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Abstract
Does there exist a Steiner Triple System on v points, whose blocks can be partitioned
into partial parallel classes of size m, where m ≤ bv

3
c, m | b and b is the number

of blocks of the STS(v)? We give the answer for 9 ≤ v ≤ 43. We also show that
whenever 2|b, v ≡ 3 (mod 6) we can find an STS(v) whose blocks can be partitioned
into partial parallel classes of size 2, and whenever 4|b , v ≡ 3 (mod 6), there exists
an STS(v) whose blocks can be partitioned into partial parallel classes of size 4.



4



Chapter 1

About Coloring triples in every way

1.1 Introduction
A Steiner triple system on v points, denoted as STS(v) is a pair (V,B), where V
denotes a set of v elements and B denotes a set of b triples, called blocks, from V ,
such that |{B ∈ B : {x, y} ⊂ B}| = 1, for each distinct pair {x, y} ⊂ V . Each
point of the Steiner triple system is contained in exactly r = v−1

2
blocks. Kirkman [7],

showed the existence of such a system whenever the necessary conditions are met, in
1847 .

Theorem 1 [7] A Steiner triple system of order v exists if and only if v ≡ 1, 3 (mod 6).

The smallest Steiner triple system is STS(7), and is commonly known as the Fano
Plane. The six lines and one circle drawn in Figure 1.1 gives a pictorial representation
of the Steiner triple system with blocks;
B = {{1, 4, 3}, {3, 5, 7}, {1, 5, 2}, {1, 6, 7}, {2, 3, 6}, {2, 4, 7}, {4, 5, 6}}. A parallel
class in a Steiner triple system is a collection of disjoint blocks that partition its point
set V . Because each point is in r blocks we must have r parallel classes, each consisting
of v

3
blocks.

A Kirkman triple system on v points, denoted as KTS(v) is an STS(v) whose blocks
can be partitioned into parallel classes.

Example 1.1.1 A Kirkman triple system of order 9

1 2 3
4 5 6
7 8 9

1 4 7
2 5 8
3 6 9

1 5 9
2 6 7
3 4 8

1 6 8
2 4 9
3 5 7

5



7

3

1 2

4 6

5

Figure 1.1: STS(7), The Fano Plane

Example 1.1.1 gives the 12 blocks of a KTS(9). The blocks are partitioned into four
parallel classes, and each parallel class partitions the set of nine points.

Theorem 2 [4, 5, 7] A Kirkman triple system of order v exists if and only if v ≡ 3
(mod 6).

We are providing now more formal definitions.
A partial Steiner triple system on v points, PSTS(v), is a pair (V,B), where V denotes
a set of v elements and B denotes a set of b triples from V , such that |B ∩ B′| ≤ 1,
when B,B′ ∈ B and B 6= B

′ .

When R ⊆ B and |B ∩ B′| = 0 when B, B′ ∈ R and B 6= B′, then R is called a
partial parallel class (PPC) of (V,B).

A partial parallel class containing all but one point of the points of a Steiner triple
system, is called an almost parallel class.

A block coloring of a PSTS(v)(V, B) in c colors is a mapping χ : B → {1, ..., c}, so
that every color class χ−1(i), i ∈ {1, ..., c} is a partial parallel class.
The color type of a block coloring of (V, B) in c colors is the sequence (m1, ...,mc)

6



where mi = |{B ∈ B : χ(B) = i}|.

Often the sequence (m1, ...,mc) is written in exponential form; color type wu11 ...w
us
s

indicates that ui of the color classes have size wi for 1 ≤ i ≤ s.

Using partial parallel classes we can give the definition of a Hanani triple system.
A Hanani triple system, (HATS) on v = 6t+ 1 points is a Steiner triple system having
v−1
2

= 3t pairwise disjoint almost parallel classes of size 2t = v−1
3

(set of pairwise
disjoint triples that span v−1 elements) and the remaining triples form a partial parallel
class of size t = v−1

6
. We give the number of partial parallel classes and their sizes with

respect to t, as a Hanani triple system is equivalent to a partial Steiner triple system that
admits a color type (2t)3tt1.

Theorem 3 [6] A HATS(v) exists if and only if v ≡ 1 (mod 6).

Steiner, Kirkman, and Hanani triple systems have been studied for a long time now,
[7, 4, 5, 6] and they are useful for other constructions as we will see in this report.

Another type of configuration that aids in the construction of certain designs is the
Group Divisible Design (GDD). A 3-GDD is a collection of 3-elements subsets of a
v-set V , called blocks, which satisfies the following properties;

• each point v appears in r of the b blocks;

• the v = nl elements of V are partitioned into l subsets, which are called groups,
each of size n;

• no pair of points from the same group occur together in any block;

• any two points not in the same group appear together in λ blocks.

We use exponential notation to describe the type of the GDD. So a GDD(gu) denotes a
GDD of type gu, which has u groups of size g. Staying in the same topic, a Resolvable
Group Divisible Design is aGDD whose blocks can be partitioned into parallel classes.
An example of an RGDD on 15 points is given in Example 1.1.2.

Example 1.1.2 An RGDD(53) with groups, G1 = {0, 1, 2, 3, 4}, G2 = {5, 6, 7, 8, 9},
G3 = {10, 11, 12, 13, 14}.

7



0 5 10
1 6 11
2 7 12
3 8 13
4 9 14

0 6 12
1 7 13
2 8 14
3 9 10
4 5 11

0 7 14
1 8 10
2 9 11
3 5 12
4 6 13

0 8 11
1 9 12
2 5 13
3 6 14
4 7 10

0 9 13
1 5 14
2 6 10
3 7 11
4 8 12

A frame parallel class (FPC) for group G is a collection of blocks that partition the
points V \G, hence it is a partial parallel class that misses every vertex inG but contains
every other vertex.
Let V be a finite set, and let G be a partition of V . A 3-frame of type gu11 g

u2
2 ...g

ut
t is a

3−GDD of type gu11 g
u2
2 ...g

ut
t together with a partition of its blocks into frame parallel

classes. For every group G ∈ G there are exactly |G|
2

frame parallel classes.

