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Abstract

The St. Petersburg Paradox was first presented by Nicholas Bernoulli in 1713. It is related

to a gambling game whose mathematical expected payoff is infinite, but no reasonable

person would pay more than $25 to play it. In the history, a number of ideas in different

areas have been developed to solve this paradox, and this report will mainly focus on

mathematical perspective of this paradox. Different ideas and papers will be reviewed,

including both classical ones of 18th and 19th century and some latest developments. Each

model will be evaluated by simulation using Mathematica.
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Chapter 1

Introduction

The St. Petersburg Paradox was first presented by Nicolas Bernoulli, a prominent Swiss

mathematician from the well-known Bernoulli family, first appearing in a letter to another

distinguished French mathematician P. R. de Montmort on Sep. 9th, 1713. The first

academic article about this paradox was published in 1738 in Commentaries of the Imperial

Academy of Science of Saint Petersburg, by N. Bernoulli’s cousin Daniel Bernoulli. The

name of the paradox was coined by D’Alembert in 1768. The paradox relates to a designed

game, which will be called “St. Petersburg game" in this text, described by D. Bernoulli [1]

in his paper as follows:

Peter tosses a coin and continues to do so until it should land “heads" when it comes to

the ground. He agrees to give Paul one ducat if he gets “heads" on the very first throw, two
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ducats if he gets it on the second, four if on the third, eight if on the fourth, and so on, so

that with each additional throw the number of ducats he must pay is doubled. Suppose we

seek to determine the value of Paul’s expectation.

What is a reasonable stake Paul should place to play this game? On the one hand, a

reasonable person would not want to spend much on this game, since as the desired payoff

raised the corresponding probability decreases very fast. For example, the probability to

win a payoff of 16 dollars is only 1/32 ≈ 3.125%. On the other hand, by the classical

probability theory, the “fair price" to play a game shall be the mathematical expectation of

payoff of a game, and in this game it turns out to be

20 · 1
21 +21 · 1

22 +22 · 1
23 + . . .=

1
2
+

1
2
+

1
2
+ . . .= ∞. (1.1)

D. Bernoulli [1] states the discrepancy as follows:

. . . Although the standard calculation shows that the value of Paul’s expectation is infinitely

great, it has . . . to be admitted that any fairly reasonable man would sell his chance, with

great pleasure, for twenty ducats.

In the history, a number of ideas in different areas have been developed to solve this

paradox. For example, D. Bernoulli’s paper is considered to be the root of modern marginal

utility theory [10], which stimulating many papers in the area of economics. But our report

will mainly focus on mathematical perspective of this paradox. Let us denote the payoff of

2



one game by a random variable X . Then the probability distribution of X is given by

P(X = 2i) =
1

2i+1 , for for i = 0,1,2,3, . . . . (1.2)

Also, we define the total and average payoff of n independent games as follows:

Sn :=
n

∑
i=1

Xi, and Xn :=
Sn

n
. (1.3)

where X1,X2, . . . are independent copies of X .

3





Chapter 2

Before 1945

2.1 Nicolas Bernoulli and Gabriel Cramer

This paradox exists primarily because the mathematical expectation is infinite. In other

words, the series computing the expectation, ∑
∞
i=0 1/2i+1 ·2i, diverges. We can generalize

the setting of this game, with p(i) representing the probability of the outcome that the

“head" first lands at i-th toss and f (i) representing the payoff when that occurs. Now the

mathematical expectation can be written as

∞

∑
i=0

p(i) · f (i). (2.1)
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Then it is straightforward that two methods can be generated to make this series convergent,

to modify either p(i) or f (i). In the history, N. Bernoulli himself did the former and another

Swiss mathematician Gabriel Cramer did the latter both for the first time. During 18th and

19th century, most of works related to our topic were written in non-English languages. We

found this part of history of this chapter mainly from a historical article of Gerard Jorland

in 1987 [9] and another article of Jacques Dutka in 1988 [5].

In another letter to de Montmort on Feb. 20th in 1714, N. Bernoulli proposed a resolution

that the event of very small probability should not be taken into consideration, although

the payoff of these event are large. Applying his solution to our model, p(i) is enforced

to be zero for large i and consequently the series becomes finite. Jacob Bernoulli, N.

