
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2011 

Direction finding in the presence of a more realistic environment Direction finding in the presence of a more realistic environment 

model model 

Irfan Ahmed 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Electrical and Computer Engineering Commons 

Copyright 2011 Irfan Ahmed 

Recommended Citation Recommended Citation 
Ahmed, Irfan, "Direction finding in the presence of a more realistic environment model", Dissertation, 
Michigan Technological University, 2011. 
https://digitalcommons.mtu.edu/etds/75 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Electrical and Computer Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages


DIRECTION FINDING IN THE PRESENCE OF A MORE REALISTIC

ENVIRONMENT MODEL

By

Irfan Ahmed

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

(Electrical Engineering )

MICHIGAN TECHNOLOGICAL UNIVERSITY

2011

c© 2011 Irfan Ahmed





This dissertation, "Direction Finding in the Presence of a More Realistic Environment

Model," is hereby approved in partial fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING .

Department of Electrical and Computer Engineering

Signatures:

Dissertation Advisor

Dr. Warren F. Perger

Committee Member

Dr. Daniel R. Fuhrmann

Committee Member

Dr. Jeffrey B. Burl

Committee Member

Dr. A. Nasser Alaraje

Department Chair

Dr. Daniel R. Fuhrmann

Date





Dedication

To My Late Parents Abdul Shakoor and Safoora Khatoon!

To My Wife Ambreen, Son Humza and Daughter Ayesha!

To All Friends and Teachers!



.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Direction of Arrival Estimation in a Real Environment . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 DOA Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Delay-and-Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Errors in DOA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Impact of Array Mutual Coupling . . . . . . . . . . . . . . . . . . 15

1.4.2 Impact of Near-Zone Scatterer . . . . . . . . . . . . . . . . . . . . 20

1.5 Available State-of-the-Art Techniques . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Compensation Techniques for Mutual Coupling . . . . . . . . . . . 22

vii



1.5.1.1 Pre-Calibration . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1.2 Auto-Calibration . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Compensation Techniques for Near-Zone Scattering . . . . . . . . 27

1.5.2.1 Pre-Calibration . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.2.2 Auto-Calibration . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Pre-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6.2 Auto-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Effects of Ground Constituent Parameters on Array Mutual Coupling for

DOA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Effects of Ground on Antenna Mutual Impedance for DOA Estimation

Using Dipole Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Vertical Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Horizontal Polarization . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



3.3.3 Effects on DOA Estimation . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Direction Finding in the Presence of Near-Zone Resonant Size Scatterers . . 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A Procedure for Finding Z12 in Chapters 2 and 3 . . . . . . . . . . . . . . . . . 89

B Matlab R© Code for DOA Estimation Algorithm in Chapter 4 . . . . . . . . . 93

C Received Voltages in COMSOL for Examples 1-4 of Chapter 4 . . . . . . . . 105

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



x



List of Figures

1.1 Direction of arrival of signals from a wireless device . . . . . . . . . . . . 3

1.2 Direction of arrival estimation system . . . . . . . . . . . . . . . . . . . . 4

1.3 Direction of arrival of signals from a wireless device . . . . . . . . . . . . 4

1.4 Direction antennas:(a)Horn, (b)Yagi, (c)Log Periodic . . . . . . . . . . . . 5

1.5 (a) Dipole (b) Printed (c) Horn, antennas . . . . . . . . . . . . . . . . . . . 6

1.6 (a) Linear array, (b) Planar array, with arbitrary spacing . . . . . . . . . . . 6

1.7 Geometry showing source s(t) and antenna array of M elements . . . . . . . 8

1.8 Scope of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Transmitting mode mutual coupling; After [16] . . . . . . . . . . . . . . . 16

1.10 Receiving mode mutual coupling; After [16] . . . . . . . . . . . . . . . . . 17

1.11 Mutual coupling coefficients for a ULA assuming a banded Teoplitz structure 19

1.12 Spherical wave generation due to plane wave incidence in the presence of

a nearfield scatterer; After [23] . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Setup for finding mutual coupling between monopole array over arbitrary

ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



2.2 Mutual coupling between two λ/4 monopoles over poor ground and with

perfect ground [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Mutual coupling between two λ/4 monopoles for various ground types at

2.4 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Mutual coupling between two λ/4 monopoles at 2.4 GHz for σ = 10−3 to

107 S/m, εr=10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Mutual coupling between two λ/4 monopoles at 2.4 GHz for εr =1 to 100,

σ=0.02 S/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Setup for finding mutual coupling between vertical dipole array over

arbitrary ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Mutual impedance between two λ/2 vertical dipoles over ground, various

σ and antenna heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Mutual impedance between two λ/2 vertical dipoles over ground, exploded

image of Fig.3.2 for 0 < h < λ . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Setup for finding mutual coupling between horizontal dipole array over

arbitrary ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Mutual impedance between two λ/2 horizontal dipoles over ground,

various σ and antenna heights . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Mutual impedance between two λ/2 horizontal dipoles over ground,

exploded image of Fig.3.5 for 0 < h < λ . . . . . . . . . . . . . . . . . . . 58

4.1 Incident plane wave on M element array with spherical scatterer . . . . . . 65

xii



4.2 Flow diagram of the iterative algorithm . . . . . . . . . . . . . . . . . . . 69

4.3 Geometric setup for examples 1,2,3 & 4 . . . . . . . . . . . . . . . . . . . 72

4.4 Results for example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 DOA spectrum for example 2 . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Convergence of θ
(k)
1 and θ

(k)
2 for example 2 . . . . . . . . . . . . . . . . . 76

4.7 Results for example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 DOA spectrum for example 4 . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Convergence of θ
(k)
1 and θ

(k)
2 for example 4 . . . . . . . . . . . . . . . . . 79

5.1 Near-ground DOA estimation in the presence of near-zone 3D scatterers . . 87

xiii



xiv



List of Tables

2.1 Ground material parameters used in Fig. 2.2 [40] . . . . . . . . . . . . . . 40

2.2 Mutual Impedance for five element Monopole array over perfect and poor

ground at 2.4 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 RMSE of DOA estimation for array for perfect and poor ground . . . . . . 44

3.1 RMSE of DOA estimation for certain antenna heights from a good ground . 58

4.1 Number of iterations and convergence time for examples 1-4 . . . . . . . . 78

A.1 Terminal voltages in volts from COMSOL for Fig. 2.3 . . . . . . . . . . . 91

C.1 Received voltages in volts from COMSOL for Examples 1-2 . . . . . . . . 105

C.2 Received voltages in volts from COMSOL for Examples 3-4 . . . . . . . . 106

xv



xvi



Acknowledgments

In claiming authorship to this dissertation, I am in debt of all those people who have made

this possible and because of whom my graduate experience has been memorable.

My heartiest gratitude is to my advisor, Dr. Warren Perger. Whether it was luck or

coincidence, I am privileged to have had an advisor who gave me the free will to investigate

on my own initiative, while always ready to help in case of a fallen or missed step. It

was an opportunity for me to experience the essence of the American way of research.

The tolerance shown and support rendered by him enabled me to maneuver through many

critical situations and finish this dissertation. His enforcement of strict validation of each

result bolstered my confidence in my work. Dr. Perger has become a role model for me to

follow when I will deal with my future students.

Dr. Daniel Fuhrman, despite his administrative responsibilities as department chair, has

always opened his office door to me, even if it was a walk-in. I am deeply grateful to him

for the extensive discussions that enabled me to cut through the technicalities of my work.

Dr. Jeffrey Burl is one of the best teachers that I have had in my life. His continuous

involvement and encouragement is remarkable. He introduced me the subject of detection

and estimation. The title of the dissertation underscores the significance of his expertise

involved in this work.

xvii



Dr. A. Nasser Alaraje’s valuable comments and guidance helped me in improving the

quality of this dissertation. Dr. Brian Fick politely unfolded to me the applications of

mathematics in real world situations. The mathematics involved in this work is truly a

demonstration of his teachings for which I am very thankful.

I would thank the faculty members with whom I have interacted during the course of my

graduate studies. Particularly, I would like to acknowledge Dr. Zhi Tian, Dr. Seyed

Zekavat, Dr. Duane Bucheger, Dr. Debra Charlesworth, and Dr. Jacqueline Huntoon.

I am also grateful to the staff at Michigan Tech for their various forms of support during

my graduate study, particularly, Dr. Thy Yang, Scott Ackerman, Gina Dunstan, Michele

Kamppinen, Lisa Rouleau, Mark Kilpela, and Leah Jenkins. Most importantly, none of

this would have been possible without the love and patience of my family. My immediate

family has been a constant source of affection, care, motivation and strength all these years.

Finally, I am grateful for the major financial support from NED University, Karachi,

Pakistan and the rest of the support from the Graduate School at Michigan Tech that funded

parts of the research presented in this dissertation.

xviii



Abstract

Direction-of-arrival (DOA) estimation is susceptible to errors introduced by the presence of

real-ground and resonant size scatterers in the vicinity of the antenna array. To compensate

for these errors pre-calibration and auto-calibration techniques are presented.

The effects of real-ground constituent parameters on the mutual coupling (MC) of

wire type antenna arrays for DOA estimation are investigated. This is accomplished

by pre-calibration of the antenna array over the real-ground using the finite element

method (FEM). The mutual impedance matrix is pre-estimated and used to remove the

perturbations in the received terminal voltage. The unperturbed terminal voltage is

incorporated in MUSIC algorithm to estimate DOAs. First, MC of quarter wave monopole

antenna arrays is investigated. This work augments an existing MC compensation

technique for ground-based antennas and proposes reduction in MC for antennas over

finite ground as compared to the perfect ground. A factor of 4 decrease in both the real

and imaginary parts of the MC is observed when considering a poor ground versus a

perfectly conducting one for quarter wave monopoles in the receiving mode. A simulated

result to show the compensation of errors direction of arrival (DOA) estimation with actual

realization of the environment is also presented. Secondly, investigations for the effects

on received MC of λ/2 dipole arrays placed near real-earth are carried out. As a rule of

thumb, estimation of mutual coupling can be divided in two regions of antenna height that

xix



is very near ground 0< h < λ and fairly freespace region h≥ λ . The receiving antenna MC

remains fairly unaffected from ground conductivity when the antenna height h ≥ λ . Both

vertical and horizontal polarization cases showed the same trend. The existing method of

MC compensation by Hui(2004) is tested for the effects of nearness of good-ground to the

array for azimuth DOA estimation. This investigation shows that the existing method of

removing MC works well even for near ground. This result should not be confused with

monopole arrays, which essentially need a perfect ground for their optimum operation.

The effects of near-zone resonant size scatterers on DOA estimation are investigated.

The presence of scatterers in the near-zone of the array give cause distortion in the

received signal and give rise to spurious peak in the DOA estimation spectrum. An

auto-calibration algorithm for direction finding in the presence of arbitrary shaped 3D

scatterers of resonating size is presented. This algorithm removes the effects of MC and

3D scatterers on direction of arrival estimation. The scatterers and wire type antenna

array are excited by incident plane waves of arbitrary direction. The 3D scatterer shape

is approximated as a sphere and thus spherical harmonics are assumed to be originated in

response to plane wave excitation. The algorithm requires the location of the scatterers with

reference to the antenna elements. However, knowledge of the exact shape of scatterers is

not required. Moreover, scatterers may be located in the near or far fields. The work is

supported by numerical examples for different scenarios of multiple incident waves and

scatterers.
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Chapter 1

Direction of Arrival Estimation in a Real

Environment

1.1 Introduction

The need of localization of position arises in many civil and military applications including

cellular communication, MANET, radar, radio astronomy, sonar, navigation, tracking of

various objects, and other emergency assistance devices. Outdoor positioning, using global

positioning systems (GPS) or techniques that measure the position of the user in a cellular

network, have been well established. With the introduction of GPS, mobile wireless

nodes can be equipped with the knowledge of their location. But GPS does not perform

1



indoors and in downtown areas due to multi-path effects. Examples of such scenarios

include warehouse management, rescue services, law enforcement, and special military

applications.

Hand-held devices can provide users with information on the location of interest near the

user, such as fast food, amusement places, or automated teller machines. However, in

emergency situations, the status and precise location of patients, care-givers, and essential

equipment is required. Eventually, when the first responders come, say after a building

catches fire, they receive very limited information about the structure or the location of

the fire on-site. When another group of fire-fighters joins the first team, there is no way

to effectively track the personnel and bring into line the entire operation. Due to the

lack of location information, many trapped fire-fighters have lost their lives in the past.

Similarly many lives can be saved from friendly fire by knowing the exact position of one’s

own troops. Thus, we need a way to measure position in an environment where satellite

line-of-sight (LOS) is not available or useful [1].

Direction-of-arrival (DOA) estimation is one of the methods that are used to find the

location of interest. Antenna arrays are at the forefront of any wireless device capable

of DOA estimation. Environment or surroundings of the array impacts the performance of

DOA estimation. The presence of arbitrary ground or near-zone scatterers are situations

that cannot be ignored without compromising the performance. Traditionally DOA

estimation techniques available in the literature implicitly or explicitly assume a free-space

2



environment for the array. Very few authors have investigated the effects of arbitrary ground

or near-zone scatterers on DOA estimation. Consequently, very few techniques for such

situations which are also constrained can be found in the literature. This is still an open

problem and is the focus of this dissertation.

The bearing of an object with reference to the observer can be calculated by the DOA of the

impinging electromagnetic waves from the object. The DOA is usually defined in spherical

coordinates, elevation angle θ and azimuth angle φ as shown in Fig.1.1. In general, the

DOA estimator is composed of directional antennas, RF front end components, and the

signal processor as shown in Fig.1.2.

When a reflector antenna is used, the DOA estimator is also called the observer. In

this case, the antenna should be rotated toward the direction of the source in order to

Figure 1.1: Direction of arrival of signals from a wireless device

3



Figure 1.2: Direction of arrival estimation system

estimate the DOA. Note that an object in space can assume any azimuth or elevation angle.

Traditionally, radar reflector antennas are mechanically rotated to track a moving target

such as an airplane as shown in Fig.1.3. The angles at which the radar receives the strongest

signal is regarded as the DOA. Some of the typically used directional antennas like Horn,

Yagi, and Log periodic are shown in Fig.1.4.

The drawback of using directional antennas is the need of mechanical spinning. This

Figure 1.3: Direction of arrival of signals from a wireless device
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Figure 1.4: Direction antennas:(a)Horn, (b)Yagi, (c)Log Periodic

increases the power consumption, weight, size, installation and maintenance cost. The

limitations in mobile platforms such as size, battery life, and weight, pose a challenge

for antenna designers. One possible solution to overcome this problem is the use of

antenna arrays. Antenna arrays are composed of antenna elements arranged in a geometric

fashion. The main beam of an array can be rotated electronically without moving the array

mechanically. Phased array antennas are examples of antenna arrays. Numerous DOA

estimation algorithms have been proposed that utilize antenna arrays [2], [3].

