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1. Abstract 

Principal Component Analysis (PCA) is a popular method for dimension reduction 

that can be used in many fields including data compression, image processing, 

exploratory data analysis, etc. However, traditional PCA method has several 

drawbacks, since the traditional PCA method is not efficient for dealing with high 

dimensional data and cannot be effectively applied to compute accurate enough 

principal components when handling relatively large portion of missing data. In this 

report, we propose to use EM-PCA method for dimension reduction of power system 

measurement with missing data, and provide a comparative study of traditional PCA 

and EM-PCA methods. Our extensive experimental results show that EM-PCA 

method is more effective and more accurate for dimension reduction of power system 

measurement data than traditional PCA method when dealing with large portion of 

missing data set. 

 

2. Introduction 

The most important property of PCA is that it can achieve the optimal results in terms 

of mean squared error (MSE) via performing linear transformation of high 

dimensional vectors. As a result, a new set of much lower dimensional vectors can be 

obtained, while the original data set can be reconstructed approximately.  

 

The objective of this project is to reduce the cost in building response surface 

performance models for power system control and optimization. The dimension 

reduction techniques of parameter space have been applied by integrated circuit 

modeling researchers in the past decade, where PCA plays an important role [7]. It has 

been shown that high-dimensional circuit parameters will first be reduced by dimension 

reduction techniques, such as PCA method. Then the top few principal components 

(linear combinations of the original parameter set) will be used for building the 

quadratic (second order) response surface models for circuit performances. In [7], 
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researchers are working on dimension reduction methods for integrated circuit 

applications, whereas in our project dimension reduction for power distribution system 

modeling is concerned. However, traditional PCA method has several drawbacks. One 

of them is that the traditional PCA method is not suitable for dealing with high 

dimensional data, since computing the sample covariance required by PCA method 

can be very costly. Consequently, it is desirable to avoid computing sample 

covariance for high dimensional data set. Another drawback is that it is not obvious 

how to compute the principal components properly with missing data. 

 

To address these drawbacks of traditional PCA method, a variety of the alternative 

PCA-like dimension reduction methods have been proposed in many research fields. 

The goal of such research is to improve classical PCA method such that the 

computational efficiency can be improved and missing data in the high dimensional 

data set can be also handled.  

 

In the following sections, we will introduce alternative PCA-based dimension 

reduction methods and also demonstrate experimental results on realistic high 

dimensional power system measurement data set. 

 

3. Classic Principal Component Analysis 

We will start with a simple example for introducing traditional PCA method.  

Consider using a straight line to best represent scattered points in two-dimensions 

(with X1-X2 coordinates), which is shown in the following figure.  The key is to 

find a new coordinate (X1’), such that data variance observed along X1’ is maximized. 

Similarly, for m-dimensional data set with m orthogonal coordinates, it is usually very 

important to find a much fewer new coordinates such that the maximum variance of 

the original data set can be well preserved. The classical PCA method can be applied 

to solve the above problems by using Least Squared Error minimization method. 
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Figure 1. 

 

The general derivation of PCA is in terms of a standardized linear projection that 

maximizes the variance in the projected space [3]. For n observed m-dimensional 

vectors (n samples) 1 2[ ... ]T
nX x x x= , PCA can find the top-one principal component 

(axe) that maximize the data variance preserved from the original data set, which can 

be achieved by finding an m-dimension vector ( 0x ) such that   

                   2
0 0 0

1

( )
n

k
k

J x x x
=

= −∑                   (1) 

is the smallest, where 0 0( )J x  is Mean Squared Error criterion function. Let  

                       
1

1 n

k
k

m x
n =

= ∑                       (2) 

So we have: [4] 

2 2 2
0 0 0 0 0

1 1 1 1

( ) ( ) ( ) 2( ) ( )
n n n n

t
k k k

k k k k
J x x m x m x m x m x m x m

= = = =

= − − − = − − − − + −∑ ∑ ∑ ∑  

      2 2
0

1 1

n n

k
k k

x m x m
= =

= − + −∑ ∑                                 (3) 

where 2

1

n

k
k

x m
=

−∑ is independent of 0x . So if 0x m= , 0 0( )J x  will be the smallest.  

