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Nomenclature 

 

Parameter Description Units 

α Coefficient of linear expansion [1/K] 

c0 Speed of sound at the reference state [m/s] 

Ceff Effective thermal capacitance [J/K] 

cp Specific heat of a material [J/kg K] 

Esys Energy of a system [J] 

k Thermal conductivity [W/m K] 

Li Thickness of an individual material layer [m] 

Pin Input power [W] 

envq
.
  Environmental heat transfer [W] 

qs
" Heat flux at a surface [W/m2] 

Reff Effective thermal resistance [K/W] 

ρ Density of a material [kg/m3] 

t Time [s] 

Ti Initial temperature [oC or K] 

Ts Surface temperature [oC or K] 

θ Temperature difference from initial state [oC or K] 

V Volume [m3] 
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γ Young's modulus change with temperature [1/K] 
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Abstract 
 

Abstract 

This thesis presents a methodology for measuring thermal properties in situ, with a 

special focus on obtaining properties of layered stack-ups commonly used in armored 

vehicle components. The technique involves attaching a thermal source to the surface of a 

component, measuring the heat flux transferred between the source and the component, 

and measuring the surface temperature response. The material properties of the 

component can subsequently be determined from measurement of the transient heat flux 

and temperature response at the surface alone. Experiments involving multilayered 

specimens show that the surface temperature response to a sinusoidal heat flux forcing 

function is also sinusoidal. A frequency domain analysis shows that sinusoidal thermal 

excitation produces a gain and phase shift behavior typical of linear systems. 

Additionally, this analysis shows that the material properties of sub-surface layers affect 

the frequency response function at the surface of a particular stack-up. The methodology 

involves coupling a thermal simulation tool with an optimization algorithm to determine 

the material properties from temperature and heat flux measurement data. Use of a 

sinusoidal forcing function not only provides a mechanism to perform the frequency 

domain analysis described above, but sinusoids also have the practical benefit of reducing 

the need for instrumentation of the backside of the component. Heat losses can be 

minimized by alternately injecting and extracting heat on the front surface, as long as 

sufficiently high frequencies are used. 
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Chapter 1  

Introduction 

1.1 Statement of the Problem 

To create a realistic thermal model of an object of interest, such as a commercial or 

military ground vehicle, it is necessary to first obtain the thermal properties of all of the 

constituent components. In most cases, the materials of the individual components are 

known, and it is therefore sufficient to obtain the necessary thermal properties 

(conductivity and specific heat) from the published literature in order to begin model 

development. 

 

 

Figure 1.1 - Example of a military ground vehicle thermal model 
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Military ground vehicles on the other hand are especially difficult to model because they 

are typically outfitted with one or more layers of armor that can significantly affect the 

heat transfer from the vehicle to the environment. To further complicate matters, the 

material make-up of these armor panels, including the thermal properties associated with 

them, are not readily obtainable from either the manufacturer or the military due to the 

inherent sensitive nature of their composition (from both a proprietary and 

intelligence/security standpoint). 

 

Since armor stack-ups can vary from vehicle to vehicle, even among vehicles of the same 

type, field testing of a particular vehicle of interest is the ideal method of obtaining 

material thermal properties for modeling purposes. However, since these components 

cannot be removed from the vehicles of interest, traditional test methods cannot be 

employed to obtain the necessary thermal properties.
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Chapter 2  

Background 

2.1 Thermal Property Measurement 

There are a wide variety of established methods for measuring the thermal properties of 

materials. Selection of a particular method depends on the material type, temperature 

range, and property of interest, i.e., thermal resistance (or conductivity) or thermal 

capacitance (specific heat). When only the thermal resistance is desired, steady-state 

techniques are sufficient; however, for thermal capacitance measurements, transient 

techniques must be employed.  

 

2.1.1 The Basics: Lee’s Disc and Searle’s Bar 

The two most common techniques for measuring thermal conductivity are the Searle’s 

Bar Method and the Lee’s Disc Method, the former being more applicable to thermally 

conductive specimens while the latter is more applicable to thermally resistive specimens. 

 

The Searle’s Bar Method incorporates a test procedure that imposes a constant 

temperature difference between two ends of a cylindrical test specimen so that the 

thermal conductivity can be obtained by solving the one dimensional steady-state heat 
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conduction equation. The particular technique for maintaining the temperature difference 

between the two ends of the bar is not fundamental to the method and can therefore vary 

depending on the experimental approach, provided that the heating is performed in such a 

way as to allow the heat flow through the bar to be measured. In order to fulfill the 

adiabatic boundary condition assumption, both the device must be sufficiently insulated 

and the specimen must thermally conductive. 

 

The Lee’s Disc Method addresses the limitations inherent for testing thermally resistive 

samples with the Searle’s Bar Method by making use of a very thin circular specimen 

that is sandwiched between a hot surface and a cold surface. The small surface area along 

the perimeter of the disc reduces the ratio of heat lost to the surroundings to the heat 

traveling through the bar, which limits measurement error in the conductivity calculation. 

However, in contrast to the Searle's Bar Method, the experiment for the Lee’s Disc 

Method is divided up into two phases: The first phase is a steady-state experiment similar 

to the Searle’s Bar Method; the second phase immediately follows in which the sample is 

either heated or cooled to ~5 oC above or below its previous steady-state value. The 

conductivity of the specimen is then obtained from the time rate of change of the disc 

temperature, mass, dimensions, and the hot and cold temperatures of the surfaces that 

were measured during the steady-state phase of the experiment.  
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2.1.2 Standardized Test Methods 

A number of international organizations (e.g. ISO, ASTM, IEEE, etc.) have compiled 

procedures to help standardize the measurement of material thermal properties.  

 

For example, ASTM D5930 “Standard Test Method for Thermal Conductivity of Plastics 

by Means of a Transient Line-Source Technique” maps out step-by-step instructions on 

how to perform material testing according to the line-source technique [1] [3] [6]. This 

transient method for determining thermal conductivity involves a line heat source that is 

inserted at the center of the specimen. When electrical current is supplied to the source to 

generate heat, a thermal wave propagates radially into the specimen, facilitating 

characterization of the heat transfer within the specimen in terms of a one dimensional 

transient conduction equation. During the course of the experiment, the temperature rise 

measured at the source will eventually stabilize to form a linear relationship with time on 

a logarithmic scale. The conductivity of the specimen can then be obtained directly from 

knowledge of the applied heat rate and the temperature response slope using a simple 

correlation. 

 

The same underlying principle used in the line source technique has been applied in the 

development of various techniques and associated devices for determining the thermal 

properties of materials commonly encountered in electrical and civil engineering 

applications. For example, Krishnaiah et al. have developed a methodology to determine 
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the thermal properties of rocks [10], which is based on the “Transient heat method” [1]. 

By inserting a thin thermal probe, which is outfitted with a thermocouple, into a rock 

sample and supplying it with a known electrical power, the temperature response to the 

subsequent heat input can be used to back out the thermal resistance and diffusivity of the 

rock sample.  There are several related standard procedures for measuring soil thermal 

properties using similar methods, e.g. IEEE Standard 442-1981 “Guide for Soil Thermal 

Resistivity measurements” [4] and ASTM D5334 “Standard Test Method for 

Determination of Thermal conductivity of Soil and Soft Rock by Thermal Needle Probe 

Procedure” [5].  

 

A method known as the Divided Bar of Comparative Cut Method is described in ASTM 

E1225, “Standard Test Method for Thermal Conductivity of Solids by Means of the 

Guarded-Comparative-Longitudinal Heat Flow Technique” [1]. This method involves 

placing a bar of sample material in series with a bar with known material properties. Heat 

is applied to one end of the divided bar and the thermal conductivity of the sample is 

evaluated by measuring the steady-state temperature gradient across the two bars. The 

amount of heat applied to the sample does not need to be known to obtain the 

conductivity.  

 

The Heat Flow Meter Method extends the divided bar method by making use of a heat 

flux sensor to measure the heat flow through the sample. This method is described in 

ASTM E1530 “Standard Test Method for Evaluating the Resistance to Thermal 
 
 6 



Chapter 2 – Background 
 

Transmission of Materials by the Guarded Heat Flow Meter Technique” [11] and ASTM 

C518 “Standard Test method for Steady-State Thermal Transmission Properties by 

Means of a Heat Flow Meter Apparatus” [12]. 

 

The Guarded Hot Plate Method is widely used for the measurement of thermally 

insulative materials. This method can be applied to large specimens in the form of flat 

slabs. This simple device measures the steady state heat transfer and temperature 

response of a material by means of an electrically heated metering section surrounded 

laterally by a guard heater section controlled using differential thermocouples.  Detailed 

descriptions of this technique and its associated device are available in ISO 8302 

“Thermal insulation – Determination of steady-state thermal resistance and related 

properties – Guarded hot plate apparatus” [13] and ASTM C177 “Standard Test Method 

for Steady-State Heat Flux Measurements and Thermal Transmission Properties by 

Means of the Guarded-Hot-Plate Apparatus” [14]. 

 

ISO 22007 describes three techniques to determine the thermal conductivity and 

diffusivity of plastics: i) Transient plane heat source (hot disc) method; ii) Temperature 

wave analysis method; and iii) Laser flash method [7] [8] [9]. The principle behind the 

first of these methods, the hot disc method, involves applying a stepwise heat pulse via an 

electrical current through a hot-disc probe embedded within the test specimen. The 

transient temperature response is correlated with the material properties from knowledge 

of the probe construction and assumed boundary conditions. The Temperature Wave 
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Analysis (TWA), is a recently developed method that relies on the frequency dependency 

of thermal diffusivity as a function of temperature.  The laser flash method provides a 

technique to obtain thermal diffusivity by measuring the back side temperature response 

of a thin specimen that is exposed to a short energy pulse. 

 

2.2 Armor Construction and Materials 

A literature review was conducted to determine the extent of information that is available 

in the public domain regarding armor recipes and material properties. Unfortunately 

(although not unexpected), very little information on actual armor recipes was found 

available in the published literature. However, based on the information gathered and 

further confirmed by individuals that work in the armor industry, the Army Composite 

Armor Vehicle (CAV) recipe can be assumed to be representative of many armor recipes:  

 

Army Composite Armor Vehicle (CAV) Construction 

• Thin protective PMC (polymer matrix composite) outer face-sheet 

• Thick ceramic/alumina armor tiles 

• Thin EPDM (ethylene propylene diene monomer) rubber  

• Thick structural composite 

• Thin-to-moderate fire-protective “spall” phenolic inner liner 
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Northrop Grumman Patent 6135006  

Armor recipes can even be found within patent disclosures such as the following fiber-

reinforced ceramic matrix composite (FRCMC) armor developed by Northrop Grumman. 

