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Abstract 

Semi-active damping devices have been shown to be effective in mitigating unwanted 

vibrations in civil structures. These devices impart force indirectly through real-time 

alterations to structural properties. Simulating the complex behavior of these devices for 

laboratory-scale experiments is a major challenge. Commercial devices for seismic 

applications typically operate in the 2-10 kN range; this force is too high for small-scale 

testing applications where requirements typically range from 0-10 N. Several challenges 

must be overcome to produce damping forces at this level. In this study, a small-scale 

magneto-rheological (MR) damper utilizing a fluid absorbent metal foam matrix is 

developed and tested to accomplish this goal. This matrix allows magneto-rheological 

(MR) fluid to be extracted upon magnetic excitation in order to produce MR-fluid shear 

stresses and viscosity effects between an electromagnetic piston, the foam, and the 

damper housing. Dampers for uniaxial seismic excitation are traditionally positioned in 

the horizontal orientation allowing MR-fluid to gather in the lower part of the damper 

housing when partially filled. Thus, the absorbent matrix is placed in the bottom of the 

housing relieving the need to fill the entire device with MR-fluid, a practice that requires 

seals that add significant unwanted friction to the desired low-force device. The damper, 

once constructed, can be used in feedback control applications to reduce seismic 

vibrations and to test structural control algorithms and wireless command devices. To 

validate this device, a parametric study was performed utilizing force and acceleration 

measurements to characterize damper performance and controllability for this actuator. A 

discussion of the results is presented to demonstrate the attainment of the damper design 

objectives. 
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1 Introduction 

The purpose of this study is to explore and test magneto-rheological (MR) damping 

systems for small-scale seismic test-bed apparatuses. Semi-active damping devices are of 

particular interest in civil engineering modeling applications because they can be used to 

alter damping forces in real-time through rapid changes of applied current. Small-scale 

semi-active dampers, like MR-dampers, can provide platforms for laboratory validation 

of control algorithms and communication topologies in wireless control networks. 

Rheological dampers have not been used in simulations due to the inherent difficulty 

posed by generating low force levels (e.g., 0-10 N force) from such devices. Commercial 

devices provide a kN force range, too high for small-scale laboratory experiments. The 

objective of this study is to design and test a low-force MR-fluid damper suitable for 

small-scale lab testing. This device should behave with time-domain and frequency-

domain properties that are comparable to full-scale commercial devices. 

1.1 Motivation 

Semi-active control testing for structural response control is currently performed in 

specialized large-scale testing facilities. The motivation behind this study spawns from 

the expense of these larger testing facilities (e.g., travel expense to facilities, construction 

of large test-beds, and cost of commercial semi-active dampers, etc.). To bring this 

technology down to a scale that can be implemented in small-scale test-beds would allow 

for affordable studies to be conducted at many more sites than are presently available. 

Previous work in structural control has been performed by this research group at the 

large-scale test facility of the National Center for Research in Earthquake Engineering 

(NCREE) [1]. These experiments, while highly valuable, represent high stakes and costly 
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commitments by both the researchers, as well as the host facility in terms of time, travel 

cost, specimen preparation cost, energy, and labor. Testing time at facilities, such as 

NCREE, is a limited resource, limiting the scope and number of tests that can be 

performed there. Small-scale structural control test-beds can significantly enhance the 

experimental work that can be performed in this area. To achieve small-scale test-bed 

damping forces that can mimic the damping performance observed in large-scale testing 

with commercial devices, several challenges must be overcome. These challenges are to 

produce a proportional force range for comparison to large-scale damping behavior, to 

eliminate undesired friction to obtain as low of controllable forces as possible, to match 

the modal behavior of large-scale test-beds, and to match the same hysteretic damping 

force behavior. These challenges are discussed in depth in Section 3. 

1.2 Objectives 

The main objective of this study is to construct a semi-active damper that can simulate 

the performance of commercial-scale devices, specifically those used in the previously 

cited NCREE studies suitable for use in a small-scale semi-active control test-bed. Such a 

test-bed will serve as an affordable platform for validating the performance of structural 

control networks. After scaling down the forces of semi-active devices and using small-

scale test-beds simulators/shakers, not only wired, but also wireless control techniques 

can be performed, validated, and optimized. Another objective is to capture the attributes 

observed in the NCREE semi-active devices in order to make direct comparisons with 

results obtained in those studies. The studies performed at NCREE involved a 6-story 

scale test structure. Each story was equipped with semi-active (magneto-rheological) 

dampers capable of providing forces with peak magnitudes of approximately 10% of the 
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individual peak story inertial forces. An important objective of this study is to match this 

ratio in a small-scale test-bed. This objective requires that the new damper possess very 

small friction forces, when turned off, yet still be capable of producing useful levels of 

damping forces over a workable range of input current levels. In addition, the small-scale 

dampers should also possess hysteretic behavior similar to the commercial devices used 

previously. Once these objectives are met, the resulting damper will be suitable for use in 

the desired small-scale laboratory test-bed. 

1.3 Hypotheses 

It is hypothesized that a metal foam magneto-rheological (MR) fluid device can be made 

to mimic the behavior of large-scale MR-devices, yet still function as intended for low-

force applications as well. This MR-fluid device will have hysteretic behavior and 

velocity dependent damping that can be increased/decreased in real-time though changing 

of the input current to the device. It is also hypothesized that this MR-damper can 

produce reliable/controllable low-force damping over a relevant range of excitation 

frequencies (i.e., those consistent with the modal properties of the small-scale structure). 

The scale and range of these forces produced by this device will allow it to be useful in 

future experiments involving wired and wireless control algorithms. 

1.4 Report Organization 

The next section of this report will present a literature review of the relevant history of 

structural control leading to the present state of the art. This literature review will present 

three broad categories of structural control: passive, active, and semi-active control. 

Examples of each category will be provided with the strengths and weaknesses indicating 

why semi-active control has become the preferred approach to date. A more detailed 
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explanation of semi-active control will be provided, due to intriguing traits suitable for 

future work in control and for to help the reader understand the usefulness of having this 

available technology for small-scale lab testing. Section 3 will focus on the technical 

challenges faced throughout this study. This section will include technical challenges 

involving damper construction and performance requirements. Also, Section 3 will 

discuss the designs explored during the course of this study and the reasoning for 

selection of a metal foam construction. Section 4 discusses how the theory, developed for 

magneto-rheological (MR) fluid damping forces, has to be modified to accommodate for 

the new design used in this study. The next section describes the experimental setup used 

to test both the isolated damper performance and the damper incorporated with a SDOF 

scale-structure. Following the experimental setup, a discussion of the collected results for 

this study is made. And finally Section 7 will cite the overall outcomes and conclusions 

of this study and offer recommendations for future work. 
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2 Literature Review 

2.1 Structural Control 

Structural control involves the provision of actuators to minimize seismic or wind 

excitations to protect structures and ensure occupant comfort. Properly implemented, 

structural control also helps to improve structural stability and dynamic performance. 

Structural control technologies are generally categorized into three broad groups: passive, 

active, and semi-active control [2]. Each respectively builds off of the shortcomings in 

typical devices used for structural control technologies. The state-of-the-art structural 

control consists of hybrid passive and active control systems as well as semi-active 

control devices. This section will discuss the principles behind of each type of structural 

control approach, give examples of each technology, describe the shortcomings 

associated with each, discuss which of these devices are promising for small-scale lab 

testing, and then describe the typical performance of commercially sold devices that 

might be used for comparison to the device designed for this study. 