 

Suppose that we want to find a coordinate X1' and the goal is still to minimize the 

squared-error. Let every kx has a corresponding element '
kx in the X1'. If we move it 

in the vector e  direction, then [4] 
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                        '
k kx m a e= +                       (4) 

where ka is a scalar. Now we redefine the squared-error criterion function as follows: 

' 2 2
1 1

1 1

( ,..., , ) || ( ) || || (( ) ) ||
n n

n k k k k
k k

J a a e x x m a e x
= =

= − = + −∑ ∑ 2

1

|| ( ( )) ||
n

k k
k

a e x m
=

= − −∑  

            2 2 2

1 1 1

|| || 2 ( ) || ||
n n n

t
k k k k

k k k
a e a e x m x m

= = =

= − − + −∑ ∑ ∑              (5) 

where e  is unit vector and 2|| || 1e = , hence 

                  ' 2
1 1

1 1

( ,..., , ) 2 ( )
n n

t
n k k k

k k
J a a e a a e x m

= =

= − −∑ ∑             (6)   

Solving partial differential for ka , we can get  

                           ( )t
k ka e x m= −                         (7) 

It means if we have already known vector e , any vector kx  projected to the line X1’ 

can be computed by taking the inner product with te . Then we can obtain the new 

coordinate after linear transformation ( '
k kx a= ). Hence, we can rewrite 1( )J e , such 

that [4] 

2 2 2 2 2 2
1

1 1 1 1 1

( ) || || 2 || || [ ( )] || ||
n n n n n

t
k k k k k

k k k k k
J e a e a x m e x m x m

= = = = =

= − + − = − − + −∑ ∑ ∑ ∑ ∑  

     2 2

1 1 1

( )( ) || || || ||
n n n

t t t
k k k k

k k k
e x m x m e x m e S e x m

= = =

= − − − + − = − + −∑ ∑ ∑        (8)  

where 
1

( )( )
n

t t
k k

k
S e x m x m e

=

= − −∑ , is called a scatter matrix. Using method of 

Lagrange Multipliers, we will obtain vector e  so that te Se is maximized. Let  

                         ( 1)t tu e Se e eλ= − −                        (9) 

and obtain the partial differential for vector e , 

                                                    (10) 
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Let it equal 0, so 

                              Se eλ=                             (11) 

This is a classic problem that is related to eigendecomposition and the vector e  is 

exactly one of the eigenvectors. 

 

Suppose we need to reduce m-dimensional vectors to k-dimensional vectors, we will 

select the top k eigenvectors with their corresponding eigenvalues and project every 

ix   onto them, then we can get ' ' ' '
1 2[ ... ]i i i ikx x x x= , such that [4] 

                           ' ( )T
ij j ix e x m= −                           (12) 

where m is the data sample mean. 

 

Therefore, the classic PCA algorithm can reduce dimension successfully and make 

data analysis and system modeling easier. 

 

4. EM-PCA Algorithm  

In this section, we will introduce the expectation maximization (EM) algorithm for 

principal component analysis of data set [2][5][8]. The EM-PCA algorithm can handle 

high dimensional data more efficiently than traditional PCA method since it doesn't 

need to calculate the sample covariance matrix explicitly. 

4.1 Probabilistic Model of PCA 

Principal component analysis can be used as a limitation case of linear Gaussian 

models. Linear Gaussian model is to assume y  as a linear transformation of some 

k dimensional latent variable x plus additive Gaussian noise. Let G  be the m*k 

matrix, and v  is the m -dimensional error vector (with covariance matrix R), so the 

general model can be written as 

                            y Gx v= +                           (13) 

where ~ (0, )x N I , the error ~ (0, )v N R . So the y  is a corresponding 
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Gaussian-distribution vector for the observations 

                         ~ (0, )Ty N GG R+                        (14) 

We know the probabilistic model is the following according to [5]: 

                     /2 1( ) (2 ) exp( )
2

m Tp x x xπ −= −                    (15) 

For the case of error 2R Iσ= , the probability distribution over y  space for a given 

x  is 

                2 /2 2
2

1( | ) (2 ) exp( || || )
2

mp y x y Gxπσ
σ

−= − −             (16) 

So, the distribution of y  is [5] 

         
/2 1/2 11( ) ( | ) ( ) (2 ) | | exp[( ) ]

2
m Tp y p y x p x d x W y W yπ

− − −= = −∫      (17) 

where W  is a m m× matrix and 2 TW I GGσ= + . 

