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Originally developed in the context of quantum field theory, the concept of supersymmetry can be 

used to systematically design a new class of optical structures. In this work, we demonstrate how 

key features arising from optical supersymmetry can be exploited to control the flow of light for 

mode division multiplexing applications. Superpartner configurations are experimentally realized 

in coupled optical networks, and the corresponding light dynamics in such systems are directly 

observed. We show that supersymmetry can be judiciously utilized to remove the fundamental 

mode of a multimode optical structure, while establishing global phase matching conditions for 

the remaining set of modes. Along these lines, supersymmetry may serve as a promising platform 

for versatile optical components with desirable properties and functionalities.  
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The ever-increasing demand for high capacity optical transmission systems1 has led to remarkable 

advances in encoding information on a given channel. Wavelength division, polarization and angular 

momentum multiplexing, multilevel modulation and coherent detection are among the techniques used 

today in exploiting the various degrees of freedom offered by electromagnetic waves2,3. At the same 

time however, such schemes tend to impose more stringent requirements on the signal-to-noise ratio. 

Although an increase in the overall transmitted power may improve performance, channel nonlinearities 

are ultimately expected to be the limiting factor. Mode-division multiplexing (MDM) 4-8 holds great 

promise in substantially increasing the capacity of optical links9, while at the same time keeping 

nonlinearities in check. MDM makes use of the individual modes in an optical waveguide and hence 

utilizes the available spatial degrees of freedom. One of the outstanding challenges in MDM 

arrangements is to devise appropriate procedures for selectively populating and extracting specific 

modes in an integrated fashion. As we will see, Supersymmetry (SUSY) can provide a particularly 

elegant way to address this issue in a general that is both readily scalable and compatible with existing 

multiplexing techniques. 

The conceptual framework of supersymmetry emerged in the context of quantum field theory as a means 

to unify the mathematical treatment of bosons and fermions14-16. To this end, certain algebraical 

transformations (see Methods) are employed to construct two different operators that exhibit almost 

identical eigenvalue spectra. While evidence for supersymmetric behavior in any physical setting, 

whether natural or artificial, has so far remained elusive, its fundamental ideas can in principle be 

adopted in other areas of physics17. In its optical manifestation, supersymmetry can potentially establish 

close relationships between seemingly different dielectric structures10. For example, two refractive index 

profiles interrelated via supersymmetric transformations share identical scattering characteristics11 and 

therefore can become virtually indistinguishable to an external observer, even in the presence of 

losses12,13. In the context of guided wave optics, supersymmetric partner waveguides are characterized 

by perfect global phase matching conditions: With the exception of the fundamental mode, each guided 

mode of the original multimode waveguide has a counterpart in the partner arrangement with exactly the 

same propagation constant, or effective index (see Figs. 1(a,b)). The refractive index distribution of the 

superpartner waveguide can be found through a systematic deformation of the original structure (see 

Supplementary Fig. 1). Yet, to this date, no experimental observation of supersymmetric optical 

behavior has been reported. 
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In this article, we demonstrate that the perfect phase matching conditions afforded by supersymmetry 

can be effectively utilized for multiplexing/demultiplexing the modal content of highly multimoded 

systems. This is accomplished by judiciously introducing superpartner structures capable of directing 

different modes from, or to, specific output ports (Fig. 1(c)). A hierarchical ladder arrangement of such 

superpartners, that can simultaneously interrogate the entire modal content of a system, is 

experimentally realized. In this respect, mode division multiplexing based on optical supersymmetry 

(SUSY-MDM) can be performed, in a scalable fashion, simultaneously for a great number of modes, 

without the need for any additional beam shaping components. 

 

Results 

Supersymmetric optical structures 

In what follows, we demonstrate supersymmetric mode conversion in multicore photonic lattice systems. 