2.1.1 Passive Control 

Under the passive control paradigm, a system or structure is controlled using principles of 

energy balance [3]. This control can be achieved through the use of elements that 

passively counter system response (e.g., implementing a tuned mass-spring-damper 

system with the structure to bring the dynamic response to a desired stable response). 

Energy balance can also be achieved through the use of interconnecting components to 

provide additional paths of energy transfer and damping in the structure [3, 4]. At these 

interconnections passive control elements can introduced that dissipate energy in order to 

reduce structural response. Another way to think of passive control is to consider the two 
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primary components of these systems: an elastic element, to store energy and a damper, 

to dissipate it, neither of which impart additional energy to the structure [3, 4]. 

The practice of using passive control elements to dissipate the energy that is 

introduced into a structure as a result of earthquake excitation has been observed in 

buildings for over 100 years. Passive structure control was first documented in western 

journals by John Milne, who explained that large pendulums in Japanese Pagoda 

structures were used for energy dissipation [5]. The use of these pendulums was simple, 

relying on cantilever oscillation of the pendulum as a method of attenuating structural 

energy. The pendulum would strike the inside of a cylindrical hole, converting 

mechanical energy in the structure to some other forms [5]. Thus, the structure released 

energy from the system into the air and back into the ground upon earthquake excitation. 

Some examples of passive control include base isolation, friction and metallic 

yield dampers, viscoelastic dampers, and tuned mass/liquid dampers, to dissipate energy. 

Each of these devices relies on a different form of energy balance. Isolation systems are 

passive dampers that use two components to prevent energy transfer to the controlled 

system. Base isolation possesses the unique blend of these two elements, damping and 

stiffness, provided through a mechanical system (e.g., large rubber and lead bearing 

columns to support a structure) [2, 6]. These elements isolate the structure from ground 

excitations, thus limiting the energy transferred to the structure. Friction dampers and 

metallic yield dampers, convert mechanical energy into heat energy through friction or 

plastic deformation as they deform under structural or seismic loading [7]. Finally, tuned 

mass/liquid devices counter structural motion to balance system response (e.g., story 

drift) under earthquake or wind loading [8]. 
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Though these control techniques are used because of the ease of implementation, 

relative low cost, and their effectiveness, they do come with shortcomings. One of the 

chief disadvantages of passive control is that each device is calibrated to control specific 

excitations or behaviors (e.g., tuned mass dampers that target a specific range) [9]. Out of 

this range, the control device may not function properly, or might fail completely [9]. 

Even when devices are intended to yield as a form of energy dissipation, these are other 

shortcomings associated passive control devices, namely fatigue and high replacement 

rates [2]. Due to these shortcomings newer technology have been investigated for 

structural control that do not require frequent replacement and are able to be effective 

over a broader range of conditions. 

2.1.2 Active Control 

Active control devices, as opposed to passive control devices, actively impart counter 

excitation frequencies or forces into a structure to control system response [2, 4]. 

Examples of active control include active mass dampers and active tuned mass dampers. 

Active mass dampers rely on large amounts of electricity to actuate a mass to control 

structural behavior based on detected structural behavior. Similarly, active tuned mass 

dampers use actuation methods and large power consumption to impart counter 

frequencies or forces onto structures. 

The chief advantages active systems have over passive systems include the ability 

to react in short time intervals and provide a greater range of forces adequate for many 

different seismic excitations. Active control devices are effective at reducing story drift. 

Passive systems are still used for structural control, however active control systems are 

used to eliminate undesired disadvantages of the passive systems. The chief 
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disadvantages of active dampers is instability (i.e., overuse/estimation of required 

actuation can impart more counter loads, thus imparting more energy into the system) 

[10], the large cost associated with first time incorporation of the systems, the external 

power consumption (which may be insufficiently supplied during an actual earthquake), 

and non-adaptability (i.e., these devices require significant structure-specific design 

effort). These limitations have led to the exploration of control techniques that use similar 

principles of structural control with low electrical demands. 

2.1.3 Semi-active Control 

To overcome the limitations of active control, semi-active control strategies have 

emerged. Semi-active control devices operate under similar principles to fully-active 

control elements. The term semi-active, however, implies the use of less energy, and the 

particular way these devices create control forces indirectly. Unlike active control, semi-

active control works to manipulate the stiffness or damping of a structure in real-time, 

thus altering the performance or behavior under excitation [2]. Even with low power 

consumption, the effective structural forces are very large which makes these devices 

particularly useful for civil structural control. Also, because of their low power 

requirements, semi-active control can still function in the event of a power outage, by 

using a backup battery. The passive nature and reliability of these devices allow for 

guaranteed stability, with proper equipment, and real-time structural control [4].  

Examples of semi-active control devices include active variable stiffness (AVS) 

dampers, active bracing systems (ABS), aerodynamic appendages, piezo-ceramics or 

piezo-stack actuators, shape-memory alloy members, and rheological devices. AVS 

systems can be used to alter the full system stiffness continuously in real-time throughout 
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an earthquake as different frequencies are detected [11]. Active bracing systems use 

various bracing members, typically pre-stressed tendons linking two floors in a structure 

with electro-hydraulic actuator components [2]. Aerodynamic appendages are active 

control for wind excitation; however, these devices do not address the issue of seismic 

excitation of a structure [2]. Piezo-ceramics or piezo-stack actuators use small electrical 

charges to change length, effectively altering the stiffness of elements to achieve 

attenuation of vibrations [12]. Similarly, shape-memory alloys can be used to construct a 

part of a structure to add or release stresses, by modifying shapes of elements using 

electricity or heat. This shape change can lead to increased or decreased damping effects 

by manipulation of structural stiffness [13]. Finally, other forms of semi-active control 

devices have a rheological damping component, or plastic/viscous flow or solidity that 

can change under excitation. Rheological devices that are used for structural control are 

magneto- or electro-rheological fluid and elastomeric devices. The prefixes refer to the 

type of excitation (e.g., magneto-rheological (MR) devices respond to change in magnetic 

flux, and electro-rheological (ER) devices respond to change in and electric field). 

Because of their low-power to high-force yield, MR-dampers are popular choices 

for civil structural control applications. Furthermore, these devices are controllable over a 

broad range of frequencies and are guaranteed stable in their operation. Due to their 

popularity in structural control applications, MR-dampers have been selected as the 

subject of this study. Such devices exhibit non-linear, hysteretic behavior, leading to 

numerical modeling complications. These complications are independent of scale, 

making the low-force MR-damper a good stand in for the full-scale damper in laboratory 
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experiments. To provide background to understand these devices, a review of MR-

damper technology is provided in the following sub-section. 

2.2 MR-Dampers 

This section presents an introduction to MR-damper technology including a description 

of MR-fluid and its behavior, as well as descriptions of a number of damper 

configurations based on MR principles. The effectiveness of each of these configurations 

for small-scale damping applications is explored as well to help justify the design 

decisions made over the course of this study. Finally, a brief discussion of the type of 

MR-damper used in this study will be provided. 