Antennas are vital components of any wireless communication system. They are the

transducers that convert transmitted electrical signals (in a wired system) to waves that

propagate through space. Conversely, antennas convert the propagated signals back into

electrical signals that can be detected and processed by a receiver. In other words, the

receiving antenna is responsible for a reciprocal process, i.e., turning an electromagnetic

wave into a signal or voltage at its terminals that can subsequently be processed by the

receiver [4], [5]. Antennas can be divided into different categories, such as wire antennas,

aperture antennas, printed antennas and so forth, some of them are shown in Fig.1.5.

5



In DOA applications, directivity is a critical antenna parameter. The directivity can be

increased by increasing the electrical size of the antenna or aperture. Since it is difficult to

control currents or fields of a wide aperture, discrete arrangements are often used, leading

to the concept of antenna arrays shown in Fig.1.6. This formation increases the size of the

antenna without actually increasing the size of the element. The array is an assembly of

radiating elements in a geometrical and electrical configuration.

The individual elements of an array can be any type of antenna (wire, single reflector,

Figure 1.5: (a) Dipole (b) Printed (c) Horn, antennas

Figure 1.6: (a) Linear array, (b) Planar array, with arbitrary spacing
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planar, etc.). Generally these elements are kept identical to make synthesis simpler. Placing

the elements of an antenna array in a particular fashion and suitably adjusting the amplitude

and phase of the individual antenna elements facilitates for the synthesis of arbitrary

aperture sources. Arrays increase degree of freedom in DOA estimation by providing

the ability to electronically steer the beam, combine antenna patterns, generate multiple

beams, and the ability to separate multiple sources. The cost and complexity of the array

and associated electronics counterbalance these advantages.

1.2 Problem Formulation

The main purpose of an antenna is to convert an electromagnetic wave into an induced

voltage or current that is measured. If the antenna consists of several elements, a number

of voltages or currents are measured. The physical principle that governs DOA estimation

is that an incident wave reaches each antenna element at different time instants. A typical

scenario is shown in Fig.1.7 where a wave is incident on an array of M elements from

a source in space in the (θ ,ϕ) direction. Suppose for the sake of simplicity that our

M-element array shown in Figure (1.7) is a uniform linear array (ULA) with spacing d

and we are only interested in the azimuth ϕ of a single narrowband source emitting signal

s(t)e jωct , where s(t) is the baseband signal, ωc = 2π fc and fc is the carrier frequency.

The received passband signals at ULA are the delayed version of the transmitted signal and

7



Figure 1.7: Geometry showing source s(t) and antenna array of M elements

corresponds to:

xpb(t) =















s(t − τo)e jωc(t−τo)

s(t − τ1)e
jωc(t−τ1)

...

s(t − τM−1)e jωc(t−τM−1)















(1.1)

where τm is the propagation time delay for signal to reach element m. This delay is

dependent on relative direction of the source from the array and given as:

τm =
md

c
cosϕ (1.2)

where m = [0,1, . . . ,M − 1], c is the speed of light in a vacuum and d is the spacing

between the elements. The baseband signal vector after down-converting to remove the

8



carrier received at the array is:

x(t) =















s(t − τo)

s(t − τ1)e
− j2πd cos ϕ

λ

...

s(t − τM−1)e
− j(M−1)2πd cosϕ

λ















. (1.3)

The received base band signal introduced in (1.3) is sampled with the sampling period of

T seconds and is:

x(kT ) =















s(kT − τo)

s(kT − τ1)e
− j2πd cos ϕ

λ

...

s(kT − τM−1)e
− j(M−1)2πd cosϕ

λ















(1.4)

where, k is the discrete time index. Conventionally an array processing problem can be

classified on the basis of bandwidth-delay product as following [6]:







Bτm ≪ 1, Narrowband;

Bτm ≫ 1, Wideband

(1.5)

where, B is the bandwidth of the incident signal. In a narrowband system the signal received

by any sensor is nothing but the delayed version of the signal received by all other sensors.
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Therefore, in this case the time delay can well represented by phase shift. Thus, the sampled

baseband signal in (1.4) corresponds to:

x(kT ) =















s(kT )

s(kT )e
− j2πd cosϕ

λ

...

s(kT )e
− j(M−1)2πd cosϕ

λ















. (1.6)

Now, we extend our problem to L available signal sources. In this case, the kth sample of

the lth signal is denoted as sl[k] for l = 0,1, ,L−1. The matrix form of the signal model at

the array is given as:















xo[k]

x1[k]

...

xM−1[k]















︸ ︷︷ ︸

x

=















ao(ϕo) ao(ϕ1) . . . ao(ϕL−1)

a1(ϕo) a1(ϕ1) . . . a1(ϕL−1)

...
...

. . .
...

aM−1(ϕo) aM−1(ϕ1) . . . aM−1(ϕL−1)















︸ ︷︷ ︸

A















so[k]

s1[k]

...

sL−1[k]















︸ ︷︷ ︸

s

+















zo[k]

z1[k]

...

zM−1[k]















︸ ︷︷ ︸

z

(1.7)

where x is the M × 1 vector of received signals at each antenna element, s is the L× 1

vector of incident signals, z is the M×1 vector of white Gaussian noise with mean zero and

variance σ 2 appearing at the antenna terminals and A is the set of all direction vectors a(ϕ)
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matrix known as the array manifold [3] with order M ×L. Columns of the array manifold

are called steering vectors, each corresponds to a DOA ϕl and is denoted as a(ϕl). The

frequency domain signal model for DOA estimation in compact form is given as:

x = As+ z. (1.8)

The model given in (1.8) considers each antenna element as if it were in free-space. Later in

this chapter, effects of the surrounding environment and mutual coupling between elements

on DOA estimation will be discussed. Assuming s and z are uncorrelated, the spatial

covariance matrix of (1.8) is given as:

R = AE[ssH ]AH +σ 2I (1.9)

where σ 2I is the correlation matrix of the measurement noise z, I is an M × M

identity matrix with M > L. The matrix R is Hermitian with real eigenvalues. The

eigendecomposition of R can be given by [7]:

R = UWUH =

[

Us Uz

]







Ws 0

0 σ 2I







[

Us Uz

]H

. (1.10)
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Given M > L, matrix W is a diagonal matrix of eigenvalues placed in non-ascending order.

The matrix Ws contains L eigenvalues, while M−L smallest eigenvalues are in the matrix

σ 2I, where I is of order M − L×M − L. The matrix U contains the eigenvectors of R.

This matrix is portioned into Us that contains L eigenvectors and Uz that contains M −L

eigenvectors. The spaces spanned by Us and Uz are known as the signal and noise subspace,

respectively.

1.3 DOA Estimation Methods

There are numerous methods available in the literature to estimate DOA such as

beam-forming [8], MUSIC [9], ESPRIT [10] and maximum-likelihood direction estimation

[11]. A detailed overview is available in [12]. In this dissertation we used a classical

beam-forming technique "delay-and-sum " and a super-resolution technique "MUSIC",

which are briefly described here by considering the signal model of (1.8).

1.3.1 Delay-and-Sum

This method is based on a simple beamforming concept also known as spatial filtering.

A beamformer acts like a filter that enhances the desired signal power and reduces the

interference signal power. The output power of the beamformer is a function of DOA and
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is given as [8]:

P(ϕ) = a(ϕ)Ra(ϕ)H (1.11)

where R is introduced in (1.9). The P(ϕ) pattern will have peaks in the direction of the

incident source.

1.3.2 MUSIC

MUSIC (MUltiple-SIgnal-Classification) is a relatively simple and efficient eigenstructure

DOA estimation method [14]. This method can be applied to any arbitrary array geometry.

To find DOAs, this method searches through the set of all possible steering vectors and finds

those that are orthogonal to the noise subspace. Using signal model for DOA estimation

(1.8), and the eigendecomposition of spatial covariance matrix (1.10), the MUSIC spectrum

is given as:

PMUSIC(ϕ) =
1

a(ϕ)HUzU
H
z a(ϕ)

. (1.12)

This is an all-pole spectrum and yields a very high value at the DOA angles. MUSIC is also

known as a super-resolution method as it breaks the barrier set by the Rayleigh resolution
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limit. MUSIC is perhaps the most studied method in its class and has many variants such

as Root-MUSIC [13], [14].

1.4 Errors in DOA Estimation

Generally for wireless, and particularly for the mobile environments, DOA finding

encounters different types of errors resulting in uncertainty of estimation. These may be

classified in terms of the following [7]:

• Signal model errors: Signals may be wideband instead of narrowband, and emitters

may be in the nearfield causing the plane wave incidence assumption to be invalid.

• Array model errors: Variations may exist in the gain and phase responses of the

sensors, and mutual coupling may occur between antenna elements.

• Propagation model errors: The real environment may not be homogeneous (e.g.,

near-zone scatterers, and the propagation environment may vary (e.g., due to

weather); thus, the scattering environment may be varying with time and space.

In this dissertation we are focusing on a more realistic environment which surrounds our

antenna. Thus, the errors in DOA estimation arising from the immediate surrounding of

the array is of our prime concern. Therefore, we will limit ourselves to discussing the two

major sources of error: near-ground mutual coupling creating array modeling errors and
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Figure 1.8: Scope of the dissertation

the presence of near-zone scatterers creating propagation model errors. Fig.1.8 describes

the scope of the work carried out in this dissertation.

1.4.1 Impact of Array Mutual Coupling

The signal model for DOA estimation (1.8) assumes ideal antenna arrays, i.e., there is

no interaction across antenna elements. However, in a real array, fields from each antenna

element interact with other antenna elements causing mutual sharing of energy that is called

mutual coupling [15]. The strength of the mutual coupling is mostly determined by the

element type (its radiation characteristics), the distance between the elements, and how

the elements are oriented relative to one another [4]. An array can be flexibly operated in

transmitting mode or receiving mode. Consequently, mutual coupling for one mode has a

distinct definition and perspective from the other[16].
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Consider a pair of antenna elements as a part of an array operating in the transmitting

mode as shown in Fig.1.9. The exciter attached to the input port of antenna #n establishes

an outward traveling wave from the source to the antenna element marked as (0). The

resulting radiation divides in two parts: radiation towards infinite space (1), and radiation

directed to antenna #m (2). The later is known as the coupled energy and causes current

flow in antenna #m. The field due to this current flow again divides in two parts: reradiation

towards infinite free space(3), and traveling wave towards the source attached to antenna

#m (4). However, the reradiated wave (3) divides itself in a similar way as done by (0), and

so forth. Thus the resultant farfield pattern of any of the single element in the array has the

energy contribution not only from its own exciter, but also from the excitations due to the

mutual coupling among the elements.

Figure 1.9: Transmitting mode mutual coupling; After [16]
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Now consider a pair of elements from a similar array operating in the receiving mode with

passive loads attached to its terminals as shown in Fig.1.10. Suppose a plane wave is

incident upon the array from such direction that it reaches antenna #m first. This results in

an induced traveling wave from antenna towards the passive load (1), and scattering of part

of the incident field; back into the space (2), and towards the neighboring antenna elements

(3). The later adds vectorially to the principal field incident upon antenna #n. Thus, the

total received energy at a particular antenna terminal is composed of direct incident field,

and coupled fields from other antenna elements in the array. The DOA estimation generally

encounters receiving mode mutual coupling [17].

In order to incorporate the effects of mutual coupling in DOA estimation the signal model

in (1.8) is modified as [18]:

Figure 1.10: Receiving mode mutual coupling; After [16]
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y = CAs+ z (1.13)

where y is the received signal in the presence of mutual coupling. C is the matrix whose

complex coefficients perturbs the received signals. Assuming that the noise process and

phenomenon of mutual coupling are independent of each other, the covariance matrix (1.9)

becomes:

R = CAE[ssH ]CHAH +σ 2I. (1.14)

Now, the signal eigenvectors do not span the same subspace as the array manifold, but

the one spanned by matrix CA. Then, it is necessary to estimate the coupling matrix

and introduce it into the DOA algorithm to avoid errors. If the mutual coupling matrix

is unknown, or only approximately known, an error is introduced in the signal model.

Generally, there is no defined structure for the C matrix. It is in the literature that the

mutual coupling coefficients are inversely proportional to the distance between elements

[18]. Therefore, as the the distance between two elements increases the magnitude of the

corresponding coefficients in C diminishes and approaches zero. Hence, a banded matrix

furnishes a reasonable model for a ULA [18]. In a banded matrix the non-zero entries are

confined to a diagonal band, comprising the main diagonal and zero or more diagonals on

either side [19]. Also, the coupling between any equally spaced pair of elements is equal

and is independent of the location of the pair within the array. Therefore, matrix C of an
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Figure 1.11: Mutual coupling coefficients for a ULA assuming a banded

Teoplitz structure

ideal ULA can be best represented by a banded Toeplitz mutual coupling matrix, see Fig

(1.11). The banded Toeplitz mutual coupling matrix of an M elements ULA can have a

maximum of M−1 nonzero coefficients and given as:

CULA =















co c1 . . . cM−1

c1 co
. . .

...

...
. . .

. . . c1

cM−1 . . . c1 co















. (1.15)

A number of techniques for the compensation of errors in DOA estimation due to the

mutual coupling, are available in the literature and some of these will be reviewed in Section

1.5.1.
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1.4.2 Impact of Near-Zone Scatterer

In the previous section, we asserted that compensation for mutual coupling is necessary

to remove its effects from DOA estimation. However, the errors removed by this

compensation belong to the class of the array model errors which implicitly assumes that

the antenna array is in free-space. In a real deployed scenario, the presence of objects

in the near field causes the antenna to interact with them and invalidates the free-space

assumption [20]. Proximity of an imperfect ground and a metal chassis are examples

of such objects that cause distortion of the signal and produce errors in DOA estimation

[21]. It is also reported in the literature that an array calibration that does not takes into

account the presence of near-zone scatterers may produce spurious peaks in spectral DOA

estimation [22].

Most of the DOA estimation methods assume that sources are in the farfield and, therefore

incident waves are plane waves. This assumption is generally valid with the free-space

assumption. As shown in Figure 1.12, the nearfield scatterer produces spherical waves,

when illuminated by farfield sources. Thus, the total received voltage Vt at the antenna

terminals is composed of two components, one due to the incident plane wave Vinc and

other one due to the spherical waves from the scatterer Vsct as:
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Vt = Vinc +Vsct (1.16)

This hinders the ability of any DOA estimation method to resolve two incident plane waves

with a small angular separation [23]. The plane waves from the farfield are desired signals,

and spherical waves are the interfering signals.

Section 1.5.2 gives an overview of the available techniques to overcome the effects of this

propagation model error on DOA estimation.

