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Abstract

We evaluate the 3 child muddy children puzzle using the epistemic logic of
shallow depths GLEF . This system is used to evaluate what components are
necessary for a resolution. These components include the basic beliefs of a child,
the necessary depths of the epistemic structures, and the observations about the
inactions of others added after a stage. These are all given explicitly, and their
necessity is examined. We formulate the concept of a resolution as a process of
inferences, actions, observations, and belief changes. We give three main theorems.
The first one gives a specific resolution, in which no common knowledge is involved.
The second theorem states that any resolution has length of at least 3. The third
theorem shows that the resolution given in the first theorem is minimal in various
senses. In this manner, the necessary components for a resolution of the puzzle are
evaluated. A final theorem gives a resolution for the n-child case.
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1. Introduction

The muddy children puzzle is well known in game theory and logic. It appears in the
literature in various forms, e.g., the cheating husbands puzzle, or colored hats puzzle,
but with, more or less, the same logical structure. The general situation of the muddy
children puzzle is that the children in a class are all muddy, and each can see everyone
else’s face, but not his own. The teacher announces that at least one child has a muddy
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face, and he asks each child to raise his hand if he concludes that his face is muddy.
At this point of time, no child raises his hand. After some time observing the inactions
of others, however, each child raises his hand. This is regarded as a puzzle in that the
teacher’s announcement together with observations and logical inferences leads to an
unexpected result.

We find various logical treatments of the puzzle: Bollobas [4] gave an early de-
scription of the puzzle in English; Barwise [2], Gerbrandy-Groeneveld [8] and van Dit-
marsch, et al. [18] among others gave logical (semantical) treatments of the puzzle;
Geanakoplos-Polemarchakis [5], Binmore [3], and Geanakoplos [6] among others gave
an information partitional approach to it. Those papers look for some formulations of
how the children conclude their faces are muddy. However, the puzzle involves quite
subtle, intra/interpersonal, logical inferences. In fact, it contains, in addition to pure
logical inferences, observations of actions and their interpretations. Those aspects are
often implicit and entangled in the above-mentioned approaches. In this paper, we try
to separate those aspects taking the 3 child case.

We now give a small summary of the main results of this paper. After that, we
describe some limitations of the above-mentioned approaches. Finally, we describe some
important differences in our approach. We give three theorems in Section 3. The first
one gives a specific resolution, in which only the depth 3 of interpersonal beliefs are
required, a fortiori, no common knowledge is involved. The second theorem states that
any resolution has length of at least 3. The third theorem shows that the resolution
given in the first theorem is minimal in various senses. In this manner, the necessary
components for a resolution of the puzzle are evaluated. The point of the paper is not
simply to show this resolution, but to evaluate and find what components are necessary
for a resolution.

In order to emphasize the points of this paper, now we discuss some limitations of
the information partition approach, and also the semantical approaches.

(1) Logical inferences are implicit: In the information partition approach to the
puzzle, the main logical arguments remain informal; the inferences are all in the in-
terpretations. Also, these interpretations mix intrapersonal and interpersonal logical
inferences. While the semantical approaches give more precise treatments of these com-
ponents, the inferences are still indirectly described by semantic models, and, specifi-
cally, the classical and epistemic inferences are not well separated. For further analysis
and understanding, it would be important to separate these components.

(2)What is the role of common knowledge? In the information partition/semantical
approaches, the announcement by the teacher as well as the observations of actions are
formulated to be common knowledge. Moreover, the information partition approach
relies upon a more basic implicit assumption that the information partitions themselves
are common knowledge.
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In the following, we describe two aspects of our approach in response to the issues
raised in (1) and (2), and in addition, we give a comment on the treatment of updating
basic beliefs.

The first aspect is our response to (1). We treat intra/interpersonal logical in-
ferences explicitly, which are described syntactically in the epistemic logic GLEF of
Kaneko-Suzuki [14]. The subscripts E and F are constraints on the interpersonal belief
hierarchies. The player at the innermost level of a hierarchy of beliefs is allowed to make
classical logic inferences, and those inferences are considered by the players further out
in the hierarchy.

For example, in Figure 1.1, child i makes classical logic (CL) inferences referring to
j’s CL inferences, and indirectly, through j, to k’s CL inferences. Within GLEF , we can
analyze the precise classical inferences and belief hierarchies involved in the puzzle1.

CL Inferences by k

CL Inferences by j

CL Inferences by i

j’s epistemic inference

i’s epistemic inference

.      .      .

.      .      .

Figure 1.1: Separation of  CL Inferences 

Epistemic status (i,j)

The second aspect to be emphasized is about (2). As mentioned above, our approach
requires only interpersonal beliefs up to depth 3, a fortiori, common knowledge is un-
necessary. Sato [16] showed this result, but we evaluate the necessity of depth 3.2 The
logic GLEF facilitates these types of evaluations by considering explicit bounds on the
epistemic depths of inferences.

Now we give one comment on our treatment of updating. Before the puzzle, each
child has a finite set of basic beliefs about the observational abilities of the other children,

1Suzuki [17] gave an intuitionistic version of GLEF called IGEF . The analysis of this paper may
be done in IGEF , though we may need to include more basic beliefs in order to obtain a resolution in
IGEF .

2Yasugi-Oda [19] gave a syntactic argument for the two children puzzle. However, their puzzle differs
in that one child sees the other, but the other does not see the first.
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the announcement by the teacher, and the action rule: "raise your hand if you reach
the belief that your face is muddy". After the teacher’s question, each child observes
the actions (inactions) of others. Those observations may be adopted as new beliefs.

In the dynamic epistemic logic approach (cf. Gerbrandy-Groeneveld [8] and van
Ditmarsch, et al. [18]), the process of updating is included in one formal system. How-
ever, we separate the process of updating from the logical system. We treat the entire
situation as a time series of evolving basic beliefs, where a child considers his situation at
each point of time taking his current basic beliefs as given and making logical inferences
from them. Since, in this sense, logical inferences and the updating of basic beliefs have
different time structures, we adopt our separate treatment.

To keep the discourse of the paper as clear as possible, we have restricted ourselves
to the 3 child case. The 3 child case has a new feature which does not appear in the
2 child case: the accumulation of beliefs about observations of inactions appears in the
3 child case, but it is trivial in the 2 child case. Thus, we take the 3 child case. The
main point of the paper is not only to give a specific resolution but also to explore the
type of reasoning, evolution of beliefs, and epistemic inferences involved. We do this
completely for the 3 child case. A generalization to the n child case is possible, but it
makes the discourse too complicated to show our main points. Nevertheless, we do give
a theorem about a resolution for the the n-person case in Section 4.

The organization of the paper is as follows. Section 2 describes the epistemic logic
GLEF that will be used to analyze the puzzle. In Section 3 we describe the general
process of the 3 child puzzle and define a resolution to the puzzle. We give a resolution
in Theorem 3.1, which makes the beliefs, inferences, epistemic structures, and interpre-
tations explicit. We also give Theorems 3.2 and 3.3, which describe why this resolution
may be regarded as a minimal one. Section 4 treats the n child case. We show, in
Theorem 4.1, that the resolution given in Theorem 3.1 can be extended to the n child
case. In Section 5 we discuss the results and give some concluding remarks. Section 6
gives two meta-theorems for epistemic logic that are also used to prove the theorems of
Section 3. The proofs of Theorems 3.2 and 3.3 are given in Section 7.

2. Epistemic Logic of Shallow Depths

As mentioned in Section 1, one point of this paper is to show that the muddy children
puzzle can be handled with shallow epistemic reasoning. Here, we describe the epistemic
logic of shallow depths, following Kaneko-Suzuki [14]. In Section 2.1, we give the formal
language used to describe the puzzle and the reasoning of the children. In Section
2.2, we define epistemic depths. In Section 2.3, we give a Gentzen-style formulation of
epistemic logic GLEF .
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2.1. Language for the Muddy Children Puzzle

The language starts with the primitive propositional symbols m1,m2,m3, r1, r2, r3. The
intended meaning of mi is “player i’s face is muddy”, and the intended meaning of ri
is that “player i raises his hand”. The primitive connective symbols are: ¬ (not), ∧
(and), ∨ (or), and ⊃ (implies). We also introduce the belief operators B1, B2, B3 and
use parentheses “(”, “)”, “{”, “}” and comma “,”. The formulas are inductively formed
by:

(1.1) All primitive propositional symbols are formulas;

(1.2) If A and B are formulas, then so are (¬A), (A ⊃ B), and Bi(A) for i = 1, 2, 3;

(1.3) If {A1, ..., Am} is a finite nonempty set of formulas, then ∧{A1, ..., Am} and
∨{A1, ..., Am} are formulas.