2.2.1 Magneto-rheological Fluid (Ferromagnetic Fluid)  

There are two main types of ferromagnetic fluid, ferrofluid and magneto-rheological 

(MR) fluid. The differences between the two are the particle size and concentration of 

iron (or ferromagnetic particles) that are suspended in a carrier fluid. Ferrofluid is 

composed of 5% - 10 nanometer diameter iron particles (95% carrier fluid), whereas MR-

fluid uses 50 micrometer diameter iron particles that make up 10% of the volume [14-

17]. Larger particle sizes and higher concentrations provide MR-fluid with stronger 

rheological behavior than ferrofluid [16]. Ferrofluid iron particles are lightly attracted to 

one another and do not strongly affect the viscosity of the fluid as a function of magnetic 

field. On the other hand, MR-fluid particles, being closer together, have a stronger 

attraction that changes as a function of change in magnetic flux. This change governs the 

strength of the damping effect that MR-dampers can impart to a structure [15]. MR-

dampers, used in structures, can provide real-time changes in damping that are effective 

in controlling system responses to unwanted lateral inputs. 
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In addition to MR-fluids, magneto-rheological (MR) elastomers are also available 

options for the design and construction of dampers. MR-elastomers are based on 

elastomeric material impregnated with ferromagnetic particles that give them a shape-

changing ability in the presence of a magnetic field [17]. The shape-change effect, similar 

to MR-fluid viscous change, is rapidly reversible, thus these elastomers can impart forces 

onto structures with real-time controllability [18, 19]. These materials are produced by 

curing the elastomeric material with MR-fluid additives, in the presence of a magnetic 

field [18]. By curing this material, iron particles (or ferromagnetic particles) are 

suspended in rubber, as opposed to fluid, thus the particles will not settle over time. MR-

fluid dampers must periodically have their fluid remixed, whereas the chief advantage of 

MR-elastomers is that they retain their damping properties and composition throughout 

their service lives. Their chief disadvantage is the weak relationship between particle 

concentration and achievable damping forces of MR-elastomers. Lokander et al. show 

that maximum forces are achieved with 50% iron content as opposed to MR-fluid devices 

which use 10% [18]. Also, with the increased time associated with making MR-

elastomers, their production cost naturally is higher. While cost is not a major concern in 

this study, less expensive dampers are certainly preferable to the alternative. Also, in 

order to achieve a better comparison to damping devices used in previous full-scale work, 

where MR-fluid based dampers are the dominant technology, MR-elastomers are not 

used in this study. 

2.2.2 Different Types of MR-Dampers 

Typical constituents that make up MR-fluid devices are the MR-fluid, steel pistons, steel 

damper housing, an electromagnetic coil (or multiple coils), and a fluid leak prevention 
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system (e.g., either seals or an absorbent foam matrix). Steel is used for the piston and 

damper housing due to its high magnetic susceptibility. Since steel has high magnetic 

saturation properties, it can support magnetic moments, which play a role in maximum 

achievable force in MR-dampers. Saturation of the damper’s internal magnetic circuit is a 

critical design property that depends on the material and geometric properties of the 

damper and is discussed further in the theoretical portion of this report. Three typical 

types of MR-dampers are used in many different mechanical and civil engineering 

applications: single-ended, double-ended, and sponge-type MR-dampers. These different 

types are presented in the following parts of this section with a description of their 

shortcomings related to use for small-scale test-beds. 

2.2.2.1 Single-ended MR Piston Damper 

Single-ended MR piston dampers use the main constituents previously described, and are 

arranged such that the piston moves through the MR-fluid, as seen in Figure 2.1. The 

electromagnetic piston, once turned on, experiences resistive forces. The forces acting on 

the piston can be controlled in real-time by changing the levels of applied current. The 

interaction between the MR-fluid to piston and MR-fluid to housing is what then imparts 

forces indirectly onto the retrofitted structure. This single-ended configuration is more 

efficient in the sense that there is only one seal used to prevent fluid leak. This seal is a 

 

Figure 2.1:  Single-ended damper and constituents 
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major source for undesired friction which limits the lower end of small-scale achievable 

forces (not an issue for commercial devices because they operate on the kN scale). 

Another shortcoming with constructing small-scale devices is the need for an 

accumulator and a diaphragm. The diaphragm folds to provide more volume for the 

excess fluid on the non-shaft side as the piston and electromagnetic coil moves inward, 

and vise-versa for the piston’s outward motion. The diaphragm is stabilized by use of a 

compressed gas (e.g., Nitrogen) acting as a pressure differential to help guide the piston 

in the fluid chamber. The major shortcomings associated with this design for small-scale 

low-force applications are that the friction forces due to the seal/piston interaction are 

difficult to eliminate, the difficulty in constructability for manual assembly, the use of 

high pressured gases, and the cantilever geometry of the piston that is difficult to support 

in the horizontal application intended in this project [20]. 

2.2.2.2 Double-ended MR Piston Damper 

The next type of MR-fluid damper is a double-ended configuration as shown in Figure 

2.2. Rather than using an accumulator to stabilize the piston, a double-ended piston 

damper employs two seals are used, one at each end, to allow the inner piston shaft to 

protrude from both ends of the damper. With these seals at each end support is provided 

 

Figure 2.2: Double-ended damper and constituents 
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at each point, thus eliminating the need to provide cantilever support for the piston. 

However, this approach necessitates two seals, further degrading the minimum 

controllable forces of the device achievable for small-scale construction [20]. This design 

is more promising for horizontal application due to ease of constructability in comparison 

to the single-ended damper due to the better support of the piston and the elimination of 

the need for compressed gas or an accumulator. However, the friction created by the pair 

of seals needed by this damper is quite large. In fact, this friction proved to be too high 

for effective use in small-scale test-bed control during the course of this study. To 

eliminate these seals, a new approach is needed. 

2.2.2.3 Sponge-type Dampers 

Sponge-type dampers are used in a number of mechanical engineering applications in two 

forms: expulsion or extraction. Expulsion, in this context, refers to fluid being expelled 

out of an absorbent matrix (e.g., polyurethane foam) through positive pressure. The 

expulsion of fluid creates shear stresses that produce to provide damping forces (Figure 

2.3). Extraction refers to fluid being drawn out of an absorbent matrix, activating viscous 

shear forces in the damper. 

 

Figure 2.3: Extraction sponge-type MR-damper 

The absorbent matrices within expulsion sponge type dampers are typically made 

of polyurethane foam. This damper type relies on the presence of the same cantilever 
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anchorage for horizontal applications, as is needed in single-ended devices; however it is 

completely seal-less. Typically, sponge-type MR dampers are single ended, but they do 

not require an accumulator because the sponge, or foam, guides the piston in the housing 

(and there is no pressure compensation required) [21]. Polyurethane foam needed for 

expulsion dampers is very affordable, however, it is easily torn and replacement of this 

matrix is very difficult in this type of damper. To avoid the tendency of the foam to tear 

as often, the foam thickness has to be relatively thin, thus limiting the amount of volume. 

Finally, the polyurethane foam surrounding the piston adds friction to the damping force, 

which is undesired for small-scale devices. The extraction device, shown in Figure 2.4, 

presents more promising attributes for the present study. 

