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Abstract

For half a century the integrated circuits (ICs) that make up the heart of electronic

devices have been steadily improving by shrinking at an exponential rate. However, as

the current crop of ICs get smaller and the insulating layers involved become thinner,

electrons leak through due to quantum mechanical tunneling. This is one of several

issues which will bring an end to this incredible streak of exponential improvement of

this type of transistor device, after which future improvements will have to come from

employing fundamentally different transistor architecture rather than fine tuning and

miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in

use today.

Several new transistor designs, some designed and built here at Michigan Tech, involve

electrons tunneling their way through arrays of nanoparticles. We use a multi-scale

approach to model these devices and study their behavior. For investigating the

tunneling characteristics of the individual junctions, we use a first-principles approach

to model conduction between sub-nanometer gold particles. To estimate the change in

energy due to the movement of individual electrons, we use the finite element method

to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us

to use our knowledge of these details to simulate the dynamics of an entire device—

sometimes consisting of hundreds of individual particles—and watch as a device ‘turns

on’ and starts conducting an electric current.

Scanning tunneling microscopy (STM) and the closely related scanning tunneling

spectroscopy (STS) are a family of powerful experimental techniques that allow for

the probing and imaging of surfaces and molecules at atomic resolution. However,

interpretation of the results often requires comparison with theoretical and compu-

tational models. We have developed a new method for calculating STM topographs

xix



and STS spectra. This method combines an established method for approximating

the geometric variation of the electronic density of states, with a modern method

for calculating spin-dependent tunneling currents, offering a unique balance between

accuracy and accessibility.

xx



Chapter 1

Introduction

A significant area of active research is in the development of modern electronic de-

vices and the fabrication methods that make them possible. The principle component

of most electronics is the field-effect transistor (FET), specifically the metal-oxide-

semiconductor FET (MOSFET). MOSFET technology is incredibly mature, and fur-

ther improvements are becoming increasingly more expensive to develop. This helps

motivate the development of different classes of transistors that have the possibility

of replacing MOSFETs in very-large-scale (VLSI) integrated circuits. One such de-

vice is the single-electron transistor (SET). Whereas miniaturization of MOSFETs is

limited to a large degree by the quantum mechanical tunneling of electrons through

the thin insulating layers required by these smaller devices, SETs would not function

without this tunneling process. Understanding the tunneling process in these devices

is fundamental to understanding and perhaps improving the behavior of the devices.

The scanning tunneling microscope (STM) is another system defined by the tunneling

process. The STM is commonly used to image surfaces at atomic resolution. Addi-

tionally, it can be used to probe the local electronic structure of materials and defects

1



in materials, and can even be used to manipulate individual atoms.

In this work, we investigate electron transport in these systems, namely single-electron

transistors and scanning tunneling microscopes. The transport is modeled at several

levels of theory and at multiple scales. Several computational tools are developed to

aid in this modeling, and are described within.

1.1 Modern Electronics

1.1.1 The Perpetually Impending End of Moore’s Law

For half a century the integrated circuits that make up the heart of nearly all elec-

tronic devices have been improving at an exponential rate. This trend was famously

described in a 1965 paper by Gordon Moore [7]. Specifically Moore noted that the

“complexity for minimum component costs” was roughly doubling every year. The

component density of integrated circuits (ICs) has been steadily increasing ever since,

and the direct effect is now ICs with billions of transistors are commonplace. Addi-

tionally, as ICs are made more dense the speed of operation increases and the energy

consumed decreases.

These improvements in ICs are not just about making the things we already have

better. Novel technologies are enabled by the dramatic decrease in size and power

consumption. Examples include ingestible sensor systems (electronic pills) that can

make measurements of the digestive tract [8] or make targeted deliveries of drugs [9].

However, no exponential growth can continue forever, and the end of Moore’s law has

been foretold ever since it was first described [10]. The current method for producing

2



ICs depends on photolithography to selectively dope, etch, and deposit progressive

layers on top of a silicon substrate. The current state of the art produces transistors

that are on the order of (100 nm)2 in area with 14 nm wide features and gate insulating

layers that are only a few nm thick. As devices get smaller and these insulators become

thinner, electrons leak through due to quantum mechanical tunneling. This seems to

be a fundamental issue that places a hard lower limit on transistor size, and may be

the downfall of Moore’s law.

1.1.2 New Transistor Designs Use Tunneling to Their Ad-

vantage

While ICs will no doubt continue to improve, we will eventually see these improve-

ments come from employing fundamentally different transistor architecture rather

than fine tuning and miniaturizing the field-effect transistors in use today. One of the

most interesting ‘new’ architectures is the single-electron transistor (SET). The idea

behind SETs is old [11, 12], and functioning SETs have been demonstrated as early

as 1987 [13]. However, these early devices only operated at liquid helium tempera-

tures, and it has only been more recently that devices capable of room temperature

operation have been fabricated [2, 14–16]. New designs for SETs that will work at

room temperature and can be built at scale is an area of active research [16, 17].

The simplest SET design consists of an isolated ‘island’ electrode connected by tunnel

junctions to source and drain electrodes, and capacitively coupled to a gate electrode.

In order for such a device to work at room temperature, the island needs to be smaller

than ∼10 nm. Reliably creating such precise devices is beyond current manufactur-

ing capabilities. For example, it is estimated the current state of the art 22 nm

photolithography could produce islands on the order of ∼100 nm.
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1.1.3 Randomly Created Devices with Randomized Proper-

ties

Another approach for creating room temperature SETs is the many-island SET

(MISET), where there are several to thousands of islands between the source and

drain electrodes. An advantage of this approach is it is possible to create the source,

drain, and gate electrodes using standard lithographic procedures and then to fill in

the relatively large source-drain gap with a sea of nanoislands. Some groups have

used thiolated gold nanoparticles for the nanoislands [18]. Dr. Bergstrom’s group has

used a focused ion beam (FIB) to deposit a disordered film of metallic nanoparticles

[17]. Dr. Yap’s group has taken a different approach using pulsed laser deposition to

deposit metallic nanoparticles onto an insulating boron nitride nanotube [2].

1.1.4 Simulation of SETs

At a high level, we model the conduction process in many-island SETs (MISETs)

using a semi-classical model, sometimes referred to as “orthodox theory” [19, 20].

This allows us to calculate the effect that charging energies have on the rates of

tunneling events. These charging energies are calculated from the capacitances in the

system. To more accurately calculate these energies, we built a system to calculate

the capacitances using the finite element method (FEM). The tunneling rates depend

on the tunneling conductances. To investigate tunneling conductances, we calculated

conductances using density functional theory (DFT).
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1.2 Scanning Tunneling Microscopy and Spec-

troscopy

Scanning tunneling microscopy (STM) has become an essential tool for nanoscale

science and engineering since its development in 1981 [21]. A scanning tunneling

microscope consists primarily of a metallic probe with an atomically fine tip, piezo-

electric actuators to move the tip with sub-Å precision, electronics to measure currents

through the tip and control the positioning of the tip, and a computer to process the

resulting data into 2D or 3D images of the measured surface. The tunneling process

is incredibly sensitive to the barrier width, which in this case is the vacuum distance

between the tip and the sample. This allows for measuring surface heights with sub-Å

precision.

The STM has many possible modes of operation, with the conceptually simplest

being constant height imaging (CHI), and the most common being constant current

imaging (CCI). In constant height imaging, the tip is scanned across the surface at

a constant height and with a constant bias relative to the grounded sample, and the

tunneling current is measured as a function of position. In constant current mode,

the height of the tip is adjusted to maintain a preset tunneling current while the tip

is scanned across the surface. Another interesting mode is current imaging tunneling

spectroscopy (CITS). In this mode, the control electronics switch rapidly between CCI

mode, where the tip height is adjusted to maintain a set current, and a spectroscopy

mode where the tip position is held fixed and the current is measured as a function

of applied bias. Such scanning tunneling spectroscopy (STS) measurements reveal

information about the energy dependence of the electronic density of states, ρ(E).
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1.3 Dissertation Outline

The primary thrust of this dissertation is to model the electron transport in large

single electron devices (SEDs) at a more advanced level than has been done before, in

order to explore the complicated behaviors that arise in many-island SEDs. In chapter

2, we investigate the conductance characteristics of one- and two-dimensional MISETs

[1], motivated to a large degree by the experimental work performed at Michigan

Tech by the research groups of Dr. Paul Bergstrom and Dr. Yoke Khin Yap. We use

a semi-classical model for tunneling combined with a kinetic Monte Carlo method

for integrating these rates and deriving observable properties, as implemented in our

newly developed Multi-Island Transport Simulator (MITS) code [3]. We investigate

effects of disorder, device length, and temperature on 1D devices. In some 2D devices

we find a robust dominant conducting path (DCP), allowing these devices to be

viewed as effective 1D devices.

Chapter 3 describes efforts made to improve our device modeling abilities by improv-

ing our method for calculating capacitances. We developed a software package that

utilizes the SALOME [22] computer aided engineering (CAE) software package and

the Elmer [23] finite element method (FEM) solver to calculate capacitances for a

device consisting of an arbitrary arrangement of spherical islands. We investigate the

effect of neighbor islands on the capacitances of an individual island through a set of

test calculations, and we compare MITS calculations that use analytic capacitance

calculations to calculations using our FEM capacitance calculations. These numerical

capacitance calculations are employed in a MITS study of bent 1D devices.

In our studies of MISETs it became apparent that our treatment of the tunneling re-

sistance between neighboring islands warrants some deeper inspection. The tunneling

resistance is one of the primary inputs to the MITS model, and, as was found to be
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the case for the capacitances, could be expected to be influenced by the detailed ge-

ometry of the structures. In chapter 4 we investigate tunneling between nanoparticles

using a density functional theory (DFT) approach, and make comparisons to analytic

tunneling calculations. This is a preliminary investigation, and ideas for furthering

the work can be found in chapter 6.

While working with the research group of Dr. Pandey for the above mentioned DFT

studies, an interesting opportunity for collaboration appeared regarding tunneling

away from surfaces, in the form of scanning tunneling microscopy measurements.

Chapter 5 discusses the fruits of this collaboration, including a newly developed

STM/STS simulation tool that balances accuracy and accessibility, and several pub-

lished journal articles making use of the tool. This chapter begins with a review of

established methods for simulating scanning tunneling microscopy results, and then

describes a new method we developed. The method is validated by simulating the

well-known Si(111)-(7×7) reconstructed surface. The method is also applied to stud-

ies of (PbS)32 nanoclusters [4], silicon-doped boron nitride monolayers [5], and atomic

wires on MoS2 monolayers [6].

Finally, in chapter 6 we provide a summary of the work described within, and provide

an outlook on interesting and important avenues for future work.
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Chapter 2

Simulation of Disordered Coulomb

Blockade Devices1

2.1 Abstract

In this study, we investigate the charge-transport behavior in a disordered one-

dimensional (1D) chain of metallic islands using the newly developed multi-island

transport simulator (MITS) based on semi-classical tunneling theory and kinetic

Monte Carlo simulation. The 1D chain is parameterized to model the experimentally-

realized devices studied by Lee et al. [Advanced Materials 25, 4544-4548 (2013)],

which consists of nano-meter-sized gold islands randomly deposited on an insulat-

ing boron-nitride nanotube. These devices show semiconductor-like behavior without

having semiconductor materials. The effects of disorder, device length, temperature,

and source-drain bias voltage (Vsd) on the current are examined. Preliminary results

of random assemblies of gold nano-islands in two dimensions (2D) are also examined

1The material contained in this chapter was previously published in [1]
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in light of the 1D results.

At T = 0 K and low source-drain bias voltages, the disordered 1D-chain device

shows charge-transport characteristics with a well-defined Coulomb blockade (CB)

and Coulomb staircase (CS) features that are manifestations of the nanometer size of

the islands and their separations. In agreement with experimental observations, the

CB and the blockade threshold voltage (Vth) at which the device begins to conduct in-

creases linearly with increasing chain length. The CS structures are more pronounced

in longer chains, but disappear at high Vsd. Due to tunneling barrier suppression at

high bias, the current-voltage characteristics for Vsd> Vth follow a non-linear relation-

ship. Smaller islands have a dominant effect on the CB and Vth due to capacitive

effects. On the other hand, the wider junctions with their large tunneling resistances

predominantly determine the overall device current. This study indicates that smaller

islands with smaller inter-island spacings are better suited for practical applications.

Temperature has minimal effects on high-bias current behavior, but the CB is dimin-

ished as Vth decreases with increasing temperature.

In 2D systems with sufficient disorder, our studies demonstrate the existence of a

dominant conducting path (DCP) along which most of the current is conveyed, mak-

ing the device effectively quasi-1-dimensional. The existence of a DCP is sensitive to

the device structure, but can be robust with respect to changes in Vsd.

2.2 Introduction

Recent advances in the development of new materials and fabrication techniques

have spurred continued interest in further miniaturization of conventional field-effect

devices with new device structure designs [24]. Multi-gate architectures have been
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fabricated that may allow further reduction in the dimensions of classical metal-oxide

semiconductor field effect transistors (MOSFET) without degrading the transistor

performance [25]. On the other hand, conduction by tunneling in granular metal-

lic systems has been a subject of interest for many years [26, 27]. Single-electron

transport devices that operate based on tunneling of individual electrons through

junctions formed with one or more nanometer-sized islands have been demonstrated,

some even operating at room temperature [16, 28]. Successful attempts have been

made to demonstrate their use as single-electron memory devices and for nanometer-

scale displacement sensing [29, 30].

This computational study attempts to complement experimental work seeking to

elucidate the effects of different factors such as structural disorder on electron tun-

neling transport [2, 18] by beginning to systematically explore the effects of island

sizes, inter-island spacings, and conduction channel length on I-V characteristics [3].

Particular focus is given to modeling charge transport in boron-nitride nanotubes

(BNNTs) functionalized with nanometer-size gold islands. The device properties are

investigated at low and high biases, and the effects of temperature on the Coulomb

blockade and the device threshold voltage are studied. Later, the work is further

extended to study the effect of structural disorder on 2D device characteristics that

gives an insight into the functioning of experimentally fabricated multi-dimensional

devices.

Functionalization of high-quality 20-80 nm diameter BNNTs with gold quantum dots

deposited by pulsed laser deposition has recently been demonstrated by Lee et al. [2]

(figure 2.1). Without gold-dot functionalization, the BNNTs are excellent insulators,

and show currents of less than 10-11 A under bias potentials up to 180 V. On the

other hand, the gold quantum-dot-functionalized BNNTs (QDs-BNNTs) exhibit room

temperature semiconductor-like switching behavior, with turn-on voltages (Vth) in the

range of 2.0 to 34.0 V, increasing with increasing length (L) of the QDs-BNNT device,
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Figure 2.1: Images of gold quantum dot functionalized boron nitride nan-
otubes (QDs-BNNTs) obtained by (a) scanning electron microscopy and
(b,c) scanning transmission electron microscopy. Reprinted with permis-
sion from Lee et al. [2]. Copyright © 2013 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim. See appendix C for documentation of permission to
republish this material.

where L ranges from 1.29 to 2.37 μm (figure 2.2).

