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ι = inclination of Π to the ecliptic, rad

C = transformation matrix

m = number of swing-by maneuvers

P = planet identification number

F = fitness (cost function)

f = flight direction

t = Julian date

xvii



h = pericenter altitude, km

h = normalized swing-by pericenter altitude

l = leg number

Lmax = maximum chromosome length

i = maximum possible number of swing-by maneuvers

j = maximum possible number of total DSMs in the whole trajectory

k = maximum number of independent thrust impulses

z = number of swing-bys followed by a zero-DSM trajectory

q = number of bits

A = continuous design variable

B = discrete design variable

∆ = accuracy of continuous design variable

c = proportionality constant

Ls = chromosome length of sub-population

J2 = gravitational zonal harmonic

Nc = number of covered sites

Mr = ground track repetition period

e = eccentricity

in = inclination

ϑ1 = spacecraft’s true anomaly above the first ground site

a = semi-major axis

Nr = number of successive orbit revolutions

nm = orbital mean motion

∆φ = changes in longitude

τE = Earth’s sidereal rotational period

τ = spacecraft’s nodal period

M = mean anomaly

ω = argument of perigee

φ = site longitude

λ = site latitude

ωE = Earth spinning rate

ρ = angular radius of the Earth

λE = Earth central angle

η = nadir angle

xviii



εo = elevation angle

θcov = coverage angle

θsh = shadow angle

rsh = shadow position vector

Ttsh = target shadow period over a specific site

nsh = number of successive shadow revolutions

Nm = number of Earth revolutions

hperigee = perigee altitude

∆ϕshadow = change in shadow longitude

∆λshadow = change in shadow latitude

Subscripts

p = swing-by’s planet

s/c = spacecraft

nps = non-powered swing-by

ps = powered swing-by

L = local frame

l = leg

req = required

min = minimum

max = maximum

s = sub-population

sh = shadow

Superscripts

− = incoming

+ = outgoing

xix



xx



Abbreviations

CDV = Continuous Design Variables

DDV = Discrete Design Variables

DE = Differential Evolution

DSM = Deep Space Maneuver

DSMPGA = Dynamic-Size Multiple Population Genetic Algorithms

EM = Earth-Mars

EV = Earth-Venus

EVEJ = Earth-Venus-Earth-Jupiter

EVM = Earth-Venus-Mars

EVVEJS = Earth-Venus-Venus-Earth-Jupiter-Saturn

GA = Genetic Algorithms

GPOPS = General Pseudospectral OPtimal Control Software

GTOC = Global Trajectory Optimization Competition

GTOP = Global Trajectory Optimization Problems

HGGA = Hidden-Genes Genetic Algorithms

ITO-HGGA = Interplanetary Trajectory Optimization Using the Hidden

Genes Genetic Algorithms

MESSENGER = Mercury Surface, Space Environment, Geochemistry, and

Ranging

MGA = Multi Gravity Assist

MGADSM = Multi-Gravity-Assist Trajectory with Deep Space Maneuvers

MJD = Modified Julian Day

PSO = Particle Swarm optimization

RSTO = Repeated Shadow Track Orbits

TOF = Time of Flight

xxi



VCLGA = Variable Chromosome Length Genetic Algorithms

VE = Venus-Earth

VSDS = Variable-Size Design Space

VV = Venus-Venus

xxii



Abstract

The problem of optimal design of a multi-gravity-assist space trajectories, with free

number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the

general form of the problem, the number of design variables is solution dependent. To han-

dle global optimization problems where the number of design variables varies from one so-

lution to another, two novel genetic-based techniques are introduced: hidden genes genetic

algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA).

In HGGA, a fixed length for the design variables is assigned for all solutions. Inde-

pendent variables of each solution are divided into effective and ineffective (hidden) genes.

Hidden genes are excluded in cost function evaluations. Full-length solutions undergo

standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are

randomly initialized. Standard genetic operations are carried out for a stage of generations.

A new population is then created by reproduction from all members based on their relative

fitness. The resulting sub-populations have different sizes from their initial sizes. The pro-

cess repeats, leading to increasing the size of sub-populations of more fit solutions. Both

techniques are applied to several MGADSM problems. They have the capability to deter-

mine the number of swing-bys, the planets to swing by, launch and arrival dates, and the

number of deep space maneuvers as well as their locations, magnitudes, and directions in

an optimal sense. The results show that solutions obtained using the developed tools match

known solutions for complex case studies. The HGGA is also used to obtain the aster-

oids sequence and the mission structure in the global trajectory optimization competition

(GTOC) problem.

As an application of GA optimization to Earth orbits, the problem of visiting a set

of ground sites within a constrained time frame is solved. The J2 perturbation and zonal

coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set

xxiii



of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters

are optimized such that the shadow of a spacecraft on the Earth visits the same locations

periodically every desired number of days.
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Chapter 1

Introduction

In recent years, many investigations have dealt with global optimization for space trajectory

problems. Many spacecraft trajectory design problems can be formalized as optimization

problems. Several different techniques have been proposed and tested on a variety of space

trajectory optimization problems. Recently, Genetic Algorithm (GA) has been used to

solve several orbital mechanics problems. Genetic algorithms are optimization techniques,

based on the Darwinian principle of the survival of the fittest, which perform a stochastic

search of initial conditions that maximize a given fitness function (1). The GAs have global

search capability, and they do not require derivatives (2). GAs are particulary efficient for

the type of problems where it is not necessarily to find the optimal solution, but rather a

few reasonably good solutions.