 
Figure 2.4: Expulsion sponge-type MR-damper 

Extraction sponge-type dampers use metal coated polyurethane foam as the MR-

fluid absorbent matrix. Like normal polyurethane foam, metal coated foam at small pore 

sizes can retain MR-fluid. As the pore size increases the ability for MR-fluid to be 

extracted also increases. The metal coating process has already been performed and this 

foam is sold commercially for purchase [22]. The poly-foam is a skeleton for the metal 

powder to latch on using a bonding agent. Some examples of the different types of metal 

foams that are available are steel composite foam, aluminum iron composite foam, 

aluminum foam, copper foam, and vitreous carbon foam [22]. Basic properties of metal 
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foams of interest for this study include absorbency and magnetic saturation. Metal foam 

expulsion sponge-type dampers allow for seal-less construction, however, they have not 

been built in such a manner. Thus, the main disadvantage to overcome for use in this 

study is still the friction of the seals. Another shortcoming of this configuration is delayed 

response time that can arise when pore sizes are small. Small pore sizes impede 

movement of the fluid, making it take longer to extract and change the shear forces on the 

piston/housing [23]. 

Though some shortcomings do exist in extraction sponge-type dampers when 

applied small-scale damping applications, if the damper is modified for a horizontal 

application then it can produce low forces with comparable behavior to dampers used 

previous work. To modify this damper to have increased response time the pore size has 

to be relatively large compared to that used in prior studies [22, 23]. Also, with larger 

pore sizes the fluid will be ineffective in the upper half of the damper housing. Thus, the 

foam has to be restricted to the lower half of the housing. Assuming that only the bottom 

portion of the fluid will be filled, and that the damper will be used exclusively in the 

horizontal position, seals can be eliminated from the design entirely, reducing 

uncontrollable friction forces. 

2.2.2.4 Typical MR-damper Performance 

The typical performance of MR-dampers is described using force vs. displacement and 

force vs. velocity curves (Figure 2.5) [24]. Additionally, magnetization curves are used to 

illustrate the relationships between magnetic flux, saturation, and maximum achievable 

damping force, useful in design. Magnetic flux increases as the current supplied to the 

electromagnet increases (Figure 2.6) [23]. When magnetic flux increases, the forces 
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achieved by the damper increase. The goal of this study is to mimic these relationships 

between current and magnetization, and magnetization and force (shown in Figure 2.5 

and Figure 2.6). 

 

 

Figure 2.5: Force vs. displacement and velocity 

curves of LORD Corp. damper [24] 

Figure 2.6: Magnetization (B-H) curve of 

typical MR-damper [23] 
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3 Technical Challenges 

3.1 Constraints and Limitations for Desired Performance 

Challenges encountered over the course of this study arise from the need to achieve low 

damping forces for the small-scale test-bed. When developing dampers for low-forces, 

production of damping forces dominated by magneto-rheological (MR) effects is 

important. Dampers that harness smart fluid properties must prevent fluid loss due to the 

cost associated with fluid replacement and environmental or cleanliness concerns within 

the structure. Techniques that are effective to prevent the leakage of fluid in full-scale 

dampers include vertical or angled orientation of the damper and piston shaft wipers [25]. 

Seals, as well as gravity, play a role in increasing uncontrollable forces produced by 

dampers, thus on a small-scale, friction would hinder the practical controllable range of 

the damper. Another issue related to building dampers is that the constituents can become 

damaged. The electromagnet that is an integral part of a MR-damper construction 

requires use of small-diameter magnet-wire (e.g., 30 AWG). This wire is very delicate 

and can break with excess force and also fatigues easily. Also, magnet-wire has equally 

delicate coating (i.e., to avoid the use of typical wire casing, a non-conductive coating is 

used) which can wear away. The likelihood of two overlapping wires with worn coating 

is very high because any motion between layers can wear adjacent surface coating. When 

both wires with worn coating touch it causes a short in the electromagnet drastically 

reduces the magnetic field that it can produce. Such a short will usually require that the 

magnet component of the piston be rebuilt entirely. These challenges can be avoided by 

purchasing commercially-available MR-damper technology, but both cost and technical 

barriers exist to adopting these components in this study. Commercially sold MR-
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dampers operate on the kN scale which is not compatible with small-scale test-beds. 

Therefore, novel and customized design approaches are necessary to achieve the goal of a 

small-scale test-bed that approximates the behavior of the larger-scale systems. Scaling 

issues represent the most serious challenge to such a goal. 

3.2 Scaling Issues 

Previous work performed at the National Center for Research in Earthquake Engineering 

(NCREE) in Taipei, Taiwan used a 6 degree-of-freedom shake structure. Each story in 

this structure was scaled to be 1 meter in height with a mass of 600 kg per story. The 

structural parameters (e.g., height, mass, stiffness, etc.) resulted in the modal frequencies 

that ranged from 0 – 25 Hz. Careful design can allow for the construction of a smaller-

scale structure (with story height of 15 cm) with matching frequency-domain properties 

(Figure 3.1). The MR-devices used in the NCREE test-bed are sold commercially and 

have a 2 kN maximum force capacity. This capacity of these MR-devices is consistent 

with 10% of the 6 degree-of-freedom story inertial forces. The same ratio of damping to 

inertial forces has to be captured in small-scale damping devices that will be used in this 

study in order to have a meaningful comparison between control performances achieved 

at each scale. 
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Small-scale test-bed 

 

NCREE test-bed 

 

Figure 3.1: Small-scale vs. NCREE test-bed schematics 

3.3 Environment/Damper Conditions 

Technical challenges extend past the construction and calibration of these devices. The 

environment, in which the two main components exist (the electromagnet and MR-fluid), 

presents problems related to corrosion and leakage. Careful measures must be taken to 

waterproof the electromagnetic wires, such as applying two-part epoxy to the wires, as is 

depicted in Figure 3.2. Application of low viscosity superglue and a bond accelerant after 

coiling each layer can prevent wire movement and loss of magnet-wire coating, shown in 

Figure 3.3 as the sheen on the wires. Prevention wear of this coating will prevent short 

circuits and also prevent the wires from being exposed to MR-fluid. Waterproofing and 

the wearing of the non-conductive coating are also issues in the piston shaft, as it is 

hollow in order to allow the wires to escape the damper housing. As such, similar 

measures must be taken to ensure that MR-fluid does not leak into the piston shaft and 

also to prevent the wires from becoming disconnected in the core of the piston. 
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Figure 3.2: Epoxy coated wires 

 
 

 Figure 3.3: Wire wrapping station 

3.4 Exploration of Two Damper Designs 

With these technical challenges in as well as and the shortcomings noted earlier that are 

associated with each MR-fluid damper type, two designs were attempted for this study. 

The preliminary design is based on a double-end configuration MR-damper with seals 

that guide the piston and prevent fluid loss. The final design is based on an extraction 

sponge-type MR-damper, which does not require any extra measures that prevent fluid 

loss beyond the sponge itself. The expected behavior of the preliminary design was based 

on the optimization techniques developed by Gavin et al. which define the relationships 

between fluid volume, gap thickness, and damping force [25]. Based on the work 

developed by Gavin et al. for determining damper parameters and their relationships to 

desired damper forces, the initial damper design (based on the double-ended 

configuration) was expected to achieve an output range of 0 to 25 N forces at magnetic 

saturation for typical damper velocities. The actual results for the preliminary design did 

not reflect what was expected. The results demonstrate that the friction forces, which 

limit the lower end of the controllable range of the damper, are generally as high as 3.5 

N, see Figure 3.4. Also, the magnetic saturation occurs at low current inputs (100 mA). 