We denote the set of all formulas by P. We eliminate parentheses when it does not
cause any confusion, e.g., (A ⊃ B) may be abbreviated by A ⊃ B. Also, we will may
abbreviate ∧{A,B}, ∧{A,B,C},∨{A,B}, etc., as A ∧B, A ∧B ∧C, and A ∨B.

We let N<ω = {(i1, ..., im) : i1, ..., im ∈ {1, 2, 3}}. We stipulate that N<ω contains
the null sequence ε: when m = 0, (i1, ..., im) is understood as ε. A sequence in N<ω is
called an epistemic status. For any e = (i1, ..., im) ∈ N<ω, and any formula A in P, we
write Be(A) for Bi1 ...Bim(A); when e = ε, Be(A) = A. We also define the concatenation
of e = (i1, ..., im) and e′ = (j1, ..., jk) inN<ω by e◦e′ = (i1, ..., im, j1, ..., jk). We stipulate
that e ◦ ε = ε ◦ e = e, and we write (i) ◦ e and e ◦ (i) as i ◦ e and e ◦ i.

Now we define the (epistemic) depth δ(·) inductively by:

D0: δ(A) = {ε} if A is a primitive propositional symbol;

D1: δ(¬A) = δ(A);

D2: δ(A ⊃ B) = δ(A) ∪ δ(B);

D3: δ(∧Φ) = δ(∨Φ) = ∪C∈Φδ(C);

D4: δ(Bi(A)) = {i ◦ e : e ∈ δ(A)}.

For example, the formula B2(m1) ⊃ m1 has epistemic depth δ(B2(m1) ⊃ m1) =
δ(B2(m1)) ∪ δ(m1) = {(2), ε}. For player 1’s belief of this formula, i.e., B1(B2(m1) ⊃
m1), the epistemic depth is δ(B1(B2(m1) ⊃ m1)) = {(1, 2), (1)}. For a set of formulas
Γ, we define δ(Γ) =

⋃

C∈Γ
δ(C).

A non-empty subset E of N<ω is an epistemic structure iff

(i1, ..., im) ∈ E implies (i1, ..., im−1) ∈ E. (2.1)

The null sequence ε is always in E by (2.1), since (i1, ..., im−1) = ε for m = 1. Given an
epistemic structure E, we define the set of admissible formulas in E as

PE = {A ∈ P : δ(A) ⊆ E}. (2.2)
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By the epistemic structure E, we restrict the set of all formulas P to the formulas having
depths included in E. For the epistemic logic GLEF , we will use another epistemic
structure F , which is a subset of E, to control interpersonal inferences.

2.2. Epistemic Logic GLEF

The logical inferences of the players are described by a Gentzen-style formulation of the
epistemic logic GLEF . Here, the subscripts E and F are two epistemic structures. As
in (2.2), E restricts the depths of beliefs in the language, and F restricts the depths of
interpersonal inferences. We require F ⊆ E.

To describe interpersonal inferences, Kaneko-Suzuki [14] introduced the concept of
a thought sequent. Let e = (i1, ..., im) ∈ E, and let Γ,Θ denote finite (possibly empty)
subsets of PE . Let [ , ] and → be auxiliary symbols used to form the new expression
Be[Γ→ Θ], which we call a thought sequent. The expression Be[Γ→ Θ] represents the
thought of the outer-most player i1 on player i2’s thinking about...the inner most player
im’s logical reasoning.

We say that a thought sequent Be[Γ→ Θ] is admissible in E iff

e ◦ δ(Γ ∪Θ) := {e ◦ e′ : e′ ∈ δ(Γ ∪Θ)} ⊆ E. (2.3)

This means that a thought sequent Be[Γ → Θ] as a whole is allowed by E. For an
epistemic status e, we define the set PE(e) = {A ∈ P : e ◦ δ(A) ⊆ E}. A thought
sequent Be[Γ → Θ] is admissible in E if and only if A ∈ PE(e) for all A ∈ Γ ∪ Θ.
When e = ε, Bε[Γ → Θ] is interpreted as the outside investigator’s thought about
the provability of Γ → Θ. Let Γ,Θ,∆, and Λ be finite sets of formulas and A and
C be formulas. We will abbreviate Bε[Γ → Θ] by Γ → Θ, Be[Γ ∪ ∆ → Θ ∪ Λ] by
Be[Γ,∆→ Θ,Λ], and Be[{A} ∪ Γ→ Θ ∪ {C}] by Be[A,Γ→ Θ, C], etc.

When Γ is empty in Be[Γ → Θ], it is intended to mean that Θ follows logically
without any assumption; and when Θ is empty, Γ leads to a contradiction.

Epistemic logic GLEF is formally defined by one axiom schema and various inference
rules. The inference rules are divided into three classes: structural rules, operational
rules, and one epistemic rule. The structural and operational rules with the axiom
schema are based on classical logic; in Figure 1.1, each oval represents the classical logic
part within a fixed epistemic status, e.g., classical logic in (i, j) is represented by the
middle oval. The epistemic rule connects those ovals, e.g., the top oval is connected to
the middle oval.

Let Γ,Θ,∆,Λ,Φ be arbitrary finite subsets of PE(e) and e ∈ F , where Φ is non-
empty, and let A and B be arbitrary formulas in PE:

Axiom (Initial Sequent): Be[A→ A]

Structural Rules:
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Be[Γ→ Θ]

Be[∆,Γ→ Θ,Λ]
(th)

Be[Γ→ Θ, A] Be[A,∆→ Λ]

Be[Γ,∆→ Θ,Λ]
(cut)

Operational Rules:

Be[Γ→ Θ, A]

Be[¬A,Γ→ Θ]
(¬ →)

Be[A,Γ→ Θ]

Be[Γ→ Θ,¬A]
(→ ¬)

Be[Γ→ Θ, A] Be[B,∆→ Λ]

Be[A ⊃ B,Γ,∆→ Θ,Λ]
(⊃→)

Be[A,Γ→ B,Θ]

Be[Γ→ A ⊃ B,Θ]
(→⊃)

Be[A,Γ→ Θ]

Be[∧Φ,Γ→ Θ]
(∧ →), where A ∈ Φ

{Be[Γ→ Θ, A] : A ∈ Φ}

Be[Γ→ Θ,∧Φ]
(→ ∧)

{Be[A,Γ→ Θ] : A ∈ Φ}

Be[∨Φ,Γ→ Θ]
(∨ →)

Be[Γ→ Θ, A]

Be[Γ→ Θ,∨Φ]
(→ ∨), where A ∈ Φ

Epistemic Distribution Rule: for e ◦ i ∈ F ,

Be◦i[Γ→ Θ]

Be[Bi(Γ)→ Bi(Θ)]
(Bi → Bi),where |Θ| ≤ 1, and i = 1, 2, 3

Here |Θ| denotes the cardinality of Θ.

A rule of inference, say (¬ →), means that if the upper sequent Be[A,Γ → Θ] is
proved, then the lower sequent Be[Γ→ Θ,¬A] is inferred. A proof is a tree of thought
sequents, each of which is connected by a rule of inference, having only instances of
the axiom schema as its leaves. This basic principle for this was given in Gentzen
[7]. The new feature of GLEF is the interactions of thought sequents with different
epistemic statuses. An epistemic structure E has the role to constrain the language,
and F constrains interpersonal inferences.