Using Bayes' rule, ( ) ( | )( | )
( )

p x p y xp x y
p y

= , the latent variables x given the observed 

y  can be calculated as follows: [5] 

    /2 2 1/2 1 2 11( | ) (2 ) | | exp[ ( ) ( )]
2

m T Tp x y M x M G m M x M G yπ σ σ− − − − − −= − − −   (18) 

where M is a k k× matrix and 1 2 1( )TM I G Gσ− −= + . 

Therefore, according to [5], the log  function of y is 

            1

1

ln[ ( )] [ ln(2 ) ln | | ( )]
2

N

n
n

NL p y m W tr W Sπ −

=

= = − + +∑          (19) 

where S is the sample covariance matrix of the observations { }ny , 
1

1 N
T

n n
n

S y y
N =

= ∑ . 

Estimates for G and 2σ  can be obtained by iterative maximization of L  using the 

EM algorithm. 

 

4.2 The EM-PCA Algorithm 
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We use the EM algorithm to obtain the parameter G  and 2σ in the probabilistic 

model. We will use the latent variables { }nx to be the missing data and consider the 

complete data for composing the observations together with these latent variables. 

The complete-data log-likelihood can be derived as follows [5]: 

                       
1

ln{ ( , )}
N

C n n
n

L p y x
=

= ∑                         (20) 

Using formula (15)、(16),we can obtain [5] 

        
2

2 /2 /2
2

|| || 1( , ) (2 ) exp( )(2 ) exp{ }
2 2

m k Tn n
n n n n

y Gxp y x x xπσ π
σ

− −−
= − −      (21) 

In the E-step, we take the expectation of CL with respect to the distribution 

2( | , , )n np x y G σ : [5] 

                                                                (22) 

where 1 T
n nx M G y−< >= ,   2 1T T

n n n nx x M x xσ −< >= + < >< > ,  2 TM I G Gσ= + . 

In the M-Step, CL< >  is maximized with respect to G  and 2σ giving the new 

parameter estimates [5] 

                 1( )( )T T
new n n n n

n n
G y x x x −= < > < >∑ ∑                  (23) 

       2 2

1

1 [|| || 2 ( )]
N

T T T T
new n n new n n n new new

n
y x G y tr x x G G

Nm
σ

=

= − < > + < >∑      (24) 

These equations are iterated in sequence until the algorithm is considered to have 

converged [5]. 

 

5. PCA with Missing Data 

In the above sections, we introduced a traditional PCA algorithm and described an 

existing EM algorithm for calculating principal components. In the next section, we 

will discuss PCA methods for data sets with missing points.  In general, the 
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real-world data is not always complete. If the number of missing data points is very 

small compared to the full data set, we can directly use the sample mean to substitute 

the missing data points. On the other hand, if the number of missing data points is 

relatively large, the following EM formulation of PCA is applied for handling missing 

values [6].  

5.1 EM-PCA with Missing Data 

We consider the same problem when the data matrix Y has missing values and 

suppose that values are missing randomly. For example, Y matrix can be written in the 

following form: 

Figure 2 

11 12 13

21 22 24 25

31 34 35

y y y
Y y y y y

y y y

∗ ∗ 
 = ∗ 

∗ ∗  

 

where every ∗  indicates the missing value. For such kind of data set where 

relatively large portion of data is missing, the EM-PCA with missing data can be used 

[6]. Now, our goal is to find the parameters G and σ that maximize the likelihood of 

observed data (vectors y is partially observed). We use EM algorithm that estimates 

in the E-step the missing values (the vector x  and the missing parts of the y  which 

is denoted by hy ). In the M-step, we fix these estimates, and maximize the expected 

joint log-likelihood of x  and y . 

 

We assume that the distribution over x and hy factors so that we get the lower-bound 

log-likelihood as follows [6]: 

       0
1log ( ) log | | [ ( ) ( )] [log ( ) log ( | )]
2 h qp y M q x q y E p x p y x= + + +       (25) 

We will maximize this equation with respect to the distribution of q in the E-step, 

and respect to the parameters in the M-step. 