Efforts aimed at ameliorating these friction forces (by the use of composite Teflon/steel 
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pistons) were not successful. The Teflon ends can replace weakly magnetized portions of 

the steel piston (i.e., at the ends, far from the coil); therefore, the MR-force would not be 

affected, but the friction at the seals would be lowered. These efforts were able to 

produce modest reductions in friction forces, but not as much as was hoped. 

 
Figure 3.4: Preliminary design; double-ended piston MR-damper results 

To achieve the desired low-friction behavior, it became necessary to eliminate 

these seals entirely. The final design uses metal foam extraction to contain the MR-fluid. 

Additionally, there exists a unique interaction between the MR-fluid and metal foam that 

serves to add extra shear stresses to the damping system for higher input currents. These 

alterations were made in order to meet the objectives of this study increase the 

controllable range on both ends of the preliminary force curve. The seal-less design 

provides approximately 0 N low-forces when no current is applied and greater damping 

forces when power (varying levels of current) is present. The design of the improved 

damper is presented in the following sections and the resulting behavior of the final 

design is reported in Section 6. 
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4 Theory and Methodology 

4.1 Construction of Dampers 

Having presented the technical challenges that are relevant to the investigation of small-

scale semi-active control, this section will discuss construction issues relating to both of 

the designs developed for this study. In addition, dimensions and theory for both designs 

are presented in this section as well. 

The preliminary design was based on work by Gavin et al. aimed toward 

commercial devices [25] where friction is not an issue. The construction of the 

preliminary MR-damper design started with the winding of the electromagnetic coil. The 

work by Gavin et al. was aimed at optimizing the dimensions of a double-ended MR-

damper. For this study, the same piston was used in each design with dimensions based 

on principles described by Gavin et al.. These dimensions are provided in Table 4.1 and 

shown in the schematic in Figure 4.1. 

Table 4.1: Damper designs dimensions 
  Units Double-Ended Metal Foam 

Thickness of Pole Lp cm 0.318 0.318 

Diameter of Electromagnetic Pole Dp cm 1.892 1.892 

Length of Inductor Lc cm 7.620 7.620 

Number of Coils Nc - 1 1 

Number of Turns Nt - 2880 2880 

Gap Thickness tg cm 0.107 0.565 

Piston Diameter Dr cm 1.270 1.270 

Piston Inner Bore Drb cm 0.635 0.635 

Length of Piston Lri cm 10.160 10.160 

Housing Inner Diameter Dwb cm 2.105 4.763 

Housing Outer Diameter Dw cm 2.540 5.080 

Thickness of Foam tf cm - 1.270 

Wire Gauge gWr AWG 30 30 
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Figure 4.1: Parameters for optimization of MR-device damping forces 

Using an apparatus to hold the piston in place, the coil can be wrapped by hand or 

by using a hand-drill. In order to generate sufficient magnetic field strength 2880 turns of 

the magnet-wire were necessary. Inside the damper, a magnetic circuit is formed between 

the piston, MR-fluid, and the outer housing. Saturation of this circuit defines the upper 

bound of force that the damper can provide. Each turn is represented by the wire being 

wrapped 360° around the piston shaft (first layer) and around the shaft and all previous 

rows of wires for subsequent layers. The total number of turns was determined for a coil 

length of 7.62 cm (3 inches), the diameter of 30 AWG wire, and the desired (theoretical) 

magnetic field strength. The magnetic field strength is a function of the equivalent 

resistance of the inductor in the electromagnet. The wire gauge impacts the resistance, 

proportionally.  

  
 

 
 EQN 4.1 

Where   is the current in the inductor, V is voltage supplied to the electromagnet, 

and R is the equivalent resistance of the inductor. The applied current impacts the 

magnetic field strength: 

      EQN 4.2 
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 Where B is the magnetic flux, or field strength, and    is the magnetic 

permeability. Magnetic flux in MR-dampers drives the maximum achievable damping 

force. Once the coil is designed with the selected wire gauge, 30 AWG in this study, and 

optimized turns (2880), the magnetic pole size must be optimized. 

Following the procedure defined by Gavin et al., both the pole thickness (Lp) and 

gap thickness (tg) can be optimized to determine the effective of area the poles in order to 

provide optimal completion of a magnetic circuit [25]. Similarly, the piston rod outer 

diameter (Dr), inner diameter (Drb), and rod length (Lri) can be optimized. With the pole 

dimensions and piston info the housing length and the housing diameters had to be 

designed.  

The housing diameter (Dw) was selected to be relatively small, to reduce the total 

mass of the damper (2.54 cm), and was made of steel tubing with an inner bore diameter 

(Dwb) of 2.105 cm (0.829 inch). Using these dimensions the total volume of MR-fluid 

can be determined:  

By setting Lp and Dc equal, VMR can be simplified to: 

     
 

 
    

            
        

               EQN 4.4 
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Figure 4.2: Preliminary design constituents 

This fluid volume is held inside of the housing by nylon caps sealed with o-rings 

and shaft wipers, as seen in Figure 4.2. With all of the constituent dimensions and the 

fluid volume known, construction of the preliminary damper can begin. Using the steel 

housing with grooves on the ends to match the o-ring thickness for a proper water-tight 

seal (refer to Appendix A CAD drawings for more detail), one can fit a nylon cap 

assembly into one end of the housing. Next, the piston may be placed into the shaft wiper 

in the nylon cap assembly. With a water-tight seal around the piston and housing 

established, MR-fluid can be added. To finish to assembly, the seal at the other end is 

made using a second nylon cap assembly. 

With the preliminary design built and tested, excess friction forces were observed 

(reported in Section 3), a second design was devised. This design uses the same 

electromagnet and relies on a fluid absorbent matrix to prevent spillage of MR-fluid, not 

seals. Without seals, the total volume of fluid used in this design will decrease, and can 

no longer be represented by the previous equations. In this configuration, the metal foam 

dimensions constrain the total amount of fluid that can be used in the damper housing. As 

discussed in the literature review of this report, many different types of metal foam exist, 

but aluminum coated foam was chosen for this study. This decision was made because of 
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availability, cost, and low magnetism of aluminum coated foam. Low magnetization or 

magnetism of the foam is desired because it would allow for MR-fluid to be extracted in 

the presence of a magnetic field. If the metal foam matrix was ferromagnetic it would 

attract MR-fluid suspended iron particles magnetically, leading to delays in damper 

performance. Due to the new configuration and the new definition for volume, a larger 

conduit diameter was chosen to compensate for lost volume (5.08 cm). The thickness of 

foam was then chosen to be 1.27 cm (0.5 inches) in order to provide enough fluid volume 

to achieve the higher forces sought for the test-bed structure. The schematic for this 

design and a photograph of the interior of the housing are shown in Figures 4.3 and 4.4, 

respectively. 

 

Figure 4.3: Final design constituents 

 

 

Figure 4.4: Final design 

interior 

Knowing the dimensions and the percent porosity of the foam (80%) the volume 

of the MR-fluid can be calculated using: 

            
        [

    

  
]         √               EQN 4.5 

Where Lh is the length of the housing, Rb is the inner radius of the housing 

(Dwb/2), h is the height of fluid, and Pv is the percent porosity. The advantages of this 
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design are that the fluid volume to piston ratio can be calibrated to achieve a desired level 

of force and that the fluid will be contained in the housing using the absorbent foam 

matrix, rather than seals. Full details of the final damper design can be found in Appendix 

A. 