Example 1.1.3 A 3- frame of type 24, with groups, G1 = {1, 2} , G2 = {3, 4}, G3 =
{5, 6}, G4 = {7, 8}. The blocks of this 3-frame are as follows:

FPC1
3 6 7
4 5 8

FPC2
1 6 8
2 5 7

FPC3
2 3 8
1 4 7

FPC4
1 3 5
2 4 6

In this report we study the following problem: Does there exist an STS(v) whose
triples can be partitioned into partial parallel classes of size m, where mi ≤ bv3c, mi | b
and b is the number of triples in an STS(v) ? This question was initially asked by Alex
Rosa. Colbourn, Horsley and Wang studied a more general version of this problem
in [1]. In this paper they studied the decomposition of partial Steiner Triple Systems,
(PSTS) into partial parallel classes of mixed sizes. More specifically they ask , given v,

t and m1, m2,..., ms, with t =
s∑
i=1

mi, does there exist a partial Steiner triple system of

order v, whose triples can be partitioned into partial parallel classes of sizes m1, m2,...,
ms ? Elementary necessary conditions are that there exist a partial Steiner triple system
of order v having the number of triples equal to the sum of the triples in each partial

parallel class. Thus t =
s∑
i=1

mi. Also each partial parallel class can have at most bv
3
c

triples in it, so mi ≤ bv3c for 1 ≤ i ≤ s. These necessary conditions are not sufficient
when v ∈ {6, 7, 9, 11, 12, 13}. In the paper they conjecture that these conditions are
sufficient for v ≥ 14. They also show that they are sufficient for 14 ≤ v ≤ 32.

8



Let µ(v) denote the number of triples in a partial Steiner triple system of order v. This
number cannot exceed, µ(v) = bv

3
bv−1

2
cc − ε, where ε = 1 is v ≡ 5 (mod 6) and

ε = 0 otherwise. Then

µ(v) =



6t2 − 2t when v = 6t

6t2 + t when v = 6t+ 1

6t2 + 2t when v = 6t+ 2

6t2 + 5t+ 1 when v = 6t+ 3

6t2 + 6t+ 1 when v = 6t+ 4

6t2 + 9t+ 2 when v = 6t+ 5

Schönheim [8] showed that a (PSTS) with µ(v) triples exists for all v ≥ 0. Such a
system is a maximum partial Steiner triple system, MPT(v).

The basic necessary conditions for a PSTS(v) to admit a color type (m1, ...,mc) are as
follows.

1. For each 1 ≤ i ≤ c, there must be a partial parallel class containing mi triples,
so then mi ≤ bv3c.

2. There must exist a PSTS(v) having
c∑
i=1

mi triples, so
c∑
i=1

mi ≤ µ(v).

The interest of the authors in [1] is to determine the possible color types of block col-
orings, (the possible decomposition of the blocks) of a PSTS(v). They conjecture the
following.

Conjecture 4 Let v ≥ 14. Let (m1, ...,mc) satisfy
c∑
i=1

mi ≤ µ(v) and mi ≤ bv3c for

1 ≤ i ≤ c. Then there exists a partial Steiner triple system that admits a block coloring
of color type (m1, ...,mc).

In the paper they divide the coloring of the triples in two cases. They deal first with
orders up to 13. They next consider the orders 14 ≤ v ≤ 32, where they prove their
conjecture all such v.

We will call a decomposition in which each color class has the same size, uniform.
Thus in the context of their paper a Kirkman triple system KTS(6t + 3), is equivalent
to a PSTS(6t+ 3) that admits a uniform color type (2t+ 1)3t+1.

A partial Steiner triple system whose triples can be partitioned into s partial parallel
classes, each of sizem, is a signal set, denoted SS(v, s,m). So a signal set SS(v, s,m)

9



is a PSTS(v) that admits a color type ms. When s = bµ(v)
m
c the SS(v, s,m) is a

Kirkman signal set, KSS(v,m). Many of the uniform decompositions are covered by
the next result.

Theorem 5 [9] A KSS(v, bv
3
c) exists for each positive integer v such that v 6∈ {6, 7, 12}.

A major construction technique for many of the non-uniform decompositions relies on
the idea of dismantling closely related partial parallel classes that have been constructed
previously on v points. We examine this technique more carefully in Chapter 2 of
this report. Colbourn et. al. in [1], study the problem partitioning partial Steiner
triple systems into partial parallel classes of mixed sizes. In this report, we take into
consideration only Steiner triple systems, |{B ∈ B : {x, y} ⊂ B}| = 1. Equivalent
to the signal sets, we want to partition the b blocks of an STS(v) into s partial parallel
classes , all of size m, where , sm = b = v(v−1)

6
and m ≤ v

3
. Thus we focus on the

uniform case of the problem.

1.2 Preliminary Results
We denote by a STSm(v) a STS(v) whose blocks can be partitioned into partial par-
allel classes of size m. The next three results are straightforward, and can be found in
[1].

Lemma 6 [1] If v ≡ 3 (mod 6), then there exists a STS v
3
(v).

Proof If v ≡ 3 (mod 6) then the STS(v) is a KTS(v), and a Kirkman triple system
is just a resolvable Steiner triple system. This means that we can partition its blocks
into parallel classes of size m = v

3
, and in total we would have v−1

2
parallel classes.

Lemma 7 [1] Suppose m1|m and there exists an STSm(v), then there exists
an STSm1(v).

Proof The proof is obvious. We divide each partial parallel class of size m into partial
parallel classes of size m1.

Recall a Hanani triple system, HATS(6t + 1) is equivalent to an STS(6t + 1) that
admits a color type (2t)3tt1. It was shown in [6] that a Hanani triple system exists if
and only if v ≡ 1 (mod 6) and v 6∈ {7, 13}. So we will have 3t partial parallel classes
with 2t = v−1

3
blocks in them and a partial parallel class with t = v−1

6
blocks. We

partition each one of the 3t partial parallel classes of size 2t in two. We then have
6t + 1 = 6 · v−1

6
+ 1 = v partial parallel classes of size t = v−1

6
. Hence the following

result.

10



Lemma 8 [1] If v = 6t+ 1, then there exists a STSt(v).