Bernoulli’s uncle, had stated a similar concept called moral certitude in his famous book

Ars Conjectandi. G. L. L. Buffon had a good illustration in 1846, cited from Jorland’s

paper [9], “As for moral certitude, he (Buffon) had found in a bill of mortality that the

odds of death overnight for a 56 year-old man were 1 to 10,189, from which he inferred

that the mean man of that age does not fear death merely because of his moral certitude

that a probability lower than 1/10,000 is as nought." Then Buffon suggested evaluating

probabilities less than 1/213 = 1/8192 as 0, leading the expectation or the stake to 6.5,

which seems reasonable.

However, this solution has two drawbacks. One is that the choice of threshold is subjective

thus can be very arbitrary. Also, as we will see from the result from simulation study later,

6



although the probability is small, high payoff still have a big influence on the outcomes

especially when we increase the number of games. Nowadays, high-speed computers allow

us to simulate games within seconds. Figure 2.1 is a result of simulated St. Petersburg

games using Mathematica. For each point on the graph, the x-coordinate represents the

number of games Paul chooses to play, and y-coordinate is the average payoff Xn, and

we simulate the situation from one game to ten thousands games. As it showed, mostly

the average payoff lands between 5 and 10. But there are still many times, Paul obtains

considerable average payoffs. It happens mainly because Paul is lucky enough to obtain

one (or two) very high payoff(s) on some game, even though the probability of occurrence

is extremely small. For example, all points in circle A on the graph are under the situation

that Paul obtains one payoff of 219 = 524,288 coins in some game, which totally dominates

and leads the average payoff to a high lever. Also all points in circle B indicates occurrence

of one payoff of 218 = 262,144 coins in some game. Apparently, these situations can not

be ignored, in fact they act as a strong motivation for gamblers to play this game.

B

A
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Figure 2.1: Average payoffs for different number of games
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Later, N. Bernoulli told the paradox to G. Cramer, and the latter states his solution in a

letter to the former in May 21st 1728. To solve the paradox, Cramer applied a concept,

which would be recognized as utility: “Mathematicians value money in proportion its

quantity, whereas reasonable people value it in proportion to its use." He continued to

argue that any payoff beyond certain large quantity, which he proposed 224, will just bring

the same pleasure as 224 does. Applying this solution to our model (2.1), it is enforced that

f (i) = min{2i,224}, which becomes bounded and leads to a finite expectation and thus a

finite stake

24

∑
i=0

1
2i+1 ·2

i +
∞

∑
i=25

1
2i+1 ·2

24 = 12+1 = 13. (2.2)

Similarly, we can evaluate this solution by simulation, and we will make the payoff be 224

if it exceeds 224. First, we make Figure 2.2 in the similar way as we did in Figure 2.1.

As we can see, mostly the points has a payoff below 10, thus below the stake 13. In fact,

88.09% of points are below 13. This result undermines the Cramer’s solution.

Also, to be more precisely, we can consider average payoff of a group of 100 games. After

playing 10,000 groups three times, proportion of groups whose average payoffs exceeds

the stake 13 are correspondingly 0.0956,0.095,0.1008. This result suggests if Paul plays

100 consecutive games, he has about 10% of chance getting a average payoff higher than

the stake 13.

This result can be implied by Chebyshev’s Inequality. To model Cramer’s solution, we can

8
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Figure 2.2: Average payoffs for different number of games under Cramer’s
bound

define Y := min{X ,224} as the payoff of “Cramer’s criterion". Then it can be obtained that

Y has a large variance: VarY ≈ 3×223 ≈ 2.5×107, then by Chebyshev’s Inequality,

P(|Y n−E Y | ≥ ε)≤ VarY
nε2 . (2.3)

In our case n= 100, then to make VarY
nε2 < 1, we still need ε >

√
2.5×105. So Y n can appear

very far away from E Y , suggesting our result earlier is reasonable.

Cramer also improved his utility model by taking square root of quantity as the utility,

which is already very close to Danial Bernoulli’s later resolution where a logarithmic

function is used. This model makes more sense, since it models the fact that we always

obtain more pleasure if we have more payoff, no matter how large that is. Two billion will

surely bring more happiness than one billion, but just not as twice as much. Under this new

9



assumption, the mathematical expectation of utility, or equivalently utility mean, becomes

∞

∑
i=1

√
2i−1

2i =
1
2

∞

∑
i=1

1√
2i−1

=
1

2−
√

2
. (2.4)

Then the stake Paul places would also has the same utility, which would be the squared

utility mean (1/(2−
√

2))2 ≈ 2.914, which is more reasonable than the previous stake 13.

