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Abstract

Nitrogen oxides play a crucial role in the budget of tropospheric ozone (O3) and the

formation of the hydroxyl radical. Anthropogenic activities and boreal wildfires are

large sources of emissions in the atmosphere. However, the influence of the transport

of these emissions on nitrogen oxides and O3 levels at hemispheric scales is not well

understood, in particular due to a lack of nitrogen oxides measurements in remote

regions. In order to address these deficiencies, measurements of NO, NO2 and NOy

(total reactive nitrogen oxides) were made in the lower free troposphere (FT) over

the central North Atlantic region (Pico Mountain station, 38◦N 28◦W, 2.3 km asl)

from July 2002 to August 2005.

These measurements reveal a well-defined seasonal cycle of nitrogen oxides (NOx =

NO+NO2 and NOy) in the background central North Atlantic lower FT, with higher

mixing ratios during the summertime. Observed NOx and NOy levels are consistent

with long-range transport of emissions, but with significant removal en-route to the

measurement site. Reactive nitrogen largely exists in the form of PAN and HNO3

(∼80–90% of NOy) all year round. A shift in the composition of NOy from dominance

of PAN to dominance of HNO3 occurs from winter–spring to summer–fall, as a result

of changes in temperature and photochemistry over the region.

Analysis of the long-range transport of boreal wildfire emissions on nitrogen ox-

ides provides evidence of the very large-scale impacts of boreal wildfires on the tropo-

spheric NOx and O3 budgets. Boreal wildfire emissions are responsible for significant

shifts in the nitrogen oxides distributions toward higher levels during the summer,
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with medians of NOy (117–175 pptv) and NOx (9–30 pptv) greater in the presence

of boreal wildfire emissions. Extreme levels of NOx (up to 150 pptv) and NOy (up to

1100 pptv) observed in boreal wildfire plumes suggest that decomposition of PAN to

NOx is a significant source of NOx, and imply that O3 formation occurs during trans-

port. Ozone levels are also significantly enhanced in boreal wildfire plumes. However,

a complex behavior of O3 is observed in the plumes, which varies from significant to

lower O3 production to O3 destruction.

Long-range transport of anthropogenic emissions from North America also has

a significant influence on the regional NOx and O3 budgets. Transport of pollution

from North America causes significant enhancements on nitrogen oxides year-round.

Enhancements of CO, NOy and NOx indicate that, consistent with previous studies,

more than 95% of the NOx emitted over the U.S. is removed before and during export

out of the U.S. boundary layer. However, about 30% of the NOx emissions exported

out of the U.S. boundary layer remain in the airmasses. Since the lifetime of NOx is

shorter than the transport timescale, PAN decomposition and potentially photolysis

of HNO3 provide a supply of NOx over the central North Atlantic lower FT. Observed

∆O3/∆NOy and large NOy levels remaining in the North American plumes suggest

potential O3 formation well downwind from North America.

Finally, a comparison of the nitrogen oxides measurements with results from the

global chemical transport (GCT) model GEOS-Chem identifies differences between

the observations and the model. GEOS-Chem reproduces the seasonal variation of

nitrogen oxides over the central North Atlantic lower FT, but does not capture the

magnitude of the cycles. Improvements in our understanding of nitrogen oxides chem-

istry in the remote FT and emission sources are necessary for the current GCT models

to adequately estimate the impacts of emissions on tropospheric NOx and the result-

ing impacts on the O3 budget.
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All rights reserved.

v



Acknowledgements

I wish to thank everyone who has contributed to this work. First, I would like to thank

Dr. Richard Honrath, my advisor, for all his guidance, his patience and his support

throughout this research. In addition, I would also like to thank the members of

my committee—Drs. Judith Perlinger, Jim Mihelcic and William Cantrell— for their

advice in my PhD proposal and dissertation. Thank you also to my research group

for all their help during my years as a graduate student. In particular, I thank Chris

Owen for providing the FLEXPART simulations used in Chapter 2 and the HYSPLIT

backward trajectories, and for his help in interpreting transport patterns; Dr. Jan

Kleissl for supplying the analysis of upslope flow periods; Kateryna Lapina for letting

me use her FLEXPART Fire-CO tracer simulations and her comments on boreal

wildfire emission factors; and Jessica Strane for her assistance in airflow analyses.

I also appreciate the help of many people involved in the Pico Mountain project.

In particular, Mike Dziobak for helping me run the NOx,y system and survive weather

conditions at the Pico Mountain. I would also like to thank Dr. Paulo Fialho (Azores

University, Portugal) for providing the aerosol black carbon data, Dr. Gabriele Pfister

(National Center for Atmospheric Research) for providing the MOZART simulations,

Dr. Qinbin Li (Jet Propulsion Lab) for supplying the GEOS-Chem simulations and

Dr. Andrea Stohl (Norwegian Institute for Air Research) for providing the FLEX-

PART stratospheric O3 tracer simulations used in Chapter 3. I thank the National

Science Foundation, the National Oceanic and Atmospheric Administration and the

vi



Civil and Environmental Engineering Department at Michigan Tech for financial sup-

port.

Finally, a very special thank you goes to my family, Toni Rubert Godoy and my
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Chapter 1

Introduction

Nitrogen oxides play a central role in the chemistry of the atmosphere since they

critically determine levels of ozone (O3) and acidity [Levy II , 1971; Crutzen, 1979;

Logan, 1983]. Ozone is both an important anthropogenic greenhouse gas [Alley et al.,

2007] and a regulator of the tropospheric oxidation strength, via controlling the con-

centration of tropospheric OH [Logan, 1983]. In addition, by being a strong oxidant,

O3 has negative effects on human health and ecosystems, at concentrations not far

above ambient.

The concentration of NOx (NO+NO2) in the atmosphere depends on the source

strength and the rates of reactions converting NOx to nitric acid (HNO3), peroxyacetyl

nitrate, (PAN, CH3C(O)O2NO2) or other minor compounds and their uptake into

precipitation or deposition at the Earth surface [Logan, 1983], as shown in Figure 1.1.

Collectively, all reactive nitrogen oxides species are denoted as NOy, which is the

sum of NOx and its oxidation products, i.e., NO+NO2+HNO3+PAN+2N2O5+alkyl

nitrates+aerosol NO−
3 +other minor species.

Fossil fuel combustion resulting from anthropogenic activities is the major source

of NOx emissions in the Northern Hemisphere [Alley et al., 2007], with the majority

of these emissions located over industrial regions as shown in Figure 1.2. In recent
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Figure 1.1 Schematic of photochemical cycles among reactive nitrogen species in the troposphere [Carroll
and Thompson, 1995].

years, as a result of increased area burned and fire frequency over the boreal region

[Kasischke and Turetsky , 2006], emissions from the boreal wildfires have resulted in a

significant source of NOx to the atmosphere during the summer season [Goode et al.,

2000; Andreae and Merlet , 2001]. Oxidation of NOx emitted from these sources takes

place on the order of one day within the continental boundary layer (BL). During

the day, oxidation of NO2 to HNO3 by reaction with OH is the principal sink of

tropospheric NOx. At night, reaction of NO2 with O3 followed by heterogeneous

hydrolysis of N2O5 in aerosols is also an important sink [Parrish et al., 1998; Brown

et al., 2006]. HNO3 leaves the atmosphere by dry or wet deposition, constituting a

major component of acid deposition [Logan, 1983].

Reaction of NO2 with peroxyacetyl radical, which is formed by oxidation of ethane,

forms PAN:

CH3C(O)O2 + NO2 ⇀↽ CH3C(O)O2NO2. (1.1)

PAN is a key species in the dispersal of NOx away from the source emissions. The
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Figure 1.2 Mean tropospheric NO2 columns retrieved from the SCIAMACHY satellite instrument for May 2004
to April 2005 [Martin et al., 2006].

lifetime of PAN is strongly temperature dependent (∼30 days at -10◦C and ∼3 days at

2◦C) [Singh, 1987]. In the FT, at lower temperatures and pressures, the equilibrium

of reaction 1.1 is shifted to the right side. In a later stage, when the airmasses subside

or advect to warmer regions, NO2 and peroxyacetyl radical are released. It has also

been suggested that, similar to PAN, the export of HNO3 followed by photolysis to

NOx can be an important source of NOx in the troposphere [Neuman et al., 2006].

Quantifying the sources and fate of nitrogen oxides in the troposphere is critical

for assessing the influence of anthropogenic and boreal wildfire emissions on global

tropospheric O3. Tropospheric O3 is controlled by production and reaction processes

and is principally limited by the presence of NOx. The primary loss mechanism of

O3 is via photolysis and subsequent reaction of O(1D) with H2O, which occurs in

competition with deactivation to O(3P):

O3 + hν −→ O(1D) + O2 (1.2)
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O(1D) + H2O −→ 2OH (1.3)

O(1D)
M−→ O(3P), (1.4)

where M denotes N2 or O2.

The hydroxyl radical (OH) formed in reaction 1.3 oxidizes CO, methane

(CH4), and other hydrocarbons (RH) and thereby produces peroxy radicals

(PO2 = HO2+CH3O2+RO2):

CO + OH
O2−→ CO2 + HO2 (1.5)

CH4 + OH
O2−→ CH3O2 + H2O (1.6)

RH + OH
O2−→ RO2 + H2O. (1.7)

Peroxy radicals are responsible for the photochemical production or destruction of

tropospheric O3, depending critically on the availability of NO [Liu et al., 1992; Cox ,

1999]. In regions, where levels of NOx are higher than 10–50 pptv [Fishman et al.,

1979; Lin et al., 1988], PO2 oxidation of NO results in formation of O3 through:

NO + PO2 −→ NO2 + PO (1.8)

NO2 + hν −→ NO + O (1.9)

O + O2
M−→ O3, (1.10)

where PO is the alkoxy radical or OH. In remote clean regions, where NOx mixing

ratios are lower than 10–50 pptv, the occurrence of reaction 1.8 is reduced, resulting in

reduced O3 formation and an increased rate of O3 destruction through reaction 1.11:

O3 + HO2 −→ OH + 2O2. (1.11)

In addition to reactions 1.2–1.3 and 1.11, O3 is also removed by deposition to the

surface and heterogeneous loss in clouds, and destroyed to a lesser extent via reaction

with OH:

O3 + OH −→ HO2 + 2O2. (1.12)
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The dependence of O3 production of NOx is highly non-linear, i.e., the ozone produc-

tion efficiency per molecule of NOx consumed increases rapidly as NOx concentration

decreases [Liu et al., 1987]. As a result, the in-situ production of O3 in clean remote

regions is more efficient than is production in source regions [Jacob et al., 1993]. Re-

gardless of the NOx level, an increase in NOx may result in increased O3, due to either

a reduction in the O3 loss rate (via reaction 1.11) or an increase in the O3 production

rate (via reaction 1.8).

To quantify the impacts of NOx emissions on tropospheric O3 at hemispheric

scales, it is necessary to quantify both the export of O3 produced in polluted source

regions and the formation of O3 from the export of precursors (e.g., PAN and HNO3,

which may eventually release NOx).

Field measurement campaigns have been conducted in the last two decades to char-

acterize the spatial and temporal distribution of tropospheric NOx and to determine

the resulting effect of NOx emissions on the O3 budget. However, data composites of

results from many of these campaigns show that the spatial and temporal coverage of

remote tropospheric NOx measurements is still quite sparse and reflects a strong sea-

sonal and regional bias [Emmons et al., 1997; Bradshaw et al., 2000; Emmons et al.,

2000; DiNunno et al., 2003].

In addition to measurement campaigns, global chemical transport (GCT) models

have been developed to derive the global impact of anthropogenic and boreal wildfire

emissions on the O3 budget. However, it is difficult to assess the uncertainty of the

resulting estimates, in particular those related to NOx sources and photochemical

processes. The evaluation of GCT models using nitrogen oxides observations in the

FT has been limited by a lack of data in remote regions [e.g. Thakur et al., 1999;

Lawrence and Crutzen, 1999].

Recently, satellite-derived data have been used to derive global and regional NOx

budgets [e.g. Leue et al., 2001; Martin et al., 2004; Jaeglé et al., 2005; Richter et al.,

2005] and detect intercontinental transport of nitrogen oxides plumes from boreal
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wildfires [Spichtinger et al., 2001] and anthropogenic sources [Wenig et al., 2003; Stohl

et al., 2003]. More recently, satellite data have been used to evaluate GCT models

[e.g. Liu et al., 2006; Chandra et al., 2004]. However, the limited measurements of

nitrogen oxides in the remote lower FT make the evaluation of satellite-derived data

difficult [Leue et al., 2001; Martin et al., 2004].

In the central North Atlantic FT, the lack of data is particularly evident. Mea-

surements of O3 and nitrogen oxides at several Canadian marine sites indicated that

O3 levels in the BL are significantly influence by the export of O3 and O3 precursors

during spring to fall [Parrish et al., 1998; Val Mart́ın, 2002]. During the winter, in

the absence of significant photochemistry, O3 is removed by reaction with NO and

NO2 and deposition [Parrish et al., 1998]. These studies suggested that the ultimate

impact of anthropogenic emissions could be even larger as additional in-situ forma-

tion of O3 from these emissions may occur during transit over the ocean. Consistent

with this expectation, measurements further downwind, over the Azores, indicated

significant O3 export in U.S. outflow during spring [Parrish et al., 1998], although

an absence of transport impacts during the summer [Peterson and Honrath, 1999].

However, all these studies were made in the BL and loss of NOy and O3 may have

resulted in an underestimation of the importance of the impact of anthropogenic

emissions [Derwent et al., 1998; Auvray and Bey , 2005].

Aircraft measurements over the western North Atlantic region and GCT model

simulations indicated that the majority of the NOx emitted over the U.S. is removed

before or during the export out of the U.S. BL [e.g. Stohl et al., 2002; Parrish et al.,

2004; Li et al., 2004; Hudman et al., 2007]. The large fraction of NOx emitted that

is removed from the plumes and the large HNO3/NOy ratio observed in these studies

imply that the potential for future O3 production in these plumes in the FT must be

limited. Further, modeling analyses estimated that most of the O3 production from

North America NOx emissions occurs near North America.

Although it is believed that most of the photochemical O3 production takes place
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near North America, observations over the North Atlantic Ocean FT showed that it

also occurs during long-range transport [Reeves et al., 2002; Honrath et al., 2004].

In fact, the magnitude of the O3 enhancements observed in U.S. outflow over the

central North Atlantic lower FT is unusually large, implying that a significant amount

of additional O3 formation occurs during transport over the ocean [Honrath et al.,

2004]. However, the ultimate fate of the nitrogen oxides export and its implication

on the O3 production well downwind is still uncertain due to a lack of nitrogen oxides

measurements over this region.

In addition to anthropogenic emissions, attention has recently been paid to the

effect of boreal wildfire emissions on the hemispheric NOx and O3 budgets. In recent

years, as a result of an increase in dry and warm conditions over the boreal region

[Hassol , 2004], and increase in human-ignited fires [Mollicone et al., 2006], fire activity

has increased [Kasischke and Turetsky , 2006]. In addition, global circulation model

simulations predict a further increase in the near future as a result of climate change

[Stocks et al., 1998]. Boreal wildfire emissions have a large degree of variability, and

are a function of fuel type (e.g., peat fires versus crown fires) and burning conditions

(e.g., smoldering versus flaming) [Goode et al., 2000; Kasischke et al., 2005]. This

behavior causes a large uncertainty and variability in the emissions of NOx.

Boreal wildfires are recognized to be an important source of CO. On a seasonal ba-

sis, total boreal wildfire CO emissions can be at times as large as total anthropogenic

CO emissions in the midlatitude northern hemisphere[Kasischke et al., 2005]. Boreal

wildfires also affect background CO levels in large regions of the northern hemisphere

[Novelli et al., 2003; Honrath et al., 2004]. In addition, prior studies have detected

enhancements of O3 in boreal wildfire plumes [e.g. Lapina et al., 2006; Bertschi and

Jaffe, 2005]. However, the magnitude of the resulting impact of boreal wildfire NOx

emissions on global tropospheric O3 is not yet well characterized. Thus, an under-

standing of the impact of boreal wildfires on tropospheric NOx levels is needed to

further understand the influence of this source on tropospheric O3, both at present
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and in the future.

This discussion demonstrates the importance of understanding the impacts of both

anthropogenic and boreal wildfire NOx emissions on the tropospheric NOx and O3

budgets. However, the current understanding of these budgets is limited by gaps in

our knowledge of nitrogen oxides levels in remote regions. In addition, the paucity of

nitrogen oxides observations inhibits the evaluation of the adequacy of GCT models

and spaced-based observations.

1.1 Research Objectives and Approach

This research was motivated by the current deficiencies in the understanding of the

nitrogen oxides and the resulting influence on the tropospheric O3 budget in the North

Atlantic troposphere. The objectives of this research include to:

1. determine the seasonal variation of NO, NOx and NOy levels in the background

central North Atlantic lower FT;

2. characterize the composition of NOy in the background central North Atlantic

lower FT;

3. assess the influence of transport of anthropogenic emissions from the U.S. on

levels of NOx and NOy in the remote central North Atlantic lower FT;

4. determine the impact of boreal wildfire emissions on levels of NOx and NOy in

the remote North Atlantic lower FT and, the degree to which boreal wildfires

affect the annual distribution of nitrogen oxides; and

5. assess the resulting implications of the North American boreal wildfire and

anthropogenic emissions for the regional and hemispheric O3 budget.

To achieve these goals, measurements of NO, NO2 and NOy were made at the

Pico Mountain station in the central North Atlantic lower free troposphere from July
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2002 to August 2005. The Pico Mountain station is located on the summit caldera

of the Pico Mountain, at 2225 m, in the Azores Islands, Portugal (38◦N, 28◦W). The

Azores Islands are a remote island group located approximately 1500 km from west

of Portugal and 3900 km from the east coast of North America, as shown in Fig-

ure 1.3. The Pico Mountain station station was established during the summer 2001,

beginning with measurements of CO, O3, aerosol black carbon and meteorological pa-

rameters. Measurements of NO, NO2, and NOy began during late summer 2002, and

non-methane hydrocarbons began during spring 2004. Due to the remoteness and

the difficulty of access to the measurement site, an existing high sensitivity NOx,y

system developed at Michigan Tech [Peterson and Honrath, 1999] was modified to

automatically operate at the Pico Mountain station. Figure 1.4 displays two images

of the Pico Mountain station and the NOx,y system, and Table 1.1 summarizes the

measurements and the tools used to address the objectives of this work.

1.2 Dissertation Overview

The following chapters present analyses, results and conclusions of the nitrogen oxides

measurements made at the Pico Mountain station. Chapter 2 covers the seasonal

variation of nitrogen oxides over the central North Atlantic lower FT and impacts of

the transport of pollution on the nitrogen oxides levels, with a focus on eastern North

American pollution. This chapter presents analyses of measurements made from July

2002 to August 2005. Chapter 3 presents the impacts of boreal wildfire emissions

on the nitrogen oxides levels based on analysis of data from summer 2004. The

last chapter summarizes the main results and conclusions. The appendix contains

the documentation of the nitrogen oxides data reduction and information on the

performance of the system.
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Figure 1.3 Location of the Pico Mountain station.
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Figure 1.4 NOx,y system at the Pico Mountain station: a) Components outside the station: 1.Calibration
and reagent gases, 2.NOx inlet (to sample NO or NO2) and NOy inlet, and NOy converter 3.NO2 converter,
and 4.NO2 lamp power supply ; b) Components inside the station: 1.Ozone generator, 2.Computer keyboard,
3.Analog and Digital Input/Output box, 4.Computer, 5.CH3CN calibration source, 6.System power supplies,
and 7.NO detector.
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Table 1.1 Measurements at the Pico Mountain station and other tools used in this work.

Measurement/Tool Technique/Source

NO O3 chemiluminesce (developed at Michigan Tech)

NO2 NO2 photolysis (developed at Michigan Tech )

NOy Au-catalytic reduction (developed at Michigan Tech)

CO Non-dispersive IR (TEI 48C-TL)

O3 UV absorption (TEI 49C)

Aerosol black carbona UV-vis absorption (AE31 Aethalometer)

Wind speed and direction standard (R.M. Young 05103)

RH and Temperature standard (Rotronic TM12R)

Pressure standard (R.M. Young 61201)

Global Chemical Transport Models

MOZART National Center for Atmospheric Research

GEOS-Chem Jet Propulsion Lab

Transport Models

FLEXPART Michigan Tech/Norwegian Institute for Air Research

HYSPLIT Michigan Tech
aUniversity of the Azores.



Chapter 2

Seasonal Variation of Nitrogen

Oxides in the Central North

Atlantic Lower Free Troposphere

and Impacts of Transport of

Pollution†

Reactive nitrogen species are critical for the chemistry of the atmosphere. Photo-

chemical production of O3 depends on the concentration of NOx (NO+NO2), which

in turn, influences the concentration of tropospheric OH. Species that affect OH are

important, as reaction of OH provides the dominant path for removal of a variety

of atmospheric pollutants [Crutzen, 1979; Logan, 1983]. In addition, nitric acid, the

primary end product of NOx oxidation, is one of the major components of acid depo-

sition.

†This chapter is based on material to be submitted, with minor changes, as Val Mart́ın M., R.

Honrath, R. C. Owen, K. Lapina and Q. Li (2007), Seasonal variation of nitrogen oxides in the

central North Atlantic lower free troposphere, J. Geosphys. Res.