A proof P of Be[Γ→ Θ] in GLEF is a finite tree satisfying:

P1: a thought sequent admissible in E is associated with each node;

P2: the thought sequent associated with each leaf (endnode) is an instance of the axiom
(initial sequent);

P3: adjoining nodes together with their associated thought sequents form an instance
of one of the above inference rules;

P4: Be[Γ→ Θ] is associated with the root node;

P5: e′ belongs to F for any thought sequent Be′ [∆→ Λ] in the proof P .

7



We say that Be[Γ → Θ] is provable in GLEF , denoted by �EFBe[Γ → Θ], iff there
is a proof P of Be[Γ → Θ] in GLEF . We write �EFBe[Γ → Θ] for the negation of
�EFBe[Γ→ Θ].

When E = F = {ε}, GLEF is classical propositional logic, which is denoted by GL0
with its provability relation �0.

When we do not restrict E and F , that is, E = F = N<ω, the resulting logic is
denoted by GL, and its provability is denoted by �. In this logic, even the outer Be[· · ·]
becomes unnecessary. Thus, it suffices to consider the provability of a sequent Γ→ Θ.
This system is called KD3 in the literature. The Hilbert-style counterpart of KD3 is
defined from the classical logic by adding Axiom K: Bi(A ⊃ C) ⊃ (Bi(A) ⊃ Bi(C)),
and Axiom D: ¬Bi(¬A ∧A), and the Necessitation Rule: A

Bi(A)
.

In the above system, epistemic axioms such as Truthfulness: Bi(A) ⊃ A, Positive
Introspection: Bi(A) ⊃ BiBi(A), and Negative Introspection: ¬Bi(A) ⊃ Bi(¬Bi(A)),
are not assumed. In our resolution of the puzzle, those axioms are unnecessary. Besides
this point, we will show that the epistemic depths required for our resolution can be
very shallow.

We describe the 3 child muddy children puzzle in GLEF with some epistemic struc-
tures E and F . We can describe the reasonings by the 3 children together in one logic
GLEF . In this case, E and F include epistemic statuses of the form (i1, ..., im) with
i1 = 1, 2, 3, i.e, E and F include epistemic statuses in the mind of each child. In fact,
we can separate the minds of the 3 children: We define, for i = 1, 2, 3,

Ei = {(i1, ..., im) ∈ E : i1 = i} ∪ {ε} and (2.4)

Fi = {(i1, ..., im) ∈ F : i1 = i} ∪ {ε}.

Of course, E (and F ) is the union of E1, E2, E3 (F1, F2, F3), which are each epistemic
structures themselves. Let Γ1,Γ2,Γ3 be sets of formulas for i = 1, 2, 3 so that each
formula in Γi has the outermost Bi(·), and let A1, A2, A3 be formulas. It was shown in
Kaneko-Suzuki [15] (Theorem 3.9) that:

� EFΓ1,Γ2,Γ3 → ∧{Bi(Ai)}i=1,2,3

if and only if

� EiFiΓi → Bi(Ai) for i = 1, 2, 3.

It means that to have a statement about child i’s provability, it is enough to concentrate
on GLEiFi . In the following analysis, we focus on GLEiFi .

3. Muddy Children Process and Resolution

In this section, we formalize the process of the muddy children puzzle and the notion
of a resolution for it. Our interest is in analyzing the resolution and the necessity of
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various components.
First, we describe a child’s beliefs on the general background. These beliefs describe

the environment, and are constant for all stages of the process. We fix a child i and
consider one order of the other two children as (j, k). We may use other variables s and
s′ for names including i. We take the following candidates of basic beliefs of child i,
based on the order (j, k), though some other beliefs may also be available:

(Announcement by teacher) Child i has beliefs of the announcement at three epis-
temic levels:

(a1): Bi(mi ∨mj ∨mk); B(i,j)(mi ∨mj ∨mk); B(i,j,k)(mi ∨mj ∨mk).

(Observational ability) Child i believes the following observational abilities:

(a2): Bi(¬ms′ ⊃ Bs(¬ms′)) for s �= s′; B(i,j)(¬ms′ ⊃ Bs(¬ms′)) for s �= s′;

(Action rule) Child i has beliefs of the action rules at two epistemic levels:

(a3): Bi(Bs(ms) ⊃ rs) for s = i, j, k; B(i,j)(Bs(ms) ⊃ rs) for s = i, j, k.3

The beliefs expressed in (a1) are about the announcement by the teacher that at
least one face is muddy. Child i sees that the others hear the announcement, but we
take a specific interpersonal order of these observations. The deepest belief about the
announcement is B(i,j,k)(mi ∨mj ∨mk), which is expressed in the picture of Figure 3.1.
The beliefs expressed in (a2) are about the depth of vision of children regarding the
faces of others, in particular "if a child is not muddy, then the other children see that
he is not muddy". The beliefs expressed in (a3) are about the action rule which states
that "if a child believes he is muddy, then he raises his hand".

In fact, as mentioned already, the above list is incomplete and we have only taken
some subset of all the basic beliefs that might be available of child i. Our purpose is
to take a large enough set to obtain a resolution, and to find which of those beliefs are
necessary for a resolution. We denote the set of beliefs listed above by Γ0i , and we will
consider a subset of Γ0i as possibly part of a resolution.

By the nature of the puzzle, some beliefs are coming as time proceeds. In particular,
the responses to the teacher’s question by the other children provide a source for new
beliefs. This process may have the stages t = 1, 2, ... Stage 1 is the start, and each child
thinks about the teacher’s question based on his own basic beliefs in the beginning of
stage 1. The general description of a stage t is given as follows.

Stage t: The stage consists of:

(Teacher’s Question) At the beginning of the stage, the teacher asks: "Do you know
your face is muddy? If so, raise your hand."

3The author thanks Tai-Wei Hu and a referee for suggesting this form of action rules connecting
beliefs and actions.
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(Inferences) Next, each child analyzes his beliefs in order to answer the teacher’s
question.

(Actions) After his analysis, each child chooses an action to raise or not raise his hand.

(Observations) Finally, at the end of the stage, each observes the actions of the others.
These observations may be transformed into new beliefs for the next stage.

To discuss a resolution for child i, we fix the logic GLEiFi for child i. In the fol-
lowing, we adopt the epistemic structures Ei and Fi in the form of (2.4). A resolution
will consist of a finite sequence 〈Γ1i , ...,Γ

�
i〉 of beliefs of child i starting with his basic

beliefs Γ1i and finishing with his beliefs Γ�i at stage � where he proves his face is muddy.
We take Ei big enough so that each sequent Γti → Bi(mi) is admissible in Ei for each
t = 1, ..., �.

At least one

of you is muddy

Teacher

i

j

k

Figure 3.1: i believes j believes k hears the teacher’s announcement 

)(B ),,( kjikji mmm ∨∨

The process terminates after, and only after, a child raises his hand. In any inter-
mediate stage, the only possible observations are the same, i.e., no child raises a hand.
Consequently, only the observation of inaction needs to be considered for transitions
between stages. We consider these observations to depth 2 for child i:

(Observations of Inactions of others)

(b): Bi(¬rs) for s �= i; B(i,j)(¬rs) for s �= j.4

We denote the set of formulas in (b) by ∆i. The transition of beliefs between stage
t− 1 and stage t is paramount to our analysis. At the end of stage t− 1 where no child
raises a hand, child i adds some belief At−1i from ∆i to Γ

t−1
i to obtain the new belief set

Γti = Γ
t−1
i ∪ {At−1i } for stage t. This process continues until someone raises his hand.

4We can allow these for all s, but the proofs of Theorems 3.2 and 3.3 become longer. The intent is
that each uses his observations of others inactions, not his own actions to make inferences.
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We say that a finite sequence 〈Γ1i , ...,Γ
�
i〉 is a resolution iff:

R1: Γ1i ⊆ Γ
0
i ;

R2: for t > 1, Γti = Γ
t−1
i ∪ {At−1i } and At−1i ∈ ∆i;

R3: δ∗(At−1i ) ⊇ δ∗(Ati) for 2 ≤ t < �, where δ∗(A) is the smallest superset of δ(A)
satisfying (2.1);

R4: for t < �, �EiFi Γ
t
i → Bi(mi);

R5: �EiFi Γ
�
i → Bi(mi),

A resolution for child i describes his beliefs at each stage, and how these beliefs evolve
over time. R1 restricts the initial beliefs Γ1i to be a subset of the basic constant beliefs
listed in Γ0i . R2 and R3 restrict the addition of new beliefs over time.