2.2 Danial Bernoulli

Although D. Bernoulli’s paper [1] was published in 1738 as stated in the introduction, he

finished and submitted his paper in 1731, about three years after Cramer’s resolution. In

fact, he did not know Cramer’s idea until his publication. In this paper, he discussed in

detail about the concept of utility: the value of wealth should not depend on the amounts

but the utility. For example, it is usually true that one thousand dollars have less value to

a rich person than to a beggar, although the amount is the same. Thus, the utility (y) can

be considered as a function of wealth (x). He made an assumption that, rephrased using

today’s college calculus terminology, the rate of change of utility with respect to wealth is

inversely proportional to the initial wealth, a.e.,

dy
dx

=
k
x
, (2.5)

10



where k is a positive constant. After integration, we have the solution

y = k lnx− k lna, (2.6)

where a is the initial wealth, which yields zero utility, i.e. y(a) = 0. If x is the wealth after

a St. Petersburg game, then x− a is the payoff in wealth, and the expected utility gained

from the payoff can be calculated as a weighted mean as follows

∞

∑
i=0

1
2i+1 · (k ln(a+2i)− k lna) = k

∞

∑
i=0

1
2i+1 ln(a+2i)− k lna (2.7)

Then if we denote the suggested stake as s, then its utility would be the same as the expected

gain utility, more precisely,

k ln(a+ s)− k lna = k
∞

∑
i=0

1
2i+1 ln(a+2i)− k lna (2.8)

which yields

s =
∞

∏
i=0

(a+2i)
1

2i+1 −a. (2.9)

Essentially, D. Bernoulli’s resolution contends that Paul’s stake should depends on his

initial wealth. He made a comment “This result sheds light on a statement which is

universally accepted in practice: it may be reasonable for some individuals to invest in

a doubtful enterprise and yet be unreasonable for others to do so." Setting different values

11



of initial wealth a, we can compute the corresponding stakes. See Table 2.1

Table 2.1
Estimated stake price for different initial wealth

Initial Wealth a 0 10 100 1,000 104 105 106

Suggested Stake s 2.0 3.0 4.4 6.0 7.6 9.3 10.9

In spite of the absurd first column where the suggested stake for a zero initial wealth is 2.0,

the other six columns seem reasonable. Now we can simulate games to test if D. Bernoulli’s

resolution is reasonable.

First consider the case with an initial wealth 106 dollars and a stake 10.9 coins. Suppose

Paul has an initial wealth of 106, and let us assume Paul chooses to play 10,000 games.

Each time he pays a stake of 10.9 and receives the payoff. We will design a algorithm to

simulate this process. In order to achieve a better estimation, let us consider 200 Pauls with

the same initial wealth playing these games. Of course, some of them will gain wealth

whereas others will lose coins. We collect the results of these 200 Pauls, and display them

in a histogram. See Figure 2.3.

We see about 3/4 of Pauls (146 out of 200) lose some amount of money, but for those Pauls

who earned, quite a few of them have earn a big amount of money, especially those three

that cannot be displayed in the graph, about one million, two million, four million. In fact,

the mean value of coins earned/lost is 31074.4. In total, this is a reasonable game to play

for Paul if he has one million coins.

12



Mean Value: 31074.4

-50 000 0 50 000 100 000 150 000 200 000 250 000 300 000
0

10

20

30

40

Number of dollars earned�lost

N
um

be
r

of
Pa

ul
s

Figure 2.3: Histogram of gains/losses for 200 Pauls with initial wealth 106

playing 10,000 games. a

aThere are three gain 1.0049× 106,2.0796× 106,4.14824× 106, not displaying in the
graph, since they are far apart from others.

Also, consider the case with an initial wealth 10 coins and a stake 3.0 coins. Similarly,

suppose 2,000 Paul has an initial wealth of 10, and each time he pays a stake of 3.0 and

receives the payoff. But it is a little different in this case, for one group of Pauls may run

out of money very quickly if they gets bad luck. Also there will be another group of Pauls

whose wealth may keep growing. Let us assume that Paul will at most play 1,000 games

under any case. Figure 2.4 and Figure 2.5 are histogram of the first group and the second

group of Pauls.

