which is shown in Figure 3.10
(c). Then, the inverting corresponding binary version processing area is illustrated in
Figure 3.10 (d). The top number on the dial plate represents the energy consumption
data, which is the only data we are concerned with. Dividing this number string into
four independent numbers within four rectangles with the same height and width.

Figure 3.10 (e) shows the four objects will be further analyzed.

3.3.2.3 Comparison Algorithm for Pixel Differences

Same as the matrix border grayscale detection algorithm, the pixel differences com-
parison algorithm is also based on pixel analysis. The idea of his algorithm is relative
to the former one and the binary analyzable object only contains black and white

pixels.

First, we collect a numerical range for each object, which means we capture all num-
bers from 0 to 9 for all the four positions. Then, we save them as four independent

number libraries after acquiring the four inverting binary objects. After that, we
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Figure 3.10: Digital Images Preprocessing and Image Segmentation in 5
Steps: (a) Original Image. (b) Grayscale Image. (c) Binarization Outcome.
(d) Counter-color Outcome. (e) Analyzable Objects.

compare the pixels differences of the new pending images in each position with the
saved number libraries. The four numbers shown on each position with minimum
pixel differences are the final results we prefer to obtain. Figure 3.11 demonstrates

the overview flowchart of the pixel differences comparison algorithm.
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Chapter 4

CASE STUDY

The image extraction (IE) approach was validated on a test case using the existing
electromechanical meters in a building connected to part of the Michigan Tech dis-

tribution system. The evaluation of time-activity curves is discussed in this section.

4.1 Decision to Select an Unmetered Building

In order to prove the proposed method can be simulated and validated using the
existing analog meters in remaining buildings, we should confirm at least three con-
ditions: what type of meters are in the objective building, does Wi-Fi cover this area,

and is there a power outlet to provide continuous power for simulation device. We
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process a statistical survey for remaining buildings and complete the two forms shown

in Figures 4.1 and 4.2.

NUM Name Type 1| Type 2| Type 3] Type 4

| Administration

4 ROTC Building

2 Academic Ofﬁcq-as

6 ANNEX Building

10 Rozsa Center

11 Walker Arts and Humanities Center
14 Grover C.Dillman Hall

15 Fisher Hall

20 Mechanical Eng. & Eng. Mechanics
28 Rekhi Hall

32 Daniel Heights

34 Memorial Union Building

41 Central Heating Plant

43 Ground Maintenance

48 Hillside Hall

81 Power Generation Building

95 Advanced Technology Center
96 Portage Health Center

100 Great Lakes Lab
Ut SDC Parking Lot
U#l SDC Lights

U#2 Football Stadium

U#2 Sharon Ave.

Figure 4.1: Four Types of the Remaining Unmetered Buildings.

The statistical tables demonstrate most of the remaining buildings equipped with type
one electromechanical meters. There are only three type two meters even though six
buildings use this type of meter because some buildings share one meter to measure
the amount of electricity consumption. We mentioned the automatic reading algo-

rithm of the type three meter, but there are only two type three meters on campus.
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NUM Name Comment Wifi | Outlet
1 Administration In box, hard to read NO | NO
4 ROTC Building Combine with Building 5 YES|] YES
5 Academic Offices Combine with Building 4 YES] YES
6 ANNEX Building YES| YES
10 Rozsa Center Combine with Building 11 NO | YES
11 Walker Arts and Humanities Center Combine with Building 10 NO | YES
14 Grover C.Dillman Hall NO | NO
15 Fisher Hall NO | YES
20 Mechanical Eng. & Eng. Mechanics One 208/Two 480 YES] YES
28 Rekhi Hall Not clear/Push buttons YES| YES
32 Daniel Heights Outside/3 or 4 show in one meter NO | NO
34 Memorial Union Building NO | NO
41 Central Heating Plant Two types meters YES| YES
43 Ground Maintenance Combine with Building 41 YES| YES
48 Hillside Hall YES| YES
81 Power Generation Building Combine with Building 41 YES| YES
95 Advanced Technology Center Show one value without push buttons | NO | NO
96 Portage Health Center Outside NO | NO

100 Great Lakes Lab NO | YES
U#2 Football Stadium Outside NO | NO
U#1 SDC Parking Lot Outside/Combine with building 96 NO | NO
U#2 Sharon Ave. Outside/Combine with building 96 NO | NO
U#1 SDC Lights Outside NO | NO

Figure 4.2: Wi-Fi and Outlet Availability for Unmetered Buildings.