This armor recipe is constructed by laying pairs of hard ceramic layers and less-thick 

ductile layers. The thin ductile layers consist of woven 3M Nextel 312 alumina-boria-

silica fiber sheets and the hard ceramic layers consist of black glass silicon-carboxyl 

resin. 

 

Very little information on the properties for armor materials can be obtained from the 

public domain, as was the case for armor recipes. Additionally, the material properties for 

an individual material may have a wide variation of thermal properties. For example, the 

thermal conductivity of silicon-carbide can vary by over an order of magnitude, 

indicating that knowledge of a particular armor recipe may not be sufficient to accurately 

characterize the thermal response of the armor as constructed. 

 

Table 2.1 - Various armor material properties 

Material k [W/m/K] Cp [J/kg/K] E    [GPa]  Density [kg/m3] c  [km/s] CTE   [/K]  

Boron carbide 27 - 29 1854 440 - 483 2510 13.2 - 14.5 2.6E6 – 5.6E6 

Silicon carbide 10 - 125 670 410 - 476 3100 - 3190 11.5 – 12.2 3.0E6 – 4.78E6 

Timetal 6.4 titanium 7.2 560 106 – 114 4420 4.9 – 5.1 8.8E6 – 9.2E6 

Kevlar 49 0.2 thru, 1-2 axial 1000 24 - 77 1440 4.1 – 7.3 6.0E7 – 1.1E8 
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2.3 An Ultrasonic Approach to Property Measurement 

Research was also performed to determine the extent of material properties obtainable 

from using ultrasonic wave propagation through an armor sample. The basis of the 

ultrasound approach is that the time between when an ultrasonic wave is emitted and its 

echo received is determined by the properties of a particular material, specifically, the 

speed of sound of that material at some reference state. In addition, multilayered objects 

produce multiple echoes, indicating that the assessment of material properties within a 

layered sample may be feasible using ultrasound.  

 

A typical application of ultrasonic devices is to obtain the number of layers within a 

layered material as well as the individual thicknesses of these layers. Since the material 

associated with each layer is usually known beforehand, an ultrasonic technician simply 

provides the device with the known material makeup of the specimen, which embedded 

software uses to access built-in material properties databases so that the TOF (time-of-

flight), or G (s), between the emission of the wave and the receipt of the echo can be 

expressed in terms thickness (m). These devices tend to be reasonably priced; for 

example, a higher end ultrasonic thickness gage from Olympus only costs somewhere 

between $4K to $5K. 
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2.3.1 Relationship between Ultrasonic TOF and Temperature 

Besides the estimation of thickness and layer counts, techniques for estimating the 

internal temperature distribution using ultrasound can also be found in the published 

literature [16]. Ultrasonic temperature measurement is typically employed in non-

destructive-evaluation (NDE) applications, such as those involving testing on living 

tissue.  

 

The relationship between ultrasonic time-of-flight (G) and the temperature change from 

an initial state (θ) can be expressed as follows, 

 

( ) ( )dxx
c

cLG
L

∫
+

−=
0

0
0/2 θγα  (2.1) 

 

where L is the thickness of the layer (m), and α, γ, and c0 are thermally dependent 

material properties: α is the coefficient of linear expansion (K-1), γ is the Young’s 

Modulus change with temperature (K-1), and c0 is the speed of sound at the reference state 

(m/s) [17]. The temperature difference, θ, (K) is defined as the difference in temperature 

at any point at a distance, x, through the system and its initial state: 

 

0)()( TxTx −=θ  (2.2) 
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Ultrasonic thermometers are a relatively new technology and as such can be quite 

expensive, e.g. IMS, Inc. sells an ultrasonic thermometer for between $60K and $80K. 

This device may be able to detect temperature changes in up to 16 layers (depending on 

the similarity of the materials), however doing so, requires knowledge of the material 

makeup of the system being measured. 

2.4 Original Design Concept 

A design concept was proposed by the funding agency for this project (TARDEC) to 

back out material thermal properties using an in situ approach. The plan involved 

outfitting a vehicle with an array of temperature sensors and then thermally activating the 

surface of the armor using a heat source. After completion of the experiment(s), 

measured temperatures and heat fluxes would be provided to a code that couples the 

MuSES thermal solver (ThermoAnalytics, Inc.) with an optimization algorithm to 

determine the material properties, as illustrated Figure 2.1. 

 

             

Figure 2.1 – Illustration of the original design concept test setup 
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Summary of original design concept: 

1. Heat source is applied to a surface 

2. Array of thermocouples are applied to both front and back surfaces 

3. Computer running LabView controls the heat source 

4. LabView output data (temperatures and heat fluxes) are read in by a MuSES user 

routine 

5. Iteratively run MuSES simulations while optimization code finds matching 

thermal resistance and capacitance 
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Chapter 3  

Objective 

The goal for this research project was to develop a device and associated test methods 

that can be applied to military ground vehicle components in situ for the purpose of 

producing a set of thermal modeling properties. While a device that is able to accurately 

reverse engineer a vehicle component would be extremely valuable in its own right, it is 

important to note that the intent of the desired device behind this effort is to obtain a set 

of approximate property values that essentially produce accurate overall vehicle 

temperature predictions when performing thermal simulations of ground vehicles. 

Advancement of the current techniques for material thermal properties measurement, 

from an in situ perspective, is beneficial to research scientists and engineers performing 

numerical simulation of systems consisting of unknown or unpublished material 

properties. By providing researchers with a tool to directly measure the thermal 

properties of the components of interest, they will no longer need to rely on estimates 

based on engineering judgment or require time consuming searches for information. The 

use of such a tool in industry will facilitate the rapid development of thermal models, 

thereby reducing project cost.  Such a tool could also be beneficial to educators and 

students by providing a practical insight into the material properties of commonly 

encountered objects in everyday life. 
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Chapter 4  

Methods 

4.1 Basic Approach 

The solution approach for most thermal modeling problems is to predict a set of 

temperatures for an object of interest, given a set of known thermal properties, initial 

conditions, and boundary conditions. To accomplish this, conservation of energy is 

enforced by solving the heat equation at each location within the model. The governing 

equation in its most basic form (neglecting internal heat generation) can be expressed 

using two terms: i) A heat storage term for characterizing transients based on an initial 

state; and, ii) a conduction term for characterizing heat transfer within the object; i.e., 

 

Tk
t
Tc p

2∇=
∂
∂ρ  (4.1) 

 

where ρ is the density (kg/m3) of the material, pc is the specific heat of the material 

(J/kg·K), T is the temperature (K), t is the time (s), and k is the conductivity of the 

material (W/m·K). The boundary condition for characterizing environmental heat transfer 

at the surface, ''
envq , typically includes effects due to convection, radiation, and 
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conduction; however, latent heat transfer (e.g. evaporation, condensation) involving 

phase change at the surface can also be included, when applicable: 

''
envqTk =∇−  (4.2) 

 

Rather than treating the temperatures as the unknowns as in typical thermal modeling 

applications, the basic approach behind material properties measurement is to treat the 

model parameters as the unknowns and solve for them by exciting the system using 

known, or measured, boundary conditions and the measured transient temperature 

response. 

 

For layered materials, it can be shown from Equation 4.1 that the front side temperature 

and heat flux response is a function of the material properties of the constituent layers. 

For example, a generalized planar stack-up of equal thickness materials can be 

discretized into distinct temperature regions, which can be expressed using the following 

system of simultaneous equations: 
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where j subscripts indicate the material layer, and i subscripts indicate locations at which 

temperatures will be solved for (i.e., at the front and back, as well as at the interfaces 

between materials), and 'T  indicates the temperature from the previous time step. Each 

term in the equations has units of flux (W/m2), including the boundary conditions, ''
frontq  

and ''
backq , which may also include an appropriate imposed heat source necessary to excite 

the system for property determination purposes. 

 

4.2 Approximation Using Effective Material Properties 

The feasibility of approximating the thermal response of an armor specimen (based on a 

representative CAV armor recipe) by using a single effective anisotropic material was 

examined to determine if a simple thermal model could be used to represent layered 

armor.  

 

 

Figure 4.1 - Approximating armor thermal response using an effective resistance 

  

Effective material properties can be constructed by summing up the individual resistances 

that appear in series as follows,  
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∑=
n

i
iieff kLR /  (4.6) 

 

where Reff (K/W) is the resulting effective resistance, and iL  (m) and ik  (W/m·K) are the 

thickness and thermal conductivity of an individual layer making up the complete armor 

recipe, respectively. A similar procedure can be employed for obtaining the effective 

capacitance, effC  (J/K),  

 

∑=
n

i
ipeff VcC )(ρ  (4.7) 

 

expressed here in terms of the density, ρ  (kg/m3),  volume, V (m3), and specific heat, pc  

(J/kg·K), of the individual layers. 

 

A series of preliminary thermal modeling studies was performed to validate the approach 

of using a single effective anisotropic material to approximate an actual armor specimen. 

Two armor models were employed for this analysis; i) one based on a representative 

armor recipe; and ii) another based on a single effective anisotropic material. Both 

models were appropriately discretized through the thickness in order to accurately 

capture the transient temperature profile. For these analyses, a heat source was applied at 

the front surface and the temperature on the backside of the armor was logged over a 

period of simulation time (Figure 4.2). 
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Figure 4.2 – Use of a single effective material to characterize a layered specimen 
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Results from these preliminary thermal analyses indicate that using a single anisotropic 

material is not sufficient for characterizing armor plates when dealing with local spot 

heating. Therefore, it may be necessary to solve for an effective armor construction, that 

is, to have the thermal measurement device provide a resulting effective layered armor 

recipe consisting of at least two or three layers, in order to explicitly capture any 

anisotropic effects due to layering of armor materials. 

 

4.3 Accessibility to Armor Backside  

A visit to a military vehicle testing site containing a variety of armored vehicles provided 

an opportunity to examine the practicalities involved in performing actual armor thermal 

testing experiments. A hindrance to the feasibility of the proposed original concept 

immediately became apparent: The inability to instrument the backside of an armor plate 

installed on a vehicle (Figure 4.3).  
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Figure 4.3 - Accessibility of Armor Backside 

 

It follows that the testing procedure may undoubtedly require an approach that involves 

applying the heat source and measuring the temperature response on the same surface. 