To implement these structures, we employ the femtosecond laser writing technique to inscribe arrays 

with appropriate index profiles in fused silica (see Methods and Supplementary Fig. 3). From an 

experimental perspective, the physical platform presented here has a unique advantage over other 

realizations: The evolution dynamics in such lattices can be observed by means of waveguide 

fluorescence microscopy18, hence allowing one to directly evaluate their response. In principle however, 

our results are general and other fabrication approaches can also be pursued. In all possible settings, 

light dynamics are dictated by the refractive index distribution. For the photonic lattices employed in 

this study, coupled-mode theory provides an effective approach in describing light evolution19. In this 

context, light propagation can be discretized20-22, and as a result, the corresponding state vector 𝐀 obeys 

the following evolution equation along the longitudinal coordinate 𝑧:  

−𝑖
𝑑
𝑑𝑧𝐀 =ℋ𝐀    .                        (1) 

Here, 𝐀 = 𝑎!,… ,𝑎! ! , where 𝑎! describes the complex modal field amplitude in the 𝑘!" channel, 𝑁 is 

the number of lattice sites involved, and the 𝑁×𝑁 matrix ℋ is the Hamiltonian of the system whose 

elements are given by ℋ!,! = (𝛿!!!,! + 𝛿!!!,!)𝐶! + 𝛿!,!𝛽!. In the latter expression, 𝛽! denotes the 

propagation constant of channel 𝑛, and 𝐶! represents the coupling strength between adjacent lattice sites. 

Note that our fabrication method provides full control over these elements23. The eigenvalue problem 



4 
	  

ℋ𝐀 = 𝜆𝐀 associated with Eq. (1) can in turn be used to construct a superpartner lattice (see Methods 

and Supplementary Fig. 2). As an example, Fig. 2(a) shows the refractive index profile of a fundamental 

lattice involving six identical sites, while Fig. 2(b) depicts its discrete representation. Similarly, Figs. 

2(c,d) illustrate the corresponding superpartner index landscape and the associated array, consisting of 

five sites as a result of unbroken supersymmetry. Note that the superpartner shares a common set of 

propagation constants (eigenvalues) with the original structure, with the exception of that of the 

fundamental mode (Fig. 2(e)). To factorize the discrete operators involved, we use Cholesky’s method 

as well as the so-called QR decomposition  – the discrete counterparts to the continuous supersymmetric 

transformations. 

 

To elucidate the fundamental principle behind optical supersymmetry, let us first consider the simplest 

possible case where a structure supports only two bound modes (Fig. 2(f)). In general, light injected into 

this waveguide will populate both of these states, and as a result the ensuing interference leads to a 

periodic propagation pattern. An experimental observation of such a bimodal beating is shown in Fig. 

2(h). By applying a supersymmetric transformation, one can then establish a partner refractive index 

profile. For this particular case it turns out that the resulting structure is single-moded (i.e. supports only 

the ground state), and is exactly phase-matched to the second mode of the original waveguide (Fig. 2(g)). 

Naturally, light injected into the superpartner here displays stationary evolution, as shown in Fig. 2(i). 

 

The hierarchical SUSY ladder 

The fact that supersymmetry can establish global phase matching conditions among the bound states of 

two different partner potentials brings about the possibility of successively isolating and extracting these 

modes – a necessary attribute for MDM schemes. This property can in turn be exploited to control light 

transport in a hierarchical “ladder” of iteratively generated superpartners. In other words, the number of 

modes supported by each “step” in this ladder is sequentially reduced, until only a single bound state (or 

waveguide channel) remains. Such a ladder is schematically depicted in Fig. 3(a). In this example, 

starting from a fundamental multimode structure supporting six states, a progression of five partner 

structures is obtained, each of which is supersymmetric with respect to its immediate predecessor. As a 

result, the sets of eigenvalues corresponding to the individual step of the ladder are perfectly aligned. 

For instance, the third mode of the fundamental structure can exchange energy with its counterparts in 

the second and third step, while it is prohibited from interacting with the others. Notably, coupling 
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between the superpartners breaks the degeneracy around these eigenvalues, giving rise to multiplets (or 

bands) of collective ladder states as illustrated in Fig. 3(a). Along these lines, SUSY ladders can in 

principle allow one to simultaneously multiplex a massive number of modes with a single operation. 

Note that supersymmetric phase-matching is robust even in the presence of a partner waveguide. 