It’s been shown in Figure 2.4 that 1,383 out of 2,000 Pauls run out of money before 1,000

games end, and in fact most of them end it within the first 20 games. From Figure 2.5, most

of Pauls earn less than 5,000 coins, but some Pauls get very luck to have a very big payoff

with one reach one million coins started from 10 coins. In total, it also suggests that 3.0 is

13



a reasonable price of a Paul with an initial wealth 10.
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Figure 2.4: Histogram of number of games played for 1383 Pauls who go
bankrupt
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Figure 2.5: Histogram of number of coins earned for 617 Paulsa

aThere are seven gain 132866,134883,137413,267984,269753,526220,1068322, not
displaying in the graph, since they are far apart from others.

The most striking result from this simulation is that even though the suggested stake of fist

case 10.9 is more than three times greater than that of second case 3.0 (even higher than the

initial wealth of the second case 10), they are still reasonable according to the experimental

14



results. This also supports D. Bernoulli’s resolution.

2.3 G. L. L. Buffon

In the history, Buffon is the first one who actually did the games, he found a child play this

game 2048 times to examine his result. Instead of the payoff of a St. Petersburg Paradox,

Buffon considers the total number of tosses when it lands a head for the first time. In a

paper of 1777, he published his resolution. In a St. Petersburg game, total number of tosses

when the first head appears is denoted by T , e.g. a head appears at T -th toss for the first

time. Then P(T = k) = 1/2k, for k = 1,2, · · · . Now suppose Peter and Paul agree that

they will play a total of N = 2s games, then we will have a sequence of T1,T2, . . . ,TN as

independent copies of T . Thus, the event {T = k} is expected to happen in

E
N

∑
j=1

I{Tj = k}= N ·P(T = k) =
N
2
= 2s−k (2.10)

games. More precisely, it can be achieved that

15



{T = 1} is expected to happen in 2s−1 games,

{T = 2} is expected to happen in 2s−2 games,

...

{T = s} is expected to happen in 1 games,.

(2.11)

If we add all games above, there will be 2s− 1 games and one game will be missing.

Buffon claims that the number of tosses in last incomplete game cannot be well estimated,

and he believes that discarding that game will not cause any significant error. Using result

above, we can naturally calculate the expected total payoff ∑
s
i=1 2s−i · 2i−1 = N · s/2, or

equivalently, expected average payoff s/2. Then s/2 will also be Paul’s reasonable stake.

Here, the significance of Buffon’s resolution is that the average payoff of games depends

on the number of games (N) Paul will play. His result is displayed in Table 2.2

In 1889, Sydney Lupton [11] generalized Buffon’s result. If Paul will play N St. Petersburg

game, then Paul’s stake should be of the same order of 1/2 · log2 N.

16



Table 2.2
Theoretical and Experimental results of Buffon

Distribution of games
Rank of toss ending the game Value of the game Empirical Binomial

1 1 1,061 1,024
2 2 494 512
3 4 232 256
4 8 137 128
5 16 56 64
6 32 29 32
7 64 25 16
8 128 8 16
9 256 6 8

10 512 4
11 1,1024 2

Total value of games 10,057 11,264

17





Chapter 3

After 1945

For the sake of convenience, most of researchers modified the original game by multiplying

the payoff by 2. To be consistent with their results we will do that as well. So from now

on, the distribution of payoff in (1.2) would be redefined as follows,

P(X = 2i) =
1
2i , for i = 1,2,3, . . . . (3.1)

3.1 William Feller

Feller’s paper in 1945 [6] really brings the study of St. Petersburg Paradox into a level of

maturity. In this paper Feller applied a generalized Weak Law of Large Number (WLLN)

19



of his another paper in 1937 [8] into this problem. The normal WLLN can be stated as

follows: suppose X1,X2, . . . are independent and identically distributed random variables

with common expectation E X1 = ξ < ∞, then

∀ε > 0,P(|Xn−ξ |< ε)→ 1, as n→ ∞, (3.2)

where Xn := 1
n ∑

n
i=1 Xi. The limit above can also be denoted as Xn

P−−−→
n→∞

ξ , meaning Xn

converges to ξ in probability. However, this WLLN cannot be used in the St. Petersburg

games, since the expectation of payoff is infinite as we stated in the introduction. In the

paper of 1937, he generalized a WLLN for an iid random sample whose expectation is

infinite. After applying this result, he achieved a WLLN for St. Petersburg paradox: if

X1,X2, . . . denotes payoffs of our St. Petersburg games, then

P
(∣∣∣∣ Xn

log2 n
−1
∣∣∣∣< ε

)
→ 1, as n→ ∞, (3.3)

In the sense of the convergence in probability, Feller suggest the fair stake for playing n

games should be of the order with n log2 n, to which Buffon’s result is close. A detail

discussion can be found in Chapter X of his book in 1968 [7].