An l − PPC denotes a partial parallel class with l triples in it.
The following two theorems give results on decomposing an STS(v) into partial par-
allel classes.

Theorem 9 [3] Let S = (V,B) be an STS(v) with v > 9l. Then there exists a decom-
position of B into l − PPC ′s.

Theorem 10 [3] An STS(v) can be decomposed into 2-PPC’s if and only if 2|b and
v 6= 9.

From the previous theorem we know we are able to decompose an STS(v) into partial
parallel classes of size 2. In Chapter 2, we develop a method of decomposing the blocks
of an STS(v) into 2 − PPC ′s, and we then extend this method to 4 − PPC ′s. We
also give a few special decompositions in which the techniques used could possibly be
generalized.

Chapter 3 summarizes our results and gives a table of what is known on the problem
for v ≤ 43, and discusses some options for future research.

11
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Chapter 2

New results

In this chapter we study one of the main techniques used in [1] to decompose the blocks
of an STS(v) into l−PPC ′s. We give the result, and illustrate the idea with the exam-
ple v = 25, m = 5. Although the technique is used to obtain many of the non-uniform
decompositions, it will also be useful for the uniform case.

Theorem 9 says we can always decompose an STS(v), when b = v(v−1)
2

into partial
parallel classes of size 2 except for the cases when v = 9. We develop a different
technique to do so, that could possibly be generalized for partial parallel classes of
larger size. We extend the idea behind this technique, to partial parallel classes of size
4. We also give the construction of a 5− PPC decomposition for v = 21 and v = 25.

2.1 Dismantling Partial Parallel Classes
The following method was used in [1] to construct partial parallel classes decomposi-
tion of new sizes from already known decompositions. The idea behind this method is
given in the following lemmas. The first one dismantles two partial parallel classes to
form three partial parallel classes.

Lemma 11 [1] Let n1 and n2 be positive integers such that n1 ≤ n2, let V1 and V2
be disjoint sets such that |V1| = n1 and |V2| = n2, and let G be a bipartite graph
with bipartition (V1, V2) such that G has maximum degree at most 3 and either G is
connected or n2 ≤ 2n1. Let x1 and x2 be integers such that either x1 ≤ n1 and
2x1 + x2 < n2 or x1 = x2 = n1

3
= n2

3
. Then unless G is K3,3 and x1 = x2 = 1, there

are sets X1 ⊆ V1 and X2 ⊆ V2 such that |X1| = x1, |X2| = x2 and no edge of G has
one end in X1 and one end in X2.

Lemma 12 [1] Suppose a color type T
′

can be obtained from a color type T by itera-
tively applying the following operations:

13



(i) Take an entry y in the sequence and replace it with an entry a such that a ≤ y.

(ii) Take an entry y in the sequence and replace it with two entries a and b such that
a+ b = y.

(iii) Take two entries y and z such that y ≤ z ≤ 2y and replace them with three
entries a, b , and c such that a+ b+ c = y+ z , a ≤ y , b ≤ z, (a, b, c) 6= (2, 2, 2)
and either 2y < 2a+ b or a = b = c = 2y

3
= 2z

3
.

Then, if (V,B) is a PSTS that admits color type T , there is a PSTS (V,B′
) with

B′ ⊆ B that admits a color type T
′′
.

Lemmma 12 may be used to obtain uniform decompositions when certain mixed
decompostions are known. The following example illustrates the lemma by obtaining
a decomposition of an STS(25) into 5 − PPC ′s from the known decomposition with
color type 86 76 52.

Example 2.1.1 A decomposition of an STS(25) into 5− PPC ′s.
From the results of the paper we studied, [1], there is an STS(25) that has a color type
T = 86 76 52. We want to get a color type T

′
= 520 , in other words we want 20 partial

parallel classes of size 5. In order to get the second color type or the 20 5− PPCs of
the STS(25) we apply Lemma 12.
First we choose y = 7 and z = 8. Then we let a = b = c = 5. We check if the
conditions stated in the lemma hold.

1. 7 ≤ 8 ≤ 2 · 7⇒ y ≤ z ≤ 2y

2. 5 + 5 + 5 = 7 + 8⇒ a+ b+ c = y + z

3. 5 ≤ 7⇒ a ≤ y

4. 5 ≤ 8⇒ b ≤ z

5. 2 · 7 ≤ 2 · 5 + 5⇒ 2y ≤ 2a+ b

In this way , each time we have a partial parallel class of size 8 and a partial parallel
class of size 7 we’ll get 3 partial parallel classes of size 5. From the color type T =
86 76 52 that we have , we get 18 partial parallel classes of size 5 from the 6 partial
parallel classes of size 8 and the 6 classes of size 7. There were already 2 partial
parallel classes of size 5. Thus in total we have 20 partial parallel classes of size
5. This STS(25) with color type T

′
= 520 has been constructed, i.e. there exists an

STS5(25).

14



Example 2.1.2 A decomposition of an STS(13) into 2− PPC ′s.
In [1] we can find that there exists an STS(13) that has a color type T = 44 25.
We want to get a color type T

′
= 213, or 13 partial parallel classes of size 2. By

partitioning the 4 partial parallel classes of size 4 of the color type T = 44 25 in
two, we would get 8 partial parallel classes of size 2. We already have 5 other partial
parallel classes of size 2. Thus we would have in total 13 partial parallel classes of size
2, or 13 2− PPCs.

2.2 New Results
The main results of this chapter use 3-frames. Stinson solved the existence problem for
3-frames in 1987.

Lemma 13 [4] There exists a 3-frame of type gu if and only if g is even, u ≥ 4, and
g(u− 1) ≡ 0 (mod 3).

2.2.1 Partial Parallel classes of size m = 2

Lemma 14 If there exists a 3-frame of type 2u and u ≥ 7 , then there exists an
STS2(2u+ 1), whenever b = (2u+1)(2u)

6
= u(2u+1)

3
is even.