Numerical simulations (see Supplementary Discussion and Supplementary Fig. 4) of a continuous six-

moded waveguide with a step-like index profile and its superpartner show that the ensuing crosstalk 

between non-phase-matched modes remains below 20 dB, in spite of the fact that the index profiles 

partially overlap. With a more generous spacing, or by excluding the mode pair closest to the cutoff, 

conversion fidelities of 35 dB are readily achievable and modes can be effectively transformed across 

the entire ladder (see Supplementary Fig. 5). 

 

Mode conversion and isolation 

In order to observe this behavior, we implemented a SUSY ladder in fused silica glass. In our 

arrangement, the fundamental structure supports six modes, similar to the schematic representation in 

Fig. 3(a). The coupling between successive superpartners is achieved by placing them in close proximity 

to one another, allowing for evanescent energy transfer. The fundamental state in each respective step is 

excited by launching a Gaussian beam perpendicularly to the input facet. Figures 3(b-g) show the 

experimentally observed propagation dynamics arising from such excitations. Indeed, light injected in 

the ground state of the fundamental array remains localized, and is completely isolated from the rest of 

the ladder (Fig. 3(b)). In contrast, wave packets originating from the ground state of any higher layer can 

freely traverse the ladder and are directed towards the fundamental partner. 

 

On the other hand, higher order excitations of the fundamental system (e.g. in the 𝑘!" state, 𝑘 > 1) can 

be transported across the ladder, up to the corresponding step ℓ𝓁 =   𝑘. This is confirmed by experimental 

results, shown in Fig. 4(a-c), where the input beam was appropriately tilted so as to selectively populate 

mixtures of the three lowest states. Note that, in all cases, the output patterns clearly reflect the mode 

transformation that takes place in the SUSY ladder. The conversion becomes apparent from the node-

free distribution in the respective highest accessible steps. Our results indicate that such specifically 

designed supersymmetric arrangements could be useful for efficiently probing, manipulating and 

interrogating the modal content of a given input field distribution. This is enabled by the fact that in such 

a setup the modes can be spatially separated via global phase matching conditions as afforded by SUSY 
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– even in highly multimoded systems. In essence, the proposed ladder arrangement incorporates the 

functionalities of a set of mode converters and successive beam combiners into a single multiplexing 

component (see Fig.1(c)). This operation is fully reversible, i.e. the same element can be employed to 

demultiplex the superposition of modes after transmission. We would also like to emphasize that, even 

though the experimental results presented here are of qualitative nature and were obtained in discrete 

one-dimensional settings, the fundamental principle of SUSY-MDM is equally applicable to continuous 

arrangements and can even be extended to optical fibers, where whole subsets of modes may be 

selectively manipulated according to their specific optical angular momenta10. Along these lines, 

detailed simulations of supersymmetric mode conversion in continuous refractive index landscapes, and 

its robustness with respect to dispersion, are provided in the Supplementary Discussion (see also 

Supplementary Figs. 6,7). Moreover, in discrete configurations, one can directly access any subset of 

modes through higher order superpartners, by means of discrete factorization methods. 

 

It is worth noting that other avenues for manipulating modes have been recently proposed. These include 

for example “photonic lanterns” that can efficiently transfer light from highly multimoded waveguides 

to a large number of identical single-mode channels24, as well as individually phase-matched single-

mode cores25 and adiabatic transitions between dissimilar fiber geometries26. What sets our strategy 

apart from these approaches is the fact that it is readily scalable to large numbers of modes, which can 

be simultaneously phase-matched in a compact structure. 

 

Discussion 

In summary, we have experimentally investigated for the first time light transport in supersymmetric 

optical structures. Apart from providing a physical setting where the unusual ramifications of 

supersymmetry can be directly explored and investigated, optics offers the opportunity to exploit some 

of its intriguing features. Our results demonstrate that superpartner potentials can be effectively 

employed to judiciously manipulate the modal content of an optical field. In particular, hierarchical 

ladders of supersymmetric partners provide a versatile method for mode discrimination and mode 

division multiplexing across technological platforms. The inherent scalability of SUSY-MDM becomes 

even more apparent in highly multimoded environments. This is due to the fact that mode transformation 

is naturally carried out at the physical layer, thus overcoming the need for separate mode converters or 

beam combiners (as schematically shown in in Fig.1(c)). Along these same lines, additional degrees of 
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freedom12 could be utilized in addressing other design goals. SUSY phase-matching can be employed to 

facilitate high-fidelity mode conversion over a broad spectral range, e.g. throughout the 

telecommunication-relevant C-band (see Supplementary Fig. 6), and is therefore fully compatible with 

established wavelength division multiplexing schemes. Similar strategies may also provide a new 

avenue in realizing orthogonal mode converters, and self-aligning universal beam couplers27,28. Finally, 

notions from supersymmetry can in principle be utilized to synthetize artificial optical structures that 

exhibit properties not found in nature, thus supplementing already existing approaches in optical 

metamaterials based on transformation optics29-32. 