There are some improvements of Feller’s result. In 1961, Y. S. Chow and Herbert Robbins

[2] proved that the corresponding Strong Law of Large Number (SLLN) of St. Petersburg

Games does not hold. The SSLN asserts that: X1,X2, . . . are independent and identically

20



distributed random variables with common expectation E X1 = ξ < ∞,

P( lim
n→∞

Xn = ξ ) = 1. (3.4)

The limit above can also be denoted as Xn
a.s.−−−→

n→∞
ξ , meaning Xn converges to ξ almost

surely. (3.4) is equivalent to

∀ε > 0,P(sup
m≥n
|Xm−ξ |< ε)→ 1, as n→ ∞, (3.5)

Comparing (3.2) and (3.5), it is clear that almost sure convergence implies convergence in

probability, but not vice versa. Y. S. Chow and Herbert Robbins show that (3.4) does not

hold for St. Petersburg games. In fact, Applying Borel-Cantelli lemma, they achieve that

P
(

lim
n→∞

Xn

log2 n
= 1
)
= 0. (3.6)

So St. Petersburg Paradox provides a good example of a sequence of random variables

converges in probability but not almost surely.

Another improvement was made by Anders Martin-Löf [12] in 1985, who obtained a limit

distribution for Paul’s average gain. Suppose Paul plays a number of N = 2n games in total

with a total stakes N log2 N suggested by Feller and the total gain is denoted by SN , then
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the average gain will be

SN−N log2 N
N

=
SN

N
−n. (3.7)

Martin-Löf proves that this average gain in (3.7) has a limit distribution G(x) whose

characteristic function can be expressed explicitly. He actually gives a heuristic argument

that the limit distribution G(x) which is the same as that of

S :=
0

∑
k=−∞

(Zk−2−k)2k +
∞

∑
k=1

Zk2k, (3.8)

where Z1,Z2, . . . independently and identically follow the Poisson distribution with

parameter 2−k. Later he proves that

P(
SN

N
−n > 2m + x)≈ 2−m(2−G(x)) (3.9)

when n is not too small and m ≥ 5. This approximation will help Peter to determine the

stake in order to achieve a low probability for Paul to gain from him. For example, setting

x = 0, G(x) can be calculate as 1.7925. Then if Peter wants a low probability 10−3 ≈ 2−10,

he takes m = 11, then the stake would be n+2048.
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3.2 Hugo Steinhaus

In 1949, Steinhaus [13] suggested his resolution in a short paper of sixty six lines.

Observing that payoffs of 2 are expected to happen in 1/2 of games, payoffs of 4 are

expected to happen in 1/4 of games, payoffs of 8 are expected to happen in 1/8 of games,

etc, he built the a sequence for stakes of the game,

2,4,2,8,2,4,2,16,2,4,2,8,2,4,2,32,2,4,2,8,2,4,2,16,2,4,2, · · · (3.10)

where 2 appears every other position, 4 appears every four positions, 8 appears every eight

positions, and in general 2k appears every k positions. Then in order to play the game, Paul

needs to pay 2 in the first game, 4 in the second game, pay 2 in the third game, etc. We

can call this sequence “Steinhaus Sequence", which will be referred as {an} in this section.

Also we define

sn :=
n

∑
i=1

an, and an :=
sn

n
(3.11)

We can compare Steinhaus’ average stake {an}with Feller’s average stake {log2 n}. Figure

3.1 shows these two sequences as n ranges from 1 to 1000, with blue dots indicating {an}

and red dots as {log2 n}. It can be noticed that Steinhaus’ game is more expensive to play

than Feller’s. More precisely, large differences will happen when n is chosen to be a power
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of 2, since big stakes will be added into the sequence {an}. Also, small differences will

happen when n is one unit less than a power of 2. In fact, when n = 2k−1,k = 1,2, · · · ,

sn = 2 ·2k−1 +4 ·2k−2 +8 ·2k−3 + · · ·+2k−1 ·2+2k ·1 = k2k = kn, (3.12)

then an = k = log2(n+ 1) ≈ log2 n when n is large. So one shortcoming of Steinhaus’

resolution is if Paul knows the stake sequence in advance, he can stop playing games as the

number of games gets closer to a power of 2 to avoid a large stake. Table 3.1 shows the

average stake price of 2k and 2k− 1 St. Petersburg games for some k. The striking result

of the table is the big differences of average stake prices between two groups even though

they only differ from one game.