R2 has two parts: (i) some addition of new beliefs is required and (ii) it is a single
belief at each stage. (i) adds some observations about inactions of other children, but
without this, the situation for him is the same as the previous stage and he cannot make
progress. (ii) and R3 are based on the basic principle that each child needs one stage
to analyze a current observation of some inaction. This basic principle is applied even
to the children in the mind of child i. Since these are subtle, we give more detailed
comments on them after Theorem 3.1.

R4 implies that the process does not stop before a child finds his face is muddy. R5
states that child i finds his face is muddy at stage � and raises his hand.

Now, we give a specific resolution with length � = 3. This theorem follows from
Theorem 4.1, the proof of which is given in Section 4. Proofs of the other theorems of
Section 3 will be given in Section 7.

Theorem 3.1 (Existence with Length � = 3): The sequence 〈Γ1i ,Γ
2
i ,Γ

3
i 〉 defined by

the following (a), (b), and (c) is a resolution:

(a) (Basic Beliefs) Γ1i is given as:

(a1) B(i,j,k)(mi ∨mj ∨mk),

(a2) Bi(¬mi ⊃ Bj(¬mi)), B(i,j)(¬mi ⊃Bk(¬mi)), B(i,j)(¬mj ⊃Bk(¬mj)),

(a3) Bi(Bj(mj) ⊃ rj), B(i,j)(Bk(mk) ⊃ rk).

(b) (Observations of inaction) A1i = B(i,j)(¬rk) and A2i = Bi(¬rj);

(c) (Epistemic Structures) Ei = Fi = {(i, j, k), (i, j), (i), ε}.

The resolution given in Theorem 3.1 turns out to be the smallest, which will be
shown in Theorems 3.2 and 3.3. Here, we look at this resolution in more detail.

First, this resolution gives a set of basic beliefs Γ1i . The only belief about the
announcement in Γ1i is B(i,j,k)(mi∨mj∨mk). The other beliefs included in Γ

1
i are about
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observations of faces and the action rules. These are only a subset of the full set of
constant basic beliefs Γ0i .

A natural question is why the belief Bi(mj ∧mk) (child i sees the faces of j and
k) is not in the list of basic beliefs in Theorem 3.1. Indeed, it would be reasonable to
include this belief as part of the basic beliefs. These types of beliefs are, in fact, partially
included in (a2), e.g., the first belief Bi(¬mi ⊃ Bj(¬mi)) comes from the fact that each
child believes that each of the three sees the faces of the others. For the resolution,
however, we need only what (a2) includes and the other beliefs like Bi(mj ∧mk) can be
excluded.

In (b) of Theorem 3.1, the new beliefs of child i coming after the inactions of others
at stages 1 and 2 are listed. In the transition from stage 1 to 2, child i adds the belief
B(i,j)(¬rk) to obtain Γ2i . This is used in the analysis part of stage 2 by child i to infer
that B(i,j)(mi ∨mj). Since i cannot yet reach the conclusion Bi(mi), however, he does
not raise his hand in stage 2. At the end of stage 2, he observes that no other child
raises his hand either. Next, in the transition from stage 2 to stage 3, child i adds the
belief Bi(¬rj) to obtain Γ3i . In the analysis part of stage 3, he uses Bi(¬rj), together
with his previous inference B(i,j)(mi∨mj) from stage 2, to conclude that Bi(mi). Thus,
he raises his hand in stage 3.

Now we return to the comments on R2(ii) and R3. We ordered the children i, j, k
so that i considers j directly, and k indirectly through j’s mind. R3 requires child i to
first think about j’s observation of k’s inaction in one stage, and then for child i to look
at j’s response to it in a later stage. The order should not be mixed, which is R3, and
they should not be taken at the same stage, which is R2(ii).

A counter-example violating R2(ii) happens when child i take the two new beliefs
B(i,j)(¬rk) and Bi(¬rj) at stage 2. Then, he can prove his face is muddy already in
stage 2. However, the addition of Bi(¬rj) does not give the time for j to respond to his
observation of k’s inaction. This violates the basic principle that child i needs to wait
for j’s response to k’s inaction before using Bi(¬rj).

A counter-example violating R3 happens when i mixes the order and takes Bi(¬rj)
first in stage 2, followed by B(i,j)(¬rk) in stage 3. Then, in stage 2, he cannot progress
at all. If, however, he uses both beliefs in stage 3, then he can conclude his face is
muddy. But this also violates the basic principle that the sudden use of Bi(¬rj) after
B(i,j)(¬rk) does not give the time for j to respond to his observation of k’s inaction.

In order to make the above basic principle more explicit, we may need to distinguish
the beliefs adopted at different times. This may enable us to have more meaningful
restrictions on the order of adoption of new beliefs and reasoning. In the present paper,
however, we have embodied this principle in R2(ii) and R3.

We may have other resolutions. However, the next theorem states that there is no
shorter one.

12



Theorem 3.2 (No Resolution for � < 3) If 〈Γ1i , ...,Γ
�
i〉 is a resolution, then � ≥ 3.

By Theorems 3.1 and 3.2, the shortest resolution has � = 3 and Theorem 3.1 gives
an example. We may wonder if the beliefs or epistemic structures in Theorem 3.1 can
be reduced, i.e., if there is a resolution with a smaller belief set, or shallower epistemic
structures. The next theorem shows that the resolution given by Theorem 3.1 is the
smallest.

Theorem 3.3 (Minimum Resolution): If 〈Γ1i ,Γ
2
i ,Γ

3
i 〉 is a resolution, then:

(a) Γ1i contains the beliefs in (a1), (a2), (a3) of Theorem 3.1;

(b) A1i , A
2
i are given by (b) of Theorem 3.1;

(c) Fi includes the epistemic structures of Theorem 3.1, i.e., Fi ⊇ {(i, j, k), (i, j), (i), ε}.

Part (a) states that each resolution of length � = 3 includes all the basic beliefs given
in Theorem 3.1(a), though it may have some more. Part (b) states that each resolution
has the added observations listed in the order given in Theorem 3.1(b). Part (c) states
that the epistemic structures given in Theorem 3.1(c) are the shallowest for a resolution.

4. Extension to n children

We show here how the result of Theorem 3.1 can be extended to n children. As might
be expected, the length of the resolution is n, and the interpersonal beliefs are up to
depth n.

Consider a number n ≥ 1 of muddy children. We denote {1, ..., n} by N , and use
the notation ev = (1, ..., v) for v ∈ N . We will focus on the resolution for child 1 taking
the fixed order (1, 2, ..., n) of the children. Now, the language of GLEF is constructed
in the same way as in Section 2 from the primitive propositional symbols mv and rv for
all v ∈ N .

The candidates of basic beliefs Γ01(n) are described by:

(Announcement): Bev(m1 ∨ · · · ∨mn) for all v ≤ n;

(Observational Abilities): {Bev(¬ms′ ⊃Bs(¬ms′)) : v < n and s �= s′} ;

(Action Rules): {Bev(Bs(ms) ⊃ rs) : v < n and s ∈ N}.

These generalize the sets of candidates of basic beliefs Γ01 for child 1 of the 3 child case
given in Section 3 with the order of children (i, j, k) = (1, 2, 3). We define the set of
candidate new beliefs possibly obtained at future stages as:

∆1(n) = {Bev(¬rs) : v < n and s �= v} (4.1)

A resolution for child 1 in the n child case is defined in the same way as in Section
3 replacing Γ01 by Γ

0
1(n) and ∆1 by ∆1(n).
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The specific resolution 〈Γ11(n), ...,Γ
n
1 (n)〉 for the n child case corresponding to the

one given in Theorem 3.1 is given as follows: Γ11(n) consists of the following formulas:

(a1n) Ben(m1 ∨ · · · ∨mn);
(a2n) Bev(¬ms ⊃Bv+1(¬ms)), v < n and s ≤ v;
(a3n) Bev(Bv+1(mv+1) ⊃ rv+1), v < n.