2.3 Theory and Simulation

Initial investigations were focused on model one-dimensional systems corresponding

to the QDs-BNNTs of Ref. [2] (figure 2.3). The model device consists of a chain of

199 gold islands (200 junctions) between source and drain electrodes. In this study,

the BNNT is assumed to play no role other than to geometrically align the islands

because of its insulating nature in the absence of gold islands. The radius of each

island is randomly selected from a uniform distribution between 3 and 10 nm, while

the junction widths are randomly chosen from a uniform distribution in the range of

1 and 5 nm. An island at one end of the chain is selected to be a fixed drain electrode,

while the source (ground) electrode is chosen from among the remaining islands in

the chain, thus fixing the number of islands in the system (chain) and its length.
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Figure 2.2: Current-voltage characteristics of QDs-BNNT devices of dif-
ferent lengths demonstrating non-Ohmic behavior, and Coulomb-blockade
effects. Data collected using 4-probe scanning tunneling microscopy.
Reprinted with permission from Lee et al. [2]. Copyright © 2013 WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim. See appendix C for documen-
tation of permission to republish this material.

Figure 2.3: Schematic of the geometrical model of a 1D chain of gold nano-
islands with randomly selected island radii and junction widths, deposited on
an insulating born-nitride nanotube used for the MITS simulation of systems
fabricated by Lee et al. [2]. Reprinted with permission from Savaikar et al.
[3]. Copyright 2013, AIP Publishing LLC. See appendix D for documentation
of permission to republish this material.

Conduction in the multi-island devices is modeled using kinetic Monte Carlo simu-

lation methods [31, 32] based on tunneling rates that are computed semi-classically

(see Ref. [3] for further details). The probabilities for tunneling between any pair of

nearby islands at any given time depend on three primary factors: the charge states

of the islands, the voltage drops across the junctions, and the junctions’ tunneling
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resistances. All three of these factors can dynamically vary during the simulation. In

particular, in contrast to most models that use tunneling resistances that are fixed

throughout the simulation, the tunneling resistances in MITS dynamically vary with

the voltage drops across the junctions, both due to the applied voltage bias, and the

charge states of the capacitively coupled islands.

The semi-classical approach used for calculating the tunneling rates assumes that

(i) the energy spectrum of the conductive islands may be considered continuous (ii)

the tunneling time is negligible compared to the time between successive tunneling

events, and (iii) coherent tunneling events are ignored [20, 33]. For a pair of adjacent

islands i and j, the tunneling rate is given by [19, 20, 33]

Γi,j (ΔWi,j) =
(−ΔWi,j

e2Ri,j

) [
1 − exp

(
ΔWi,j

kBT

)]−1

, (2.1)

where ΔWi,j is the change in the free energy of the system due to the tunneling

event, Ri,j is the tunneling resistance of the junction, e is the electron charge, kB is

the Boltzmann constant, and T is the temperature. As is clear from Eq. 2.1, ΔWi,j

and Ri,j each play key roles in determining the tunneling rates across the device.

Consider first the change in free energy due to the transition, which is given by

ΔWi,j = −eVi,j + Eci,j. This depends on the potential drop Vi,j that exists across the

junction before the transition. Vi,j in turn depends on the capacitances of the system,

which are fixed, and the charge state of the system, which dynamically evolves. The

junction charging energy, Eci,j, is the energy required for a single electron to tunnel

across the junction between the two uncharged coupled islands, i and j, and depends

on all of the capacitances of the system [19, 20, 33]. An analytical method employ-

ing image charges was used for the calculation of junction capacitances Ci,j between

neighboring islands [34, 35], and the dielectric constant of the junction material was
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taken simply to be 1. Given the self-capacitances and junction capacitances, a ca-

pacitance matrix C is constructed that relates �Q, a vector composed of the charges

on the islands, and �V , a vector composed of the island potentials through the matrix

equation �Q = C�V [33]. As the charge state �Q of the device changes, the matrix

equation is used to solve for the island potentials.

The tunneling rate for a junction is also dependent on the junction’s tunneling resis-

tance Ri,j, which is a strong function of the device geometry as it increases exponen-

tially with the fixed junction separation di,j. Ri,j also depends strongly on the height

of the energy barrier between the two islands that form the junction. The barrier

height depends on the work function of the islands ϕ, as well as the potential drop

Vi,j across them. If eVi,j remains small compared to ϕ, it has a negligible effect on the

barrier height and Ri,j would be a constant. Under simulation conditions in which all

the junction resistances in a given chain remain constant, the device I-V character-

istics follow a linear behavior for large source-drain voltage biases. However, under

high bias conditions, especially where there is a large charge build on some islands,

the potential difference between the neighboring islands can be significant compared

to ϕ, leading to significant band bending. As a result, the effective barrier height

would strongly depend on Vi,j and subsequently, Ri,j would vary significantly with

the applied source-drain bias or with the charge state during the course of the sim-

ulation. Although a junction’s barrier height decreases approximately linearly from

one island to the next, in order to simplify the calculations, the tunneling barrier is

taken to be of constant height across the width of the junction, but with a reduced

height whose variation is given by ϕeff ij = ϕ − eVi,j/2, a reasonable approximation

as long as for each junction Vi,j< ϕ [36]. Thus the tunneling resistances are given by

[27]

Ri,j =
(

h3

64π2mee2

) (
Ef + ϕeff i,j

Ef

) (
exp (2αk0di,j)

ϕeff i,j

) (
αk0

ra

) (
1

Gi,j

)
, (2.2)
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where k0 = (2π/h)
(
2meϕeff i,j

) 1
2 , h is the Planck constant and me is the free electron

mass. α is an enhancement parameter that was taken to be 0.115 to set an overall

current scale comparable to that measured by Lee et al. [2]. Approximate values of

Ef and ϕ for gold have been chosen as 5.5 eV and 4.8 eV, respectively. The average

radius of the two spherical islands forming the junction is ra, and di,j is the closest

distance between their surfaces (the junction width). Gi,j is a purely geometrical

factor that takes into account the solid angle subtended by one spherical island at

the other across the tunnel junction when considering the current flux [27].

Simulations were carried out using a newly-developed set of MATLAB®-based codes

called MITS (Multi-Island Transport Simulator) that is described in detail in Ref.

[3]. Important features of MITS include the following:

† The system is described by a physical model of islands and electrodes, in con-

trast to using fixed resistances and capacitances in a circuit model.

† The model is applicable from low to reasonably high Vsd. Tunneling barrier

heights dynamically change with charge state and Vsd.

† All islands within a set proximity limit are capacitively coupled to each other.

To begin a simulation, a physical model of a tunneling device is constructed, consisting

of spherical metallic islands arranged in one- or two-dimensions, with desired sizes

and spacings. For the modeling of the one-dimensional (1D) QDs-BNNT systems,

the capacitances are calculated analytically. For two-dimensional (2D) systems, a

finite-element-method of calculating the capacitances has been developed in order to

account for the important polarization effects of the metallic islands. The circuit-

matrix solver builds the capacitance matrix, by which the charging energies for the

transfer of a single electron are calculated across all the junctions in a given chain
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[19, 20, 33]. With the given (fixed) electrode potentials and the known island charges

(taken to be zero in the initial system configuration), the capacitance matrix is then

used to determine the island potentials. The tunneling resistance solver computes

the Ri,j across all the nearest-neighbor junctions. Once all of the relevant parameters

in the system are determined, tunneling rates across the junctions are computed.

Following the kinetic Monte Carlo method, a particular tunneling event is randomly

selected from among the available events, the corresponding transition is carried out,

and the time is updated. Using the system’s new charge configuration, the potential

drops, the tunneling resistances, and the tunneling rates across all the junctions

are recalculated, and the process is repeated for large number of time steps until

the current through the device reaches a steady state with satisfactory statistical

accuracy.

2.4 Results

2.4.1 One-dimensional devices

Current-voltage (I-V ) characteristics at T = 0 K for the model 1D device are shown

in figure 2.4. At high biases (figure 2.4a) the I-V characteristics are non-Ohmic and

vary as I ∝ (Vsd − Vth)ζ . The exponent ζ is non-universal and varies between 1 and 3,

increasing from 1 with decreasing chain length. For a fixed N, ζ also shows a crossover

from a lower value at low bias to a higher value at high bias. The Coulomb block-

ades and Coulomb staircase (CS) structures are shown for different device lengths in

figure 2.4b. The blockade width and associated threshold voltage Vth increase with

increasing N. The CS structures are also more pronounced for longer devices.
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Figure 2.4: Simulated I-V characteristics for the 1D chain of gold islands
as a function of N, the number of islands in between the source and drain
electrodes at T = 0 K. High bias results in (a), which also shows results
for N = 50 at T = 100 K. Low bias results are shown in (b), highlighting
the Coulomb Blockade and Coulomb staircase structures at T = 0 K and
100 K. Reprinted with permission from Savaikar et al. [3]. Copyright 2013,
AIP Publishing LLC. See appendix D for documentation of permission to
republish this material.
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The effects of temperature on the I-V characteristics are illustrated in figure 2.5. As

shown in figure 2.5a, as the temperature is increased, the apparent threshold voltage

drops, the Coulomb blockade structure seems to wash out, and the current increases

at any given Vsd> Vth. Figure 2.5b illustrates the effects of temperature on the I-V

characteristics of a 25-junction device. At low temperatures, the T = 0 K turn-

on threshold (Vth ≈ 0.74 V) and the Coulomb staircases become rounded. As the

temperature is increased, the apparent turn-on threshold voltage, the source-drain

bias at which the current reaches some minimum detectable level, decreases. For

T ≥ 40 K, however, additional Coulomb staircase structures manifest themselves at

voltages below the T = 0 K threshold voltage. For example, at T = 40 K a plateau

develops in the current for drain voltages between ∼0.35 V and 0.55 V. The currents

associated with the plateaus of the Coulomb staircase steps also increase in magnitude

with increasing temperature, while their widths correspondingly decrease.

2.4.2 Two-dimensional devices

Experimental studies of 2D systems show I-V characteristics with similar features

to those observed in the 1D systems shown above, including a Coulomb blockade,

Coulomb staircases, and non-linear I-V relationships in the “on” state [27, 37–42].

Preliminary investigations of two-dimensional (2D) random arrays of metallic nano-

scale islands were carried out using MITS, and are briefly presented here in order to

give a view of capabilities for future work.

Simulations of the 2D systems were carried out on a system of 67 spheres, each of

diameter 6.5 nm. Positions of the islands were randomized using Metropolis Monte

Carlo, which after decreasing all island diameters to 5.0 nm, resulted in a distribution

of nearest-neighbor inter-island spacings ranging between ∼1.5 to 5 nm (figure 2.6),
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Figure 2.5: Simulated I-V characteristics for a 1D chain as a function of
temperature. (a) I-V characteristics for two different chain lengths at T =
0 and T = 100 K. (b) I-V characteristics for a device with N = 25 junctions
at a series of temperatures between 0 and 140 K.
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and an average spacing of 2.7±0.1 nm. Simulations were carried out using MITS in the

same manner as described above except that the island capacitances and junction ca-

pacitances were computed using finite-element methods.2 The junction capacitances

between near-neighbor islands ranged between 1.5×10-20 to 10×10-20 F. Due to shield-

ing effects from neighboring metallic islands, the island self-capacitances ranged from

0.6×10-20 to 4.0×10-20 F.

As shown in figure 2.6, currents tend to flow in the random 2D systems along a fairly

narrow dominant conducting path, with many junctions carrying greater than 60%

of the total current that is carried to the drain. With increasing Vsd (figure 2.6b) the

DCP remained relatively robust, and some junctions in the DCP even increase the

fraction of the current they carry. At low but non-zero temperatures (figure 2.6c),

the DCP also remains robust.

The I-V characteristic for the 67-island 2D device is shown in figure 2.7 for source-

drain biases up to 2 V. The device shows a threshold voltage at ∼1 V, and also a

weak Coulomb staircase structure compared with the 1D devices. The inset in figure

2.7 shows the currents as a function of Vsd for each individual junction in the DCP.

These I-V curves show weak Coulomb staircase structures reminiscent of the total

device I-V behavior, as one might expect for a junction in a DCP.

2.5 Discussion

At any fixed Vsd in the on-state, the 1D devices show decreasing currents with in-

creasing device length, as might be expected due to the increased overall resistance of

the longer devices and associated increased number of resistive junctions. However,

2See chapter 3 for details of the finite element method capacitance calculations.
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Figure 2.6: Schematic of a disordered 2D device consisting 67 islands,
each of radius of 2.5 nm, randomly positioned on the plane between the
source and the drain electrodes (large green ellipses) separated by ∼50 nm.
The nearest neighbor inter-island spacings range anywhere from ∼1.5-5 nm.
Allowed current paths are shown as solid black line segments. Junctions
carrying significant current are color coded according to the percent of the
total current carried to the drain: red (R) = 80-100%, blue (B) = 60-80%,
green (G) = 40-60%, yellow (Y) = 20-40%. At T = 0 K as Vsd varies from
0.98 V (a) to 2 V (b), the DCP varies but largely retains its dominant
conducting nature and position in the 2D array. (c) The same system at Vsd

= 2V and T = 40K.
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Figure 2.7: I-V characteristics of a 2D device composed of 67 gold islands,
as shown in figure 2.6, at T = 0 K, and in the absence of a gate voltage. The
inset shows the distribution of currents flowing through individual junctions
in the dominant conducting path as a function of applied source-drain voltage
bias.

as demonstrated in figure 2.8, which shows the variation in the junction resistances as

a function of junction width, the wider junctions in a device experience larger voltage

drops across them. Because the barrier heights depend on the voltage drops across

the junctions, the wider junctions also therefore experience a larger decrease in their

tunneling resistances as the source-drain bias is increased (from 12 V to 80V).

MITS simulations demonstrate power-law behavior of the I-V characteristics for Vsd

beyond the threshold voltage, consistent with experiments. The non-Ohmic behavior

( ζ > 1), in the simulations has been traced to the dependence of the barrier heights

on the voltage drops across the junctions, which varies with charge state and with Vsd.
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Whereas Middleton and Wingreen [43] have argued that ζ should equal 1 and 5/3 for

infinite 1D and 2D systems, respectively, in the limit of short screening lengths (weak

capacitive coupling among islands), their computer simulations for finite systems gave

ζ = 1 and 2.0 ± 0.2, respectively. A variety of experimental studies [40–42, 44, 45]

give exponents ranging between 1 and 3.

Our simulation studies show that the exponent ζ is sensitive to the disorder in the

system and the length of the device [3]. The exponents also show a crossover from a

lower value to a higher value as the source-drain bias is increased sufficiently. Such

crossover behavior has also been observed in experimental devices [44].

Values of the threshold voltage Vth increase with increasing device length; however,

prediction of Vth for a device with random island sizes and separations is an open

question. Although there is no steady state current for Vsd< Vth, as the applied volt-

age bias is increased across a device, but below the threshold, the charge state of

the system changes in a discrete series of “up-steps” [40, 43]. Based on our MITS

simulations, these changes in charge state can include the following, alone or in com-

binations: (i) a change in total charge on the device, (ii) advancement of the charge

front across the device, or (iii) rearrangement of charge among the islands. Such tran-

sitions occur when Vsd is increased sufficiently to bring some ΔWi,j to zero making

a transition energetically favorable. For example, in a simulation of a 25-junction

device, increases in Vsd necessary to overcome a total of 27 consecutive up-steps, as

Vsd is increased from zero to Vth, range from 0.01 mV to 153.7 mV. Once a transi-

tion takes place, others may follow until once again the system reaches equilibrium.