Steinhaus

Feller
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Figure 3.1: Comparison of Stake prices of Feller and Steinhaus.

Sándor Csörgö and Gordon Simons [4] presented a deeper study based on Steinhaus’ work

in a paper of 1993.
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Table 3.1
Required average stake prices for 2k and 2k−1 suggested by Steinhaus

Value of k 7 8 9 10 11 12 13
Average Stake for 2k 9 10 11 12 13 14 15

Average Stake for 2k−1 7.06 8.03 9.02 10.01 11.01 12.00 13.00

First, they make efforts to asymptotic property of the sequence {sn} compared with

{log2 n}, and it turns out that

an

log2 n
−−−→
n→∞

1

More precisely, they explicitly find a function, denoted as δn here, such that

an

log2 n
= 1+δn,

where δn > 0 and δn −−−→
n→∞

0.

Moreover, based on Steinhaus sequence, they design “Steinhaus games". They first build a

“empirical distribution function" of Steinhaus sequence.

F̃n(x) =
1
n

n

∑
i=1

I{ai ≤ x}, x ∈ R

Then, the Steinhaus game is defined as a game whose payoff, denotes as X ′n for each n,

follows the distribution function above. Namely, the Steinhaus game will depend on the

first n elements of the Steinhaus sequences. For example, for n = 7,
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X ′7 =



2, with probability 4/7

4, with probability 2/7

8, with probability 1/7

They also make a comparison between the Steinhaus and St. Petersburg game. Which one

would Paul prefer? They show that the payoff that Paul achieves will be stochastically

larger in St. Petersburg game, i.e.,

1−F(x) = P(X > x)≥ P(X ′n > x) = 1− F̃n(x), x ∈ R

where X is the payoff of St. Petersburg game defined in (3.1), and F(x) is the corresponding

distribution function.

3.3 Sándor Csörgö and Gordon Simons

Apart from the extension of Steinhaus’ resolution, Csörgö and Simons have published

several papers on this paradox. In one of them [3] , they presented the so-called “Two-Paul

Paradox", described as follows,

Suppose Peter agrees to play exactly one St. Petersburg game with each of two players,

Paul1 and Paul2. Question: Are Paul1 and Paul2 better off (i) accepting their individual
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winnings, X1 and X2, say, or (ii) agreeing, before they play, to divide their total winnings

in half, so that each receives (X1 +X2)/2?

Contrary to the common sense, these two strategies do make a difference, and in fact, two

Pauls are better off with the strategy (ii). More precisely, they showed that

P(X1 +X2 ≥ x)≥ P(2X1 ≥ x), for all x > 2 (3.13)

where X1 and X2 are independent copies X defined in (3.1). To improve the result, we

explicitly find out the expression of two probability in (3.13). See Appendix A.1. If

we denote p21 := P(X1 +X2 ≥ x) and p22 := P(2X1 ≥ x). Figure 3.3 shows the relative

difference between them, (p21− p22)/p22, for each integer x from 1 to 1000.

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Value of x

R
el

at
iv

e
di

ff
er

en
ce

Figure 3.2: Two Paul Paradox, relative difference

After a little algebra A.2, we can obtain the relative difference for four-Paul problem in

Figure 3.3.
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Figure 3.3: Four Paul Paradox, relative difference

In their paper, Csörgö and Simons prove that 2k-Paul problem holds, i.e.,

P(
2k

∑
i=1

Xi ≥ x)≥ P(2kX1 ≥ x) for all x > 2k, (3.14)

where k ∈ N, but Three-Paul problem does not hold.
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Appendix A

Proofs

A.1 Two-Paul problem

Given X ,X1,X2 are independent and identically distributed random variables, where the

common distribution is

P(X = 2 j) =
1

2 j+1 , j = 0,1, . . .