 

4.4 Investigation of Heater/Armor Interaction 

An additional thermal simulation analysis was performed to gauge the quality of response 

information obtainable from careful instrumentation of the armor surface using an array 

of thermocouples (Figure 4.4). The purpose of this investigation was to ascertain the 

spatial variation of the surface heat diffusion from both a qualitative as well as a 

quantitative perspective.  
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Figure 4.4 - Front side spatial variation 

 

The results from these thermal simulations based on representative armor recipes indicate 

that the heat affected zone is essentially confined to the heater footprint. This conclusion 

was further confirmed by the results of physical measurements on actual armor that was 

performed at a military vehicle testing facility early on in the project. These findings 

indicate that the final design of the measurement device may only require a single heat 

flux sensor and/or thermocouple positioned directly below the heater element. 
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Summary of Preliminary Technical Hurdles: 

1. Difficult or impossible to access backside of armor 

a) Will need to apply heat and measure temperature response from same side 

b) Backside boundary conditions will be difficult to characterize 

2. Minimal spatial temperature variation on front side 

a) Limited to only one relevant response (temperature) measurement  

3. Very little information on actual armor recipes and material properties in 

published literature.  

a) Validity of measurements based on actual armor will be difficult to assess 

4.4.1 Development of an Ultrasound-based Property Measurement Device 

Constructing an ultrasonic thermometer capable of determining temperature changes 

within a multilayer specimen requires coupling an extremely high-precision data 

acquisition system with a sophisticated signal processing framework. A set of various 

sized transducers capable of emitting and receiving a wide range of frequencies would 

also be required. 

 

Ultrasonic flaw detection devices tend to be much more versatile than their more 

common thickness gage counterparts. These devices typically allow direct access to the 

signal of interest, providing estimations of time of flight measurements from layer to 

layer as determined by embedded signal processing techniques. Subsequently, ultrasonic 
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flaw detection devices are more expensive than thickness gauges: For example, a 

MasterScan ultrasonic flaw detector from Sonatest costs about $8,500.  

 

Preliminary calculations (confirmed by physical testing on actual armor with an 

ultrasonic technician on-site) indicated that the level of precision provided by these 

devices is not sufficient for internal temperature measurement within the relatively tight 

range of temperatures necessary for thermal property measurement. The development of 

a more precise data acquisition system may explain the prohibitively high cost of the 

ultrasonic thermometers provided by their manufacturers.  

 

Ultrasound Technical Hurdles 

Ultrasonic temperature measurement requires knowledge of layer materials and 

thicknesses 

• Layer transition from low to high impedance could cause a reflection of most of 

the ultrasonic wave, reducing ability to measure material properties beyond this 

layer 

• Layers beyond any air or rubber layers would be difficult to characterize 

• Excessive noise could make signals and echoes difficult to process the precision 

required for thermal property measurement 

• Material properties needed for relating temperature to sound speed for commonly 

used armor materials are difficult to obtain 
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4.5 A Thermal Measurement Only Approach 

Considering the compounding series of difficulties associated with the ultrasonic 

approach, the extent and nature of the properties that can be obtained from using a pure 

thermal approach (that is, when the experiment is limited to applying heat and measuring 

temperature from same side of an armor component) was investigated.  

 

It can be shown from an analytic solution involving a semi-infinitely thick slab exposed 

to a surface heat flux (i.e. the semi-infinite solid solution [17]) that a relatively simple 

closed form equation can be obtained relating material properties of interest to surface 

heat flux and temperature, 
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where t is the elapsed time (s), "
sq is the heat flux imposed at the surface, T is the 

temperature (K), and the subscripts s and i denote “surface” and “initial,” respectively. 

The resulting material properties are combined to form a single value representing the 

product of conductivity, density, and specific heat, or from an analogous electrical 

perspective, the quotient C/R, where C is the thermal capacitance (J/kg·K) and R is the 

thermal resistance (m2·K/W).  Despite the fact that the desired material properties are 
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expressed as a product, this result is still useful given that the heat capacity tends to be 

similar for many armor materials. 

 

A simple MuSES model of a flat steel plate was constructed to determine the validity of 

applying the semi-infinite solid solution to a non-semi-infinite slab (such as an armor 

plate) to obtain thermal properties. The conductivity of the armor material was solved for 

based on values of heat flux, temperature, elapsed time, given an exact value for the 

product of heat capacity and density. The results of this experiment are shown in Figure 

4.5. 

 

Figure 4.5 - Estimation of conductivity using the semi-infinite solid approximation 

 

It was found that solution of the semi-infinite solid equation results in an accurate 

prediction of the assigned conductivity value (52.0 W/m-K) when confining the 
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experimental data to a window positioned near the beginning of the experiment. A 

plateau in the estimate appears at the location of the correct conductivity value which, 

with appropriate signal processing, may be used to determine a convergence criterion. 

The analytical estimate begins to drop off at the same point in time at which the surface 

heat flux begins to significantly affect the backside temperature. At this point in the 

experiment, the model no longer behaves like a semi-infinite solid. In other words, the 

semi-infinite solid approximation begins to break down as the backside boundary 

condition begins to affect the surface temperature response. 

 

This investigation provides an indication that the surface temperature response may help 

characterize the backside boundary conditions, or at least at a minimum, provide the 

analysis with a stopping point trigger that bounds the window of valid experimental data 

needed to avoid the need to characterize the backside boundary conditions. 

 

4.6 Optimization-MuSES coupling 

Although the closed-form solution to the semi-infinite solid problem appears to indicate 

that it is only the combination of the capacitance and resistance that can be obtained from 

knowledge of the elapsed time, surface temperature and heat flux, an effort was 

undertaken to attempt to solve for these material properties independently of one another 

using a combination of a thermal solver and an optimization code, i.e. MuSES and Mode 

FRONTIER (Esteco), respectively. 
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A test model was constructed involving a homogeneous sheet of material consisting of 

mild steel (k=52.019 (W/m·K), cp=460.967 (J/kg·K), ρ=7768.98 (kg/m3)). To improve 

accuracy, the sheet was subdivided into multiple thermal nodes, equally spaced through 

the thickness from the front to the backside. The surface was exposed to a constant heat 

flux for the duration of the 30 minutes of simulation time. For this simple case, the heat 

transfer was assumed to flow in only one direction, from front to back, and an adiabatic 

boundary was assumed in all other directions. A single front side surface temperature was 

logged at every minute during the simulation. This data was written out to an ASCII file 

so that it could be subsequently read in by an optimizer.  

 

 

Figure 4.6 - Target temperatures used by the optimizer 
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The Mode FRONTIER optimizer was used to extract the temperatures from the thermal 

solver’s ASCII output file and find both thermal resistance and heat capacity 

simultaneously and independently of one another through a series of controlled thermal 

simulations. In order to gauge the progress of the optimizer during the solution by 

monitoring the thermal properties in terms of conductivity and specific heat, the same 

thickness and density that were supplied to the Mode FRONTIER control model were 

also supplied to the optimized model; these values were held constant in all cases. The 

Mode FRONTIER optimizer was able to converge on both an accurate as well as precise 

result for the conductivity value (keffective = 52.019 W/m·K) and specific heat value 

(460.967 J/kg·K) after approximately 170 iterations (Figure 4.7).  

 

 

Figure 4.7 - ModeFRONTIER optimization convergence 
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This same experiment was also performed with an internally developed Nelder-Mead 

based optimizer and yielded similar results. 

 

4.7 Time Varying Inputs 

A series of simulations based on actual armor recipes was performed to characterize the 

time window available for capturing meaningful front side temperature responses when 

using a step input function. This window is defined as the elapsed time between the start 

of the experiment and the point at which the heat input has a chance to significantly 

influence the back side temperature.   

 

 

Figure 4.8 - Assessing the time until the backside temperature is affected 

 

Imposing a constant heat flux on the surface can result in a significant backside 

temperature deviation after only ‘a few’ minutes, depending on the magnitude of the heat 

 
 30 



Chapter 4 – Methods 
 

flux supplied. This sets a very short time period for which the ‘insulated back side’ 

assumption is valid. However, if a periodic heat flux were imposed on the surface, which 

could remove the same amount of heat as injected, it is possible to keep the back surface 

temperature from deviating from its initial state. Furthermore, a periodic (sinusoidal) heat 

flux would provide a testing course that would expose the test object to a wide range of 

controlled thermal states. High frequencies would heat primarily the outer layer(s) closer 

to the front surface, while the low frequencies would also excite the back layers. 

 

A detailed investigation was undertaken to examine the front surface temperature 

response due to the thermal excitation by a sinusoidal heat flux input. The thermal 

response was examined for various frequencies and amplitudes as well as for various 

material stack-ups. To begin with, a simple two-layer configuration was put together in 

which the front surface layer’s material properties were held constant, and the back 

layer’s material properties were varied, resulting in models consisting of the following: 

Steel over copper, steel over rubber, and steel over steel. A series of sinusoidal heat 

fluxes was applied to each configuration until the object reached a sustained thermal state 

for each particular frequency and amplitude. The results of each simulation were then 

combined to form a plot of the frequency response function for each configuration 

(Figure 4.9 and Figure 4.10). 
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Figure 4.9 – Gain response of steel cover layer configuration 

 

Figure 4.10 - Phase delay of steel cover layer configuration 
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The gain (defined as the output divided by the input, "
ss qT ∆∆ ) and the phase delay of 

the temperature response relative to the imposed heat flux can substantially differ in each 

individual simulation, depending on both the material stack-up and the excitation 

frequency. This behavior is significant since it indicates that the surface temperature 

response is dependent on the material properties of the layers within the object. As can be 

seen in the frequency response plots, the amplitude and phase tend to the same value for 

higher frequencies (short periods as shown in Figure 4.11) and then begin to diverge as 

the frequency of the input signal is decreased.  
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Figure 4.11 – Frequency response when front cover layer is varied 
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The higher frequencies excite mainly the top surface layer, which subsequently 

dominates the frequency response of the entire layered material. Conversely, the lower 

frequency inputs also excite the deeper layers, resulting in a different response for each 

layer configuration. Given these results, it follows that it may be possible to separate the 

effective layer properties by careful excitation and examination of the response at 

different frequencies.  

 

This study was extended to analyze differences in frequency response for material stack-

ups in which the front layer material was varied. This analysis also showed significant 

differences in frequency response for each configuration.  

 

A set of frequency response functions was also obtained from simulations consisting of 

material stack-up configurations of representative armor recipes. Although a broad 

overlap was found to exist in the materials used in each of the armor recipes, the 

frequency response of the materials was found to be different for each configuration. The 

frequency response functions are also very different depending on the side being 

examined, further confirming the fact that the order of layers in the armor stack up is 

significant in terms of heat diffusion through the system. 
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4.8 Characterization of Individual Effective Layers 

The following method was developed for determining an operative layered material 

construction that is thermally representative of a corresponding armor plate for which 

thermal modeling parameters are desired: i) Perform a series of tests with sinusoidal heat 

flux inputs (i.e. one frequency per test) and measure the surface temperature response; ii) 

Find the effective layer construction by optimizing each layer of a thermal model. The 

thermal model will consist of the same number of layers as there are frequencies for 

which test data is available; the optimization routine would find the thermal properties of 

each layer separately.  