Let Ak1(n) = Ben−k(¬rn+1−k) for k < n. For all t ≥ 2, we define:

(bn) Γt1(n) = Γ
1
1(n) ∪ {A

1
1(n), ..., A

t−1
1 (n)}.

(cn) E1(n) = F1(n) is the smallest epistemic structure containing (1, ..., n).

We have the following theorem.

Theorem 4.1 The sequence 〈Γ11(n), ...,Γ
n
1 (n)〉 defined by (a1n), (a2n), (a3n), (bn), (cn)

is a resolution.

It can be verified by inspection that the target sequence 〈Γ11(n), ...,Γ
n
n(n)〉 satisfies

R1, R2, R3. To prove Theorem 4.1, it remains to show R4 and R5. We first prove R5,
which is Lemma 4.2. Then, we prove R4.

For R5, we must prove:

�E1(n)F1(n) Γ
n
1 (n) −→ B1(m1) (4.2)

Our proof is by induction over the number of children n ≥ 1. The definition of the final
stage beliefs Γn1 (n) is given without reference to any other case. However, by observation
of the beliefs given in (a1n), (a2n), (a3n), and (bn) we find a connection between Γn1 (n)
and Γn+11 (n+ 1) in that:

Γn1 (n) ⊆ Γ
n+1
1 (n+ 1) ∪ Ben(m1 ∨ · · · ∨mn) (4.3)

The connection described in (4.3) will be used in our inductive step. The main
argument in the inductive step is to reduce the n + 1 child case to the n child case
after the first observation of inactions by the others. For this, we will use the following
lemma.

Lemma 4.1: Let n ≥ 1. Then �E1(n+1)F1(n+1) Γ
2
1(n+ 1) −→Ben(m1 ∨ · · · ∨mn).

We will give the proof of Lemma 4.1 after stating and proving the next lemma which
proves R5.

Lemma 4.2: Let n ≥ 1. Then (4.2) holds, i.e., �E1(n)F1(n) Γ
n
1 (n) −→ B1(m1).

Proof. As mentioned above, we prove the theorem by induction over the number of
children n. The base case is n = 1. Since B1(m1) ∈ Γ

1
1(1), (4.2) holds trivially for n = 1.

The inductive hypothesis is that �E1(k)F1(k) Γ
k
1(k) −→ B1(m1) holds for some k ≥ 1.
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By the inductive hypothesis and E1(k) = F1(k) ⊆ F1(k + 1) = E1(k + 1), we have:

�E1(k+1)F1(k+1) Γ
k
1(k) −→ B1(m1). (4.4)

Thinning the antecedent in (4.4) and using (4.3) we obtain:

�E1(k+1)F1(k+1) Γ
k+1
1 (k + 1),Bek(m1 ∨ · · · ∨mk) −→ B1(m1). (4.5)

From Lemma 4.1, we have the sequent:

�E1(k+1)F1(k+1) Γ
2
1(k + 1) −→ Bek(m1 ∨ · · · ∨mk). (4.6)

Since Γ21(k + 1) ⊆ Γ
k+1
1 (k + 1), thinning the antecedent of (4.6) gives us:

�E1(k+1)F1(k+1) Γ
k+1
1 (k + 1) −→ Bek(m1 ∨ · · · ∨mk). (4.7)

By cut applied to (4.5) and (4.7) we obtain the sequent:

�E1(k+1)F1(k+1) Γ
k+1
1 (k + 1) −→ B1(m1). (4.8)

Since k was chosen arbitrarily, (4.2) follows by the principle of induction. �

Proof of Lemma 4.1. The following sequents are provable in GLE1(n+1)F1(n+1):

(a) �E1(n+1)F1(n+1)Ben+1 [(m1 ∨ · · · ∨mn+1), {¬ms}s �=n+1 → mn+1];

(b) �E1(n+1)F1(n+1)Ben [ → (m1 ∨ · · · ∨mn),¬ms′ ] for s
′ �= n+ 1;

(c) �E1(n+1)F1(n+1)Ben [Bn+1(mn+1) ⊃ rn+1, ¬rn+1 → ¬Bn+1 (mn+1)].

(d) �E1(n+1)F1(n+1)Ben[Bn+1(m1∨···∨mn+1), {¬ms ⊃Bn+1(¬ms)}s�=n+1,¬Bn+1 (mn+1)

→ (m1 ∨ · · · ∨mn)];

Statements (a), (b), and (c) are straightforward. Applying (Bn+1 → Bn+1) to (a), and
then (¬ →) to the resulting sequent, we obtain:

�E1(n+1)F1(n+1) Ben [Bn+1(m1 ∨ · · · ∨mn+1), {Bn+1(¬ms)}s �=n+1, ¬Bn+1 (mn+1)→ ]
(4.9)

Applying (⊃→) to (4.9) and (b) for the cases s′ = 1, ..., n in succession, we obtain (d).
Applying cut to (c) and (d), we obtain:

�E1(n+1)F1(n+1) Ben[Bn+1(m1 ∨ · · · ∨mn+1), {¬ms ⊃ Bn+1(¬ms)}s �=n+1,

Bn+1(mn+1) ⊃ rn+1, ¬rn+1,→ (m1 ∨ · · · ∨mn)]. (4.10)

Applying (Bi → Bi) to this sequent, for the cases i = n,...,1 in succession we obtain:

�E1(n+1)F1(n+1) [Ben+1(m1 ∨ · · · ∨mn+1), {Ben(¬ms ⊃ Bn+1(¬ms)}s�=n+1,

Ben(Bn+1(mn+1) ⊃ rn+1),Ben(¬rn+1)→ Ben(m1 ∨ · · · ∨mn)]. (4.11)
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Since all the beliefs in the antecedent of (4.11) are contained in Γ21(n+1), the sequence
�E1(n+1)F1(n+1) Γ

2
1(n+ 1) −→ Ben(m1 ∨ · · · ∨mn) is obtained from (4.11) by thinning.

�

It remains only to show R4.

Proof of R4: Let n ≥ 1. We need to show that �E1(n)F1(n) Γ
t
i(n) → Bi(mi) for

t < n. If n = 1, there is no t < n, so we presume in what follows that n ≥ 2.
Since Γt−11 (n) ⊆ Γt1(n) for t = 1, ..., n − 1, it suffices to show �E1(n)F1(n) Γ

n−1
1 (n) →

B1(mi). By Theorem 6.1, if we can show �0 ε0Γ
n−1
1 (n) → ε0B1(m1), then we will

have �E1(n)F1(n) Γ
n−1
1 (n) → B1(m1), a fortiori, �E1(n)F1(n) Γ

t
1(n) → B1(m1) for t < n.

Observe that ε0Γ
n−1
1 (n) is a subset of:

{(m1 ∨ · · · ∨mn)} ∪ {(¬ms ⊃ ¬ms), (ms ⊃ rs)}s∈N ∪ {¬rs}s=3,...,n. (4.12)

From this assumption set, we can obtain m1 ∨m2, but we cannot get to m1. Hence, we
conclude that�E1(n)F1(n) Γ

t
i(n)→ Bi(mi) for t < n. �

The extensions of Theorem 3.2 and Theorem 3.3 to the n child case should also be
possible, but the proofs require more complicated arguments than the ones used in the
proofs given in Section 7.

5. Conclusions

In Section 1, we addressed the issue that the logical inferences are all implicit and
informal in the information partition approach, and are still indirect in the semantical
approach. In our approach, all logical inferences are explicitly described as classical
inferences within some epistemic depth, though we sometimes move from a deeper to a
shallower depth with the epistemic inference rule. The only elements that are additional
to such classical inferences are the new beliefs about the observations of inactions of
others.

In our approach, epistemic axioms such as Truthfulness, Positive Introspection, and
Negative Introspection are not used at all. The semantic approach of van Ditmarsch,
et al. [18] used models based on those additional axioms. Gerbrandy-Groeneveld [8]
did not use those axioms, but they gave additional axioms to describe updating and
assumed common knowledge on various components of their model.