13
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Understanding the impact of NOx on tropospheric O3 on a global scale is impor-

tant for several reasons. Ozone is considered the third most important anthropogenic

greenhouse gas [Alley et al., 2007]. In addition, slightly elevated levels of O3, at

concentrations not far above ambient, pose a serious concern because of their effects

on the human respiratory system and ecosystems. In particular, there is an increas-

ing concern regarding intercontinental transport of O3 pollution since it appears to

be changing the composition of the background troposphere [Simmonds et al., 2004;

Jaffe et al., 2003] and make difficult for the countries downwind to achieve their air

quality standards [Li et al., 2002; Derwent et al., 2004].

In the Northern Hemisphere, emissions of nitrogen oxides are dominated by an-

thropogenic sources in urban and industrial regions [Logan, 1983]. The impact of

NOx emissions from these regions on global O3 is limited as oxidation of NOx to

HNO3, peroxyacetyl nitrate (PAN) and other minor compounds occurs in less than

one day in the continental boundary layer (BL). However, the dependence of O3 pro-

duction of NOx is highly non-linear [Liu et al., 1987]. This means that the number

of O3 molecules produced per molecule of NOx consumed, known as the O3 produc-

tion efficiency, increases as NOx concentration decreases. As a result, the export of

small fractions of emitted NOx may lead to significant O3 production in the remote

troposphere [Jacob et al., 1993]. The export of NOx away from the source regions

is facilitated by the export of PAN, a thermally unstable, non-water-soluble species,

out of the continental BL, followed by the transport of PAN on a global scale at cold

temperatures, and decomposition to NOx as the airmasses become warmer [Moxim

et al., 1996]. It has been suggested that, similar to PAN, the export of HNO3 followed

by photolysis to NOx can be an important source of NOx in the troposphere [Neu-

man et al., 2006]. Thus, quantifying the export of nitrogen oxides and their chemical

evolution is fundamental to understand the impact of anthropogenic emissions on the

global O3 budget.

Previous studies, based on NARE and ICARTT aircraft measurements [e.g. Par-
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rish et al., 2004; Li et al., 2004; Hudman et al., 2007], have estimated that less than

20% of the NOx emitted over eastern U.S. is exported to the North Atlantic free tro-

posphere (FT) as NOy (the sum of NOx and its oxidation products). Further analyses

on the composition of the NOy indicate that NOy exported in the airmasses out of the

North America BL is mostly HNO3 (∼>50%), with ∼35% as PAN and less than 10%

as NOx [e.g. Parrish et al., 2004; Singh et al., 2007]. The large fraction of emitted

NOx that is removed from the plumes and the large HNO3/NOy ratio imply that the

potential for future O3 production in these plumes in the FT must be limited.

In addition to the field studies, several model simulations have examined the

export of NOy from North America [e.g. Horowitz et al., 1998; Liang et al., 1998].

Model simulations indicate that about 30% of the NOx emitted in the U.S. is exported

out of the U.S. boundary layer as NOy (25% in summer, 35% in winter) and that 60-

80% of this export is in the form of NOx and PAN, leading to an increased importance

of downwind O3 production relative to direct export of O3 produced over North

America [Liang et al., 1998]. Results from NARE and ICARTT apparently contradict

these model analyses. Li et al. [2004] reconciled these results, suggesting that these

previous model simulations underestimated NOy scavenging during export from the

North America boundary layer. In this work, Li et al. [2004] showed that the potential

O3 production due to exported NOx and PAN is comparable in magnitude to the

direct export of O3 pollution from North America and that more than half of the

O3 production from transported NOx and PAN occurs over the continent or nearby

downwind regions.

While net photochemical O3 production typically takes place near the source re-

gions, observations over the North Atlantic Ocean have indicated that it can also occur

during long-range transport [Reeves et al., 2002; Honrath et al., 2004]. However, the

large-scale impacts of the long-range transport of emissions on the tropospheric O3

production over the North Atlantic region is uncertain. Simulations from two global

chemical transport (GCT) models [Auvray et al., 2007] and a photochemical box
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model constrained by observations [Reeves et al., 2002] of the impact of U.S. outflow

over the North Atlantic region indicate that the export of NOx emissions from the

U.S. lead to a perturbation of the chemistry over this region through changes in the

O3 production rate. As a consequence, long-range transport events significantly affect

the O3 photochemical production over the entire North Atlantic troposphere all year

round [Auvray et al., 2007]. However, other studies indicate that the North Atlantic

region is in a state of net O3 destruction all year round [Klonecki and Levy , 1997],

or in a state of net O3 destruction during the summer and net O3 production during

the winter [Yienger et al., 1999].

In addition to anthropogenic emissions, wildfires over the boreal region can also

result in a substantial source of nitrogen oxides to the atmosphere during the summer

seasons [Goode et al., 2000; Andreae and Merlet , 2001]. Recently, it has been shown

that NOx emissions from the boreal wildfires can be efficiently transported to the

North Atlantic region [Val Martin et al., 2006; Singh et al., 2007; Real et al., 2007].

Boreal wildfire NOx emissions may be comparable in magnitude to the total eastern

North America anthropogenic NOx emissions during the boreal fire season [Val Martin

et al., 2006]. Observations and GCT model simulations indicate that significant

photochemical O3 production occurs in the fire plumes during transport, likely as a

result of decomposition of PAN to NOx [Val Martin et al., 2006; Pfister et al., 2006;

Real et al., 2007]. The ultimate impact of the boreal wildfire NOx emissions on the

O3 budget can be significant. For example, emissions from boreal wildfires may result

in a monthly ozone production on the order of 10 to 20% of the net photochemical O3

production in the northern middle and high latitudes [Val Martin et al., 2006], and

may increase the O3 burden in the Northern Hemisphere by up to 4% [Pfister et al.,

2006]. However, due to the poorly constrained current estimates of NOx emissions and

the uncertainty in the injection height of the wildfire plumes [e.g. Leung et al., 2007],

questions still remain regarding the impact of boreal wildfire emissions on nitrogen

oxides and ozone levels over the Northern Hemisphere.
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In the last decade, GCT models and space-based observations have provided useful

information to study the fate and distribution of nitrogen oxides at regional to global

scales [e.g. Richter et al., 2005; Hudman et al., 2007]. However, the evaluation of

model predictions and satellite observations are severely limited by an inadequate

coverage of nitrogen oxides observations in remote regions [e.g. Emmons et al., 1997;

Thakur et al., 1999; Martin et al., 2004].

The data presented in this paper constitute a multi-year record of NO, NOx and

NOy in the North Atlantic lower FT made at the Pico Mountain station. These data

are analyzed with two purposes: to characterize the seasonal and diurnal variation of

nitrogen oxides in the background lower FT over the North Atlantic region, and to

assess the degree to which transport of anthropogenic and boreal wildfire emissions

affect nitrogen oxides levels and the resulting implications for the hemispheric NOx

and O3 budgets.

2.1 Methodology

Measurements of NO, NO2, NOy were made at the Pico Mountain station from July

2002 to August 2005. We present here measurements of nitrogen oxides analyzed

in combination with measurements of CO and O3 also made at the Pico Mountain

station. Because the Pico Mountain station and measurement details have already

been described elsewhere [Honrath et al., 2004; Kleissl et al., 2007; Owen et al., 2006;

Val Martin et al., 2006], only a brief summary of the most relevant experimental

aspects is presented here.

2.1.1 Measurement Site

The Pico Mountain station is located on the summit of Pico mountain (2.2 km asl)

in the Azores Islands, Portugal (38◦ N, 28◦ W). The station is well above the regional

marine boundary layer during all seasons, which is typically less than 1 km in height
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from May to September and 1.4 km from October to April [Kleissl et al., 2007]. Ups-

lope flow can bring air from lower altitudes to the station, including occasionally from

the marine BL. However, upslope flow affects the Pico Mountain station much less

than it does many other mountain observatories. An intensive study of the occurrence

of upslope flow indicated that, from May to September, less than 25% of the mea-

surement time presents the meteorological conditions required for an airmass from

below the mountain to reach the summit via buoyant uplifting, i.e., weak synoptic

winds and strong insolation. From October to April, buoyant upslope flow is unusual,

but strong synoptic winds have the potential for mechanical uplifting. This potential

mechanical upslope flow has a strong seasonal cycle, which depends on stronger winds

and higher marine BL heights during winter. As a result, the potential frequency of

marine BL lofting to the summit is 35–60% from October to April, whereas it is less

than 20% from May to September. However, at the Pico Mountain station, impacts of

mechanical and buoyant upslope flow on nitrogen oxides, CO and O3 are small [Kleissl

et al., 2007], indicating that the air sampled at the site is negligibly influenced by

island pollution. For example, mean NOx was 33±5 pptv (mean±2-standard error of

the mean) in periods with potential mechanical and/or buoyant upslope flow, whereas

it was 30± 1 pptv for the non-upslope flow periods.

The Azores are situated over a region that is frequently impacted by continental

emissions. They are often impacted by large-scale transport patterns in the lower

FT, which can transport emissions from North America to the Azores in 5 to 7 days

[Owen et al., 2006]. Episodically, emissions exported from the eastern U.S. in warm

conveyor belts with the associated convection, followed by subsidence, impact the

Azores [Owen et al., 2006]. In addition, the Azores are affected by outflow from

high latitudes, which can carry emissions from boreal wildfires in Canada, Alaska

and Siberia and carry them to the Azores 6 to 15 days later [Honrath et al., 2004;

Val Martin et al., 2006].
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2.1.2 Measurements

NO, NO2, and NOy were determined by an automated NOx,y system, which used

established techniques for high sensitivity detection: NO detection by O3 chemi-

luminescence [Ridley and Grahek , 1990], NO2 by conversion to NO via ultraviolet

photodissociation [Kley and McFarland , 1980; Parrish et al., 1990], and NOy by Au-

catalyzed reduction to NO in the presence of CO [Bollinger et al., 1983; Fahey et al.,

1985]. A detailed description of the NOx,y system including operation, sensitivities,

conversion efficiencies, precision and artifacts can be found in Val Martin et al. [2006]

(Chapter 3).

Measurements were recorded as 30-s averages (NO and NO2) and 20-s averages

(NOy) every 10 min, and further averaged to obtain the 30-min averages used in this

work. The instrumental detection limit (2-σ) of the 30-min averages was 6.5 to 16 pptv

for NO, 13 to 17 pptv for NO2, 14 to 21 pptv for NOx and 7.5 to 21 pptv for NOy

based on the artifact correction uncertainty and the precision (2-σ) of the instrument.

Ninety percent of the measurements had detection limits less than 6.5 pptv for NO,

16 pptv for NO2 and NOx, and 19 pptv for NOy. Measurement accuracy was estimated

to be 5% (July 20, 2002–July 17, 2003), 7% (July 17, 2003–May 1, 2004) and 4% (May

1, 2004–August 27, 2005) based on total uncertainty of the sample and calibration

mass flow controllers and the NO standard calibration gas mixing ratio.

Accuracy of the NOy measurements depends on the effective conversion of NOy

compounds and the lack of significant conversion of non-NOy compounds [Fahey et al.,

1985; Kliner et al., 1997; Kondo et al., 1997], in addition to the accurate determina-

tion of the resulting NO. Based on regular calibrations and standard addition tests

with NO2, i-propyl nitrate and HNO3 in ambient air, the observed NOy included

80–100% of the actual NO2 level (typically >97%), with similar values expected for

PAN [Fahey et al., 1985], 62–100% of the actual HNO3 level (typically >80%), and

61–100% of the actual i-propyl nitrate (typically >80%). Due to occasional degra-
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dation of the NOy converter, measurements of NOy were corrected for non-unity

NOy conversion by using the NO2 conversion efficiencies measured at the system. A

maximum correction of 20% was applied to a few of the measurements made before

March 2003 and a maximum correction of 8% was applied to measurements made

from mid-July to mid-August 2004. No correction was made after mid-August 2004

as the NO2 conversion efficiency was constant to the expected value of 97–100%. In

addition, NOy observations in March–May 2003 and May–June 2004 presented an

additional uncertainty of 13% and 5% due to uncertainty in the NOy sensitivity de-

termination. Based on the NOy composition estimated at the Pico Mountain station

(section 2.2.3.1) and the uncertainty of NO determination, the total NOy uncertainty

mainly due to potentially incomplete conversion to NO, was estimated to be at worst

∼55%, from March to May 2003 (less than 3% of the total dataset). During most

periods, total measured uncertainty was ∼< 20% at NOy levels of 100 pptv and ∼< 15%

at NOy levels of 500 pptv. Interference of non-NOy species was not a problem in this

study as inferred from the very low conversion efficiencies (always less than 0.5%;

typically 0.3%) during regular testing using standard addition of CH3CN.

As discussed by Val Martin et al. [2006], unexpected spikes were sometimes ob-

served in ambient NOx and NOy, and were attributed to volcanic emanations. To

avoid including these observations in our analysis, we used methods similar to but

slightly more stringent than those used previously [Val Martin et al., 2006]. First,

we excluded measurements made during calm winds (wind speed below 2 m s−1) and

when wind data were not available. Two exceptions were made. The fire-impacted

period of September 1–5, 2004, which did not present the typical spikes associated

with volcanic emissions [Val Martin et al., 2006] was included, although wind speeds

were lower than 2 m s−1. During the periods of October–May and June 2004, wind

data were scarce due to ice blockage or malfunctioning of the sensor and observations

when wind data were not available were included. However, including these obser-

vations did not compromise our results as the nitrogen oxides levels in the limited
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calm wind periods during these months were not significantly different than those in

the overall data. (For example, from October to May, mean NOx was 26 ± 2 pptv

(mean±2-standard error of the mean) in periods with wind speeds below 2 m s−1,

whereas it was 28± 1 pptv for the overall period.) Second, we excluded observations

that exhibited high ambient variability. For this purpose, periods with high ambient

variability were defined as those when the standard deviation of the 30-s points in a

30-min period (SD) was above 8 pptv for NO or above 20 pptv for NO2 and NOx, or

the NOy SD exceeded 20 pptv+0.5([NOy]−50), where the second term was included

to allow increased variability during periods of high [NOy]. Observations made within

±3 hours of the identified high variability observation were also excluded. The wind

speed criterion removed about 20% of the measurements from the overall dataset,

and the ambient variability screen criterion removed an additional 20% for NOy and

34% for NOx. Finally, with the purpose of identifying additional periods with poten-

tial influence of volcanic emissions, we excluded observations made during buoyant

upslope flow as described by Kleissl et al. [2007]. These periods were characterized

by a strong radiation and low wind speeds, conditions in which volcanic emissions

may potentially be detectable. This screening removed an additional 6% and 3% of

the NOy and NOx measurements, respectively, mostly during the summer.

In remote regions, nighttime NO values are expected to be zero due to the rapid

oxidation of NO by O3 and the expected absence of local sources [Ridley et al.,

1998; Peterson et al., 1998]. This was true for all seasons, with the exception of

summer 2004, which presented a nighttime median of 3 pptv. It was not possible

to conclusively determine the reason for the generally non-zero nighttime NO levels

during summer 2004. However, the weather at Pico that summer was unusual since

it was dominated by high relative humidity (RH) and calm wind periods. This may

have resulted in a very small but detectable flux of NO from soil bacteria around

the station. This unclear source could not be removed by any screening criteria

and systematically affected the measurements during this season. These emissions
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would presumably affect NO during the daytime and NOx both day and night as

well. However, the interference from this source does not appear to compromise the

results: if we exclude the 2004 NO summertime observations, the diurnal cycle and

seasonal variation presented below do not significantly change. For example, summer

daytime median NO was 7.9 pptv in 2002–2005, whereas it was 7.7 pptv excluding

the summer 2004 dataset.

As will be discussed in section 2.2.1, observations of NO2 were also influenced by

a small unknown source during the daytime. We could not find any consistent indi-

cation of the presence of a source in the vicinity of the station. We thus hypothesize

that the excess NO2 may be due to the interference from PAN decomposition to NO2

in the sampling lines or the photolysis cell since relatively elevated temperatures were

registered in the NO2 converter during the day. Using the maximum temperature

registered (39◦C), the residence time in the photolysis lamp (∼ 8 sec) and the typ-

ical levels of PAN estimated at the measurement site (section 2.2.3.1), we calculate

that the contribution of PAN decomposition may account for about 2–4 pptv to the

NO2 observations, mainly during the summer. This small interference may partially

explain the additional source of NO2 detected in our observations during the summer

and early fall. However, it is small and does not compromise the results presented

below.

We also analyzed measurements of CO and O3 made from July 2002 to August

2005 and from July 2003 to August 2005, respectively. The CO and O3 instruments

are described in detail elsewhere [Owen et al., 2006; Honrath et al., 2004].

2.1.3 FLEXPART and GEOS-Chem Simulations

To investigate the sensitivity of our measurements to upwind emissions, we used the

FLEXPART particle dispersion model version 6.2 [Stohl , 1998; Stohl et al., 2005].

FLEXPART was driven with data from the European Centre for Medium Range



23

Weather Forecasts (ECMWF) [ECMWF , 2005] with a 1◦x 1◦ horizontal resolution, 60

vertical levels and a temporal resolution of three hours, using meteorological analyses

at 0000, 0600, 1200, and 1800 UTC, and ECMWF 3-hr forecasts at 0300, 0900, 1500

and 2100 UTC.

We ran FLEXPART in its backward mode to create retroplumes. Retroplumes

were initiated every three hours with 4,000 particles released over a one-hour time

interval into a 1◦x 1◦ grid box centered on the Pico Mountain station, over the altitude

range of 2000–2500 m asl. Particles were followed backward in time for 20 days. To

account for differences in air density between the release cell and upwind sources, the

residence time of the particles was normalized by the air density in each cell to yield

the specific volume weighted residence time (SVWRT).

To evaluate the contribution of anthropogenic emissions, anthropogenic CO trac-

ers at the Pico Mountain station from North American, Asian and European emissions

were calculated by multiplying the upwind-time-integrated SVWRT in the footprint

layer (0–300 m) with emissions, using the approach of Seibert and Frank [2004]. These

tracers are referred as FLEXPART NA-CO, FLEXPART Asia-CO and FLEXPART

Euro-CO in the remainder of this paper. Anthropogenic emissions were based on the

EDGAR 3.2 Fast Track 2000 dataset [Olivier and Berdowski , 2001].

A fourth CO tracer, from the boreal wildfire emissions in North America (referred

as FLEXPART Fire-CO) was calculated to assess the magnitude of fire impact at

the Pico Mountain station. For this purpose, SVWRT in the column 0-7500 m was

multiplied with emissions distributed according to air density in the column. Boreal

wildfire CO emissions were based on an inventory created by the Boreal Wildland-

Fire Emissions Model [Kasischke et al., 2005]. Further details on the boreal wildfire

inventory and the FLEXPART Fire-CO are presented elsewhere [Lapina al., Evidence

of late-season decrease in NOx/CO emission ratios from boreal fires, manuscript in

preparation, 2007 (hereinafter Lapina et al., in preparation)].

To study the influence of stratospheric transport to the measurement site, we
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ran FLEXPART in its forward mode to create a stratospheric O3 tracer. This was

done by first determining the potential vorticity (PV) of each particle upon creation.

Particles with a PV greater than 2.0 pvu were given a specific mass according to

MO3 = Mair × PV × C, where Mair was the mass of air represented by a particle and

C = 60× 10−9 pvu−1 was the ozone/PV relationship [Stohl et al., 2000]. Particles were

then allowed to advect through the stratosphere and into the troposphere according

to the winds. At any one time, approximately 4 million particles were present in the

model for the stratospheric tracer runs. Particles were carried in the model for 20

days before being removed. This tracer is referred here as FLEXPART Strat-O3.

Simulations from the global chemical transport model GEOS-Chem were also used

to further analyze the nitrogen oxides observations. GEOS-Chem version 7.01 was

driven by 3-hourly assimilated meteorological fields from the Goddard Earth Observ-

ing System of NASA [Bey et al., 2001]. The spatial resolution of the model was

2◦ latitude by 2.5◦ longitude with 26 levels between the surface to 0.1 hPa. Global

anthropogenic emissions were determined following the procedure described by Bey

et al. [2001]. Over the continental U.S. and Europe, the anthropogenic emissions

were based on the U.S. EPA NEI-97 [EPA, 1997] and the European Monitoring and

Evaluation Program for European countries [EMEP , 1997]. Biomass burning emis-

sions were obtained from Duncan et al. [2003] with monthly mean estimates relocated

using Moderate-resolution Imaging Spectroradiometer fire counts. More information

on these emissions and additional sources (e.g., lightning, stratospheric injection) is

presented elsewhere [Bey et al., 2001].

2.2 Results and Discussion

Figure 2.1 presents an overview of the nitrogen oxides measurements at the Pico

Mountain site from July 2002 to August 2005. All 30-min averages of daytime NO,
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NOx and NOy are shown as time series, and bar plots represent the distribution of

the data by season and year.

Significant variability is apparent in the data at all times of the year. A large

number of factors contribute to the magnitude and the changes of the nitrogen oxides

levels. In this section, five aspects of the data are analyzed: diurnal cycle, seasonal

variation, partitioning of NOy, impacts of anthropogenic pollution and influence of

boreal wildfire emissions. These aspects are not entirely independent but provide a

structure for the discussion.