In GA, a design point is called a chromosome (string). Each string consists of a set

of independent design variables which define a candidate solution to the problem. Chro-

mosomes are composed of genes (features), which take on different alleles (values) (1).

Associated with each gene is its location in the chromosome. The initial population con-

sists of a finite number of randomly generated individuals. GA performs a series of prob-

abilistic operations on the current population to generate a new generation. Basic genetic

operations are coding, evaluation, selection, crossover, mutation, and reproduction (1). At

each generation, the fittest individuals (parents) are selected based on the fitness function.

These individuals are then used to create the new generation (children). More fit popula-

tions are generated as a result of this process. Genetic algorithms have been used widely in

the literature to solve several orbital mechanics problems. GAs have been used to solve the

1



fuel-optimal spacecraft rendezvous problem (3), to design orbits with lower average revisit

time over a particular target site (4), to design natural orbits for ground surveillance (5), to

design constellations for zonal coverage (2), and to investigate the design of near-optimal

low-thrust orbit transfers (6).

In this dissertation, two categories of space trajectories are investigated. The first is the

interplanetary space trajectories. The problem of multi-gravity-assist space trajectory, with

free number of deep space maneuvers (MGADSM) is formulated. Two novel optimization

techniques, based on GA, are presented to handle global optimization problems where the

number of design variables varies from one solution to another. The first technique is the

hidden genes genetic algorithms, while the second is the dynamic-size multiple population

genetic algorithm. Both techniques are used to investigate the complex problem of multi-

variable-length genetic algorithm. The developed tools have the capability to find optimal

interplanetary trajectories without a priori knowledge. As an application of the hidden

genes concept, the problem of low-thrust propulsion missions is studied. The asteroids

revisiting mission is investigated by exploring an optimal impulsive trajectory used as a

preliminary scenario for the continuous thrust mission. The second category presented

in this dissertation is the Earth orbiting trajectories. Two problems had been studied in

this category. The first one is the problem of optimal orbit design to cover a given set of

ground sites, within a constraint time frame. In the second problem, a new set of orbits, the

repeated shadow track orbits (RSTO), is introduced.

1.1 Interplanetary Space Trajectories∗

The optimization of interplanetary trajectories continues to receive a great deal of interest

(7–10). In interplanetary missions, it is usually desired to send a spacecraft to rendezvous

with a planet or an asteroid. The interplanetary trajectory design problem can be addressed

either in a two-body or a three-body dynamics framework. It can be addressed assuming

impulsive or continuous thrust. The patched conic approach for interplanetary trajectory

design assumes a two-body dynamics model and the use of chemical propulsion system

only (11). In patched conic mission design, it is observed that a deep space maneuver

(DSM) may reduce the cost of a simple two-impulse interplanetary transfer (e.g. the cost of

* The material contained in this section has been accepted for publication in the Journal of Spacecraft

and Rockets (7).
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the Earth-Mars mission can be reduced by adding an impulse, almost mid-way, in addition

to the initial and final impulses.) For a transfer between two non-coplanar orbits, a DSM

reduces the out-of-plane component of the required impulsive velocity, and thus the total

mission cost ∆vT (12). Due to ∆v leveraging effect at large distances from the Sun, DSMs

are used to reduce the required ∆vT , and hence, the equivalent propellant mass which allows

for a larger size payload or a smaller launch vehicle. Navagh applied the primer vector

theory to determine where and when to use a single DSM to reduce the cost of a trajectory

(12). He applied DSMs to a Mars round trip mission to determine their effect on the launch

opportunities. He also studied cycler trajectories and Mars mission abort scenarios. Later,

Abilleira investigated the broken-plane maneuver impact on the total mission cost ∆vT , the

incoming relative velocity, and the launch energy, for Earth-to-Mars trajectories (13). He

suggested to apply the extra ∆v close to the halfway point of the near 180 deg transfer. He

mentioned that DSMs could also allow new families of trajectories that would satisfy very

specific mission requirements not achievable with ballistic trajectories (13).

The optimization problem, in its general form, aims to minimize some cost function;

usually the overall cost of the mission in terms of the fuel expenditure. Another possibil-

ity is to optimize mission trajectory to achieve minimum mission duration. Interplanetary

missions usually employ gravity assist maneuvers to reduce the overall cost of the mission.

The launch and arrival dates also affect the mission cost. The space trajectory optimization

process must therefore determine the optimal values for the following parameters: the de-

parture and arrival dates, the number of swing-bys, the planets to swing by, the number of

deep space maneuvers and their magnitudes, directions, and locations. This optimization

problem, in its general form, is challenging. Several optimization algorithms were devel-

oped in the literature. Izzo et al developed a deterministic search space pruning algorithm

to investigate the problem of multiple gravity-assist (MGA) interplanetary trajectories de-

sign (14). The developed tool requires the user to specify the gravity assist sequence (i.e.

the number of swing-bys and the planets to swing-by), and the pruning technique locates

efficiently all the interesting parts in the search space of the DSMs variables (14). Olympio

and Marmorat (15) studied the global optimization of multi gravity assist trajectories with

deep space maneuvers (MGADSM). They implemented a pruning strategy on the search

space to find fit trajectories. To that end, a stochastic initialization procedure, combined

with a local optimization tool, were used to provide a set of locally optimal solutions. The

primer vector theory was extended to study the multi gravity assist trajectories. The op-

timal number of DSMs was determined as well as their magnitudes and directions. This

3



technique was verified using several interplanetary mission case studies. An efficient lo-

cal optimization algorithm was applied to find a solution for complex problems (15). In

this method, the user specifies the sequence of swing-bys a priori. Later, Olympio and

Izzo applied the interaction prediction principle to decompose the MGA problem into sub-

problems by introducing and relaxing boundary conditions (16). Parallel sub-problems

could then be solved. The algorithm was able to efficiently calculate the optimum number

of DSM impulses and their locations.