4.2 Effective Annular Volume 

Due to the strong relationship that exists between MR-fluid volume and achievable for 

estimating damping force the reduced MR-fluid volume must be considered [25]. To do 

so an effect annular volume is approximated. In commercially-sold MR-fluid dampers, 

MR-fluid surrounds the piston on all sides, annularly. This is not the case with the metal 

foam matrix device used in this study; however, at some diameter the volume in the foam 

can be projected to an effective annular volume (Figure 4.5), which is done by calculating 

the volume of fluid in the foam matrix, by equating the gap thickness to the distance 

between the magnetic poles and the housing, and determining α and β as follows.  

 
Figure 4.5: Parameters for estimating MR-fluid effective annular volume 

The process for obtaining the effective annular volume can be simplified to two 

parameters, α and β. Where α is the effective angle of the MR-fluid acting between the 
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damper piston and the outside of the metal foam. Note that α reduces to zero if the fluid 

level is less than the foam thickness in Figure 4.5. Therefore, the effective damping force 

range exists between a fluid level equal to the foam thickness and a level greater than the 

foam thickness. The parameter β is the effective angle of MR-fluid acting on the damper 

housing, and should not be strongly effected by fluid level if α is constrained. With these 

parameters a factor is developed to calculate damping force using an effective annular 

volume. This effective annular volume factor is calculated by: 
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EQN 4.10 

In this set of equations, Vfh is the simplified volume if the entire damper housing 

is full. Veff is the effective volume of fluid acting on the electromagnetic coil. Finally, 

Fmrf is the factor that can be used to modify the annular volume equations to match the 

new design configuration without an annular volume.  
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4.3 Theoretical Magnetization and Forces 

The theoretical magnetization and damping forces build on the theory behind the 

effective annular volume. Every MR-fluid device has what is known as an MR-valve 

structure. The MR-valve structure describes the Kirchhoff magnetic circuit as shown in 

Figure 4.6 (depicted by arrows in the right image). The damping force associated with a 

metal foam damper exists within one half of the housing, depending on the specific 

configuration. Typically with an actual annular volume, as opposed to an effective 

annular volume, the Kirchhoff magnetic circuit is completed on both halves of the 

housing [25, 26]. The magnetic circuit is completed through the steel components of the 

piston and housing as well as the MR-fluid. In between piston and housing the MR-fluid 

and metal foam have lower magnetic permeability, therefore it is harder to complete the 

circuit. Low permeability greatly impacts the maximum force achieved by the damper. 

Therefore, the theory behind a new magnetization curve of the extraction sponge-type 

MR-damper design has to be developed. This can be done using the following equations 

for B (magnetic flux) and H (magnetizing field).  

  
  

 
  EQN 4.11 

 
Figure 4.6: Magnetic field and fluid draw; magnetic circuit links 
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    EQN 4.12 

Where    is the magnetic flux conservation coefficient, A is the cross-sectional 

area associated with the material (e.g., effective area of MR-fluid acting on the poles), 

and     is the steel B-H curve coefficient. Figure 4.7 depicts the different magnetization 

curves for the various constituents affecting the damping force (i.e., steel, MR-fluid, and 

aluminum foam). From Figure 4.7 the steel B-H curve coefficient can be determined for 

the linear range in which the damper will operate. These magnetization curves are 

proportional to the maximum achievable damping forces if all components were made 

solely each individual material separately. Taking the steel B-H curve, for example, if 

everything was made of steel, the damping force would be very high. Likewise, if the 

entire damper was made of aluminum (including the MR-fluid) the damping force would 

be very low. Therefore, another process developed by Gavin et al. can be used to simplify 

these three constituents, and the effective area acting toward the magnetic circuit, into 

one magnetization curve [25]. With the new B-H magnetic curve that involves steel 

components, MR-fluid, and aluminum foam, the following equations can be used to 

 
Figure 4.7: Magnetization curves of MR-fluid, steel, and aluminum coated foam 
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determine the maximum theoretical damping force within the range of operational 

velocities. 
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4.4 Role of Metal Foam and Expected Interaction with MR-fluid 

To summarize the behavior of the damper with added metal foam, primarily it is used 

hold the MR-fluid. However, upon magnetization the fluid will become partially 

extracted from the foam. Once extracted, the MR-fluid bridges the gap between the 

damper housing and the piston, thus completing the magnetic circuit and the MR-fluid 

can generate the shear stresses in the damper. Additionally, it is expected that the 

interaction between the fluid and metal foam will behave, effectively, like friction (thus, 

“effective friction” in future usages). As such, additional controllable forces will be 

achieved as a result of having this metal foam in the housing. With effective friction 

added to the damping force there is room for future work to provide additional 

controllable forces within the damper. 

4.5 Output of Theoretical Model 

 Overall, with the additions to the theory by Gavin et al. a numerical model was 

generated in MATLAB. In Figure 4.8, peak force versus flux density is plotted neglecting 

effective friction. In Figure 4.9, peak force versus input current is shown. These results 



33 

 

show that the maximum theoretical damping force within operational velocities is 

approximately 4 N based on the magnetic saturation limit of the magnetic circuit. 

Saturation is the point at which no additional damping force can be achieved with 

additional current or magnetic field strength. The saturation magnetic flux is 0.419 Tesla 

and the saturation current is 476 mA. (Figure 4.10). It will be shown, experimentally, that 

neglecting the effective friction forces provided by the metal foam, will tend to 

considerably underestimate the damping force that is achievable by the damper. The 

experimental procedure used to demonstrate this fact is presented in the next section. 

 

 
Figure 4.10: Theoretical damping force vs. current 

 
Figure 4.8: Theoretical damping force vs. 

magnetic flux 

 

 

 

Figure 4.9: Theoretical magnetic 

saturation curve  
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5 Experimental Setup 

This section describes the two experimental setups and testing equipment used for 

collecting data with the extraction sponge-type MR-damper prototype. The first setup 

was designed to explore the damping properties of the MR-damper isolated from the 

effects of any structure. The second setup was designed to study the behavior of the 

damper incorporated with the elements of a single-degree-of-freedom (SDOF) small-

scale structure. Respectively these test setups are used to validate the basic performance 

requirements of the damper (e.g., force range, behavior, etc.) for future work in 

wired/wireless control, and to show the damping behavior with structural influence. 

5.1 Testing Equipment 

Data is acquired using sensors and a National Instruments NI PXIe-1071 chassis, which 

was chosen due to its speed, channel count, and its ability to serve as the control server in 

with future wired control experiments using the MR-damper. The associated data-

collection software used was LabVIEW. To power the damper a U3606A Multimeter DC 

Power Supply was used with hi-polar outputs of up to 1.0 A current and 30 V voltage. 

This current range is adequate to power the damper prototype and is sufficient for 

comparison to commercial devices. Other equipment chosen for this study include: the 

small-scale shake table test-bed (Quanser Shake Table II system controlled by 

Mathworks Simulink and a proprietary real-time control package, QUARC, made by 

Quanser) and a Piezotronics sensor signal conditioner and sensor power supply. Specific 

sensors used depend on the experimental setup and are described in those sections. 
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5.2 Isolated Damper Setup 

The isolated damper setup was used to determine the maximum damping coefficients and 

forces achievable by the MR-damper. In this test setup a Quanser Shake Table II was 

used to provide uniaxial seismic excitation. The sensors chosen for this project were a 

PCB Piezotronics accelerometer and force transducer, model #’s 333B32 and 208C01, 

respectively. The piston was mounted to a rigid column mounted to the floor of the lab. 