 

For example, given experimental data based on three input frequencies, three 

optimizations could be performed to obtain the thermal resistance and heat capacity of 

each individual effective layer. With proper selection of frequencies, the high frequency 

test data would be used to characterize the front effective layer; the medium frequency 

would be used to characterize the middle effective layer; and the low frequency would be 

used to characterize the back effective layer. 
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Figure 4.12 - Characterization of individual effective layers 

 

The optimization proceeds until the simulated armor’s frequency response converges 

upon the frequency response based on the test data. Should convergence not be reached, 

it would be an indication that insufficient measurement data is available to characterize 

the armor, requiring additional experiments to be performed at other frequencies before 

an acceptable operative armor recipe is achieved.  

 

4.9 Boundary and Initial Condition Sensitivity 

A trade study was performed that involved successively running the thermal model using 

sinusoidal heat fluxes and adjusting the model inputs to find the sensitivity to various 

parameters.  
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With respect to boundary conditions modeling, it was found that small radiation and 

convection inaccuracies have little effect on the temperature response underneath the 

heater where the measurement is taken for determining the material properties. This is 

because of the relatively high thermal resistance of the surroundings as compared to the 

high conductance within the solid material. For thermally resistive specimens (e.g. 

HDPE), the thermal wave does not propagate very far from the heater footprint, allowing 

the extended portions of the material sample to essentially remain at their initial state. 

This situation results in virtually an adiabatic condition at the boundary for the duration 

of the experiment. For thermally conductive samples the heat transferred from the heater 

is quickly diffused into the specimen, resulting in a reduced rise in temperature 

underneath the heater as compared to the high temperatures experienced with thermally 

resistive samples with similar heat inputs. Although the specimen portions far from the 

heater do experience a small rise in temperature due to this heat diffusion, the resulting 

potential difference between the surface of the specimen and the surroundings is also 

correspondingly small, resulting in a small increase in heat transfer from the sample to 

the surroundings. Therefore small inaccuracies in boundary condition characterization, 

while slightly more significant for thermally conductive specimens, have a negligible 

effect on the results of the property determination.  

 

Given that the temperature response of highly conductive materials is reduced under the 

heating element, small thermocouple calibration errors have the potential to affect the 

optimizer’s solution convergence. This can be further compounded by inaccuracies in 
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initial condition characterization of the test specimen. In order to address this issue, a 

slope-only comparison approach was investigated for use within the optimizer cost 

function, given that preliminary experiments have shown that it is the amplitude and 

phase lag of the temperature under sinusoidal excitation that is affected by the material 

properties of a specimen rather than in its absolute temperature. The following fourth 

order central difference approximation was therefore used to characterize the slope of the 

transient temperature response: 
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4.10 Mesh Sensitivity Analysis 

A mesh sensitivity analysis was performed based on actual temperatures and heat fluxes 

obtained from measurement experiments. A preliminary low density mesh was developed 

to take advantage of the inherent symmetry associated with both the physical layout and 

the thermal wave propagation. This mesh represents one of the quadrants of the test 

setup, reducing the mesh size to a quarter of the full experimental setup (Figure 4.13).  
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Figure 4.13- Coarse "quadrant" mesh with close-up of heater geometry 

 

The effective x and y dimensions of both the heater and the armor are cut in half, with the 

heater positioned in one of the corners rather than in the center.  

 

This mesh was further simplified by taking advantage of the remaining symmetry along 

the diagonal (Figure 4.14). The thermal results obtained from this simplification were 

found to be consistent with results obtained using the full quadrant mesh.  
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Figure 4.14- The half quadrant mesh takes advantage of symmetry to reduce mesh size 

 

Although this mesh is sufficient for modeling thermally resistive specimens (e.g. HDPE), 

it is not adequate for the accuracy required for determining the thermal properties of 

thermally conductive specimens (e.g. aluminum). A subsequent effort was made to 

further increase the mesh density, especially in the area directly under the heater where 

the largest magnitude thermal gradients can occur (Figure 4.15).  

 

 

Figure 4.15 - Mesh refinement needed to capture transients in highly conductive specimens 
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The finely discretized graded mesh reduces the element size in the corner (where the 

thermal couple is located) to approximately 1/3 of a mm. Due to the exhaustive number 

of elements, the thermal simulation time required to solve this mesh on a standard 

desktop or laptop computer is too lengthy to be practical, especially when considering the 

numerous iterative thermal solutions required for the purposes of property determination. 

 

A compromise mesh was therefore constructed that retains the fine discretization under 

the heater, but provides the coarseness in the areas far off to aid in the reduction of 

thermal solution time (Figure 4.16). This mesh provides essentially the same accuracy as 

the most discretized mesh constructed for this analysis. 

 

 

Figure 4.16 - Graded "compromise" mesh 
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4.11 Material Property Testing  

Testing armor samples as described above requires the input of a sinusoidal heat flux 

onto a surface resulting in a temperature response that oscillates about its initial 

temperature. The heat flux generating device must be carefully controlled so as to apply 

and remove heat at various stable frequencies. One such device, a thermoelectric cooler, 

is able to perform this function and is available as an off-the-shelf product. 

 

 

Figure 4.17- Example of a thermoelectric (Peltier) module 

 

Thermoelectric devices are designed to directly convert a voltage difference into a 

temperature difference and vice versa. This phenomenon is known as the thermoelectric 

effect and results from the diffusion of charged carriers in the material in a direction 

relative to an applied temperature gradient. In addition to being able to provide heating 
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and cooling, this effect has also been exploited by engineers to generate electricity and 

measure temperature differences within an object. 

 

A high power thermoelectric heater/cooler (CP-200HT-TT) and associated controller 

(TC-36-25-RS485) were obtained to verify the practical feasibility of operating a 

thermoelectric device in a sinusoidal fashion. This thermoelectric device is the highest 

power device manufactured by TE Technology, Inc. (Traverse City, MI) with a capacity 

rating of 200 Watts at a zero degree temperature difference. An experiment using a 

function generator to provide a reference temperature was successfully completed. Using 

a 1” thick aluminum test specimen resulted in measureable sinusoidal temperature 

oscillations with periods of less than 2 minutes (Figure 4.18). 

 

 

Figure 4.18- Sinusoidal operation of a thermoelectric device using temperature control 
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Rather than using the thermoelectric plate temperature for control, it is more desirable to 

simply control the input current and voltage and measure the resulting the heat flux 

imposed onto the armor and the subsequent temperature response of the armor surface. 

For such an application, a single thin foil flexible heat flux sensor with an embedded 

thermocouple can be sandwiched between the thermoelectric heater/cooler plate and 

armor. These devices can be ordered to size, are reasonably priced, and can be glued on 

to a surface of interest.  

 

 

Figure 4.19- Example of a thin film heat flux sensor 

 

 
 45 



Chapter 4 – Methods 
 

For example, Captec Enterprise manufactures a line of thin foil heat flux sensors that are 

0.4 mm thick, have a response time of 0.3 seconds, and work within an operating range of 

-180 to 200 oC. The manufacturer also provides a service to custom design a heat flux 

sensor to fit an area equal to the dimensions of the thermoelectric prototype device (216 

mm x 161 mm). The total price for such a sensor is between $1000 and $1500 each.
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Chapter 5  

Development of a Property Measurement Device 

5.1 Preliminary Proof-of-Concept Prototype 

A measurement device prototype was developed by Motolla, LLC to produce a sinusoidal 

heat input at a user-specified period so that the heat flux and temperature can be 

measured at the interface between the thermoelectric device and the test sample (Figure 

5.1). The device was capable of recording the heat flux and temperature along with the 

time stamp with measurements taken at one second increments.  

 

 

Figure 5.1 - Preliminary Measurement Device Prototype 
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The prototype device consists of a TI MSP-EXP430F5438 test board with an embedded 

MSP430F5438 microprocessor (Figure 5.2). The C/C++ based control and processing 

code can be uploaded to the microprocessor firmware using a special MSP-FETU430IF 

programming pod. 

 

 

Figure 5.2 - TI MSP-EXP430F5438 test board with custom-built signal conditioner and H-bridge 
needed to drive sinusoidal operation of thermoelectric device 

 

The device employs a pulse-width-modulation (PWM) technique to drive the necessary 

sinusoidal operation of the thermoelectric module. The average value of the input signal 

to the thermoelectric module is controlled by switching the power between on and off 

states. A custom built H-bridge component was developed to convert the pulse-width-

modulated sinusoidal signal from the testing board in order to drive a high-power 

thermoelectric unit. In addition, a custom-built interface board consisting of op-amps and 

filters provides conditioning of the heat flux sensor and thermocouple signals and 

removes electrical noise from H-bridge operation prior to analog-to-digital conversion in 

the testing board. 
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5.2 Thermoelectric Device and Heat Flux Sensor 

In order to obtain useful data for property determination, the device must have a heating 

element that is capable of generating a large amount of heat over the widest surface area 

possible. This requirement must also be harmonized with the practicality of measuring 

the heat flux over the entire face of the thermoelectric element.  

One of the largest and most powerful thermoelectric devices that is currently available as 

an off-the-shelf component is the TEC2H-62-62-43775-CS (Eureca, GmbH) and was 

purchased for testing. This element has dimensions of 62 mm x 62 mm, and is capable of 

producing 437 W of cooling power at a maximum temperature difference of 80 K. The 

maximum operating temperature for this device 120 oC, which falls within the desired 

operating limits to ensure that testing does not damage the surface of the test specimen.  

 

A corresponding off-the-shelf heat flux sensor with embedded T-Type thermocouple was 

found through Sequoia Technology, Ltd. This SHF6060T sensor has almost identical 

dimensions (60 mm x 60 mm) to the desired high powered thermoelectric device, leaving 

only 1 mm of non-contact distance around the perimeter.  

5.3 Heat Sink Research 

Research was performed to evaluate the performance of different heat sinks in removing 

waste heat from the backside of the thermoelectric module (Figure 5.3). A variety of 

approaches were explored, including: i) A traditional air-cooled heat sink comprising of 

 
 49 



Chapter 5 – Development of a Property Measurement Device 
 

fins coupled with an electric fan; ii) a large aluminum chunk with inherently high 

conductivity and thermal capacity to act as a semi-infinite heat reservoir;  iii) a passive 

heat-pipe system; and, iv) a water-cooled system that includes a fan-cooled radiator.  
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.  

Figure 5.3 - Evaluation of various heat sink approaches 
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Comparison of the benefits and drawbacks of all of the approaches are listed in Table 5.1. 