Evolutionary algorithms were implemented to solve the MGADSM problem (17, 18).

Vasile and Pascale used an evolutionary algorithm with a systematic branching strategy to

optimize the problem of MGADSM (17). They developed a design tool (IMAGO) that al-

lowed for more exploration of the solution domain through balancing the local convergence

and the global search. The search space was reduced by performing a deterministic step

at every new run. The tool was applied several times on each specific problem to provide

reliable results (17). IMAGO was able to calculate many typical optimal sequences for

a Jupiter mission. For the complex trajectories, Cassini and Rosseta (17), IMAGO was

used assuming a fixed planet sequence and wide ranges of design variables based on a pri-

ori knowledge of the solution space. Olds et al developed a trajectory optimization tool

(MDTOP) to perform preliminary design of high-thrust interplanetary missions using the

differential evolution (DE) strategy (18). They tuned the algorithm parameters to improve

the DE’s performance, and were able to solve complex interplanetary missions, such as

Cassini and Galileo. A formulation for the N-impulse orbit transfer that integrates evolu-

tionary algorithms and a Lambert’s problem formalism results in a more efficient search

algorithm (17, 19). This integration of Lambert’s problem significantly reduces the size

of the design space to include only candidate solutions which satisfy Lambert’s problem

solution. In that context, GA was implemented to obtain the optimum impulses for non-

coplanar elliptical interplanetary orbit transfers (19, 20).

As can be seen from the previous discussion, often the mission designer determines

the number of swing-bys and selects the planets to swing by by hand. The motivation of

this study is to develop an optimization algorithm that can, without a priori knowledge,

compute the number of swing-bys and the planets to swing by, in addition to the rest of

the classical MGADSM design variables. This MGADSM optimization problem, in its

general form, is challenging. On one hand, the objective function has multi minima which

means a global optimization method is necessary for optimization. On the other hand, the
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objective function has a Variable-Size Design Space (VSDS). In a VSDS, the number of

optimization variables varies depending on the specific solution. For instance, the number

of variables in a candidate solution that has two swing-bys and one DSM is different from

the number of variables of another candidate solution where the number of swing-bys is

three and the number of DSMs is two. In addition to these challenges, the design variables

in the MGADSM problem are mixed (some are continuous and some are discrete).

There are many types of evolutionary algorithms, such as particle swarm (PSO) (21)

and differential evolution (DE) (17,18), which have been used to solve trajectory optimiza-

tion problems. But neither of those methods handles discrete design variables. The fact that

some of the design variables are discrete suggests the use of genetic algorithms (22, 23).

Solution-dependent design variables mean that different solutions have different number of

design variables. This fact hinders the implementation of standard genetic algorithms in op-

timization. Dasgupta and McGregor developed a structured genetic algorithm (sGA) (24).

They introduced the terms of active and passive genes through applying a gene activation

mechanism which utilizes a multi-layered structure for the chromosome. Kim and de Weck

proposed a variable chromosome length genetic algorithm (VCLGA) in structural applica-

tions (25). The VCL concept depends on gradually increasing the chromosome length in

subsequent stages to achieve progressive refinement. Increasing the chromosome length

was proposed either by adding new design variables or by refining the current ones (25).

Ryoo and Hajela developed a GA for structural topology optimization that handles variable

chromosome lengths (26). Crossover between different lengths chromosomes is consid-

ered in their work. Brie and Morignot introduced a genetic planning system using variable

chromosome length (27). The developed system is used to determine the optimal sequence

of actions for a planing problem. Several genetic schemes are developed to improve the

system performance such as complex fitness function, multipopulation, population reset,

weak memetism, tournament selection and elitist genetic operators. The developed system

has the ability to minimize the required memory and to handle unlimited plan size. Ahn

and Ramakrishna developed a VCLGA to handle the shortest path routing problem (28).

They introduced simple crossover and mutation operations work on variable chromosome

length. The developed operations improved the solution quality and the coverage perfor-

mance. Katari and others proposed an improved genetic algorithm to study data clustering

problems (29). The improved GA used a modified crossover and mutation technique to im-

prove the simulation coverage. Moreover, a variable length improved GA is implemented

for image clustering which automatically finds the optimal numbers of cluster.