2.2.1 Diurnal Cycles

Diurnal cycles of nitrogen oxides can be caused by photochemical, transport and

emission processes whose strength vary between day and night. Table 2.1 summarizes

the statistical parameters of the diurnal cycles of NO, [NO]/[NO2], NO2 and NOy

for each season. As an example, Figure 2.2 displays the diurnal variation for the

springtime measurements. (Similar variation was present in the other seasons.) For

the [NO]/[NO2] analysis, values that deviated from the mean by more than three

times of the standard deviation were removed. This was done because NO2 and NO

measurements are related as the calculation of NO2 includes the NO mixing ratio.

Hence, rare outliers in the NO measurements may result in NO2 outliers, which

produces unrealistic [NO]/[NO2] values that may significantly affect the mean [Yang

et al., 2002].

To test for the existence of a consistent diurnal variation, we examined both the

median and the mean of the data in the nighttime and daytime subsets. Nighttime

values were observations made between 23:00 and 5:00 UTC; daytime values were

those made when the solar zenith angle was below 62◦. These cutoffs were chosen

to allow significant number of data points in both subsets while ensuring daylight

and nighttime conditions in all seasons. As expected, Table 2.1 indicates that robust



26

 

Sum
2002

Fall
2002

Win
2002

Spr
2003

Sum
2003

Fall
2003

Win
2003

Spr
2004

Sum
2004

Fall
2004

Win
2004

Spr
2005

Sum
2005

0

10

20

30

40
D

ay
tim

e 
N

O
 (

pp
tv

)

   79
  5.8

   65
  6.1

   56
  9.9

   24
  4.5

  241
  8.6

  242
  8.4

  252
  7.9

   31
   10

  148
  4.1

   99
  7.2

 

Sum
2002

Fall
2002

Win
2002

Spr
2003

Sum
2003

Fall
2003

Win
2003

Spr
2004

Sum
2004

Fall
2004

Win
2004

Spr
2005

Sum
2005

0
20

40

60

80

100

120

140

N
O

x 
(p

pt
v)

   52
   30

  244
   46

  169
   11

  240
   23

  111
   39

  210
   27

  177
   19

  459
   18

  853
   27

 1045
   27

 1065
   27

   23
   28

  677
   28

 

Sum
2002

Fall
2002

Win
2002

Spr
2003

Sum
2003

Fall
2003

Win
2003

Spr
2004

Sum
2004

Fall
2004

Win
2004

Spr
2005

Sum
2005

0

500

1000

1500

2000

N
O

y 
(p

pt
v)

   37
  216

  283
  216

  169
  102

  400
  195

  114
  301

  424
  199

  199
  160

 1412
  171

 1342
  158

 1785
  121

 1394
  134

  791
  123

 1030
  235

Figure 2.1 Time series of daytime NO (top), NOx (middle) and NOy (bottom) from July 20, 2002 to August
25, 2005 at the Pico Mountain station. Daytime NO are observations when the solar zenith angle was below
62◦ (see text for explanation). Each data point represents a 30-min average. Bar plots indicate the distribution
of the data for each season and year. The medians (red circles) and the means (black squares) are shown
along with the central 67% (yellow box) and the central 95% (thin black lines). The number of 30-min average
measurements (in black) and the median (in red) included in each distribution are given above the plot for each
bar. Distributions with fewer than 20 data points are not shown.
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Table 2.1 Statistical parameters of the nitrogen oxides diurnal cycle. Reported average, standard deviation
(SD), median and number (N) of the 30-min average observations in pptv for NO, NO2 and NOy.

Daytimea Nighttimea Amplitudeb

Season Data Mean±SD Median N Mean±SD Median N ∆mean ∆median

Springc NO 9± 8 7 448 1± 3 1 886 8± 2 7

NO/NO2 0.4± 0.5 0.3 81 0.1± 0.4 0.0 274 0.3± 0.3 0.3

NO2 20± 11 20 135 19± 12 18 307 1± 5 2

NOy 184± 123 178 702 184± 111 166 905 −1± 24 12

Summerc NO 9± 5 8 350 2± 4 2 918 6± 1 6

NO/NO2 0.4± 0.3 0.3 221 0.1± 0.3 0.0 614 0.3± 0.1 0.3

NO2 25± 13 22 279 28± 15 24 695 −3± 4 -3

NOy 221± 181 163 536 248± 208 204 1098 −27± 40 -41

Fallc NO 9± 5 8 371 1± 3 0 652 8± 1 7

NO/NO2 0.3± 0.2 0.3 244 0.0± 0.1 0.0 392 0.3± 0.1 0.3

NO2 28± 16 24 276 30± 16 26 430 −1± 5 -2

NOy 161± 102 142 506 164± 108 136 733 −3± 24 6

Winterc NO 7± 6 5 64 0± 2 0 561 7± 3 5

NO/NO2 0.4± 0.3 0.4 40 0.0± 0.2 0.0 440 0.4± 0.2 0.4

NO2 24± 13 24 50 25± 16 23 455 −1± 8 1

NOy 156± 79 145 76 152± 88 128 511 4± 39 17
aDaytime are observations when the solar zenith angle was < 62◦; Nighttime are observations

made between 23:00–5:00 UTC.
bAmplitude is expressed as the difference between the means (∆mean) and the medians

(∆median) of daytime and nighttime. Uncertainty (2-σ) is based on propagation of errors.
cSeasons are: spring (March, April, May), summer (June, July, August), fall (September, Octo-

ber, November) and winter (December, January, February).
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Figure 2.2 Springtime diurnal cycles of (a) NO, (b) [NO]/[NO2], (c) NO2 and (d) NOy. All 30-min average data
are plotted centered in each hour, with the exception of [NO]/[NO2] (see text for explanation). Few data points
outside the plot boundaries are not shown to make the cycle more apparent (25 for NO and NO/NO2, 8 for
NO2 and 1 for NOy). Symbols and error bars are the same as in Figure 2.1.
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diurnal cycles exist for NO and [NO]/[NO2] ratios in all seasons, with median diur-

nal amplitudes of 5–7 pptv and 0.3–0.4, respectively. The phase of these cycles is

consistent with photochemical causes: the maximum occurs around the time of max-

imum insolation, during the local solar noon time (14:00 UTC for spring; Figure 2.2),

indicating a dominance of production of NO from photolysis of NO2, whereas the

minimum occurs at nighttime, indicating dominance of NO destruction by reaction

with O3.

Given the observed NO cycle amplitude, a negative amplitude of similar magnitude

should be present in the NO2 cycle as NO2 is photolyzed to NO during daytime.

Figure 2.2c and Table 2.1 indicate that a very weak negative diurnal variation or no

variation was present for NO2, with median diurnal amplitudes of −3 to 1 pptv. This

small negative or non-existent amplitude suggests the presence of a small source of

NO2 during daytime. As discussed in section 2.1, this may be partially the result of

interference of PAN decomposition in the photolysis cell, mainly during summer and

early fall.

Consistent with our expectation that diurnal varying upslope flow does not af-

fect the measurements [Kleissl et al., 2007], Figure 2.2d and Table 2.1 show that no

significant diurnal variation was present for NOy, with the exception of the summer,

which exhibited a negative median amplitude of −41 pptv. This may be due to the

strong removal nature of summertime NOy, which is composed primarily by HNO3

(section 2.2.3.1). Summertime RH measurements at the Pico Mountain station in-

dicate that the percentage of NOy observations made in the presence of clouds (RH

above 96%, section 2.2.3.1) was larger during the daytime (24%) than at nighttime

(16%), which may result in a stronger wet removal of HNO3 during the day.

Comparisons of the diurnal variation observed at the Pico Mountain station to

those observed at other remote marine FT stations are not straightforward. As op-

posed to the Pico Mountain station, ground-based mountaintop stations (e.g., Mauna

Loa Observatory (MLO) over the North Pacific Ocean and Izaña over the eastern At-
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lantic Ocean) are typically characterized by a diurnal downslope-upslope flow regime

[Ridley et al., 1998; Fischer et al., 2004]. However, spring diurnal amplitudes of ∼8

pptv for NO and ∼0.4 for NO/NO2 were observed at MLO during a rare event in

which free tropospheric air was sampled all day [Ridley et al., 1998], similar to the

spring amplitude observed at the Pico Mountain station for NO (8± 2 pptv) and for

[NO]/[NO2] (0.3± 0.3).

2.2.2 Seasonal Variation

Figures 2.3a-c present the annual cycle of nitrogen oxides at the Pico Mountain site.

NOy measurements were influenced by washout processing, as indicated by the lower

NOy values in higher RH conditions shown in Figure 2.4 for fall. (Similar behavior was

found in the other seasons.) To avoid a potential bias in the seasonal variation due to

washout, Figure 2.3c shows the seasonal cycle of NOy determined in dry conditions

(RH below 60%). In Figure 2.3d, the annual cycle of CO is also shown for comparison.

The distribution of all measurements is displayed by monthly periods independently

of the year of study. Additionally the monthly median for years with more than 20

observations is also identified by the numerals next to the bars. The statistics of all

observations are further summarized in Table 2.2.

It is clear from Figures 2.3a-d that there is a large interannual variability in the

CO and nitrogen oxides monthly medians within some months. Large variability of

CO at hemispheric scales is known to occur, and has mainly been associated with

variations in biomass burning emissions [e.g., Novelli et al., 2003; Edwards et al., 2004;

Honrath et al., 2004]. Although interannual variability is apparent for the nitrogen

oxides, we find that in some cases this variability may also be due to the limited

number of observations available and the fact that the measurements are variable

within each month, i.e., events. For example, NOx in October 2002 was significantly

higher (47± 3 pptv; mean±2-standard error of the mean) than in 2003 (28± 1 pptv)
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and 2004 (31±3 pptv) because NOx observations were only available for about 10 days

in 2002, which happened to coincide with North American outflow.

Figure 2.3d shows a sharp seasonal cycle for CO, with a minimum median of

90 ppbv in July–August and a maximum median of 146 ppbv in March. CO is oxi-

dized by OH. Thus, annual variation of CO is driven to a large extent to the annual

change in OH, which is closely related to the water vapor and the solar intensity cycle

[Novelli et al., 1992]. In addition to photochemical processes, seasonal variation in

synoptic flow patterns, and the associated changes in source regions and transport

times to the measurement site can also affect the background levels of CO. Based on

a clustering analysis of backward trajectories to the Pico Mountain station [Strane et

al., Major source regions to the Pico Mountain station: Transport, chemical observa-

tions, and interannual variability, manuscript in preparation], more frequent transport

from the Atlantic basin and longer transit times from the North American continent

in summer may also explain the lower observed summertime CO. This effect was also

noted for the non-methane hydrocarbons (NMHC) sampled at the Pico Mountain

station [Helmig et al., Analysis of transport and oxidation chemistry in the North At-

lantic region from interpretations of NMHC measurements at Pico Mountain, Azores,

submitted to J. Geophys. Res., 2007 (hereinafter Helmig et al., submitted)].

In contrast to CO, the seasonal variation of nitrogen oxides is more complex. The

variation of nitrogen oxides in the troposphere remote from sources of NOx depends

largely on the partitioning of NOy [Atlas et al., 1992; Ridley et al., 1998], which in

turn, is controlled to a larger extent by the rate of loss of the reservoir species and by

the recycling of NOx from these reservoirs. Moreover, since the loss processes differ

among compounds, each process may result in a different effect on NOy. For example,

thermal decomposition of PAN regenerates NO2, which changes the partitioning of

NOy but not the total NOy, whereas wet and dry deposition of HNO3 results in a

change in total NOy as nitrogen is removed from the atmosphere.

Figure 2.3a shows that NOx observations exhibited a distinct seasonal cycle, with
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the overall variability at all percentiles larger from July to October than in the other

months. However, monthly medians did not reveal a distinct pattern. Similar monthly

medians were present all year round (17–31 pptv). (To avoid the possible interfer-

ence from additional daytime NO2 (section 2.2.1), we also compared nighttime NOx

medians and found similar results: 16–28 pptv). Because the lifetime of NOx in the

lower FT (on the order of ∼< 1 day [Liu et al., 1987]) is shorter than the transit time

from NOx source regions to the measurement site, it is clear that in-situ sources of

NOx are required to provide these NOx levels all year round. This implies that PAN

decomposition and potentially photolysis of HNO3 in the airmasses that reach the

Pico Mountain station provides a supply of NOx to the lower FT in this region, in

particular during summer seasons.

Due to the rapidly increasing solar insolation and decreasing O3 concentrations

from spring to fall, one may expect a shift of NOx partition toward NO as photolysis

of NO2 increases and the rate of the reaction of NO with O3 decreases. In our

observations, the actual situation was somewhat different. Figure 2.3b shows that

daytime NO mixing ratios presented a small broad peak from July to September,

with medians of 9–12 pptv. The increase in NO during these months is consistent

with the increase in solar radiation and generally lower O3 concentrations observed at

the Pico Mountain station (not shown). However, a peak was also present in March,

with a median of 11 pptv. Although not fully understood, this behavior may be the

result of a slower rate of reaction of NO with peroxy radicals, which may be present

in low concentrations during this month due to a reduced availability of OH.

As shown in Figure 2.3c, NOy observations exhibited a well-defined seasonal cycle,

with larger values in June–September (medians 296–338 pptv) than in October–May

(medians 125–312 pptv). There are several causes that may be responsible for this

behavior.

First, synoptic-scale changes in the lofting mechanisms over the continents may

result in seasonal changes in the export of emissions. Parrish et al. [2004] proposed
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that shallow venting of the continental BL to the lower FT, driven by surface heating

and associated with fair weather cumulus breaking through the afternoon BL, may

provide an important lofting mechanism for anthropogenic emissions over the eastern

U.S. This mechanism, which is expected to be most frequent in summer, results in a

significant export of nitrogen oxides to the North Atlantic region [e.g. Parrish et al.,

2004; Li et al., 2004; Hudman et al., 2007], and is likely to contribute to the larger

summertime levels of NOy observed at the Pico Mountain station.

Second, boreal wildfires have been recently recognized to be a significant source

of nitrogen oxides to the North Atlantic troposphere [Val Martin et al., 2006; Singh

et al., 2007]. NOy means from July to September —typically the boreal fire season—

exceeded the medians by 13–18%, showing extreme excursions from the median in

the positive direction. As will be shown in section 2.3.2, the higher variability of NOy

in these months reflects the high but varying influence of boreal wildfire emissions.

Thus, summertime wildfire emissions result in higher levels of NOy.

Finally, variation in the input from stratospheric or upper tropospheric sources

could also contribute to changes in nitrogen oxides. NOx production by lightning

varies seasonally, with the maximum production occurring in the Northern Hemi-

sphere during summer [Nesbitt et al., 2000]. Stratospheric injection is found to be

more important during springtime [e.g. Parrish and Fehsenfeld , 2000; Merrill and

Moody , 1996], although injections are also frequent in summer [Thompson et al.,

2007]. To assess the impact of stratospheric and upper tropospheric transport to

the Pico Mountain station, we used FLEXPART Strat-O3 values from July 2002 to

August 2005. This analysis indicated that stratospheric O3 occasionally impacts the

measurement site, but the overall impact is rather small: the average±2-standard de-

viation of all FLEXPART Strat-O3 values was 7±9 ppbv, without significant variation

on a seasonal basis. On an event basis, we did not find any consistent correlation

between nitrogen oxides levels and FLEXPART Strat-O3, i.e., enhancements of NOy

were not correlated with increases in the FLEXPART Strat-O3 values. We thus con-
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clude that stratospheric air did not significantly contribute to the changes in the

nitrogen oxides observed at the Pico Mountain station.

Table 2.3 compares the mixing ratios of nitrogen oxides at the Pico Mountain

station with observations from previous aircraft studies in the North Atlantic tropo-

sphere and from two ground-based stations, MLO over the North Pacific Ocean and

Jungfraujoch (JFJ) station over central Europe. Values are compiled by seasons. The

majority of these studies were made during the summer season. Thus, we focus here

on summertime observations, unless indicated otherwise.

It is evident that nitrogen oxides levels at the Pico Mountain station (median

322 pptv for NOy and 29 pptv for NOx; Table 2.3 rows 2 and 12) are lower than

those observed at other studies over the western North Atlantic at 0.5–6 km altitudes

(652–1000 pptv for NOy and 40–55 pptv for NOx; Table 2.3 rows 5–7 and 15–17).

Lower NOy and NOx at the Pico Mountain station indicate that removal of NOy and

rapid oxidation of NOx in the airmasses may occur as a result of longer transport

times over the ocean. In addition, lower NOy and NOx levels may also indicate a

smaller influence of stratospheric and upper tropospheric transport. NOx and NOy

typically exhibit a C-shaped profile near source regions with high concentrations

near the surface decreasing through the FT and then with a sharp rise at altitudes

generally above 6 km [e.g. Singh et al., 2007]. This is the result of the combination of

atmospheric oxidation with the location of the emissions (BL and upper troposphere)

and convection.

Nitrogen oxides levels observed at MLO (median 168–374 pptv for NOy and 25–

36 pptv for NOx; Table 2.3 rows 3 and 13) were similar to those observed at the

Pico Mountain station (147–322 pptv for NOy and 21–29 pptv for NOx) all year

round. Similar to the Pico Mountain station, MLO is a remote marine observatory,

in which well-aged airmasses are sampled during downslope conditions [Ridley et al.,

1998]. Thus, observed levels at MLO also reflect the strong removal of NOy and rapid

oxidation of NOx in the airmasses during transport. In contrast, larger NOx and
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NOy medians present at the continental JFJ observatory (350–581 pptv for NOy and

87–133 pptv for NOx; Table 2.3 rows 4 and 14) suggest the input of relatively fresh

NOx emissions from the continental BL [Zellweger et al., 2003].

2.2.3 Average Partitioning of NOy

To better understand the changes on the nitrogen oxides over the central North

Atlantic lower FT, we examined the partitioning of NOy into its three principal com-

ponents: NOx, HNO3 and PAN.

2.2.3.1 Estimation of NOy Partition

We used NOx, NOy and RH measured at the Pico Mountain station on a regular

basis to determine the partitioning of NOy. Several studies have demonstrated the

rapid and efficient scavenging of nitric acid within clouds [e.g. Chameides , 1984; Pe-

terson et al., 1998; Garrett et al., 2006]. For example, Chameides [1984] showed

that HNO3 levels decreased by two orders of magnitude in less than 100 s after

marine cloud formation. Consistent with those studies, NOy measurements at the

Pico Mountain station were affected by the presence of clouds (section 2.2.2). Thus,

measurements of NOy levels during in- and out-of-cloud periods can be used to es-

timate the mixing ratio of cloud-scavenged NOy species, i.e., HNO3, by assuming

that HNO3 is scavenged into clouds droplets during in-cloud periods [Peterson et al.,

1998]. (Even for the smallest observed orographic clouds (∼1500 m radius) and typi-

cal higher wind speeds (∼12 m s−1; 95th percentile of wind speed observations when

NOy was available), there was enough time (∼125 s) for HNO3 to be scavenged into

the cloud droplets before air reached the measurement site.) For this purpose, we

subdivided the observations into periods above 96% RH and below 60% RH in order

to identify in- and out-of-cloud intervals at the site, respectively. The RH cutoffs

were selected so as both subsets contained similar numbers of data points and, at
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the same time, cloud and cloud-free periods were present at the measurement site.

Archived photos of the conditions at the station confirmed cloud and cloud-free pe-

riods under those cutoffs. Monthly HNO3* values were determined by subtracting

the monthly averages of NOy observed during “in-cloud” periods from those observed

during “out-of-cloud” periods; [PAN*] was determined by subtracting NOx from NOy

in simultaneous observations during “in-cloud” periods, and [NOx] and [NOy] were

determined using direct observations made during “out-of-cloud” periods. (The terms

HNO3* and PAN* are used here to indicate estimated, not directly measured values

of these species.) Table 2.4 summarizes the NOy levels during “in-cloud” and “out-

of-cloud” periods, and the derived fraction of reactive nitrogen species on a seasonal

basis, i.e., [HNO3*]/[NOy], [PAN*]/[NOy] and [NOx]/[NOy]. Figure 2.5a shows the

monthly variation of the [HNO3*]/[NOy], [PAN*]/[NOy] and [NOx]/[NOy]. A limited

number of more direct estimates of [HNO3*] were also made, using alternated mea-

surements of [NOy]-[HNO3] and NOy. Measurements of [NOy]-[HNO3] were made in

August 2004 and 2005 by removing HNO3 from NOy before sampling using a nylon

filter attached to the NOy inlet [e.g. Parrish et al., 1986; Yamamoto et al., 2001].

[HNO3] was determined by difference from NOy; [PAN*] was determined as ([NOy]-

[HNO3]) minus [NOx]. Results from these tests are also presented in Table 2.4. These

measurements provide an additional method to test the consistency of our approach.

The fraction of reactive nitrogen species estimated directly from these tests (53–62%

HNO3, 23–34% PAN* and 9–16% NOx) is similar to that deduced for the summer

(71± 9% HNO3*, 21± 8% PAN* and 12± 8% NOx).

To confirm that the changes in RH used in this analysis were independent of the

origin and the chemical history on the airmasses, we inspected the variation of CO in

the “in-cloud” and “out-of-cloud” periods when NOy measurements were available.

As shown in Figure 2.5b, CO did not exhibit a clear relationship with RH, i.e.,

monthly CO averages were variable all year round, independent of “in-cloud” and

“out-of-cloud” conditions. However, significant larger monthly CO means for the
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“out-of-cloud” periods from July to September may indicate a dominance of boreal

region outflow, which is characterized by low RH and elevated CO levels [Val Martin

et al., 2006]. This influence of boreal emissions during “out-of-cloud” conditions may

have resulted in an overestimation of HNO3 and underestimation of PAN levels during

summer, since NOy is enhanced during boreal wildfire events.