Although we used some semantical methods in our analysis, the description of the
puzzle itself is syntactical and proof theoretical. This enables us to avoid implicit
assumptions sneaking into the system. Our analysis revealed what components are
necessary for the resolution of the puzzle.

Now we enter a more detailed discussion about the results. Our Theorem 3.1 gives
precise beliefs for a resolution involving epistemic depths only up to 3. In the resolution
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for child i, in stage 2, child j in the mind of child i uses ¬rk to infer that either j or i
is muddy. Next, in stage 3, child i infers, from ¬rj , that his own face is muddy. Here
we see the separation of epistemic inferences at work.

As we also mentioned in the introduction, our aim was not just to give some precise
beliefs and structure to the resolution, but also to analyze it in terms of the necessary
components. The two other theorems of Section 3 give results about this. Theorem
3.2 states that the minimal length of a resolution is 3. Theorem 3.3 gives minimality
in terms of the set of basic beliefs, the beliefs about inactions of the others, and the
epistemic structure. It states that reducing any of these will prevent a resolution. This
analysis has been successful in showing the precise components needed for a resolution
to the muddy children puzzle for the 3 child case.

In Section 4 we showed how the analysis can be extended to the nchild case and we
gave an n child resolution in Theorem 4.1.

6. Two Meta-Theorems

In order to prove the theorems of the Section 3, will make use of two meta-theorems
for logic GLEF . These theorems are not original and are found in various places in the
literature which we mention after each theorem.

The first meta-theorem is called the belief eraser theorem. Let Γ be a set of formulas.
Define ε0 to be the operator that removes all occurrences of B1, B2, B3. For example
if Γ = {B1(m1) ⊃ m1, B2B1(m1 ∨m2)}, then ε0Γ = {m1 ⊃ m1,m1 ∨m2}. The belief
eraser theorem states that the unprovability of some sequent ε0Γ → ε0Θ in classical
logic implies the unprovability of the thought sequent Be[Γ→ Θ] in the logic GLEF .

Theorem 6.1 (Belief Eraser) Let Γ and Θ be finite subsets of P and let E and F be
epistemic structures. If �0 ε0Γ→ ε0Θ, then �EFBe[Γ→ Θ].

This theorem was given in Kaneko-Nagashima [11] for a different logical system. Never-
theless, it holds for the current system used in this paper and the proof follows the proof
given there. Theorem 6.1 will be used to show some unprovability results in Theorems
3.1 and 3.2.

Our second meta-theorem is soundness and completeness of the epistemic logic GL.
Although we use the epistemic logic of shallow depths GLEF , it is enough for our aims
to refer to the semantics5 for GL.

We follow the presentation of soundness and completeness given in Kaneko [10]. We
say that K = (W,R1, R2, R3) is a Kripke Frame iff W is a non-empty set, and Ri is
a binary relation on W for each i = 1, 2, 3. An assignment σ in a Kripke Frame K is
a function from {m1,m2,m3} to {⊥,�}. We call a pair (K, σ) a Kripke model. We

5The semantics for GLEF is developed Kaneko-Suzuki [13].
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define the valuation relation (K, σ, w) |= and its negation (K, σ,w) � for each w ∈ W
by induction on the length of a formula:

K0: for each p ∈ {m1,m2,m3}, (K, σ,w) |= p iff σ(w, p) = �;

K1: (K, σ, w) |= ¬A iff (K, σ, w) � A;

K2: (K, σ, w) |= A ⊃ B iff (K, σ, w) |= ¬A or (K, σ,w) |= B;

K3: (K, σ, w) |= ∧Φ iff (K, σ,w) |= A for all A in Φ;

K4: (K, σ, w) |= ∨Φ iff (K, σ,w) |= A for some A in Φ;

K5: (K, σ, w) |= Bi(A) iff (K, σ, u) |= A for all u with (w,u) ∈ Ri.

We say that a Kripke frame K = (W,R1, R2, R3) is serial iff for any i = 1, 2, 3 and any
w ∈ W , there is some u ∈ W such that (w,u) ∈ Ri. Seriality corresponds to the logic
we are using. Recall that � Γ→ A means that Γ→ A is provable in the logic GL. We
have the following:

Theorem 6.2 (Soundness and Completeness) Let Γ be a finite nonempty subset
of P and let A be a formula in P. Then, � Γ → A if and only if for all serial Kripke
models (K, σ), (K, σ,w) |= ∧Γ ⊃ A.

Soundness and completeness theorems for various modal logics are given in Hughes-
Cresswell [9]. Though they used Hilbert-style systems, their results can be translated to
Gentzen-style systems including GL using the translation given in Kaneko-Nagashima
[12], which proves Theorem 6.2.

We will use Theorem 6.2 to show unprovabilities of some statements in parts (b)
and (c) of Theorem 3.3. It is used in the following way. Notice that it is the negative
form of this theorem that � Γ→ A if and only if there is a Kripke model (K, σ) and a
w ∈ W such that (K, σ, w) � ∧Γ ⊃ A. Since E and F are restrictions on the epistemic
logic GL, �EF Γ → A implies � Γ → A, equivalently, � Γ → A implies �EF Γ → A.
Therefore, if we find a model (K, σ) and a w ∈W with (K, σ,w) � ∧Γ ⊃ A, then by the
negative form of the above theorem, � Γ→ A, which implies �EF Γ→ A.

7. Proofs of the theorems

We now are in a position to prove the remaining two theorems of Section 3 about the
3 child puzzle. In Subsection 7.1 we prove Theorem 3.2. In Subsection 7.2 we prove
Theorem 3.3.

7.1. Proof of Theorem 3.2

Suppose that 〈Γ1i , ...,Γ
�
i〉 satisfies R1 - R4 with � < 3. We will show that 〈Γ1i , ...,Γ

�
i〉

violates R5, i.e., it is not a resolution. Since � < 3, either � = 1 or � = 2.
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Suppose � = 1. Since 〈Γ1i 〉 satisfies R1, Γ
1
i ⊆ Γ0i . Hence, to prove R5 is violated,

it suffices to show �EiFi Γ
0
i → Bi(mi). By Theorem 6.1, if we can show �0 ε0Γ

0
i →

ε0Bi(mi), then �EiFi Γ
0
i → Bi(mi). Observe that ε0Γ

0
i → ε0Bi(mi) is:

mi ∨mj ∨mk, {¬ms ⊃ ¬ms, ms ⊃ rs}s=i,j,k →mi (7.1)

Here we cannot eliminate mk or mj from mi ∨mj ∨mk using classical logic. Hence,
�0 ε0Γ0i → ε0Bi(mi).

Suppose � = 2. Then, either A1i = Bi(¬rs) for s �= i, or A1i = B(i,j)(¬rs)) for s �= j.
We treat the case of A1i = Bi(¬rs) for s �= i. The other case can be treated in a similar
manner.

Let Γ2i = Γ1i ∪ {Bi(¬rs)} for s �= i. By R1 and Theorem 6.1, it suffices to show
�0 ε0Γ

0
i ∪ {ε0Bi(¬rs)} → ε0Bi(mi). Observe that ε0Γ

0
i ∪ {ε0Bi(¬rs))} → ε0Bi(mi) is:

mi ∨mj ∨mk,¬rs, {¬ms′ ⊃ ¬ms′ ,ms′ ⊃ rs′}s′=i,j,k →mi. (7.2)

Since s �= i, there are two cases. The case of s = k is similar to (7.1) with some
additional part in the antecedent that does not help us to get to mi. The remaining
case is s = j, which differs from the case of s = k only in the antecedent, where ¬rk
is replaced by ¬rj in (7.2). Though ¬rj , together with mj ⊃ rj eliminates mj from
mi ∨ mj ∨ mk, again we cannot get to mi in classical logic. Hence, in each case, we
conclude that �0 ε0Γ

0
i ∪ {ε0Bi(¬rs)} → ε0Bi(mi). �

7.2. Proof of Theorem 3.3

This theorem consists of three statements (a), (b), and (c). Since the proof of (a) is
long, and it does not need (b), we start with the proof of (b). Next, we prove (a), and
finally we prove (c) ((c) needs (a) and (b)). Throughout the proof, we assume that
〈Γ1i ,Γ

2
i ,Γ

3
i 〉 satisfies R1, R2, and R3. We prove the contrapositive of each assertion,

e.g., if (b) is violated, then 〈Γ1i ,Γ
2
i ,Γ

3
i 〉 is not a resolution, i.e., it violates R4 or R5. The

proofs of (a) and (c) are done likewise.