Figure 1.12: Spherical wave generation due to plane wave incidence in the

presence of a nearfield scatterer; After [23]
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1.5 Available State-of-the-Art Techniques

The state-of-the-art techniques to compensate for errors in DOA estimation due to mutual

coupling and near-zone scatterers are in the process of evolution. For the purpose of

this dissertation, approaches are broadly classified in two groups. The first one includes

the techniques for compensating for mutual coupling while the second one encompasses

compensating techniques for near-zone scattering effects. Each group is further subdivided

into pre-calibration and auto-calibration techniques.

1.5.1 Compensation Techniques for Mutual Coupling

A number of techniques from signal processing [18], [24], [25], electromagnetics[15],

[26], [27], [17] and advance optimization such as genetic algorithms [28] and simulated

annealing [29] are in the literature to compensate for errors in DOA estimation due to

mutual coupling. These techniques in general seek the coefficients of C in the signal

model of (1.13). By and large, these methods assume a free-space environment around

the antenna. Thus, any error in the propagation model, which generally assumes plane

wave incidence due to the farfield sources, can not be removed. Most of them apply certain

restrictions on the structure of C, such as C is Toeplitz. Some compensatory methods

work only with a certain DOA estimation technique; thus, they also carry the restrictions
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of the parent. A short overview of some well-referred techniques is given in this section by

grouping them in terms of Pre-calibration and Auto-calibration.

1.5.1.1 Pre-Calibration

In the pre-calibration methods the perturbation in measurement due to mutual coupling and

gain/phase errors is estimated or known prior to DOA estimation. One way is to estimate

the perturbation matrix C by numerical techniques such as method of moments (MoM).

The other way is to experimentally determine the relation between the perturbed measured

voltages and the ideal or theoretical voltages by using external sources at known angles.

Usually this is done in an isolated environment or anechoic chamber. These methods do

not impose any restriction on the structure of the coupling matrix and provide a better

realization of the problem. In general, these techniques are model-specific; that is, limited

to a certain type of antenna and surrounding environment. Moreover, these techniques do

not address a very important source of error; namely the proximity of real-earth and its

effects on mutual coupling.

The relation between the theoretical array manifold A and the perturbed array manifold Ac

is given as

Ac = CA (1.17)
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where Ac is perturbed by the errors due to mutual coupling and sensor gain & phase errors.

Therefore, the matrix C can be considered as the distortion matrix. In general, Ac depends

on the direction of the incoming signal changes. In [26] the MoM is used to determine Ac

for a few observation angles. The method assumes that the current shape on a ULA of thin

wire antennas such as dipole remains unchanged for any azimuth direction(fixed elevation

angle θ ) in response to plane wave excitations. Therefore, matrix C of the array can be

obtained by using the pseudo-inverse concept which corresponds to:

C = AcA(AAH)−1 (1.18)

Another method [27] is based on MoM but is more accurate in calibration as it does

not assume independence of current shape from the direction of incidence. Instead of

estimating C, this method finds Ac for all azimuth incidence and stores them for online use

for DOA estimation.

In experimental methods for array calibration for DOA estimation, the relation between

Vactual which carries the mutual coupling effects to the Videal which assumes that each

antenna element is in isolation from all other elements is given as:

ZVactual = Videal (1.19)
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where dimensionless matrix Z is known as impedance matrix and carries mutual coupling

coefficients normalized by terminal load impedance. Thus, the M element array can be

treated as an M port network from classical circuit theory.

One such method that terms Videal as open circuit voltage [15] . Let Zi j,(i, j = 1,2, . . . ,M)

be the mutual impedance between antenna elements i and j and given as [4]:

Zi j =
Voci

I j
(1.20)

where Voci is the open circuit voltage measured at ith antenna terminal in response to a

feed point current flowing in the jth antenna terminal. Much has been reported in the

literature about the difference in transmission and receiving mode mutual impedance [16].

Therefore, this method has a shortcoming of assuming the array is in transmission mode,

while in practice most of the arrays work in receiving mode for DOA estimation.

The receiving mutual impedance method was proposed to realize the receiving mode

mutual impedance [17]. This method used an external plane wave source to excite the array

of wire type antennas to estimate mutual impedance. It takes into account antenna terminal

load and also incorporates radiation from all other elements in the mutual impedance

measurement. The voltage Videal is considered as isolated terminal voltage as if antenna

element is completely isolated from the array.
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1.5.1.2 Auto-Calibration

In the auto-calibration approach, also termed self-calibration, simultaneous DOA

estimation of desired sources and coefficients of matrix C is carried out. Thus, no additional

source is required to calibrate the array. The instantaneous estimation of C is used in

the signal model (1.13) to remove the errors due to the mutual coupling. In general,

the auto-calibration methods available to date are not straightforward in guaranteeing

uniqueness of the solution and this limits their practical use. An overview of self-calibration

methods is available in [30] for interested readers.

In [18] an iterative algorithm is proposed to estimate simultaneously both DOA and mutual

coupling parameters. It assumes a banded Toeplitz structure of C for uniform linear or

circular arrays. It is the minimization of the following cost function J as:

J =
L

∑
l=1

‖ÛzCΓa(ϕl)‖
2 (1.21)

where Ûz is the estimated noise subspace Uz defined in (1.10), C is the mutual coupling

matrix, Γ is the diagonal antenna gain/phase matrix and ‖.‖2 is the squared Euclidean norm.

This published algorithm is composed of three steps. First, it assumes that the gain / phase

and mutual coupling coefficients are (approximately) known. Second, the numbers of

DOA’s L are found by using the standard MUSIC algorithm. Given the estimates of number
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of DOAs, J is minimized over the gain /phase parameters. Given gain/ phase parameters

and number of DOA’s, J is minimized over the components of C. These minimization

process is iterated until J converges. However, the method is limited in application to

MUSIC like algorithms because it uses eigenstructure approach to estimate DOA and

related parameters. Moreover,it cannot provide a unique solution.

An online mutual coupling compensation algorithm for ULAs is proposed in [24]. This

iterative algorithm simultaneously compensates for mutual coupling and estimates the

direction-of-arrivals (DOAs) of signals impinging on the array. In order to exploit ULA

structure, the method can not consider the effects of sensor gain-phase in the estimation of

DOAs. It also assumes Toeplitz structure of C, thereby implicitly assuming the free-space

environment. No mathematical proof of solution uniqueness is provided in the description

of method.

A non-iterative algorithm for finding the DOAs in the presence of mutual coupling of an

M-element ULA is proposed in [25]. The algorithm is based on the GEESE method which

is the abbreviation for Generalized Eigenvalues utilizing Signal Subspace Eigenvectors.

The C is assumed to have banded symmetric Toeplitz structure. The method does not

explain how it estimates the number of sources L before initializing the estimate. In

addition, uniqueness of the solution requires a large number of antenna elements.
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1.5.2 Compensation Techniques for Near-Zone Scattering

A limited number of authors addressed the issue of near-zone scatterers for DOA

estimation. Most of the methods are model specific, that is, for a certain array and

surrounding. Some that pose to be generic either consider 2D scatterers or fail to guarantee

global optimum solution. To remain consistent with this dissertation, these methods are

divided in terms of Pre-calibration and Auto-calibration.

1.5.2.1 Pre-Calibration

A near-field scattering problem such as the presence of a conducting plate behind the

array elements is discussed and some solutions were proposed [31]. To accurately account

for structure scattering, the paper considers coupling matrix as non-square. This method

requires knowledge of scatterer geometry. This limits its application to fixed antennae

whose surrounding remains unchanged.

A non-conventional least square optimization method is proposed to exploit the large data

set of pre-calibrated steering vectors for DOA estimation with near-zone scatterers [22].

This method is limited to ULA of dipoles with a fixed geometry of the problem. Once

the position or type of scatterer changes, the calibration can no longer help in sufficient

reduction of DOA estimation error.

28



1.5.2.2 Auto-Calibration

A self-calibration technique for DOA estimation using the MUSIC algorithm where an

uncoupled near-field scatterer is present is in the literature [23]. This method does

not remove the effects of mutual coupling and works only for 2D scatterers. Another

self-calibration algorithm that removes the effects of mutual coupling and near-zone

scatterers is also in the literature [32]. This algorithm approximates a scatterer as a cylinder

and, therefore assumes cylindrical harmonic expansion origination in response to a plane

wave incidence [33] . The algorithm is iterative and does not guarantee the achievement of

the true DOA but rather convergence. It also works only for 2D scatterers and requires a

large number of antenna elements.

1.6 Overview of Dissertation

The short review of the literature in section 1.5 points to the need of further work in this

direction. It is seen that techniques for compensating for errors in DOA estimation due

to mutual coupling are constrained by various parameters such as specific DOA method,

particular antenna type, shape of array, etc. One important aspect which is ignored either

implicitly or explicitly is the presence of real-earth in the proximity of the antenna. This

dissertation addresses the issue by investigating and proposing a compensation approach
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in Chapters 2 and 3. Two types of antenna elements are selected for investigation, each

having a peculiar relationship with the ground. The first type is a monopole antenna

which is a ground-based antenna and through image theory needs a perfect ground for its

operation. The effects of arbitrary earth on mutual coupling of monopole antenna array are

investigated and compensatory proposals for DOA estimation are presented in Chapter 2.

The second type, a dipole antenna which is presumably an omnidirectional antenna in the

absence of any ground plane, is investigated for mutual coupling effects and compensatory

proposals and presented in Chapter 3.

It is also evident that compensation for errors in DOA estimation due to the presence of

near-field scatterers is a fairly open problem. Particularly for portable wireless devices,

a model-based approach is not helpful. The self-calibration techniques are limited to the

2D scatterers despite other constraints. This work also proposes an algorithm for DOA

estimation that is more realistic in approach because it considers 3D scatterers in near-zone

(see chapter 4).

In order to remain consistent with the way the literature is reviewed in Section 1.5, this

dissertation can be classified as pre-calibration techniques Chapters 2 and 3 for mutual

coupling compensation and auto-calibration technique Chapter 4 for compensating errors

due to the presence of near-zone scattering.
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1.6.1 Pre-Calibration

In chapter 2, the effects of ground constituent parameters on the mutual coupling (MC)

of a monopole antenna array are investigated. This work augments an existing MC

compensation technique for ground-based antennas, and proposed reduction in mutual

coupling for antennas over finite ground as compared to the perfect ground. The work is

investigated by finite element method analysis and numerical results are presented. A factor

of 4 decrease in both the real and imaginary parts of the mutual coupling is observed when

considering a poor ground vs. a perfectly conducting one, for quarter-wave monopoles

in receiving mode. A simulation result shows the errors in direction of arrival (DOA)

estimation with actual realization of the environment is also presented.

Chapter 3 investigates the effects on received mutual coupling of λ/2 dipole arrays placed

near real-earth. As a rule of thumb, estimation of mutual coupling can be divided in two

regions of antenna height that is very near ground 0 < h < λ and fairly free-space region

h ≥ λ . The receiving antenna mutual coupling remains fairly unaffected from ground

conductivity, when antenna height h ≥ λ . Both vertical and horizontal polarization cases

showed the same trend. Investigation of effects of nearness of good-ground to the array

on DOA estimation revealed that for azimuth DOA estimation, the existing method of

removing mutual coupling works well even for near ground. This result should not be

confused with monopole arrays, which essentially need a perfect ground for their optimum
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operation.

1.6.2 Auto-Calibration

In chapter 4, a self-calibration algorithm for direction finding in the presence of arbitrary

shape 3D scatterers of resonating size is presented. This algorithm removes the effects of

mutual coupling and 3D scatterers on direction-of-arrival estimation. The scatterers and

wire type antenna array are excited by incident plane waves of arbitrary direction. The 3D

scatterers can be of any shape but is approximated as a sphere, thus, spherical harmonics are

assumed to be originated in response to the plane wave excitation. The algorithm requires

the location of the scatterers with reference to antenna elements. However, knowledge of

exact shape of scatterers is not required. Moreover, scatterers may be located in near or

far fields.The work is supported by numerical examples for different scenarios of multiple

incident waves and scatterers.

32



Chapter 2

Effects of Ground Constituent

Parameters on Array Mutual Coupling

for DOA Estimation∗

2.1 Introduction

There is an emerging trend in wireless applications such as safety and security, command

and control, and MIMO communication that requires antennas with direction-of-arrival

(DOA) and beamforming capability. In order to implement this capability, antenna arrays

∗Parts of this chapter have been published in International Journal of Antennas and Propagation. The paper

is open access and distributed under the Creative Commons Attribution License [34].
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are used. Traditionally, antenna arrays consist of closely located antenna elements that

are uniformly distributed across the array. To determine DOA, several techniques have

been developed [8]. These techniques frequently assume that the sensors are ideal and

operate in an isolated environment. In practice, however, this is not true. The real antenna

elements not only interact with each other due to mutual coupling (MC) but also with

the surroundings. This results in the distortion of the signal and causes error in DOA

estimation.

Several techniques have been proposed to overcome the errors due to antenna MC.

These techniques are in the process of development, but can be classified in terms of

auto-calibration [18], [24], [25], open circuit voltage method [15], numerical techniques

[26], [27], [28], offline calibration [35] and receiving mutual impedance methods [17].

In general, these techniques do not consider the interaction of the antenna array with

an imperfect ground in the near-zone [36]. Effects of ground proximity and constituent

parameters on wire antennas have been presented in the literature [37], [38], [39].

This chapter considers the effects of ground on the MC of an array of monopoles and

its impact on DOA estimation. Monopole antennas that take advantage of image theory

are ideally placed above a perfect ground of conductivity σ = ∞ and relative permittivity

εr = 1. The real ground or earth has finite conductivity and may have high permittivity.

The effects of ground constituent parameters on MC and ultimately to DOA estimation are

investigated. The evaluation of MC is an extension of the technique that finds MC of a
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monopole array over a high conductivity ground (σ ∼= 107,εo,µo) [17] to a finite ground

(σ ≤ 1,ε,µo). The newly-found MC is used to compensate error in the DOA estimation

for an array over imperfect ground.

2.2 Problem Formulation

Consider a uniform linear array (ULA) of M omnidirectional elements. Suppose plane

waves from J narrowband farfield sources are incident on this array and (M > J). The

azimuth directions of uncorrelated incident signals are φ1,φ2, . . . ,φJ . The kth sample of the

array output is given as:

X[k] = U[k]+N[k] (2.1)

where X[k] =
[
x1[k],x2[k], . . . ,xM[k]

]T
, U[k] =

[
u1[k],u2[k], . . . ,uM[k]

]T
is the coupling-free

voltage at the antenna terminal and N[k] =
[
n1[k],n2[k], . . . ,nM[k]

]T
is a vector of white

Gaussian noise samples appearing at the antenna terminal receiver. The noise has zero

mean and has correlation matrix σ 2I where σ is the standard deviation and I is an M ×M

identity matrix. The signal model in (2.1) does not consider mutual coupling within the

array. Elements in a real antenna array interact with one another due to mutual coupling.