In this analysis, we neglected the possible influence of aerosol and alkyl nitrates.

The NOx,y system inlet used at the Pico Mountain station excludes large aerosol par-

ticles, but allowed sampling of the ∼<10 micron aerosol fraction [Hangal and Willeke,

1990; Peterson and Honrath, 1999]. However, sub-micron size aerosol nitrates are not

efficiently measured in our system as conversion efficiency for these compounds are

low [Miyazaki et al., 2005]. The contribution of alkyl nitrates to NOy in the remote

marine troposphere is very small [Singh et al., 2007; Reeves et al., 2007]. For example,

alkyl nitrates accounted for less than 2% of the tropospheric NOy in the lower FT

over the North Atlantic Ocean during the ICARTT study [Singh et al., 2007]. Thus,

although the presence of alky nitrates may introduce a bias in our estimation of PAN,

this bias is expected to be very small.

2.2.3.2 Variation of NOy Partitioning

From Figure 2.5a, it is evident that although reactive nitrogen is principally emitted

as NO, it largely exists in its secondary reservoir forms in the central North Atlantic

lower FT all year round. Low NOx/NOy ratios (9–19%; Table 2.4) are consistent

with long-range transport and photochemical processing times to the measurement

site. Because of the relatively short lifetime of NOx compared to NOy, NOx/NOy is

expected to decrease with increasing airmass age. In the remote lower FT, typical

NOx/NOy values of 10–17% have been observed all year round [Ridley et al., 1998;

Atlas et al., 1992; Singh et al., 2007], consistent with the values observed at the Pico

Mountain station.

The shift from dominance of PAN in winter–spring to dominance of HNO3 in
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summer–fall in Figure 2.5a is noteworthy. The small contribution of PAN during the

summer (21–34%; Table 2.4) is attributed to the strong thermal decomposition of

PAN to NOx in the North Atlantic lower FT. Conversely, the large fraction of HNO3

(53–71%; Table 2.4) is directly related to the efficient formation of HNO3 from reaction

of NOx with OH, as conversion of NOx to HNO3 is 5 times faster during summer than

winter [Logan, 1983]. Indirectly, the strong decomposition of PAN during the summer

may result in the formation of HNO3 as NOx is ultimately converted to HNO3.

To evaluate the effect of temperature on PAN, we examined the lifetime of PAN

with respect to thermal decomposition in the airmasses during transit to the Pico

Mountain station. For this purpose, we extracted the average temperature from the

HYSPLIT model output [Draxler and Rolph, 2003] for the 10-day backward trajecto-

ries arriving at the measurement site. More information on the HYSPLIT backward

trajectories is presented elsewhere [Honrath et al., 2004; Val Martin et al., 2006]. We

calculated the average temperature in the airmasses from the measurement site to 3

days upwind. This average temperature is the typical temperature that the airmasses

encounter before arriving at the Pico Mountain station. We then used those average

values to calculate the lifetime of PAN. Figure 2.5a shows the lifetime of PAN in

the airmasses determined from the monthly average upwind temperatures from July

2002 to August 2005. The average lifetime of PAN under those conditions ranged

from 5 days in March (average temperature -4.4◦C) to 0.5 days in August (average

temperature 8.9◦C). Therefore, the dominance of PAN in NOy in winter–early spring

is consistent with the longer lifetime of PAN in the airmasses, whereas the rapid de-

composition of PAN in the airmasses during the summer results in the lower PAN

fraction observed during that season. Due to the rapid oxidation of NOx by OH in

the summer (∼< 1 day), PAN decomposition may result in the formation of HNO3

before the airmasses reach the Pico Mountain station.
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Figure 2.5 Seasonal cycle of a) partitioning of reactive nitrogen (HNO3*, PAN* and NOx) and average lifetime
of PAN with respect to thermal decomposition in the air arriving at the Pico Mountain station, and b) CO in
“in-cloud” (RH> 96%) and “out-of-cloud” (RH< 60%) periods. (See text for explanation.) Symbols represent
monthly averages for HNO3* (green circles), PAN* (blue triangles), NOx (red diamonds), CO RH> 96% (red
squares) and CO RH< 60% (black circles) and average of the monthly means for PAN lifetime (black squares).
Error bars indicate the 2-standard error of the mean for CO, NOx and PAN*, the uncertainty (2-σ) based on
propagation of errors for HNO3* and the minimum and maximum estimated monthly PAN lifetime.
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2.2.3.3 Comparison to Previous Observations

A comparison of the distribution of NOy species at the Pico Mountain station to those

collected over the western North Atlantic Ocean during the NARE and ICARTT

aircraft campaigns from spring to fall [Parrish et al., 2004; Li et al., 2004; Singh

et al., 2007; Hudman et al., 2007] allows for some speculation on the behavior of

nitrogen oxides across the North Atlantic region. Table 2.5 compares the fractions of

reactive nitrogen species measured during the ICARTT and NARE campaigns with

those estimated at the Pico Mountain station.

Our spring–fall estimates of the fraction of NOx (9–19%), PAN* (21–45%) and

HNO3* (47–71%) are similar to those observed over the western Atlantic Ocean in

those other studies (8–13% for NOx, 34–47% for PAN and 40–57% for HNO3; aver-

ages in 2–8 km and 2.5–6.5 km altitudes from Table 2.5). However, as discussed in

section 2.2.2, levels of NOy at the Pico Mountain station are 2–3 times lower than

those over the western Atlantic region (section 2.2.2), indicating the significant re-

moval of HNO3 during transport to the measurement site. These results suggest that

to maintain the observed fractions of NOx and HNO3* at the Pico Mountain station,

decomposition of PAN to NOx and further oxidation of NOx to HNO3 must occur in

the airmasses.

2.2.3.4 Comparison to GEOS-Chem

Figures 2.6a-c compares the measurements with results obtained from the global

chemical transport model GEOS-Chem for NOy, HNO3*, PAN* and NOx. Addi-

tionally, the model-data comparison for CO is shown in Figure 2.6d. GEOS-Chem

simulations were available from January to December, 2005, whereas data from the

Pico Mountain station in 2005 were available only from January to August. To be

able to compare a full year cycle, we compared GEOS-Chem simulations to all data in

2002–2005. To account for any interannual variability that could bias our comparison,
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we also compared GEOS-Chem simulations to the data available in 2005 only. The

model-data comparison focuses mainly on the median since this value is less affected

by the variability resulting from large episodic events, with the exception of HNO3*

and PAN*, which are based on the estimated averages.

From Figure 2.6a, it is apparent that GEOS-Chem reproduces the annual variation

of NOy observed at the Pico Mountain station. However, GEOS-Chem tends to

overestimate NOy. As shown in Figure 2.6b, this overestimation is mainly due to

an excess of HNO3. For example, during summer, GEOS-Chem produces monthly

HNO3 medians 50–150 pptv greater than NOy medians at the Pico Mountain station

and it also overestimates HNO3 by about a factor of two during that season. This

problem is known to occur in current GCT models [e.g. Lawrence and Crutzen, 1998;

Bey et al., 2001; Singh et al., 2007], and may be related to an overestimation of OH

concentrations [Singh et al., 2007], to insufficient scavenging in the model [Bey et al.,

2001] or a combination of these and other causes.

Because of the scavenging scheme used in GEOS-Chem, it has been suggested

that the model allows for significant escape of nitrogen oxides to the lower FT and

it simulates reasonably well the shallow convection from the U.S. BL to the lower

FT during the summer [Li et al., 2004; Hudman et al., 2007]. Thus, GEOS-Chem

suggests that the export of NOy out of the U.S. BL may be partially responsible

for the increased summertime NOy levels over the central North Atlantic lower FT,

consistent with our hypothesis (section 2.2.2). However, the large values produced by

GEOS-Chem indicate an inability to capture the actual magnitude of NOy over the

North Atlantic lower FT.

Figure 2.6b shows the comparison between simulated PAN levels and observa-

tions. The model produces an annual variation of PAN similar to that estimated

at the Pico Mountain station. However, GEOS-Chem tends to underestimate PAN,

in particular from July to September, when GEOS-Chem values are a factor of 6–7

times lower than the observations. This behavior may be related to causes such as
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Figure 2.6 Comparison of observations a) NOy in dry conditions (see section 2.2.2 for explanation), b) HNO3*
and PAN*, c) NOx and d) CO to GEOS-Chem simulations. Symbols represent monthly medians in 2002–2005
(blue solid circles) and in 2005 (cyan solid squares) for NOy, NOx and CO; monthly medians in 2005 for
GEOS-Chem NOy, NOx and CO (black open circles); monthly averages in 2002–2005 for HNO3* (green
solid circles) and PAN* (blue solid triangles) and in 2005 for GEOS-Chem HNO3 (black open circles) and
GEOS-Chem PAN (black open triangles). Error bars indicate the 10th and 90th percentile for observed and
simulated NOy, NOx and CO, the standard deviation of all estimates of PAN* and GEOS-Chem simulations of
HNO3 and PAN, and the uncertainty (2-σ) based on propagation of errors for HNO3*.
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an excessive decomposition of PAN in the model or underestimation of NOx and/or

NMHC emissions. Finally, the model-data difference may also be related to a low

removal efficiency for HNO3 within the clouds present at the Pico Mountain station,

resulting in an overestimation of PAN*, since PAN* was calculated by assuming com-

plete removal of HNO3 in the presence of clouds at the station. Were this the case, it

would also reduce the HNO3 model-data difference during summer, but only by 20%,

not changing the conclusion that [HNO3] exceeds the simulated values.

A comparison of simulated and observed NOx levels is shown in Figure 2.6c.

Similar to our measurements, GEOS-Chem does not simulate a clear seasonal cycle

for the median NOx values. GEOS-Chem simulations produce monthly medians (21–

35 pptv) similar to those observed at the Pico Mountain station (21–30 pptv in 2005

and 16–29 pptv in 2002–2005). However, the model does not capture the very large

variability in the NOx mixing ratios, particularly that associated with transport of

boreal wildfires in summer 2005.

Figure 2.6d shows observed and modeled CO values. GEOS-Chem CO exhibits a

seasonal variation similar to that observed at the Pico Mountain station, but system-

atically underestimates the CO observations in 2005 by 10 to 25 ppbv. This behavior

has been noted previously [Bey et al., 2001], and may be related to an excess of

OH in the model and/or to the underestimation of the CO emissions. During July–

September, this difference is more apparent. GEOS-Chem simulates a sharp decrease

of CO through these months, whereas observed CO remain stable. This may be re-

lated to the strong impact of boreal wildfire emissions during these months in both

2004 and 2005, which it is not simulated by the fire emission inventory used in this

GEOS-Chem simulation.

This comparison shows that, although current GCT models have become more

sophisticated [Singh et al., 2007], uncertainties in simulating nitrogen oxides in the

remote lower FT remain. These uncertainties are clearly related to errors in emission

sources and limitations in our understanding of the nitrogen oxides chemistry in the
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remote troposphere.

2.3 Influence of Transport of Pollution

In this section, we determine the influence of transport of pollution on the nitrogen

oxides levels over the central North Atlantic lower FT. We first assess the impacts

of transport of anthropogenic emissions from eastern North America and examine

the resulting implications for the tropospheric O3 budget. Second, we determine the

impact of boreal wildfire emissions on the distribution of the nitrogen oxides levels.

2.3.1 Impacts of North American Anthropogenic Emissions

To assess the influence of North American anthropogenic emissions over the central

North Atlantic lower FT, we compare the enhancements of CO and nitrogen oxides

in North American outflow to levels observed in clean marine air without the input of

recent emissions. The following section describes the identification of North America

outflow periods and presents two example episodes.

2.3.1.1 Identification of North American Anthropogenic Impact

We identified periods potentially impacted by upwind anthropogenic emissions by

selecting those in which the hourly average of CO was at least 20 ppbv higher than

the CO background in each season and year, and the average of FLEXPART NA-CO

during the event was at least 10 ppbv. An exception was made for April 20–24, 2005:

although our criteria identified two episodes (April 20 20:30 UTC–April 23 10:30 UTC

and April 23 21:30 UTC–April 24 10:30 UTC), elevated CO levels recorded between

the events indicated that both periods were part of a continuous event. For the analy-

sis, we considered as background the 20th percentile of all hourly CO observations for

each season and year. This value represents clean marine levels without the influence
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of emissions at the measurement site. Hourly averages of CO were used to smooth the

variability of the CO measurements for comparison to the cutoff values. The average

of FLEXPART NA-CO values within the periods was used instead of the individual

3-hour step values to allow for variability in the timing of the FLEXPART-simulated

events. The FLEXPART NA-CO cutoff of 10 ppbv corresponds to approximately the

80th percentile of all model simulated values. Although the choice of these criteria

is somewhat arbitrary, the cutoff values were designed to be conservative and ensure

that the selected data represent significantly polluted airmasses from the U.S..

In addition to outflow strictly from the eastern North America, flow patterns

passing over North America can also bring air that originated from the boreal regions.

During these periods, air sampled at the Pico Mountain station may contain a mixture

of anthropogenic and boreal wildfire emissions. To exclude the interference of boreal

wildfire emissions, we removed those periods in which the corresponding average

FLEXPART Fire-CO was above the 10th percentile of all simulated values for each

season. This resulted in the removal of 30% of the events in summer and early fall.

Additionally, transported emissions from North American sources may also be mixed

with air containing anthropogenic emissions from Europe and Asia. To limit the

events studied to those dominated by North American anthropogenic emissions, we

also excluded those periods in which the average FLEXPART Asia-CO or FLEXPART

Euro-CO was greater than 50% of the average FLEXPART NA-CO. This screening

resulted in removal of an additional 2% of events.

2.3.1.2 Example Episodes

Figure 2.7 presents two example episodes of transport of anthropogenic pollution

from the eastern North America to the Pico Mountain station. These two episodes

illustrate two different transport mechanisms from North America. Figure 2.8 shows

an example of FLEXPART retroplumes and the source contribution map for each

episode.
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Figure 2.7 Time series of 30-min average CO, NOy and O3 measurements, and FLEXPART NA-CO at the
Pico Mountain station during two North America outflow events: a) April 20–24, 2005 and b) June 1–3, 2005.
NOx measurements are not available. CO is plotted with blue circles, NOy with red diamonds, O3 with green
triangles and FLEXPART NA-CO with a dash-dotted line. Vertical solid lines indicate the start and end time of
the event; remaining data are plotted to make the events more apparent.
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Figure 2.8 Results for retroplumes with release times centered on 18 UTC on April 22, 2005 (A, B and C) and
12 UTC on June 2, 2005 (D, E and F). The top row shows the total column (0–15km) SVWRT. Black numerals
indicate the location of maximum column-integrated SVWRT at each integral day upwind. The middle row
shows the SVWRT height distribution at each time upwind. The bottom row shows the footprint layer (0–300m)
source contribution. Colors are logarithmically scaled (100–0.1%) according to a maximum value for each plot
type (8x104 seconds*m3kg−1 for the column-integrated SVWRT, 2.05x105 seconds*m3kg−1 for the SVWRT
height distribution, and 4.4 ppbv of CO for footprint source contributions), as shown by the scale on the right.
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Figure 2.7a shows the time series of the observations for the episode of April 20–

24, 2005. This event was the result of emissions from eastern U.S. and Canada as

described in detail by Helmig et al., [submitted]. During April 21–24 air from North

America impacted the measurement site. As shown in Figure 2.8a-b for the retro-

plume of April 22 18:00 UTC, airmasses spent at least five days over North America

(numerals 4–9 in Figure 2.8a) at altitudes lower than 2 km and were transported over

the ocean for three days (numerals 1–3 in Figure 2.8a) at 2–4 km altitudes (April 19–

22 in Figure 2.8b). Apparently as a consequence of the U.S. emissions, levels of CO,

nitrogen oxides and O3 were significantly enhanced during this period, and nitrogen

oxides and O3 were well correlated with CO.

Similarly, levels of CO were also considerably elevated during the June 1–3, 2005

episode, as shown in Figure 2.7b. This episode was the result of a sudden switch from

airmasses originating at higher latitudes and altitudes to airmasses originating at low

altitude over the southeastern U.S.. This episode, however, exhibited generally small

enhancements of nitrogen oxides and O3 and no significant correlation with CO. As

shown in Figure 2.8d-e for the retroplume of June 2 18:00 UTC, airmasses passed

over southeastern U.S. for at least four days (numerals 6–9 in Figure 2.8d) and were

transported during two days (numerals 4–5 in Figure 2.8d) within the marine BL

(altitudes below 2 km, May 28–30 in Figure 2.8e) and during three days (numerals

1–3 in Figure 2.8d) at altitudes of about 2 km (May 30–June 2 in Figure 2.8e), before

reaching the measurement site. Strong removal of nitrogen oxides and O3 destruction

in the marine BL may have caused these small enhancements of nitrogen oxides and

O3. This conclusion is consistent with previous studies, which indicate rapid removal

of HNO3 within the MBL [e.g. Roberts et al., 1996; Peterson and Honrath, 1999; Dibb

et al., 2004].
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2.3.1.3 Nitrogen Oxides Enhancements in North America Outflow and

Estimates of NOy Transport Efficiency

Figure 2.9 (left and middle columns) presents the relationship of NOx and NOy to CO

in the overall data and in the identified North America outflow periods, on a seasonal

basis. It is apparent that transport events from North America occur all year round

and they are responsible for part of the high nitrogen oxides observations during all

seasons.

To characterize the amount of NOx remaining or released into these plumes dur-

ing transport, we determined enhancement ratios of NOy and NOx with respect to

CO during each U.S. outflow period [e.g. Stohl et al., 2002; Parrish et al., 2004]. We

first calculated the mean values of ∆CO, ∆NOy and ∆NOx in each event and then

used those mean values to estimate the ratio relative to CO in each anthropogenic

event (e.g. ∆NOy/∆CO). Here ∆ indicates the difference between the concentration

of the indicated species and the background concentration (e.g. [CO]-[CO]bkgd), with

background determined as the 20th percentile of all observations for each species,

season and year. CO is commonly used as a tracer for NOx emissions because it is

emitted by combustion sources along with NOx and has a long lifetime, on the order

of one to three months depending on the season [Novelli et al., 1992]. The resulting

seasonally averaged enhancement ratios are presented in Figure 2.9. Table 2.6 sum-

marizes the corresponding enhancement ratios for the individual anthropogenic events

shown in Figure 2.9. To indicate the possible influence of local removal of HNO3 on

the ∆NOy/∆CO ratios (section 2.2.3.1), we show in Table 2.6 the percentage of the

event time in which the RH at the measurement site was above 96%.

Figure 2.9 (left column) and Table 2.6 show that NOy was significantly enhanced

in all the North America outflow plumes relative to the background levels, with the

exception of one plume (April 26–27, 2005). However, the ∆NOy/∆CO ratios were

highly variable (0.2–12.0 pptv ppbv−1; Table 2.6). There are two causes that are
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Figure 2.9 Relationship between CO and NOy, CO and NOx and NOy and O3 in spring (a-c), summer (d-f),
fall (g-i) and winter (j-l) during 2002–2005. North America outflow events are plotted with different symbols
and colors. Events with fewer than 5 data points are not indicated. Seasonal average enhancement ratios
(mean±2-σ) from the anthropogenic events listed in Table 2.6 are identified in each plot. Units are pptv ppbv−1

for ∆NOy∆CO and ∆NOx/∆CO and ppbv pptv−1 for ∆O3/∆NOy. (Averages with fewer than three events are
not shown.) All other other observations in 2002–2005 are plotted with small black dots.
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Table 2.6 Enhancement ratios of nitrogen oxides during the North American outflow events identified in
Figure 2.9. Reported enhancement ratios (calculated as described in text), 2-σ uncertainty and number (N) of
simultaneous 30-min average observations of NOy, NOx, CO and O3. Events with N < 5 not shown.