 

Methods 

Mathematical framework 

Supersymmetry endows two otherwise unrelated operators, 𝒪 ! and 𝒪 ! , with almost identical 

eigenvalue spectra14,17,33. In general, such a relationship exists between these two entities, provided that 

𝒪 !  can be decomposed in terms of another operator, 𝒜, and its Hermitian adjoint, 𝒜!, in the following 

manner: 𝒪 ! = 𝒜!𝒜. In this respect, the superpartner 𝒪 !  can be introduced via 𝒪 ! = 𝒜𝒜!, and as 

a result the eigenvalue problems 𝒪 !,! 𝑌 !,! = 𝛬 !,! 𝑌 !,!  share a common set of eigenvalues 

𝛬!
! = 𝛬!

! . In all cases, the eigenfunctions 𝑌!
!,!  corresponding to these spectra are linked by the 

intervening SUSY operators 𝒜,𝒜!. Importantly, unbroken SUSY also demands that the ground state of 

the first operator must be annihilated by 𝒜𝑌!
! = 0. Indeed, what sets such a pair of superpartners apart 

from other systems obeying more conventional symmetries is the fact that the ground state of 𝒪 !  is 

exempt from this interrelation, and is therefore absent from the spectrum of 𝒪 !  (see Figs. 1(a,b)). 

 

Factorization of the continuous Hamiltonian 

Under paraxial conditions, the evolution of light in one-dimensional settings is governed by the wave 

equation  

𝑖
𝜕
𝜕𝑍 +   

𝜕!

𝜕𝑋! + 𝑉 𝑋 𝜓 = 0  ,                                            (2) 
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where 𝑋 = 𝑥 𝑥! and 𝑍 = 𝑧 2𝑘!𝑛!𝑥!! are the transverse and longitudinal coordinates normalized with 

respect to an arbitrary transverse length scale 𝑥! and the vacuum wave number 𝑘!. The optical potential 

𝑉 = 2𝑘!!𝑛! ⋅ 𝛥𝑛(𝑥) is then determined by the refractive index profile 𝑛 𝑥 = 𝑛! + 𝛥𝑛(𝑥). A SUSY 

partner potential can be found by factorizing the operator 𝐻 = 𝜕! 𝜕𝑋! + 𝑉 in the eigenvalue problem 

𝐻𝜓 = 𝜇𝜓 by means of the superpotential method10 (see Supplementary Fig. 1). Along these lines, the 

superpotential 𝑊 = − 𝜕 𝜕𝑋 (ln𝜓! 𝑋 ) is obtained as logarithmic derivative of the fundamental mode 

𝜓!
(!)(𝑋) of the original structure 𝛥𝑛(!). The corresponding SUSY partner index distribution is then 

given by 𝛥𝑛(!) = 𝛥𝑛(!) − 2𝜕𝑊 𝜕𝑋. 

As is shown in Supplementary Fig. 2(a,b) for the case of six identical single-mode channels, the 

superpartner of a photonic lattice in turn represents a lattice with one less waveguide, although its 

structure may feature index depressions and in general can no longer be decomposed into identical unit 

cells. 

Factorization of the discrete Hamiltonian 

In the tight binding approximation, the evolution of guided light in a photonic lattice is described by Eq. 