5



In this dissertation, the concept of hidden genes is introduced in genetic algorithm op-

timization (7). This concept allows the handling of all solutions in the design space as

if they all have the same string length, and hence enables the implementation of standard

genetic operations. This research presents an optimization algorithm and a software tool

that have the capabilities to find, in an optimal sense, the values for the following design

variables: optimal number of swing-bys, the planets to swing by, the times of swing-bys,

the optimal number of DSMs, the components of these DSMs, the times at which these

DSMs are applied, the optimal launch and arrival dates, and the optimal flight direction for

the mission. The search space of the new algorithm includes solutions with muti-revolution

trajectories. The software tool for interplanetary trajectory optimization using the hidden

genes genetic algorithms (ITO-HGGA) is developed. Another technique is developed to in-

vestigate the VSDS problem. A novel dynamic-size multiple population genetic algorithm

(DSMPGA) is implemented to handle the VSDS MGADSM Trajectory Optimization prob-

lem (10). Sub-populations, each has members of same size design space, are constructed.

A genetic algorithm is implemented for a number of stages; each stage is a number of con-

sequent generations in which the size of the sub-population remains fixed. At the end of

each stage, the sizes of all sub-populations are changed based on the fitness of the mem-

bers in each individual sub-population. This algorithm leads to the increase in the size of

the sub-populations of more fit members. The DSMPGA can determine, without a priori

knowledge, the number of swing-by and DSM maneuvers, the planets to swing-by, and the

times of swing-bys and DSMs, in addition to the rest of the design variables.

As an application of the HGGA concept, the problem of GTOC5 is investigated. A

global trajectory optimization technique is developed to solve the low-thrust propulsion

mission. The optimization problem is considered for trajectories of a spacecraft rendezvous

mission to a group of asteroids with revisiting. The problem of low-thrust trajectory opti-

mization is usually formulated to minimize the propellent consumption. Hence, the greatest

number of asteroids could be visited within the pre-specified mission duration. The prob-

lem is solved in four stages. At the first stage, an impulsive trajectory problem is solved

to determine a preliminary mission scenario. The hidden genes genetic algorithm (HGGA)

tool is used as an optimization technique (7). The second stage is then used to provide an

initial guess for the continuous thrust trajectories. Standard genetic algorithm is used to

calculate a poor continuous thrust trajectory for each leg. An optimum control module is
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then utilized in the third stage to calculate accurate continuous thrust trajectories. General

pseudospectral optimal control software (GPOPS) is used in this stage. The obtained so-

lution from the GPOPS module is a visible continuous thrust trajectory but with a limited

number of nodes. This solution is then used as an initial guess in the final stage to compute

the final detailed trajectory. In the forth stage, a constrained nonlinear optimization tech-

nique is used to provide the optimal trajectory data at one-day increments for each leg of

the trajectory.

In this dissertation, Chapter 2 describes the MGADSM problem formulation. The ITO-

HGGA tool is presented in Chapter 3. ITO-HGGA tool is tested for a number of MGADSM

design problems and compared to known solutions in the literature. The complex problem

of Cassini 2 mission is solved by the ITO-HGGA tool and presented in Chapter 3. Chapter 4

presents the implementation of the DSMPGA to the MGADSM problem. Numerical results

are presented including the complex mission of Messenger (easy version). A solution for

GTOC5 problem using the HGGA concept is presented in Chapter 5.

1.2 Earth Orbiting Trajectories∗

In Newtonian mechanics, the natural motion of a spacecraft around the Earth is described

by a second order vectorial differential equation, assuming that the spacecraft is attracted

only by the Earth, and assuming that the Earth is a perfect sphere (11). The solution to these

differential equations is either a circular, elliptic, parabolic, or a hyperbolic trajectory (31).

The type of the trajectory is determined depending on how we initially place the spacecraft

in orbit. The Earth is always at the focus of this conic trajectory. Regardless of the type

of the trajectory, it is always possible to describe the orbit of the spacecraft using five

parameters (32). Another parameter is needed to determine the position of the spacecraft

on the orbit. A fundamental task in the design process of any space mission is to design

the orbit(s) of the spacecraft. Designing an orbit means, then, finding the values for the five

orbital elements such that the mission objectives are best achieved (33).

A wide range of applications require that a spacecraft passes over a given number of

ground sites (23). Examples for this type of missions include: remote sensing (34), disaster

monitoring (35), urban planning (36), natural resources, and ground surveillance missions

* The material contained in this chapter was previously published in the journal Acta Astronautica,

Elsevier (23) and in the International Journal of Aerospace Engineering (30).
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Figure 1.1: Spacecraft at high altitudes have larger coverage on Earth as compared to those at lower altitudes

(37). In this type of applications, the spacecraft is usually equipped with sensor(s) to take

measurements for the ground sites of interest. The spacecraft does not have to visit (pass

over) each site exactly; but rather a ground site is considered “visited” if the Field of View

(FOV) of the sensor covers that ground site, at some point in time (38). As can be seen from

Figure 1.1, the orbit selection dictates the coverage area on Earth surface. For spacecraft at

high altitudes, the coverage area is bigger than that of a spacecraft in a low altitude orbit.

On the other hand, the resolution of measurements from a low altitude spacecraft is better

than the resolution that can be obtained from a higher altitude orbit, using the same sensor.

The spacecraft orbit also determines the frequency of coverage, which is how often a given

ground site will be visited. Besides the coverage area and the ground resolution, there are

many other parameters that are affected by the orbit selection, e.g. the size of the spacecraft

and the launch cost.