Proof of (b): Suppose that (b) is violated, i.e., A1i �= B(i,j)(¬rk)) or A
2
i �= Bi(¬rj)).

By R2 and R3, A1i , A
2
i ∈ ∆i and δ∗(A1i ) ⊇ δ∗(A2i ).

Suppose A1i = A2i . Then Γ
2
i = Γ

3
i by R2. If R5 holds, i.e., �EiFi Γ

3
i → Bi(mi), then

�EiFi Γ
2
i → Bi(mi), a violation of R4.

Let A1i �= A2i . Then by R3, A1i = B(i,j)(¬rs)) for some s �= j and A2i = Bi(¬rs′) for
some s′ �= i. By assumption that (b) is violated, A1i �= B(i,j)(¬rk) or A2i �= Bi(¬rj)).
This leaves 3 cases:

(i) A1i = B(i,j)(¬ri) and A2i = Bi(¬rj);

(ii) A1i = B(i,j)(¬ri) and A2i = Bi(¬rk);
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(iii) A1i = B(i,j)(¬rk) and A2i = Bi(¬rk);

We treat case (i) and show that R5 is violated. The other two cases can be eliminated
in a similar manner.

By R1 and Theorem 6.1, to show R5 is violated, it suffices to show �0 ε0Γ
0
i ∪

{ε0B(i,j)(¬ri)}∪{ε0Bi(¬rj)} → ε0Bi(mi). Observe that ε0Γ
0
i∪{ε0B(i,j)(¬ri)}∪{ε0Bi(¬rj)} →

ε0Bi(mi) is:

mi ∨mj ∨mk,¬ri,¬rj, {¬ms ⊃ ¬ms,ms ⊃ rs}s=i,j,k →mi. (7.3)

This sequent differs from (7.2) with s = i only in that the antecedent contains both
¬ri and ¬rj . However, this does not allow us to get to mi in classical logic. Hence, we
conclude �0 ε0Γ

0
i ∪ {ε0B(i,j)(¬ri))} ∪ {ε0Bi(¬rj))} → ε0Bi(mi). �

Proof of (a): Suppose that 〈Γ1i ,Γ
2
i ,Γ

3
i 〉 satisfying (b) violates (a). It follows that one

of the following holds:

(I) B(i,j,k)(mi ∨mj ∨mk) /∈ Γ
1
i ;

(II) B(i,j)(¬mj ⊃Bk(¬mj)) /∈ Γ
1
i ;

(III) B(i,j)(¬mi ⊃Bk(¬mi)) /∈ Γ
1
i ;

(IV) Bi(¬mi ⊃Bk(¬mi)) /∈ Γ1i ;

(V) B(i,j)(Bk(mk) ⊃ rk) /∈ Γ
1
i ;

(VI) Bi(Bj(mj) ⊃ rj) /∈ Γ
1
i .

By R1 and (b), we have Γ1i ⊆ Γ
0
i , A

1
i = B(i,j)(¬rk), and A2i = Bi(¬rj).

Suppose, e.g., that (I) holds. Consider

Γ̃3i (I) = Γ
0
i ∪ {B(i,j)(¬rk),Bi(¬rj)} − {B(i,j,k)(mi ∨mj ∨mk)}. (7.4)

We shall prove �EiFi Γ̃
3
i (I)→ Bi(mi), which implies �EiFi Γ

3
i → Bi(mi) since Γ

3
i ⊆ Γ̃

3
i (I).

For this unprovability, we shall construct a serial Kripke model (K, σ) and a world w ∈W
such that (K, σ, w) � ∧Γ̃3i (I) ⊃ Bi(mi). By Theorem 6.2 and the remark after it, we
have � Γ̃3i (I)→ Bi(mi), and thus, �EiFi Γ̃

3
i (I)→ Bi(mi), a fortiori, �EiFi Γ

3
i → Bi(mi),

a violation of R5.
We construct a serial Kripke model for each case of (I) - (VI) that has the properties

mentioned in the previous paragraph. Observe that the set Γ0i ∪ {B(i,j)(¬rk),Bi(¬rj)}
consists of the following 23 formulas which we call the list :
1. Bi(mi ∨mj ∨mk); 2. B(i,j)(mi ∨mj ∨mk); 3. B(i,j,k)(mi ∨mj ∨mk);
4. Bi(¬mi ⊃ Bj(¬mi)); 5. Bi(¬mi ⊃ Bk(¬mi)); 6. B(i,j)(¬mi ⊃ Bj(¬mi));
7. B(i,j)(¬mi ⊃ Bk(¬mi)); 8. B(i,j)(¬mj ⊃ Bi(¬mj)); 9. B(i,j)(¬mj ⊃ Bk(¬mj));
10. Bi(Bi(mi) ⊃ ri); 11. Bi(Bj(mj) ⊃ rj); 12. Bi(Bk(mk) ⊃ rk);
13. B(i,j)(Bi(mi) ⊃ ri); 14. B(i,j)(Bj(mj) ⊃ rj); 15. B(i,j)(Bk(mk) ⊃ rk);
16. B(i,j)(¬rk)); 17. Bi(¬rj)); 18. Bi(¬mj ⊃ Bi(¬mj)); 19. Bi(¬mj ⊃ Bk(¬mj));
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20. Bi(¬mk ⊃ Bi(¬mk)); 21. Bi(¬mk ⊃ Bj(¬mk)); 22. B(i,j)(¬mk ⊃ Bi(¬mk));
23. B(i,j)(¬mk ⊃ Bk(¬mk)).

(I): Let the Kripke frame (W,R1, R2, R3) be defined by:

W = {w1, w2} (7.5)

Ri = Rj = {(w1, w1), (w2, w2)};

Rk = {(w1, w1), (w1, w2), (w2, w2)}

The assignment σ is defined by:

σ(w, p) = � iff w = w1 and p = mk. (7.6)

That is, the only primitive propositional symbol that is ever true is mk, and it is only
true at w1. For simplicity, we will write w |= C for (K, σ,w) |= C.

w1 w2
k

km

i,j,k i,j,k

Figure 7.1: Kripke Frame for (I)

This model is depicted in Figure 7.1. An arrow between w and w′ with the label s
indicates that (w,w′) ∈ Rs. Beneath each world, we list the primitive propositional
symbols that are true. In this model we exclude belief 3. However, we can verify that
every other belief in the list holds true at w1.

Beliefs 1 and 2 hold since w1 |= mi ∨mj ∨mk. Beliefs 4 through 9, 10, 11, 13, 14, 18
and 19 hold since w |= ¬mi and w |= ¬mj for all w ∈ W . Beliefs 12 and 15 hold since
w2 |= ¬mk. Beliefs 16 and 17 hold since w |= ¬rk and w |= ¬rj at every w ∈W . Beliefs
20 to 23 hold since the w1 |= mk.

It remains only to show that w1 � Bi(mi). This holds since w |= ¬mi for all w ∈W .

(II): Let the Kripke frame (W,R1, R2, R3) be defined by:

W = {w1, w2, w3, w4} (7.7)

Ri = {(w1, w2), (w2, w2), (w3, w3), (w4, w4)};

Rj = {(w1, w1), (w2, w3), (w3, w3), (w4, w4)};

Rk = {(w1, w1), (w2, w2), (w3, w4), (w4, w4)}.
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The assignment σ is defined by:

σ(w,mi) = � iff w = w1; (7.8)

σ(w,mj) = � iff w ∈ {w1, w2, w4};

σ(w,mk) = � iff w ∈ {w1, w2, w3};

σ(w, rs) = � iff w = w2 and s = k.

w1 w2
i

j,k i,k

j

kw4 w3

i,ji,j,k
jm

Figure 7.2: Kripke Frame for (II) and (III)

km

kkj rmm ,,
kji mmm ,,

The model is depicted in Figure 7.2. In this model we exclude belief 9. We verify that
every other belief in the list holds at w1.