The outcome of this research revealed that an actively cooled heat sink is necessary to 

remove large amounts of extra heat generated by the thermoelectric module’s inherently 

inefficient operation. 

 

Table 5.1 - Heat Sink Evaluation 

Heat Sink Technique Pro Con 

Fins and fan Simple and commonly used 

heat sink 

Limited cooling power 

Large aluminum 

chunk 

High heat capacity and 

thermal conductivity allow 

for the transfer and storage 

of large amount of heat 

Thermoelectric module's 

inherently poor 

efficiency causes gradual 

rise in overall 

temperature of heat sink 

over time 

Heat pipe and fan Passive device relies on 

phase change to extract 

large amount of heat 

Horizontal orientation 

requirement suitable for 

laboratory testing 

purposes but impractical 

for real-world testing 

Liquid cooling Capable of removing 

adequate amount of Joule 

heating generated by 

thermoelectric module 

More complicated setup 

and operation 
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5.4 Device-Armor Thermal Coupling Techniques 

Research was performed to evaluate various non-destructive methods for temporarily 

attaching the heater/sensor component to armored vehicles for testing purposes. The 

adherence technique must be able to support any position corresponding to the orientation 

of the armor as installed on a military vehicle (e.g. vertical, horizontal and diagonal 

positions). Although pressure sensitive adhesives are available, these typically require 

chemical/abrasive cleanup that is likely to cause some damage to the vehicle in some way 

or another. Superglue is commonly employed by NDE technicians when attaching probes 

with small surface areas. Damage to a surface is relatively minor due to the small probe 

size and is touched up with paint, if necessary. However, such adhesive-based coupling 

techniques are not acceptable for use in armor applications since damage to surface paint 

can compromise survivability in the field. 

 

Suction cups provide an ideal solution since they are minimally invasive, and easy to 

apply and remove. These can be categorized into three classes: 1) Simple; 2) Actively 

controlled; and 3) Hand-pumped suction cups. Simple suction cups are not realistically 

feasible since they do not provide adequate resistance to loading. However, actively 

controlled vacuum suction cups (typically using an air compressor) are often used when 

dealing with extremely rough and/or porous surfaces. For sufficiently smooth surfaces, 

hand-pumped suction cups can be employed. 
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An example of a hand-pumped suction cup is given in Figure 5.4. These are easy to 

operate and can carry substantial loads. An indicator on the pump actuator also warns the 

user of when loss of suction is imminent. Initial testing of a large surface area hand-

pumped suction cup on various armored vehicle surfaces showed that these are capable of 

adhering to a surface for a long period of time (e.g. for at least 10 to 15 minutes) while 

maintaining a large load (greater than 100 lbs.). 

 

 

Figure 5.4 – Example of a hand-pumped suction cup 
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5.5 Thermal Interface Material 

Optimal determination of thermal properties requires knowledge of the temperature and 

heat flux response within the infinitesimal surface of the test specimen. Since this cannot 

be accomplished from both a practical, as well as non-destructive testing perspective, it is 

therefore necessary to perform the measurements as close to the surface as possible, 

while minimizing the thermal contact resistance at the interface between the sensor and 

the specimen. Additionally, maximizing the heat transfer from the thermoelectric device 

to the test sample will also maximize the test sample response, subsequently increasing 

the signal to noise ratio. 

 

A wide variety of thermal interface materials are available on the market to minimize the 

contact resistance between components. The intent of a thermal interface (e.g. a grease, 

paste, tape or pad) is to fill the microscopic air gaps inherently present due to surface 

roughness with a high conductivity material. Because these materials are commonly used 

in the high-powered computing industry to improve the conduction between electronic 

chips and heat sinks, a large variety of thermal interface materials are available on the 

open market (Figure 5.5).  
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Figure 5.5 – Examples of various thermal interface materials 

 

A review of currently available interface materials was performed based on information 

obtained from manufacturers' websites to provide an assessment in the differences in 

price, temperature range and thermal conductivity. The results of this study are shown in 

Table 5.2. 

 

Table 5.2 - Thermal interface material performance 
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Although thermal grease appears to be the most effective interface material from a heat 

transfer perspective, a number of problems are associated with it from a material testing 

perspective. One of the major issues with grease is the uncertainty in the characterization 

of its thermal resistance when applied in a practical setting, which is compounded by the 

fact that uneven thermal grease application can further reduce its effectiveness. 

Additionally, thermal grease can be cumbersome to apply and even more difficult to 

remove from a test surface. The most common non-destructive removal method involves 

multiple applications of commercial thermal grease remover and cotton swabbing; 

isopropyl alcohol can also be used with similar performance. Abrasive cleaners such as 

off-the-shelf "Goo-gone" can also be used; however, these have the potential of damaging 

the surface coating, which is not desirable for military vehicles from a vulnerability 

perspective.  

 

Thermal interface pads appear to provide a much better fit for the proposed NDE-based 

thermal property measurement device than thermal grease. Although the contact 

resistance is greater with pads than with thermal grease, there is less uncertainty 

associated with the thermal conductivity and thickness of the pad since these are listed in 

the manufacturer's specification data sheet, providing less potential for user error and 

measurement inconsistency. 
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Figure 5.6 - Example of a peel-and-stick thermal interface pad 

 
Thermal pads are relatively inexpensive, can be cut to the exact size of the heat flux 

sensor, are easy to apply (being available with peel-and-stick surfaces), do not require 

any clean-up (thereby minimizing any potential damage to a painted surface), and have 

the potential of being used more than once, that is, from specimen to specimen. Finally, 

the thermal pad can be explicitly modeled in the MuSES thermal model using the 

established R-value of the pad.  

 

5.6 Structural Design and Fabrication 

A structural component was designed and constructed to combine and fasten together the 

heater/sensor module with the suction cups and liquid-cooling system. This component 

was fabricated from aluminum in order to reduce weight and also provide strength. The 

design allows for the suction cup distance to be adjusted to properly position the 

 
 58 



Chapter 5 – Development of a Property Measurement Device 
 

heater/sensor module onto measurement surfaces that may consist of protruding elements 

(Figure 5.7). 

 

  

Figure 5.7 - Structural component fabricated by Motolla, LLC 

 

5.7 Device Calibration 

Before material testing could be performed, it was necessary to convert the raw heat flux 

sensor and T-Type thermocouple signals obtained from the device to valid heat fluxes 

and temperatures in proper units (i.e W/m2 and oC) so that the measurement data can be 

processed by the property determination code. 

 

A special cold junction compensation (CJC) procedure was developed to work with the 

custom electronics of the device to account for the gain and offset error associated with 

the signal conditioning system that is positioned between the cold junction and the 

microprocessor (Figure 5.8). The voltage at the cold junction is fed through a seven pole 
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analog filter, op-amp, ADC, and digital filter before it is processed and converted to a 

temperature signal via a multi-coefficient polynomial equation. 

 

 

Cold 
Junction 

Analog 
Block 

TC OPAMP 
Hot 
Junction 

ADC 

Fi
lte

r 

Raw Counts 

 

Figure 5.8 - Temperature measurement diagram showing cold junction compensation 
 

Rather than assessing the individual voltage drops across each circuit component between 

the microprocessor and the cold junction, a correlation was obtained to provide a direct 

conversion of the reported ADC counts to the analog voltage required by the temperature 

equation. This was accomplished by successively changing the input voltage at the hot 

junction using the thermoelectric module until a steady signal was obtained from the T-

Type thermocouple, and then simultaneously measuring the voltage response across the 

cold junction input terminals and keeping track of the ADC counts reported by the 

microprocessor (Figure 5.9). 
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ADC Counts to Thermocouple Voltage Correlation
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Figure 5.9- Direct correlation between ADC counts and T-Type thermocouple voltage 
 

The T-Type thermocouple itself was calibrated by correlating its reported temperature 

with expected values obtained from an Omega® TrueRMS SupermeterTM outfitted with a 

K-Type thermocouple. The gain and offset error obtained from this procedure were 

subsequently applied to the temperature predicted by the polynomial equation as a last 

step prior to reporting the temperature to the user (Figure 5.10). 
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Thermocouple Calibration
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Figure 5.10- Correction for gain and offset error of the embedded T-Type thermocouple 
 

The standard T-Type thermocouple voltage-temperature polynomial equation was 

developed under conditions involving a cold junction kept at a constant 0 oC; however, in 

practical situations the cold junction temperature changes according to shifts in ambient 

operating temperature. The input voltage must therefore be corrected by subtracting the 

temperature-dependent voltage generated at the cold junction. Given the relatively 

narrow range of typical ambient temperatures, a thermistor can be employed to measure 

the temperature at the cold junction, which can be subsequently correlated to voltage by a 

logarithmic function (Figure 5.11). This voltage at the cold junction can then be 

dynamically measured and used as the reference voltage that must be subtracted from the 

voltage supplied to the polynomial equation.  
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Thermistor Calibration
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Figure 5.11- Thermistor temperature correlation to voltage-based ADC counts 
 

Finally, a correlation between ADC counts and heat flux voltage was obtained for the 

heat flux sensor using a similar procedure as for that of the T-Type thermocouple (Figure 

5.12).  
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Heat Flux Sensor Conversion from ADC Counts to Voltage
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Figure 5.12- ADC Counts to voltage correlation for the heat flux sensor 
 

The heat flux voltage is linearly proportional to the heat transferred across the 

component, and unlike thermocouples, can be used directly without any cold junction 

compensation. The proportionality constant is measured by the manufacturer and 

supplied with the component (i.e. 28.2 μV/W/m2) prior to shipment. 

 

5.8 Property Determination Software 

A GUI-based software application was developed to measure, filter, and analyze the 

signals so that the material properties can be obtained from a set of test data. The 

underlying principle behind the code design is to provide users with a user-friendly 
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interface to guide them through the entire measurement and property determination 

process within a single software application (Figure 5.13).  

  

Figure 5.13- Property determination code graphical user interface 

Graphing tools are provided to allow for visualization of the measurement data through 

every step in the process. Heat flux and/or temperature data can be visualized during data 

acquisition, filtering, pre-processing, and analysis. 

 

5.9 Laboratory Testing 

After final calibration was complete, testing of the prototype device was performed by 

sinusoidally heating and measuring the heat flux and temperature response on different 

specimens at the Motolla, LLC testing laboratory. Various materials of  differing 

thicknesses were tested using 3, 6, and 9 minute periods. The following specimens were 
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tested: a 1'x1.5'x1/2" aluminum sheet (Figure 5.14); a 1'x2'x1" steel sheet (Figure 5.15); 

and a 1'x2'x3/4" HDPE (high density polyethylene) sheet (Figure 5.16).  