From the preceding discussion, it is clear that there are conflicting objectives that con-

trol the selection of the orbit. In many missions, mission designers use propulsion systems,

mounted onboard the spacecraft, to maneuver the spacecraft continuously between ground

sites. They specify the regions of interest and keep the spacecraft in a low altitude nominal

orbit. The spacecraft is then controlled to maneuver between the regions of interest using

the thrusters. This way, it becomes possible to collect high resolution measurements, and

still visit all the ground sites, within a given time frame. There is an important research
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problem associated with this way of designing the space mission: what is the control strat-

egy such that the fuel expenditure for maneuvering the spacecraft, between ground sites,

is minimal. Several studies have addressed this problem. A representative study is the

work developed by Guelman and Kogan (39), where they developed an optimal control

algorithm to sort the sites in an optimal sense, and then maneuver the spacecraft between

them. The results of their study show that the thrusters have to be working continuously

throughout the mission lifetime. A typical example that they discussed is the case of 20

ground sites. The results show that a time frame of 50 days is needed to complete visiting

all the sites (39). These solutions have major weaknesses: (1) they require thrusters to work

continuously throughout the mission life time. This puts severe demands on the spacecraft

systems, in terms of the power and fuel needed to run the thrusters, and hence dramatically

increases the mission cost, and (2) this solution requires longer mission durations, due to

the very low thrust level of the electric propulsion systems. For the case of 20 ground sites,

the time needed to visit all of the sites is about 50 days using propulsion. If a natural orbit

exists, all the sites will be visited in a much smaller time frame. These major weaknesses

are mainly because these algorithms use propulsion systems, in some sense, to oppose the

natural gravitational forces.

In previous works, a method to design natural orbits, to visit the regions of interest

without the use of propulsion, was developed (5). A spacecraft, in a natural orbit, needs to

be as close as possible to Earth when visiting a ground site to achieve high resolution. Yet,

a synchronization is needed, between Earth rotational motion (spinning) and the space-

craft motion, to guarantee visiting all the ground sites. To find these natural orbits, two

approaches were developed. In the first approach, the problem is formulated as an opti-

mization problem. Stochastic optimization methods were used as an attractive alternative

for optimizing space orbits design (8, 40). The cost function for this type of problems usu-

ally have numerous local minima. For this specific problem, a genetic algorithm technique

was implemented for optimization (41). The second approach adopted a semi-analytical

method to reduce the number of unknowns and then perform numerical search or stochas-

tic optimization (42). The two methods suffer from the following weaknesses: (1) The

two methods assume a two-body model for the spacecraft motion (A two-body model is a

model that assumes the spacecraft is attracted only by the Earth, which is assumed a perfect

sphere. In reality, this is not true. A more accurate model for the Earth gravitational field

includes the effect of the Earth oblateness. This effect is modeled as zonal harmonic coeffi-

cients known as J2, J3, etc,) (2) both methods assume zero field of view for the spacecraft
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sensor. This assumption limits the number of solutions to the problem, and (3) the semi-

analytical method assumes the existence of a solution. If a perfect solution does not exist,

the method cannot return any solution even if there exists a solution with a small error. In

recent developments, Kim et al investigated the possibility of using a genetic algorithm for

finding the temporary target orbit, in order to reduce the average revisit time of an existing

mission orbit, over a particular target site during a given time window (43). Genetic algo-

rithms are also used to optimize the fuel consumption of Low Earth Orbit constellations for

temporary reconnaissance missions (44), and also to minimize telecommunications cover-

age blackouts (45).

In this dissertation, Chapter 6 addresses the problem of optimal orbit design taking into

consideration the second zonal harmonic of the Earth gravitational field, and taking into

consideration the field of view of the sensor on board the spacecraft (23). Taking the grav-

itational perturbations into consideration in the optimization process allows for the design

of repeated ground track sun-synchronous orbits. This type of orbits makes the space-

craft visits the same Earth site every given number of days, at the same day-time. On the

other hand, taking the sensor’s FOV into consideration in the optimization process results

in more feasible solutions. A standard optimization tool that carries out coverage calcula-

tions is usually computationally expensive. The algorithm presented in Chapter 6 reduces

the computational cost, while carrying out an optimization process, in two aspects: (1) the

development in this research benefits from analytical developments to reduce the number

of independent variables. A genetic algorithm is then developed to select the independent

variables, in an optimal sense. The reduced number of independent variables leads to faster

convergence and a reduced number of objective function evaluations, and (2) a fast numer-

ical algorithm is developed to roughly compute the coverage state of a ground site. It is

rough in the sense that it assumes that J2 is the only perturbing effect from the two-body

model. Several objective functions can be used. In this research, an objective function that

maximizes the number of visited ground sites and minimizes the time frame needed for the

mission is presented.

Extremely large space structures are proposed for solar sail and space-based solar power

generation missions (30). Solar sails, the size of San Francisco, are proposed to collect mo-

mentum from the solar radiation, for deep space missions. Solar Power Satellites (SPSs)

are also large space structures orbiting the Earth. SPSs are proposed to generate electricity

in space and transmit it to receivers on the Earth using either microwave or laser transmis-
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sions. For the purpose of cooling the Earth, and thereby reducing the global warming, it is

also suggested to put a huge number of satellites at the first Lagrangian point between the

Earth and the Sun, to provide shade for the Earth.