Building 95 has type three meter (not telemetered) but it is not electrically connected
to the campus distribution grid. The other type three meter is installed in the Hill-
side Hall (building 48) that has the local archive, which is also not telemetered to the
central heating plant (CHP) database. However, this building has already achieved
real-time data monitoring even though its data can only be shown on the local archive.
To consider as part of the selection, the buildings that do not meet those two crite-

ria are not studied. The proposed extraction algorithm on electromechanical analog

meters with pointers can be used for the case study here.
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4.2 Test Case Setup

As shown in Chapter 2, Figure 2.1 shows the geographical map of the campus distri-
bution network with numbered buildings. The purposed IE system was tested in the
unmetered building 20, which is the Mechanical Engineering and Engineering Me-
chanics building (MEEM). This building was selected because of its relatively high
consumption relative to the other unmetered buildings and based on the additional
criteria considered for the study are to ensure that the location is equipped with
outlets and Wi-Fi availability. Building 20 had all of them. As the 120V supply
near a meter is pretty rare, a power cord is necessary to connect the wall outlet with
the device charger. In addition, the implementation of the proposed framework was
secured in the electrical room of building 20 and thus weather protection of the device

was not considered.

Two different types of electromechanical analog meters were present in MEEM electri-
cal room: 208-V and 480-V. The 208-V meter monitors low power-driven equipment
such as lighting and electronic locks while the 480-V meter detects high-power ma-
chinery loads. The case study was based on both meters, and the datasets obtained

from meter readings were recorded for nine days.

Two IE systems were deployed with the timer-camera application placed in front of
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the dial plates as shown in Figure 4.3. The captured images were automatically and
wirelessly uploaded to the server every 15 minutes and were also displayed on an

attached computer. The umbilical shown in the figure was for power only.

<

Figure 4.3: Actual Timer Camera Device in Operational Mode.

It should be noted here that the stored name format of the electromechanical meter
photo in cloud storage is the title “IMG” with a serial number, e.g. IMG_1110. There
are two methods to import a series of photos captured during a time duration into
the image data extracting program. The first is to utilize photo renamed software
like “Photo Cap” to rename each one as a digital form. An alternative process is
to utilize the programming functions to convert unidentified names into characters

strings, i.e., “strcat” command in Matlab or C language.
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4.3 Study Results

Converted meter readings were saved in an text file for subsequent analysis. The
change in power usage, extracted from the 15-minute sampled images and averaged
to hour increments, is shown in Figures 4.4 and 4.5 for both the 208-V and 480-V
circuits. The curve of the actual data from the 208-V circuit is similar to a bar chart
rather than the typical line chart because the energy consumption variability of the

low power devices was small between 15-minute updates.

From equation 3.1, the energy information (in kWh) on those analog meters can be
translated into average power (in kW). As the rotation of the electromechanical blade
can be slow (scale of 800), considering the time-activity curves of average consumption
with 15-minute, 30-minute, and an-hour timescale can help to estimate and predict
energy consumption over a longer period of time. The initial outcome of the datasets
is shown in Figures 4.6 and 4.7 which demonstrate the power estimates averaged
at three different time intervals. This illustrates the ability of the IE approach to

produce the trends of energy usage over time.

Table 4.1 illustrates the error rate analysis between the IE approach and manual
reading. Four time intervals for 1 day, 2 days, 5 days, and 7 days are shown

and corresponds to the range of dates 3/22/2014-3/23/2014, 3/22/2014-3/24 /2014,
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Figure 4.4: FEnergy Consumption of Building-20 208-V Circuit Between
March 22, 2014 and March 30, 2014.
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Figure 4.5: Energy Consumption of Building-20 480-V Circuit Between
March 22, 2014 and March 29, 2014.

3/22/2014-3/27/2014, and 3/22/2014-3/29/2014. Since the manual reading time
stamp was 6:00 pm (+/- 5 minutes), the nearest IE time stamp of 6:06 pm was cho-

sen. The error between the IE approach and manual reading was always less than

0.5%.
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Figure 4.7: Average Consumption for Building-20 480-V Circuit.