The relation between actual voltage V at the antenna terminal and theoretical coupling free

voltage U is given as:
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ZV = U (2.2)

where Z is an M ×M matrix whose coefficients can be determined by electromagnetic

analysis such as Method of Moments (MoM) or finite element method FEM. Thus, a more

accurate signal model for the array output (2.1) is given as:

X[k] = ZV[k]+N[k] (2.3)

The zero-mean Gaussian noise in the receiver and signal generation in the farfield sources

are independent processes. Therefore, the spatial covariance matrix for (2.3) is given as:

R = E{ZVV′Z′}+σ 2I (2.4)

where σ 2 is the noise variance and I is the identity matrix. It is evident from (2.4) that

correct knowledge of Z is pivotal in DOA estimation with minimum error. Considering

array elements as monopoles, a method to find Z as the receiving mode mutual impedance

is in the literature [17]. This method considers a monopole antenna over a high conductivity

or perfect ground. However, in real world applications an antenna may be placed over a

finite or low conductivity ground.

Consider an array of two λ/4-monopole antenna over an arbitrary ground as shown in Fig.
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Figure 2.1: Setup for finding mutual coupling between monopole array over

arbitrary ground

2.1. The array is excited by an incident plane wave and each element is connected to a load

ZL. Due to this excitation, terminal currents It
1 and It

2 flow in the loads of antenna # 1 and #

2, respectively. The terminal voltage at antenna terminal # 1 is given as:

V t
1 = It

1ZL =U t
1 +W t

1 (2.5)

where U t
1 is the voltage due the plane wave incidence alone and W t

1 is the induced voltage

due the flow of current in antenna # 2. Both causes are independent of one another.

Therefore,

W t
1 = It

2Z12 (2.6)

where Z12 is the mutual impedance between element # 1 and # 2 due to the current in the

load across port # 2.

Exploiting the principle of superposition, the current distribution I1 along antenna # 1 can
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be given as:

I1 = I1U + I1W (2.7)

where subscripts U and W correspond to the cause of the current distribution.

Therefore, the induced voltage W t
1 is given as [4]:

W t
1 =−

1

It
1

∫ l

0
Ez12(z

′)I1w(z
′)dz′ (2.8)

where Ez12(z
′) is the E-field component radiated by antenna # 2 towards antenna # 1 and

I1w(z
′) is the current distribution along antenna # 1. Hence, the mutual impedance in (2.5)

can be given as:

Z12 =
W1

It
2

=−
1

It
2It

1

∫ l

0
Ez12(z

′)I1w(z
′)dz′. (2.9)

It is evident from equation (2.9) that for a given current It
2, the E-field Ez12(z′) has a major

contribution in the numerical value of mutual impedance. Ideally, over a perfect ground the

monopole antenna radiates strongly along the horizontal direction θ = 90o that is towards

the adjacent element in our configuration. This results in strong mutual coupling or sharing

of energy between array elements. However, over a finite ground the field strength in the

horizontal direction is much smaller in the near field and almost zero in the farfield [37,

Chapter:23]. This reduction in field strength should reduce the mutual coupling between

antenna elements placed over a finite ground.
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In the next section, we will investigate this hypothesis through the FEM and present results

of mutual coupling by extending the existing technique[17] to the case of finite ground and

its effects on mutual coupling and DOA.

2.3 Results and Discussion

The investigation of our hypothesis is carried out by considering two λ/4-monopole

antennas at 2.4 GHz as shown in Fig. 2.1. The antennas are placed over an arbitrary ground

with element spacing λ/2 and are connected to a load ZL = 50Ω. The array is excited by

a plane wave, whose incident direction is (θ = 90o,φ = 90o). However, due to the axial

symmetry of the antenna, this analysis is independent of incident azimuth direction (φ ) for

a given elevation (θ ). The description of the procedure that is carried out here for finding

mutual impedance is available in Appendix A.

The mutual coupling found in [17] over a wide frequency range is compared for the case

when the ground plane becomes poor as given in Table 2.1; see Fig. 2.2. The result

clearly shows that around the resonant frequency both the real and imaginary parts of

Z12 over a poor ground reduces to about one third of the value of Z12 over a perfect

ground. It is also observed that mutual coupling undergoes very small variations over

a poor ground for a wide range of frequencies. This reduction of mutual impedance

was motivation to investigate a wide variety of ground conditions usually encountered in
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Figure 2.2: Mutual coupling between two λ/4 monopoles over poor ground

and with perfect ground [17].

Table 2.1

Ground material parameters used in Fig. 2.2 [40]

Material
Relative Conductivity

Permittivity εr σ (S/m)

Poor Ground 4 0.001

Typical

Ground

15 0.005

Good Ground 25 0.02

Sea Water 81 5.0

Fresh Water 81 0.001

Copper 1 107

wireless communication. Fig. 2.3 shows that even for a good electrical ground, usually

made available for fixed antenna locations, the mutual coupling is still half of the value

at a perfect ground. This result is expected from the fact that over a dielectric ground the

monopole radiation becomes minimal along the horizontal direction and reduces the value

of W1 in (2.9). The result is consistent with the findings of [37], [38].
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Figure 2.3: Mutual coupling between two λ/4 monopoles for various

ground types at 2.4 GHz

The variation of mutual impedance over a wide range of conductivity for a nominal relative

permittivity εr is shown in Fig. 2.4. It can be further deduced from the results that when

the skin depth of the ground increases or the loss tangent decreases, the mutual impedance

decreases and vice versa. We can also conclude that mutual coupling can be approximately

divided between two ranges for which it assumes fairly constant values. These two ranges

are when the loss tangent σ
ωε ≤ 1 or σ

ωε ≫ 1.

It is well known that soil water contents vary from place to place and this may result in a

change of permittivity of the ground. However, this change of water content will not cause

any deviation in conductivity values over a wide range of frequencies [41]. The behavior

of mutual impedance for such situations is investigated and results are shown in Fig. 2.5.

The curves account for variation from dry land to a saline medium such as sea water whose
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εr < 100. The result depicts that for a good ground, the increase in relative permittivity

increases the mutual impedance.

Table 2.2

Mutual Impedance for five element Monopole array over perfect and poor

ground at 2.4 GHz

Impedance Component
Perfect Gnd [42] Perfect Gnd (FEM) Poor Gnd (FEM)

Ω Ω Ω

Z12 = Z21 = Z23 =
Z32 = Z34 = Z43 =
Z45 = Z54

4.0 + j8.7 4.1 + j8.2 1.4 + j2.0

Z13 = Z31 = Z24 =
Z42 = Z35 = Z53

-1.3 - j5.2 -1.3 - j5.6 0.3 - j1.1

Z14 = Z41 = Z25 = Z52 0.7 + j3.6 0.8 + j2.7 -0.03 + j0.13

Z15 = Z51 -0.4 - j 2.7 -0.8 - j2.0 0.07 - j0.27

Investigation of the effects of arbitrary ground mutual coupling on DOA estimation is

carried out by simulation. An array of five vertical quarter wave monopoles is taken as the

DOA estimator antenna, the spacing between elements is λ/2 and the array is operating at

2.4 GHz. The mutual coupling matrix Z is calculated according to [17] by placing antennas
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Figure 2.4: Mutual coupling between two λ/4 monopoles at 2.4 GHz for

σ = 10−3 to 107 S/m, εr=10
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Figure 2.5: Mutual coupling between two λ/4 monopoles at 2.4 GHz for

εr =1 to 100, σ=0.02 S/m

over a poor and a perfect ground, respectively. The mutual impedances are given in Table

2.2 whose second column contains values from [42]. DOA estimation is carried out for a

vertically polarized farfield source at θ = 90o,φ = 90o. The terminal voltage vector V at

the antenna ports is found in the COMSOL R© multiphysics environment [43], for a terminal

load of 50Ω. The effect of mutual coupling on the terminal voltage vector V is removed and

the coupling free voltage vector U is found by using (2.2). At SNR=40 dB, white Gaussian

noise is added to the coupling-free terminal voltage. The covariance matrix is found by

(2.4) and the MUSIC algorithm [9] is used to estimate azimuth (φ ) of the incident source.

The root mean square error (RMSE) for 1000 Monte-Carlo simulations is calculated each

for poor and perfect ground conditions.

Table 2.3 shows RMSE in DOA estimation for three different cases. Case #1 shows the

RMSE when the antenna is over perfect ground and effects of mutual coupling is removed

by using mutual impedance matrix measured over the same ground condition. The RMSE
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Table 2.3

RMSE of DOA estimation for array for perfect and poor ground

Case Type of Ground Type of Ground RMSE

# for DOA Estimation for Z Estimation Degrees

1 Perfect ground Perfect Ground /

Copper

0.01

2 Poor ground Perfect Ground /

Copper

1.6

3 Poor ground Poor Ground 0.03

is fairly low, which supports the applicability of the method presented in [44]. The critical

situation arises when the antenna is placed over a poor ground and the mutual impedance

matrix is pre-estimated over a perfect ground. Now if we try to remove mutual coupling

effects from the measured terminal voltages by using this pre-estimated mutual impedance

matrix according to (2.2), the result worsens as shown by a higher RMSE for case #2. The

significant increase in RMSE shows that the mutual impedance matrix estimated in [42]

over perfect ground is not able to sufficiently remove errors in DOA estimation for the

case when the antenna is placed over poor ground. The obvious solution to this problem is

to estimate actual mutual impedances over poor ground as shown in the fourth column of

Table 2.2, then use it as in (2.2) for DOA estimation. The resultant RMSE (case #3) is very

close to the result found for case #1 where the antenna placement for DOA estimation and

Z matrix calculation were both carried out for perfect ground. The argument here is that

mobile or portable antennas encounter a variety of ground situations and in these scenarios

the pre-estimated mutual impedance matrix for an ideal case of perfect ground can not be

used to fully remove the errors in DOA estimation. Thus, if the situation permits, one

should measure the actual mutual impedance values for the given ground condition before
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estimating DOAs. However, a universal solution to this problem that works equally well

for all ground conditions is still an open problem.

2.4 Conclusion

This chapter investigated the effects of ground parameters on mutual impedance for DOA

estimation. To the best of the authors’ knowledge these results are novel and extend the

application of an existing technique [17] to real-earth situations. Significant impact of

ground constituent parameters on mutual impedance is observed. As a rule of thumb, for

applications on a real earth, the authors suggest reducing the values of mutual impedance

between two vertical monopoles to 50% of the values found in the anechoic chamber

over a perfect ground. The increase of RMSE in cases where the antenna is placed over

poor ground and pre-estimated mutual impedance matrix (assuming perfect ground) is

used to remove errors in DOA underscores the importance of this research. The authors

propose that the technique of estimating mutual coupling presented in [17] is applicable

to all ground conditions, provided the antennas be placed on the respective grounds. It is

understood that it is not always possible to pre-estimate mutual impedance for a variety

of ground conditions. It is also worth noting that most of the DOA estimation techniques

in the literature assume the array is in free space. Therefore, this research also motivates

the need for a universal solution of this issue that can be used for any arbitrary ground

condition. The authors wish to continue this work to find effects of ground parameters on
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other commonly used antenna elements when they are placed near ground. In Chapter 3,

the authors continue with the investigation and find effects of antenna height and certain

polarization on the mutual coupling of the half wave dipole array.
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Chapter 3

Effects of Ground on Antenna Mutual

Impedance for DOA Estimation Using

Dipole Arrays∗

3.1 Introduction

There is a growing interest in the wireless community to broaden the source localization

capability of the devices. Global position system (GPS) or devices attached to a cellular

network are already providing this facility with a certain accuracy. However, where satellite

∗Parts of this chapter have been submitted for publication in IET Electronics Letters.
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signals cannot be employed or where independent portable networks are to be deployed,

locating physical coordinates of a wireless source is a local direction finding problem.

Several methods such as received-signal-strength (RSS) [45], time-of-arrival (TOA) [46],

time-difference-of-arrival (TDOA) [47], and direction-of-arrival (DOA) [12] are in the

literature for finding the direction of a radio source. Traditionally, DOA techniques

exploit the antenna array structure properties to estimate direction of incident signals.

Antenna arrays consist of collocated antenna elements that are uniformly or non-uniformly

distributed [4], [5]. Usually, for simplicity of synthesis, all driven elements in an array

are kept identical. The performance of antenna arrays is severely compromised due to the

mutual coupling between elements, proximity of scatterers, and operating at low altitude

near real-earth. [48, p. 30.56]. Antenna mutual coupling is one phenomenon that introduces

significant errors in DOA estimation [15].

A number of authors proposed techniques to counter errors in DOA estimation due to the

mutual coupling [15] [18], [24], [17], [25]. In general, these techniques do not consider the

interaction of the antenna array with an imperfect ground in the near-zone [36]. Effects

of ground proximity and constituent parameters on wire antennas have been presented

in the literature [37], [38], [39]. Relation of ground constituent parameters with mutual

impedance between two wire loop antennas has also been investigated [49]. Recently,

effects of ground constituent parameters on received mutual coupling of monopole array

for DOA estimation have also been reported [34]. To the authors’ knowledge, investigation

of received mutual coupling of dipole array for DOA estimation near real-earth is still an
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open problem.

This chapter considers the effects of ground on the mutual coupling of an array of dipoles

and impact on DOA estimation. Numerical values of received mutual coupling of a dipole

array for DOA estimation are in the literature [50]. The operating environment for [50]

is presumably free-space. However, the real-ground or earth has finite conductivity and

may have high permittivity which are certain to have an impact on mutual coupling. The

effects of antenna height and polarization in conjunction to ground conductivity on mutual

coupling is investigated. The evaluation of mutual coupling is an extension of the technique

[17] to the near-ground case. The newly-found mutual coupling is used to compensate

errors in DOA estimation for an array over a good-ground.

3.2 Problem Formulation

The nature of the problem formulation for this chapter is similar to section 2.2 except that

instead of a monopole antenna , the element under consideration is a λ/2−dipole antenna.

In Section 2.2 a uniform linear array (ULA) of M omnidirectional elements is considered

for DOA estimation. It is supposed that plane waves from J narrowband farfield sources

are incident on this array and (M > J). The azimuth directions of uncorrelated incident

signals are φ1,φ2, . . . ,φJ . The kth sample of the array output; as given by (2.3), is:
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X[k] = ZV[k]+N[k] (3.1)

where X[k] =
[
x1[k],x2[k], . . . ,xM[k]

]T
, V[k] =

[
v1[k],v2[k], . . . ,vM[k]

]T
is the measured

voltage at the antenna terminal and N[k] =
[
n1[k],n2[k], . . . ,nM[k]

]T
is a vector of white

Gaussian noise samples appearing at the antenna terminal receiver. The noise has zero

mean and has correlation matrix σ 2I where σ is the standard deviation and I is an M ×M

identity matrix where Z is an M ×M matrix complex coefficients. The spatial covariance

matrix for (3.1) is given by (2.4) as:

R = E{ZVV′Z′}+σ 2I (3.2)

where σ 2 is the noise variance and I is the identity matrix. It is evident from (3.2)

that correct knowledge of Z is pivotal in DOA estimation with minimum error. With

the λ/2-dipole antenna as the array element, a method to find Z as the receiving mode

mutual impedance is in the literature [17]. A similar approach is also used to find mutual

impedance between elements of λ/2-dipole array acting as a receiver in the free-space [50].