 

Figure 5.14 - Testing of a homogenous aluminum sheet (1'x1.5'x1/2") 

 

Figure 5.15 - Testing of a homogenous steel sheet (1'x2'x1") 

 

Figure 5.16 - Testing of a homogenous HDPE sheet (1'x2'x3/4") 
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5.10 Preliminary Results and Analysis 

A MuSES thermal model was constructed to replicate the experimental setup and the 

material properties were obtained through the built-in optimization process contained 

within the property determination code. The heat loss due to air convection was modeled 

using the built-in natural convection algorithm within MuSES using an air temperature 

estimate obtained from measurement of the initial water temperature of the cooling 

system being piped through the air-cooled radiator. The model dimensions were 

consistent with the dimensions of the material specimens. The heat transfer to the suction 

cups was not modeled since it was considered negligible. The results from these initial 

tests are shown in Table 5.3. 

 

Table 5.3 - Results of preliminary homogenous material testing 

Specimen Conductivity (W/m-K) Specific Heat (J/kg-K) 

Measured Expected Measured Expected 

Aluminum (1/2") 160 167-201 640 884 

Steel (1") 23 40-50 460 461 

HDPE (3/4") 0.5 0.4-0.5 1000 1550-1700 

 

The error associated with the thermal property data obtained from the property 

determination code is incurred from various sources from both the modeling and 

measurement side. Error incurred from modeling includes mesh discretization, neglecting 

of temperature dependency in the optimized material properties, boundary condition error 
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(uncertainty in the contact resistance between the device and the sample, convection 

modeling, heat loss through the suction cups), and uncertainty in characterization of the 

initial conditions.  

 

The greatest boundary condition uncertainty was that of the contact resistance between 

the heat flux sensor and the material specimen. This resistance can be affected by the 

introduction of microscopic air gaps during application of the thermal pad, which can 

increase in size during device operation due to the thermal stresses experienced during 

alternating heat up and cool down cycles. The model was therefore calibrated by 

adjusting the thermal resistance of the gap pad to find a single value that provided the 

best agreement in expected material properties for all three specimens. This value was 

determined to be 0.002 m2K/W during the preliminary testing period. Although this 

resistance is greater than that listed for the pad in the manufacturer's technical sheet, it is 

still less than a nominal maximum corresponding to a 0.1 mm air gap (0.00408 m2K/W).  
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Figure 5.17- Correlation between measured temperaure data and model results 

 

Sources of measurement derived error include both heat flux and thermocouple 

calibration errors as well as system noise incurred by the electronics and pulse-width-

modulation approach. Finally, since the test specimens were not measured by an 

independent party, there is some uncertainty in the expected results which were obtained 

through the literature search and/or obtained from built-in MuSES material database. 

5.11 Development of a Refined Device Prototype 

A refined device prototype was constructed by Motolla, LLC that consisted of a single 

component containing a built-in power supply and custom electronics (Figure 5.18).  
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Figure 5.18 - Refined device prototype developed by Motolla, LLC 

 

Rather than employing a traditional pulse-width-modulation approach using a constant 

DC voltage signal from a desktop power supply, this refined prototype used a special 

phase-angle-firing (PAF) method. This technique makes use of time proportioning to 

directly convert the AC power available from the grid (i.e. 60 Hz) to provide sinusoidal 

operation of the thermoelectric module at a user defined frequency.  

 

Use of the PAF sinusoidal control strategy provides for much more electrically quiet and 

gentile operation than with the traditional pulse-width-modulation approach.  
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Figure 5.19 - PAF control strategy reduces electrical noise and produces cleaner measurements 

 

The clean measurement data obtained with the refined measurement device virtually 

eliminates the need to pre-process the data with any filtering operations. 
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Chapter 6  

Results and Analysis 

6.1 Comprehensive Material Testing 

Comprehensive material testing was performed on various specimens using a wide range 

of driving frequencies. Although the material specimens were comprised of different 

thicknesses, the lengths and widths of the material specimens were carefully machined to 

obtain an identical surface area on the front and back faces (1’x2’; 30.48 cm x 60.96 cm); 

this consistency was maintained in order to facilitate the thermal modeling side of the 

analysis (Table 6.1). 

 

Table 6.1 – Materials and layered stack-ups used for testing 
Thickness ¼” 1” ¼” ¾” 1” (¼” over ¾”) 1” (¾” over ¼”) 

Material Steel Steel Aluminum HDPE Steel over HDPE HDPE over Steel 

 

The range of frequencies employed was based on the capabilities of the device. For 

example, the maximum frequency that the device prototype was able to support (at the 

time of testing) was 0.03333 Hz, while the minimum frequency was based on practical 

limitations, since the prototype device would periodically stop operating during tests 

involving long durations. At least two cycles worth of temperatures and heat fluxes were 

acquired for all of the specimens at a minimum frequency of 0.002083 Hz. Testing was 
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therefore performed at the following frequencies (periods): 0.03333 Hz (30 seconds), 

0.01667 Hz (60 seconds), 0.01111 Hz (90 seconds), 0.008333 Hz (120 seconds), 

0.004167 Hz (240 seconds), and 0.002083 Hz (480 seconds).  

 

The heat flux and temperature results from the tests were further processed so that they 

could be represented in terms of the frequency response of the material specimens. The 

gain, expressed as the output (Tmax-Tmin) over the input (q”max – q”min), and the phase 

shift, measured with respect to the effective zero crossings of the input and output 

signals, were obtained for each experiment and shown in Figure 6.1 and Figure 6.2. 

 

Figure 6.1 - Gain response for range of applied sinusoidal heating frequencies 
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Figure 6.2 - Phase response for range of applied sinusoidal heating frequencies 
 

Simulations were subsequently performed by supplying the measured heat fluxes from 

each corresponding test as the driving boundary condition for the material specimen. The 

material properties were approximated by employing nominal values for steel, 

polyethylene, and aluminum obtained from the MuSES database. A nominal gap pad 

resistance of 0.001 m2–K/W was used for all simulations. The results of these simulations 

are provided in terms of their frequency response (Figure 6.3 and Figure 6.4). 
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Figure 6.3 - Simulated gain response compared with measurements 

 

Figure 6.4 - Simulated phase response compared with measurements 
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6.2 Application of a Gain Error Calibration Factor 

A parametric study was performed that involved varying the thermal resistance of the 

thermal interface and the boundary conditions in model; however, none of these 

parameters significantly affected the gain in the frequency response of the simulated 

materials. However, it was found that the simulated frequency response correlation to the 

measured response could be improved by applying a consistent gain error factor to the 

measured heat flux that was used to drive the simulations,. For example, applying a 

nominal gain factor of 2.0 to the input heat flux to the simulation provided the improved 

correlation between the measured and simulated gain and phase frequency response, as 

seen in Figure 6.5 and Figure 6.6. 

 

Figure 6.5 – Gain of the frequency response of simulated samples using a gain factor of 2.0 
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Figure 6.6 – Phase of the frequency response of simulated samples using a gain factor of 2.0 
 

Additionally, the use of a gain factor provided an improved correlation between the 

measurements and simulations for all frequencies, considering that perfect correlation 

was not expected, since the properties of the samples were approximated. The slopes of 

the lines, along with their relative order from top to bottom within the plots, are 

consistent from material to material and frequency to frequency. Additionally, with 

respect to the HDPE and steel stack-ups, the simulations assume a perfect bond at the 

interface between them, while in actuality these materials were held together using 

thermal grease and C-clamps. 
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6.3 Heat Flux Sensor Calibration Study 

An experiment was performed to assess the validity of the heat flux sensor calibration 

factor provided by the manufacturer. To accomplish this, a 60mm x 60mm calibration 

coupon was machined out of ½” HDPE so that a 1-D heat transfer problem could be 

formulated to quantify steady-state heat transfer through the sample, based on the 

measured temperatures and the thermal conductivity of HDPE (Figure 6.7, Figure 6.8). 

 
Figure 6.7 - HDPE calibration sample connected to heat flux sensor and Peltier module 
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Figure 6.8 - Heat flux sensor calibration setup 

 
The test was performed at 50 % power output to the Peltier module. Once the system 

reached its steady-state, the measured temperatures on both faces of the HDPE coupon 
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were 54.7 oC and 49.2 oC, respectively. Using a nominal conductivity of 0.43 W/m-K for 

the HDPE, an expected heat flux of 185.7 W/m2 was calculated, which provided excellent 

correlation with the reported heat flux from the device, 186.6 W/m2. The thermal model 

was also modified to conform to this calibration test, which provided results that were in 

agreement with the calculated heat flux under steady-state.  

 

In order to examine the transient response of the heat flux sensor, a subsequent test was 

carried out to measure the transient backside temperature. For this test, the Peltier module 

was lowered to 40% of its maximum power to shorten the time to steady-state. Although 

at steady-state the use of the measured heat flux as a boundary condition in the model 

produced temperatures that were in agreement with the measurements, during the 

transient phase of the experiment the predicted temperature response was much lower 

than the measured values. In contrast, using the measured front side temperature as a 

boundary condition to the simulation resulted in a backside temperature prediction that 

was in agreement with the measurements. However, the predicted heat flux was almost 

double the measured value during the predominantly transient phase of the simulation, 

which decayed towards the reported measured value of heat flux as the system reached its 

steady-state (Figure 6.9). 
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Figure 6.9 – Comparison of measured heat flux with simulated heat flux (constant power) 
 

The model’s results were compared against an analytical solution (i.e. the semi-infinite 

solid), to confirm the validity of the temperature predictions. The results of the analytical 

solution were consistent with the numerical model, which further indicated that almost 

double the required heat was required to provide the necessary temperature response that 

was measured. 

 

The test coupon was further subjected to a sinusoidal heat input, with varying amplitudes. 

Application of the measured temperature as a boundary condition to the model resulted in 

a consistently greater heat flux prediction as compared to the measured value (i.e., by 

about a factor of 2). The measured and predicted results are given in Figure 6.10. 
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Figure 6.10 - Comparison of measured heat flux with simulated heat flux (sinusoidal power) 
 

Based on the results of this preliminary testing, it was hypothesized that the error was 

introduced by the sensor’s inability to properly integrate the heat flux across its face in 

the presence of a non-uniform temperature distribution. The source of the non-uniformity 

was suspected to be caused by the particular Peltier module that was being used. Thermal 

imagery was subsequently obtained using an IR camera pointed at an exposed Peltier 

module when operating at a constant power output to confirm the validity of this theory. 