Clouda ∆NOy/∆CO ∆NOx/∆CO ∆O3/∆NOy

Event Year Period (%) pptv ppbv−1 N pptv ppbv−1 N ppbv pptv−1 N

Springb 4.3± 3.1 0.09± 0.03

1 2004 Apr 15 6:15 – Apr 16 11:45 0 3.4± 0.2 17 0.14± 0.01 59

2 2004 Apr 20 12:15 – Apr 21 23:45 0.07± 0.00 70

3 2004 Apr 29 0:15 – Apr 30 23:45 c 100 1.3± 0.4 7 0.36± 0.10 95

4 2005 Mar 27 18:15 – Mar 28 17:45 96 3.9± 0.3 29 0.6± 0.1 9 0.08± 0.01 47

5 2005 Apr 20 18:15 – Apr 24 11:45 47 8.7± 1.0 38 NA NA 0.05± 0.01 180

6 2005 Apr 26 18:15 – Apr 27 5:45 d 100 0.2± 0.2 12 NA NA 0.37± 0.27 24

7 2005 May 18 6:15 – May 18 17:45 d 0 0.4± 0.1 10 NA NA −0.20±−0.10 24

Summerb 10.0± 4.0 0.13± 0.03

1 2004 Jun 6 0:15 – Jun 8 5:45 60 6.0± 0.7 70 0.3± 0.1 53 0.10± 0.01 108

2 2004 Jun 15 18:15 – Jun 16 11:45 0 12.0± 1.5 28 0.7± 0.1 26 0.14± 0.01 36

3 2005 Jun 1 0:15 – Jun 1 11:45 0 12.0± 0.5 16 NA NA 0.14± 0.01 24

4 2005 Jun 1 18:15 – Jun 2 23:45 d 0 3.9± 0.6 27 NA NA 0.03± 0.01 60

Fallb 4.4± 2.3 0.9± 0.5 0.09± 0.02

1 2002 Oct 6 18:15 – Oct 7 5:45 0 7.6± 0.6 13 1.5± 0.2 13 NA NA

2 2002 Oct 7 6:15 – Oct 7 11:45 0 8.3± 0.8 12 1.8± 0.2 12 NA NA

3 2003 Oct 19 12:15 – Oct 21 11:45 54 6.6± 0.5 80 1.1± 0.2 9 0.06± 0.00 96

4 2004 Nov 11 18:15 – Nov 11 23:45 0 2.0± 0.3 11 0.5± 0.1 11 0.11± 0.02 11

5 2004 Nov 22 18:15 – Nov 23 11:45 68 2.1± 0.3 19 0.5± 0.1 19 0.08± 0.01 36

6 2004 Nov 23 12:15 – Nov 24 11:45 14 1.3± 0.1 35 0.2± 0.1 24 0.13± 0.01 48

7 2004 Nov 25 6:15 – Nov 27 11:45 0 2.7± 0.2 56 0.5± 0.1 35 0.09± 0.01 102

Winterb 3.4± 1.7 0.04± 0.04

1 2004 Jan 27 12:15 – Jan 27 23:45 0 1.9± 0.5 11 0.10± 0.03 24

2 2004 Dec 11 0:15 – Dec 11 11:45 100 6.1± 0.8 7 1.3± 0.18 7 0.00± 0.00 19

3 2005 Jan 9 6:15 – Jan 9 17:45 57 4.2± 0.4 21 0.02± 0.01 24

4 2005 Jan 10 0:15 – Jan 10 5:45 33 3.4± 0.3 12 0.07± 0.01 12

5 2005 Jan 10 6:15 – Jan 13 17:45 96 1.4± 0.1 132 0.39± 0.03 49 0.02± 0.00 168

NA, Not available.
aPercentage of the period with RH above 96%.
bAverage of all events. Average with fewer than 2 events are not shown. Average enhancement

ratios do not include events 6 and 7 in spring and event 4 in summer due to transport in the marine
BL, and event 3 in spring due to influence of stratospheric transport.

cEvent with stratospheric transport influence according to FLEXPART Strat-O3 tracer and trans-
port at high altitudes indicated by FLEXPART retroplumes.

dEvents in the marine BL as indicated by FLEXPART retroplumes. (See text for explanation.)
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likely to contribute to this variation: different NOx to CO emission ratios over the

continent, which vary as a function of time and type of fuel [Neuman et al., 2006],

and varying degree of washout processing during transport. On a seasonal basis, the

average ∆NOy/∆CO was larger in summer (10.0 ± 4.0 pptv ppbv−1; Figure 2.9d)

than in winter (3.4±1.7 pptv ppbv−1; Figure 2.9j), suggesting a more efficient export

of NOy from eastern North America during summertime.

To quantify the fraction of NOx originally emitted that was exported as NOy

in North America outflow (f), we compared the ∆NOy/∆CO observed at the Pico

Mountain station to that from U.S. emissions, using the following approach [Parrish

et al., 2004; Hudman et al., 2007]:

f =
∆NOy

∆CO
× Remiss × α,

where Remiss is the CO to NOx emission molar ratio and α is a factor accounting

for chemical sources and sinks of CO. We included a correction factor of 0.88 to

account for the increase in the CO export from the U.S. due to oxidation of NMHCs

to CO (1.2) [Chin et al., 1994] and to incorporate a 27% decline in the CO mixing

ratios during the 5 to 6 day transport time from the U.S. BL to the Pico Mountain

station (0.73) [Honrath et al., 2004]. We applied this correction factor only to the

summertime observations since biogenic hydrocarbon emissions are reduced during

the non-summer seasons and oxidation of CO is not significant (∼5–10% in 5 to 6

day transport, based on the CO+OH rate constant at 800 hPa [Sander et al., 2003]

and the estimated zonal average OH at 35◦N and 800 hPa [Spivakovsky et al., 2000])

in these seasons. For the U.S. CO to NOx emission ratio, we used GEOS-Chem input

of 5.9 mol mol−1 for eastern U.S. [Hudman et al., 2007]. This ratio is similar to that

obtained by Parrish et al. [2004] (5.1 mol mol−1) using the EPA emission inventory

adjusted by a decline in vehicle CO emissions estimated based on field measurements.

We applied this approach to the ∆NOy/∆CO observed in the North America

plumes that traveled above the marine BL. We considered events in the marine BL
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those in which FLEXPART retroplumes spent more than one day at altitudes below

2 km (e.g., Figure 2.8e) and excluded them from the analysis, i.e., event 6 and 7 in

spring and event 4 in summer (Table 2.6). The resulting average NOy efficiencies for

export and transport are: 3 ± 2% (mean±2-standard error of the mean) in spring,

5 ± 2% in summer, 3 ± 1% in fall and 2 ± 1% in winter. The summer season shows

an average NOy transport efficiency about 2 times greater than the other seasons.

Although we adjusted the summertime observations by a correction factor, the differ-

ence between the summer and non-summer NOy efficiencies for export and transport

is not due to this applied correction as the correction factor changed the summertime

values only by about 12%. Table 2.5 on page 46 compares these estimates to previous

export efficiencies obtained in U.S. plumes during the NARE and ICARTT campaigns

[e.g. Parrish et al., 2004; Li et al., 2004; Hudman et al., 2007]. The Pico Mountain

average export efficiencies from spring to fall (3–5%) are similar to the lower limit of

the estimates over the western North Atlantic Ocean lower FT (11 ± 6% in spring,

18± 11% in summer and 9± 5% in fall [Parrish et al., 2004; Hudman et al., 2007]).

Consistent with these previous studies, our observations indicate that the majority

(95–97%) of NOx emitted over eastern U.S. is removed within or during export from

the U.S. BL during lofting mechanisms. However, this comparison suggests that

about 30% of the nitrogen oxides emissions that escape the eastern North America

BL remain after transport to the lower FT over the Azores region.

Consistent with the expectation that export of NOy may eventually lead to NOx

released from decomposition of PAN and potentially photolysis of HNO3, Figure 2.9

(middle column) and Table 2.6 show that NOx was also enhanced in the anthropogenic

plumes relative to background during all seasons.

Although NOx observations in North America outflow were limited, enhancements

of NOx in the North American plumes indicate that North American emissions are a

significant source of NOx to the central North Atlantic lower FT all year round. Larger

∆NOx/∆CO ratios during fall suggest that the largest supply of NOx in the central
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North Atlantic lower FT occurs during this season. This effect is likely the result of the

combination of rapid thermal decomposition of PAN to NOx and slower conversion

of NOx to HNO3 in the plumes during this season (section 2.2.3.2). In addition,

direct export of NOx from North America may have also contributed to the NOx

enhancements since some of the fall events were associated with rapid transport from

the U.S. (∼<2 days). Large enhancements of NOy in spring (4.3±3.1 pptv NOy/ppbv

CO; Figure 2.9a), mostly in the form of PAN (Figure 2.5), suggest a continuing export

of nitrogen oxides, which may eventually release NOx further downwind.

The average NOx levels observed during airflow from North America were 31 ±

5 pptv (mean±2-standard error of the mean; spring), 31±3 pptv (summer), 41±3 pptv

(fall) and 36±3 pptv (winter). These mean values correspond to the 75th percentile of

the full distribution each season, with the exception of the summer, which corresponds

to the 55th percentile. Lower corresponding percentile during the summer results from

the impact of boreal wildfires during this season (section 2.3.2 and Chapter 3). If we

exclude the observations impacted by boreal wildfires (section 2.3.2), the NOx mean

in North American outflow corresponds to the 70th percentile of all summertime non-

fire impacted observations. Mean levels of daytime NO in these plumes ranged from

8 to 11 pptv, occasionally reaching 20 pptv. Although these levels may be insufficient

for a net O3 production [Klonecki and Levy , 1997], they may influence the O3 chemical

tendency through changes in the O3 production rate [Mauzerall et al., 1996].

2.3.1.4 Implications for the O3 Production and Budget

We examined the relationship between NOy and O3 on a seasonal basis in Figure 2.9

(right column) to investigate the eventual source of O3 from exported nitrogen ox-

ides. Seasonal average enhancement ratios are presented in Figure 2.9 and Table 2.6

summarizes the ∆O3/∆NOy ratios for each anthropogenic event.

The seasonal ∆O3/∆NOy averages indicate an approximately 90-fold, 130-fold

and 40-fold enrichment of O3 relative to NOy (mol mol−1) during spring and fall,
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summer, and winter, respectively. The ∆O3/∆NOy of 130 ppbv ppbv−1 is an order

of magnitude higher than what was observed in several rural sites in North America

during the summer seasons (8.5–10 ppbv ppbv−1 [Trainer et al., 1993; Olszyna et al.,

1994]), and is also higher than what was encountered in the FT over North America

(∼30–120 ppbv ppbv−1 [Ridley et al., 1994]). The larger summer ∆O3/∆NOy ob-

served at the Pico Mountain station is thus consistent with the high efficiency with

which O3 is formed in the FT combined with the higher removal rate of NOy (via

HNO3) compared to that of O3 during transit to the measurement site. This result

contrasts with prior studies over the North Atlantic region, which concluded that the

marine BL and lower FT over the North Atlantic are generally on a state of net O3

destruction all year round [e.g., Helmig et al., submitted;Parrish et al., 1998, Reeves

et al, 2002]. For example, Parrish et al. [1998] indicated that, in the North Atlantic

marine BL during the winter, O3 is mostly removed by reaction with NO2 and NO

and deposition, with a ∆O3/∆NOy ratio of −1.5 to −1 mol mol
−1.

To evaluate the ultimate impact of the transport of nitrogen oxides on the O3

budget over the North Atlantic region, we estimated the O3 production upwind of

the Pico Mountain station resulting from the long-range transport of nitrogen oxides

during the summer season. Estimates of the O3 production can be calculated using the

flux of transported NOy and the flux of transported PAN+NOx, respectively, based on

the measured ∆NOy/∆CO and estimated NOy speciation (i.e., PAN+NOx is ∼30%

of NOy; section 2.2.3.1). The use of NOy enhancement ratios gives approximately

an upper estimate in the calculation of O3 production as it includes HNO3, which

generally does not lead to NOx generation, while the use of PAN+NOx gives a lower

estimate, as it neglects the O3 produced upwind of Pico. Both methods are however

biased low as the use of our observed ∆NOy/∆CO ignores the oxidation of NOx to

HNO3, followed by removal of HNO3 upwind from the Pico Mountain station. We

derived the flux of transported NOy by multiplying the observed summer average

∆NOy/∆CO (0.01 ppbv ppbv−1 Table 3.3) by the CO emissions for eastern U.S.
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in 2005. The daily amount of CO emitted in eastern U.S. (estimated as 2/3 of

the total national emissions and adjusted for the 8.8% per year decrease of the on-

road CO:NOx emission ratio [Parrish et al., 2004]) corresponds to 4.7 Gmol day−1.

Thus, the resulting long-range-transported NOy is 0.047 Gmol day−1 and, similarly,

transported PAN+NOx is 0.014 Gmol day−1. Liang et al. [1998] estimated that 39 and

64 molecules of O3 are produced for each NOx or PAN molecule advected downwind

from North America at altitudes below and above 2.6 km, respectively. Thus, the

resulting O3 production can be derived by multiplying these O3 production efficiencies

by the amount of PAN+NOx and NOy transported to the central North Atlantic

region. The result is approximately 1.8–3 Gmol of O3 produced upwind of the Pico

Mountain station per day. The formation of O3 resulting from transport of nitrogen

oxides is quite important. For comparison, the amount of O3 produced in eastern U.S.

BL and directly exported to the North Atlantic is 1.9–2.4 Gmol day−1. (This estimate

is based on the ∆O3/∆CO of 0.4–0.5 ppbv ppbv−1 observed downwind from North

America [Hudman et al., North American influence on tropospheric ozone and the

effects of recent emission reductions: constraints from ICARTT aircraft observations

and the daily eastern U.S. emissions, manuscript in preparation] and the daily eastern

U.S. CO emissions). It is important to note that, in these calculations, we did not

account for chemical loss of O3 and for chemical sinks and sources of CO, and assume

that all PAN decomposes to NOx.

The occurrence of O3 formation in the North American plumes observed at the

Pico Mountain station and the significant amount of O3 produced from the long-range

transport of nitrogen oxides imply an impact on the regional O3 budget, even during

the wintertime.
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2.3.2 Influence of Boreal Wildfires

Transport of North American boreal wildfire emissions significantly impacted the ni-

trogen oxides measured at the Pico Mountain station during summer 2004 [Val Martin

et al., 2006]. On an event-by-event basis, the average levels of nitrogen oxides in boreal

wildfire plumes were above levels observed during flow from boreal regions without

fire emissions and well above typical summertime background over the central North

Atlantic lower FT [Val Martin et al., 2006]. We expand here this previous work

and investigate the degree to which boreal wildfire emissions modulate the nitrogen

oxides background in the central North Atlantic lower FT. For this purpose, we an-

alyzed nitrogen oxides observations made from June 1 to September 15 in 2004 and

2005. Similar to summer 2004, summer 2005 boreal wildfire emissions from Canada

and Alaska frequently impacted the Pico Mountain station [Lapina, et al., (in prepa-

ration)]. In summer 2002 and 2003, wildfires emissions from Quebec and Siberia,

respectively, impacted the measurement site [Honrath et al., 2004]. However, nitro-

gen oxides measurements were limited during those summers (Figure 2.1). The time

frame of June 1–September 15 was selected since it covers the typical active burning

season over northern North America [Pfister et al., 2005] and allows for the 1–2 weeks

transport time to the measurement site at the end of the season.

We subdivided the data into two categories: one category representing observa-

tions significantly influenced by boreal wildfires (“fire”) and a second category rep-

resenting observations with minimal or no fire impact (“non-fire”). Fire and non-fire

observations were selected based on the intensity of North American boreal wildfires

impact simulated by the FLEXPART Fire-CO. The 25th and 75th percentiles of all

FLEXPART Fire-CO values for each summer were used for the “non-fire” and “fire”

cutoffs, respectively. These lower and upper cutoff values were selected to allow both

categories to contain a similar number of data points. The cutoff values were different

for each year, i.e. 1.4 ppbv and 16.4 ppbv for 2004 and 0.9 ppbv and 5.6 ppbv for
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Figure 2.10 Histograms of a) CO, b) NOx and c) NOy of all summertime observations (black dashed lines),
all fire observations (red dotted lines) and all non-fire observations (green solid lines), in 2004 and 2005.

2005, reflecting the different intensity of the boreal wildfires in 2004 and 2005. Fig-

ure 2.10 shows the distribution of NOx and NOy for the fire and non-fire periods. We

also show the distribution for all summer observations. (The distribution of CO is

also shown for comparison.) Table 2.7 summarizes the statistical parameters of each

distribution for each summer.

Boreal wildfire emissions significantly affected the summertime distribution of

nitrogen oxides at the Pico Mountain station. NOy median values in the fire subset

were 175 pptv and 115 pptv larger than those in the non-fire subset in 2004 and 2005,

respectively. Similarly, the difference in the NOx median values were 30 pptv in 2004

and 9 pptv in 2005. As expected, median values for CO were also larger in the fire

subset relative to the non-fire subset, with a difference of 40 ppbv in 2004 and 10 ppbv

in 2005. A non-parametric Wilcoxon Sum-rank and a student t-test indicated that

all distributions and the means of distributions were significantly different at a 0.01

level of significance. Larger differences in the median values were observed in 2004

relative to 2005. This is due to the higher fire activity over the North American

boreal region in 2004 than in 2005: total CO emissions estimated using the Boreal

Wildland-Fire Emissions Model were 37 Tg in summer 2004, whereas they were 24 Tg

in 2005 [Lapina et al., (in preparation)].

To verify that the difference in the medians was the result of boreal wildfire emis-
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sions, we inspected the periods selected in each category. While the non-fire subset

contained observations made in a mixture of both non-boreal and boreal air with-

out wildfire emissions, the fire subset included mainly periods when boreal outflow

reached the Pico Mountain station during the active burning season [Val Martin et

al., 2006; Lapina et al., in preparation]. Thus, we conclude that the difference in both

subsets may be attributed to the presence of boreal wildfire emissions.

The impact of boreal wildfire emissions on the nitrogen oxides levels may have

important implications for the global tropospheric O3 budget [e.g. Val Martin et al.,

2006; Pfister et al., 2006; Real et al., 2007]. Lapina et al. [2006] showed evidence

of the significant impact of boreal wildfire emissions on the O3 background over the

North Atlantic region. Consistent with Lapina et al. [2006], the difference between

the median values in the non-fire and fire subsets for O3 were 26 ppbv in 2004 and

17 ppbv in 2005 (not shown).

Overall, these analyses indicate that boreal wildfires were responsible for the shift

in the nitrogen oxides distributions toward higher mixing ratios. Given the long

distance from the boreal region to the Pico Mountain station, this implies very large-

scale impacts on the background NOx and NOy levels in the midlatitude lower FT.

2.4 Summary and Conclusions

Measurements of nitrogen oxides made at the Pico Mountain station from July 2002 to

August 2005 were used to estimate the magnitude and seasonal variability of nitrogen

oxides over the central North Atlantic lower FT and to determine the processes that

contribute to this variability.

These measurements reveal the presence of a well-defined seasonal cycle of nitrogen

oxides in the background central North Atlantic lower FT, with larger mixing ratios

during the summertime. Median NOx and NOy of 17–31 pptv and 125–338 pptv

observed at the Pico Mountain station were lower than those previously observed
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over the western North Atlantic region and more similar to those observed at the

remote marine North Pacific MLO station. The observed NOx and NOy levels were

consistent with long-range transport of emissions with significant removal upwind of

the measurement site.

Observations of NOx and NOy and estimates of PAN and HNO3 indicate that

reactive nitrogen over the central North Atlantic lower FT largely exists in the form

of HNO3 and PAN, independent of the season. A shift from dominance of PAN in

winter–spring to dominance of HNO3 in summer–fall that occurs over this region is

attributed to strong decomposition of PAN to NOx and efficient formation of HNO3

from rapid reaction of NOx with OH during the summer and fall seasons.

Nitric acid contributes 53–71% of NOy during the summer. Given the significant

removal of NOy during transport, this suggests that the oxidation of NOx resulting

from decomposition of PAN in the airmasses during subsidence, or advection over the

ocean with minimal removal, results in a significant source of HNO3 to the central

North Atlantic lower FT. The decomposition of PAN in the airmasses has important

implications for O3 formation, since released NOx is available to form O3 before

oxidation to HNO3 during transport to the central North Atlantic lower FT.

North American anthropogenic emissions impacted the measurement site all year

round. Enhancements of NOy in North America outflow show that, consistent with

previous observations, the majority (95–97%) of NOx emitted over the U.S. is removed

before or during export out of the U.S. BL. However, these fractions imply that about

30% of the emissions that escapes the U.S. BL is efficiently transported as NOy to

the lower FT over the central North Atlantic region. Enhancements of NOx in these

plumes indicate that decomposition of PAN to NOx and potentially photolysis of

HNO3 occurring in the airmasses during subsidence and/or advection westward to the

Azores constitute a significant source of NOx to the central North Atlantic lower FT,

in particular during the fall. Observed ∆O3/∆NOy and large NOy levels remaining

in the North American plumes suggest a potential for O3 formation well downwind
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from North America. For example, during the summer, O3 formation downwind from

North America resulting from the transport of nitrogen oxides may be as important

as the direct export of O3 produced within the U.S. BL.

Boreal wildfire emissions were responsible for significant shifts in the nitrogen ox-

ides distributions toward higher levels, when medians NOx and NOy were respectively

117–175 pptv and 9–30 pptv, greater with the presence of boreal wildfire emissions.

Since our observations were made very far downwind from the boreal region, we con-

clude that aged boreal fire emissions significantly altered the background NOx and

NOy levels over a large region of the Northern Hemisphere. During the summer, boreal

wildfire emissions appear to cover the impact caused by North American emissions.

This highlights the need to understand the impact of boreal wildfires on tropospheric

NOx levels and the resulting implications for O3, in order to evaluate the influence of

anthropogenic emissions on the NOx and O3 budgets during the summer season.

A comparison of nitrogen oxides observations with GEOS-Chem simulations in-

dicates that GEOS-Chem reproduces the seasonal variation of nitrogen oxides over

the central North Atlantic lower FT. However, it does not capture the magnitude of

the cycles. Important differences were found for PAN, a critical species in the global

formation of O3 via dispersal and release of NOx. Over recent decades, there have

been significant changes in global fossil-fuel NOx emission [Richter et al., 2005], and

even larger emissions are expected in the future. In addition, as a result of climate

change, more frequent and severe boreal wildfires are also expected, which will result

in an increase in the boreal wildfire emissions [Stocks et al., 1998; Flannigan et al.,

2000]. Therefore, accurate simulation of the fate and transport of nitrogen oxides is

necessary to understand how these emissions have impacted, and will impact, tro-

pospheric NOx at hemispheric scales and the resulting implications for tropospheric

O3.