E-step: From the above we find the optimal distributions q as [6] 
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             2( ) exp ( ) log( | ) ~ ( ; , )h h h hq y q x y x N y G x Iσ∝ ∫               (26) 

         2
0( ) ( | ) exp ( ) log( | ) ~ ( ; , )T

h hq x p x y q y y x N x MG y Mσ −∝ ∫         (27) 

where y  is the mean of ( )hq y  for the missing data, 0y for the observed part, and x is 

the mean of ( )q x . 

M-step: Based on equation (28), it follows as [6] 

2 2
2

1

1[log ( ) log ( | )] log ( || || ( ))
2 2

N
T

qn n n n n n
n n

NDE p x p y x y G x tr GMGσ
σ=

+ = − − − −∑ ∑  

                            2
22

h
old

D σ
σ

− 21 || || ( )
2 2n

n

Nx tr M− −∑          (28) 

where hD  is the number of missing data points, oldσ is the current value for σ that 

was used in the E-step to compute the q . 

Maximizing the equation (31) over G andσ , we can obtain [6] 

                      1( )T T
newG XY NM XX −= +                       (29) 

             2 21 [ ( ) || || ]T
n n h old

n
Ntr GMG y Gx D

Nm
σ σ= + − +∑              (30) 

where X ,Y  are the matrices that collect all x , y  as columns, separately. 

 

6. Experimental Results 

As mentioned at the beginning of this project report, our goal is to perform dimension 

reductions on the measured data set, and subsequently build distribution performance 

models that will be utilized by MTU's power distribution control center to predict 

future electricity usages in December such that resources can be optimized 

accordingly. The parameter dimension reduction methods demonstrated in this work 

are implemented in Matlab programming language, and will significantly reduce the 

performance model characterization cost, thereby allowing for real time processing of 

huge amount of data obtained by the-state-of-art smart meters. 
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We demonstrate the results obtained by traditional PCA and EM-PCA methods for 

analyzing power distribution data sets in EERC building of MTU during last 

December. Three smart meters have collected the data sets, and each of them records 

a measurement every ten minutes. It should be noted that the meter readings are just 

input parameters for building the response surface models that will predict 

activities happened inside a building, though the detailed model extraction procedures 

have not started yet. We use the meter reading of each hour as a variable, since the 

events during two consecutive hours are typically not strongly correlated. For instance, 

typical undergraduate courses will not last longer than 50 minutes. So we consider the 

sum of meter readings in every hour as a variable, so we have totally 24*3=72 

variables. Consequently, for 31 days in December, we have a data set with 

72*31=2232 measurements. We also want to emphasize that the meter readings are not 

always independent. Since some facilities in the EERC building are using more than 

one power supply sources, multiple meter readings will be changing if such facilities 

are started. For instance, air heater will be started with the fan for air circulation at the 

same time. If they are using two separate power sources, the readings of two meters will 

be simultaneously affected.   

Table 1:Example of the original data set 

Timestamp Trend Flags Status Value 
12:00:08 AM 12/1/12 EST 0 0 235.3 
12:10:00 AM 12/1/12 EST 0 0 245.3 
12:20:00 AM 12/1/12 EST 0 0 247 
12:30:08 AM 12/1/12 EST 0 0 234.3 
12:40:00 AM 12/1/12 EST 0 0 233.3 
12:50:00 AM 12/1/12 EST 0 0 235.4 
1:00:07 AM 12/1/12 EST 0 0 233.8 
1:10:00 AM 12/1/12 EST 0 0 237.2 
1:20:00 AM 12/1/12 EST 0 0 244.2 
1:30:07 AM 12/1/12 EST 0 0 230 
1:40:00 AM 12/1/12 EST 0 0 233.3 
1:50:00 AM 12/1/12 EST 0 0 233.5 
2:00:04 AM 12/1/12 EST 0 0 232.4 
2:10:00 AM 12/1/12 EST 0 0 245.5 
2:20:00 AM 12/1/12 EST 0 0 233 
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We also want to note that this is not a traditional time series problem, since the meter 

measurements of one time point (hour) is not likely to be influenced by the previous 

many time points (hours) measurements. The missing data points analyzed in our 

problem are typically due to the instability of smart meter devices manufactured by 

different vendors. Although the meters in the EERC building do not show obvious 

instabilities, the meters operating in extreme conditions (extremely high temperature 

environment, extreme humidity conditions, etc) can produce incorrect/missing results. 