Consider an array of two λ/2-dipole antennas over an arbitrary ground as shown in Fig.3.1.

The array is excited by an incident plane wave and each element is connected to a load ZL.

Due to this excitation, terminal currents It
1 and It

2 flow in the loads of antenna # 1 and # 2,
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Figure 3.1: Setup for finding mutual coupling between vertical dipole array

over arbitrary ground

respectively. The mutual impedance between this pair of dipoles is defined by (2.9) as:

Z12 =
W1

It
2

=−
1

It
2It

1

∫ l

0
Ez12(z

′)I1w(z
′)dz′ (3.3)

where the notations have similar meanings as defined by the equations (2.5), (2.7), and

(2.8).

It is evident from equation (3.3) that for a given current It
2, the E-field Ez12(z

′) has a major

contribution in the numerical value of mutual impedance. However, in the presence of an

arbitrary ground in the proximity of the antenna, the electric field Ez12 is deeply affected

51



and can be divided in two components as following [51]:

Ez12 = E f
z12 +Eg

z12 (3.4)

where E f
z12 is the component of the field as if it is in free-space, while Eg

z12 is due to the

image of the element in the ground. In general, due to the complexity of the problem, the

analytical solution of (3.4) cannot be found [38].

The investigation of effects of ground conductivity with a certain antenna height revealed

that nearly after a height of half wavelength, the driving point impedance of a vertical

dipole becomes independent of ground conductivity [38]. We hypothesize that a result of

similar nature should appear for the antenna mutual coupling of dipole arrays over arbitrary

ground conductivity for height greater than a half wavelength. In the next section, we will

investigate this hypothesis through the FEM and present results of mutual coupling by

extending the existing technique [17] to the case of finite ground and its effects on mutual

coupling and DOA. Effects of height for horizontal and vertical polarization on the mutual

coupling of a dipole array and subsequent effects on DOA are also investigated.
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3.3 Results and Discussion

In this section, the mutual impedance of a dipole array over a variety of ground

conductivities and antenna heights is investigated. It is well known that the mutual coupling

of wire type arrays is independent of direction of azimuth incidence (φ ) for a given

elevation (θ ). The investigation is carried out each for vertical and horizontal antennas

receiving corresponding vertically and horizontally polarized waves. The description of

procedure for the estimation of mutual impedance ia available as Appendix A.

3.3.1 Vertical Polarization

Consider two λ/2 dipole antennas at 2.4 GHz as shown in Fig.3.1. The antennas are placed

over a finite ground with element spacing λ/2 and are connected to a load ZL = 50Ω. The

array is excited by a vertically polarized plane wave, whose incident direction is (θ =

90o,φ = 90o).

The mutual impedance is found for a range of antenna heights h= 0 to 10λ from a ground

having fixed permittivity εr = 1 and varied conductivity as shown in Fig.3.2. Except for

the case when ground conductivity is similar to a perfect conductor σ = 107S/m, mutual

impedance values remain identical to each other for both very poorly conductive ground
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Figure 3.2: Mutual impedance between two λ/2 vertical dipoles over

ground, various σ and antenna heights

σ = 10−7S/m and for a typical good ground σ = 0.01S/m. However, for h ≥ λ , mutual

impedance values over high conductivity ground start aligning with real-earth values. It is

also observed from Fig.3.2 that both the real and imaginary values of mutual impedance

become roughly independent of ground conductivity once the antenna is placed at a height

h ≥ λ . The height is measured from the bottom tip of the dipole antenna.

A more detailed result of mutual impedance for given ground conductivities when an

antenna is placed very near to the ground 0 < h ≤ λ is shown in Fig.3.3. There are

variations in the values of mutual impedance for the case when conductivity is close to

perfect ground. However, it can be concluded that for an antenna height h ≥ 0.25λ mutual

impedance becomes independent of the presence of conductivities found in real-earth. The

result is consistent with the findings in [38], which showed independence of antenna driving
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Figure 3.3: Mutual impedance between two λ/2 vertical dipoles over

ground, exploded image of Fig.3.2 for 0 < h < λ

point impedance from typical ground conductivities for antenna height h ≥ 0.2λ .

3.3.2 Horizontal Polarization

Consider λ/2-dipole antennas at 2.4 GHz parallel to the xy plane with the axis of antenna

elements directed along y-axis as shown in Fig.3.4. The antennas are placed over a finite

ground with element spacing λ/2 and are connected to a load ZL = 50Ω. The array is

excited by a horizontally polarized plane wave, whose incident direction is (θ = 90o,φ =

90o). The antenna height is measured along the z-axis.

The variation of mutual impedance for a wide range of antenna heights over ground having
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Figure 3.4: Setup for finding mutual coupling between horizontal dipole

array over arbitrary ground

relative permittivity εr = 1 and various conductivities is shown in Fig.3.5. It can be deduced

from the results that sensitivity to antenna height for horizontal polarization is similar

to vertical polarization for h ≥ λ . For the purpose of mutual impedance estimation, one

can cautiously divide the antenna height regions into two parts: very near ground h < λ

and fairly free-space h ≥ λ . In Fig.3.6 the antenna height region 0 ≤ h ≤ λ is shown in

magnified form. Unlike vertical polarization, the variations in mutual impedance values

is significant for the conductivity nearly equal to a perfect conductor. This is tantamount

to the ground acting as a scatterer of conducting material because a horizontally polarized

wave excites current in the ground. However, for low values of conductivity, the mutual

impedance suffers very minor variations due to the changes in conductivity when antenna

height h ≥ 0.25λ . The increase in insensitivity of driving point impedance to ground
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conductivity variations after attaining an antenna height h = 0.5λ is presented in [52].

3.3.3 Effects on DOA Estimation

Investigation of the effects of antenna height from a good ground (εr = 1,σ = 0.01S/m) on

mutual coupling for DOA estimation is carried out by simulation. An array of four vertical

half wave dipoles is i the DOA estimator antenna, and the spacing between elements is

λ/2 at 2.4 GHz. The mutual coupling matrix Z is calculated according to [17] by placing

antennas over h = 0.25λ and h = 10λ , respectively. DOA estimation is carried out for

a vertically polarized farfield source at θ = 90o,φ = 90o. The terminal voltage vector V

at the antenna ports is measured in the COMSOL R© multiphysics environment [43], for
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Figure 3.5: Mutual impedance between two λ/2 horizontal dipoles over

ground, various σ and antenna heights
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ground, exploded image of Fig.3.5 for 0 < h < λ

a terminal load of 50Ω. The effect of mutual coupling on the terminal voltage vector V

is removed and coupling free voltage vector U is found by using ZV = U. At SNR=30

dB, white gaussian noise is added to the coupling-free terminal voltage. The covariance

matrix is found by (3.2) and the MUSIC algorithm [9] is used to estimate azimuth (φ ) of

the incident source. Root mean square error (RMSE) for 1000 Monte-Carlo simulations is

calculated each for poor and perfect ground conditions.

Table 3.1 shows RMSE in DOA estimation for three different cases. Case #1 shows the

Table 3.1

RMSE of DOA estimation for certain antenna heights from a good ground

Case Antenna Height Antenna Height RMSE

# for DOA Estimation for Z Estimation Degrees

1 10λ 10λ 0.06

2 0.25λ 10λ 0.06

3 0.25λ 0.25λ 0.06
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RMSE when the antenna is at h = 10λ and we remove mutual coupling effects by using a

mutual impedance matrix measured over the same height. The RMSE is fairly low, which

supports the applicability of the method presented in [44]. The critical situation is tested

when the antenna is placed at h = 0.25λ and the mutual impedance matrix is pre-estimated

over h= 10λ , but surprisingly RMSE remains unchanged. The vertically polarized incident

wave does not cause significant currents in the real-earth, so the MUSIC algorithm was

able to cope with the minor voltage perturbation after removing the mutual coupling. In

case #3 both DOA and mutual impedance estimation is carried out at h = 0.25λ . Case

#3 supports this conclusion that the existing method [42] of removing mutual coupling for

azimuth DOA estimation is valid for the near ground case using dipole arrays. However,

where monopole arrays are used, effects of real-ground parameters are significant on DOA

estimation because monopoles need perfect ground for exploitation of image theory [34].

3.4 Conclusion

This research investigated the effects of ground conductivity on mutual impedance for

DOA estimation using dipole arrays. To the best of authors’ knowledge, these results are

novel and support the application of an existing technique [17] to real-earth situations.

The antenna mutual impedance showed insensitivity to the ground conductivity for

antenna height h ≥ λ . The invariance of RMSE of DOA estimation to antenna height

measured from a typical good-ground suppresses concerns in using the existing method for
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removing received mutual coupling effects on DOA estimation near real-ground. However,

this research has not investigated inclined incidence, variation in permittivity and other

available incident polarizations, so these are some of the possible offshoots.
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Chapter 4

Direction Finding in the Presence of

Near-Zone Resonant Size Scatterers∗

4.1 Introduction

Wireless devices with the capability of direction-of-arrival estimation (DOA) have many

applications such as command and control, security and safety, and MIMO communication.

Several techniques have been developed and presented in the literature to estimate DOA [8].

In general, these methods assume that the antenna elements are ideal and operate in free

space. The real-world problem is totally different where antenna elements share energy

∗Parts of this chapter have been submitted for publication in International Journal of Electronics and
Communications. The publisher allows the authors to use their articles in dissertations [53].
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with themselves, known as mutual coupling. Moreover, the presence of scatterers in the

vicinity of antenna results in distortion of the signal and causes DOA estimation error[21].

A number of researchers’ proposed methods compensate for the effects of mutual coupling

for real antenna elements [15], [35], [18], [17], [24], [25]. These techniques proved

effective in significant reduction of errors in DOA estimation for an array operating in

an environment similar to free space. Thus, the presence of any near-zone scatterer is

ignored or not considered in the signal model. These methods also assume that sources are

in the farfield and, therefore, incident waves are plane waves. However, any scatterer in the

near-zone produces spherical waves when illuminated by farfield sources [23]. The plane

waves from the farfield are desired signals, and spherical waves due to near-zone scattering

are the interfering signals.

In the last decade, some authors addressed the joint problem of mutual coupling and

near-zone scatterers, by techniques whose essence is offline calibration [21], [22], [31].

Fewer antenna elements are required by transforming the non-uniform array to a virtual

uniform array to find DOA in an environment for which steering vectors are previously

measured/computed [21]. Non-conventional least squares optimization is used to exploit

the large data set of pre-calibrated steering vectors for DOA estimation with near-zone

scatterers [22]. The square calibration matrix of [18] is proposed as non-square to address

the scattering from a known scatterer or platform structure [31]. These methods are suitable

for fixed antenna where the environment remains stationary. However, when either antenna
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is portable or the environment is not stationary, these methods will yield errors and require

re-calibration, which is not convenient for many applications.

One way to address the issue of portable antenna where pre-calibration cannot last long

is self- or auto-calibration. The auto-calibration techniques exploit the signals from the

sources of opportunity to sufficiently remove errors in the DOA estimate, while estimating

the DOA simultaneously. Thus, no additional source is required to calibrate the array.

A self-calibration technique for DOA estimation using the MUSIC algorithm where an

uncoupled near-field scatterer is present is given in [23]. This method does not remove

the effects of mutual coupling and works only for 2D scatterers. A self calibration

algorithm that removes the effects of mutual coupling and near-zone scatterer is also in

the literature [32]. This algorithm approximates a scatterer as a cylinder and, therefore,

assumes cylindrical harmonic expansion origination in response to a plane wave incidence.

The algorithm is iterative and does not guarantee convergence to the true DOA. It also

works only for 2D scatterers and requires a large number of antenna elements.

In a real-world 3D environment, a finite-size scatterer is more accurately modeled as a

sphere, and as stated by [23] produces spherical harmonics in response to plane wave

excitation. This chapter extends the iterative algorithm approach presented in [32] to a 3D

case where scatterers are modeled as a sphere and the algorithm utilizes spherical harmonic

expansion. Although like its predecessor, a solution is not guaranteed, but convergence

is achieved with far fewer antenna elements. It is highly likely that the presence of
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near-zone scatterers results in spurious peaks in the DOA spectrum which cause errors in

the initial estimate of the number of sources [22, Fig 14]. This issue of spurious number of

sources was not explicitly described in [32]. Our algorithm suppresses the spurious peaks

and corrects the detection of the number of sources in addition to the removal of DOA

estimation errors. Classical DOA estimation methods [54], [2] are incorporated in this

algorithm. The algorithm estimates elevation θl of incident sources present in the farfield.

Section 4.2 will describe the method and explain the algorithm. Numerical examples

showing capability of the method for a variety of complexities are presented in Section

4.3. Section 4.4 concludes the chapter and Section 4.5 provides symbol definitions and

nomenclature.

4.2 Method Description

4.2.1 Problem Statement

To illustrate the problem, consider TMx plane waves incident on an antenna array of

x-directed thin wires. All currents and fields in the antenna elements are also x-directed.

Fig.4.1 shows the problem setup where a field is incident on an antenna array of M

elements, and the location of mth element is rm = (xm,ym,zm). The scatterer’s location

rs = (xs,ys,zs) is known, but its geometry is unknown. It is also assumed that the antenna
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and environment is stationary during DOA estimation.

The total field at the mth antenna element is given as the sum of the incident and scattered

field (from spherical scatterer)

Et = Einc +Esct (4.1)

The x-directed incident field at the mth antenna element due to L incident waves is given as

E inc
m (x) =

L

∑
l=1

ElE
PW
m (θl,φl) =

L

∑
l=1

Ele
jβ (xmsinθlcosφl+ymsinθlsinφl+zmcosθl)|E inc

m (x)| (4.2)

Figure 4.1: Incident plane wave on M element array with spherical scatterer
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When a sphere is excited by a TMx plane wave, the corresponding spherical harmonic

expansion is in [55]. Letting the magnitude |E inc
m (x)| = Eo, the scattered field along the

x-axis at the mth antenna element due to S spherical scatterers at known locations in the

near-zone is given as:

Esct
m (x) =

S

∑
s=1

[

(sinθsmcosφsm)
[

− jEocosφsm

∞

∑
q=1

bsq

[
Ĥ

(2)′′

sq (βrsm)+ Ĥ
(2)
sq (βrsm)

]
P1

sq(cosθsm)
]

(4.3)

+(cosθsmcosφsm)
[ Eo

βrsm
cosφsm

∞

∑
q=1

[
jbsqĤ

(2)′

sq (βrsm)sinθsmP
′1
sq (cosθsm)− csqĤ

(2)
sq (βrsm)

P1
sq(cosθsm)

sinθsm

]]

+(−sinφsm)
[ Eo

βrsm
sinφsm

∞

∑
q=1

[
jbsqĤ

(2)′

sq (βrsm)
P1

sq(cosθsm)

sinθsm
− csqĤ

(2)
sq (βrsm)sinθsmP

′1
sq (cosθsm)

]]
]

.