A great numbers of studies were conducted by NASA and the Department of Energy

(DOE) during the seventies of the last century on the feasibility of the SPSs concept. The

Office of Technology Assessment evaluated these studies and did not recommend imme-

diate action toward implementation due to the technical challenges and high cost of the

proposed mission at that time. In mid nineties, NASA took a fresh look at the concept;

However they did not recommend, even discourage, further investments in this direction.

Yet, an active interest toward implementing this concept can be seen nationally (46) and

internationally (47,48). Aiming at reducing the cost of the generated electricity from SPSs,

in this research it is suggested to have multiple objectives for the same SPSs. SPSs orbiting

Earth can provide shadow on ground for the Earth cooling purposes, generate electricity

using its huge solar arrays, and save energy devoted to air conditioning in the shaded areas.

Nations from the warm regions may participate in the cost of a SPS to get its shadow, if it

can be provided to them on a regular basis. More than 70% of the operational expenses, for

many buildings and facilities in warm regions, is dedicated for air conditioning. It has been

observed that the main reason for these extremely high operational expenses is the direct

solar rays from the Sun. The SPSs will serve as a Space-SunSetter for these regions partic-

ipating in SPSs missions only. A Space-SunSetter will significantly reduce the operational

expenses of every building in the shaded area.

There are two concepts for Space-SunSetter under investigation. The first is to design a

huge spacecraft orbiting the Earth. The main challenge in this concept is to find an appro-

priate orbit satisfying a repeated shadow track over a specific region on Earth’s surface. The

second concept is a stationary Space-SunSetter. This concept depends on the idea of Space

Elevator (49, 50). The purpose of the research in Chapter 7 is to investigate the feasibility

of the first concept. Since this type of mission will require the Space-SunSetter shadow

on ground to revisit the same place repeatedly, the orbital elements are developed to have

a shadow visits a certain location on the Earth’s surface for a given number of days, this

is called the repeated shadow track condition (30). To find the orbit, among all repeated

shadow track orbits, that has maximum duration time over a certain point on the Earth, an

optimization tool was developed using GA.
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Chapter 2

MGADSM Problem Formulation∗

The problem of multi-gravity-assist space trajectory, with free number of deep space ma-

neuvers (MGADSM) is formulated in this chapter (7, 10). The objective is to design an

interplanetary trajectory for a spacecraft to travel from the departure planet to the target

planet with a minimum cost. The spacecraft will benefit from as many as needed swing-

bys of other planets. The spacecraft can also apply DSMs. The segment between any

two planets is called a leg. A leg can have any number of DSMs, as seen in Figure 2.1.

The spacecraft may have multiple revolutions about the Sun before proceeding to the next

planet. The scenario of the mission refers to the sequence of swing-bys. The determination

of the mission scenario then means the determination of the number of swing-bys, the plan-

ets of swing-bys, and the times of swing-bys. The problem is worked out in a two-body

dynamics framework, and is formulated as an optimization problem.

The problem is formulated as follows: For given ranges for departure and arrival dates

from the departure planet to a target planet, find the optimal selections for the number of

swing-bys, the planets to swing by, the times of swing-bys, the number of DSMs, the com-

ponents and directions of DSMs, the times at which DSMs are applied, and the exact launch

and arrival dates, such that the total mission cost ∆vT is minimized. An essential step in any

genetic optimization algorithm is to evaluate the cost function at different design points. At

each design point, the optimization algorithm selects values for all the independent design

variables of the problem. There are several other dependent variables that need to be com-

puted before the cost function can be evaluated. This chapter details how these dependent

* The material contained in this chapter has been accepted for publication in the Journal of Spacecraft

and Rockets (7).
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Figure 2.1: Multi-gravity assist trajectory with free number of deep space maneuvers (MGADSM).

variables are computed, given a set of values for the independent design variables.

2.1 N-impulses Trajectory

In the simple case of a two-impulse interplanetary orbit transfer, the total number of design

variables is two (20). In this case, the trajectory has one leg between the departure and

arrival planets. The two variables are the departure and arrival dates. For a candidate

solution, the departure and arrival dates fix the time of flight T . A Lambert’s problem is

then solved to find the transfer orbit. The required departure and arrival impulses, ∆Vd and

∆Va, are then calculated.

In an N-impulses trajectory (no swing-bys), there are n deep space maneuvers in ad-

dition to the departure and arrival impulses. The number of different orbits is n+ 1. The

number of unknowns in this case is 4(n+ 2). These unknowns are the impulse velocity

increment vectors ∆V and the times of applying them (t), for all impulses. The time of

application of each DSM is defined as a fraction, ε , of the overall transfer time, T . So,

tDSM = εT , where 0 < ε < 1. Figure 2.2 shows a three-impulse trajectory (one DSM).
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Figure 2.2: Three-impulse transfer orbit (single deep space maneuver).

Of the 4(n+2) unknowns, there are 4n+2 independent design variables. These inde-

pendent variables are selected to be: the departure and arrival dates, the velocity increment

vector(s) at the first n impulses, and the fractional variable(s) ε at each DSM. The remain-

ing 6 unknowns are computed as functions of the independent design variables as follows:

the departure and arrival dates fix the departure and target planets positions, and hence the

spacecraft heliocentric positions at these two locations, rd and ra, are fixed. The impulsive

velocity vector at departure, ∆Vd , yields the spacecraft initial velocity on the first transfer

orbit, which along with rd fixes the first transfer orbit. Once we have the first transfer orbit,

and using the time of applying the first DSM, ε1, the location of the first DSM is computed

using Kepler’s equation (51). The velocity of the spacecraft at that location before apply-

ing the DSM is also computed. The velocity increment at the first DSM is used to compute

the spacecraft velocity right after the first DSM is applied. The procedure used in the first

transfer orbit is repeated for all subsequent transfer orbits, but the last one. On the last

transfer orbit, Lambert’s problem is solved. The spacecraft positions at the last DSM and

at arrival are known. The time of flight is also known. A Lambert solution yields the last

transfer orbit. The velocity increments at the last DSM and at arrival are then computed.