At sufficiently high bias, the last up-step may be overcome, and the ensuing tran-

sition will take place with some rate determined by Eq. 2.1. This transition is a

rate-determining step, as a subsequent cascade of transitions then take place quickly,

leading to the advancement of one net electron across the device, but ultimately lead-

ing to the system coming back to its rate-determining step. Unfortunately, prediction
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Figure 2.8: Junction resistances as a function of junction width, for a 200-
junction device, for two different source-drain biases, 12 V (blue diamonds)
and 80 V (red circles). Note from figure 2.4 that at 12 V the device is in the
Coulomb-staircase regime, while at 80 V it is in the power-law regime. Error
bars represent standard deviations in the junction resistances averaged over
5000 Monte Carlo steps (∼1 ns at 12 V, and 18 ps at 80 V) after reaching
steady state currents. Reprinted with permission from Savaikar et al. [3].
Copyright 2013, AIP Publishing LLC. See appendix D for documentation of
permission to republish this material.

of the individual up-steps and Vth, based on a physical model of a 1D random device

(materials, island radii, junction separations), appears to be impossible due to the

capacitive junction couplings and dependence of the junction voltage drops on the

charge state of the system and the applied bias.

With increasing Vsd beyond Vth, the currents change only slowly due to the slight

changes in the junction voltage drops, that is, until some particular Vi,j reaches a

value such that its associated ΔWi,j reaches zero and the charge state of the system
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changes. This can lead to the creation of a new conduction channel (sequence of

allowed transitions in charge-state-Vsd space that results in a net transfer of charge

across the device), leading to a sharp increase in the current and the formation of a

step in the CS. With increasing Vsd, ever more conduction channels open up, until at

sufficiently high Vsd the individual CS steps become indistinguishable.

With increasing temperature, key ΔWi,j activation barriers for changes in charge

state can be thermally overcome that lead to changes in charge state and to non-zero

transition rates, even for Vsd< Vth. Thus, thermal effects can lead to a non-linear

decrease of the apparent threshold voltage of a device with increasing temperature,

and rounding or elimination of steps in the CS structure. New CS steps can even

manifest themselves Vsd< Vth due to the system attaining charge states at non-zero

temperatures that are inaccessible at T = 0 and Vsd< Vth. Further details of thermal

effects in random 1D devices will be the subject of a future publication.

In experimental work on a 2D system of Au grains, by Cordan et al. [27] postulated

the existence of a quasi-1D dominant conducting path (DCP) that carried most of the

current across devices with a wide range of tunneling resistances. Our preliminary

work using MITS has demonstrated the existence of a DCP in a random 2D device.

The DCP shows robustness with changes in source-drain voltage and with moderate

increases in temperature. The Coulomb staircase structure in the 2D device was less

pronounced than in comparable 1D systems, however. This is likely due to the DCP

being relatively optimized, and thus carrying a narrower range of tunneling resistances

along the DCP than which exists among neighboring junctions in the overall 2D

device. Our preliminary 2D simulations were also carried out on a relatively small

system, leading to a short path length for the DCP. As shown above, the Coulomb

staircase structure becomes less prominent as the device length decreases due to

shorter devices having a lower probability of sampling unusually large junction widths.
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2.6 Conclusions

The MITS simulation package has proven to be a useful tool for modeling I-V charac-

teristics of 1D and 2D arrays of nano-scale metallic islands under low and high biases,

and gaining understanding of underlying mechanisms to explain the Coulomb block-

ade, Coulomb staircase, and power-law scaling behavior of the devices. The turn-on

threshold source-drain bias depends strongly on the capacitances of the system, but

because of the inherent randomness in island spacing and radii, the prediction of the

threshold voltage based on the physical layout of a random device is not possible with-

out carrying out the full simulation. With increasing source-drain bias the threshold

is reached through a series of up-steps in which the charge state of the system changes,

and the charge front eventually advances across the device. In agreement with the

hypothesis of Cordan et al. [27], 2D systems with sufficient disorder have a robust

dominant conducting path that carries most of the current across the device.

Future studies are planned to elucidate the effects of temperature and degree of ran-

domness on the behavior of such systems. Such insights may be helpful in using MITS

to explore device designs with the goal of engineering desired device characteristics.
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Chapter 3

Calculation of Capacitance in

Dense Disordered Systems

3.1 Introduction and Motivation

Making an accurate calculation of the change in energy as charges move in a system

is critically dependent upon having accurate knowledge of the capacitances in the

system. Crude approximations to the capacitances can be calculated using the known

analytical solutions such as the capacitance of an isolated sphere, the parallel plate

capacitor, the isolated two-sphere system, etc. However the systems of interest in this

study are quite dense, making these approximations differ markedly from the results

of more sophisticated and accurate calculations. The finite element method (FEM)

allows us to create systems with complicated geometries and find the electrostatic

potential, electric field, surface charge density, and finally the capacitances of the

system. It one of several state of the art methods for calculating capacitances in

systems with complex geometry. The power of the FEM is great, but its utility is
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ultimately limited by the significant human and computational resources required to

define a model system and run the calculations. To mitigate these hurdles, we have

created tools that automate the setup of FEM calculations using open-source codes

and allow for execution on computing clusters.

3.2 Survey of the State of the Art

The finite element method is one of several state of the art methods for calculating

the capacitances in structures with complicated geometry. The primary competing

methods are various boundary element methods [46–50], finite difference methods

[51], and the floating random walk method [52–55].

Each of these approaches model a system of ideal conductors subject to an applied

potential difference. They solve this boundary value problem in order to calculate

the distribution of charge on the conductors when they are held at a fixed potential.

From this the capacitance is easily calculated using the relationship Q = CV .

With the FEM, the region in which the electric field will be calculated is discretized

using an unstructured 3D volume mesh. This volume is bounded by the conductors

of interest, which themselves are discretized using an unstructured 2D surface mesh.

The potential φ(�x) throughout the volume is described by Laplace’s equation,

∇2φ(�x) = 0, (3.1)

recast in the integral or weak form,

∫
Ω

(
∇2φ(�x)

)
w(�x) d�x = 0, (3.2)
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where w(�x) can be any arbitrary function. The electrostatic potential within each

element is approximated with piecewise continuous polynomials. A trial function rep-

resenting the solution throughout the whole volume is then the sum of these piecewise

elements. The potential at the boundaries is defined, and the variational principle is

used to find a global solution that minimizes the residual, where the residual is the

integral throughout the volume of the Laplace operator acting on the trial function.

The finite volume method is closely related to the finite element method. The Laplace

equation is also expressed in a weak or integral form, however Gauss’s law is used to

transform the volume integral into a surface integral. The problem is then represented

in terms of fluxes through the surfaces of the elements.

In the finite difference (FD) method, the volume is typically discretized using a struc-

tured mesh. The Laplace equation throughout the volume is represented in the dif-

ferential or strong form, and the solution is found using an iterative method.

Boundary element methods ignore the volume and calculate directly what surface

charge densities would be consistent with the desired Dirichlet boundary conditions.

This is done by discretizing the surfaces into boundary elements and setting up a

system of equations describing the potential at each element in terms of sums of

integrals over the surface charge densities of the other elements. In the simplest case,

the potential for each element is evaluated only at the center of the element, and

the surface charge is represented by a point charge at the center of the element. In

this formulation the potential at each element is proportional to a sum over all other

elements of the charge divided by the distance between the element and that charge.

This describes a dense matrix equation that can be solved for the unknown surface

charges. The fast multipole method (FMM) can reduce the computational cost of

the BEM by grouping charges together and approximating the electrostatic potential

distant from the group of charges with a multipole expansion [46].
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The floating random walk (FRW) method [52] makes use of Monte Carlo methods and

the mean-value-theorem to calculate the electrostatic potential on a Gaussian surface

surrounding an individual conductor. It is a fast and efficient method that is well

established in the semiconductor industry for calculating the ‘parasitic’ capacitances

associated with the wiring in very large scale (VLSI) integrated circuits.

Not all of these methods would have been possible to use for our purposes. For

example, it appears all FRW method codes are designed to exploit the rectilinear

nature typical of VLSI structures, and it does not appear to be possible to extend the

method to arbitrary geometries while maintaining an acceptable level of performance.

We chose to use the FEM for several reasons. It is a method that can handle arbitrary

geometry, and for which there is a rich ecosystem of open source software implement-

ing the method. We chose the SALOME [22] open-source computer aided engineering

(CAE) package to set up the geometry and create the surface and volume meshes.

We chose the Elmer finite element package [23] for setting up and solving the FEM

equations, and calculating the capacitance matrix from the results. This allowed us

to programmatically define the geometry and tune the meshing parameters, allowing

for good integration with our kinetic Monte Carlo simulation workflow.

3.3 Computational Methodology

3.3.1 Capacitance Matrix

There are multiple possible approaches to calculating capacitances within the finite

element method (FEM) approach. In each case the underlying physics is the same.

We begin by relating the charge Q accumulated on a conductor to the electrostatic
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potential difference V , via the capacitance C:

Q = CV (3.3)

For a simple two-conductor system, the charge on each conductor is equal and opposite

and the relevant potential V is the difference in potential between the two conductors.

For a system of N conductors, we can write a matrix equation:

�Q = C�V (3.4)

where �Q is a vector containing the net charge on each conductor, �V is a vector con-

taining the potential of each conductor with respect to a common reference, and C is

the Maxwell capacitance matrix, a N×N matrix derived from the mutual capacitance

between each conductor [56]. The Maxwell capacitance matrix is constructed from

the mutual capacitances ci,j between the ith and jth electrodes. In this terminology

the self capacitance of an object is the mutual capacitance between the object and

ground, and the total capacitance is the sum of all the mutual capacitances associated

with the object. The Maxwell capacitance matrix is defined as

Ci,j =

⎧⎪⎪⎨
⎪⎪⎩

Σj �=ici,j if i = j

−ci,j otherwise,

(3.5)

where the diagonal elements are the total capacitances and the off-diagonal elements

are the mutual capacitances multiplied by −1. Since ci,j = cj,i, this matrix is sym-

metric and can be determined from the N(N − 1)/2 unique ci,j elements.

With the FEM method, we impose constant-potential boundary conditions on each

of the conductors, and solve for the surface charges on each conductor. By judicious

choice of potentials (�V ), enough information is obtained from one calculation to

determine one column of the capacitance matrix C. Thus, with N FEM calculations
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we can determine the N(N − 1)/2 unique elements of C.

Specifically, the potential is set to zero for all except the ith conductor, which is set

to unity. Pre-multiplying this voltage vector �V by the capacitance matrix returns the

ith column of the capacitance matrix. Meanwhile, the left-hand-side of the equation

is an array containing the charge on each island, as calculated by the FEM method

with the potentials set as previously mentioned.

3.3.2 Finite Element Calculation

We use the finite element method (FEM) to calculate the capacitances in a system

of arbitrarily shaped conductors. However, the FEM is not able to do this directly.

There are several steps involved, including creating a geometrical representation of the

system, creating a mesh from the geometry, calculating the electrostatic potential in

the vacuum, calculating the electric field in the vacuum, calculating surface charges,

integrating to find surface charges, and finally relating the surface charges to the

capacitances.

3.3.2.1 Geometry

The first step is to create the geometrical representation of the system. For this

we use the open-source computer aided engineering (CAE) package SALOME [22].

SALOME exposes a Python-based text user interface, which allows for the operation

of the program to be directed by a Python program. A set of Python and Bash scripts

were written to read in a file describing the geometry of the system, and to create

the geometrical model within SALOME.
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Figure 3.1: A 2D MITS simulation begins with creating a randomized de-
vice using a hard-sphere Monte Carlo algorithm. This device geometry is
then fed to an analytic capacitance solver which generates the capacitance
matrix. This capacitance matrix is an input to the kinetic Monte Carlo
device simulator, which calculates current-voltage characteristics. With our
FEM capacitance calculations, the analytic capacitance solver in MITS is
bypassed and the device geometry is sent to our CAPSTONE capacitance
solver package. CAPSTONE interfaces directly with the SALOME pack-
age and directs SALOME to build a 3D model of the system and then to
discretize the model into a FEM mesh. Elmer is used to convert the mesh,
and CAPSTONE creates an Elmer input file based on the output of the
SALOME meshing routine. The FEM calculation is run, and output is the
mutual capacitance between each pair of conductors. MITS is then used
to convert this matrix of mutual capacitances into a Maxwell capacitance
matrix, and finally to simulate the characteristics of the device.
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3.3.2.2 Mesh

Next the volume and surfaces described by the geometry need to be discretized,

creating a FEM mesh. Again we use SALOME, directed via a Python program.

The volume of interest is not the volume of the conductors, but rather the vacuum

surrounding the conductors. We are interested in simulating an isolated system, but

this requires an infinitely large volume. Therefore we approximate the isolated system

by enclosing the system in a “large enough” computational box. In order to choose

how large of a bounding box is large enough, we ran calculations using progressively

larger boxes and observed that all relevant results converge towards limiting values.

We chose a size that was estimated to match the isolated result within several percent.

The surfaces are meshed by first discretizing the one-dimensional elements of the

surfaces, and then creating the two-dimensional mesh beginning from the 1D mesh.

For the bounding box, this is straightforward, the edges of the box are split into equal

segments, and a triangular mesh is create based on the linear 1D mesh. However the

islands are modeled as spheres, and so by default the 1D elements are chosen to be a

half-circumference, beginning and ending at the north and south poles. This causes

trouble for the 2D meshing algorithm, due to the singularity at the poles. We get

around this by splitting the sphere into two surfaces divided at the equator. This

allows us to use a linear 1D mesh and avoid the instability of the meshing algorithm

at the poles.

Once the surfaces are meshed, the volume of the vacuum is filled with a tetrahedral

mesh. The 2D elements are grouped according to the conductors they represent. The

resulting mesh is exported in the I-Deas Universal (UNV) format. See figure 3.3 for

an example of a two-dimensional surface mesh, and figure 3.5 for an example of the
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three-dimensional volume mesh.

3.3.2.3 Finite Element Method Calculation

The open source Elmer finite element package [23] is used for the actual FEM cal-

culation. The set of Bash and Python programs that orchestrate the creation of the

mesh with SALOME also orchestrate running Elmer and post-processing the results.

This begins with converting the mesh from the UNV format to Elmer’s native format.

Next the input file is created based on a standard template and extended to include

a description of each electrode.

The capacitances are calculated in a multi-step process. First, one single electrode

(surface) is set ‘high,’ meaning the voltage on that electrode is set to 1 V. All other

electrodes are grounded, i.e. the voltage is set to zero. With the electrostatic potential

φ defined on all the bounding surfaces, Laplace’s equation,

∇2φ = 0, (3.6)

is solved in the vacuum, delivering the electrostatic potential throughout the volume.

From the electrostatic potential, the electric field is calculated:

�E = −�∇φ (3.7)

The surface charge density is calculated from the discontinuity of the perpendicular

component of the electric field at the surface of the conductor:

σ = −ε0Δ �E⊥ (3.8)
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The electrodes are assumed to be perfect conductors. Therefore there is no tangen-

tial component to the electric field, and the electric field inside the conductors is

zero. Thus the discontinuity of the electric field at the surface is simply equal to

the magnitude of the electric field at the surface. Additionally, for a conductor in

equilibrium, all the charge is on the surface. Finally we can calculate the charge Qi

on the conductor i by integrating the surface charge density over the surface of the

conductor, Ωi.

Qi =
∫

Ωi

σdA = ε0

∫
Ωi

| �E|dA (3.9)

As outlined above, a single FEM calculation tells us the charges Qi that must be

placed on each of the N conductors in order to generate a potential φj on each of the

conductors. By systematically changing the potentials and calculating the charges,

we can calculate, column-by-column, the capacitance matrix C.