This configuration limited the use of displacement sensors, therefore accelerometers were 

used to obtain displacement and velocity. These sensors were configured as seen in 

Figure 5.1. Here it can be seen that the force transducer was installed in-line with the 

piston and the rigid column in order to detect resistive (or damping) forces. Additionally, 

an accelerometer was placed on the shake table to measure ground/housing displacement. 

 

Figure 5.1: Isolated damper setup and sensor placement 

With the force transducer data, force vs. velocity and force vs. displacement plots 

can be generated with varying inputs. Sine wave inputs of varying frequencies were used 

throughout this study. This overall setup was used for the prototype damper with 

aluminum coated foam. In addition, a second damper with matching dimensions, but 

without foam was tested as well. By removing the foam and replacing it with the same 

MR-fluid level, the anticipated effective friction could be characterized. The behavior of 
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the damper at varying fluid levels, various damper input currents, and operational 

frequencies were tested and recorded. 

5.3 Damper In situ Setup 

The purpose of the single-degree-of-freedom (SDOF), or in situ, study is to determine the 

behavior of the damper in the environment that it is designed for. Also, the resonant 

frequency will have potentially damaging effects on the structure if the damper cannot 

alter the dynamic properties of the system of that frequency. Figure 5.2 shows the SDOF 

model describing the behavior of the bare test structure without damping provided by the 

MR-fluid damper. 

 

Figure 5.2: SDOF model of a small-scale test-bed without damping 

 Governed by this model, structural dynamics can be used to find the resonant 

frequency of the SDOF structure using the following equations: 

• Ms : Mass of structure + damper 

• Ks: Column stiffness 

• Cs: Assumed Structure Damping ~ 0 
   

 
 

• Xs: Displacement of first story 

• XB: Ground displacement 

• UB(ω): Applied Displacement 



37 

 

I = 
   

  
      EQN 5.1 

Ks = 
   

  
 EQN 5.2 
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 EQN 5.4 

In these equations E is the modulus of elasticity (for this study E of Aluminum), I 

is the area moment of inertia of the columns, ncol is the number of columns (8 for this 

study), and MS is the Mass of the structure, piston, and mounting bracket. Also, KS is the 

column stiffness, L is the column length (15 cm), ωn is the natural frequency in rad/sec, 

and Fn is the natural frequency in Hz. With these properties defined, the natural frequency 

was found to be 6 Hz. As such, the excitation range defined for this experiment was set to 

0-8 Hz to demonstrate the efficacy of the damper prototype over a frequency range that 

includes resonance of the structure. 

In addition to the accelerometers and force transducers described in 5.2 

displacement sensors (MTS C-Series Core Linear Position Sensors) were used to 

characterize the performance of the damper as part of a SDOF controller. Damper 

behavior was tested over a range of relevant input currents (0 – 700 mA) and ground 

motion frequencies (0 – 8 Hz). Figure 5.3 shows the sensor placement, including the 

accelerometers and displacement sensors located on each level of the SDOF small-scale 

structure. A photograph is also provided in Figure 5.4 that shows the plan view of the 

structure and how the displacement sensor (left) and accelerometer (right) are aligned to 

the center of the test-bed. Also, there is a force transducer located between the damper 
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piston and upper story to measure damping force, depicted in Figure 5.3 and shown in 

Figure 5.6. This configuration, using a mounting bracket (Figure 5.5), adds an inertial 

force to the force transducer provided by the damper piston. 

 

Figure 5.3: Sensor placement in situ 

 

Figure 5.4: Plan view of structure 

 

Figure 5.5: Damper mounting bracket 

 

Figure 5.6: Damper in situ with sensors 

The force transducer can be used to get full system forces in this setup. In this 

setup, the force transducer measures both shear forces transmitted through the MR-fluid 

from the piston to the housing, as well as the inertial forces associated with the piston. An 

additional accelerometer connected to the free end of the piston provides a means of 

estimating and correcting for the damper inertial force (Figure 5.3). The damping force is 

calculated using the following equation: 

            EQN 5.1 
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Where    is the damping force achieved by the MR-damper,       is the force transducer 

data, and    is the inertial force of the piston equal to its mass times its absolute 

acceleration. The displacement from each sensor is then used in the calculation of relative 

floor displacement/drift: 

         EQN 5.2 

Where    is the relative displacement required for the force vs. displacement plots (also 

necessary for calculating relative velocity),    is the displacement of floor two and    is 

the displacement of the base. Finally, differentiation of the displacement data using 

forward differentiation generates the relative velocity (   : 

      
      

  
 

              

  
 EQN 5.3 

5.4 Data Processing 

Data was processed using MATLAB. Data processing involved a basic filtering process. 

A digital band-pass filter was used, using MATLAB built-in butterworth second order 

low-pass filter and Savitzky–Golay second order high-pass filter. The band-pass filter 

was used to remove noise captured by sensors from the shaking environment as well as 

sensor and circuit noise. After filtering the data it was de-trended (i.e., subtract out the 

mean, or sensor offset, and a trending regressive line from the data). Finally, the data was 

averaged using smooth.m, another built-in command in MATLAB that is used to smooth 

out any remaining noise. In the unfiltered band of unfiltered frequencies, the smooth 

command averages specified windows (i.e., it uses consecutive data points, high and low, 

to find the mean value that can describe the trend the filtered data suggests).



40 

 

6 Results and Discussion 

This section presents the results gathered from data collected to characterize the behavior 

of the extraction sponge-type MR-fluid damper in the two previously described 

experimental setups. These tests were performed to verify that this device behaves like a 

large-scale commercial MR-device. The tests in each setup consisted of varying currents 

supplied to the damper 0-700 mA. This was to test the damper’s magnetic saturation limit 

to compare with what was determined theoretically. Additionally, since the resonant 

frequency of SDOF was found to be 6 Hz, both setups had to accommodate excitation 

frequencies ranging from 0-8 Hz. Also, because damping force is a function of velocity, 

tests were performed to see the hysteretic behavior of this device with respect to force, 

velocity, and displacement. With the set of frequency varying tests, the presence of 

frequency independent damping was checked in the damper. A final test was performed 

to verify the effect MR-fluid level has on damping force (fluid levels ranging from 0 – 

1.5875 cm in 0.3175 cm increments). 

6.1 Results of Damper Isolated from SDOF Scale-Structure 

The following figures show the data collected when the damper was isolated from a 

structure. The damper housing was excited in uniaxial motion with 0-8 Hz sine waves. 

The forces are depicted in Figures 6.1 (versus displacement) and 6.2 (versus velocity), 

and show the general hysteretic behavior of the prototype device. The maximum force 

from these two plots is observed to be 12 N at 55 mm/s which compared to the velocity 

independent theoretical force of 4 N, demonstrates that the peak force can be tripled 

when effective friction is considered. Damping increases as a function of velocity. 