To make the equation concise, the following constants can be introduced for a fixed

geometrical location

Usm = − jsinθsmcos2φsm (4.4)

Vsm =
cosθsmcos2φsm

β rsm
(4.5)

Wsm =
−sin2φsm

β rsm
. (4.6)

The individual estimation of source amplitude Eo that excited the scatterers is not our

concern, so we merged it with unknown amplitudes of the harmonics to form two new

unknown amplitudes as following:
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Bsq = Eobsq (4.7)

Csq = Eocsq (4.8)

The five harmonic forms (indexed in superscript) can be written as:

G1
sqm =

[
Ĥ

(2)′′

sq (β rsm)+ Ĥ
(2)
sq (β rsm)

]
P1

sq(cosθsm)
]

(4.9)

G2
sqm = jĤ

(2)′

sq (β rsm)sinθsmP
′1
sq(cosθsm) (4.10)

G3
sqm = Ĥ

(2)
sq (β rsm)

P1
sq(cosθsm)

sinθsm
(4.11)

G4
sqm = jĤ

(2)′

sq (β rsm)
P1

sq(cosθsm)

sinθsm
(4.12)

G5
sqm = Ĥ

(2)
sq (β rsm)sinθsmP

′1
sq(cosθsm) (4.13)

.

Therefore, equation (4.3) can be given in the form of known harmonics and their unknown

amplitudes as following:

Esct
m (x) =

S

∑
s=1

[

Usm

Q

∑
q=1

BsqG1
sqm +Vsm

Q

∑
q=1

[BsqG2
sqm −CsqG3

sqm]+Wsm

Q

∑
q=1

[BsqG4
sqm −CsqG5

sqm]

]

.

(4.14)

Note that we are not determining the current density on the scatterer as it is not needed for
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our method. Suppose our receiver is capable of measuring total voltage at the mth antenna

terminal V t
m. The total voltage received at an antenna terminal can be expressed as the

following:

V t
m =V inc

m +V sct
m (4.15)

where at the mth antenna terminal V i
m is the voltage due to the incident filed E inc

m (x) alone

and V sct
m is the voltage due to scattered field arising from near-zone scatterers Esct

m (x).

4.2.2 Solution

As mentioned earlier, the total voltage at the antenna terminal is measured or known. The

flow diagram of the iterative technique to determine DOA by finding V inc and V sct from the

knowledge of V t is shown in Fig. 4.2. The algorithm removes the effects of mutual coupling

in an implicit way by forcing V inc to be a coupling free voltage vector, while putting all

the perturbations in the V sct vector. In the absence of any scatterer, the environment can

be considered as free space and V t
m suffers perturbation due to mutual coupling between

elements only. In this special case (S = 0), any of the available methods [15], [35], [18],

[17], [24], [25] can be embedded into this proposed iterative algorithm. The index of

iteration k = 0,1,2, ...,K is used in the superscript of unknown parameters described in the
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Figure 4.2: Flow diagram of the iterative algorithm

previous section. At convergence, the iteration index is K. The following steps describe

the algorithm:

1. Given that the V t is known and initially assumed as the desired V inc voltage, and

classical DOA estimation techniques are also available [3], [2]. At k = 0 the iteration

estimates the number of sources L(k) and their elevation θ = [θ
(k)
1 ,θ

(k)
2 , ...,θ

(k)
L ]). It

is to be noted that the incorrect assumption of letting V t =V inc not only causes errors

in the DOA estimate but may also gives rise to spurious peaks in the DOA spectrum

[22]. Thus, the initial estimate of number of sources may be higher than actual.
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2. Having the number of sources and DOA estimates from step 1, (4.15) for an array of

M elements can be written as set of M simultaneous linear equations.
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(4.16)

Here it is assumed that scatterers are exterior to the array elements and each

scatterer is approximated as a sphere whose radius is ρs. The number of harmonics

required to sufficiently represent the scattered field from a near-zone scatterer can

be approximately given as Q = β rs. Equal number of harmonics for each scatterer

is also assumed for simplicity. Here the unknowns are E
(k)
l ,B

(k)
sq and C

(k)
sq where

l = 1,2...,L(k),s = 1,2...,S and q = 1,2...,Q. Thus, the total number of unknowns in

the above equation is given as N = L(k)+SQ+SQ = L(k)+2SQ. As its predecessor

[32], we solve Equation (4.16) by the least squares method with the condition that

N < M.

3. The incident voltage in each iteration is evaluated as

V inc =V t −V sct (4.17)
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where V sct is found through Equation (4.14) for each antenna by using current values

of B and C, the spherical harmonic’s amplitudes.

4. The incident voltage from the above step is used to find the elevation of incident

sources and the iteration index is incremented and the algorithm is repeated until

convergence of the DOA estimate is achieved.

Although there is no surety of achieving the true value or exact DOA, convergence is

guaranteed. In the next section, the capability of the method is demonstrated by numerical

examples. The Matlab R© code for this algorithm is available as Appendix B.

4.3 Results and Discussion

The examples presented in this section test the algorithm for a variety of situations. All

examples use horizontal (x-directed) half-wave dipoles of wire radius ρa = 0.001λ as

elements of a uniform linear array. The array principal axis is along the z direction and

its first element center is (0,0,0). Examples 1 and 2 have element spacing d = 0.5λ and

examples 3 and 4 have closely spaced elements with spacing d = 0.25λ . These examples

take into account the more practical radius of antenna element as compared to [32], where

it was ρa = 0.00001λ . For example, at f = 3GHz, our antenna radius will be 1mm, where

further reduction makes the antenna impractical. The experiment is carried out using the

COMSOL R© multiphysics environment [43]. The classical method; delay-and-sum [54] is
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(a) Antenna array and near-zone scatterer for

example 1 & 2

(b) Antenna array and near-zone scatterers for

example 3 & 4

Figure 4.3: Geometric setup for examples 1,2,3 & 4

used for DOA estimation. In all of these examples, a source at a particular DOA is detected

when the amplitude at that angle equals or exceeds 30% of the maximum amplitude in the

spectrum. It is anticipated that Q = 2 to 3 harmonics will be sufficient both to represent the

field due to the scatterer and for convergence of the solution because all our scatterers have

radius ρs ≈ 0.5λ from their geometric center. It should be noted that having Q harmonics

in Equation (4.16), will result in 2Q unknowns for each scatterer.

Example 1: The setup of this example is shown in Fig. 4.3(a). Here S = 1 scatterer , L = 1

incident plane wave and M = 10 elements. The elevation of the incident wave is θ1 = 60o

and the scatterer’s (cube of side length= λ ) geometric center is located at (0.2,−0.6,2.5)λ .

Fig. 4.4(a) shows that the uncorrected DOA spectrum at k = 0 detects the incident wave

DOA θ
(0)
1 = 59.4o and two spurious DOAs 78o and 120.3o. Thus, initially the algorithm

has to assume three incident waves. The corrected spectrum shows error reduction for
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the desired DOA and suppression of the spurious peaks, to the value below 30% of the

maximum value, thereby reducing the number of sources to the correct value of one. The

convergence of θ
(k)
1 to θ

(K)
1 = 60.3o using Q = 3 spherical harmonics is shown in Fig.

4.4(b).

Example 2: This example has the same geometrical setup of example 1, but has two

incident plane waves L = 2. The elevation of the incident waves is θ1 = 60o and

θ2 = 105.0o. The algorithm initially estimates two incident waves θ
(0)
1 = 58.8o and

θ
(0)
2 = 105.8o. Two spurious DOAs 78.8o and 86.7o are also detected at k = 0 as shown in

Fig.4.5. Thus, initially the algorithm has to assume four incident waves. Spurious peaks in

the DOA spectrum are successfully reduced and the DOA estimation of desired waves is

reasonably achieved. The convergence of θ
(k)
1 to θ

(K)
1 = 60.3o and θ

(k)
2 to θ

(K)
2 = 105.2o

using Q = 3 is shown in Fig.4.6.

Example 3: This example is more complex by not only having S = 2 scatterers but also

having closely spaced antenna elements d = 0.25λ , which causes an increase in mutual

coupling. The geometry is shown in Fig.4.3(b). The number of unknowns will increase as

the number of scatterers increases, so in this example more antenna elements M = 18 are

used to adequately satisfy the least squares optimization condition N ≤M. The elevation of

the incident wave L = 1 is θ1 = 105.0o. One scatterer in the form of a cube of side length=

0.9λ is placed at (−0.2,−0.7,0.45)λ and the other as a sphere of radius ρs = 0.5λ with

geometric center at (−0.2,−0.6,3.5)λ . Fig.4.7(a) shows the uncorrected DOA spectrum
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Figure 4.4: Results for example 1

at k = 0, where the incident wave DOA is detected as θ
(0)
1 = 103.0o and one spurious

DOA at 129.2o. The corrected spectrum shows improved DOA estimation and snubbing

of the spurious peak, thereby reducing the number of sources to the correct value of one.
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The convergence of θ
(k)
1 to θ

(K)
1 = 104.6o using Q = 2 spherical harmonics is shown in

Fig.4.7(b).

Example 4: The geometrical setup of this case is the same as for Example 3 , but has

two incident plane waves L = 2. The elevation of the incident waves is θ1 = 60o and

θ2 = 105.0o. The algorithm initially estimates three incident waves θ
(0)
1 = 61.0o and

θ
(0)
2 = 102.8o. One spurious DOA 46.4o is also detected as shown in Fig.4.8. This case

shows the trouble an ordinary DOA estimator (un-calibrated) can face, where the spurious

signal peak has almost the same value as of desired signal. Thus, the spurious signal

can not be rejected by setting a threshold value as this will also reject the desired signal.

Our algorithm takes into account three incident waves initially. After convergence of the

algorithm, the unwanted signal peak is almost eradicated and the DOA estimation accuracy

is also improved. The convergence of θ
(k)
1 to θ

(K)
1 = 59.4o and θ

(k)
2 to θ

(K)
2 = 105.4o using
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Figure 4.5: DOA spectrum for example 2
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Q = 2 is shown in Fig.4.9. This example also shows the slower and erratic convergence of

the solution due to the complexity of the situation. This iterative nature of the solution is a

drawback of this method. From this, it is worth to mention that an approximately similar
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Figure 4.6: Convergence of θ
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1 and θ
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2 for example 2
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geometric situation was handled by M = 45 antenna elements using cylindrical harmonics

[32].

A summary of the number of iterations required and the convergence time using Intel R©
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Figure 4.7: Results for example 3
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Figure 4.8: DOA spectrum for example 4

coreTMi5-2500 processor is given in Table.4.1. The number of iterations and convergence

time increase as the complexity increases. However, with faster processing, the processing

time can be further reduced. The received terminal voltages in COMSOL R© for Examples

1-4 are available in Appendix C.

Table 4.1

Number of iterations and convergence time for examples 1-4

Examples
Iterations K Convergence time

# # Seconds

1 10 0.33

2 10 0.33

3 12 0.392

4 78 2.23
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4.4 Conclusion

The auto-calibration method described here extends the state-of-the-art method available

in DOA estimation in the presence of near-zone 3D scatterers. The work is supported by

numerical examples for a variety of complex situations in terms of multiple incident waves

and scatterers. Use of spherical harmonics provides a better realization of the scattering

field with a fewer number of harmonics and, therefore, reduces the number of antenna

elements required in comparison with using cylindrical harmonics. Although this approach

is demonstrated to be more practical in terms of using 3D scatterers and real size antenna

elements, it still carries the same two drawbacks: due to the iterative method, it has limited

application to cases where time delay is acceptable and, secondly, as the electrical size

or number of scatterers increases, the number of unknowns increase, which requires more

antenna elements. However, the method motivates the researchers towards a more realistic

situation. Finding a guaranteed solution with this method is one of the open problems.

Scenarios when multiple scatterers come close to each other and also to antenna elements

result in mutual coupling between scatterer-scatterer and scatterer to antenna are yet to be

addressed, to the best of our knowledge.
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4.5 Nomenclature

Bsq,Csq Spherical harmonic’s amplitudes

d Element spacing in wavelength λ

El Amplitudes of lth incident plane wave

Et Total electric field

E inc Incident electric field

Esct Scattered electric field from scatterer

f Frequency of incident signal

G1
sqm, . . . ,G

5
sqm Spherical harmonics

Ĥ(2) Spherical Hankel function of second kind

Ĥ(2)′ First derivative of spherical Hankel function of second kind

Ĥ(2)′′ Second derivative of spherical Hankel function of second kind

L Number of incident plane waves

l Incident plane wave index

M Number of antenna elements

m Antenna element index

N Number of unknowns in the set of simultaneous linear equations

P1 Associated Legendre function of first kind

P
′1 First derivative of associated Legendre function of first kind

PW Plane wave
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Q Number of spherical harmonics used

q Index of spherical harmonic

r Radial distance in spherical coordinates

rsm Radial distance from sth scatterer to mth element

S Number of Scatterers

s Scatterer index

U,V,W Constants for fixed element and scatterer location

(xm,ym,zm) Location of mth antenna element in cartesian coordinates

(xs,ys,zs) Location of sth scatterer in cartesian coordinates

β Free space wave number

θ Elevation angle in spherical coordinates

θsm Elevation angle of mth element from sth scatterer

(θl,φl) Incidence direction of lth plane wave

ρa Radius of antenna wire

ρs Radius of scatterer

φ Azimuth angle in spherical coordinates

φsm Azimuth angle of mth element from sth scatterer
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Chapter 5

Conclusion

Direction-of-arrival estimation is prone to various errors. One major source of error is the

assumption that array elements are independent of one another. In reality, radiation from

one element interacts with other elements. This phenomenon is known as mutual coupling.

Various techniques are available in the literature to compensate for this error, but generally

these methods assume antennas are placed in free-space; thus, effects of the presence of an

arbitrary ground are neglected. A second significant source of error is the assumption that

the surroundings of the array is free of any other resonating object but, that in general, the

DOA estimation is deeply affected by the presence of near-zone objects or scatterers. This

work addresses both of the above errors; first, by introducing pre-calibration to remove

antenna mutual coupling effects on DOA estimation in the presence of a real-earth and,

second, by presenting a self-calibration algorithm to remove the effects of 3D scatterers on
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DOA estimation.

Effects of ground parameters on mutual coupling of wire type antenna arrays for DOA

estimation are investigated. Both monopole and dipole antenna elements are included in

the research and to the best of the authors’ knowledge novel results are presented. While

monopole antenna arrays need a ground plane for their operation using image theory, dipole

arrays show significant variation in the performance for an antenna height h < 0.25λ from

the ground.