The total cost of the mission in this case is:

∆vT = ‖∆Vd‖+
n

∑
1

‖∆VDSM‖+‖∆Va‖ (2.1)
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2.2 Gravity Assist Maneuvers

In this analysis, a gravity assist maneuver is assumed to be an instantaneous impulse applied

to the spacecraft. The spacecraft heliocentric position vector is assumed not to change

during the swing-by maneuver, and is equal to the swing-by planet heliocentric position

vector at the swing-by instance.

r− = r+ = rp (2.2)

where r− and r+ are the spacecraft incoming and outgoing heliocentric position vectors,

respectively, and rp is the swing-by planet heliocentric position vector.

As shown in Figure 2.3, the trajectory of the spacecraft relative to the planet is a hyper-

bola with the relative hyperbolic velocity vector v∞ which is defined as (52):

v∞ = vs/c −vp (2.3)

where vs/c and vp are the spacecraft and planet heliocentric velocity vectors at the swing-by

instance, respectively.

Two types of swing-bys are implemented in this work: powered swing-bys and non-

powered swing-bys (15). In a non-powered swing-by, the incoming and outgoing relative

velocities, v−∞ and v+∞ , respectively, have the same magnitude.

‖v−∞‖= ‖v+∞‖= v∞ (2.4)

The swing-by plane is defined by the incoming relative velocity vector v−∞ and the

pericenter radius vector rper. The change in the relative velocity direction in the swing-by

plane, δ , can be computed from Equation (2.5) (52).

sin(δ/2) =
µp

µp + rperv2
∞

(2.5)

where µp is the gravitational constant of the swing-by planet, and rper = ‖rper‖. In a non-

powered swing-by, the spacecraft velocity change is given by Equation (2.6) (15).

‖∆vnps‖= ‖v+∞ −v−∞‖= 2v∞ sin(δ/2) (2.6)
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Figure 2.3: Gravity assist model as seen in the swing-by plane projection.

For a non-powered swing-by to be feasible, the periapsis radius must be higher than a

minimum radius, i.e. rper > rpermin
. In this work, we assumed rpermin

= 1.1Rp. This value is

suitable for most solar planets, as Earth and Venus. A much higher periapsis radius is used

in Jupiter swing-by to avoid radiation effects. If the desired gravity assist is not feasible

via a non-powered swing-by, then an impulsive post-swing-by maneuver is applied (the

powered swing-by). By applying a small impulse during the swing-by, higher deflection

angles could be attained (16). The powered swing-by impulse can be computed using

Equation (2.7).

∆vps = (v+
s/c

)req − (v+
s/c

)nps (2.7)

where (v+
s/c

)req is the required spacecraft heliocentric outgoing velocity vector; and (v+
s/c

)nps

= vp −v+∞ .

The swing-by plane needs to be computed in order to calculate v+∞ . To define the swing-

by plane, a rotation angle η is introduced (17). The vector v+∞ is obtained form the vector

v−∞ by performing two consecutive rotations (δ and η). The incoming relative velocity

vector v−∞ is defined in the heliocentric inertial frame ÎĴK̂. A local frame î ĵk̂ is defined
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such that the unit vector î is in the direction of the incoming relative velocity vector; so

î =
v−∞
‖v−∞‖

(2.8)

The plane of the swing-by maneuver is the i j plane. Therefore, the outgoing relative veloc-

ity vector, as expressed in the local frame, (v+∞)L, is:

(v+∞)L = v∞[cosδ sinδ 0]T (2.9)

The v+∞ is computed in the inertial frame, via a coordinate transformation from the

local frame to the inertial frame, as shown in Figure 2.4. To perform this transformation,

the following procedures are applied. The perpendicular plane Π defined by its normal

î intersects with the inertial ecliptic plane (IJ plane) in the line Γ. The direction of Γ

depends on the orientation of the incoming relative velocity in the inertial frame. The angle

between Γ and the inertial Î is Ω which is defined in the IJ plane. The angle between Γ

and the unit vector ĵ is the rotation angle η which is defined in the perpendicular plane Π.

The inclination of plane Π to the ecliptic plane is ι . A three-angle rotation is performed to

calculate the local unit vector ĵ in the inertial frame according to the following relation:

ĵ =





cos(−Ω) sin(−Ω) 0

−sin(−Ω) cos(−Ω) 0

0 0 1









1 0 0

0 cos(−ι) sin(−ι)
0 −sin(−ι) cos(−ι)









cos(−η) sin(−η) 0

−sin(−η) cos(−η) 0

0 0 1









1

0

0





(2.10)

Finally, the outgoing velocity vector in the inertial frame is computed as follows:

v+∞ =C(v+∞)L (2.11)

where C is the transformation matrix:

C =
[

î ĵ k̂

]

(2.12)
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Figure 2.4: Transformation scheme from the local frame i jk to the inertial frame IJK showing the definition

of the rotation angle η .