It was found that a non-uniform temperature is indeed present during operation of this 

particular module, being clearly evidenced in the image provided in Figure 6.11. 
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Figure 6.11 - Thermal image showing non-uniform temperature at Peltier module surface 

 

Further testing of the heat flux sensor was therefore performed to evaluate its accuracy 

under non-uniform temperatures. A test was conducted in which the bottom of the heat 

flux sensor was held at constant temperature near 50 oC (the heat source), while the top of 

the sensor was exposed to two heat sinks operating at different temperatures. The primary 

heat sink was driven by an ice bath, while the secondary heat sink maintained ambient 

temperature. The secondary sink essentially maintained a temperature between that of the 

primary heat sink and the source. The contact area was varied in relation to the primary 

heat sink (100%, 75%, 50%, 25%, and 0% coverage). Analytical solutions were 

computed based on the measured temperatures and a nominal contact resistance of 0.004 

m2K/W. The ratios of the calculated and reported (measured) heat flux for each of the 
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measurements is given in Figure 6.12. 

 

 

Figure 6.12 - Ratio of calculated to measured heat flux 

 

The results of these experiments clearly show that the reported heat flux value is not 

equal to the calculated (expected) value when the sensor is exposed to non-uniform 

temperatures at one of its surfaces. 

 

6.4 Property Determination of Homogeneous Materials  

Despite the measurement error introduced by the non-uniform temperature at the sensor 

face, an attempt at property determination was undertaken to assess the quality of 

material properties obtainable through the use of an additional calibration gain factor that 

would be appropriate for sinusoidal heating. Unfortunately, exhaustive analysis failed to 

produce a consistent calibration gain factor for all materials and frequencies. Specifically, 

if the supplied gain factor was overestimated or underestimated, the optimization routine 
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would diverge. In spite of this, the best compromise gain factor for the available data was 

found to correspond to a value of approximately 1.9. Although convergence was not 

always possible for all materials and frequencies, the gain factor value produced 

relatively good agreement with expected material properties when used in combination 

with a thermal interface resistance bounded by 0.0007 and 0.0016 m2K/W. 

 

A definite frequency dependence on the gain factor was discovered when processing 

material properties from the measured data. For example, this can be seen in the values 

obtained for the ¾” HDPE specimen, provided in Table 6.2. While the properties 

obtained from the measurements taken with the 480 second period correlated well with 

nominal values (k ≈ 0.5 W/m-K, cp ≈ 1500 J/kg/K), the accuracy of the predictions is 

shown to decrease with increasing frequency.  

 

Table 6.2- Material property results obtained from ¾” HDPE at different frequencies  

Period 
 (s) 

Rinterface 
(m2-K/W) 

Gain 
Factor 

Cost 
 

Convergence 
 

k  
(W/m-K) 

cp  
(J/kg-K) 

30 0.0009 1.9 0.307 5.03E-07 2.03 179.6 
60 0.0009 1.9 0.062 5.34E-07 1.53 278.1 
90 0.0009 1.9 0.033 8.32E-07 1.29 378.5 

120 0.0009 1.9 0.024 6.31E-07 1.11 492.7 
240 0.0009 1.9 0.014 9.57E-07 0.69 977.8 
480 0.0009 1.9 0.009 8.82E-07 0.53 1356.1 

 

Without a sufficiently large gain factor to enable the predicted temperature to reach the 

corresponding measured amplitude, the optimizer attempts to reconcile the mismatch 

between the model and the measurement by decreasing the specific heat capacity. The 
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potential phase lag introduced by this adjustment is subsequently counter balanced by the 

optimizer with an increase in the predicted conductivity. 

 

6.5 Multilayer Material Property Determination 

Further material testing was performed on multilayered stack-ups to evaluate the extent 

and accuracy of material properties that can be obtained for layers residing deeper within 

the test specimen. To accomplish this, the measurement data obtained from the steel over 

HDPE stack-up (i.e., an outer sheet of 1/4" steel over ¾” HDPE, sandwiched together 

using thermal grease and traditional C-clamps) was employed, as depicted in Figure 6.13. 

 

 

Figure 6.13 - Testing of a steel over HDPE layered stack-up 
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In order to make use of a single gain factor, while keeping in mind its minor frequency 

dependence, it was necessary to obtain the effective material properties from applying 

only the three shortest periods (30 seconds, 60 seconds, and 90 seconds), since 

convergence was not found to be feasible when using all seven available data sets. The 

following process was therefore employed to obtain the thermal properties of the three 

effective layers: 

1. The measurement data associated with the highest frequency was used to obtain 

the effective conductivity and specific heat of the first layer, by solving for its 

material properties by treating the entire specimen as one homogenous material. 

2. The properties obtained from step one were subsequently applied to the front 

layer and held constant while the optimization routine attempted to find a single 

effective conductivity for the rest of the specimen by using measurement data 

obtained from the lowest frequency. 

3. Finally, the properties obtained from step 2 were subsequently applied to the back 

layer. An additional degree of freedom is introduced by making use of the middle 

frequency to solve for the middle layer, while holding the material properties of 

both the front and back layers constant (Figure 6.14).  
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Figure 6.14 – Multilayer material thermal property determination 

 

This iterative procedure yielded the material properties presented in Table 6.3. These 

results show good agreement relative to the expected nominal properties of a layered 

steel over HDPE stack-up; (k ≈ 50 W/m-K, cp ≈ 460 J/kg/K) and (k ≈ 0.5 W/m-K, cp ≈ 

1500 J/kg/K), respectively. Specifically, the thermal conductivity was found to be much 

lower in the second and third layers than in the first layer, while the specific heat of the 

second layer was found to be very close to the nominal specific heat of HDPE.  

 

Table 6.3- Results of multilayer material property determination of a steel over HDPE stack-up 
Layer 
# 

Material 
 

Period 
(s) 

Rinterface  
(m2-K/W) 

Gain 
Factor 

Cost 
 

k 
(W/m-K) 

cp 
(J/kg-K) 

1 Steel 30 0.0009 1.9 0.0322 48.0 333.2 
2 HDPE 60 0.0009 1.9 0.0147 2.22 1605.3 
3 HDPE 90 0.0009 1.9 0.0141 1.28 379.9 
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Although the accuracy of the predicted material properties decreases with increasing 

frequency (this was to be expected given the constant gain factor that was in use), the 

error incurred may be acceptable from a practical standpoint since the material properties 

of layers deeper within a specimen often have less of an impact on thermal phenomena 

occurring at the surface, which is often the case when modeling the thermal IR signature 

of an armored vehicle. 
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Chapter 7  

Method Validation 

A validation of the measured material properties was performed to assess the practical 

significance of any measurement error in terms of the device’s intended purpose, i.e., 

military vehicle thermal (infrared) signature modeling. To accomplish this, a thermal 

model of a Patria armored vehicle was developed with armor plates corresponding to the 

measured thermal properties of a ¼” steel and ¾” HDPE (high-density polyethylene) 

stackup (Figure 7.1).  

 
Figure 7.1 - Patria armored vehicle finite-element mesh 
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The thermal model was exercised in a simulated 24 hour hot desert environment. Hourly 

thermal and radiance results were compared to those obtained from running a 

corresponding model constructed using nominal material properties of a steel/HDPE 

stackup of the same thicknesses. Two additional permutations of the model were created 

to demonstrate the sensitivity of the vehicle’s thermal signature to material property 

values. Specifically, these models consisted of one with armor represented as 1” steel, 

and the other as 1” HDPE.  

 

Military vehicle thermal and infrared (IR) modelers evaluate the contrast of the (emitted 

and reflected) radiance between the vehicle and the surrounding terrain, since the 

likelihood of detection by enemy forces is dominated by this contrast. Calculating vehicle 

surface temperatures is the first step in such IR signature analyses; calculating reflected 

radiance is the second step. To illustrate this, snapshots of predicted thermal and radiance 

results at an instance shortly after sunrise are shown in Figure 7.2. Note that the radiance 

prediction includes cold sky reflections off the top of the vehicle. Predicted radiance 

images for all four vehicle models, i.e., sets of material properties, are also provided in 

Figure 7.3 for comparison purposes. 
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Figure 7.2 – Thermal (above) and radiance (below) predictions of a Patria military vehicle using 

measured thermal properties of a steel/HDPE stackup as armor 
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Figure 7.3 – Comparison of predicted radiances using different armor materials 

 

Measured ¼” Steel over ¾” HDPE 

1” HDPE 

Nominal ¼” Steel over ¾” HDPE 

1” Steel 
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A common benchmark criterion of detection for evaluating the IR signature of military 

ground vehicles is the RSST∆  contrast metric.  

 

( ) 22

TBTRSS TTT σ+−=∆  (7.1) 

 

The RSST∆  contrast metric compares the average “apparent,” or equivalent blackbody, 

temperature of the target, TT , with the average apparent temperature of the background, 

BT , while taking into consideration the standard deviation of the temperatures on the 

target, Tσ . Evaluation of the RSST∆  contrast was performed for each of the four model 

permutations for the entire 24 hour hot desert scenerio (Figure 7.4). 

 

 
Figure 7.4 – DTRSS contrast results comparison among permutations of the model with various 

armor properties 
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The material properties of vehicle armor can have a significant effect on contrast 

predictions. For example, these results show that after the sun rises at 5 am, the vehicle 

contrasts of the layered and homogenous armor recipes begin to substantially diverge. At 

8 am, a RSST∆ deviation of approximately 1 oC , which can be significant, is exhibited 

between the homogenous armor property models and the steel/HDPE stackups. However, 

a negligible difference in contrast between the simulated (nominal) and measured 

steel/HDPE is exhibited at this same moment. The contrast of the vehicle incorporating 

the measured material properties was shown to consistently agree with that of the 

nominal material properties for the duration of the 24 hour simulation. These results 

demonstrate the effectiveness of the measurement device for obtaining material 

properties suitable for this type of analysis. 
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Chapter 8  

Conclusion and Recommendations for Future Work 

8.1 Conclusion 

It has been shown through extensive simulation, testing, and analysis that the material 

properties of a test specimen can be obtained through a combination of measurement and 

thermal simulation coupled with an optimization routine. In addition, the layers 

positioned deeper within a multilayered sample were found to affect the gain and phase 

of the temperature response of a surface being thermally excited with a sinusoidal heat 

input. A thermal property measurement device was developed so that physical 

temperatures and heat fluxes could be obtained from application of a periodic heat source 

to verify the underlying methodology. Careful analysis of this surface temperature 

response in conjunction with the heat flux was shown to produce an effective layered 

representation of a material stack-up, sufficient for characterizing armor for thermal 

modeling purposes.  