Proof Let v = 2u + 1 and G1, G2,... ,Gu, be the groups of a 3-frame of type 2u. The
blocks of the 3-frame along with the blocks formed as Gi ∪ {∞}, for i = 1, 2, ..., u
forms a STS(2u + 1). To see this, we need to show that each pair is in exactly one
block. In a 3-frame we have that each pair from distinct groups is in exactly one block,
and no pairs from the same group are in the same block. From the blocks created as
Gi ∪ {∞}, we have that the pairs in one group will be in exactly one block as well.
All the pairs containing {∞} will be covered exactly once also. So every pair of the
STS(2u + 1) is in exactly one block. The number of blocks in a STS(v) is v(v−1)

6
, so

we will have v(v−1)
12

partial parallel classes.

Now we describe the partial parallel classes. Because a 3-frame of type 2u exists, we
must have u ≡ 1 (mod 3). But when u ≡ 1 (mod 6), 2 - b, hence u ≡ 4 (mod 6),
and in particular u is even. We partition the groups into pairs:

{G1, G2}, {G3, G4}, ..., {Gu−1, Gu}.

For each pair of groups Gi and Gj , consider the frame parallel classes Fi and Fj . In
Fi there is at least one block B which is disjoint with Gj . In each frame parallel class
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there are v−3
3

blocks. There are two blocks in Fi that intersect Gj . Thus we are left with
v−9
3

blocks that do not intersect Gj . Let B be one of these blocks.
Remove B from Fi and add it to Fj . The number of blocks remaining in Fi now is:

2u− 2

3
− 1 =

2u− 5

3
=

2v−1
2
− 5

3
=
v − 6

3
=
v

3
− 2

.
Since v ≡ 3 (mod 6) this number is odd. Partition Gi∪{∞} along with the remaining
blocks of Fi into partial parallel classes of size 2. The number of blocks in Fj is:

2u− 2

3
=

2v−1
2
− 2

3
=
v − 3

3

which is even. Because Gj ∩ B = ∅, we may take Gj ∪ {∞} and B to be a partial
parallel class of size 2. Partition the rest of Fj into 2− PPC ′s.
This accounts for:

v
3
−2+1

2
= v−3

6
partial parallel classes in Fi and (v−3

3
+ 2) · 1

2
= v+3

6

partial parallel classes in Fj . So in Fi and Fj together we have:

v − 3

6
+
v + 3

6
=

2v

6
=
v

3

partial parallel classes.
We have u

2
pairs of groups, and each of them gives us v

3
partial parallel classes. So in

total we get:

v

3
· u
2
=
v

3
· v − 1

4
=
v(v − 1)

12
partial parallel classes, the number we were looking for.

Theorem 15 If 2|b, then there exists an STS(v) whose blocks can be partitioned into
b
2
2− PPCs.

Proof If v ≡ 1 (mod 6), then b = v(v−1)
3·2 ≡ 0 (mod 2) when v−1

6
is even. Let

v = 6t + 1, then b ≡ 0 (mod 2) whenever t is even. By Theorem 3, there exists a
HATS(6t+1) for all such t, except for t ∈ {1, 2}. This is equivalent to an STS(6t+1)
with color type (2t)3tt1. Because t is even, we can divide each partial parallel class into
2− PPC ′s. If t = 1, b is not even. If t = 2, then an STS2(13) exists by Lemma 12.
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If v ≡ 3 (mod 6) and v ≥ 15, then v−1
2
≡ 1, 4 (mod 6), and v

3
≡ 1, 3, 5 (mod 6).

Therefore, b = v(v−1)
3·2 ≡ 0 (mod 2) only when v−1

2
≡ 4 (mod 6). So let u = v−1

2
≡ 4

(mod 6). Then u − 1 ≡ 0 (mod 3), and by Lemma 13, there exists a 3-frame of type
2u. Now we apply Lemma 14 to construct the 2− PPC ′s.

If v = 7 and v = 9, then by Theorem 10 neither the STS(7) nor the STS(9) can be
partitioned into 2− PPC ′s.

2.2.2 Partial parallel classes of size m = 4

Lemma 16 If there exists a 3-frame of type 2u, and u ≥ 16, then there exists an
STS4(2u+ 1), whenever 4|b.

Proof Let v = 2u + 1 and G1, G2,... ,Gu , be the groups of a 3-frame of type 2u. The
blocks of the 3-frame along with the blocks formed as Gi ∪ {∞}, for i = 1, 2, ..., u
forms a STS(2u+ 1). The proof for this is identical to the proof in Lemma 14. Again
this STS(2u+ 1) has v(v−1)

6
blocks, so we will require v(v−1)

24
partial parallel classes.

Because of the existence of a 3-frame of type 2u, we must have that u ≡ 1 (mod 3).
This means that u ≡ 1, 4 (mod 6). But when u ≡ 1 (mod 6) , b 6≡ 0 (mod 2). So
u ≡ 4 (mod 6), and in particular u is even. However u being even is not enough,
since we want that 4|b. If u ≡ 4 (mod 6), then u ≡ 0, 2 (mod 4). u ≡ 4 (mod 6),
u ≡ 0 (mod 4) by the Chinese Remainder Theorem, u ≡ 4 (mod 12). We partition
the groups into sets of 4:

{G1 , G2, G3 , G4}, {G5 , G6, G7 , G8},..., {Gu−3 , Gu−2, Gu−1 , Gu}.

For each set of 4 groupsGi ,Gj ,Gk ,Gs for instance, consider the corresponding frame
parallel classes Fi , Fj ,Fk , and Fs. In each frame parallel class there are v−3

3
blocks.

There are two blocks in Fi that intersect Gj . Thus we are left with v−9
3
≥ 8 blocks that

do not intersect with Gj . Let Bj be one of these blocks. Remove Bj from Fi and add it
to Fj . There are 3 blocks in Fj that intersect Bj . Pick two blocks Bj1 and Bj2 that are
not any of these.
So we would get this partial parallel class of size 4; {Gj ∪ {∞}, Bj, Bj1 , Bj2}. The
blocks Bj1 , and Bj2 are in frame Fj . We take two more blocks from Fi and add them
to Fk and Fs respectively. Following the same reasoning as above, we can find these
two more blocks that do not intersect with Gk and Gs. So we also remove Bk and Bs

from Fi and add them to Fk and Fs respectively. In this way we would form two more
partial parallel classes of size 4. After removing these 3 blocks from Fi the number of
remaining blocks is:

17



2u− 2

3
− 3 =

2v−1
2
− 2

3
− 3 =

v − 3− 9

3
=
v

3
− 4

Because v ≡ 3 (mod 6), we have that v
3
− 4 is odd.