Chapter 3

Impacts of North American Boreal

Wildfire Emissions on the North

Atlantic Lower Free Troposphere†

Boreal wildfires are large sources of reactive trace gases and aerosols in the atmo-

sphere [e.g., Goode et al., 2000; Andreae and Merlet , 2001]. The large amounts of trace

gases and aerosols emitted by boreal forest fires are subject to long-range transport,

with the potential to affect air quality from regional to global scales. Boreal wildfire

plumes have been detected over continental [Wotawa and Trainer , 2000], intercon-

tinental [Forster et al., 2001; Honrath et al., 2004], and even hemispheric [Damoah

et al., 2004] distances. It is recognized that boreal wildfires play an important role

in the magnitude and interannual variability of tropospheric background CO in the

Northern Hemisphere [e.g., Novelli et al., 2003; Edwards et al., 2004; Kasischke et al.,

2005]. Recent studies have also shown increased mean background summertime O3

†This chapter is based on material previously published as Val Mart́ın M., R. Honrath, R.C.

Owen, G. Pfister, P. Fialho and F. Barata (2006), Significant enhancements of nitrogen oxides,

ozone and aerosol black carbon in the North Atlantic lower free troposphere resulting from North

American boreal wildfires, J. Geosphys. Res., 111, D23S60, doi:10.1029/2006JD007090.
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over northwestern North America [Jaffe et al., 2004], the central North Atlantic [Lap-

ina et al., 2006] and Europe [Simmonds et al., 2005] associated with fire emissions

transport. This indicates that boreal wildfires may also impact background O3.

Ozone plays an important role in the chemistry of the atmosphere since it is

estimated to be the third most important greenhouse gas [Alley et al., 2007], and is

the primary source of tropospheric hydroxyl radical. In addition, O3 has negative

impacts on ecosystems and human health. Typically, tropospheric O3 production

in the Northern Hemisphere is driven by anthropogenic emissions. However, boreal

wildfires are an important source of CO, NOx and NMHCs, resulting in the potential

for significant formation of O3 during the boreal fire season. Large-scale impacts of

boreal fire emissions on tropospheric O3 can occur as a result of dispersion of O3

formed in boreal wildfire plumes. Alternatively, impacts on CO, NOx and NMHCs

in the remote atmosphere could also lead to impacts on the O3 budget over a large

region.

The magnitude of the resulting impact of boreal wildfire emissions on tropospheric

ozone is not yet well quantified. Prior observations in boreal wildfire plumes indicate

O3 enhancements that range from very low in fresh plumes [e.g., Goode et al., 2000;

Tanimoto et al., 2000] to low in moderately-aged plumes [e.g., Wofsy et al., 1992;

Mauzerall et al., 1996] to high in well-aged plumes [e.g., Honrath et al., 2004; Bertschi

and Jaffe, 2005]. Boreal wildfire emissions have a large degree of variability, and are

a function of fuel type (e.g., peat fires versus crown fires) and/or burning conditions

(e.g., smoldering versus flaming) [Goode et al., 2000; Kasischke et al., 2005]. This

causes uncertainty and variability in the emissions of NOx, a critical compound that

controls O3 production rate.

Measurements of a number of reactive nitrogen species over the North American

boreal region were made during the ABLE3A and ABLE3B campaigns. These stud-

ies showed that the reactive nitrogen distribution over this region was significantly

affected by boreal wildfire emissions [e.g., Sandholm et al., 1992; Singh et al., 1994].
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However, the photochemical O3 production resulting from boreal wildfire NOx emis-

sions was concluded to be a negligible source of O3 over this region [Jacob et al., 1992;

Mauzerall et al., 1996], due to a combination of low NOx emissions and low estimated

total fire magnitude. However, these studies suggested that dispersion of PAN pro-

duced in the fire plumes may provide a major source of NOx, particularly in warmer

layers of the troposphere at low altitude [Jacob et al., 1992; Singh et al., 1994], and

hence could contribute to O3 production far downwind from the fires. Consistent

with this expectation, DeBell et al. [2004] reported significant enhancements of NOy

and O3 at several surface sites over the eastern U.S. resulting from a Quebec boreal

wildfire plume in July 2002. However, most of these measurements were made in the

boundary layer, and loss of NOy and O3 by surface deposition may have obscured the

true magnitude of the fire plume aloft.

In addition to trace gases, boreal wildfires emit large amounts of aerosol black

carbon (BC), on average about 10% of the annual anthropogenic BC emissions in the

Northern Hemisphere [Bond et al., 2004]. Recently, it has been shown that BC emis-

sions from boreal wildfires and anthropogenic sources can be efficiently transported

to remote regions, such as the Arctic [Stohl et al., 2006] and the northwestern Pacific

region [Park et al., 2005]. BC emissions are a significant factor in climate change

due to their absorption of light in the atmosphere [Hansen et al., 2000; Bond and

Sun, 2005]. Therefore, the export of BC far downwind from the source emissions may

contribute to the radiative forcing of the atmosphere, and thereby affect climate.

During summer 2004, extensive wildfires burned in Alaska—the largest area on

record— and western Canada, releasing large amounts of trace gases and aerosols

into the atmosphere. For instance, CO emitted from mid-June to August was on the

order of the anthropogenic CO emissions for the entire continental U.S. during that

same time period [Pfister et al., 2005; Turquety et al., 2007]. Intense plumes of these

boreal wildfires were observed over large regions of North America and Europe by

research aircraft [Flocke et al., 2005; Real et al., 2007; de Gouw et al., 2006] and at
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several sites over the Arctic [Stohl et al., 2006] during the International Consortium for

Atmospheric Research on Transport and Transformation (ICARTT) study [Fehsenfeld

et al., 2006].

In this chapter, we present measurements of the composition of highly aged plumes

from these fires sampled in the North Atlantic lower free troposphere (FT), using

measurements at the Pico Mountain station. Measurements of CO, BC, NOy, NOx

and O3 made from June to early September, 2004, are analyzed to assess the impact

of boreal wildfires on levels of aerosol BC and nitrogen oxides (NOx and NOy) over

the central North Atlantic lower FT, to characterize the associated enhancements of

O3 in highly aged plumes, and to determine the resulting implications of the North

American boreal wildfires for the regional and hemispheric NOx and O3 budgets.

3.1 Experimental Methods

3.1.1 Pico Mountain Station

Observations of CO, BC, NOx, NOy and O3 were made at the Pico Mountain obser-

vatory from June to September, 2004. The Pico Mountain station is situated on the

summit caldera of the inactive volcano Pico (altitude 2.2 km) in the Azores Islands,

Portugal (38◦N, 28◦W). The Azores are frequently impacted by airflow from high

latitudes, which can transport emissions from boreal wildfires in Canada, Alaska and

Siberia, and bring them to the Azores 6 to 15 days later. The station is located in the

lower FT since marine boundary layer heights in this region are typically less than 1

km during the summer. Upslope flow can transport air from lower altitudes to the

mountaintop, including occasionally from the boundary layer. However, a detailed

assessment of the impact of upslope flow to the station found that upslope flow affects

the Pico Mountain station much less than it does many other mountain observatories,

and on many summer days tropospheric air is sampled throughout the day [Kleissl
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et al., 2007]. From June to September 2004, less than 25% of the time presented the

meteorological conditions necessary for an air mass from below the mountain to reach

the summit, i.e., weak synoptic winds and strong insolation for buoyant driven lifting

or strong synoptic winds for mechanically driven lifting. Periods potentially affected

by upslope flow were identified as described by Kleissl et al. [2007] and removed from

the analysis. None of the periods discussed in detail below contain data affected by

upslope flow. Further details on the Pico Mountain station and the occurrence of up-

slope flow to the station are presented elsewhere [Honrath et al., 2004; Kleissl et al.,

2007].

3.1.2 Measurements

3.1.2.1 Nitrogen oxides

NO, NO2, and NOy were determined by an automated NOx,y system developed at

Michigan Technological University. This NOx,y system is an improved version of the

instrument previously described by Peterson and Honrath [1999]. NO, NO2, and NOy

were determined using established techniques: NO detection by O3 chemiluminescence

[Ridley and Grahek , 1990], NO2 by conversion to NO via ultraviolet photodissocia-

tion [Kley and McFarland , 1980; Parrish et al., 1990], and NOy by Au-catalyzed

reduction to NO in the presence of CO [Bollinger et al., 1983; Fahey et al., 1985].

The NOx,y system was operated on an automated cycle, which included twice-daily

NIST-traceable calibration with NO and NO2, regular measurements of NO and NO2

(twice per week) and NOy (once per week) artifacts in zero air, and determination of

the NOy conversion efficiency in ambient air of two NOy compounds (i-propyl nitrate

and HNO3) and one non-NOy compound (CH3CN). Measurements were recorded as

30-s averages (NO and NO2) and 20-s averages (NOy) every 10 min, and were further

averaged to obtain the 30-min averages used in this work. Ambient NO2 was deter-

mined by subtracting the signal due to ambient NO from the NO2 instrument signal,
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and further multiplying this term by the NO2 sensitivity [Gao et al., 1994]. NOx was

calculated as the sum of the 30-s average measurements of NO and NO2 during a

single measurement cycle.

Total uncertainty of the NO, NO2 and NOy measurements at low mixing ratios

resulted from measurement precision and uncertainty in the instrument artifact cor-

rection, while measurement accuracy was the primary source of uncertainty at higher

levels. The precision of individual measurements was mainly attributable to counting

noise, which resulted from photon counting statistics. Excluding periods with high

ambient variability, the precision (2-σ) of the 30-min averages was less than 6 pptv

(median 5 pptv) for NO, less than 13 pptv (median 10 pptv) for NO2, less than

14 pptv (median 10 pptv) for NOx, and less than 9 pptv (median 6 pptv) for NOy.

Potential bias resulting from uncertainty in the artifact correction was estimated to

be less than 2 pptv for NO, 4 pptv for NO2, 4 pptv for NOx and 2 pptv for NOy.

Measurement accuracy was estimated to be 4% based on total uncertainty of the

sample and calibration mass flow controllers and the NO standard calibration gas

mixing ratio.

Accuracy of the NOy measurements also depends on the effective conversion of

NOy compounds and the lack of significant conversion of non-NOy compounds [Fahey

et al., 1985; Kliner et al., 1997; Kondo et al., 1997], in addition to the accurate

determination of the resulting NO. Based on standard addition tests and regular

calibrations, the observed NOy included 92–100% of the actual NO2 level (typically

97–100%), with similar values expected for PAN [Fahey et al., 1985], 70–100% of the

actual HNO3 level, and 80–100% of the actual i-propyl nitrate. Measurements of

NOy presented in this work were corrected for non-unity NOy conversion by using

the NO2 conversion efficiencies measured at the system. A maximum correction of

8% was applied, and mainly affected the NOy observations made from mid-July to

mid-August when a degraded NOy converter lowered the NO2 conversion efficiency

to 92–95%. A manual wet cleaning procedure was implemented in mid-August, and
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the NO2 conversion efficiency was restored back to the expected value of 97–100%. In

addition to the incomplete conversion of the NOy species, this type of NOy converter

may overestimate true NOy levels [Fahey et al., 1985; Kliner et al., 1997]. However,

that was not a problem during this study. Interference from reduced nitrogen species

(such as NH4, HCN, and CH3CN) was found to be always less than 0.3% during

regular (twice-daily) testing using standard addition of CH3CN, a potential NOy

interferant present in biomass-burning plumes [de Gouw et al., 2003]. This level of

CH3CN conversion in our system did not significantly contribute to the observations

of NOy gathered during boreal wildfire plumes: using the maximum enhancement

of CH3CN relative to CO (3.52 pptv CH3CN/ppbv CO) in the boreal fire plumes

intercepted by the NOAA WP-3 research aircraft during summer 2004 [de Gouw

et al., 2006], we estimate that the maximum impact of CH3CN on the NOy/CO

enhancement ratios presented below is 0.01 pptv/ppbv CO, less than 0.2% of the

lowest NOy/CO enhancement ratio reported below.

Observations of nitrogen oxides made during periods with near-calm winds and

high ambient variability were also excluded from the analysis. This was done for

two reasons. First, calm winds may lead to the removal of HNO3 by deposition on

the mountain surface. Therefore, observations of NOy during these periods may not

be representative of the actual upwind NOy levels. Second, unexpected spikes in

ambient NOx and NOy were sometimes observed during low-wind periods (usually

wind speeds less than 3 m/s), suggesting that a local source may have perturbed the

measurements. Based on analysis of air sampled directly at several volcano vents

(with NOx reaching 1 to 8 ppbv), we deduce that volcanic emanations were the cause

of the observed spikes. Therefore, to ensure that all the NOx and NOy observations

were representative of free tropospheric air, we excluded (1) measurements made

during low to calm winds (wind speed < 1 m/s), to avoid including NOy observations

with potential HNO3 removed on the mountain surface, and (2) measurements with

high ambient variability, to avoid including nitrogen oxides resulting from volcanic
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emissions. For this purpose, periods with high ambient variability were defined as

those when the 30-min NOx standard error was above 10 pptv or the 30-min NOy

standard error exceeded 10 pptv+0.25([NOy]-90), where the second term was included

to allow increased variability during periods of high NOy. The wind speed criterion

removed 7% of the measurements during the study period, and the ambient variability

screen removed an additional 23%.

3.1.2.2 CO and O3

CO was measured by a non-dispersive infrared (NDIR) photometer (Thermo En-

vironmental, Inc. (TEI), Model 48C-TL), modified as described by Parrish et al.

[1994] and calibrated daily with a CO calibration gas referenced to the NOAA Global

Monitoring Division standard. The instrument alternated between two minutes of

zero measurement and two minutes of ambient measurement; the first minute of each

mode was discarded to ensure equilibration. O3 was measured with a commercial

ultraviolet absorption instrument (Thermo Environmental, Inc., Model 49C). The

stability of the zero reading and the absence of O3 loss in the inlet and line were

confirmed on a daily basis. CO and O3 data were recorded as one minute averages,

and were further averaged to obtain the 30 minute averages used in this work. CO

measurement uncertainty (2-σ) was estimated to be 7% based on total uncertainty

of the sample and calibration mass flow controllers and the CO calibration standard

mixing ratio. The 30-min averages used in this work averaged 7 to 8 one-min average

points, and had a precision (2-σ) of 9 ppbv from June to mid-July, and 4 ppbv after

mid-July. O3 measurement precision (2-σ) was usually less than 1 ppbv, based on the

standard deviation of the 30 one-min measurements included in each 30-min average.

More details on the CO and O3 instruments are presented by Owen et al. [2006] and

Honrath et al. [2004].
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3.1.2.3 Aerosol Black Carbon

Measurements of aerosol light absorption at seven wavelengths (0.37, 0.47, 0.52, 0.59,

0.66, 0.88 and 0.95 µm) were conducted using an aethalometer (Magee Scientific,

Model AE31). Briefly, this instrument determines the attenuation of light at these

wavelengths transmitted through particles accumulated on a quartz filter, relative to

a clean spot on the same filter. The change in attenuation as a function of time is

used to determined the light absorption coefficient (σaerosol). The σaerosol as a function

of wavelength is analyzed to identify the presence of non-BC absorbing compounds

[Fialho et al., 2005] (none were significant during the period discussed here) and

converted to BC using the calibration constant recommended by the manufacturer

(14.6 µm m2 g−1). The detection limit of the aethalometer depends mainly on the

stability of the optics, filter spot area errors, flow rate uncertainties and time error,

and was estimated to be 25 ng m−3 (2-σ) for the integration period of one hour. More

details on the aethalometer used in this study and the approach used to determine

the BC concentrations are presented elsewhere [Fialho et al., 2005].

3.1.3 Model Simulations and Transport Analysis

To identify periods apparently impacted by upwind boreal wildfire emissions, we

examined CO mixing ratios simulated at the Pico Mountain station by the Model for

OZone and Related Chemical Tracers (MOZART) global chemical transport model

[Horowitz et al., 2003]. MOZART simulations were driven by 6-hourly meteorological

fields from the National Centers for Environmental Predictions (NCEP) National

Center for Atmospheric Research re-analysis. The spatial resolution of the model

is ∼2.8◦ x 2.8◦ with 28 levels between the surface to 2 hPa. The chemical time

step of the model is 20 minutes. Emissions of CO from the 2004 North American

boreal wildfires were optimized to match MOPITT CO observations using an inverse

modelling technique [Pfister et al., 2005]. Boreal wildfire CO emissions were injected
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uniformly from 0 to 9 km. MOZART simulations used in this work are mixing ratios

averaged over 2-hr intervals and interpolated to the pressure and location of the Pico

Mountain observatory [Pfister et al., 2006]. To assess the magnitude of fire impact

at the Pico Mountain station, we used the MOZART-simulated ratio of CO fire

tracer (CO emitted from North American boreal wildfires) to total CO mixing ratio

(i.e., [CO]fire/[CO]total) interpolated to the measurement times (hereinafter termed

the “MOZART fire-CO fraction”).

A second MOZART tracer was used for U.S. anthropogenic CO emissions to evalu-

ate the contribution of anthropogenic emissions during the fire-impacted observations.

For this purpose, we used the MOZART-simulated ratio of U.S. anthropogenic CO

tracer to total CO mixing ratio at the Pico Mountain station (i.e., [CO]anthro/[CO]total)

interpolated to the 30-min average field observations (hereinafter termed the “MOZART

anthro-CO fraction”).

To complement field observations and MOZART simulations, we used backward

trajectories analysis. We calculated backward trajectories with the Hybrid Single-

Particle Lagrangian Integrated Trajectories (HYSPLIT-4) model [Draxler and Rolph,

2003]. This model uses 6-hourly data from the NCEP global FNL meteorological

dataset. Ten-day backward trajectories were calculated every hour. At each hourly

arrival time, six backward trajectories ending at six different locations near the Pico

Mountain station were calculated: one centered at the station, four separated from

the first by 1◦ latitude and longitude, and one below the station, at 2000 m.

3.2 Results and Discussion

Time series of CO, BC, NOy, NOx and O3 measurements and MOZART fire-CO

fraction at the Pico Mountain station from July to September 5, 2004 are shown

in Figure 3.1. Frequent periods with elevated CO levels coinciding with maxima of

MOZART fire-CO fraction are evident.
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Figure 3.1 Summer 2004 time series of CO, BC, NOy, NOx, O3 measurements, and MOZART fire-CO fraction
at the Pico Mountain station. CO is plotted with open blue circles, NOy with red squares, NOx with open
orange circles, BC with open purple triangles, O3 with green triangles and MOZART fire-CO fraction with a
dash-dotted line. Events identified as potentially boreal fire-impacted periods are identified with hatched areas;
events further discussed in the text are numbered above the plot.
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3.2.1 Identification of Fire-Impacted Periods

Periods when the hourly average of CO was above 110 ppbv and the MOZART fire-

CO fraction was above 0.1 were identified as potentially impacted by upwind boreal

wildfire emissions. The CO value of 110 ppbv is well above typical background CO

levels at the station and is approximately the maximum value observed in boreal

region outflow in the absence of fires, as discussed in section 3.2.3.1 below. (Although

we use 30-min averages of CO throughout the remainder of this work, for the purpose

of identifying fire-impacted periods we used hourly averages of CO to smooth the

CO measurements and compare them with the CO cutoff value.) The MOZART

fire-CO fraction cutoff of 0.1 corresponds to approximately the 70th percentile of

all model simulated values at the Pico Mountain station for summer 2004. Both of

these cutoff values were designed to be conservative and, as a result, may omit some

additional periods influenced by boreal wildfire emissions. For example, on August 12

12:00–August 15 23:00, an enhancement of MOZART fire-CO fraction above 0.1 was

correlated with an increase in CO, but CO did not exceed the 110 ppbv cutoff value.

Conversely, on July 30 7:00–11:00, the hourly average CO increased to 135 ppbv while

backward trajectories indicated transport from active fires, but the MOZART fire-

CO fraction was lower than 0.07, likely as a result of the model spatial resolution.

Although both of these cutoff values are somewhat arbitrarily selected, we find that

the use of slightly larger or smaller cutoffs would not significantly affect the results

presented below.

In addition to outflow directly from the boreal regions, flow patterns that bring

air to the Azores from higher latitudes can travel over the eastern U.S. [Owen et al.,

2006]. Therefore transport of boreal wildfire emissions over the Azores may be mixed

with air potentially containing North American anthropogenic emissions, which can

also be characterized by significant enhancements of CO and O3 [Honrath et al.,

2004]. To determine the magnitude of the impact of anthropogenic emissions during
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the boreal wildfire periods, we use the MOZART anthro-CO fraction (not shown in

Figure 1). According to the MOZART simulations, anthropogenic emissions may

explain some of the enhancements of CO at the station during summer 2004 either

alone (e.g. August, 25 8:00–19:00) or in combination with boreal wildfire emissions

(e.g. July 19, 2:00–9:00). To avoid inclusion of observations significantly affected by

upwind anthropogenic emissions, we exclude from further analysis all observations

with MOZART anthro-CO fraction values above 0.1. This MOZART anthro-CO

fraction cutoff corresponded to approximately the 70th percentile of all model values

simulated at the site.