(1) of the main manuscript. The respective eigenvalue problem can then be written in the form ℋ𝑎 = 𝜆𝑎, 

where the discrete Hamiltonian ℋ is a Hermitian operator composed of the propagation constants 𝛽! 

and the coupling coefficients 𝐶!,!!! = 𝐶!,!!! ≡ 𝐶!. Cholesky’s algorithm (see e.g. Ref. 34) allows for 

the decomposition ℋ ! =ℋ − 𝜆! = 𝒜!𝒜 of positive-definite operators into a Hermitian adjoint pair 

𝒜!,𝒜. The partner Hamiltonian ℋ ! = 𝒜𝒜! again formally represents a photonic lattice with 𝑁 

waveguides and an equal number of bound modes. Nevertheless, SUSY is unbroken in the sense that the 

𝑁!" waveguide is completely detached (𝐶!!!,!
! = 𝐶!,!!!

! = 0). It can be discarded without influence on 

the spectrum or mode shapes of the remaining system of 𝑁 − 1 channels, thereby removing the 

counterpart of the original lattice's fundamental mode from the superpartner’s spectrum. Higher order 

partner Hamiltonians can be synthesized by iteratively eliminating the modes of a given structure: 

ℋ ℓ𝓁!! − 𝜆!
ℓ𝓁 =   𝒜 ℓ𝓁 𝒜 ℓ𝓁 !

 where ℋ ℓ𝓁 − 𝜆!
ℓ𝓁 =    𝒜 ℓ𝓁 !

𝒜 ℓ𝓁 . The bands comprised of the 

collective states in a weakly coupled sequence of such systems exclusively span the layers that support 

the corresponding eigenvalue (see Fig. 3(a)). 
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A generalized manipulation of the eigenvalue spectrum can be achieved by means of the so-called QR 

factorization, which expresses the Hamiltonian as product of an orthogonal matrix 𝒬 and an upper 

triangular matrix ℛ (see e.g. Ref. 34). This asymmetric approach allows for the direct removal of any 

eigenvalue 𝜆! by factorizing ℋ(!) =ℋ − 𝜆! = 𝒬ℛ to obtain ℋ(!) = ℛ𝒬. Note that in continuous 1D 

settings, complex-valued potentials are required to address states other than the fundamental mode12,13. 

In contrast, the QR formalism allows one to accomplish this task without resorting to non-Hermitian 

configurations involving the interplay between gain and loss. 

Experimental techniques and parameters 

Pulses from a Titanium:Sapphire amplifier system (Coherent Inc. Mira/RegA, wavelength 800 nm, pulse 

length 200 fs, repetition rate 100 kHz) were focused through a microscope objective (25×, 𝑁𝐴 = 0.35) 

to inscribe35 the waveguide arrangements used in our experiments (see Supplementary Fig. 3(a)). The 

100 mm long fused silica sample (Corning Inc.) was translated by means of a high-precision positioning 

system (Aerotech Inc.). In order to cover a wide range of effective refractive indices and nearest-

neighbor couplings, we exploited the characteristic evolution behavior of light in detuned directional 

couplers36 (Supplementary Fig. 3(b)) to calibrate the dependence of detuning and coupling coefficient on 

the inscription parameters writing velocity and waveguide separation37. In a directional coupler, i.e. a 

pair of coupled waveguides, light undergoes sinusoidal oscillations between the two channels. In the 

perfectly tuned case, a complete transfer is observed after the coupling length 𝐿! = 𝜋 2𝐶. As the 

detuning 𝛥𝛽 between the channels increases, the exchanged fraction of light decreases, resulting in a 

decreased intensity beating contrast 𝐾 ≡ max 𝐼! −min 𝐼! max  (𝐼!). At the same time, the oscillation 

becomes more rapid and the beating period 𝐿! decreases according to 

𝛥𝛽
𝐶 =

1
𝐾 − 1                                            and                                        

𝐿!
𝐿!
=

1
𝛥𝛽 𝐶 ! + 1       .                                            (3)	  

The desired parameters 𝛥𝛽 and 𝐶 can therefore be calculated directly from the observed quantities 𝐿! 

and 𝐾 according to 

𝐶 =
𝜋
2𝐿!

⋅ 𝐾                                            and                                          𝛥𝛽 =
𝜋
2𝐿!

⋅ 1− 𝐾    .                                            (4)	  
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The calibration graphs thus obtained are shown in (Supplementary Fig. 3(c)). For our experiments, we 

chose a value of 𝐶! = 0.65  𝑐𝑚!!, corresponding to a spacing of 15.5 µm, to implement the SUSY 

ladder arrangement. A writing velocity of 100 mm/min was chosen as baseline corresponding to zero 

detuning. This allowed us to design an experimental configuration (Supplementary Fig. 3(c)) to observe 

the desired propagation dynamics over the sample length of 100 mm. 