3.4 Test Systems

The capacitance calculation capabilities were tested with a series of progressively

more complicated (and interesting) test cases.

3.4.1 Sphere Within a Sphere

We begin with a model that has a simple analytic solution: the isolated sphere. The

capacitance of an isolated sphere of radius r is

CSphere = 4πε0r. (3.10)
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However, as mentioned above, we cannot represent a truly isolated system. There-

fore a more useful model is the sphere within a larger sphere, which has a mutual

capacitance of

CSphere−Sphere = 4πε0
1
r

− 1
R

. (3.11)

This is a model that we can represent with arbitrary precision, limited only by the

fineness of the mesh we are willing to create.

We used two test cases: a smaller system were the ratio of outer radius to inner

radius is 10, and a larger system where the ratio is 100. In figure 3.2, we see that a

simple mesh with a small number of elements is able to generate a result within 3%

of the exact value for both system. Interestingly for the smaller system, a moderate

increase in the fineness of the mesh is able to reduce the error to 1%, while for the

larger system, the error doesn’t reduce down to that level even for a rather fine mesh.

This is likely due to the method we used for increasing the fineness of the mesh, which

increased the mesh density uniformly instead of targeting the regions where the errors

were occurring. In later work we were more careful in our refining of the mesh.

3.4.2 Single Impinging Sphere

In the next test system, we again modeled an isolated sphere by enclosing it in

a much larger sphere (with radius 100x the radius of the smaller sphere). Then

we brought another similar sphere nearby the first and calculated the impact the

additional sphere has on the self capacitance of the first sphere. The self capacitance

of the central sphere is defined as the mutual capacitance between the central sphere

and the bounding sphere. In figure 3.3, the first sphere is held a fixed potential of +1

V relative to ground, while the impinging sphere and the outer sphere are grounded.

Shown in the figure are isopotential surfaces, colored according to potential, with blue
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Figure 3.2: The finite element method is used to calculate the capacitance
of a spherical capacitor with ratio of outer radius to inner radius of 100
(purple) and 10 (green). Percent difference between the calculated result and
analytic result is on the vertical axis, while the horizontal axis is a measure
of the quality of the mesh, approximated by the number of elements in the
mesh.

equal to zero (ground) and red equal to +1 volt.

The self capacitance of the first sphere decreases as the second sphere is brought

closer (figure 3.4). This can be envisioned as the first sphere being shielded from

ground (represented by the larger enclosing sphere) by the presence of the second

sphere. Interestingly, as the second sphere approaches, the self-capacitance appears

to approach a limiting value of approximately 72% of the value for an isolated sphere.
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Figure 3.3: The finite element method is used to calculate the electrostatic
potential in a system consisting of a sphere with an applied bias relative to
ground, and with another grounded sphere impinging upon it. Both spheres
have the same radius, and the distance between the two spheres is 5 radii in
the first image, and 0.5 radii in the second image. Isopotential surfaces are
calculated for every tenth of a Volt from zero (blue) to 1 V (red).
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3.4.3 Multiple Surrounding Spheres

Next we investigated the effect of bringing multiple spheres near to the first sphere.

We started with a single sphere within a sphere that is 100x larger, and added more

equal sized spheres around it until there were seven spheres in a hexagonal close pack

(HCP) arrangement. Figure 3.5 demonstrates this arrangement, showing a cutaway

view of the mesh for the system with five spheres surrounding the first sphere.

The effect these additional spheres have on the self capacitance is shown in figure

3.6. The self capacitance and total capacitance of the central sphere is graphed

as a function of the number of neighbors, and is normalized to the analytic value

for the capacitance of the single sphere-within-a-sphere system. As expected, the

self capacitance is diminished as more neighbors are added, further shielding the
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Figure 3.5: Cutaway view of a mesh for a system with five impinging
spheres in a hexagonal close pack (HCP) arrangement.

central sphere. Additionally, the total capacitance increases, as the effective dielectric

constant increases for the region between the central sphere and the bounding sphere.

Next the density of the neighboring spheres is modified by changing the distance of

closest approach between the spheres. Figure 3.7 shows the self capacitance as a

function of the distance between the six neighboring spheres. Two interesting things

can be noted in this graph. First, the self capacitance of the central sphere is less than

that of an isolated sphere, and decreases as the neighbors are brought closer. This can

be anticipated as the neighbors act to shield the sphere from ground. Conversely, the

total capacitance of the sphere is greater than for the isolated sphere, and increases

as the neighbors come near. We can anticipate this result as well if we imagine the
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Figure 3.6: Self capacitance is calculated as a function of the number of
neighboring spheres.

vacuum and surrounding spheres to be a material with an effective dielectric constant

greater than unity.

3.4.4 Potential Energy Barriers

When we consider the problem of tunneling from one island to the next, we generally

assume that the potential energy barrier separating the islands varies linearly from

one island to the next. This is the trapezoidal barrier approximation [57]. In this

study we calculated the potential energy barrier along a line of closest approach

between the islands for a system consisting of two larger electrodes and three islands.

Figure 3.8 shows the electrostatic potential on a plane that cuts through the center of

the spheres. In this model, the islands are 1 nm in diameter and are separated from
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Figure 3.8: We simulated 1 nm diameter islands between 2 nm diameter
electrodes, separated by 1 nm tunnel junctions. The leftmost electrode is at
-4 V, and the next three islands are at -3, -2, and -1 V, respectively. The
rightmost electrode and the bounding box are grounded. Isopotential lines
are drawn every 0.2 V.

one another and the electrodes by 1 nm junctions. The electrodes are spheres 2 nm

in diameter. The right-most electrode and the bounding box are grounded, and the

islands, from right to left, are at 1, 2, and 3 V, with the left-most electrode at 4 V.

In figure 3.9 we see that the barrier is modified enough that we would expect to see

a measurable change in the effective resistance of barrier. In particular, the lowering

of the first barrier would be expected to decrease the resistance of the junction by

a significant amount. If instead the left electrode and islands were negatively biased

relative to ground, we would see an increase in the barrier height and a correspond-

ing increase in the effective resistance of the junction. The effects of this barrier

modification are explored further in section 4.3.1.
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Figure 3.9: An energy diagram illustrating the modification of the barrier
by the electric field between the islands. The potential well and Fermi level
represent a system with a well depth of 5 eV and work function of 5 eV. The
shape of the barriers were calculated from the system described above with
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3.5 Applications

We applied the method described in this chapter to three types of systems, which are

all variations on a theme of multiple-island Coulomb-blockade devices. The first is a

linear Coulomb-blockade device described in more detail in chapter 2. For the second

application, we bend the linear device and investigate the stability of the device

properties as a function of curvature. The third is a planar Coulomb blockade device

which allows conduction through a two-dimensional network of islands. Each of these

applications are electronic devices that either allow or don’t allow a current to flow

depending on the tiny changes in electrostatic energy associated with the movement of
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single electrons. Because of the extraordinary sensitivity of these devices, an accurate

description of the electrostatics of the system (through knowing the capacitances in

the system) is essential to accurately modeling this class of device.

3.5.1 Linear Chain

We calculated the capacitances in a linear chain of spherical metallic islands to support

efforts to model the electrical conduction properties of so-called QD-BNNT transis-

tors. These quantum dot boron nitride nanotube (QD-BNNT) transistors are created

by sputtering gold or iron onto insulating boron nitride nanotubes (BNNTs). This

results in a quasi-one-dimensional array of metallic islands supported by an insulating

substrate.

Previous modeling efforts were reported in publications by Lee et al. (Advanced

Materials 25, 4544-4548 (2013)) [2] and Savaikar et al. (Journal of Applied Physics

114, 114504 (2013)) [3]. In that work we approximated the capacitances in the system

based on analytic solutions for the capacitance of isolated spheres and pairs of spheres.

For example, the self capacitance of each island, i.e. the mutual capacitance between

the island and ground, is taken to be 4πε0 times the radius of the island. This is

the exact result for an isolated sphere, but our systems are dense enough that the

isolated approximation needs to be evaluated. The mutual capacitance between two

spheres in isolation can be found using the image charge method [34]:

ci,j = −4πε0rirj

di,j

sinh (α)
∞∑

n=1
|ri sinh (nα) + rj sinh ((n − 1)α)|−1 (3.12)

where ri and rj are the radii of the spheres, di,j is the distance between the centers
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of the spheres, and α is defined for convenience as

α = arcCosh
(

d2
i,j − r2

i − r2
j

2rirj

)
(3.13)

Panel (a) in figure 3.10 shows the difference between our calculated self capacitances

and the analytic approximation. The calculated self capacitance is always less than

the analytical result, and is expressed here as a percentage of the analytical result,

ranging from 7% to 34%. Since the self capacitance is found to be different by a factor

ranging from 3x to 14x, we would expect significant differences in device behavior.

However the difference is much less dramatic if we look instead at the total capacitance

of the islands, which also includes the mutual capacitances. In panel (b) of figure 3.10

we show the total capacitance as calculated by the finite element method divided by

the total capacitance as calculated by the analytic approximations. Values are again

presented as percentages. In every case, the total capacitance is less, but here the ratio

ranges from about 59%1 to about 89%, less than a factor of 2x at most. Therefore

we expect the impact on calculated device properties to be much more modest than

what would be estimated based on the self capacitances alone.

In figure 3.11 we show the current-voltage properties calculated for this same de-

vice. The calculations utilizing the analytic approximations are shown in red, and

the calculations utilizing the FEM capacitances are in green. The dominant features,

notably the threshold voltage Vth and the effective resistance, are captured reasonably

well with the analytic approximations. Meanwhile the detailed structure is signifi-

cantly different from the more accurate FEM calculations. In particular, the width

and height of the Coulomb staircase steps are each overestimated by roughly an or-

der of magnitude. This demonstrates the need for accurate capacitances in these

1The capacitance ratio is even lower for the end-most islands, but here we have used a disk-like
model for the electrodes in the finite element calculation, and a sphere model for the electrodes in
the analytic approximations.
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Figure 3.10: Panel (a) shows the self capacitance of each spherical island as
a percentage of the self capacitance of a similarly sized isolated sphere. Panel
(b) shows the total capacitance of each island as calculated with the finite
element method divided by the total capacitance of the island as calculated
by analytic approximations, with values expressed as a percentage.
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Figure 3.11: Current-voltage properties are calculated for a one-
dimensional Coulomb blockade device with 50 tunnel junctions. In one case
analytic results are used to approximate the capacitances in the system (pur-
ple lines). In the other, the capacitances are all calculated using the finite
element method (green lines). The dominant features, notably the threshold
voltage Vth and the effective resistance, are captured reasonably well with the
analytic approximations. Meanwhile the detailed structure, particularly the
width and height of the Coulomb staircase steps, are significantly different
from the more accurate FEM calculations.

complicated systems.
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3.5.2 Bent Chain

In recent work by Hao et al. (Flexible Channels for Tunneling Field Ef-

fect Transistors by Quantum Dots Functionalized Boron Nitride Nan-

otubes. Boyi Hao, Anjana Asthana, Paniz Khanmohammadi Hazaveh,

Paul L. Bergstrom, Douglas Banyai, Madhusudan A. Savaikar, John A.

Jaszczak, Yoke Khin Yap. in manuscript, 2014.) [58], the current is measured in

a QDs-BNNT similar to that of Lee et al. (featured in chapter 2 and section 3.5.1) as

it is bent to differing degrees. In three different configurations the radius of curvature

is approximately ∞ (not bent), 500 nm, and 250 nm.

We model this system using a similar system to that of the previous section, with

source and drain electrodes, 49 islands, and vacuum separating them. However,

instead of the islands being aligned along their centers, we align them along one side

as if they are affixed to a nanotube. We use the nanotube to constrain the geometry,

but it is not included in the capacitance calculations. We consider the islands to be

affixed to a nanotube that is 10 nm in diameter, and bend the system such that the

length of the center of the nanotube is fixed while the top of the tube is stretched

and the bottom of the tube is compressed.

In the top panel of figure 3.12 we show the system bent to a radius of curvature of

∞ (not bent, black), +1.5μm (blue), and −1.5μm (red), where positive curvature

indicates bending such that the distance between the islands is reduced, and negative

curvature indicates bending such that the distance between the islands is increased.

The bottom panel of figure 3.12 shows the low-bias current for the not-bent system

(black) and the system bent to +500 nm (blue) and −500 nm (red). In order to isolate

the effects of the geometry on the electrostatics of the system, the capacitances are
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Figure 3.12: A model system representing the bent QDs-BNNTs of Hao
et al. [58] in three different bending configurations. The top panel shows the
geometry of the bent systems with a radius of curvature of 1.5 μm, while the
I-V simulations are performed with a larger bend of radius 0.5 μm to match
the experimental conditions. The resistances are calculated based on the
geometry of the non-bent device in order to isolate the effects of the changes
in capacitance on the device characteristics. For the first device (blue) we
see a decrease in the threshold voltage that agrees with the expected increase
of the island total-capacitances that comes from decreasing the inter-island
spacing. For the second device (red), we see the expected opposite behavior.
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Figure 3.13: The distribution of capacitances increases or decreases relative
to the non-bent device (black) as it is bent upwards (blue) or downwards
(red), respectively. Here the kernel density estimate is shown as solid lines,
and the median capacitance is indicated with dashed lines.

calculated with the changing geometry, while the resistances are calculated from a

fixed geometry that corresponds to the not-bent system.

Bending the device ‘upward’ causes the inter-island separations to decrease, which

increases slightly the capacitances in the system as we saw in section 3.4.3. This

leads to a slight decrease in the threshold voltage Vth and a modification of where

the Coulomb steps are. Bending in the opposite direction leads to the expected

slight increase in Vth and again changes in the Coulomb steps. These changes in the

capacitances are found to not influence the behavior of the device at higher biases.

In figure 3.13 we show how the distributions of total capacitances change as the

system is bent, by calculating the kernel density estimate for the not-bent (black),
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upward bent (blue), and downward bent (red) systems. The median total capacitance

values for these systems are 0.96, 0.99, and 0.94 aF, respectively, reflecting a change

of +3.6% or -2.4% as the system is bent. The threshold voltage Vth for these systems

are 2.7, 2.3, and 3.1 V, respectively, which makes for a much more significant change

of -16% or +13% as the system is bent. It is interesting to note that for this system we

cannot accurately predict the change in threshold voltage (-16%/+13%) from either

the change in median charging energy (-3.5%/+2.4%) or from the maximum change

in an individual island’s charging energy (-12%/+7.8%), which both underestimate

the change. This unpredictability has been previously remarked upon in section 2.5

and in references [1, 3].

3.5.3 2D Systems

Karre et al. [28, 37] have developed Coulomb blockade transistors capable of room

temperature operation where the conduction channel consists of a field of randomly

deposited tungsten quantum dots. Simulation of these devices is discussed in section

2.4.2.

The method described in this chapter was developed so that we would have the ability

to more accurately simulate these devices, since non-nearest neighbor capacitance and

self capacitance cannot be reasonably approximated without numerical methods. To

illustrate the necessity of an improved capacitance calculation scheme, we compare

the calculated self-capacitances to the analytic approximation for the self-capacitance

of a sphere of the same size. In figure 3.14 the islands in our simulated system are

colored according to the ratio of self-capacitance to analytic self-capacitance. The

density of the islands has a huge impact on the self-capacitance. The average island

has a self-capacitance approximately 3% of the analytic value, while islands on the
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edges of the field have values that range from approximately 10-15%. This is a much

larger difference than we saw in the one-dimensional chain (section 3.5.1), as would

be expected.