To better understand transport patterns during the periods identified as fire-

impacted, we examined backward trajectories arriving at the Pico Mountain station

altitude. Consistent with MOZART simulations, backward trajectories indicate trans-

port of air that originated from the boreal regions in Alaska and/or Canada as shown

in Figures 3.2a and 3.2b. However, the backward trajectories during a few periods

indicated intermixing of subtropical and/or tropical air (hereinafter termed tropical

air) with the boreal region outflow. Figure 3.2g shows an example of tropical back-

ward trajectories intermixed with boreal region outflow. Observations made during

these periods may be affected by clean tropical air and, thus, may not be represen-

tative of boreal region outflow. We identified periods potentially affected by tropical

air when one or more backward trajectories originated over the Atlantic Ocean south

of Pico Island (<35◦N) and spent more than 90% of the time over the Atlantic Ocean

before arriving at the site. We therefore omit all observations associated with trop-

ical air intermixing from the analysis, with the following exception: during July 23

2:00–18:00, although tropical air masses intermixed with boreal region outflow up-

wind the station, very large mixing ratios of CO recorded during most of the period

([CO]>180 ppbv) indicate a lack of significant tropical air impact.

Periods identified as potentially affected by boreal wildfire emissions based on

CO enhancements and MOZART fire-CO fraction criteria are identified with hatched
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Figure 3.2 Backward trajectories arriving at the measurement site during boreal region outflow: (a, e) boreal
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areas in Figure 3.1; periods identified with the same criteria, but excluding periods

of anthropogenic or tropical influence are also enumerated in Figure 3.1. Table 3.1

provides the statistics of the observations of CO, BC, NOy, NOx and O3 for both cri-

teria, i.e. all fire-impacted observations and those excluding anthropogenic or tropical

influence.

3.2.2 Overview of Summer 2004 Boreal Wildfire Observa-

tions

The impact of boreal wildfire emissions at the Pico Mountain station was very frequent

during summer 2004, as shown in Figure 3.1. A total of 21 events with apparent

fire impact were identified during the period of study, accounting for 16% of the

measurement time from July 1 to September 5. Of these, 9 were unaffected by

potential tropical or anthropogenic impacts. We focus only on these fire-impacted

periods without anthropogenic or tropical influence, and refer to these periods as

boreal wildfire events in the remainder of this paper. These 9 events are numbered in

Figure 3.1. During these events, BC, NOy, NOx and O3 levels were also elevated and

significantly correlated with CO in most of the cases. MOZART daily CO fire tracer

distributions during the ICARTT study (July 10–August 8) indicated the impact of

North American fire emissions emitted 6 to 15 days earlier during the events identified

during this period (i.e. events 1–5).

Figures 3.3a and 3.3b show the time series of 30-min average observations of

CO, NOy, NOx and O3, and 1-hr average observations of BC during July 22–24 and

September 1–2. These events, labelled respectively event 1 and event 9 in Figure 3.1,

represent two of the most intense fire emission episodes observed during the study.

Levels of CO, BC, NOy and O3 during July 22–24 were extremely enhanced for more

than a day, peaking at 249 ppbv, 665 ng m−3, 1100 pptv and 75 ppbv, respectively.

(NOx measurements were not available during this event.) This period had the highest
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level of CO yet recorded at the Pico Mountain station. Similarly, CO, BC, NOy, NOx

and O3 levels were also strongly elevated for more than a day during September 1–2,

with peaks of 243 ppbv, 329 ng m−3, 685 pptv, 134 pptv and 62 ppbv, respectively.

The MOZART fire-CO fraction was also particularly high during these two events,

as shown in Figure 3.1.

Analyses of backward trajectories during events 1 and 9 confirm that the enhance-

ments of these species occurred when airflow from Alaska and/or Canada arrived at

the station. Examples of backward trajectories associated with the passage of the bo-

real fire plumes for these events are shown in Figures 3.2a and 3.2b. For comparison,

Figures 3.2g and 3.2h show the airflow before the passage of each boreal fire plume.

An important feature of these events is that the levels of these species remained con-

stantly high for more than 24 hours, suggesting the impact of two very large highly

aged plumes.

3.2.3 Impacts of Boreal Wildfire Emissions

In this section, we assess the impacts of boreal wildfire emissions by comparing en-

hancements of CO, BC, NOy, NOx and O3 in fire-impacted boreal outflow to levels

under similar conditions but in the absence of fires. First, however, we discuss the

estimation of levels during periods of boreal outflow in the absence of fire emissions.

3.2.3.1 Estimation of Levels in Absence of Fires

To estimate the background concentration at the Pico Mountain station in air from

the fire source region, but in the absence of fire emissions, we identified two periods

when boreal region outflow reached the station prior to the occurrence of the large

fires: June 7 5:00–9:00 and June 19 8:00–19:00. Early June was a period with low

area burned over northern North America, and as a result, with low boreal wildfire

emissions [Turquety et al., 2007]. Therefore, we expect that the contribution of boreal
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Figure 3.3 Time series of 30-min average CO, NOx, NOy and O3, and 1-hr average BC observations during
two boreal wildfire events and one boreal outflow period without upwind fire emissions: a) Fire event 1: July 22
1800–July 23 21:00 (NOx measurements are not available), b) Fire event 9: September 1 16:30–September
2 16:00 and c) Non-fire event: June 19 8:00–19:00 (NOx and NOy measurements are not available). CO
is plotted with open blue circles, NOy with red squares, NOx with open orange circles, BC with open purple
triangles and O3 with green triangles. Vertical solid lines indicate the start and end time of the event; remaining
data are plotted to make the events more apparent.
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wildfire emissions to our site was small during these two periods. This is consistent

with MOZART simulations, which indicate a maximum fire-CO fraction of 0.05 during

these periods.

Figure 3.3c shows the time series of 30-min average observations of CO and O3

and 1-hr average observations of BC during the longer of these events, June 19 8:00–

19:00. (NOx and NOy measurements were not available at this time.) Example of

the backward trajectories associated with the passage of the air masses during and

before this period are shown in Figures 3.2c and 3.2i, respectively. Average levels of

CO, BC and O3 during this period are used as background levels of these species for

comparison with fire-impacted periods below. In addition, the maximum level of CO

during this event (111 ppbv) was the basis for the 110 ppbv cutoff to select the boreal

fire-impacted periods, as discussed in section 3.2.1. (The CO and O3 background

values used in this work are somewhat larger than the levels in non-fire air presented

for the same dataset by Lapina et al. [2006], because that analysis included periods

with a mixture of boreal and non-boreal air).

MOZART simulations during the other non-fire boreal outflow period indicate

that anthropogenic emissions may have contributed to these observations (i.e., the

MOZART anthro-CO fraction was above 0.1). However, nitrogen oxides measure-

ments in non-fire-impacted boreal outflow were available only during the June 7 event.

(Few measurements were available in June 2004 due to testing of the instruments prior

the ICARTT campaign.) Average mixing ratios of NOy and NOx during this period

were used as upper-limit estimates of the background of these species in boreal region

outflow in the absence of fires.

The background levels of CO, BC, NOy, NOx and O3 used for boreal region

outflow in the study are compared to background levels reported within the North

American boreal region in Table 3.2. A wide range of background levels have been

reported over the North American boreal region, reflecting differences in the latitude

and altitude regions sampled, and the years of study. The values used here are
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similar to the background levels reported over the North American boreal region.

The enhancement ratios calculated below are dependent on the background values

used. This is discussed further in section 3.2.4.

3.2.3.2 Comparison of Levels in Boreal Region Outflow with and without

Fire Emissions

Levels of CO, BC, NOy, NOx and O3 during boreal region outflow with fire emissions

are summarized and compared to levels observed during boreal region outflow without

fire emissions in Table 3.1. Statistics for all summertime observations are also shown.

Average CO mixing ratios during the boreal wildfire events (144 ppbv) were above

levels observed during flow from boreal region without fire emissions (100 ppbv),

and were nearly double the summertime background (estimated as equal to the 30th

percentile of all summertime measurements, 77 ppbv). This significant impact is

consistent to what it has previously been observed at the Pico Mountain station

[Honrath et al., 2004; Lapina et al., 2006], and for the entire Northern Hemisphere in

years of high fire activity [e.g., Novelli et al., 2003; Edwards et al., 2004; Kasischke

et al., 2005].

Levels of BC, NOy, NOx and O3 were also increased during the fire-impacted

events, with levels of these species above those observed in boreal outflow in the

absence of fires, and well above the typical summertime background at the site. For

example, average NOx mixing ratios during the boreal wildfire events (77 pptv) were

double those observed in boreal outflow without fire emissions (35 pptv) and triple

the summertime background at the site (23 pptv).

Figures 3.4a–3.4d show the relationships between CO (used as a tracer of fire

emissions) and BC, NOy, NOx and O3. Solid color-coded symbols represent obser-

vations obtained during each boreal wildfire event, with one exception: grey circles

represent the early June observations made in non-fire boreal outflow discussed in

section 3.2.3.1. Most of the fire-impacted observations were above the background
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from the boreal regions in the absence of fires, consistent with the average difference

noted above. In almost all events, these species were well correlated with CO, al-

though distinct behaviors were observed depending on the levels of CO, in particular

for O3, as discussed further below.

As discussed in section 3.2.1, a number of fire-impacted observations were excluded

from the boreal wildfire events due to probable mixing of tropical air or MOZART-

simulated anthropogenic emission transport. These observations are also shown in

Figure 3.4: observations omitted due to tropical air mixing are represented with open

cyan circles and those omitted due to anthropogenic emissions impact are represented

with open black squares. Observations omitted due to tropical air mixing fall into two

distinct groups of points, suggesting differing degrees of mixing. Of the observations

excluded because of anthropogenic impact, some had exceptionally large NOy, NOx

and O3 levels, suggesting significant anthropogenic impacts on those species as well.

This impact is expect to be small in the events that were not excluded however. Dur-

ing those boreal wildfire events, MOZART-simulated anthropogenic CO was always

below 7 ppbv, and usually (60% of the observations) below 3 ppbv.

3.2.4 Analysis of Enhancement Ratios in the Boreal Wildfire

Plumes

To characterize the amount of emitted BC and NOx that still remains in the plumes

and the net O3 production occurring in these plumes during transport to the station,

we determined the enhancement ratio of BC, NOy, NOx and O3 with respect to CO

during each boreal wildfire event [e.g., Wofsy et al., 1992; Stohl et al., 2002]. CO

is commonly used as a tracer because it is emitted from combustion processes in

large quantities and has relatively a long lifetime [Novelli et al., 1992]. We consider

CO as an inert tracer in this approach. de Gouw et al. [2006], based on analysis of

VOC measurements, indicated that OH concentrations in the boreal wildfire plumes
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Figure 3.4 Relationship between CO and the indicated species during summer 2004: a) BC versus CO, b) NOy

versus CO, c) NOy versus CO and d) O3 versus CO. Boreal wildfire events listed in Table 3.3 and identified in
Figure 1 are coded as follows: Event 1 (dark grey triangles), event 2 (magenta circles), event 3 (purple circles),
event 4 (red squares), event 5 (green diamonds), event 6 (black squares), event 7 (black diamonds), event 8
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cyan circles; fire-impacted observations apparently impacted with anthropogenic emissions are plotted with
open black squares. Observations made during non-fire-impacted boreal outflow are plotted with small solid
grey circles; non-fire-impacted boreal outflow observations with anthropogenic impact are plotted with open
grey circles. The black square represents the average of non-fire-impacted boreal outflow observations, and
black error bars connect minimum and maximum values observed. All other measurements during summer
2004 are plotted with small black dots.
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intercepted by the NOAA WP-3 were four times smaller than typical values in the

North Atlantic troposphere. Hence, CO reaction with OH is expected to be limited in

the boreal fire plumes during the 6–15 days travel time to the station. We calculated

mean values of ∆CO, ∆BC, ∆NOy, ∆NOx and ∆O3 during each boreal wildfire event,

and calculated enhancement ratios relative to CO for each event using these mean

values. Here ∆ indicates the difference between the concentration of the indicated

species and the background concentration (e.g. ∆CO= [CO]-[CO]bkgd). Enhancement

ratios are critically dependent on the background levels used [Mauzerall et al., 1998].

Our background levels were derived using observations during transport events in

June, as discussed in section 3.2.3.1. This results in background levels higher than

those that would be estimated using clean marine levels or using the 30th percentile of

all summertime measurements. This leads to reduced calculated enhancement ratios

for all the species.

Table 3.3 presents the resulting enhancement ratios. A large variability of en-

hancement ratios was observed. There are two causes that probably contributed to

the varying enhancement ratios: different emission rates, which vary as a function of

fuel type and burning conditions [Goode et al., 2000; Reid et al., 2005], and varying

degrees of removal during transport. We examine both processes in the following

sections.

3.2.4.1 Aerosol Black Carbon

The relationships between BC and CO in boreal fire plumes and in background air

from boreal regions are shown in Figure 3.4a. Estimated ∆BC/∆CO ratios for each

boreal fire event are shown in Table 3.3. Black carbon was significantly enhanced in

all events relative to background from boreal outflow without upwind fire emissions,

with the exception of events 5 and 6 (green diamonds and black squares in Figure 3.4a,

respectively).

A broad range of BC enhancement ratios (0.5–8.4 ng m−3/ppbv; Table 3.3) were
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observed in the boreal fire plumes. Large variability in BC emissions from boreal wild-

fires has been reported previously. For example, BC concentrations during smoldering

combustion are low, with BC mass fractions typically 2–5% of all carbon particles

emitted, while BC mass fractions from flaming combustion are 4 to 28% of all carbon

particles emitted [Reid et al., 2005, and references therein].

However, washout processes during transport to the station may also have con-

tributed to this variability. To evaluate this possibility, we examined precipitation

during transport and meteorological conditions at Pico during each event. For this

purpose, we extracted rainfall rates from the HYSPLIT model output for the back-

ward trajectories during each event and analyzed relative humidity measurements

and archived photos of conditions at the station. Average rainfall rates were low (less

than 0.05 mm/hr) in all backward trajectories travelling from the boreal region to the

station, with the exception of events 5, 6 and 9, which showed average rainfall rates of

0.09, 0.06 and 0.08 mm/hr, respectively. (These events are represented by green dia-

monds, black squares and blue diamonds in Figure 3.4a, respectively.) Conditions at

the station were dry and sunny during all events, with the exception of event 6, when

heavy fog, and most likely rain, was present. Therefore, the lower ∆BC/∆CO ratios

during events 5, 6 and 9 compared to those during the other events are consistent

with the wet scavenging of a greater fraction of BC during transport and/or at the

station location during those events. This is consistent with previous observations of

light absorbing aerosols (e.g., BC) in boreal fire plumes, which indicate that a large

fraction of aerosols may be removed in the presence of rain and/or clouds [Bertschi

and Jaffe, 2005; Stohl et al., 2006].

The BC enhancement ratios we report are 8–141% (average 59%, or 78% exclud-

ing events 5, 6 and 9) of the BC/CO emission ratio from extra-tropical forest fires

(6 ± 3 ng m−3/ppbv) recommended by Andreae and Merlet [2001]. (The value of

141% is not significantly different from 100%, considering the uncertainties of the

measurements and the recommended value.) These observations indicate that an im-
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portant fraction of the total BC emitted into the plumes we sampled was efficiently

exported to the Azores, very far downwind from the fires. This underscores other

recent work that has documented long-range impacts of the North American wildfire

BC emissions [Stohl et al., 2006; Duck et al., 2007]. Since BC effectively absorbs light

in the atmosphere [Hansen et al., 2000; Bond and Sun, 2005], this implies a poten-

tially significant large-scale impact of boreal wildfire emissions on the direct radiative

forcing over the Northern Hemisphere troposphere.

3.2.4.2 NOy

Figure 3.4b shows the relationship between NOy and CO in the boreal wildfire plumes

and in background air from boreal regions without fire emissions. Table 3.3 provides

the ∆NOy/∆CO ratios estimated for each boreal fire event. Nitrogen oxides were

significantly enhanced in all the boreal fire plumes, relative to background levels.

The NOy enhancement ratios were highly variable, however (4.2–22.1 pptv/ppbv;

Table 3.3). In the previous section, we concluded that the variation in BC enhance-

ment ratios could be the result of a combination of emission variation among fires

and wet removal during transit to the station. Since NOx emissions also vary as a

function of type of combustion [e.g. Yokelson et al., 1996; Goode et al., 2000] and

a part of NOy (i.e. HNO3) is susceptible to wet deposition, the same processes are

expected to contribute to the variation of NOy enhancement ratios. Consistent with

this expectation, the events with the lowest ∆BC/∆CO ratios are also those with

the lowest ∆NOy/∆CO ratios (i.e., events 5, 6 and 9). As a result, a plot of NOy

versus BC is less scattered than the plot of NOy versus CO, as shown in Figure 3.5,

and the correlation of NOy with BC (r2 = 0.82) is slightly better than that with CO

(r2 = 0.75). Additional evidence for efficient HNO3 removal in some plumes is pro-

vided by aircraft measurements over the northwestern Atlantic Ocean, which found

very low HNO3 to NOy ratios in several 2004 North American fire plumes [Flocke

et al., 2005].
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Figure 3.5 Relationship between BC and NOy during summer 2004. Boreal wildfire events are coded as
follows: event 1 (dark grey triangles), event 2 (magenta circles), event 3 (purple circles), event 4 (red squares),
event 5 (green diamonds), event 6 (black squares), event 8 (orange circles), event 9 (blue diamonds). Event 7
contained <5 simultaneous data points and is not plotted. All other measurements during summer 2004 are
plotted with small black dots.
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Table 3.4 compares these ∆NOy/∆CO ratios to previous ∆NOy/∆CO ratios ob-

tained from previous studies of boreal wildfire plumes. The mean enhancement ratio

we observed (8 pptv/ppbv) is within the large range of mean values observed in

plumes sampled over North America (5.6–14.1 pptv/ppbv; Table 3.4). The Pico

Mountain mean enhancement ratio is also a significant fraction of the available (but

poorly constrained) estimates of North American boreal fires NOx/CO emission ra-

tios, e.g. 12 pptv/ppbv [Jain et al., 2006] or 26±15 pptv/ppbv [Andreae and Merlet ,

2001]. These comparisons indicate that a significant fraction of the NOx emitted into

the sampled plumes was exported as NOy to the lower FT over the Azores region.

This conclusion contrasts with some prior studies of the export of anthropogenic

NOy to the FT, which conclude that a large majority of surface NOx emissions (>70%)

is removed before or during export from the boundary layer during lofting mechanisms

[e.g., Liang et al., 1998; Stohl et al., 2002; Parrish et al., 2004; Li et al., 2004].

However, the boreal fire plumes sampled here differ from typical anthropogenic

export in two key ways. First, in boreal wildfires PAN is expected to account for a

significant fraction of NOy [Jacob et al., 1992; Singh et al., 1994] as a result of lower

NOx/hydrocarbon emission ratios [Jacob et al., 1992]. Second, boreal wildfires can

often be very energetic, releasing enough thermal energy to create smoke and convec-

tion columns that extend rapidly into the troposphere and even into the stratosphere

[e.g. Fromm et al., 2005; Damoah et al., 2006]. The rapid vertical transport of emis-

sions in fire-induced convection plumes soon after emission may contribute to the

inefficient removal of NOy during the lofting mechanism, as has been suggested for

BC [Stohl et al., 2006]. In addition, as described above, most boreal fire plumes sam-

pled at Pico were associated with low precipitation during transport as well as dry

and sunny conditions at the site. Thus, these conditions may have contributed to a

more efficient export of NOy.
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3.2.4.3 NOx

Given the presumption of significant PAN content, the export of NOy is expected

to lead to NOx release downwind from the fires. NOx mixing ratios were indeed

significantly enhanced in these plumes relative to background. Figure 3.4c shows the

relationship between NOx and CO in the boreal wildfire plumes and in background

air from boreal regions in absence of fire emissions; ∆NOx/∆CO ratios for the boreal

wildfire events are listed in Table 3.3.

The average of these NOx enhancement ratios (1.6 pptv/ppbv; Table 3.4) is sig-

nificantly larger than those reported previously in moderately aged boreal fire plumes

(0.2–0.7 pptv/ppbv; Table 3.4 [e.g., Sandholm et al., 1992; Mauzerall et al., 1996]).

The occurrence of large enhancements of NOx and large ∆NOx/∆CO ratios in these

plumes implies that decomposition of PAN to NOx, occurring as the plumes subside

southward to the latitude of the Azores, may be an important source of NOx to the

lower troposphere. This is consistent with the large enhancements of NOy observed

at Pico as well as the large enhancements of NOy and PAN detected in plumes at

higher altitudes than Pico over eastern North America [Flocke et al., 2005] and over

western Europe [H. Schlager, Deutsches Zentrum für Luft- und Raumfahrt (DLR),

Germany, personal communication, 2006] during the ICARTT campaign.

The overall impact of fire plumes on NOx levels during summer 2004 was sig-

nificant. Fire emissions were responsible for 36% of all observations of NOx above

50 pptv (and 90% of all observations above 100 pptv). Fire plumes also led to a

significant impact on NO levels. The 9 boreal wildfire events were responsible for

29% of all observations of NO above 20 pptv, and the average daytime fire-impacted

NO was significantly larger (17 ± 2; mean±2-σ) than the average daytime NO for

all summer observations (11 ± 1). The large NO and NOx mixing ratios present in

these well-aged boreal wildfire plumes indicate a significant impact on the regional

O3 budget.
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3.2.4.4 Ozone

Figure 3.4d shows the relationship between O3 and CO in the boreal wildfire plumes

and in background air from boreal regions without fire emissions. The estimated O3

enhancement ratio of each boreal fire event is provided in Table 3.3.