Table 4.1
Error rate analysis

Image
Nuber tgken appIr]iach ngﬁz conéifr?ﬁtlion forror
of days | time | % v | imestamp | (kwh) | T2 (%)
stamp
1 6:06pm | 3,440 6:00pm 3,431 0.26
2 6:06pm | 6,920 6:00pm 6,888 0.46
5 6:06pm | 17,240 6:00pm 17,189 0.30
7 6:06pm | 24,220 6:00pm 24,134 0.36
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In addition to using the IE approach for continuous monitoring, it can also be used
for determining which buildings should be targeted for more sophisticated instru-
mentation deployment. Fig. 4.8 compares the [E-based penetration on the total
campus consumption with respect to the ten buildings smart meters and the rest of

the unmetered buildings. Time intervals of 6 h, 12 h, 1 d, 2d, 5 d, and 7 d are shown.

Building 20’s consumption (labeled “Proposed Method” in the figure) is approxi-
mately 3.5% of the total (35 buildings) throughout the 6 time intervals from March
22, 2014 to April 1, 2014. In March 2014, the monthly consumption percentage of
building 20 is with the average values of 3.51%. This consistently indicates the es-
timation of energy consumption from the unmonitored building via the IE system
is reasonable. The energy consumption of building 20 is apparently higher than the
average consumption of each of the 25 unmetered buildings (labeled as “Analog Me-

ters”), which are the campus insignificant loads.

The statistics of the AMI are the accumulation values that sum up all 10 buildings
with smart meters. About one-fourth of the total consumptions, which is the remain-
der of the 25 buildings, does not have smart meters nor implemented with the IE
approach. Through the observation of those 6 piecharts, the proportion of energy
usage on those 10-building smart meters is estimated to be about 70 percent of total

campus consumption, which is considered the heavy loads of campus.
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Chapter 5

CONCLUSION AND FUTURE

WORK

Along with the evolution of information communication technology, the labor-
intensive meter reading has been replaced gradually by the IP-based metering in-
frastructure, which was introduced in recent years. An AMI is the second generation
of AMR system that has the demand response capability with control variables. This
[P-based metering devices constantly transmit the measurement values to the cus-
tomer billing centers. While this can improve the system reliability and power quality,
the large expansion of devices requires a cost justification to meet complete 100% de-
ployment which could take decades to meet the target. This transition from the

current practise to the IP-based communication infrastructure may remain at slower
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pace without governmental assistance. This setup can be costly in terms of mainte-
nance as well as security aspects that can be subject to tampered by the malicious
consumers. The drawbacks require multiple milestones of deployment by utilities
who would be able to incentivize consumers and how to engage them into this data
exchange with their repurposed mobile devices. This thesis has summarized the pros

and cons of the costly deployment of AMI and suggested an economical alternative.

With the use of campus-wide metering testbed and the generous supports by the
team from facilities management, it is believed that this work would largely impact
the progress of technological exploration with alternatives that would be cost effective
and sustainable. The current structure of AMI deployment is still in a fledging pe-
riod although the initial deployment was commissioned on 10 campus buildings since
January 2012. The accomplished infrastructure provides high percentage coverage of
system observability, and the energy usage for those buildings fluctuate over time.
The current AMI deployment has the coverage of up to 65 percent energy usages

during the peak time.

Besides the IP-based “smart” meter deployment, there are 3 frequency disturbance
recorders (FDR) have set up at each feeder for future research. This is a single-
phase phasor measurement unit (PMU) that would be used to determine the system
dynamics and stability for the study. Although this is not the main theme of this

thesis, these advanced sensor units would enhance the observability of the campus
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load monitoring.