3.6 Conclusions

We developed a method for calculating capacitances using the finite element method

(FEM) which utilizes several open source projects that were not previously compati-

ble. We developed a work flow that integrates this method with the recently developed

Multi-Island Transport Simulator (MITS) in order to improve our ability to model

complex Coulomb blockade devices with capacitances that are not well described by

analytic approximations.
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Figure 3.14: The self capacitance of the sphere as a percentage of the self
capacitance of a similarly sized isolated sphere.

57





Chapter 4

Tunneling Resistance Between

Clusters

In our investigations of the conduction behavior of Coulomb blockade devices, and

especially work simulating scanning tunneling microscopy, quantum mechanical tun-

neling of electrons is a core component of these physical systems. In this chapter

we discuss tunneling from several perspectives, and calculate tunneling properties by

analytic and computational means. These preliminary studies prove the feasibility

of our approach, and also provide insight into some potential hazards of the applied

electronic structure methods.

4.1 Introduction

In the simulation of scanning tunneling microscopy and Coulomb blockade devices,

it is essential to have a good grasp of the underlying tunneling phenomena occurring

in the devices. Most obviously, the magnitude of the resulting current is dependent
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upon the effective resistance of the tunneling junctions. More subtly, differences in

the relative resistance of the tunnel junctions in a Coulomb blockade device affect

the relative heights of the Coulomb staircase structure. This tunneling resistance is

exquisitely dependent upon the geometric details of the junction. For example, in a

typical junction, increasing the junction width by just one nanometer increases the

tunneling resistance by an astounding ten orders of magnitude. This is a result that

is readily available from the most basic theoretical treatments of tunneling, and is

borne out in experiment. Less well studied is how other elements of geometry, such

as curvature and roughness, impact tunneling. In this chapter we employ modern

quantum chemistry methods to investigate this very question.

4.2 Effect of Resistances on Coulomb Blockade

Devices

For a quick demonstration of the importance of resistances to the properties of

Coulomb blockade devices, we calculated current-voltage characteristics using a test

system with randomly distributed resistances. The test system is the same as for the

current-voltage measurements in chapter 3, using capacitances calculated with the

finite element method (FEM), and tunneling resistances calculated as described in

chapter 2.

In order to produce the randomized resistances, we supplied the resistance subroutine

in MITS with sham junction widths that had been selected from a uniform distribu-

tion. Three different uniform distributions were sampled, with ranges (0, s), (1
2s, 3

2s),

and (s, 2s), where s is the maximum junction width originally present in the system.

The tunneling resistances depend exponentially on the junction widths, and so the

resulting resistances have an exponential distribution.
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Figure 4.1: Normalized current-voltage characteristics are calculated for a
system with randomized resistances. The reference system (purple) is the
same 1D SET as in chapter 3. Three randomized systems are simulated with
average resistances that are lesser than (green), greater than (fuchsia), or
similar to (blue) the average resistance in the reference system.

Figure 4.1 shows the low-bias current calculations for the reference system and the

three randomized systems. The results vary by six orders of magnitude, so in this

figure the current has been normalized by dividing by the magnitude of the current

at +5 V.

At this voltage scale, the most interesting features are the threshold voltage and the

height and positions (voltages) of the Coulomb steps. The threshold voltage is deter-

mined entirely by the energetics of the system, which is a function of the capacitances

but not the resistances, and so it does not change. As expected, the relative heights

of the steps change as the resistances are randomized, creating qualitatively different
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results. The voltages of the individual Coulomb steps are not expected to depend

on the resistances, and for the most part this expectation holds. Most interestingly

however, the existence of each individual step depends on the resistances, and at 2.70

V and again at 2.82 V we see steps that show up in some systems and not in others.

Specifically with the reference calculation (purple line in Figure 4.1) we see a very

large step just beyond 2.8 V, while the randomized system with similar resistances

(blue line) exhibits no such steps. Meanwhile this same system (blue line) shows a

dramatic step at 2.70 V which is much more subdued in the reference calculation and

essentially absent from the “greater resistance” system (fuchsia line).

With this we have shown that in addition to determining the overall magnitude of the

current, the qualitative details of the tunneling current are sensitive to the individual

junction resistances.

4.3 Tunneling Through Thin Films

One of the few tunneling calculations that can be evaluated analytically is for tunnel-

ing through a one-dimensional rectangular barrier. If we can calculate the ratio T of

the amplitudes of the incident and transmitted wavefunctions, then we can calculate

the probability of an incident electron tunneling through the barrier, P = |T |2. The

transmission function T is

T =
[
1 + φ2 sinh2 (kd)

4E (φ − E)

]−1

, (4.1)

where E is the energy of the incoming electron, φ is the height of the barrier, d is the

width of the barrier, and

k =
√

2me (φ − E)
�2 (4.2)
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is the wavenumber of electron in the barrier.

If the barrier is not of a constant height, the WKB approximation can be used to

calculate the transmission through the barrier:

T = exp
⎧⎨
⎩−2

∫ d

0
dx

√
2me

�2 (φ (x) − E)
⎫⎬
⎭ (4.3)

Interestingly, in the case of a constant barrier height, this simplifies to

T = e
−2d

√
2me
�2 (φ−E)

, (4.4)

and in this approximate form the exponential dependence on the barrier width d is

clearly identified.

4.3.1 Tunnel Barriers from Finite Element Method

Calculations

In section 3.4.4 we calculated the potential energy barrier profile for a model system

that consisted of three spherical islands separated from each other and from two larger

electrodes by 1 nm tunnel junctions. The barrier profiles are shown in figure 3.9.

For each of these four barriers and for a trapezoidal barrier we calculated the trans-

mission probability for an electron coming at the barrier from the left side to tunnel

through to the right side. We evaluated the WKB expression for transmission pro-

bility in eq. 4.3 by numerical integration. We assumed the incoming electron had an

energy equal to the Fermi level on the left side of the barrier. The work function (the

value of φ(x) at the edge of the barrier) was taken to be 5 eV. The barriers are 1 nm

wide and drop by 1 eV from left to right.
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The ‘area’ of each barrier (the value of the integral in the exponent of eq. 4.3) is less

than that for the trapazoidal barrier by 4%, 6%, 3%, and 1% for the first through

fourth junctions, respectively. The value of the transmission probability, and by

extension the value of the tunneling current, is greater than that for the trapezoidal

barrier by 14%, 22%, 11%, and 4% for these same junctions.

4.4 Tunneling Between Nanoscale Particles

Next we investigate the effect of extreme curvature on the effective resistance of a

tunnel junction by calculating the conductance properties of tunnel junctions between

small clusters of gold atoms, representing nanoscale gold particles. We begin with

spherical cage-like clusters of 32 gold atoms, and progress to hexagonal 6 atom gold

clusters, and finally single atom gold ‘clusters.’

We use a Green’s function approach to calculate the current through our model

systems. A density functional theory (DFT) approach is used to calculate the ground

state electronic structure.

4.4.1 Density Functional Theory

We use density functional theory to find the ground state geometry for the metal

clusters. To do so, we find the ground state electronic structure for a test configura-

tion, and calculate the forces on the ions. The geometry is optimized until the forces

on the ions are below a threshold value.

Under the Born-Oppenheimer approximation [59] we can consider the electronic and
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ionic degrees of freedom to be uncoupled, and we can find the electronic ground state

subject to a potential due to the fixed ions.

Calculating the ground state electronic structure begins with describing the system

with the Schrödinger equation,

HΨ = EΨ, (4.5)

where the electronic Hamiltonion in atomic units is

H = −
N∑

i=1

1
2∇2

i +
N∑

i=1

M∑
j=i+1

1
|�ri − �rj| −

N∑
i=1

M∑
A=1

ZA

|�ri − �rA| . (4.6)

Here N is the number of electrons, M is the number of ions, ZA is the atomic number

of ion A, �ri is the position of electron i, and �rA is the position of ion A. The first

term in the Hamiltonian is the kinetic energy of the electrons, the second term is the

repulsion between electrons and electrons, and the last term is the attraction between

the ions and electrons. The total energy of the system is then

Etotal = E +
M∑

A=1

M∑
B=A+1

ZAZB

| �rA − �rB| , (4.7)

where the second term here is the Coulomb repulsion of the ions.

The Hohenberg-Kohn theorem [60] states that the all observables of a quantum system

can, in principle, be derived from the electron density of the system. This reduces

the 3N -dimensional problem of finding the N wavefunctions to the 3-dimensional

problem of finding the ground state electron density. The energy of the system is now

described by

E[ρ] = T [ρ] + VNe[ρ] + Vee[ρ] = T [ρ] + VNe[ρ] + VH [ρ] + VXC [ρ], (4.8)

where T [ρ] is the electron kinetic energy term, VNe[ρ] is the electron-ion interaction
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term, and Vee[ρ] is the electron-electron interaction term. This electron-electron inter-

action term now includes the Hartree potential, VH [ρ], which is the electron-electron

repulsion, as well as the exchange-correlation potential, VXC [ρ], which includes the

exchange interaction and all the correlation effects between electrons.

We use DFT as implemented in the Gaussian 09 software package [61]. We use the

B3LYP [62] hybrid exchange and correlation functional. The LanL2DZ basis set [63–

65] was used, which combines an effective core potential (ECP) pseudopotential to

represent the core electrons, with the Dunning/Huzinaga full double zeta basis set

(D95) [66] to represent the valence electrons. Self consistent field calculations were

performed until the density met a convergence criteria of 10-7.

4.4.2 Geometry

Each model system consists of two gold clusters attached to source and drain elec-

trodes. In the DFT calculations, the ends of the electrodes are represented by an

atomic wire consisting of two gold atoms. Each cluster is attached to a separate

electrode via a sulfur linker atom (see Figure 4.2). The sulfur atoms, the clusters,

and the vacuum between them constitute the scattering region for the purposes of the

Green’s function conductance calculation. The Au-Au bond length in the electrode

and the Au-S bond length between the electrode or cluster and the linker S atom

were fixed at 2.57 and 2.35 Å, respectively, a value corresponding to the bond length

in the isolated Au-Au or Au-S dimer.

The cage-like Au32 and hexagonal Au6 clusters were both optimized until the residual

forces were less than 0.01 eV Å -1. These clusters were then frozen and attached to the

electrodes without further optimization. The distance of closest approach between
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Figure 4.2: Tunneling between clusters was investigated using three differ-
ent models for clusters of various sizes. The largest clusters we used were
spherical cage-like clusters of 32 gold atoms. Our middle size clusters con-
sist of a ring of 6 gold atoms. The smallest possible cluster was modeled
with a single gold atom. In each case, the clusters were connected to a gold
electrode via a sulfur linker atom. Each of these clusters are shown with
a distance of closest approach of 6 Å, which results in a tunneling barrier
approximately 3.5 Å wide.

the clusters was systematically varied from 1.5 to 6 Å for the larger Au32 clusters, and

from 2 to 9 Å the smaller Au6 and single atom clusters. Figure 4.2 shows the three

systems with a distance of 6 Å between them, which results in a tunneling barrier

with a width of approximately 3.5 Å.

4.4.3 Results

In order to compare the cluster results to the simple analytic results, it would be

useful to know the height and width of the tunneling barrier between the clusters.
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Figure 4.3: The profile of the tunneling barrier is shown for larger Au32
cluster (purple) and the minimal single-atom ‘cluster’ (green) for two dif-
ferent separation distances. 6 Å separation (solid lines) means the closest
atoms are at ±3 Å, while 4 Å separation (dashed lines) means the closest
atoms are at ±2 Å.

Figure 4.3 shows the calculated profile of the tunneling barrier for the Au32 cluster

and the single-atom systems. The solid lines show the profile for the barrier for a

cluster separation of 6 Å, which means the closest atoms are at ±3 Å. We find the

barrier to be approximately 3.4 Å wide and 5.0 eV high for the Au32 cluster, and 3.0

Å wide and 4.5 eV high for the single-atom system. Reducing the separation by 2.0 Å

(dashed lines) reduces the width of the barrier by 2.0 Å, as expected, but also reduces

the barrier height, with the single-atom system more dramatically affected than the

Au32 system. From this we find we can relate separation distances to barrier width

by subtracting 2.6 (3.0) Å from the separation distance for the Au32 (single-atom)

system.
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Figure 4.4: Conductance is calculated as a function of junction width for
four different systems. The analytic 1D barrier (dashed line) shows a simple
exponential decay with junction width. The Au32 clusters (green) show
a very similar exponential decay. The single-atom system (purple) does
not show the same exponential decay, even for moderately large junction
widths. Finally the Au6 clusters (blue) show a surprising discontinuity in
the conductance data.

Figure 4.4 shows the calculated conductance for each of the cluster systems as a

function of barrier width. For comparison, the analytic solution is also shown for

a one-dimensional barrier with 5 eV workfunction and an area of 4π Å2 (red line).

Few data points were calculated for the Au32 system due to the computational cost

for this larger system, but from the data we do have we can see the tunneling con-

ductance follows a similar exponential decrease with barrier width as the 1D system

shows. The hexagonal clusters show a discontinuous behavior that we will explain

in the next section. In the mean time, we will note that for larger barrier widths

the hexagonal system shows a very clean exponential decay matching the behavior

of the 1D system, albeit with a higher conductance that would correspond to a 1D
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system with a significantly greater area. With the single-atom system we finally get

to a system too small to exhibit similar behavior to the 1D case, as the conductance

decreases at a rate that would correspond to a 1D system with a very low tunneling

barrier height (workfunction).

4.4.4 The Hexagon Cluster Mystery

We initially expected the discontinuity in the hexagonal system data to be indicative

of an error, and were pleased to discover instead an interesting bit of physics.

We began our inspection by looking at the self consistent field (SCF) energy of the

system as a function of separation distance (panel (a) in figure 4.5). At 4.7 Å we

found a discontinuity in the slope. Starting from 4.6 Å, we increased the separation

distance and recalculated the electronic structure using the electron densities from

the previous calculation as a starting guess. By this method, we were able to map out

a series of states (labeled “State 1”) for separation distances greater than 4.7 Å that

are not the ground state, but rather local minima with the same symmetries as the

bonded (<4.7 Å) system. Similarly, we were able to find solutions below 4.7 Å that

were similar to the ground state for the distant systems (“State 2”). Interestingly,

below 3.4 Å, calculations starting from state 2 find a lower energy state, which is also

not the ground state. Panel (a) in figure 4.5 shows the energy of the states we found

for separation distances ranging from 2.2 to 9 Å.

In panel (b) of figure 4.5, we have calculated the tunneling conductance for each

of the states found in panel (a). There is a clear difference in the behavior of the

conductance depending upon the electronic state, with the bonded state maintaining a

high conductance for large separations, while the non-bonded state has an exponential
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Figure 4.5: The hexagonal system can be coerced into different local min-
ima electronic states. The ‘bonded’ state (blue), which is the ground state
when the separation distance is minimal (upper panel), shows a tunneling
conductance that doesn’t decay with distance in the expected manner (lower
panel). The ‘non-bonded’ state (fuchsia), which is the ground state at larger
separations, does show a simple exponential decay of conductance with in-
creasing separation distance as expected from simple models. A third state
(green) has conductance characteristics similar to the non-bonded state, but
has a lower energy at small separation distances.
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Figure 4.6: Conductance is calculated as a function of distance for each
of the investigated systems. The large Au32 cluster (green) and the ‘non-
bonded’ electronic state of the Au6 cluster (fuchsia) show an exponential
decrease in the tunneling conductance similar to the 1D tunneling barrier
model with a 5 eV workfunction (black dotted). Meanwhile, the ‘bonded’
state of the Au6 cluster (blue) and the single-atom system (purple) both
show anomalously large conductance values at larger distances.

decrease in the conductance similar to the 1D system.