Significant impact of ground constituent parameters on mutual impedance of a monopole

array is observed. As a rule of thumb, we suggest reducing the values of mutual impedance

between two vertical monopoles be reduced to 50% of the values found in the anechoic

chamber over a perfect ground for applications on a real-earth. The increase of RMSE in

the case when the antenna is placed over poor ground and pre-estimated mutual impedance

matrix (assuming perfect ground) is used to remove errors in DOA, underscores the

importance of this investigation. We propose that the technique of estimating mutual

coupling presented in [17] is applicable to all ground conditions, provided the antennas

be placed on respective grounds.

Investigation of mutual impedance of dipole array showed insensitivity to the variations

in the ground conductivity after an antenna height h ≥ λ . Results for both horizontal

and vertical polarization depicted a similar trend of insensitivity. This outcome supports

the application of an existing technique [17] to the real-earth situations. The invariance
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of RMSE of DOA estimation to antenna height measured from a typical good-ground

suppresses concerns for using the existing method for removing received mutual coupling

effects on DOA estimation near real-ground. Thus, the existing compensatory techniques

for removing mutual coupling associated errors from DOA estimation can be safely used

for antenna height h ≥ λ . We also propose that the very same techniques can also be

marginally used for antenna height h ≥ 0.25λ .

An auto-calibration method is presented that extends the state-of-the-art method available

in DOA estimation in the presence of near-zone 3D scatterers. A number of numerical

examples for a variety of complex situations, in terms of multiple incident waves and

scatterers, are also appended. Spherical harmonics are used to provide better realization

of the scattering field from the near-zone scatterer. Results showed that fewer antenna

elements are required when using spherical harmonics instead of cylindrical harmonics.

Despite the method’s practicability in terms of using 3D scatterers and real-size antenna

elements, it still has the same two drawbacks: firstly being an iterative method, it has

limited application to situations where time delay is acceptable and, secondly, as the

electrical size and/or number of scatterers increases, the number of unknowns increases,

which requires more antenna elements.

To the best of the author’s knowledge this research motivates a number of open problems

in this area as the realization of the environment improves. It is understood that it is not

always possible to pre-estimate mutual impedance for a variety of ground conditions. It is

85



also worth noting that most of the DOA estimation techniques in the literature assume the

array is in free-space. Therefore, this research also brings to light the need for a universal

solution of this issue that can be used for any arbitrary ground condition and polarization.

Moreover, suppressing the errors in DOA estimation due to the presence of near-zone

scatterers is also an open problem, which has been, until now, addressed with certain

constraints. The method developed in this work motivates the contemporary researchers

towards a more realistic solution of this problem. Finding a guaranteed solution with this

method is also an open problem. A complex, yet-to-be-addressed scenario is possible when

multiple scatterers come close to each other and also to the antenna elements, resulting in

mutual coupling between scatterer-scatterer and scatterer-antenna. The same problem can

suffer an increase of complexity once noise is introduced in the estimation.

In Fig. 5.1 a quagmire is shown, which arises due to the presence of near-zone scatterers

and nearness of an arbitrary ground to the DOA estimation array. The solution to this

problem may be considered as the first consolidated step in the direction set by this

dissertation.

In summary, this work demonstrated the vulnerability of DOA estimation to the presence of

a real environment around the antenna array. The knowledge of the surroundings enables

the signal processing algorithms to modify themselves for correct DOA estimation. This

work investigated the two major sources of error: array mutual coupling in the presence of

an arbitrary ground and the presence of 3D scatterers in the near-zone of the antenna array.
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Figure 5.1: Near-ground DOA estimation in the presence of near-zone 3D

scatterers

Here, mutual coupling for ULA is preestimated for various ground conditions of array

operation using FEM. Secondly, a self-calibration algorithm is presented for suppression of

errors due to the presence of 3D scatterers. This work has constraints such as antenna type,

array structure, polarization, scatterer shape and knowledge of scatterer location. These

limitations invite researchers towards further open problems in this area.
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Appendix A

Procedure for Finding Z12 in Chapters 2

and 3

The procedure being described here to find mutual impedance between two wire type

antennas is an extension of the method found in [17]. Consider λ/4-monopole antenna

elements as shown in Fig. 2.1 for estimating mutual impedance Z12 between the elements.

The array is operating at a frequency of 2.4 GHz and connected to a terminal load ZL = 50Ω.

The length of the antenna element is l =30 mm, the element radius is ρa =0.3 mm and the

element spacing is d = λ/2 which equals 62.5 mm. The array is placed over an arbitrary

ground whose constituent parameters (σ ,ε,µ) can be altered to match the specification

of a particular ground type as described in Table 2.1. The simulation is carried out in

COMSOL R© multiphysics environment[43]. The array is in receiving mode and vertically
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polarized plane wave incidence is considered from a direction (θ = 90o,φ ). It is well known

that for wire type antennas the mutual impedance estimation is independent of azimuth (φ )

direction for a given elevation angle (θ ). The mutual impedance Z12 is dependent on the

values of W t
1 and It

2 as shown in (2.6). The voltage W t
1 can be described as (2.5):

W t
1 =V t

1 −U t
1. (A.1)

The voltage U t
1 is measured at the antenna terminal #1 in isolation from the second antenna

that is by removing the second antenna element. On the other hand voltage V t
1 is measured

at the antenna terminal #1 in the presence of antenna #2. The current It
2 can be defined as:

It
2 =

V t
2

ZL
(A.2)

where V t
2 is measured at antenna terminal #2 in the presence of antenna #1. Thus the

mutual impedance equation (2.9) can be represented in terms of measurable parameters as

following:

Z12 =
V t

1 −U t
1

V t
2

ZL. (A.3)

This procedure can be used for estimation of mutual impedance Z12 of vertical and
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horizontal dipole arrays for geometries shown in Fig.3.1 and Fig.3.4 respectively. Table

A.1 is presented to show the voltages at antenna terminals for producing plots in Fig. 2.3.

Table A.1

Terminal voltages in volts from COMSOL for Fig. 2.3

Ground U t
1 V t

1 V t
2

Type

Poor

Ground

-8.2075e-7+2.2877e-7i -8.5272e-7+2.0014e-7i -8.5121e-7+1.9815e-7i

Typical

Ground

-6.7185e-7+1.6515e-7i -7.1341e-7+1.2074e-7i -7.1274e-7+1.1904e-7i

Good

Ground

-5.9035e-7+1.4024e-7i -6.3118e-7+9.3633e-8i -6.3073e-7+9.2087e-8i

Sea

Water

-4.0372e-7+9.0667e-8i -4.366e-7+4.791e-8i -4.3644e-7+4.6765e-8i

Fresh

Water

-4.0627e-7+1.1491e-7i -4.4607e-7+7.4001e-8i -4.4601e-7+7.2865e-8i

Copper -4.8613e-6+1.0729e-6i -5.3522e-6+3.0549e-7i -5.3531e-6+2.8972e-7i
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Appendix B

Matlab R© Code for DOA Estimation

Algorithm in Chapter 4

Matlab R© is a registered trade mark

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% THIS IS A MATLAB BASED PROGRAM AND IS BASED ON THE ALGORITHM

% PRESENTED IN CHAPTER 4

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% W r i t t e n by :

% I r f a n Ahmed and Dr . Warren F . Pe rg e r , 2011

% Michigan T e c h n o l o g i c a l U n i v e r s i t y

% Houghton MI , USA

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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% COMPUTES:

% I . Antenna Element P o s i t i o n s ( assuming ULA a l o n g z a x i s )%

% I I . Element P o s i t i o n R e l a t i v e t o S c a t t e r e r i n s p h e r i c a l C o o r d i n a t e s

% I I I . A s s o c i a t e d Legender f u n c t i o n and i t s d e r i v a t i v e

% IV . S p h e r i c a l Hankel f u n c t i o n and i t s d e r i v a t i v e

% V. A l l Harmonics needed f o r Alg o r i th m G_1 t o G_5

% VI . D i r e c t i o n −of−A r r i v a l ( e l e v a t i o n a n g l e ) b o th c r u d e and a c c u r a t e

%

% INPUT PARAMETERS :

% 1 . Number o f E lem en t s M

% 2 . VERTICAL DISPLACEMENT OF DIPOLES d

% 3 . Z−c o o r d i n a t e o f f i r s t a n t e n n a e l e m e n t

% 4 . Number o f S c a t t e r e r s S

% 5 . C a r t e s i a n c o o r d i n a t e s o f each s c a t t e r e r

% 6 . Number o f Harmonics t o be e v a l u a t e d Q

%

%∗∗ NOTE: ALL THE INPUT LENGTH PARAMETERS ARE IN WAVELENGTHS .

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c l e a r a l l

c l o s e a l l

b e t a = 2∗ p i ; % Wave number

%c=3 e8;% Speed o f l i g h t i n vacuum

% I n p u t Array p a r a m e t e r s assuming ULA

prompt ={ ’ E n t e r t h e number o f a r r a y e lem en t s , M: ’ , . . .
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’ E n t e r t h e e l e m e n t s p a c i n g i n wav e len g th s , d : ’ , . . .

’ L o c a t i o n o f t h e f i r s t a n t e n n a e lem en t , z_1 ’ } ;

name= ’ I n p u t f o r Array c o n f i g u r a t i o n ’ ;

n u m l in es =1 ;

d e f a u l t a n s w e r = { ’ 1 0 ’ , ’ 0 . 5 ’ , ’ 0 ’ } ;

a r r a y _ i n p u t= i n p u t d l g ( prompt , name , numlines , d e f a u l t a n s w e r ) ;

a r r a y _ i n p u t= s t r 2 d o u b l e ( a r r a y _ i n p u t ) ;

% I n p u t S c a t t e r e r q u a n t i t y

prompt ={ ’ E n t e r t h e number o f s c a t t e r e r s , S : ’ , . . .

’ E n t e r t h e s p h e r i c a l h a rm o n ic s t o be e v a l u a t e d , Q: ’ } ;

name= ’ I n p u t Number o f S c a t t e r e r e l em en t s ’ ;

n u m l in es =1 ;

d e f a u l t a n s w e r = { ’ 1 ’ , ’ 3 ’ } ;

s c a t t e r e r _ i n p u t = i n p u t d l g ( prompt , name , numlines , d e f a u l t a n s w e r ) ;

s c a t t e r e r _ i n p u t = s t r 2 d o u b l e ( s c a t t e r e r _ i n p u t ) ;

% I n p u t S c a t t e r e r L o c a t i o n

S= s c a t t e r e r _ i n p u t ( 1 ) ;

i f S>0

f o r s = 1 : S

prompt ={ ’ E n t e r t h e x , x_s : ’ , ’ E n t e r t h e y , y_s : ’ , . . .

’ E n t e r t h e z , z_ s : ’ } ;

name= ’ I n p u t Number o f S c a t t e r e r e l e m e n t s ’ ;

n u m l in es =1 ;

d e f a u l t a n s w e r = { ’ 0 . 2 ’ , ’ −0 . 6 ’ , ’ 2 . 5 ’ } ;
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sc ( : , s )= i n p u t d l g ( prompt , name , numlines , d e f a u l t a n s w e r ) ;

s _ c o o r d= s t r 2 d o u b l e ( sc ( : , : ) ’ ) ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% E v a l u a t e Array c o o r d i n a t e s a l o n g z a x i s

M= a r r a y _ i n p u t ( 1 ) ;

d= a r r a y _ i n p u t ( 2 ) ;

z _ 1 _ a r r a y= a r r a y _ i n p u t ( 3 ) ;

z_m_coord = z _ 1 _ a r r a y+d ∗ ( 0 :M−1) ;

m_coord = [ ( 0 ∗ ( 1 :M) ) . ’ ( 0 ∗ ( 1 :M) ) . ’ ( z_m_coord ) . ’ ] ;

%[x1 y1 z1 ; . . . ; xm ym zm ]

%E v a l u a t e S c a t t e r e r L o c a t i o n w. r . t a n t e n n a e l e m e n t s i n s p h e r i c a l

%c o o r d i n a t e s

f o r s =1 :S

f o r m=1 :M

x_sm (m, 1 , s ) = [ m_coord (m,1)− s _ c o o r d ( s , 1 ) ] ;

y_sm (m, 1 , s ) = [ m_coord (m,2)− s _ c o o r d ( s , 2 ) ] ;

z_sm (m, 1 , s ) = [ m_coord (m,3)− s _ c o o r d ( s , 3 ) ] ;

r_sm_vec (m , [ 1 : 3 ] , s ) = [ ( x_sm (m, 1 , s ) ) . . .

( y_sm (m, 1 , s ) ) ( z_sm (m, 1 , s ) ) ] ;

r_sm (m, 1 , s )= s q r t ( ( x_sm (m, 1 , s ) ) ^ 2 + ( y_sm (m, 1 , s ) ) ^ 2 + . . .

( z_sm (m, 1 , s ) ) ^ 2 ) ;

t h e t a _ s m (m, 1 , s )= aco s ( d o t ( r_sm_vec (m, : , s ) , [ 0 0 1 ] ) . . .

/ r_sm (m, 1 , s ) ) ;
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phi_sm (m, 1 , s )= aco s ( d o t ( r_sm_vec (m, : , s ) , . . .

[ 1 0 0 ] ) / ( r_sm (m, 1 , s )∗ s i n ( t h e t a _ s m (m, 1 , s ) ) ) ) ;

end

end

sm_coord =[ r_sm t h e t a _ s m phi_sm ] ;

% . . . [ r 1 t h e t a 1 p h i1 ; . . . . ; rsm t h e t a _ s m phi , sm ]

e l s e

e r r o r ( ’S=0 , Th i s program works f o r S >1 ’)

end

% E v a l u a t i o n o f C o n s t a n t s Usm Vsm and Wsm

U_sm=−1 i ∗ s i n ( sm_coord ( : , 2 , : ) ) . ∗ . . .

( co s ( sm_coord ( : , 3 , : ) ) ) . ^ 2 ; % [ u11 ; u12 ; . . . usm ]

V_sm= ( co s ( ( sm_coord ( : , 2 , : ) ) . ∗ ( co s ( sm_coord ( : , 3 , : ) ) ) . ^ 2 ) ) . . .

. / ( b e t a ∗ ( sm_coord ( : , 1 , : ) ) ) ; % [ v11 ; v12 ; . . . vsm ]

W_sm=− ( s i n ( sm_coord ( : , 3 , : ) ) ) . ^ 2 . / . . .