Therefore in Figure 6.2 there is an observable trend between force and velocity. To check  
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if the damping coefficient is independent from the excitation frequency, the velocity at 

each peak force can be factored out, leaving units of N-s/mm or damping (e.g., at 6 Hz 

frequency the max velocity is 55 mm/s and the force is 12 N, so the damping is 12N / 55 

mm/s or 0.218 N-s/mm). The trend, by dividing all maximum forces by their 

corresponding velocities is plotted in Figure 6.3. This figure shows that the damping 

coefficient is more or less the same from 3 Hz to 8 Hz. The high damping value at low 

frequencies is associated with high signal/noise ratio in that the velocity measurements in 

  
Figure 6.1: Force vs. displacement of the 

isolated damper with foam 

Figure 6.2: Force vs. velocity of the isolated 

damper with foam 

 

Figure 6.3: Frequency independent damping of the isolated damper  
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these frequency ranges were quite small and the measurements were rather noisy. 

Therefore, there is an indication that the damping coefficient in the isolated setup is 

frequency independent. 

 The damper was tested with foam in the housing, but modeled without. Therefore 

a study was conducted into characterizing the effect of the foam by removing the foam 

and filling the housing with equal height of fluid. Under these conditions, force versus 

displacement and force versus velocity plots have been generated (Figures 6.4 and 6.5) 

which show a general damping force of approximately 4 N over the range of operational 

velocities, which is consistent with the predicted theoretical force. Therefore, the 

difference can be associated to the shear reaction (effective friction) between the MR-

fluid and metal foam. 

 
Figure 6.4: Force vs. displacement of the 

isolated damper without foam 

 
Figure 6.5: Force vs. velocity of the isolated 

damper without foam 
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6.2 Results of Damper Integrated with SDOF Scale-Structure 

In the case where the damper was integrated with the single-degree-of-freedom (SDOF) 

structure, damping forces are shown in Figure 6.6 and Figure 6.7. These plots show 

hysteretic/bi-linear behavior with force magnitudes that vary with input current. In these 

plots one can see that saturation is occurring at about 500 mA, consistent with the 

numerical model and theory described in Section 4. A maximum damping force of 8.64 N 

(Figures 6.6 and 6.7) was achieved at 50 mm/s (Figure 6.7) at a 5 Hz excitation 

frequency, just below the 6 Hz resonant frequency of the SDOF structure. Therefore, the 

damping coefficient of the MR-fluid device in situ is 172.8 N-s/m. This peak is lower 

than the damping provided in an isolated scenario due to feedback between the damper 

and the structure. 

 
Figure 6.6: Force vs. displacement of the 

damper in situ; low frequencies 

 
Figure 6.7: Force vs. velocity of the damper 

in situ; low frequencies 
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Figure 6.8: Frequency dependence when damper is integrated with structure 

Figure 6.8 shows that in situ there is a relationship between damping force and 

frequency, not observed when the damper was isolated. When isolated the damping force 

increases with frequency increase (due to increases in velocity associated with frequency 

increases), but in this is not the case when integrated with the structure. Therefore, there 

is a dependency on the structural interaction and the measured damping force making the 

behavior of the isolated damper difficult to measure in this configuration. However, this 

configuration does demonstrate that the damping forces provided by the damper are 

effective at the resonant frequencies of the structure. In the two figures, Figures 6.9 and 

6.10, forces are plotted for the damper at and above resonance of the structure. The 

maximum damping force was still observed to be around 12 N at 55 mm/s, consistent 

with the isolated damper; however, the data after averaging is still quite variable. This 

variability further illustrates the difficulty in characterizing the damper behavior in situ. 

Some key information to take away from this portion of the study can not only be 

represented in the time-domain, but also in the frequency domain. In the frequency 
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domain it can be observed how displacement or drift is reduced with increased damping. 

Also, in the frequency domain one can observe the increase in damping force and the 

ability for the damper to capture all excitation frequencies. As can be seen in Figures 6.11 

and 6.12, these two relationships are shown. 

One final investigation was performed for this study and this was to determine the 

relationship between fluid height and damping force. Figure 6.13, plots the force 

 
Figure 6.9: Force vs. displacement of the 

damper in situ; high frequencies 

 
Figure 6.10: Force vs. velocity of the damper 

in situ; high frequencies 

 
Figure 6.11: Damping force in frequency 

domain 

 
Figure 6.12: Drift reduction in frequency 

domain 
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generated by the extraction sponge-type MR-fluid damper with varying levels of fluid at 

a single excitation frequency (5 Hz) and at the minimum and maximum allowable 

currents. This plot shows that an optimal level of fluid is likely to exist as 1.27 cm (which 

is the same as the thickness of the foam) based on the diminished increase in force above 

this level. Beyond this height the variance in outputs increases as well due to sloshing and 

spilling of MR-fluid from the housing. 

 
Figure 6.13: Effect of fluid level on damping force at 5 Hz excitation 
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7 Conclusions and Future Work 

7.1 Conclusions 

Semi-active damping devices are of particular interest in civil engineering, however 

modeling of these devices presents several difficulties. To harness the control techniques 

of semi-active devices for small-scale testing it is required to test them extensively. In 

this study, to enable the development of a small-scale test-bed for semi-active control 

devices, two magneto-rheological (MR) damper designs were investigated. These semi-

active devices were chosen to be MR-fluid dampers for consistencies with full-scale civil 

structural control applications. Due to design limitations discovered in the preliminary, 

double-ended MR-damper design, a final design was chosen to be an extraction sponge-

type MR-device. This study has shown that a small-scale device can be made to have 

comparable attributes to large-scale commercial devices. These attributes include 

hysteretic forces and an adequate magnetic saturation curve for matching the controllable 

range of the damping forces to the test-bed structure. Also, the damper demonstrated the 

ability to damp multiple input frequencies of a SDOF test-bed structure at the scale of 

interest. 

The overall maximum damping coefficient of this damper was found to be 

adequate. This performance was observed when the damper was isolated from the SDOF 

test-bed. This force differed from previously established theoretical forces because of the 

existence of effective friction, or shear reactions, between the MR-fluid and the metal 

foam. It was found that the effective friction force was significant, as much as 200% of 

the bare housing (theoretical) value. Though the effective friction was significant, the 

theoretical and experimental magnetic saturation limits matched. A separate test was 
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performed to demonstrate the theoretical force does match experimental data when the 

foam is removed. The damper was integrated with the structure and showed comparable 

behavior to commercial devices in literature. Finally, a study was conducted to find the 

optimal level of MR-fluid; it was found that the optimal level was equal to the foam 

thickness of within the housing. 

7.2 Future Work 

Since a relationship was found between the foam thickness and maximum force in the 

damper, future work should include optimizing the porous media thickness and density. 

In addition, testing should be conducted on a multi-story scale test-bed structure. 

Investigation and derivation of an operational model (e.g., Bouc-Wen control model) for 

this damper should be performed for use in real-time control applications. Finally, for 

comparison to full-scale experiments, the small-scale structure with implemented metal 

foam dampers should be tested for effectiveness under simulated historic ground records 

using a real-time controller. 
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Appendix A 

 

Figure A.1: Diagram for assembly of magnetic piston 

 

Figure A.2: Magnetic piston shaft dimensions 
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Figure A.3: Magnetic pole dimensions 
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Figure A.4: Unthreaded Teflon piston shaft end 
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Figure A.5: Threaded Teflon piston shaft end 
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Figure A.6: Nylon cap for preliminary design 
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Figure A.7: Preliminary design housing dimensions 



59 

 

 

Figure A.8: Final design housing dimensions 
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Figure A.9: Final design nylon piston guide dimensions 
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