The proposed method is designed to automatically extract data from images of elec-
tromechanical analog meters without real-time data observation ability. The proposed
framework requires a wireless network environment and continuous power supply in
the location of existing electromechanical meters, as well as Internet availability for
real-time transmission to the cloud. The algorithm includes image segmentation, dig-
ital image processing, and matrix border grayscale detection analysis. The analysis
in this algorithm is based on the four sub-dials rather than the whole plate surface.
The algorithm will keep working when the sub-dials retain circle shapes without con-
sidering the shape, size, diameter, or configuration of the whole plate. The primary
step in this algorithm is to binarize the original picture from colors to black and
white only. The real-time data acquired from existing electromechanical meters will
be fully implemented to improve the observability of the campus distribution grid
without deploying expensive IP-based wired meters. These mobile devices which are
connected through Wi-Fi to the cloud will provide real-time snapshots of operating
states together with the other 10 on campus buildings that have IP-Based meters.
The trending information from these devices will be compared in order to generate
the common time-activity curves across all metered buildings. This may reveal en-
ergy data variation within a specific time period. Within a limited time-frame, the
curve illustrates that the demanded quantity of energy consumption can be utilized

to forecast or to adjust the system consumption as part of the study.
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The simulation results show that the proposed method provides periodically extracted
data to generate time-activity curves with other IP-based metering devices. The
proposed application has been tested on one of the unmetered buildings which has
reasonably large consumptions among those. Considering the situation that the mo-
bile device could make an slight involuntary movement because of the gravity or
vibration, additional circle recognition algorithms should be considered to compen-
sate for camera position shift. Considerations to enumerate other types of analogy
meters would include in the studies and adaptation of existing modules in meeting
a manufacturer-specific requirement of their analog devices would be necessary. Al-
though this approach is in the experimental stage, it offers an alternative to improve

observability of the distribution network.

It is noted that there is still some future work that needs to be considered. There
are a few significant error results generated by the data acquiring algorithm of the
pointer analog meter. Setting a return value or false alarm if the current generated
result is much larger or smaller than the previous value will decrease the number
of significant errors, whereas the accuracy rating of these arranged images will be
influenced slightly. In addition, we will try to correct the precision to 0.01, which

means the reading accuracy will be percentile.

For the timer camera application algorithm, enhancement can be made to reconnect

the server while experiencing sudden Wi-Fi network disconnection. Furthermore,
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additional mobile devices would be deployed more in the future to study the load
patterns of the campus that will be applied to other unmetered buildings. As image
quantity may vary and in order to distinguish them, a threshold setting with differ-
ent criteria can guarantee the accuracies of location tags and time-stamps for each
taken photo image. For unmetered buildings with low receiption of Wi-Fi availability,
possible exploration of technologies, such as getting a cellular 4G Long-Term Evo-
lution (LTE) device may be an option. For the completeness of putting the mobile
devices for the rest of buildings, algorithms to extract different meter types will be

investigated.
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Appendix A

STATISTICAL RESULTS

Power and Energy Measurement Datasets for the

Ten Metered Buildings

This section provides the historical statistics of the metering information of power

and energy measurements from campus AMI system.

1. Figure A.1 shows results of the Building 19, which is the Chemical Sciences
and Engineering building. The top figure illustrates the time-activity curves
of the energy values in this building. The energy consuming is a cummulative

procedure, which means, after a time duration, the newly presented value must
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be equal to the original value plus the energy consumption of this time interval.
This is the reason that the energy values are incremental. According to the
time-activity curve of energy values, we observed there are two circuits in the
Chemical Sciences and Engineering building, which are 208-V and 480-V, sepa-
rately. The circuit with 208-V is primarily responsible for consumption limited
electrical appliances, e.g., light and power outlets, while the circuit with 480-V
is in charge of large electric facilities such as air conditioning and laboratory
equipment. The green line demonstrates the total consumption of this building,
which is the sum of two circuits. It should be mentioned that the black bars in

the figures represent different quarters of a year.

Unlike energy values, power values illustrate the specific amounts of power us-
ages for different time durations. The visualization result of the power value is
fluctuant because the electricity consumption in different time-frames is unfixed.
In addition, in the measurements of energy and power, if a fault appeared, the
corresponding return value in a time-stamp with a fault occurred is 0. Then,
we observed that the energy values of Building 19 are completely correct, while
there are four or five faults that happened in power measurement during the

whole time period.

. Figure A.2 shows the results of Building 31, which is the Douglass Houghton Hall
(DHH). There is only one circuit in this building; we observed that the overall

trend is correct even though a couple of faults occurred. We can still consider
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the energy measurement function in this system is under normal operation.

About the power values, there are three significant reductions in the time-

activity curve. Checking the timelines for these three abnormal conditions, we

observed all of these three durations covers the time duration from the beginning

of May to the end of August, which is the summer vacation in Michigan Tech.