 

8.2 Recommendations for Future Work 

It was found that the measured heat flux was inaccurate when a temperature gradient 

across the face of the heat flux sensor was present. A first step in improving the device 
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should be to ensure that a uniform surface temperature is maintained during transient 

operation of the Peltier module. Evaluation of a variety of Peltier modules should be 

performed to assess the magnitude of the temperature gradients developed at the face of 

the heat flux sensor. Once the optimal Peltier module is found, further evaluation should 

be performed to obtain an appropriate heat spreader (if necessary), such as a thin copper 

or TPG (thermal pyrolytic graphite) plate, to be placed between the face of the Peltier 

module and the heat flux sensor.  

 

Reduction of the temperature gradient across the heat flux sensor should substantially 

improve correlation between measurements and model predictions. This could be 

demonstrated by obtaining the gain and phase of the frequency responses for various 

materials/stack-ups, similar to what was accomplished during this project. Property 

determination could subsequently be performed which should result in consistent material 

properties obtained across all frequencies without the need for application of a heat flux 

gain factor. 

 

Although satisfactory results were obtained to prove the fundamental elements of the 

property determination approach for homogenous material specimens, improvements to 

the approach could be made for finding the thermal properties of thermally conductive 

materials. Prohibitively large models comprised of finely discretized meshes are required 

to replicate the measured thermal transients captured by the device when operating at 

high frequencies. To address this issue, development of a device comprised of a circular 
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heater and heat flux sensor may allow for 2-D models to be employed that make use of 

inherent symmetry to reduce the computation time required to derive thermal properties.  

 

Additionally, in order to improve measurement of underlying layers, a frequency domain 

analysis of the measured thermal signals could be performed to determine material 

properties, or at the least, establish realistic bounds for the properties being solved for. 

This could be coupled with a combination of ultrasound and thermal approaches that 

could complement one another in improving the accuracy and precision associated with 

material property determination.  
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Appendix A  

Sinusoidal Inputs and Response: Starting Phase Considerations 

Application of a sinusoidal heat flux to the surface of a homogeneous sheet of material 

(with nominal capacitance and an adiabatic backside) will typically result in a front side 

temperature response that exhibits both a phase shift as well as a shift along the ordinate 

axis relative to its starting temperature. The amount of shift is a function of the magnitude 

and starting phase of the forcing function relative to the pure cosine function and the heat 

capacity and thermal conductivity of the material. When performing a thermal analysis 

using a multi-node thermal model, it can be seen that the magnitude of the shift is also 

dependent on the fidelity of discretization through the thickness. The direction of the shift 

is dependent on the starting phase of the forcing function. 

 

For example, when a pure sine wave forcing function is applied to a multinode numerical 

model of a thick steel slab whose initial temperature is zero, the following transient 

surface temperature response can be obtained.  
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Figure A.1 – Positive sine input produces response that is shifted up along ordinate axis  

 

By shifting the input signal by 180o (i.e. applying a negative sine wave) an almost 

identical result can be obtained, with the only difference being that the signal is reflected 

about the time axis at the location of the initial temperature. 

 

 

Figure A.2 - Negative sine input produces response that is shifted down along ordinate axis 
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However, for the special case of a pure cosine forcing function (0o starting phase shift), 

the response of the front side surface temperature shows a tendency to oscillate about its 

starting temperature, regardless of the amount of heat capacity present. 

 

 

 

Figure A.3 - Cosine input produces response that oscillates about its starting temperature 

 

As the heat capacity is decreased (or if the fidelity of discritization is diminished, as in a 

lumped capacitance model), it can be shown that an input +sine based forcing function 

produces a temperature response whose minimum value is equal to its starting value.  
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Figure A.4 - Response for small capacitance or lumped capacitance system given a sine input 

 

The pure cosine input function produces the following front side temperature response, 

showing that the material properties or the fidelity of discritization in the model does not 

produce a shift along the ordinate axis; it simply oscillates about its initial temperature. 
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Figure A.5 - Response for small capacitance or lumped capacitance system given a cosine input 

 

When accounting for the accumulated heat received by the front surface, the following 

results can be obtained for a variety of pure sine and cosine waves. These plots show that, 

for the +/- sine inputs: 1) the net heat input into the system is zero only once during the 

entire period (at the beginning/end of the input cycle); 2) an entire heating (or cooling) 

cycle must be performed before the cooling (or heating) cycle can begin; and, 3) that the 

graph of the accumulated heat received by the front surface is similar in phase to the 

temperature response of the idealized capacitanceless case. 
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Figure A.6 - Accumulated heat input for different sinusoidal functions 

 

The reason for this shift along the ordinate axis can be explained by a simple theoretical 

analysis of a lumped parameter system involving only power and energy, given that the 

temperature in this case is proportional to the net energy into and out of the system (e.g. 

ET ∝ ). 

 

Given that the only energy in and out of the system is from the power source, the energy 

of the system is related to the incident power by a simple time derivative, 

 

dt
dE

P sys
in =  (A.1) 

 

Integrating the incident power with respect to time, we can solve for the energy state of 

 
 106 



Appendix A – Sinusoidal Inputs and Response: Starting Phase Considerations 
 

the system at any time t, 

 ∫=
t

sys qdtE
0

 

 )]0cos()cos([)sin(
0

AtAdttA
t

+−=∫ ωω  

AtAEsys +−= )cos(ω  (A.2) 

 

The above result shows that the energy accumulated in the system when given a pure sine 

forcing function follows a negative cosine function shifted along the ordinate axis by an 

amount relative to the amplitude of the forcing function. 

 

Similarly, integration of the input power consisting of a cosine function provides a 

special case result in which a sine of zero appears, allowing the energy response to 

oscillate about its initial state without any shift along the ordinate axis. 

 )]0sin()sin([)cos(
0

AtAdttA
t

+=∫ ωω  

)sin( tAEsys ω=  (A.3) 

 

Finally, a multinode thermal analysis of the temperature distribution through the 

thickness, starting from its initial excitation, i.e. t0=0, t1 (A=Amax), t2 (A=A0), t3 (A=Amin), 

illustrates the transient nature of the problem. The plots in Figure 7 show that a lumped 

capacitance solution is not valid when performing a quasi-steady state analysis of a 
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material's response to a sinusoidal forcing function. Additionally, a lumped parameter-

only analysis may lead one to the wrong conclusion that the surface temperature is 

indicative of the thermal state of the system as a whole because the model incorrectly 

represents the entire system and cannot account for the spatial temperature variation 

within it. 

 

 

Figure A.7 - Transient temperature profiles at T0, T = Tmax, T = 0, T = Tmin 

 

In order to fully understand the front side temperature response, it is necessary to 

examine the net heat in and out of the front side by performing an energy balance for a 

theoretical node at that location. This energy balance can be expressed as  

)(
2
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x
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∆ ρ  (A.4) 
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Note that this equation shows that the front side temperature is not just a function of its 

heat capacity, conductivity and the input heat, ''q , but also a function of the thermal state 

of the adjoining subdivisions (layers) deeper within the system. The energy balance for 

the “next node in” is also a similar function of the material properties and internal 

temperatures,  
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This analysis demonstrates that a pure sine input heat function can cause the surface 

temperature to rise to its maximum value and subsequently fall below its starting point, 

even though the amount of heat extracted is equal to the amount injected. This is because 

yet while the heat is being diffused into the slab, the active cooling cycle begins at the 

surface; so from the surface node’s perspective (whose heat capacity is smaller than the 

system as a whole), the heat that was diffused deeper into the slab is “lost”. This 

phenomenon is illustrated in Figure A.7 in that the temperature of the back node is shown 

to be higher than its starting temperature at the start of the cooling cycle. Finally, it has 

been shown that the surface temperature response can be a function of all of the material 

properties within the system, and the contribution due to these properties can be 

characterized (at least in theory), as long as the entire system can be excited, that is, the 

temperatures throughout the system can be forced to oscillate relative to one another. 

 
 109 



Appendix B – Derivation of Ultrasonic-based Internal Temperature Distribution Equation 
 

Appendix B  

Derivation of a Closed Form Ultrasonic-based Internal Temperature 

Distribution Equation 

The time-of-flight, G, of an ultrasonic signal traveling through a material specimen can 

be related to its internal temperature distribution, T(x), as shown in [17], 

( ) ( ) dxTxT
cc

LG
L

i
ii
∫ −

+
−=

0

2 γα  (B.1) 

where L is the thickness of the layer (m), and α, γ, and c0 are thermally dependent 

material properties: α is the coefficient of linear expansion (K-1), γ is the Young’s 

Modulus change with temperature (K-1), and c0 is the speed of sound at the reference state 

(m/s). 

 

Approximating the temperature distribution within the material as a linear function of the 

surface heat flux, q", thermal conductivity, k, and surface temperature, Ts, 

( ) sTx
k
qxT +=
"  (B.2) 

and integrating, results in the following expression: 
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which can be rearranged as 
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The internal temperature distribution can subsequently be related to the ultrasonic time-

of-flight by substituting (B.3) into (B.2),  
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Finally, by assuming a homogeneous internal temperature distribution at the initial state, 

i.e., Ti=Ts=T(L), 

i
i G

Lc 2
=  (B.5) 

it can be shown that the internal temperature distribution of a homogenous layer of 

material can be obtained from knowledge of its thickness, material properties, measured 

time-of-flight, and measured surface and initial temperatures:  
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Appendix C  

Heat Spreader Investigation 

An attempt at minimizing the temperature gradient across the face of the heat flux sensor 

was performed to improve correlation between the simulations and the temperature and 

heat flux measurements. This was accomplished by integrating two thin copper plates 

(1/8” thick) to act as heat spreaders at the surfaces of the Peltier module, so that a 

uniform temperature could be maintained on either face. The sizes of these copper plates 

were machined to be consistent with that of the heat flux sensor (60 mm x 60mm). It was 

expected that such a modification would substantially improve the accuracy of the 

measured heat fluxes while having a negligible effect on the heat transfer from the heater 

to the test specimen.  

 

To test the performance of the heat spreaders, the previously described sinusoidal and 

constant power testing was performed once again on the ½” HDPE calibration coupon. 

The test setup is illustrated in Figure C.1. Thermal pads were inserted at all interfaces (a 

total of 5) to reduce the contact resistance between the individual components. 
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Figure C.1 - Copper heat spreader placement 

 

Integration of the copper heat plates was found to dramatically improve correlation 

between simulation and measurement, as is evident in Figure C.2 and Figure C.3. 

Specifically, the gain factor was found to be reduced from its previously determined 

value of about 2 to a value of approximately 1.3. 

 

 

Figure C.2 – Constant power supplied to Peltier module with integrated copper heat spreaders 
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Figure C.3 - Sinusoidal operation of Peltier module with integrated copper heat spreaders 

 

Since modifications to the device to make use of these particular copper heat spreaders 

still required the use of a non-unity transient heat flux gain factor, it is recommended that 

further testing be performed using thicker heat spreaders or an improved Peltier module.  
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