Partition Gi ∪ {∞} along with the remaining blocks of Fi into partial parallel classes
of order 4. The number of partial parallel classes in Fi is:

v
3
− 4 + 1

4
=

v
3
− 3

4
=
v − 9

12

The number of blocks in Fj , Fk , and Fs after adding up the blocks we took from frame
Fi will be

2u− 2

3
+ 1 =

2v−1
2
− 2

3
+ 1 =

v − 3 + 3

3
=
v

3

We partition Gj ∪ {∞}, Gk ∪ {∞}, and Gs ∪ {∞} along with the rest of the blocks in
their respective frames, and we get

(
v

3
+ 1) · 1

4
=
v + 3

12

partial parallel classes. In these 4 frames together, Fi, Fj , Fk , and Fs we have in total

v − 9

12
+ 3 · v + 3

12
=
v − 9 + 3v + 9

12
=

4v

12
=
v

3

partial parallel classes. We have u
4

sets of groups, each of them gives us v
3

partial parallel
classes. Thus the total number of partial parallel classes is

v

3
· u
4
=
v

3
· v − 1

8
=
v(v − 1)

24

partial parallel classes, the number we were looking for.

Theorem 17 If 4|b, then there exists an STS(v) whose blocks can be partitioned into
b
4
4− PPCs.

Proof If v ≡ 1 (mod 6), then we should have that (v−1
6
) ≡ 0 (mod 4), in order that

4|b. Let v = 6t + 1, then we need t ≡ 0 (mod 4). From Theorem 3 there exists a
HATS(6t + 1) for all such t. This HATS(6t + 1) is equivalent to an STS(6t + 1)
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that admits a color type (2t)3tt1. Now since t ≡ 0 (mod 4) we can divide each of these
partial parallel classes into 4− PPC ′s.

If v ≡ 3 (mod 6) then we have that v−1
2
≡ 1, 4 (mod 6) and v

3
≡ 1, 3, 5 (mod 6) and

so v
3

is odd. Therefore because 4|b when v−1
2
≡ 0 (mod 4) and thus u = v−1

2
≡ 4

(mod 6). Consequently u − 1 ≡ 0 (mod 3), and so by Lemma 13, there exists a 3-
frame of type 2u. Now apply Lemma 16 to construct the 4− PPCs.
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2.3 Special Cases
Theorems 15 and 17 cover the decomposition of many cases. However there are cases
when we cannot use these results. We discuss some of those cases now. The case of
v = 21 and m = 5 has been covered in [1], but the case of v = 33 and m = 8 has not.
We give our own construction for each of these.

2.3.1 When v = 21 and m = 5

Lemma 18 There exists an STS5(21).

In this case we have an STS(21), which is actually a KTS(21). We will have to
decompose the 70 blocks into 14 partial parallel classes of size 5. We partition the
points into 3 groups; G0 = {00, 10, 20, 30, 40, 50, 60}, G1 = {01, 11, 21, 31, 41, 51, 61},
G2 = {02, 12, 22, 32, 42, 52, 62}. Since we are working on 21 points, 21 = 7 · 3, we can
put an STS(7) in each of the groups. We work on each group cyclically (mod 7).
Because we are working (mod 7) in each of the 3 groups, then we will have these
differences, {1, 2, 3} between the points in each of the groups. We will also consider
the differences between the points of one group with the points of 2 other groups. We
will call these type of differences, ”cross differences”.
The blocks of the partial parallel classes will be formed in the way that the differ-
ences between the points in each block cover all the differences among the 7 points in
each group, i.e. {1, 2, 3}. The rest of the blocks will be formed such that the points
of each block cover the cross differences between the groups G0, G1, and G2, i.e.
{0, 1, 2, 3, 4, 5, 6}. Below we give all the 14 partial parallel classes of size 5.

PPC1
00 10 30
01 11 31
02 12 32
20 21 22
40 51 62

PPC2
10 20 40
11 21 41
12 22 42
30 31 32
50 61 02

PPC3
20 30 50
21 31 51
22 32 52
40 41 42
60 01 12

PPC4
30 40 60
31 41 61
32 42 62
50 51 52
00 11 22
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PPC5
00 40 50
01 41 51
02 42 52
60 61 62
10 21 32

PPC6
10 50 60
11 51 61
12 52 62
00 01 02
20 31 42

PPC7
00 20 60
01 21 61
02 22 62
10 11 12
30 41 52

PPC8
00 21 42
10 31 52
20 41 62
30 51 02
40 61 12

PPC9
00 31 62
10 41 02
20 51 12
50 01 22
60 11 32

PPC10
00 41 12
30 61 22
40 01 32
50 11 42
60 21 52

PPC11
10 51 22
20 61 32
30 01 42
40 11 52
50 21 62

PPC12
00 51 32
10 61 42
20 01 52
30 11 62
60 31 02

PPC13
00 61 52
10 01 62
40 21 02
50 31 12
60 41 22

PPC14
20 11 02
30 21 12
40 31 22
50 41 32
60 51 42

Figures 2.1 - 2.5 illustrate the 14 partial parallel classes of size 5 of the STS(21).
The blocks {00, 10, 30}, {01, 11, 31}, and {02, 12, 32} colored in red in Figure 2.1 cover

the differences 1, 2, and 3 in group G0, G1, and G2. After developing these blocks
(mod 7) all edges with differences 1, 2, and 3 have been covered.

The block {20, 21, 22} colored in green in Figure 2.1 covers the cross differences (0, 0,
0) between the group G0, G1, and G2. When we develop (mod 7) this base block we
will have covered all edges with cross difference 0.

This block {40, 51, 62}, colored in blue in Figure 2.1 covers edges with cross differences
(1, 1, 5) between the groups G0 and G1, G1 and G2, G2 and G0 respectively. Devel-
oping this base block (mod 7) we cover all the (1, 1, 5) cross differences between the
three groups.