Furthermore, DHH is a student dormitory, where most of the students living

here will be back home during this time period. From this, the historical archive
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result of power values in this building could be interpreted.

(#31) Douglass Houghton Hall Energy Values
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(31) Douglass Houghton Hall (DHH).

Figure A.2

which is the

)

3. Figure A.3 shows the energy and power values of the Building 17

J. R. Van Pelt and Opie Library. Similar with DHH, there is only one circuit

in library. Also, there are few faults in energy values but they do not affect

the overall cummulative trend. Because the library should provide a 24 hour

supply

academic environment for students, there is an uninterrupted power

That is the reason that there are no obvious

under normal circumstances.

decreases during the whole time period.

4. Figure A.4 shows the data results of McNair Hall, which is a student residence

102



(#17) J. R. Van Pelt and Opie Library Energy Values

kwh

1073 PL/EL/6 WY 00:00:0T
103 PT/LT/8 WY 00008
103 VI/OT/8 WY 00:00:9
103 PTATI WY 0000
103 VL/LJE WY 0000 T

103 YT/ WY D000TT
L7 #T/2/9 Wid 00:000T

107 ¥I/6T/Y Nd 00:00:9
103 PT/TLY W4 00C00°F

103 ¥T/9T/E Wd D0:00:T

15 /2T WY 00000 T
153 EL/9T/TT Wd 00°00°TT

103 EL/ET/6 W 00°00° Y
103 ET/T/6 Wd 00:00:7
107 ET/5/8 WY D000 T
A0 EV/EL/L Wd 00°00°TT
10TET/T/E Wd 00:00°6

107 ET/T/9 Wd 00°00%L
107 E1/52/5 Wd 00:00°5
103 ET/TL/S Wid 00:000E
1003 ET/AYTly Wd D000CT
103 ET/L/¥ WY 00-DOCTT

107 £1/TL/E WY 00006

153 ET/v/E WY 00009

153 ET/ZL/T WY 00002 T

153 Wd 002000 ZT-000-5T
153 Wd D0-D0B Z1-230-80

103 Wd 00:00-T ZT-P0-T0

LT WY 0000 TT ZT-0954 T

103 WY O0CODCE ZT-I0-80

103 WY O0R0SE CT-Unf-6T

107 W4 00°05'6 ZT-My-87
107 Wid 00:05:£ ET-xw-TT

(#17) J. R. Van Pelt and Opie Library Power Values

103 vT/0T/6 Wd 00:0¥' L
103 ¥1/22/8 WY DOFE
103 F1/2/8 WY 00:0%TT
103 PT/ET/L Pid 001082
103 ¥I/FE/9 WY DO00KE
103 ¥1/p/9 Wy 000K TT
103 vT/ST/S 1d 00'0%:L
103 vT/9Tfr WY 00 Ob'E
103 ¥1/9/¥ WY 00:0KTT
103 PT/LT/E d 00-0F:L
153 FT/9Z/T WY 00:08°2
153 ¥1/9/T WY 0000T
153 ¥T/LT/T WNd O Ov-a
153 E1/62/2T WY D00K:Z
153 ET/6/2T WY 00001
ISTET/ET/TT 1N 0009
107 ET/TE/0T WY 00'0%'€
103 £1/T1/0T WY 000 TT
103 £1/T2/6 d 00:0%:L
103 E1/2/6 WY 00DV
103 ET/Z/8 WY 00:00T
103 E1/ET/E WY 0006
103 £1/EL/9 Wd 00:00°S
103 €1//9 WY 00:00:T
103 £1/6T/5 WY D006
103 £1/S2fr Wd 00:00°'S
103 €1/9/% WY 00:00°T
103 £1/LT/E WY 00006
153 €T/5T/T Wd 0000
153 €1/9/Z WY 00:002T
153 ET/LT/TNY 00:00:8
1S3 TT/ET/TT Wd 00:00'1
153 Z1/6/TT WY 00:00°TT
153 Z1/GT/TT WY 00008
103 TT/0E/0T Wd DOCOKS
103 TUTT/0T WY 00:00°T
103 T1/TZ/6 WY 00006
103 TH/T/6 W4 00:00°5
103 THET/B WY 006001
103 TUPT/L WY 00006
103 T1/0/2 W 00:00'S
103 TUET/I WY 000K F
103 TUYZ/S Wd 00K ET
103 T/w/S 1 00:0'8
103 ZU/ST /v WY 000pE
103 T1/92/€ Wd 00:0¥:TT
1SITT/9fE Wd DOOV:L
1S3 TL/IT/T WY 00:08°E
153 EL/LL/T v 000K TT

(17) J. R. Van Pelt and Opie Library.