Figure 4.6 shows the conductance for each system. Here we can see that the single-

atom system behaves very much like the bonded hexagonal system, while the Au32

system behaves like the non-bonded hexagonal system, which also behaves like the

1D system. This result seems reasonable in that the Au32 clusters are not bonded

and likewise the 1D analytic result assumes there is not bonding across the gap.

72



4.5 Conclusion

In this chapter we demonstrated the importance of tunneling resistances to the behav-

ior of Coulomb blockade devices of the QDs-BNNT type. We described the analytic

model for tunneling through a thin film in order to illustrate the classic exponential

dependence on barrier width. We provided a preliminary look at using a Green’s

function and density functional theory approach to calculate tunneling conductances

of junctions between gold nanoparticles, and found a similar exponential decay with

distance for the larger particles we simulated.
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Chapter 5

Simulation of Scanning Tunneling

Microscopy and Spectroscopy

5.1 Introduction

Since the development of the scanning tunneling microscope (STM) in 1981 [21], many

approaches have been developed to simulate STM measurements. Most begin with

calculating the local electronic density of states (LDOS) for the sample surface, often

within the density functional theory (DFT) framework [67], but with the notable

exception of the superposition of atomic charge-density method [68, 69]. In this

section we briefly overview current methods for calculating STM properties, from

simplistic to sophisticated, and conclude with a description of SLSTM.
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5.1.1 Methods for computational STM

The simplest method for simulating STM constant-current images is the atomic

charge-density superposition method [68, 69]. This method has a surprising ability to

generate quantitatively reasonable STM images for certain systems as demonstrated

by Tromp et al. [69], and is able to handle very large systems due to its mathemat-

ical simplicity. A significatn disadvantage of this method is that it fails to provide

information about the electronic contribution to the STM images.

One of the earliest, and still one of the most popular methods is the so-called Tersoff-

Hamann method, first used in 1983 to investigate the corrugation height of constant-

current-mode STM micrographs [70]. In this method the electronic structure of the

probe tip is ignored and the tunneling current is taken to be proportional to the

local density of states of the sample at the position where the probe tip would be.

A distinction should be noted between the theory of STM operation as described in

Tersoff and Hamann’s seminal paper [70] and the much simplified “no-tip-needed”

approximation used in that same paper. Advantages of this method include not

needing an accurate model of the tip due to the tip-independence, and the ease of

calculating constant-current and constant-height images once the local density of

states is known. Disadvantages include the lack of inclusion of the effects of the tip,

and implementation-specific disadvantages include the need for a larger basis set or

higher energy cutoff and better convergence than in typical DFT calculations in order

to accurately describe the local density of states (LDOS) in the vacuum. That is to

say, calculations that provide suitably accurate results for the DOS in the bulk and at

the surface will not necessarily provide accurate results for the LDOS in the vacuum,

which in turn will not provide accurate STM results. Furthermore, we know of no

implementations of the Tersoff-Hamann method that allow for calculating voltage-

bias-dependent properties such as current imaging tunneling spectroscopy (CITS) or
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scanning tunneling spectroscopy (STS). A method for calculating STS data based

on the theory of Tersoff and Hamann [70] was developed by Lang [71]. This is a

fast method for calculating voltage-bias-dependent information for a tip at a fixed

position but it has not previously been extended to the calculation of STM images.

A more sophisticated version of the Tersoff-Hamann method starts at the same level

of theory as outlined in Tersoff and Hamman’s seminal paper [70] but does not discard

the effect of the tip. An example is Paz and colleagues’ STM simulator implemented

in the SIESTA code [72]. In this work they also addressed the difficulty of obtaining

accurate results in the vacuum by taking the LDOS near the surface, which SIESTA

easily calculates accurately, and projects these values out into the vacuum using a

Green’s function method. Advantages of this method include the ability to calculate

tip-dependent and bias-dependent properties. A significaant disadvantage is limited

public availability of software implementing such methods.

The state of the art method for STM/STS image simulation is quantum-transport-

based calculations such as the elastic scattering quantum chemistry method [73]. This

is the first of the methods described that allows the presence of the tip and the applied

bias to affect the electronic structure of the sample. This is the most accurate way

to calculate STM properties. Even nuanced effects influenced by directional bonding

can be investigated. However, this method requires calculating a self-consistent field

(SCF) solution for every combination of tip position and applied voltage. The dis-

advantages include the dramatically increased computational resources required for

such approaches and again a lack a of publicly available software implementing the

method.

We introduce a new method that combines the geometry of the atomic charge-density-

superposition method with the scanning tunneling spectroscopy approach of Lang [71]

for a result that is similar in concept to the approach of Paz [72]. This allows for fast
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calculations of STM/STS properties that are not available through the superposition-

of-atomic-charge method, the Lang method, or the Tersoff-Hamann method, including

current-imaging-tunneling spectroscopy (CITS) images. As with the Paz method,

we make use of the LDOS near the surface, avoiding the Tersoff-Hamann method’s

need for large vacuum regions, increased basis sets, and tighter convergence. This

introduces a disadvantage relative to the quantum-transport-based methods in that

the calculation of the LDOS in the vacuum is not exact, and the method for calculating

the vacuum LDOS from the surface LDOS is less rigorous than in the method of

Paz et al.

5.2 Method

In this section we describe the mathematical background, approximations, and

method implemented in SLSTM. We begin by describing the theories that provide

the foundation for the method.

5.2.1 The STM Theory of Tersoff and Hamann

One of the most useful and influential formulations of the theoretical tunneling cur-

rent was first described by Tersoff and Hamann in 1983 [70]. Here the Bardeen

expression for tunneling between two surfaces [74] is evaluated for the case where the

wavefunction associated with one of the surfaces (the tip) has a spherically symmet-

ric, or s-type characteristic. This allows for the surface integral to be evaluated and

the result is an expression for the tunneling current as a convolution of the electronic

density of states of the tip, ρt(E), and the density of states of the sample at the
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position of the tip, ρs(�rt, E):

I(�rt, V ) = 2πe

�

∫ EF +eV/2

EF −eV/2
ρt(E − eV/2)ρs(�rt, E + eV/2)dE (5.1)

Here the electronic density of states of the sample at the position of the tip is defined

as

ρs(E,�rt) ≡ ∑
n

|ψn (�rt)|2 δ (E − εn) (5.2)

where εn is the energy of the state ψn.

5.2.2 The STS approximation of Lang

Lang applies the theory of Tersoff and Hamann to a situation where the LDOS is

known at both surfaces (comprised of single atoms) but not in the vacuum [71]. By

allowing the wavefunctions to decay with a simple WKB form [75], Lang estimates

the LDOS in the vacuum, ρ (�r, E), in terms of the LDOS at the surface atom, ρ (E),

as

ρ (�r, E) ≈ ρ (E) exp
{

−2 |�r − �r0|
√

2m/�2 (EF + φ − E)
}

(5.3)

Here �r is some position in the vacuum, �r0 is the position of the surface atom, |�r − �r0|
is the distance into the vacuum (i.e. the width of the tunneling barrier), m is the

mass of the electron, and φ is the work function.

He et al. extends this method to include spin and non-zero temperature [76], resulting

in an expression for the spin-polarized current,

I↑(↓)(�rt, V ) = 2πe

�

∫ +∞

−∞
ρ

↑(↓)
t (E − eV/2) ρ↑(↓)

s (�r, E + eV/2) F (E) dE (5.4)

where ρ↑(↓)
s (�r, E) is the spin-up (spin-down) LDOS as described by eq. 5.3, and F (E)
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is a product of Fermi functions,

F (E) ≡ f(E − eV/2) (1 − f(E + eV/2) ) −
(1 − f(E − eV/2) ) f(E + eV/2)

(5.5)

5.2.3 Superposition of atomic charge-density

The method of the superposition of atomic charge-densities [77] was successfully used

to confirm the structure of the reconstructed Si(111)-(7×7) surface in 1986 [69]. This

method approximates the LDOS in the vacuum as a sum of spherically symmetric

atomic charge-densities,

ρ (�r) ≈ ∑
i

φ (|�r − �ri|) , (5.6)

where �ri is the position of atom i and φ (r) is an analytic approximation for the charge

density far from the nucleus of an isolated atom. The calculation of constant-current

images proceeds in the same manner as the Tersoff-Hamann method, by calculating

isosurfaces of constant LDOS.

5.2.4 SLSTM

We introduce a newly developed method which we have implemented in a Fortran

package we call the Simple Lang STM Simulator, or SLSTM. In our method we

calculate the LDOS in the vacuum in a manner analogous to the superposition of

atomic charge-density method; however, in place of charge density φ(r), we instead
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use Lang’s expression for LDOS in the vacuum (eq. 5.3), resulting in

ρs (�r; E) ≈ ∑
i

ρi (E) exp
{

−2 |�r − �ri|
√

2m/�2 (EF + φ − E)
}

(5.7)

This expression for the sample LDOS is then used in the tunneling current equation of

He et al., eq. 5.4, to calculate the tunneling current for a tip at an arbitrary position

in the vacuum and at an arbitrary bias, I (�r; V ). Once we know this, it is a simple

matter to calculate our quantities of interest as they are simple functions of I (�r; V ).

5.3 Application to Si(111)-(7×7)

Confirming the geometry of the reconstructed Si(111)-(7×7) surface is a classic tri-

umph of the scanning tunneling microscope [78]. Here we use SLSTM on a simple

model of the Si(111)-(7×7) reconstructed surface and make comparisons to previous

computational and experimental results.

5.3.1 Model

The surface of our system consists of the reconstructed bilayer with twelve adatoms

as described by the dimer-adatom-stacking fault model [79] (figure 5.1, from [80]),

with periodic boundary conditions. The substrate is represented by a single unrecon-

structed bilayer, fully passivated below with hydrogen. The hydrogen atoms and the

bottom half of this bilayer were fixed while the rest of the system was optimized.

The optimization and electronic structure calculations were performed in the frame-

work of density functional theory using the VASP [81–83] code with PAW potentials
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Rest
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Figure 5.1: The Dimer-Adatom-Stacking Fault model of the Si(111)-(7×7)
reconstructed surface was first proposed by Takayanagi [79]. In both the
top-down view (top panel) and the cross section side view (bottom panel),
the blue colors indicate atoms that are closer to the viewer, while red indi-
cates atoms that are further away. The unit cell is indicated by the dashed
parallelogram. The line scans run from one ‘corner atom’ to another along
the long diagonal, indicated by horizontal dashed line, which is the same
path as the cross section. Here faulted half is shown on the right, and the
unfaulted half is on the left.
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[84] and PBE functional [85]. The ground structure was obtained by relaxing the

structure until forces were less than 0.03 eV/Å.

Two different models were used for the tip. One tip was modeled with a 25-atom Si

cluster cut from bulk, with all except the apex atom passivated with hydrogen, and

with the apex atom relaxed. Another tip consisted of a pyramid of 11 W atoms cut

from bulk with no optimization. It is commonly seen in experiments that intentionally

crashing a clean metal tip into the silicon surface improves the resolution of constant

current images, and so the Si-tip model is intended to mimic a contaminated tip while

the W tip is intended to model a pristine tip.

5.3.2 Results

We calculated constant current (CCI) images and current imaging tunneling spec-

troscopy (CITS) images using SLSTM. Figure 5.2 shows a comparison between CCI

images at positive and negative bias a,d) from experiment [72], b,e) from previous

calculations [72], c,f) from SLSTM, and g) a scanning force microscopy (SFM) image

from experiment [87].

Figure 5.3 shows CITS images at negative voltages a) from experiment [72], b) from

previous calculations [72], and c) from SLSTM.

From the CCI images we calculated line scans across the long diagonal of the unit cell,

which corresponds to the cross section in figure 5.1 (lower panel). This gives us surface

height as a function of distance, and allows us to perform quantitative comparisons

between our simulations and experimental results published by five different research

groups.
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SLSTM Experiment [72, 86] Paz et. al. [72]
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Figure 5.2: Constant current images for the Si(111)-7x7 surface (first two
rows). Results from SLSTM (first column) are compared to experiment
[72, 86] (middle column) and previous calculations [72] (last column). Set
current is 0.2 nA. Sample bias is positive for the top row (+1.5, +1.5, and
+1.4 V), probing the unoccupied states, and negative for the middle row
(-1.3, -1.5, and -1.5 V), probing the occupied states. The topography of
the surface without electronic effects can be seen with (g) scanning force
microscopy [87]. The atomic positions underlying the simulations is shown
in (h), where the Si atoms are colored according to z-height, ranging from
blue (lowest) to red (highest). For clarity, the model is shown in (i) without
the substrate.

In the simulation results, the center of the line scan data (x = 0) is midway between

the central adatoms, and corresponds closely to a local minimum of the line scan

height. For each experimental data set the precise locations of the atoms in not known,
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SLSTM Experiment [72, 86] Paz et. al. [72]
(a) (b) (c)

Figure 5.3: Current imaging tunneling spectroscopy (CITS) images for
the Si(111)-(7×7) surface based on the constant current topology at +1.75
V bias and 2.0 nA set current. CITS bias is -0.65, -0.85, and -0.64 V for
SLSTM, experiment [72, 86], and previous calculations [72], respectively.

so x = 0 is set at the center of the central minimum. From the simulation data, we see

that this approximation can be expected to introduce a misalignment of up to -0.3 to

+0.1 Å, depending on the bias voltage. However, the differences between the location

of the geometric center and the central minimum are a results of asymmetry between

the central adatoms, and for each of these data sets this asymmetry is minimal. Each

data set is then truncated to the range -18.4 to +18.4 Å. The unfaulted half of the

unit cell is in the y < 0 side and the faulted half is on the y > 0 side. Since the

absolute heights of the line scans are not known for the experimental data sets, y = 0

is also set at the bottom of the central minimum. Before comparing two line scans,

the data are aligned by adding a vertical offset, chosen through least-squares fitting.

In the superposition method as implemented by Tromp [69], there is no electronic

contribution to the line scan shape, and the shape is determined entirely by the

geometry of the system. Tromp found excellent agreement between the superposition

method line scans and experimental data taken at +2.0 V, so we use Tromp’s +2.0 V

experimental data as a proxy for what the height profile would be based solely on

geometry. Figure 5.4 shows the root-mean-square-deviation between Tromp’s data

and simulations performed over a wide range of voltages and set currents, using the

Si tip.
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Figure 5.4: The experimental linescan measured by Tromp et al. at +2
V are used as an approximation to the linescan that would be produced
based solely on the geometry of the system. We calculated linescans using
SLSTM over a range of voltages and set currents, and determined how much
the calculated linescans deviate from a linescan determined solely by the
geometry, using a measure of the badness of the fit between the two lines.
In this figure, each point represents a single calculated linescan. The x-axis
shows the bias voltage used in the calculation, and the color indicates the
set current. The badness of fit is plotted on the y-axis, with values less
than ∼0.007 Å representing particularly good fits, and values over ∼0.01 Å
representing rather poor fits.

To complement figure 5.4, figure 5.5 shows simulated line scans at voltages +1.5,

+0.5, -1.0, and -1.6 V, and at a set current of 1.6 nA. The offset for each line scan is

chosen by fitting to the experimental data (dashed line).