On the second partial parallel class in Figure 2.3 we cover the cross differences (2,
2, 3) between the groups G0 and G1, G1 and G2, G2 and G0 respectively. The block
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{00, 21, 42} developed (mod 7) will give us all such differences. Two more blocks
that cover these cross differences are given in red, on the third partial parallel class in
Figure 2.3.

Continuing on Figure 2.3, the rest of the blocks on the third partial parallel class, given
in blue cover the cross differences (3, 3, 1) between the groups G0 and G1, G1 and G2,
G2 and G0. We have four more such blocks on the first partial parallel class of Figure
2.4, colored in blue. By developing (mod 7) the block {00, 31, 62} we will get all such
differences between the three groups.

The next cross differences being covered by the green blocks in Figure 2.4 are (4, 4, 6).
Considering the block {00, 41, 12} (mod 7), we will get all these differences between
the groups G0 and G1, G1 and G2, G2 and G0.

The third partial parallel class in Figure 2.4 has four blocks, that are colored in purple,
which cover the cross differences (5, 5, 4) between the groups G0 and G1, G1 and G2,
G2 and G0. We have three more such blocks on the first partial parallel class of Figure
2.5. The base block of these differences is {00, 51, 32}.

The last cross differences that are being covered in Figure 2.5 between the groups G0

and G1, G1 and G2, G2 and G0, are the differences (6, 6, 2). All these blocks are give
in blue. The base block of these differences is {00, 61, 52}.

As we can see all the differences within the groups and between the groups, the cross
differences, are covered the same number of times. Having all the differences means
that we have all the blocks of the STS(21), and all of them are being partitioned into
partial parallel classes of size 5.
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G1G0 G2 G1G0 G2 G1G0 G2

Figure 2.1: Partial parallel classes of size 5

G1G0 G2 G1G0 G2 G1G0 G2

Figure 2.2: Partial parallel classes of size 5
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G1G0 G2 G1G0 G2 G1G0 G2

Figure 2.3: Partial parallel classes of size 5

G1G0 G2 G1G0 G2 G1G0 G2

Figure 2.4: Partial parallel classes of size 5

2.3.2 When v = 33 and m = 8

In this construction, we use a resolvable GDD. Rees solved the existence problem for
RGDD’s with block size 3.
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G1G1 G1 G1G0 G2

Figure 2.5: Partial parallel classes of size 5

Lemma 19 [10] A 3-RGDD(gu) exists if and only if u ≥ 3, g(u − 1) is even, gu ≡ 0
(mod 3).

Lemma 20 There exists an STS8(33).

Proof
The four groups of size 8 are:
G0 = {10, 20, 30, 40, 50, 60, 70, 80}, G1 = {11, 21, 31, 41, 51, 61, 71, 81},
G2 = {12, 22, 32, 42, 52, 62, 72, 82}, and G3 = {13, 23, 33, 43, 53, 63, 73, 83}. The ele-
ments of these groups will be the points of the STS(33). The 22 partial parallel classes
of size 8 are as follows.

PPC1
70 80 ∞
21 22 83
31 32 63
41 42 73
51 62 23
61 52 33
71 82 13
81 72 43

PPC2
30 60 ∞
61 62 43
71 72 23
81 82 33
11 22 63
21 12 73
31 42 53
41 32 83

PPC3
10 62 63
20 52 73
30 82 53
71 81 ∞
50 12 13
60 22 43
70 32 23
80 42 33

PPC4
10 52 53
20 62 83
30 72 63
40 82 73
50 22 23
60 12 33
70 42 13
31 61 ∞
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PPC5
10 41 43
20 31 13
72 82 ∞
40 11 23
50 71 73
60 81 63
70 51 83
80 61 53

PPC6
10 31 33
20 41 23
30 11 43
40 21 13
50 81 83
60 71 53
32 62 ∞
80 51 63

PPC7
10 71 32
73 83 ∞
30 51 42
40 61 12
50 41 82
60 31 52
70 21 72
80 11 62

PPC8
10 81 42
20 71 12
30 61 32
40 51 22
50 31 72
33 63 ∞
70 11 82
80 21 52

PPC9
11 12 53
51 52 13
40 72 83
80 32 43
30 21 33
70 61 73
20 81 22
60 41 62

PPC10
10 20 30
40 50 60
11 21 31
41 51 61
12 22 32
42 52 62
13 23 33
43 53 63

PPC11
10 40 70
20 50 80
11 41 71
21 51 81
12 42 72
22 52 82
13 43 73
23 53 83

PPC12
11 42 83
21 32 53
10 50 ∞
41 12 63
51 72 33
61 82 23
71 52 43
81 62 13

PPC13
11 32 73
21 42 63
31 12 83
41 22 53
51 82 43
61 72 13
20 40 ∞
81 52 23

PPC14
10 72 73
11 51 ∞
30 52 83
40 62 53
50 42 43
60 32 13
70 22 33
80 12 23

PPC15
10 82 83
20 72 53
30 62 73
40 52 63
50 32 33
21 41 ∞
70 12 43
80 22 13

PPC16
12 52 ∞
20 21 43
30 31 23
40 41 33
50 61 63
60 51 73
70 81 53
80 71 83
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PPC17
10 21 73
20 11 33
30 41 13
40 31 43
22 42 ∞
60 61 83
70 71 63
80 81 73