Figure A.3

hall. As shown in the results, there are two circuits in this building, which are

responsible for controlling and monitoring the power supply of east and west

living quarters, separately. According to the energy result, we observed the

energy consumption of the west section of McNair Building is higher than the

east. In addition, the McNair west circuit has a perfect rise curve, while there

are some faults that existed in the rise of energy values in east McNair. Similar

there are three obvious decreases in the power

with the power results in DHH,

time-activity curves of McNair Hall. Both of the energy and power measuring

functions in McNair Hall could be considered as normal.
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5. Figure A.5 shows the results of Building 7, which is the Electrical Energy Re-

search Center (EERC). There are three circuits that can be seen in the data

results of EERC, which are named as SUB1, SUB2, and SUB3, separately. The

SUBLI circuit is responsible for the power supply of the main building and large

That is why it has more energy consumption than the

electrical appliances.

other two circuits. Comparing with previous results, we could affirm that, both

of the energy and power measurement functions in this building are running

correctly. There is one FDR unit in this building.
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6. Figure A.6 shows the results of Building 24, which is the Student Development

This building is the gymnasium at Michigan Tech. Because

(SDC).

the constant refrigeration and illumination in the ice arena need to consume

Complex

large amounts of electric power, there is a designated circuit to guarantee the

power supply. The circuit named TA is responsible for the main building,

which contains the basketball courts, fitness center, swimming pool, and the

other facilities. The TB circuit is in charge of the power consumption of outdoor
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venues, which contains the football field and parking lots. Also, both of the time-

activity curves of energy and power values are shown appropriately. Another

FDR device is installed in this building.
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Figure A.6

7. Figure A.7 shows the statistical results of Building 12, which is the Minerals

and Materials Engineering (M&M) building. Comparing with the data results

of the Chemical Science and Engineering building, we can infer that the energy

However, the time-activity curve of

values of these two circuits are normal.

power values is unusual as we can not observe the values of circuit 208-V from
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the end of June 2013 until now. Different than with the system fault response,

the fault that appears here can be inferred as disconnecting, because the data

storage interface of this building is blank rather than full of zeros.
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(12) Minerals and Materials Engineering (M&M).

Figure A.7

8. Figure A.8 shows the results of Building 8, which is the Dow Environmental Sci-

ence and Engineering building. Because numerous zeros existed in the historical

dataset of this building, which could be treated as the fault return values in the

data list, the values of the data fluctuated strongly during the past time period.

This is also the reason why the energy result seems like a bar chart rather than
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a rising curve. Regarding the power result, we found the time-activity curve is

similar to the result of M&M building, but the data results in the data sheet

The power values in this building from the beginning of

are quite different.

February 2013 until now are zeros. Both of the abnormal data results indicate
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Figure A.8

9. Figure A.9 shows the results of Building 18, which is the U. J. Noblet Forestry

and Wood Products building. Similar with the energy data result of the Dow

building, the energy cummulative curve in this building also seems like a bar
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chart and the results of the two circuits are covered by the total result. Ac-

cording to the energy data list, we observed the reason for this is the same as

the Dow building as to why many zeros existed. Comparing with the previous

results of power, we can infer that the power result here is under a normal

condition.
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(18) U. J. Noblet Forestry and Wood Products Building.

Figure A.9

10. Figure A.10 shows the data time-activity curves of the energy and power values

of Building 37. Building 37 is Wadsworth Hall, which is also a student resi-

dence hall. Comparing with the previous results of power values, we observed

the power result is in normal working state, even though the summer vacation
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decreases are not distinct enough. The energy result in Wadsworth Hall is in-

teresting. The overall time-activity curve consists of several small cummulative

According to the energy data list, the energy measurement function

curves.

in this building always restarts after an unfixed time duration. One reason for

this operation can be inferred that the growth rate of energy values is too fast
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Figure A.10: (37) Wadsworth Hall.
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