The behaviors of O3 in the fire plumes varied from significant O3 enhancement in

some plumes (e.g. event 1; grey triangles in Figure 3.4d) to O3 enhancement relative

to background, with a negative CO-O3 slope (e.g. event 4; red squares) to a smaller

O3 enhancement (e.g. event 9; blue diamonds). Furthermore, several fire plumes pre-

sented relatively large ∆O3/∆CO ratio associated with only moderate CO enhance-

ments (e.g. event 3; purple circles in Figure 3.4d; also events 5–8). The moderate

CO enhancements during those periods make these events difficult to interpret, and

therefore we focus here on the O3 enhancement ratios in the high-CO-enhancement

events.

The significant enhancements of O3 and large ∆O3/∆CO ratios (mean 0.2 ppbv/ppbv)

in these plumes are consistent with other studies that suggest that significant ozone

production occurred downwind from boreal wildfires. For example, ozone enhance-

ments of 20–30 ppbv were observed in boreal wildfire plumes after 5–7 days travel

time to southern U.S. [Wotawa and Trainer , 2000; Morris et al., 2006] and to Eu-

rope [Forster et al., 2001; Real et al., 2007]. Model simulations of the O3 formation

in biomass burning plumes indicate that the slow recycling of PAN, and to a lesser

extend HNO3 and organic nitrates, increases the effective lifetime of NOx stimulating

the continued formation of O3 in these plumes beyond the typical 1-day NO2 lifetime

[Chatfield and Delany , 1990; Real et al., 2007].

However, this mean ∆O3/∆CO ratio is smaller than some reported previously and

listed in Table 3.4 (e.g., 0.4–0.7 ppbv/ppbv [Honrath et al., 2004; Bertschi and Jaffe,

2005; Lapina et al., 2006]). This is mainly a result of the background value used

here, as discussed in section 3.2.4. The average O3 enhancement ratio we calculate
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increases to 0.3 ppbv/ppbv if the 2004 summertime background (Table 3.1) is used.

If, in addition, all boreal wildfire events are considered, i.e., moderate- and high-CO-

enhancement events, the average ∆O3/∆CO ratio increases to 0.5 ppbv/ppbv (range

0.2–0.8 ppbv/ppbv).

The significant O3 enhancements observed during all but one event indicate O3

production in most of the sampled boreal wildfire plumes. However, although O3

levels were above background on average in all these events, the negative O3–CO

slope observed in event 4, and in parts of events 2 and 9, and the very low ∆O3/∆CO

ratio in parts of event 9 imply the removal of O3 or the suppression of O3 production

as well. This behavior is not fully understood, but may be due to one or a combination

of the following causes.

First, a reduction of the O3 production rates in the plumes would cause a low

∆O3/∆CO, but positive O3–CO slope. A flat relationship between O3 and CO, in

combination with large enhancements of PAN and little NOx [Flocke et al., 2005]

and large enhancements of VOCs [de Gouw et al., 2006], was observed in some of

the boreal fire plumes intercepted by the NOAA W-P3 at higher altitudes than Pico.

de Gouw et al. [2006] based on the VOCs measurements deduced that OH levels were

depressed in these plumes. Similar conditions (i.e. large enhancements of PAN and

VOCs) were observed at the BAe146 [Real et al., 2007]. As a consequence of low

OH concentrations and limited NOx availability, O3 production rates may have been

reduced. Similarly, Pfister et al. [2006] indicated that near the fire regions and, to a

lesser extent downwind from the fires, O3 production may also be reduced due to the

combination of a reduction in the production rate and an increase in the loss rate of

background O3, as a result of a decrease in HOx (OH+HO2) concentrations.

Second, several studies have demonstrated the loss of O3 by reaction with organic

compounds present in aerosols [e.g., de Gouw and Lovejoy , 1998; Griffin et al., 1999].

Biomass burning is a large source of smoke particles composed typically of organic

carbon (OC) ∼50–60% and BC ∼5–10% [Reid et al., 2005]. Given the significant
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levels of BC observed in the boreal fire plumes and the large ratio of OC to BC

in biomass burning [Reid et al., 2005], O3 destruction on organic aerosols may have

contributed to the reduced O3 enhancement ratio or the negative O3–CO relationship

observed in some events.

Finally, nighttime chemistry processes may also result in destruction of O3. At

night, chemical processing of NOx oxidizes NOx to HNO3 via rapid heterogeneous

hydrolysis of N2O5 in aerosols and initiates nocturnal oxidation of VOCs, with the

concurrent destruction of O3 [Parrish et al., 1998; Brown et al., 2006]. Thus, nocturnal

NOx emissions from boreal wildfires may result in a reduction of O3 and NOy, and

result in reduced ∆O3/∆CO ratio or negative O3–CO relationships.

To further investigate the photochemical properties of the plumes, we present the

relationship between O3 and NOy in Figure 3.6. With the exception of event 4, O3

and NOy showed positive correlations in all plumes (r2 = 0.5−0.8). Positive O3–NOy

correlations are consistent with our expectation of photochemical O3 production in

the plumes, as a result of decomposition of PAN to NOx occurring in the air masses

during subsidence to the station. The sole exception, event 4 (red squares) exhibits

no correlation between O3 and NOy (Figure 3.6) and a negative O3–CO relationship

(Figure 3.4d) and a larger BC-NOy relationship than the general trend (Figure 3.5).

This situation suggests O3 destruction from organic aerosols during transport towards

the station. However, the data available here are insufficient to test this hypothesis.

Finally, we have evaluated the possibility that stratospheric O3 contributed to the

O3 enhancements observed during some of these events. Stratospheric O3 frequently

impacted the FT over eastern North America during summer 2004 [Thompson et al.,

2007]. Boreal fire plumes that impacted Pico were often associated with subsidence

from altitudes of approximately 6–8 km, suggesting a potential stratospheric impact.

To assess this, we used FLEXPART stratospheric O3 tracer values simulated at the

station location and altitude during July 1–August 16 [A. Stohl, Norwegian Institute

for Air Research (NILU), personal communication, 2006]. Detailed information about



103

0 200 400 600 800 1000 1200
NOy (pptv)

20

30

40

50

60

70

80
O

3 
(p

pb
v)

Boreal fire events
1 2 3
4 5 6
7 8 9

All others

Figure 3.6 As Figure 3.5, but for the relationship between O3 and NOy.

the FLEXPART model is present elsewhere [Stohl et al., 2005]. This analysis indicated

that stratospheric O3 occasionally impacted the station during the ICARTT period,

but that the overall impact of stratospheric O3 was rather small: the average (±

standard deviation) of all stratospheric O3 tracer values was 8.4± 5.2 ppbv. During

the fire-impacted events, stratospheric O3 tracer values were usually reduced, rather

than increased, with an average (± standard deviation) of 5.8± 4.2 ppbv. We found

only one episode during the boreal fire events (August 07 23:00–August 08 21:00)

when the stratospheric O3 tracer was large (10 to 18 ppbv). This episode occurred

during event 5 (green diamonds in Figure 3.4d). Even during this episode, the O3
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enhancement during the event did not appear to be due to stratospheric O3, as

FLEXPART stratospheric O3 tracer values did not increase relative to values before

or after the event. Therefore, we conclude that stratospheric O3 was not the cause

of the enhancements of O3 observed during event 5, and that the overall impact of

stratospheric O3 was not significant during the boreal fire plumes analyzed in the

study.

3.2.5 Implications of Boreal Wildfires for the NOx and O3

Budgets

The NOy enhancement ratios observed at Pico may be used to estimate the total

amount of NOx emitted from the fires and exported in the plumes by multiplying

the observed NOy/CO enhancement ratio by the fire CO emissions [Stohl et al., 2002;

Parrish et al., 2004]. Pfister et al. [2005] estimated that 30±5 Tg CO were emitted

over the North American boreal region from mid-June to August, 2004, consistent

with the estimate of [Turquety et al., 2007]. Using the ∆NOy/∆CO ratio at the Pico

Mountain station (8.0 pptv/ppbv CO; Table 3.4) as an approximation of the impact

of long-range-transported fire emissions, this CO emission implies that the fires con-

tributed 0.12 Tg NOy (as N). If, instead, we use total boreal fire CO emissions in a

typical year (∼61 Tg CO; [Kasischke et al., 2005]), i.e., including Siberian emissions

as well as North American, the total contribution to long-range-transported NOy is

estimated as 0.24 Tg. These values are quite large. For comparison, the amount of

eastern North American NOx emissions exported to the FT during mid-June through

August 2004 was approximately 0.30 Tg NOy (as N). (This estimate is based on

eastern U.S. NOx emissions equal to two-thirds of the U.S. national emissions during

that period, using total NOx U.S. emissions in 1999 reported by Parrish et al. [2004],

adjusted for the 8.8% per year decrease of the on-road CO:NOy emission ratio, and

estimated efficiency of export to the FT equal to approximately 25% during sum-
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mertime [e.g., Liang et al., 1998; Stohl et al., 2002; Parrish et al., 2004; Li et al.,

2004].) These observations imply significant impacts of the boreal wildfires on the

NOy budget over downwind regions distant from the fires.

If the O3 enhancement ratio at the Pico Mountain station applies to all fire emis-

sions, the average ∆O3/∆CO ratio (0.2 ppbv/ppbv), combined with the total CO

emitted from the North American wildfires (30 Tg) or with the typical CO emitted

from boreal wildfires (61 Tg), indicates that the boreal wildfires may have resulted in

a source of 10–21 Tg of O3 during summer 2004. This method is generally consistent

with the MOZART analysis of fire-induced O3 production discussed by Pfister et al.

[2006]. The monthly mean of our estimate (4–8 Tg O3/month from mid-June to Au-

gust) is 10–20% of the July net photochemical O3 production in the northern middle

and high latitudes (30–90◦ N; surface to 350 hPa) estimated by Emmons et al. [2003].

The ultimate impact could be even larger, since additional O3 is expected to form as a

result of the NOx and PAN still remaining in the transported plumes. Therefore, our

observations indicate that boreal wildfires may significantly impact the hemispheric

O3 budget during the fire season.

Given the current uncertainties in the CO emissions from boreal wildfires, the

increase in dry and warm conditions over the boreal region [Hassol , 2004], and the

increase in human-ignited fires [Mollicone et al., 2006], most likely the impact of

boreal wildfires is significantly larger than previously believed.

3.3 Conclusions

North American boreal wildfire emissions frequently impacted the Pico Mountain

station during summer 2004. Using MOZART simulations and enhancements of CO

levels, we identified 21 events of long-range transport of boreal wildfire emissions to

the site, which accounted for 16% of the time from July 1 to September 5, 2004.

Fire-impacted boreal region outflow resulted in extremely high levels of CO, BC and
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nitrogen oxides, relative to other observations at the station, along with significant

enhancements of O3. Analysis of CO, BC, NOy, NOx and O3 observations during

the boreal wildfire events showed that levels of all these species were above those in

background air from similar outflow in the absence of fires, and well above typical

summertime background levels at the site. This indicates a significant contribution

from the North American wildfire emissions to background levels of these species over

the North Atlantic region during summer 2004.

Enhancement ratios relative to CO were somewhat variable, however. This is

attributed to a combination of variation of fire types and emissions and removal

during transport to the site. Analyses of ∆BC/∆CO and ∆NOy/∆CO indicated that

a significant fraction of BC and NOy resulting from the fires was scavenged in some

plumes, but on average BC and NOy were efficiently exported to the lower FT over the

North Atlantic region. Analyses of ∆NOx/∆CO ratios suggested that decomposition

of PAN to NOx, occurring as the plumes subside southward to the Azores, was an

important source of NOx. High levels of NO and NOx imply continuing O3 formation

in these highly aged plumes.

Ozone levels were also significantly enhanced. Analysis of ∆O3/∆CO ratios in-

dicated a varying behavior from plume to plume, with significant to moderate O3

production, and included negative O3–CO slopes in some plumes. We discussed sev-

eral mechanisms that may have contributed to the complex behavior of O3 in the

fire plumes, and suggest that further work is needed to better understand this effect.

However, the O3 enhancements present in all but one plume indicate that significant

photochemical production occurred during transport, most likely as a result of de-

composition of PAN to NOx. Lower O3 production in other plumes may have resulted

from a reduction in the O3 production rates due to reduced OH concentrations and

limited NOx, or from destruction of O3 during transport due to reaction with organic

aerosols or nighttime chemistry.

Our analyses demonstrate that boreal wildfire emissions can result in a significant
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source of BC, NOx and O3 in the central North Atlantic lower FT. Since our ob-

servations were made very far downwind from the fires, this suggests very large-scale

impacts of boreal wildfires both on direct radiative forcing by BC and on tropospheric

NOx and O3 budgets. Recent studies have shown a positive trend in the amount

of areas burned over recent decades [Gillett et al., 2004; Kasischke and Turetsky ,

2006], likely as a result of warmer and drier conditions in the boreal region [Has-

sol , 2004], and possibly in combination with direct human impacts [Mollicone et al.,

2006]. Global Circulation Models predict more frequent and more severe fires as the

climate changes [Stocks et al., 1998; Flannigan et al., 2000]. Thus, the impact of

boreal wildfires may become even more important in the near future.



Chapter 4

Summary and Conclusions

This work demonstrates the significance of the impact of long-range transport of

boreal wildfire and anthropogenic emissions on the nitrogen oxides levels and their

seasonal variation over the central North Atlantic lower FT.

A high-sensitivity instrument developed at Michigan Tech was modified and in-

stalled at the Pico Mountain station. The NOx,y system was used to measure the NO,

NO2 and NOy mixing ratios presented in this work. These measurements were ana-

lyzed in combination with simultaneous observations of CO, O3, aerosol BC and me-

teorological parameters made at the Pico Mountain station. In addition, HYSPLIT

backward trajectories, FLEXPART simulations and results from two GCT models

(MOZART and GEOS-Chem) were used to analyze the data.

Measurements of nitrogen oxides from July 2002 to August 2005 at the Pico Moun-

tain observatory provide full seasonal coverage of observations over the central North

Atlantic lower FT. The NO, NOx and NOy measurements were analyzed to determine

the seasonal variation of nitrogen oxides levels over the central North Atlantic lower

FT and assess the processes controlling these levels. In particular, the data were an-

alyzed to determine the impacts of transport of emissions from the boreal region and

the U.S. on the nitrogen oxides and the further implications for the hemispheric NOx

108



109

and O3 budgets. The main results of these analyses are presented below, followed by

a summary of the overall conclusions and future research.

4.1 Seasonal Variation of Nitrogen Oxides

Measurements at the Pico Mountain station show the presence of a clear seasonal

variation of nitrogen oxides over the central North Atlantic lower FT, with higher

levels during the summer season. Long-range transport of emissions in combination

with removal processes en-route are responsible for the observed NOx and NOy levels

at the measurement site.

Observations of NOx and NOy and estimates of PAN and HNO3 indicate that

reactive nitrogen over the central North Atlantic lower FT largely exist in the form

of HNO3 and PAN (∼80–90% of NOy). A change in the composition of NOy from

dominance of PAN to dominance of HNO3 occurs from winter–spring to summer–fall

over the central North Atlantic region, as a result of changes in temperature and

photochemistry over the region.

The large presence of HNO3 (53–71% of NOy) during the summer and a signifi-

cant removal of NOy (expected via HNO3) during transport to the measurement site

suggest that oxidation of NOx released from PAN in the airmasses during subsidence,

or advection over the ocean with minimal removal, results in a significant source of

HNO3 over the central North Atlantic lower FT. The decomposition of PAN in the

airmasses during transport suggests an important impact on the O3 production as

released NOx is available to form O3 before it oxidizes to HNO3.

4.2 Impacts of Boreal Wildfire Emissions

Boreal wildfire emissions significantly impact the nitrogen oxides levels over the cen-

tral North Atlantic lower FT. These emissions are responsible for significant shifts in
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the nitrogen oxides distributions toward higher levels during the summer. Observa-

tions of NOx and NOy at the Pico Mountain station show that summertime medians

of NOy and NOx were, respectively, 117–175 pptv and 9–30 pptv greater with the

presence of boreal wildfire emissions. The extreme levels of NOx (up to 150 pptv)

and NOy (up to 1100 pptv) observed in boreal wildfire plumes suggest that decom-

position of PAN to NOx is a significant source of NOx, and imply that O3 formation

occurs during transport. Ozone levels are also significantly enhanced in boreal wild-

fire plumes. However, a complex behavior of O3 is observed in the plumes, which

varies from significant to lower O3 production to O3 destruction.

Observed ∆NOy/∆CO and ∆O3/∆CO ratios at the Pico Mountain station and

estimates of total boreal wildfire CO emissions indicate that boreal wildfires may

result in a source of NOx and O3 of 0.12–0.24 Tg NOy (as N) and 19–21 Tg O3.

This estimated source of NOx emissions from boreal wildfires was comparable to the

contribution of U.S. anthropogenic NOx emissions, and the estimated monthly O3

production from the wildfires is about 10–20% of the previously estimated net tropo-

spheric O3 production rate in the northern middle and high latitudes. In addition,

aerosol BC measurements were also significantly impacted by boreal wildfires. These

results provide evidence of the very large-scale impact on the tropospheric NOx and

O3 budgets and the direct radiative forcing of the atmosphere by light-absorbing

particles.

4.3 Impacts of Anthropogenic Emissions

Transport of pollution from North America causes significant enhancements on nitro-

gen oxides levels all year round. Enhancements of CO, NOy and NOx indicate that,

consistent with previous studies, the majority (95–97%) of the NOx emitted over the

eastern U.S. is removed before and during export out of the U.S. BL. However, a

comparison of the estimated NOy transport efficiencies to those previously estimated
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upwind from the Pico Mountain station, indicate that about 30% of the emissions

exported out of the U.S. boundary layer in the sampled air masses is efficiently trans-

ported to the central North Atlantic lower FT. Since the lifetime of NOx is shorter

than the transport timescale, PAN decomposition and potentially photolysis of HNO3

constitute a supply of NOx over the central North Atlantic lower FT, in particular

during the fall season.

While GCT models indicate that most of the net O3 production occurs near North

America [e.g. Li et al., 2004], the observed ∆O3/∆NOy suggests that a substantial

amount of additional ozone formation occurs in the anthropogenic plumes during

transport to the central North Atlantic lower FT. Large levels of NOy remaining in the

North American plumes suggest a potential O3 formation well downwind from North

America. For example, based on the average ∆NOy/∆CO ratio observed at the Pico

Mountain station, the eastern U.S. CO emissions and estimates of the O3 production

efficiency, this work indicates that 1.8–3 Gmol of O3 are produced downwind per day

as a result of the transport of nitrogen oxides. This estimated source of O3 may be

comparable as the direct export of O3 produced within the U.S. BL.

4.4 Conclusions and Additional Research

The findings of this work provide an understanding of the seasonal variation and

the magnitude of the nitrogen oxides over the central North Atlantic lower FT. In

addition, this work provides evidence of the very large-scale impacts of boreal wildfire

emissions on the nitrogen oxides and O3 levels during the summer season, and the

significant influence of anthropogenic pollution from North America over the central

North Atlantic lower FT all year round.

These measurements, analyses and results motivate future research. First, these

measurements suggest that NOx levels over the central North Atlantic lower FT

are significantly influenced by decomposition of PAN, in particular PAN produced
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from boreal wildfire NOx emissions. Therefore, additional measurements of PAN are

recommended at the Pico Mountain station in order to determine to what degree

the export of PAN from North America and boreal wildfires is responsible for the

observed NOx.

Second, NO2 observations at the Pico Mountain station show the absence of a

negative diurnal variation or no variation of NO2, which result in the presence of a

diurnal cycle for NOx. This behavior was present all year round and was not well

understood, in particular for winter and spring. Thus, additional measurements and

analysis are recommended to clarify the unknown source of NO2 during the daytime.

Third, this study shows the complex behavior of O3 in the boreal wildfire plumes.

An in-situ photochemical modeling analysis using measurements in boreal wildfire

plumes at the Pico Mountain station is needed to further understand the behavior

of O3 in the wildfire plumes, and also to determine whether the observed NOx levels

may explain the significant impacts of boreal wildfires on the O3 background.

Fourth, further research is needed to quantify the ultimate impact of North Amer-

ican outflow on the O3 photochemical tendency over the central North Atlantic lower

FT. An in-situ modeling analysis constrained by measurements and conditions at the

Pico Mountain station can be used for this purpose. This analysis could also be ap-

plied to understand how the photochemical perturbations caused by boreal wildfire

emissions and by anthropogenic emissions differ from one another.

Finally, this work was focused on the impacts of anthropogenic emissions from

North America. However, significant emissions from Asia and Europe reach the cen-

tral North Atlantic region. Additional research is recommended to assess the influence

of these sources in the lower FT over the Atlantic and their relative importance.
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Appendix A

Data Documentation

This appendix presents the documentation of the NO, NO2 and NOy measurements made
at the Pico Mountain station from July 2002 to August 2005. The documentation is divided
into four files:

1. PRE-ICARTT, which covers the data reduction from July 2002 to April 2004 (docu-
mentation plots preicartt.pdf, 1.3 MB).

2. ICARTT, which presents the data reduction from May 2004 to September 2004 (doc-
umentation plots icartt.pdf, 904 kB).

3. POST-ICARTT, which covers the data reduction from October 2004 to August 2005
(documentation plots posticartt.pdf, 1.6 MB).

4. ACCURACY, which includes the determination of total accuracy of the instrument
(total accuracy measurements.pdf, 269 kB).

The files are included in the CD attached to this dissertation.
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