PPC18
10 61 62
20 51 32
13 53 ∞
40 71 42
50 11 52
60 21 82
70 31 62
80 41 72

PPC19
10 51 12
20 61 42
30 71 22
40 81 32
50 21 62
60 11 72
23 43 ∞
80 31 82

PPC20
31 22 73
71 62 33
20 82 63
60 42 23
10 11 13
50 51 53
30 81 12
70 41 52

PPC21
20 60 70
30 40 80
21 61 71
31 41 81
22 62 72
32 42 82
23 63 73
33 43 83

PPC22
10 60 80
30 50 70
11 61 81
31 51 71
12 62 82
32 52 72
13 63 83
33 53 73

The following discussion describes the procedure used to obtain the decomposition
given in Lemma 20.
An STS(33) has 176 blocks. If we want to partition the blocks into partial parallel
classes of size 8, then we will have 22 such classes.
In order to do that we start with a 3-frame of type 24, which we know exists from
Lemma 13. A 3-frame of type 24 was given previously in Example 1.1.3. We illustrate
it again in Figure 2.6. We give each point of this frame weight 4, so we will have 4
groups of size 8 and we add to it the {∞} point , so we get in total 33 points. Then
we use a resolvable group divisible design, RGDD(43) on each of the blocks of the
3-frame. The frame parallel classes will tell us which groups to use to get the blocks
of the partial parallel classes. The first frame parallel class indicates us that we are not
going to use G0 and so on. When we miss G0, we join to it the {∞} point and put on
it a KTS(9). And we do the same when we miss the other three groups G1, G2, G3.
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Since we gave to each point weight 4, then each block of the frame would give us 12
points, so we put an RGDD(43) on these points. Without loss of generality we assume
that parallel class 1, (PC1) of the RGDD(43) looks like in Figure 2.6. So we consider
this parallel class on the RGDD(43) that we put on block 1, {3, 5, 8} of frame parallel
class 1, (FPC1). On the RGDD(43) that we put on block 2, {4, 6, 7} of frame parallel
class 1, (FPC1) we take in consideration parallel class 2, (PC2). We take out one block
from PC1. The block we take out is given in red in Figure 2.7, and we replace it with
the block that contains the {∞} point on PC1 of theKTS(9) that we put onG0∪{∞}.
This other block is given in green in Figure 2.7. This gives us 8 blocks, since we used
two parallel classes of two RGDDs(43). So we have constructed the first 8− PPC of
an STS(33).

We repeat the same procedure again in these two blocks of FPC1, but now on the
RGDD(43) that we put on block 1, we work with PC2, and on the RGDD(43) that we
put on block 2, we work with PC1. Again we take out one block from PC1. This block
is given in red in Figure 2.8, and we replace it with the block that contains the {∞}
point on PC2 of the KTS(9). This block is the one given in green color on 2.7. In this
way we get another 8− PPC.

On FPC2 we miss G1. On G1 ∪ {∞} we put a KTS(9). Again we put an RGDD(43)
on block 1, {1, 6, 8} and one other on block 2, {2, 5, 7} of this frame parallel class. We
consider on block 1, PC2 of the RGDD(43), and on block 2, PC1 of the RGDD(43).
We take out the red block in Figure 2.8 from PC2, and we replace it with the green
block that contains the {∞} point on PC1 of the KTS(9). Thus we have get PPC3 of
STS(33).

We continue to work on these two blocks of FPC2. Now we change the parallel classes
that we consider on the RGDDs(43) that we put on them. On block 1, we consider
PC1 and on block 2, PC2. Again we take out one block from PC2, the red block in
Figure 2.8, and replace it with the green block that contains the {∞} point on PC2 of
the KTS(9). This counts for the fourth 8− PPC of the STS(33).

The same procedure is followed when working on FPC3 and FPC4. In these two last
frames, we work with PC3 and PC4 of the RGDDs(43) that we put on their respective
blocks.
As we can see from each frame parallel class we get 2 partial parallel classes of size
8. From all the 4 frame parallel classes we get 8 partial parallel classes of size 8. This
is illustrated Figures 2.8, 2.9, and 2.10. Another partial parallel class is created with
all the red blocks that we took out from the RGDDs(43) before. This is illustrated in
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Figure 2.11. Now the number of 8− PPCs is 9.

The blocks we took out from the RGDDs(43) were replaced with blocks from the
KTS(9) (the green blocks). In each parallel class of a KTS(9) there are 3 blocks.
Taking out one block we are left with 2. So we have 2 blocks left in PC1 and 2 blocks
left in PC2 of the KTS(9) that we used on G0, which was the group that was missed
by FPC1. Each frame parallel class gives us these 4 blocks of the KTS(9), and fur-
thermore none of these blocks contains {∞}. Thus we may take the 2 leftover blocks
on G0, G1, G2, and G3 from PC1 to make a partial parallel class of size 8. We may do
the same with the left over blocks from PC2 to make another partial parallel class. So
far we have in total 11 8− PPCs.

As we mentioned above we need to have 22 8 − PPCs all together. To construct the
11 partial parallel classes we used only PC1 and PC2 of the RGDDs(43) we put on
the blocks of FPC1 and FPC2. On FPC3 and FPC4 we used only PC3 and PC4 of
RGDDs(43) that we out on their blocks. On all the FPCs we used PCI and PC2 of
the KTS(9). Now on the RGDDs(43) that we put on the blocks of FPC1 and FPC2
we consider PC3 and PC4. On the RGDDs(43) that we put on the blocks of FPC3
and FPC4 we consider PC1 and PC2. This time on all the frame parallel classes we
consider PC3 and PC4 of the KTS(9). This we get 8 more 8− PPCs from the frame
parallel classes. We get one more from the blocks we take out from parallel classes
of the RGDDs(43). Two other 8 − PPCs are obtained from the left over block on
PC3 and PC4 of the KTS(9). Hence 11 more partial parallel classes of size 8. This
completes the 22 8− PPCs of the STS(33).

We illustrate the whole process of constructing the partial parallel classes in Figures 2.7
- 2.16.
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Figure 2.6: 3-frame of type 24 and an RGDD(43)
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G0 G1 G2 G3

PC1

PC2

∞

G0 G1 G2 G3

PC2

PC1

∞

Figure 2.7: Two 8-PPC’s using FPC1

G0 G1 G2 G3

PC2

PC1

∞

G0 G1 G2 G3

PC1

PC2

∞

Figure 2.8: Two 8-PPC’s using FPC2
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G0 G1 G2 G3

PC3

PC4

∞

G0 G1 G2 G3

PC4

PC3

∞

Figure 2.9: Two 8-PPC’s using FPC3

G0 G1 G2 G3

PC4

PC3

∞

G0 G1 G2 G3

PC3

PC4

∞

Figure 2.10: Two 8-PPC’s using FPC4
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G0 G1 G2 G3

∞

Figure 2.11: The 8-PPC created by all the blocks that we took out from the RGDD’s.
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G0 G1 G2 G3