Since this research project is targeting general power systems modeling that can 

involve smart meters operating under any environments, different missing data rates 

(10% to 50%) are considered. 

1.  Results obtained by using traditional PCA and EM-PCA with full data set have 

been demonstrated as follows. 

Figure 3.Singular values after performing traditional PCA with full data set 

 
 

Table 2. Top 7 Singular values 

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 10

6

Parameters

S
in

gu
la

r 
va

lu
es

  Singular value 

1 2016500 

2 158700 

3 49800 

4 22800 
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It is observed that keeping only top three principle components will be sufficient since 

they can already explain more than 99% variability of the original data set. 

 

Table 3. Top 3 Principle Component Mapping Vectors (PCMVs) 

PCMV1 PCMV2 PCMV3 

0.0234 -0.0134 -0.1333 

0.0246 -0.0048 -0.1157 

0.0137 0.0003 -0.1134 

0.0165 0.0115 -0.1459 

0.0152 0.0087 -0.1446 

0.0174 0.0242 -0.1391 

0.0217 0.0089 -0.1173 

0.0343 0.0283 -0.1108 

0.0731 0.0631 -0.0662 

0.0975 0.0747 -0.0277 

0.1057 0.08 -0.0299 

0.1133 0.0729 -0.0428 

0.1113 0.0114 -0.0258 

0.1118 0.0286 -0.0492 

0.1144 0.025 -0.1082 

0.1077 0.0212 -0.0465 

0.1003 -0.0287 -0.0753 

0.0693 -0.0432 -0.0884 

5 19700 

6 8300 

7 6000 
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0.0589 -0.0643 -0.088 

0.0502 -0.0591 -0.0779 

0.045 -0.073 -0.1309 

0.0432 -0.0644 -0.1336 

0.032 -0.0628 -0.1393 

0.0281 -0.0553 -0.1104 

0.048 -0.03 -0.1631 

0.0466 -0.0234 -0.1448 

0.0379 -0.017 -0.1405 

0.0418 0.0026 -0.1638 

0.0381 -0.0031 -0.156 

0.0395 0.0132 -0.1622 

0.0461 -0.0014 -0.1217 

0.0627 0.0238 -0.1207 

0.1186 0.0788 -0.0507 

0.1587 0.0946 0.0158 

0.1764 0.1118 0.0251 

0.1886 0.1086 0.0136 

0.1879 0.0324 0.0286 

0.1899 0.0432 0.0005 

0.1862 0.0328 -0.0766 

0.1762 0.0222 -0.0161 

0.1612 -0.0433 -0.0474 

0.1153 -0.0759 -0.0662 

0.0957 -0.1013 -0.0828 

0.083 -0.0998 -0.0749 

0.0751 -0.1141 -0.1374 
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0.0711 -0.1016 -0.141 

0.0593 -0.0998 -0.1507 

0.0525 -0.0851 -0.1313 

0.0612 -0.0432 -0.2577 

0.0582 -0.0274 -0.1536 

0.0509 -0.0523 -0.1322 

0.0531 -0.0144 -0.1607 

0.0462 -0.0118 -0.1508 

0.0498 0.0002 -0.1253 

0.0522 -0.0544 -0.1263 

0.1124 0.0988 0.0517 

0.193 0.1958 0.2485 

0.1985 0.1585 0.1158 

0.2133 0.1477 0.089 

0.2238 0.1415 0.032 

0.2237 0.0602 0.0854 

0.2228 0.0485 -0.0127 

0.2248 0.0265 -0.0555 

0.2364 0.05 0.2136 

0.2148 -0.0157 0.1939 

0.1734 -0.0866 0.1378 

0.1301 -0.3295 0.1045 

0.1144 -0.3303 0.1516 

0.11 -0.3642 0.0994 

0.1018 -0.3366 0.0864 

0.0771 -0.3376 0.13 

0.06 -0.3391 0.1087 
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Comparing principal component mapping vectors (PCMVs) obtained by traditional 

PCA and EM-PCA with full data set, we obtained the following results. If the scatter 

plot shows that all dots fall on the line y=x, the elements inside the two vectors are 

perfectly matching with each other. 

Figure 4. PCMV1 

 
 

Figure 5. PCMV 2 

 

 

2. Results of the principal component mapping vectors obtained by using traditional 

PCA (that replaces missing data by mean values) and EM-PCA with partial data have 

been demonstrated as follows. We consider various missing data rates that range from 

10% to 50%. 