( b e t a ∗ ( sm_coord ( : , 1 , : ) ) ) ; % [ w11 ; w12 ; . . . wsm ]

% E v a l u a t i o n o f S p h e r i c a l Harmonics See B a l a n i s IV−49

Q= s c a t t e r e r _ i n p u t ( 2 ) ;

% S e p a r a t e lo o p f o r Legendre p o ly Q+1 h a rm o n ic s

P1_a= z e r o s (M, Q+1 ,S ) ;

f o r q =1 :Q+1

P= l e g e n d r e ( q , co s ( sm_coord ( : , 2 , [ 1 : S ] ) ) ) ;

P2=P ( 2 , : , 1 , [ 1 : S ] ) ;

% . S e l e c t seco n d row o f P b e c a u s e . . .
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% . . we want o r d e r 1 harmonic o n ly

P3= p e rm u te ( P2 , [ 2 1 3 4 ] ) ;

P1_a ( : , q , [ 1 : S ] ) = P3 ; % MxQxS ; P^1

end

P1=P1_a ( : , [ 1 : Q] , : ) ; % P_n ^1 h a rm o n ic s o f Legender M x Q x S

%D e r i v a t i v e P_n ^ ’1 w. r . t co s ( t h e t a _ s m ) M x Q x S

f o r q =1 :Q

P1_d ( : , q , [ 1 : S])=(−1−q ) ∗ . . .

co s ( sm_coord ( : , 2 , [ 1 : S ] ) ) . ∗ P1_a ( : , q , [ 1 : S ] ) . . .

+q .∗ P1_a ( : , q + 1 , [ 1 : S ] ) . / ( − 1 + ( co s ( sm_coord ( : , 2 , [ 1 : S ] ) ) ) . ^ 2 ) ;

end

% Hankel f u n c t i o n s Mx Qx S

f o r q =1 :Q

H_2 ( : , q , [ 1 : S ] ) = s q r t ( p i ∗2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) / 2 ) . ∗ . . .

( b e s s e l h ( q + 0 . 5 , 2 , 2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) ;

end

%F i r s t d e r i v a t i v e o f Hankel f u n c t i o n M x Q x S

f o r q =1 :Q

H_2_1d ( : , q , [ 1 : S ] ) = s q r t ( p i / 2 ) . ∗ ( b e s s e l h ( q + 0 . 5 , 2 , 2∗ p i ∗ . . .

sm_coord ( : , 1 , [ 1 : S ] ) ) ) . / . . .

( 2∗ s q r t (2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) . . .

+0 .5∗ s q r t ( p i ∗2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) / 2 ) . ∗ . . .

( ( b e s s e l h (−0.5+q , 2 , 2 ∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) . . .

− b e s s e l h ( q + 1 . 5 , 2 , 2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) ) ;

end

98



%Second D e r i v a t i v e o f Hankel M x Q x S

f o r q =1 :Q

H_2_2d ( : , q , [ 1 : S])=− s q r t ( p i / 2 ) . ∗ . . .

( b e s s e l h ( q + 0 . 5 , 2 , 2∗ p i ∗ . . .

sm_coord ( : , 1 , [ 1 : S ] ) ) ) . / . . .

( 4 ∗ ( ( 2 ∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) . ^ 1 . 5 ) + . . .

s q r t ( p i / 2 ) ∗ ( b e s s e l h (−0.5+q , 2 , . . .

2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) . . .

− b e s s e l h ( q + 1 . 5 , 2 , 2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) . / . . .

( 2∗ s q r t (2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) + . . .

0 . 5∗ s q r t ( p i ∗2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) / 2 ) . ∗ . . .

( 0 . 5 ∗ ( b e s s e l h (−1.5+q , 2 , 2 ∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) . . .

− b e s s e l h ( q + 0 . 5 , 2 , 2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) ) + . . .

0 .5∗ ( − ( b e s s e l h ( 0 . 5 + q , 2 , 2 ∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) . . .

+ b e s s e l h ( q + 2 . 5 , 2 , 2∗ p i ∗ sm_coord ( : , 1 , [ 1 : S ] ) ) ) ) ;

end

%S p h e r i c a l Harmonics G^1 t o G^5 o r d e r M x Q x S

G_1=( H_2_2d+H_2 ) . ∗ P1 ; %

f o r q =1 :Q

G_2_a ( : , q , [ 1 : S ] ) = s i n ( sm_coord ( : , 2 , [ 1 : S ] ) ) . ∗ . . .

P1_d ( : , q , [ 1 : S ] ) ; end

G_2=1 i ∗H_2_1d .∗ G_2_a ;

f o r q =1 :Q

G_3_a ( : , q , [ 1 : S ] ) = P1 ( : , q , [ 1 : S ] ) . / . . .

s i n ( sm_coord ( : , 2 , [ 1 : S ] ) ) ;
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end

G_3=−H_2 .∗ G_3_a ;

% M u l t i p l y by minus s ig n ’− ’ t o make f i n a l e q u a t i o n form p o s i t i v e

G_4=1 i ∗H_2_1d .∗ G_3_a ;

G_5=−H_2 .∗ G_2_a ;

% M u l t i p l y by minus s i g n ’− ’ t o make f i n a l e q u a t i o n form p o s i t i v e

% M u l t i p l y U, V, W wi th c o r r e s p o n d i n g G’ s

f o r q =1 :Q

G_1_u ( : , q , [ 1 : S ] ) =U_sm .∗ G_1 ( : , q , [ 1 : S ] ) ;

G_2_v ( : , q , [ 1 : S ] ) =V_sm .∗ G_2 ( : , q , [ 1 : S ] ) ;

G_3_v ( : , q , [ 1 : S ] ) =V_sm .∗ G_3 ( : , q , [ 1 : S ] ) ;

G_4_w ( : , q , [ 1 : S ] ) =W_sm .∗ G_4 ( : , q , [ 1 : S ] ) ;

G_5_w ( : , q , [ 1 : S ] ) =W_sm .∗ G_5 ( : , q , [ 1 : S ] ) ;

end

%R e a r r a n g i n g Gs a c c o r d i n g t o unknowns B and C

G_B1=G_1_u+G_2_v+G_4_w ;

G_C1=G_3_v+G_5_w ;

G_B= r e s h a p e ( G_B1 ,M,Q∗S ) ; % o r d e r M x Q∗S

G_C= r e s h a p e ( G_C1 ,M,Q∗S);% o r d e r M x Q∗S

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Load V^ t from COMSOL Data s t o r e d i n Ex ce l f i l e

Nsam=1;% Number o f sam p les from COMSOL

[ a v ]= x l s r e a d ( ’ \ Example−1\ horz−d ip 1 0 _ s1 _ J1 ’ ) ;

v _ t _ s= s t r 2 d o u b l e ( v ( : , 1 ) ) ;

t i c % begn t im e check
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x = v _ t _ s ;% A c t u a l Rece iv ed S i g n a l

i f ( l e n g t h ( v _ t _ s )==M)

% C a l c u l a t i n g The c o v a r i a n c e m a t r i x o f t h e r e c e i v e d s i g n a l

R=x∗x ’ / Nsam ;

%%%%% Computing C l a s s i c Spectrum−−−− Dealy−and−sum%%%%

%%%%DOA E s t i m a t i o n b e f o r e c o r r e c t i o n

a n g l e s = ( 0 : 0 . 1 : 1 8 0 ) ∗ p i / 1 8 0 ;

%. . Range o f a n g l e s f o r which DOA s o r t e d .

v _ i d e a l = exp (−1 i ∗2∗ p i ∗ ( z _ 1 _ a r r a y+d ∗ ( 0 :M− 1 ) ) ’ . . .

∗ co s ( a n g l e s ( : ) . ’ ) ) ;

f o r i = 1 : l e n g t h ( a n g l e s )

c l a s s i c 1 ( i )= v _ i d e a l ( : , i ) ’∗R∗ v _ i d e a l ( : , i ) ;

end

[ pks1 , l o c s ] = f i n d p e a k s ( ab s ( c l a s s i c 1 ) , ’ s o r t s t r ’ , ’ descend ’ ) ;

p_2=pks1 ( pks1 >=0.3∗ pks1 ( 1 ) ) ; %30% above h i g h e s t peak i s a s o u r c e

L= l e n g t h ( p_2 ) ; %E s t i m a t e d Number o f s o u r c e s b e f o r e c o r r e c t i o n

e l s e

e r r o r ( ’M i s n o t e q u a l t o t h e number o f t e r m i n a l v o l t a g e s ’ )

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% I t e r a t i v e Alg o r i th m

k =1 ;

% e =1 ;

%w h i l e e >0 .00001 Our Examples co n v e rg ed w i t h i n . . .
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%100 i t e r a t i o n o t h e r w i s e a w h i l e lo o p can be used

f o r k =1:100

p ( k , : ) = a n g l e s ( l o c s ( 1 : L ) ) ;

p1 ( k , : ) = p ( k , : ) ∗ 1 8 0 / p i

v_pw= exp (−1 i ∗2∗ p i ∗ ( z _ 1 _ a r r a y+d ∗ ( 0 :M− 1 ) ) ’ . . .

∗ co s ( p ( k , : ) ) ) ; % M x L

c o e f f = h o r z c a t ( v_pw , G_B, G_C ) ; % o r d e r M x ( L+ 2∗QS)

% So lv e L e a s t s q u a r e

unknown= c o e f f \ v _ t _ s ;

A( : , k )= unknown ( 1 : L ) ; % So u rce a m p l i t u d e s

B ( : , k )= unknown ( L+1 :L+Q∗S);% Harmonic a m p l i t u d e s

C ( : , k )= unknown ( L+1+Q∗S : L+2∗Q∗S);% Harmonic a m p l i t u d e s

v _ i ( : , k )= v _ t_ s−G_B∗B ( : , k)−G_C∗C ( : , k ) ;

% Find DOA

R= v _ i ( : , k )∗ v _ i ( : , k ) ’ / Nsam ;

f o r i = 1 : l e n g t h ( a n g l e s )

c l a s s i c ( i )= v _ i d e a l ( : , i ) ’∗R∗ v _ i d e a l ( : , i ) ;

end

[ pks , l o c s ] = f i n d p e a k s ( ab s ( c l a s s i c ) , ’ s o r t s t r ’ , ’ descend ’ ) ;

% p1_new ( k , : ) = a n g l e s ( l o c s ( 1 : L ) ) ∗ 1 8 0 / p i ;

% e= ab s ( p1 ( k , : ) − p1_new ( k , : ) )

% k=k +1 ;

end

t o c %end t im e check

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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%Number o f s o u r c e s a f t e r c o r r e c t i o n

p_3=pks ( pks >=0.3∗ pks ( 1 ) ) ; %30% above t h e h i g h e s t peak i s a s o u r c e

L_new= l e n g t h ( p_3 ) ; %E s t i m a t e d Number o f s o u r c e s a f t e r c o r r e c t i o n

%P l o t s o f Convergence and DOA E s t i m a t i o n ;

g r i d on

h o ld on

%P l o t o f c o n v e r g e n c e

f o r i =1

p l o t ( 1 : l e n g t h ( p1 ) , p1 ( : , i ) , ’−−k ’ , ’ LineWidth ’ , 2 )

end

p l o t ( 1 : 0 . 0 1 : k ,60 , ’ − r ’ , ’ LineWidth ’ , 1 )

% The v a l u e 60 i s f o r known i n c i d e n c e and r e p l a c e a b l e

y l a b e l ( ’DOA \ t h e t a ^o ’ , . . .

’ f o n t s i z e ’ , 1 2 , ’ f o n t w e i g h t ’ , ’ b ’ )

x l a b e l ( ’ I t e r a t i o n s k ’ , . . .

’ f o n t s i z e ’ , 1 2 , ’ f o n t w e i g h t ’ , ’ b ’ )

h o ld o f f

%P l o t o f DOA Spect rum Delay−and−Sum

f i g u r e

h o ld on

g r i d on

ang= a n g l e s ∗1 8 0 / p i ;

p l o t ( ang , ( ab s ( c l a s s i c 1 ) ) / pks1 ( 1 ) , . . .

’ : b ’ , ’ LineWidth ’ , 2 , ’ MarkerSize ’ , 2 )

p l o t ( ang , ( ab s ( c l a s s i c ) ) / pks ( 1 ) , . . .
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’−−K’ , ’ LineWidth ’ , 2 , ’ MarkerSize ’ , 6 )

x l a b e l ( ’DOA \ t h e t a ^o ’ , . . .

’ f o n t s i z e ’ , 1 2 , ’ f o n t w e i g h t ’ , ’ b ’ ) ;

l e g e n d ( ’ U n c o r r e c t e d ’ , . . .

’ C o r r e c t e d ’ , ’ f o n t s i z e ’ , 1 2 , ’ f o n t w e i g h t ’ , ’ b ’ ) ;

p l o t ( 6 0 , 0 : 0 . 0 0 1 : 1 , . . .

’− r ’ , ’ LineWidth ’ , 4 , ’ MarkerSize ’ , 6 ) ;

p l o t ( 1 0 5 , 0 : 0 . 0 0 1 : 1 , . . .

’− r ’ , ’ LineWidth ’ , 4 , ’ MarkerSize ’ , 6 ) ;
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Appendix C

Received Voltages in COMSOL for

Examples 1-4 of Chapter 4

Table C.1

Received voltages in volts from COMSOL for Examples 1-2

Antenna Example Example

Terminal #1 #2

#

1 -0.0017+0.0015i -0.0083+0.0065i

2 0.0034+0.0032i -0.003-3.8182e-4i

3 0.0024-6.6262e-4i 0.0028-0.008i

4 -0.0012-0.011i -2.7944e-4-0.0136i

5 1.5949e-4-0.0012i 9.2781e-5-0.0017i

6 5.6958e-4-7.0853e-4i -2.4011e-4-0.001i

7 -0.0021-9.2185e-4i -0.0022-8.3313e-4i

8 -0.0036-0.0012i -0.0119+0.0044i

9 -0.0025+0.0025i -0.0109+0.0034i

10 0.002+0.0062i -0.0013+9.9695e-4i
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Table C.2

Received voltages in volts from COMSOL for Examples 3-4

Antenna Example Example

Terminal #3 #4

#

1 4.589e-4+0.0015i 4.5873e-4+0.0016i

2 7.9072e-4+4.3038e-4i 0.0013+4.4112e-4i

3 -2.32e-4+3.7551e-4i 7.8144e-5+3.5628e-4i

4 -0.0011+2.8473e-4i -9.9047e-4-2.989e-6i

5 8.0612e-5-7.4954e-4i 4.6546e-4-0.0017i

6 0.0031-0.0021i 0.0035-0.0039i

7 0.0057-0.0026i 0.0045-0.0052i

8 0.0063-0.0016i 0.0031-0.0041i

9 0.0045+3.477e-4i 9.5777e-4-2.3394e-4i

10 0.0024+0.002i 7.2674e-4+0.0054i

11 0.0017+0.0028i 0.0028+0.0095i

12 0.0018+0.0024i 0.0047+0.0082i

13 0.002+0.0018i 0.0042+0.0027i

14 0.0024+0.0027i 0.0017+6.5016e-4i

15 0.0017+0.0032i -0.0013+0.0037i

16 3.3427e-5+8.6385e-4i -0.0019+0.0041i

17 -9.3702e-4-9.5583e-4i -0.0012+0.0017i

18 -0.0022-0.0027i -0.0024-0.0017i
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