In addition to recording the output distribution at the sample’s end facet (see inset in Supplementary Fig. 

3(a)), we employed waveguide fluorescence microscopy18 to directly observe the propagation of light 

through the structures. At a probe wavelength of 633 nm (Helium:Neon laser), this technique makes use 

of certain color centers formed during the inscription process to linearly convert a small fraction of the 

guided light into isotropic fluorescence. The images thus obtained were post-processed to extract the 

intensities in the individual channels, a necessary step to facilitate a quantitative comparison between 

SUSY partner lattices despite their different waveguide positions. Moreover, plots of the mode 

intensities improve the visibility of the propagation dynamics (see Supplementary Fig. 3(e)). 
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Figures:  

 

Fig. 1: Supersymmetric optical structures and their application for mode division multiplexing. (a) A 

multimode optical waveguide supporting four guided states. The three modes of the superpartner (b) are 

perfectly phase-matched to the higher modes of the original structure. The profiles of the SUSY mode 

pairs in those two waveguides are related via SUSY transformations. Note that the fundamental mode in 

(a) has no counterpart in the superpartner structure. For more details, see Methods and Supplementary 

Fig. 1. (c) Supersymmetric mode division multiplexing. A hierarchical sequence of multiple 

superpartner structures incorporates the functionalities of successive mode converters and beam 

combiners into a single multiplexing/demultiplexing component (SUSY mux/demux). All input- and 

output-ports of this schematic arrangement operate in their respective fundamental modes. The 

individual channels are marked in colors so as to trace the flow of information. 
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Fig. 2: Supersymmetry in photonic lattices. (a) Continuous refractive index profile and (b) discrete 

representation of an array arrangement of evenly spaced, identical waveguides and (c,d) its superpartner 

structure. (e) Bound modes of these two systems. Their vertical position indicates the corresponding 

eigenvalues; the discrete modes are shown as shaded envelopes. Light dynamics in SUSY structures: 

The supersymmetric transformation of a two-moded structure (f) yields a single-mode partner (g). 

Experimentally observed propagation of a Gaussian beam normally injected into a defect domain within 

a uniform photonic lattice. (h) The emerging periodic beating pattern indicates that the structure supports 

two bound modes. (i) Propagation of the same initial wave packet in the corresponding superpartner 

potential. Here, only a single bound state exists and the evolution becomes stationary as soon as the 

diffractive background has dissipated. In (h,i), the distributions of the propagation constants 𝛽 and 

coupling coefficients 𝐶 across the lattices are indicated by gray and blue bars, respectively.   
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Fig. 3: Supersymmetric Ladder. (a) Schematic representation. A hierarchical sequence of superpartners 

allows for a stepwise isolation of the higher-order modes of the fundamental system. Coupling between 

the individual structures allows for a coherent superposition of signals from various inputs. Light 

traversing the ladder automatically undergoes transformations between the respective modes it occupies. 

(b) Experimental realization of an optical SUSY ladder with 𝑁! = 6 layers based on photonic lattices. 

The inter-layer coupling was chosen to be 5% of the coupling in the fundamental array (𝐶! =

0.65  𝑐𝑚!!). Shown are plots of the evolving modal intensities obtained by fluorescence microscopy, 

and images of the intensity distribution at the sample end face. By exciting the fundamental modes of 

the various layers ℓ𝓁! = 1… 6 (left to right), light is forced to exclusively couple towards lower layers 

ℓ𝓁 < ℓ𝓁!. 
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Fig. 4: Mode separation in a SUSY ladder. (a) Light injected into the ground mode of the fundamental 

layer remains trapped. When a superposition of modes is excited, their respective contents couple to the 

subsequent layers, as observed for a mixture of the (b) two and (c) three lowest modes. Note that in all 

cases, the highest accessible layer is exclusively populated in its node-free ground mode. The mixtures 

of modes in (b) and (c) were prepared by tilting the input wave front at appropriate angles. 
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