(1) When missing data rate is 10%, results are shown below. 

a) Error of finding the PCMV1 

Figure 6 

Traditional PCA: Range (0.5%-2.5%) 

EM-PCA: Range (0.2%-0.6%) 
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                                          ---- Traditional PCA 

                                    ---- EM-PCA 

 

(b) Error of finding the PCMV2: 

Figure 7 

Traditional PCA: Range (4%-8%) 

EM-PCA: Range (0.5%-1.5%) 

 

                                         ---- Traditional PCA 

                                    ---- EM-PCA 

 

(c) Error of finding the PCMV3: 
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Figure 8 

Traditional PCA: Range (5%-20%) 

EM-PCA: Range (1%-5%) 

 

                                          ---- Traditional PCA 

                                    ---- EM-PCA 

 

(2) When missing data rate is 20%, results are shown below. 

a) Error of finding the PCMV1: 

Figure 9 

Traditional PCA: Range (1%-4%) 

EM-PCA: Range (0.2%-0.5%) 

 

                                          ---- Traditional PCA 

                                       ---- EM-PCA 
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b) Error of finding the PCMV2: 

Figure 10 

Traditional PCA: Range (2%-15%) 

EM-PCA: Range (1%-4%) 

 
                                          ---- Traditional PCA 

                                    ---- EM-PCA 

 

c) Error of finding the PCMV3: 

Figure 11 

Traditional PCA: Range (5%-25%) 

EM-PCA: Range (1%-4%) 

 

                                          ---- Traditional PCA 

                                       ---- EM-PCA 
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(3) When missing data rate is 50%, results are shown below. 

a) Error of finding the PCMV1: 

Figure 12 

Traditional PCA: Range (5%-10%) 

EM-PCA: Range (1%-2.5%) 

 
                                          ---- Traditional PCA 

                                    ---- EM-PCA 

b) Error of finding the PCMV2: 

Figure 13 

Traditional PCA: Range (5%-30%) 

EM-PCA: Range (0.5%-10%) 

 
                                          ---- Traditional PCA 

                                    ---- EM-PCA 
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c) Error of finding the PCMV3: 

Figure 14 

Traditional PCA: Range (5%-40%) 

EM-PCA: Range (5%-10%) 

 

                                          ---- Traditional PCA 

                                    ---- EM-PCA 

 

Since inner products of the three principle component mapping vectors obtained by 

using the traditional PCA with full data set and the EM-PCA with partial data (the 

traditional PCA with partial data set) can indicate the quality of the computed 

principles, we demonstrate the following inner products results.  

Table 4. PCMV 1 

 10% missing data 20% missing data 50% missing data 

Traditional PCA 0.9982 0.9958 0.9757 

EM-PCA 0.9999 0.9997 0.9985 

 

Table 5. PCMV 2 

 10% missing data 20% missing data 50% missing data 

Traditional PCA 0.9788 0.9333 0.5169 

EM-PCA 0.9981 0.9959 0.9688 
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Table 6. PCMV 3 

 10% missing data 20% missing data 50% missing data 

Traditional PCA 0.8717 0.3677 0.1794 

EM-PCA 0.9956 0.9781 0.8590 

 

Inner product of two unit-length vectors equals to cosine value of their angels. 

( || || || || cosv w v w θ〈 ⋅ 〉 = ⋅ ⋅  ⇒ cos
|| || || ||

v w
v w

θ 〈 ⋅ 〉
=

⋅
, where θ is the angel of vector v and 

w). Obviously, the EM-PCA method is consistently much better than tradition PCA 

method in handling missing data, since the inner product values obtained by EM-PCA 

are closer to 1, indicating an almost perfectly matching result with the true principle 

components obtained by traditional PCA with full data set. 

 

7. Conclusion 

In this work, we have presented the fundamentals of traditional PCA method and 

EM-PCA method, and their applications in handling missing data. By analyzing 

power distribution data sets in EERC building of MTU during last December, we 

have performed dimension reductions on the measured data set for future research on 

power distribution system modeling by using the traditional PCA and EM-PCA 

methods. In the last, we conclude that the EM-PCA method is consistently more 

effective and accurate in finding principal components than tradition PCA method 

when missing data set has to be considered. 
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