Figure 5.6 shows the projected density of states for the two distinct adatoms (at -18 Å

and at -3 Å) and the rest atom (at -13 Å) in the unfaulted half of the unit cell, as

well as the density of states for the Si and the W tips.
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Figure 5.5: Line scans across the long diagonal at positive voltages (purple
and green lines) show quantitative agreement with experiment [69] (dashed
line). For negative voltages the rest atom (located at ±13 Å) contributes
more than the adatoms, creating a pattern distinct from the positive voltage
results as exemplified at -1.0 V (blue line). Surprisingly, good agreement
can also be found over a very narrow range of negative voltages (pink line).

5.3.3 Discussion

From figure 5.2 we can see that at +1.5 V SLSTM produces CCI images that are

in agreement with experiment and previous calculations. Interestingly, even closer

agreement is seen between the SLSTM CCI image and the experimental SFM image.

This suggests that at this voltage SLSTM produces an image that is dominated by

the geometry of the system. This idea is corroborated by the results of figure 5.4,

where we can see that at +1.5 V and 0.2 nA the fit between the SLSTM results and

the geometric linescan is about 0.007 Å, which is a moderately good fit.
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Figure 5.6: Atom-projected density of states for the Si(111)-(7×7) recon-
structed surface are shown for the two unique adatoms and one unique rest
atom in the unfaulted half of the unit cell. The adatoms are very similar to
each other and quite distinct from the rest atom. Also shown is the total
DOS for the Si tip and the W tip.

For a range of negative voltages the rest atoms (see fig. 5.1) are visible and even appear

to be as tall as the adatoms, clearly differentiating the image from the geometric

image. This can be explained by looking at the projected density of states (PDOS) in

figure 5.6, where it can be seen that for a range of energies from about -1.0 to about

-0.3 eV the DOS is dominated by the rest atoms.

A subtle but notable feature that this simulation fails to reproduce is the difference in

apparent height between the faulted and unfaulted regions. The PDOS at the surface

of our model is essentially the same in the faulted as in the unfaulted regions, so our

method and the method of Paz et al. would both be expected to fail to reproduce this
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difference in height given our model as input. From this we conclude this difference

can be attributed to the slight differences in the input models.

In figure 5.3 we see qualitative agreement between both computational methods and

the experimental CITS image. The dominant feature is the trio of triangular bright

spots above the rest atoms, with a difference in brightness between the faulted and

unfaulted regions. This is reproduced in both simulations, but our simulation seems

again to understate the faulted/unfaulted difference. Neither simulation seems to

adequately describe the hole region.

In figure 5.4 we see that for positive voltages probing unoccupied states and moderate

set currents the linescans produced by SLSTM follow very closely the geometry of the

system, with little apparent influence from the electronic structure of the surface. In

contrast we see that over a range of approximately -0.3 V to -1.4 V and for voltages

less than about -1.8 V the linescans differ strongly from that expected purely due to

geometry. It is over this range that the rest atoms become visible and the standard

12-atom image gives way to the 18-atom image. We can see this in the linescans in

figure 5.5, where we have selected voltages that correspond to interesting features in

figure 5.4. At positive voltages and at -1.6 V, we see the linescans follow closely the

geometry. However at -1.0 V we see strong disagreement, as the rest atom dominates

the linescan.

This result can be explained by comparing the projected density of states (PDOS) of

the surface atoms and the density of states (DOS) of the tip (figure 5.6). For positive

voltages, electrons in the occupied states in the tip tunnel to the unoccupied states in

the surface, and these unoccupied states are primarily associated with the adatoms.

Since the adatoms are the ‘tallest’ surface atoms, an image that is dominated by

the adatoms will be similar to the geometrical image. For negative voltages, it is

the occupied surface states that are involved in conduction, and for a narrow energy
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range these states are overwhelmingly associated with the rest atoms. This allows

the rest atoms to appear taller than the adatoms, as seen in figure 5.5. Interestingly,

at a bias of -1.6 V the PDOS peak associated with the rest atoms (at -0.5 eV) lines

up with a gap in the DOS of the tip (at +1.1 eV), severely reducing the rest atom

contribution and restoring the “geometric” image.

5.4 Application to (PbS)32

We recently investigated the electron transport properties of the (PbS)32 “baby crys-

tal” quantum dot on a gold substrate using the SLSTM method and code (Electron

tunneling characteristics of a cubic quantum dot, (PbS)32. Sanjeev K.

Gupta, Haiying He, Douglas Banyai, Anil K. Kandalam, and Ravindra

Pandey. The Journal of Chemical Physics, 2013.) [4]. We found that despite the

significant band gap (∼2 eV) of the isolated quantum dot, the interaction between

the dot and substrate creates states near the Fermi level that facilitate a measurable

tunneling current. This effect is found to be sensitive to the substrate, in that differ-

ences are found between (PbS)32 quantum dots on Au(110) versus Au(001) surfaces.

This section contains a summary of the above referenced work, with some details

relegated to the associated journal article.

5.4.1 Introduction

Lead-chalcogenide semiconductors are actively being explored for a variety of applica-

tions. For example, PbS nanowires were recently used to build field-effect transistors

[88]. PbS semiconducting quantum dots hold promise for applications in photovoltaics

and infrared sensors (e.g. [89]), as demonstrated in a recent study that explored the
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Figure 5.7: The (PbS)32 “baby crystal” is shown on a Au surface. The
transfer of charge between the substrate and the QD is illustrated with
isosurfaces of charge density difference. Blue indicates regions of electron
accumulation, and red are regions of electron depletion.
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performance of PbS quantum dot photovoltaics as a function of electronic band gap

via controlling the size of the quantum dots [90].

PbS forms crystalline quantum dots as small as (PbS)32, which due to its bulk-

like crystal structure is sometimes called a “baby crystal” [91]. Many studies have

looked at small PbS quantum dots in the range of 2-10 nm, but to date, few studies

have looked at the electronic transport properties of ultrasmall (<1 nm) quantum

dots. However, in recent experiments such quantum dots were synthesized and then

imaged under a scanning tunneling microscope (STM) [91]. In this work we calculated

electronic transport properties of (PbS)32 quantum dots on both Au(110) and Au(001)

surfaces in an STM-like configuration (figure 5.7).

5.4.2 Model

The ground state geometry of the cubic, 64-atom (PbS)32 quantum dot (QD) was

calculated at the PW91-DFT level of theory [92] using the Vienna ab initio Simulation

Package (VASP) [81–83]. The Au(001) surface was represented by a slab with four

layers and 32 atoms per layer, resulting in a 16.7 Å × 16.7 Å unit cell with periodic

boundary conditions. The Au(110) surface was represented by a slab with five layers

and 24 atoms per layer, resulting in a 16.7 Å × 17.7 Å unit cell. A separation of 2.8 Å

was placed between the substrate and the (PbS)32 QD. This distance was found to be

the equilibrium distance by calculating the total energy of the system as a function

of separation distance. 15 Å of vacuum was added in the z-direction to isolate the

slab and quantum dot from their periodic images. The (PbS)32 quantum dot is about

9 Å wide, leaving a minimum separation of about 8 Å between images in the lateral

directions.
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Figure 5.8: (a) The (PbS)32 quantum dot shows distinctly different current-
voltage characteristics when on an Au(001) surface (dashed green line) versus
an Au(110) surface (dotted blue line). (b) The differential conductance graph
shows a significant negative differential resistance (NDR) effect, which is
strongly dependent upon the Au13 tip we chose.

The cap of the STM tip is represented by an Au13 cluster, which is roughly spherical.

For some comparisons, a larger Au43 cluster is used, which was cut from bulk and

optimized, leaving it also roughly spherical and with an FCC-like structure. The

current-voltage measurements are calculated with the tip at a distance of 5 Å above

the (PbS)32 QD. A positive bias voltage indicates the substrate is at a positive bias

relative to the tip. More specifically, for a bias of V , the substrate is biased to +1
2V ,

and the tip is biased to −1
2V .

5.4.3 Results and Discussion

In panel (a) of figure 5.8, we show currents calculated as a function of bias voltage

over the range ±0.5 V. For both systems, the I-V curves are significantly non-ohmic.
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Figure 5.9: The atom projected density of states (PDOS) are calculated for
for (a) (PbS)32/Au(001) and (b) (PbS)32/Au(110). The PDOS associated
with Pb is indicated with a dashed green line, and that associated with S
is indicated with a dotted blue line. The total density of states (DOS) is
shown for the (c) Au13 and (d) Au43 tips.

This is highlighted in the differential conductance curves in panel (b), where it can

be seen that the Au(001) system exhibits negative differential resistance (NDR) of a

significant magnitude.

To understand this result, consider the density of states (DOS) for the system and

the tip. In figure 5.9 we show the DOS associated with the Pb and S atoms in

the Au(001) system along with the total DOS of the tip. Figure 5.10 illustrates the
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overlap between the filled states in the sample and the available states in the tip as

the bias voltage is increased. When the bias is zero, there are no available states in

the tip to accommodate the filled states in the sample and so there is no current.

When the substrate is biased at -0.3 V, there are now filled states in the sample

that are available for tunneling over to the available states in the tip, indicated with

crosshatching. An interesting thing happens when we increase the magnitude of the

bias from -0.3 V to -0.5 V. Now there are a small number of additional electrons in

states deep in the conduction band of the sample that are able to tunnel to the tip,

but meanwhile there is a larger number of electrons in states near the Fermi level

which now lack corresponding available states in the tip to tunnel to. The net result

is that as the bias is increased from -0.3 V to -0.5 V, the total tunneling current

decreases, giving rise to negative differential resistance.

Note that this effect is dependent both upon having a minimum of the DOS offset

from the Fermi level, and upon the existence of a strongly peaked DOS for the tip.

Comparing panels (c) and (d) of figure 5.9, we can see that the Au43 tip does not

exhibit such prominent peaks, and thus would not be expected to create a significant

NDR. Indeed, in figure 5.11 we can see that the Au43 tip produces only a nominal

NDR for the (PbS)32/Au(001) system. From this we can conclude that the NDR

found here is not a general property of the systems we are studying, but rather a very

particular result of the interaction between the system and the model we chose to

represent the tip. This highlights not only the importance of including the tip when

modeling STS properties, but also the possible failings that can occur if the model

tip is not representative of the actual tip.
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Figure 5.10: The density of states (DOS) of (PbS)32 and the Au13 tip
are compared as a bias voltage is applied in order to describe the origin of
the negative differential resistance (NDR) effect. The (PbS)32 total DOS is
plotted in purple on the positive y-axis, and the tip DOS is plotted in green
on the negative y-axis. The filled regions represent states that are full at zero
temperature, and the unfilled regions indicate states that are open. At zero
bias (top panel), none of the electrons in the tip or sample see open states
to tunnel to, and thus there can be no current. At VBias=-0.3 V (middle
panel), electrons in the sample with a range of energies (cross-hatched) can
tunnel to the tip. However, as the bias is increased to -0.5 V (bottom panel),
electrons near the Fermi level no longer have a place to go, and there is a
net decrease in the number of electrons that have states to tunnel to, despite
the increase in energy range.
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Figure 5.11: Differential conductance characteristics of (PbS)32/Au(001)
are calculated using two alternate tips. In addition to the Au13 tip (purple),
a larger Au43 tip (green) is used. For comparison, results are presented
for a tip (blue) that has a constant DOS, equal to the value of Au43 tip
DOS at E=EF . The strongly peaked Au13 DOS interacts with the (PbS)32
DOS to create a region of NDR. The much smoother Au43 DOS allows only
minimal NDR, and the flat DOS of the constant DOS tip creates a strictly
non-negative conductance curve.

5.4.4 Conclusion

In spite of the significant band gap of the isolated (PbS)32 quantum dot, we find signif-

icant tunneling currents at relatively low bias. This is attributed to the hybridization

of states at the interface between the QD and the underlying surface. The interaction

between the QD and the Au(110) and Au(001) substrates are different enough to

allow for differentiation based on the differential conductance.
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5.5 Application to Si-doped BN Monolayer

This section provides a summary of work we recently published in Nanoscale (Effect

of Si doping on the electronic properties of BN monolayer. Sanjeev K.

Gupta, Haiying He, Douglas Banyai, Mingsu Si, Ravindra Pandey, and

Shashi P. Karna. Nanoscale, 2014.) [5]. Greater detail is provided in the reference

and associated supplementary information.

5.5.1 Introduction

Much recent work has been done to explore two-dimensional materials for possible

use in digital electronics [93], with hexagonal boron nitride monolayers one of the ma-

terials of most interest [94], next to graphene. Special attention is given to materials

and devices that may be integrated with existing Si-based semiconductor fabrication.

Therefore we found it interesting to explore the role of substitutional doping of Si

atoms in BN monolayers. We find that substitutional doping with Si atoms modifies

the band structure and thus the electronic properties of the BN monolayer, and that

there are noticeable differences depending upon the location of the dopant that should

allow for experimental measurements to discriminate between them.
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5.5.2 Model

The density-functional-theory-framework was used to calculate the spin-polarized

electronic structure of hBN monolayer systems. The exchange and correlation func-

tionals were represented in the generalized gradient approximation (GGA) as de-

scribed by Perdew, Burke, and Ernzehof [85]. Calculations were performed with the

projector augmented wave (PAW) method as implemented in the Vienna ab initio

simulation package (VASP) [81–83]. Tunneling properties were calculated with the

SLSTM method and code.

The BN monolayers were placed on the top side of an Au(111) surface at a distance

of 3.0 Å, a value that was found to minimize the total energy in previous calculations

[95, 96]. The lattices were matched by using a (4×6) supercell for the BN monolayers

and a (6×8) supercell for the Au(111) substrate. The substrate was represented by

a slab four layers thick, and 10 Å of vacuum separate the structure from its image in

the z-direction.

Three different doping configurations were used for our calculations (figure 5.12), in

addition to a pristine un-doped configuration. In the SiB configuration, a single Si

atom replaces a single B atom in the BN lattice. The SiN configuration sees a N

atom replaced by a Si atom. In the SiBN configuration, a single Si atom replaces a

neighboring pair of B and N atoms. This results in four-fold bonding between the Si

and the four neighboring B and N atoms, creating a so-called “four-fold configura-

tion,” in comparison to the “three-fold configurations” of SiB and SiN. In the four-fold

configuration, the optimized geometry is planar, while in both of the three-fold con-

figurations the Si atom protrudes from the monolayer as if it were too big for the hole

left behind by the vacant B or N atom.
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Figure 5.12: The structure of the three-fold coordinated SiB (a) and SiN
(b), and the four-fold coordinated SiBN (c) are shown. The top-down views
(right side) show the coordination, while the side views (left side) illustrate
the significant buckling found in the three-fold coordinated cases. From
Gupta, 2014 [5]. Reproduced by permission of The Royal Society of Chem-
istry. See appendix A for documentation of permission to republish this
material.
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Figure 5.13: In the first panel, current is calculated with a Au13 tip at
+5 Å above a B or N atom for the pristine BN monolayer (black or red,
respectively). The next three panels show the current calculated with the
tip +5 Å above the Si dopant in the SiBN, SiB, and SiN systems. The I-V
curve for each is unique, potentially allowing for identification of dopant sites
through the scanning tunneling spectroscopy (STS) method. From Gupta,
2014 [5]. Reproduced by permission of The Royal Society of Chemistry. See
appendix A for documentation of permission to republish this material.