PC3

PC4
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G0 G1 G2 G3

PC4

PC3

∞

Figure 2.12: Two 8-PPC’s using FPC1

G0 G1 G2 G3

PC4

PC3

∞

G0 G1 G2 G3

PC3

PC4

∞

Figure 2.13: Two 8-PPC’s using FPC2
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G0 G1 G2 G3
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∞

Figure 2.14: Two 8-PPC’s using FPC3

G0 G1 G2 G3
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G0 G1 G2 G3

PC1

PC2

∞

Figure 2.15: Two 8-PPC’s using FPC4
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G0 G1 G2 G3

∞

Figure 2.16: The 8-PPC created by all the blocks that we took out from the RGDD’s.
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Chapter 3

Summary, Conclusions and Further
Research

3.1 Summary and Conclusions
In this report we studied the problem of decomposing Steiner triple systems into par-
tial parallel classes of size m. We developed some constructions on how to solve this
problem, namely the constructions in Lemma 14 and in Lemma 16. As in the paper
[1] that motivated our study, we wanted to cover the cases 9 ≤ v ≤ 32. We extended
the order of the Steiner triple systems to v = 43. For orders 9 ≤ v ≤ 43 we found
ways to partition the triples into partial parallel classes of size m. So every time v ≡ 3
(mod 6) and the number of blocks is even we can apply Lemma 14 to obtain partial
parallel classes of size 2. And equivalently for partial parallel classes of size 4, when
v ≡ 3 (mod 6) and the number of blocks is divisible by 4 we use Lemma 16.

We obtain some other partitions into partial parallel classes by using already known re-
sults. For example we use Kirkman triple systems and Hanani triple systems to obtain
the partitions in many cases.

There were three cases that we treated separately and we used different methods.
For the Steiner triple system of order 21, to partition it into partial parallel classes of
size 5 we used a Steiner triple system of order 7 in each of its three 7-points. We worked
(mod 7) and so we covered all the differences the same number of times.
To construct the 20 partial parallel classes of size 5 of a STS(25) we used the construc-
tion described by Lemma 12 given in [1].
The last case was STS(33) and its size 8 partial parallel classes. As we described in
Chapter 2 in this case we used initially a 3-frame of type 24. Giving weight 4 to each
point of this frame and adding another point {∞}, we had the necessary points to con-
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struct the 22 partial parallel classes of size 8 of the STS(33). Then we needed to use
an RGDD(43), and we also needed the use of a KTS(9).
Hence because we were able to construct the partial parallel classes mentioned above,
we conclude that there exist an STS5(21), an STS5(25), and an STS8(33).

As a brief partial summary of the results in this report we have the following theorems.

Theorem 21 If 2|b, then there exists an STS(v) whose blocks can be partitioned into
b
2
2− PPCs.

Theorem 22 If 4|b, then there exists an STS(v) whose blocks can be partitioned into
b
4
4− PPCs.

The tables below, Table 3.1, 3.2, and 3.3 summarize our results, and give the current
state of the problem up to v = 99. Up to v = 43 we could partition them for each
value of m. After this order we used the constructions mentioned above to cover the
partitions for some of them values. New results in the summary tables are marked with
an (*).

3.2 Future work
The methods used in Lemmas 14, and 16 could possibly be generalized. These two
lemmas take care of cases when m = 2 and m = 4. We conjecture that this can always
be done for large values of m, when some necessary conditions are met. The method
used for the case of v = 33 and m = 8 also shows promise for generalization.
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Table 3.1: Summary table

v b bv
3
c m Construction

9 12 3 2 Theorem 10
3 Lemma 6

13 26 4 2 Lemma 12
15 35 5 5 Lemma 6
19 54 6 3 Lemma 8
21 70 7 2 * Lemma 14

5 * Lemma 18
7 Lemma 6

25 100 8 2 Lemma 8
4 Lemma 8
5 Lemma 12

27 117 9 3 Lemma 7
9 Lemma 6

31 155 10 5 Lemma 8
33 176 11 2 * Lemma 14

4 * Lemma 16
8 * Lemma 20

11 Lemma 6
37 222 12 2 Lemma 8

3 Lemma 8
39 247 13 13 Lemma 6
43 301 14 7 Lemma 8
45 330 15 2 * Lemma 14

3 Lemma 7
5 Lemma 7
6 ?

10 ?
11 ?
15 Lemma 6

49 392 16 2 Lemma 8
4 Lemma 8
7 ?
8 Lemma 8

14 ?
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Table 3.2: Summary table

v b bv
3
c m Construction

51 425 17 5 ?
17 Lemma 6

55 495 18 3 Lemma 8
5 Theorem 9
9 Lemma 8

11 ?
15 ?

57 532 19 2 * Lemma 14
4 * Lemma 16
7 ?

14 ?
19 Lemma 6

61 610 20 2 Lemma 8
5 Lemma 8

10 Lemma 8
63 651 21 3 Lemma 7

7 Lemma 7
21 Lemma 6

67 737 22 11 Lemma 8
69 782 23 2 * Lemma 14

17 ?
23 Lemma 6

73 876 24 2 Lemma 8
3 Lemma 8
4 Lemma 8
6 Lemma 8

12 Lemma 8
75 925 25 5 Lemma 7

25 Lemma 6
79 1027 26 13 Lemma 8
81 12 ?

15 ?
18 ?
20 ?
24 ?
27 Lemma 6
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Table 3.3: Summary table

v b bv
3
c m Construction

81 1080 27 2 * Lemma 14
3 Lemma 7
4 * Lemma 16
5 ?
6 ?
8 ?
9 Lemma 7

10 ?
85 1190 28 2 Lemma 8

5 Theorem 9
7 Lemma 8

10 ?
14 Lemma 8
17 ?

87 1247 29 29 Lemma 6
91 1365 30 3 Lemma 8

5 Lemma 8
7 Theorem 9

13 ?
1365 30 15 Lemma 8

21 ?
93 1426 31 2 * Lemma 14

23 ?
31 Lemma 6

97 1552 32 2 Lemma 8
4 Lemma 8
8 Lemma 8

16 Lemma 8
99 1617 33 3 Lemma 7

7 Theorem 9
11 Lemma 7
21 ?
33 Lemma 6
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