Beliefs 1, 2, and 3 hold since w |= mi∨mj ∨mk for all w ∈W . Belief 4 holds since w2 |=
Bj(¬mi), and belief 5 holds since w2 |= Bk(¬mi). Belief 6 holds since w3 |= Bj(¬mi), 7
holds since w3 |= Bk(¬mi), and 8 holds since w3 |=Bi(¬mj). Beliefs 10, 11, and 12 hold
since w2 |= ¬Bs(ms) for s = i, j and w2 |= rk. Beliefs 13, 14, 15, and 16 hold since w3 |=
¬rk and w3 |= ¬Bs(ms) for s = i, j, k. Belief 17 holds since w |= ¬rj for all w ∈ W .
Beliefs 18 and 19 hold since w2 |= mj . Beliefs 20 to 23 hold since w2 |= mk and w3 |=
mk.

It remains only to show that w1 � Bi(mi). This holds since w2 |= ¬mi.

(III): Let the Kripke frame (W,Ri, Rj, Rk) be the same as in case (II). The assignment
σ is:

σ(w,mi) = � iff w ∈ {w1, w4}; (7.9)

σ(w,mj) = � iff w ∈ {w1, w2};

σ(w,mk) = � iff w ∈ {w1, w2, w3};

σ(w, rs) = � iff w = w2 and s = k.
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We exclude belief 7 in this model. We verify that every other belief in the list holds at
w1.

Beliefs 1, 2, and 3 hold since w |= mi ∨mj ∨mk for all w ∈ W . Belief 4 holds since
w2 |= Bj(¬mi), and 5 holds since w2 |= Bk(¬mi). Belief 6 holds since w3 |= Bj(¬mi),
and 8 holds since w3 |= Bi(¬mj). Belief 9 holds since w3 |= Bk(¬mj). Beliefs 10, 11,
and 12 hold for the same reason as in (II). Beliefs 13, 14, 15, and 16 hold since w3 |=
¬rk, w3 |= ¬Bs(ms) for s = i, j, k, and w3 |= ¬rk. Belief 17 holds since w |= ¬rj for
all w ∈W . Beliefs 18 and 19 hold since w2 |= mj. Beliefs 20 to 23 hold since w2 |= mk

and w3 |= mk.

It remains only to show that w1 � Bi(mi). This holds since w2 |= ¬mi.

(IV): Let the Kripke frame (W,Ri, Rj, Rk) be defined by:

W = {w1, w2} (7.10)

Ri = Rk = {(w1, w1), (w2, w2)};

Rj = {(w1, w2), (w2, w2)}.

The assignment σ is defined by:

σ(w,ms) = � iff (w,ms) ∈ {(w2,mi), (w1,mj)}; (7.11)

σ(w, rs) = � iff (w, rs) = (w2, ri).

This model is depicted in Figure 7.3.

w1 w2
j

jm

i,k i,j,k

ii rm ,

Figure 7.3: Kripke Frame for (IV), (V), (VI)

We exclude belief 4 in this model. We verify that every other belief in the list holds at
w1.

Beliefs 1, 2, and 3 hold since w |= mi∨mj ∨mk for all w ∈W . Belief 5 holds since w1 |=
Bk(¬mi). Beliefs 6 and 7 hold since w2 |= mi. Belief 8 holds since w2 |= Bi(¬mj), 9 holds
since w2 |= Bk(¬mj). Beliefs 10, 11, and 12 hold since w1 |= ¬Bs(ms) for s = i, j, k.
Beliefs 13 and 14 and 15 hold since w2 |= ri, w2 |= ¬Bj(mj), and w2 |= ¬Bk(mk). Belief
16 holds since w2 |= ¬rk, and 17 holds since w2 |= ¬rj. Beliefs 18 and 19 hold since
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w1 |= mj. Beliefs 20 to 23 hold since w |= ¬mk for all w ∈W .

It remains only to show that w1 � Bi(mi). This holds since w1 |= ¬mi.

(V) Let the Kripke frame (W,R1, R2, R3) the same one as in (IV). The assignment σ is
defined by:

σ(w,ms) = � iff s = k; (7.12)

σ(w, rs) = � iff (w, rs) = (w1, rk).

We exclude belief 15, and show that every other belief in the list holds at w1.

Beliefs 1,2, and 3 hold since w |= mi ∨mj ∨mk for all w ∈W . Beliefs 4 to 11, 13, and
14 hold since w |= ¬mi and w |= ¬mj for all w ∈ W . Belief 16 holds since w2 |= ¬rk.
Beliefs 12 and 17 hold since w1 |= rk and w1 |= ¬rj . Beliefs 18 and 19 hold since
w |= ¬mj for all w ∈W . Beliefs 20 to 23 hold since w |= mk for all w ∈W .

It remains only to show that w1 � Bi(mi). This holds since w1 |= ¬mi.

(VI) Let the Kripke frame (W,R1, R2, R3) be the same one as is in (IV). The assignment
σ is defined by:

σ(w,ms) = � iff (w,ms) ∈ {(w1,mk), (w2,mj)}; (7.13)

σ(w, rs) = � iff (w, rs) ∈ {(w1, rk), (w2, rj)}.

We exclude belief 11 and show that every other belief in the list holds at w1.

Beliefs 1,2, and 3 hold since w |= mi ∨ mj ∨ mk for all w ∈ W . Beliefs 4, 5, 6, 7,
10, and 13 hold since w |= ¬mi for all w ∈ W . Beliefs 8, 9, 14, 15, and 16 hold since
w2 |= mj, w2 |= ¬rk, w2 |= rj , and w2 |= ¬Bk(mk). Beliefs 12 and 17 hold since w1 |= rk
and w1 |= ¬rj . Beliefs 18 and 19 hold since w1 |= ¬mj . Beliefs 20 and 21 hold since
w1 |= mk. Finally, beliefs 22 and 23 hold since w2 |= ¬mk.

It remains only to show that w1 � Bi(mi). This holds since w1 |= ¬mi. �

Proof of (c): Suppose that 〈Γ1i ,Γ
2
i ,Γ

3
i 〉 satisfies (a) and (b), but violates (c). Then, by

(2.1), (i, j, k) /∈ Fi. We will show that R5 is violated. By R1 and (b) of this theorem,
to show R5 is violated, it suffices to show �EiFi Γ

0
i ∪ {B(i,j)(¬rk), Bi(¬rj)} → Bi(mi).

Suppose �EiFi Γ
0
i ∪{B(i,j)(¬rk), Bi(¬rj)} → Bi(mi). Recall B(i,j,k)(mi∨mj ∨mk) =

B(i,j)(Bk(mi ∨mj ∨mk)) ∈ Γ
1
i . However, since (i, j, k) /∈ Fi, the subformula Bk(mi ∨

mj ∨mk) in B(i,j)(Bk(mi ∨mj ∨mk)) behaves like a propositional variable in the proof
of Γ1i ∪{B(i,j)(¬rk),Bi(¬rj)} → Bi(mi). Hence, we can replace B(i,j)(Bk(mi∨mj ∨mk))
by B(i,j)(mi ∨mj ∨mk) in Γ

0
i ∪ {B(i,j)(¬rk),Bi(¬rj)} → Bi(mi) without destroying the

provability. Since B(i,j)(mi ∨mj ∨mk) is already in Γ0i , the antecedent of the resulting

sequent is the belief set Γ̃3i (I) of case I of part (b) of this theorem. Now, we would have
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�EiFi Γ̃
3
i (I) → Bi(mi). However, we have shown �EiFi Γ̃

3
i (I) → Bi(mi) in part (b) of

this theorem. Hence, we conclude that �EiFi Γ
0
i ∪ {B(i,j)(¬rk),Bi(¬rj)} → Bi(mi), a

fortiori R5 is violated. �
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