Show that for all x > 0,

P(X1 +X2 ≥ x)≥ P(2X1 ≥ x) (A.1)
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Proof: The right side of (A.1) is easy to find. In fact,

P(2X1 ≥ x) = P(X1 ≥ x/2) =
∞

∑
j=dlog2(x/2)e

1
2 j+1 =

1
2dlog2(x/2)e =

(
1
2

) jx
, (A.2)

where dxe represents the ceiling function of x, which returns the smallest integer not less

than x. Also, jx in the formula is defined as a function of x, jx := dlog2 xe−1.

Now we define M := max{X1,X2}, and consider the event on left side of (A.1) as a union

of three exclusive events: (i) {M < 2 jx ,X1 +X2 ≥ x}, (ii) {M > 2 jx ,X1 +X2 ≥ x}, (iIi)

{M = 2 jx ,X1 +X2 ≥ x}.

For (i), if M < 2 jx , then M ≤ 2 jx−1 and hence X1 +X2 ≤ 2M ≤ 2 jx < x. Thus, X1 +X2 ≥ x

implies M ≥ 2 jx . So the probability of the event in (i) is 0.

For (ii), if M ≥ 2 jx+1, then X1 +X2 ≥M+1≥ 2 jx+1 ≥ x. Then

P(M > 2 jx ,X1 +X2 ≥ x) = P(X ≥ 2 jx+1)

= 1−P(M < 2 jx+1)

= 1−P(X1 ≤ 2 jx) ·P(X1 ≤ 2 jx)

= 1−
(

1− 1
2 jx+1

)(
1− 1

2 jx+1

)
=

(
1
2

) jx
−
(

1
2

)2 jx+2
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For (iii), one has

X1 ≥ x−2 jx ⇔ log2 X1 ≥ dlog2(x−2 jx)e=: kx

⇔ X1 ≥ 2kx .

Then

{M = 2 jx ,X1 +X2 ≥ x}

= {X1 = 2 jx ,x−2 jx ≤ X2 ≤ 2 jx}∪{X2 = 2 jx ,x−2 jx ≤ X1 < 2 jx}

= {X1 = 2 jx ,2kx ≤ X2 ≤ 2 jx}∪{X2 = 2 jx ,2kx ≤ X1 ≤ 2 jx−1}.

Since X1 and X2 are independent, one has

P(M = 2 jx ,X1 +X2 ≥ x)

= P(X1 = 2 jx) ·P(2kx ≤ X2 ≤ 2 jx)+P(X2 = 2 jx) ·P(2kx ≤ X1 ≤ 2 jx−1)

=
1

2 jx+1

(
1

2kx
− 1

2 jx+1

)
+

1
2 jx+1

(
1

2kx
− 1

2 jx

)
=

(
1
2

) jx+kx

−
(

1
2

)2 jx+2

−
(

1
2

)2 jx+1
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Combining results from (i), (ii) and (iii), one has

P(X1 +X2 ≥ x) =
(

1
2

) jx
+

(
1
2

)[(
1
2

)kx

−
(

1
2

) jx
]

(A.3)

Comparing (A.2) and (A.3), with the fact that kx ≤ jx for all x > 0, one can obtain the

wanted (A.1).

This completes the proof.

�

The significance of the difference can be seen in Figure 3.2.

A.2 Four-Paul problem

For the corresponding four Paul problem, one needs to Show that for all x > 0,

P(X1 +X2 +X3 +X4 ≥ x)≥ P(4X1 ≥ x) (A.4)

The right side of (A.4) is easy to find. In fact,

P(4X1 ≥ x) = P(X1 ≥ x/4) =
∞

∑
j=dlog2(x/4)e

1
2 j+1 =

1
2dlog2(x/4)e =

(
1
2

) jx−1

, (A.5)
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where jx := dlog2 xe−1. The right hand side of (A.4) can be found by

P(X1+X2+X3+X4 ≥ x) =
x−2

∑
y=2

P(X1+X2 = y)P(X3+X4 ≥ x−y)+P(X1+X2 ≥ x−1).

(A.6)

In the right hand right of this expression, the last two probability can be found by (A.3).

The first probability can also be found by using the following expression and (A.3)

P(X1 +X2 = y) = P(X1 +X2 ≥ y)−P(X1 +X2 ≥ x+1) (A.7)

The expression of (A.6) can not be simplified, but we can use Mathematica to calculate

their values for each x. The significance of the difference can be seen in Figure 3.3.
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