As in the (PbS)32 study above, the tip is modeled with an Au13 cluster.
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5.5.3 Results and Discussion

We start by placing the Au13 STM tip 5 Å away from the pristine hBN monolayer,

directly above either a B or a N atom. Over a range of ±0.5 V, we find currents

on the order of 10−10 A (panel (a) in figure 5.13). A minimal tunneling current is

expected, due to the sizable 4.4 eV band gap of the pristine monolayer.

Next we place the tip above the Si dopant in each of the configurations, keeping a

constant 5 Å between the tip and Si Atom (panels (b)-(d) in figure 5.13). Here we find

currents 1-2 orders of magnitude larger. Of more interest, while the SiBN results is

qualitatively similar to the pristine case, the three-fold configurations both show very

non-ohmic behavior. In particular, the SiB configuration shows a diode-like behavior,

where the current at −0.5 V is six times larger than the current at +0.5 V, while

the SiN configuration shows significant negative differential resistance (NDR) effect

beyond +0.2 V or −0.3 V.

As in the (PbS)32 system above, the NDR effect depends strongly on the model chosen

for the tip, and is not expected to be found if the DOS of the tip is roughly constant

near the Fermi level. Therefore we do not expect the finding of NDR to be a robust

result. However, the DOS for the different doping conditions is significantly different

enough that the differential conductance curve should be a reliable differentiator.

In figure 5.14 we have calculated the differential conductance for the three doped

systems, using a model tip that has a constant density of states. Contrary to the

above prediction, slight NDR is still found in the SiN system. This happens for

two reasons. First, the DOS for SiN quickly goes to zero above the Fermi level,

and so increasing bias does not increase the number of states that can contribute to

conduction. Second, as the bias is increased, the states in SiN near the Fermi level are

aligned with states in the tip deeper below the tip Fermi level, and these states see
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Figure 5.14: Differential conductance is calculated with a tip that has a
constant density of states. SiN (solid purple), SiB (dashed green), and SiBN
(dotted blue) each show unique conductance characteristics.

an increased tunnel barrier height. Still we find the characteristics for each system

are quite distinctive. Therefore scanning tunneling spectroscopy (STS) should be a

reliable method to differentiate the different doping sites, regardless of the details of

the tip.

Finally we calculate constant current STM images at a bias of 100 mV and set current

of 1 nA (figure 5.15). The signal for the SiB case is small, with the apparent height

of the Si atom similar to the actual out-of-plane distance of the Si atom with respect

to the surrounding BN monolayer. From the I-V curves, we saw that the current

above the Si atom in the SiB configuration was of a similar magnitude to the pristine

BN monolayer. These pieces of information are in agreement, and we can conclude

that the observed height of the Si atom in the SiB case is primarily attributed to the

geometry of the SiB system.
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SiN SiB

SiBN SiN

Figure 5.15: Constant current STM micrographs are presented for the SiN,
SiB, and SiBN systems, calculated with a tip bias of 100 mV and set current
of 1 nA. Last panel is a cutaway view, showing the correspondence between
the underlying geometry and the resulting constant-current surface.

For the SiBN system, the apparent height of the Si atom is similar to that of the

SiB case, however the geometry cannot be responsible, because the Si atom is in-

plane with the surrounding B and N atoms. Therefore we can conclude here the

image is entirely determined by the electronic structure of the sample. This is further

supported by the observation that the calculated currents are more than an order

of magnitude greater above the Si atom in the SiBN system than above the pristine

sample.

Lastly, for the SiN system, the apparent height of the Si atom is greatest, at about

3 Å, which is roughly twice the out-of-plane distance of the Si atom with respect to

the surrounding BN monolayer. The currents above the Si atom in the SiN system
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at low bias are more than an order of magnitude greater than the pristine case. This

supports the conclusion that the apparent height of the Si atom in the SiN system

must be attributed to both the geometry and the electronic structure of the sample.

5.5.4 Conclusion

Substitutional doping of BN monolayers with Si atoms is of interest for possible

applications in future electronics. We investigated three dopant sites and demonstrate

methods to distinguish them. We showed that the apparent height of the dopant is

the same for the SiB and SiBN site, but that they are easily distinguished by scanning

tunneling spectroscopy (STS) measurements. The SiN dopant site is most easily

identified due to the very large apparent height and very unique STS spectra.

5.6 Application to MoS2

In recent work (Electronic stability and electron transport properties of

atomic wires anchored on the MoS2 monolayer. Ashok Kumar, Douglas

Banyai, P. K. Ahluwalia, Ravindra Pandey, and Shashi P. Karna. Phys.

Chem. Chem. Phys., 2014.) [6], we predicted the possibility of n-type and p-type

doping of 2D MoS2 through the addition of atomic wires of different composition.

Specifically we looked at Cu, Ag, Au, and Pt nanowires on one side of a 2D MoS2

monolayer. In this section I will summarize some key results we obtained through

the application of the SLSTM method.
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5.6.1 Introduction

Two-dimensional molybdenum disulfide (MoS2) is a fascinating material. It has a

hexagonal structure and, like graphene, can be exfoliated from bulk with the so-called

“Scotch-tape method.” Unlike graphene, 2D MoS2 is a direct-gap semiconductor with

a ∼1.5 eV band gap, making it a material of much interest for possible usage in digital

logic devices.

5.6.2 Model

The MoS2 monolayer was simulated using periodic boundary conditions and a (4×4)

supercell in-plane and with 15 Å separation between layers. Energy calculations were

performed using the SIESTA code within density functional theory (DFT) under the

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)

exchange-correlation functional. The pristine monolayer was fully relaxed until resid-

ual forces were less than 0.01 eVÅ−1. The lattice constant was found to be 3.23 Å.

The lattice constants for the atomic wires were found to be 2.42, 2.65, 2.60, and 2.50

Å for atomic wires of Cu, Ag, Au, and Pt, respectively. This allows for the use of

a (5×1) supercell for the atomic wires, resulting in less than 6% mismatch in the

co-periodic lattices. The MoS2 monolayer with attached Au atomic wire is shown in

figure 5.16, and is representative of the geometry for each of the atomic wire systems.

Electronic transport properties were calculated with the STM probe (tip) 5 Å above

the atomic wire, centered on one of the wire atoms. The tip is represented by a Au43

cluster.
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Figure 5.16: Top- and side-views of the MoS2 monolayer with an attached
Au atomic wire. The extent of the supercell is indicated with dashed lines.
Two repetitions of the supercell in the a and b directions are shown for
clarity. Mo atoms are blue, S atoms are yellow, and Au atoms are orange.
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Figure 5.17: Current is calculated as a function of bias voltage with a tip
5 Å above the pristine MoS2 monolayer or 5 Å above the metal atoms of the
atomic-wire on MoS2 systems. The Au, Cu, and Ag systems show n-type
behavior, with enhanced current for a positively biased sample (negatively
biased tip), while the Pt system shows p-type behavior.

5.6.3 Results and Discussion

Figure 5.17 shows calculated current-voltage measurements in the STM-like configu-

ration for the pristine MoS2 monolayer, and for each monolayer+atomic-wire system.

As expected, the pristine monolayer, with its sizeable band gap, admits a negligible

amount of current relative to the samples with atomic wires attached. Interestingly,

there is a qualitative difference between the results for the Pt system and each of

the other systems. The non-Pt systems, especially the Au system, show enhanced
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current in the positive-bias direction relative to the negative-bias results, similar to

n-type semiconductors. Conversely, the Pt system shows decreased current in the

positive-bias direction relative to the negative-bias results, indicating p-type behav-

ior. Mulliken charge analysis provides some insight into the origin of this results, as

the Pt wire gains roughly 0.25 e/atom from the substrate, while the other atomic

wires give roughly 0.05 e/atom to the substrate.

5.6.4 Conclusion

Two-dimensional MoS2 is a promising semiconducting material with a direct band

gap. We found the MoS2 monolayer can be effectively doped by attaching atomic

wires to the surface of the monolayer. p-type doping was observed with the addition

of a Pt monowire, while Cu, Ag, and Au monowires resulted in n-type doping. This

result, along with the observed excess charges on the surface of the monolayer, lead

us to propose these materials for use in catalysis.
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Chapter 6

Future Work and Open Questions

6.1 Overview

In this thesis we have investigated—and developed new methods for investigating—

certain classes of single electron devices (SEDs). Such devices have the potential for

being the basis of the next generation of digital circuits. In addition to any possible

commercializability of these designs, these devices are useful testbeds for exploring

single-electronics. Fundamental questions remain regarding such devices, and many

avenues remain for furthering this research into the behavior of such devices. They can

be categorized into three categories: investigating and improving the characterization

of the detailed behavior of individual junctions, improving the algorithms and tools

for exploring the collective behavior of many-junction devices, and exploring and

characterizing the behavior of ensembles of devices. The next few sections we will

describe some of these questions and proposed methods to investigate them.

We have also described a new method for investigating scanning tunneling microscopy
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and scanning tunneling spectroscopy (STM/STS), which we call SLSTM. We have

shown this method reproduces some experimental results quite well, including some

that are not well described by similar methods. However there is still further work

to be done to assess the accuracy of the method relative to other state of the art

methods, and to search for systems that demonstrate any limitations of the method.

These ideas will be expanded upon in the last section of this chapter.

6.2 Detailed Behavior of Individual Junctions

Characterizing devices requires understanding the working of the details, which pri-

marily means the changes in energy as described by the capacitances, and the tun-

neling currents as described by the tunnelling resistances.

In this work we improved upon previous modeling efforts by employing state of the

art methods to calculate capacitances in the model systems. These calculations can

be improved in a number of ways. The fidelity of the geometrical description of

the devices can be improved. For example, we modeled all the island electrodes

as perfect spheres embedded in a uniform dielectric, and these geometric models

could be made more detailed. The existence of sharp protuberances or edges would

affect capacitances, and the associated increased electric fields could affect tunneling

probabilities.

More interestingly, we would like to extend these methods for use with systems con-

taining semiconductor islands and electrodes. This raises many questions, including

whether capacitance matrices can fully determine the change in energy when an elec-

tron tunnels between semiconductors, and whether these methods designed for cal-

culating capacitances of perfect conductors can be used for calculating capacitances
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of semiconductors. Additionally, the so-called Orthodox Theory [20] underpinning

our kinetic Monte Carlo solver [3] makes many approximations in the derivation of

the resulting rate equations. The most obviously troublesome is the assumption of a

constant density of states, which has been investigated previously in a limited fashion

[33, 97]. Orthodox theory also assumes the transition matrix can be approximated

by a constant, which is independent of the initial or final states. This may be a rea-

sonable approximation for the states near the Fermi level in a conductor, but should

be revisited for the case of semiconductor quantum dots.

We also investigated the tunneling currents between the islands using density func-

tional theory (DFT) by calculating conductance between nanoscale gold clusters. In

this work we focused on the low-bias conductance, and it would be valuable to in-

vestigate whether the moderate- and high-bias conductance follows the same trends

we found for low-bias. The methods we used are not suitable for high-bias calcula-

tions, and it would be valuable to explore these questions with a more robust tool.

Additionally, these calculations focused on pairs of isolated clusters, which leaves

two prominent lines of investigations. These devices are dense with islands, and so

it would be valuable to perform calculations to investigate the role of neighbor is-

lands. Additionally the islands are attached to or even embedded in a substrate.

This raises a question of whether a nearby insulating substrate can affect the rate at

which electrons tunnel from one island directly to another. Even more interesting,

is the question of whether substrate assisted tunneling occurs, where states associ-

ated with the substrate play an essential role in the tunneling process. An excellent

starting point would be to study two gold nanoclusters adsorbed on a boron nitride

nanotube surface, investigating whether the clusters create states in the band gap of

the nanotube, and if the nanotube modifies the conductance of the junction between

the clusters.
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6.3 Algorithms and Tools for Investigating Device-

level Properties

The most important properties of a SED device are the zero-temperature threshold

voltage Vth, the gate periodicity ΔVg, and the resulting Coulomb diamond (CD)

structure. We currently use the kinetic Monte Carlo (KMC) algorithm to investigate

these properties, which is a powerful technique that allows for simulating the dynamic

evolution of a system. However, the above mentioned properties are not dynamic, and

computational time could be saved by developing algorithms which calculate these

properties without simulating the dynamics of the system. Such a tool would enable

calculating the properties of ensembles of devices.

There are two approaches that appear particularly promising. One would be to use

our existing KMC framework to determine zero-temperature Coulomb diamond by

mapping out the regions in Vsd-Vg space where no steady state current is possible. This

would require developing a method for differentiating a steady-state current from a

transient avalanche of electrons flowing through the system due to a change in applied

bias. Another approach would be to extend the master equation (ME) approach to

systems of more than one island. From preliminary investigations, it appears the ME

approach for a chain of multiple islands would yield a sparse matrix equation that

could be solved numerically. The mathematics would be more complicated than the

single-island ME, but the solution speed would be much faster than KMC.
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6.4 Exploring Ensembles of Devices

Before SEDs are mass produced, we would like to know not just how one device

might behave, but rather we would like to know the distributions of the resulting

device properties. In integrated circuit devices such as MOSFET transistors, small

differences in otherwise identical devices create variations in the behavior of individual

devices. These variations limit the performance and efficiency of the integrated circuit

as a whole by requiring operating the device within the limits of the weakest link.

This problem is expected to be exacerbated with circuits made from SEDs as they are

exquisitely sensitive to the capacitances of the islands, which is affected not only by

the device itself but also by all the other devices and wires nearby. When we consider

devices such as those described in this thesis, created with randomly placed islands,

we can expect much greater variation between individual devices. This raises the

question of whether existing models for creating very large scale integrated circuits

(VLSI) will be able to accommodate such devices, or whether new fault-tolerant-type

models will have to be developed.

We can investigate this by creating ensembles of devices and measuring their prop-

erties. In creating model SEDs, we select some number of islands with radii and

junction widths picked from distributions with a given mean and variance. By cal-

culating the dependence of system properties on the input distributions, we may be

able gain insight into ways to engineer devices to optimize various system properties.
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6.5 Characterizing the Accuracy and Limitations

of SLSTM

In this work we developed a novel algorithm for calculating scanning tunneling mi-

croscopy/spectroscopy (STM/STS) results from projected electronic density of states

(PDOS) data, and implemented the algorithm in a new STM calculation package,

SLSTM. Further work should be done to characterize the performance and limita-

tions of this new algorithm, specifically in comparison to existing methods.

Existing state of the art methods for calculating STM/STS properties include the

Green’s function-based method of Paz et al. [72] and the elastic scattering quan-

tum chemistry method [73]. So far we have only been able to compare SLSTM to

results from these methods as published in the literature. However, these methods

are implemented in quantum chemistry codes such as SIESTA [98, 99] which are able

to export the PDOS data required as input to SLSTM. Calculations of STM/STS

properties should be performed using the method of Paz et al., with the resulting

PDOS saved. Comparisons can then be made between these results and calculations

performed with SLSTM which use the same PDOS as input. This would allow direct

comparisons between the PAZ STM algorithm and the SLSTM algorithm, without

the current confounding factors of not having an identical foundation for the compar-

isons. Additionally, while the Si(111)-(7×7) reconstructed surface is a great test case

with lots of published results to compare to, having the ability to make these direct

comparisons would enable testing a wider variety of systems.
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D. Sánchez-Portal. The SIESTA Method for Ab Initio Order-N Materials Simu-

lation. Journal of Physics: Condensed Matter, 14:2745, 2002.
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