2.3 N-Impulses Multi Gravity Assist Trajectory

In this section, a formulation is introduced for the full problem of optimal trajectory design,

including multiple gravity assist maneuvers, and possibly N-impulses in each leg. The

mission is designed to transfer a spacecraft from a departure planet Pd to a target (arrival)

planet Pa. Time windows are given for each of the departure and arrival dates. Consider a

mission that consists of m gravity assist maneuvers. There are m+ 1 different legs in the

trajectory. Each leg contains nl deep space maneuvers. The time of flight for each leg,

except the last leg, is an independent design variable. The calculations of the dependent

variables are carried out starting from the departure planet, and from one leg to the next

and so on.

In any trajectory leg, the spacecraft trajectory is solved as discussed in Section 2.1.

The velocity vector at the leg end point is the heliocentric incoming velocity vector of

the consequent gravity assist maneuver. If a leg has at least one DSM then the swing-by

maneuver at the beginning of that leg is assumed a non powered swing-by maneuver. The

swing-by independent design variables are the pericenter altitude h and the rotation angle

η . The swing-by maneuver calculations are carried out, as discussed in Section 2.2, to yield

the outgoing spacecraft velocity vector. This velocity vector is the spacecraft heliocentric

velocity vector of the initial point on the consequent transfer trajectory. The process is

repeated for all legs and swing-by maneuvers.
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If any of the swing-by maneuvers is followed by a leg with no DSM, then that swing-

by is assumed to be a powered swing-by maneuver. In this case, all dependent variables

associated with the leg before the swing-by is calculated first. Then the dependent variables

associated with the leg after the powered swing-by are computed. Finally the powered

swing-by variables, including the swing-by impulse, are computed such that the two legs

calculations are compatible. Assume the powered swing-by planet is planet Pl . The leg

before planet Pl is leg l, and the leg after it is leg l + 1. The times of swinging by planets

Pl and Pl+1 are known, and hence the positions of the spacecraft at these two times are

known. There is no DSM in leg l+1, hence a Lambert’s problem is solved to calculate the

spacecraft velocity vectors on the initial and final points of leg l + 1. The velocity vector

at the initial point of leg l+1 is the required heliocentric outgoing velocity vector (v+
s/c

)req

of the powered swing-by at planet Pl . To achieve this velocity, a swing-by impulse ∆vps is

added. Since it is desired to achieve all maneuvers with minimum fuel. We assume that the

powered swing-by maneuver plane is the plane containing the incoming relative velocity

vector v−∞ and the required outgoing relative velocity vector (v+∞)req, so that ∆vps does not

have an out of plane component.

(v+∞)req = (v+
s/c

)req −vp (2.13)

Equations (2.6, 2.7, and 2.13) are used to calculate ∆vps. The required deflection angle δreq

between v−∞ and (v+∞)req is computed as:

δreq = cos−1

(

v−∞ .(v
+
∞)req

‖v−∞‖‖(v+∞)req‖

)

(2.14)

The maximum deflection angle δmax is calculated from Equation (2.5) by substituting

rper with the permissable minimum periapsis radius rpermin
. If δreq ≤ δmax, then v+∞ is in the

same direction as (v+∞)req and is calculated as:

v+∞ = v∞
(v+∞)req

‖(v+∞)req‖
(2.15)

If δreq > δmax, then δmax is used, and the swing-by maneuver is carried out in the same

plane defined by v−∞ and (v+∞)req.
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2.4 Summary

The problem of multi-gravity-assist space trajectory, with free number of deep space ma-

neuvers (MGADSM) is introduced and formulated. The chapter addresses the DSM model

and the MGA model which are used in the MGADSM formulation. The dynamic model

of the MGADSM problem is presented. Two-body framework model is considered. The

MGADSM model will be used later on to formulate the optimization problem. This chap-

ter explains the dependent and independent design variables which are used to evaluate the

objective (cost) function at different design points.
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Chapter 3

Hidden Genes Genetic Algorithm for

MGADSM Trajectories Optimization∗

The problem of optimal design of a multi-gravity-assist space trajectory, with free number

of deep space maneuvers, poses a multi-modal cost function (7). In the general form of

the problem, the number of design variables is solution dependent. This chapter presents a

genetic-based method developed to handle global optimization problems where the number

of design variables vary from one solution to another. A fixed length for the design vari-

ables is assigned for all solutions. Independent variables of each solution are divided into

effective and ineffective segments. Ineffective segments (hidden genes) are excluded in

cost function evaluations. Full-length solutions undergo standard genetic operations. This

new method is applied to several interplanetary trajectory design problems. This method

has the capability to determine the number of swing-bys, the planets to swing-by, launch

and arrival dates, and the number of deep space maneuvers as well as their locations, mag-

nitudes, and directions, in an optimal sense. The results presented in this chapter show that

solutions obtained using this tool match known solutions for complex case studies.

* The material contained in this chapter has been accepted for publication in the Journal of Spacecraft

and Rockets (7).
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3.1 Hidden Genes Genetic Algorithm

The independent design variables to be optimized are described in Chapter 2. The objective

is to minimize the total cost, ∆vT , of the trajectory for a MGADSM mission that consists of

m gravity assist maneuvers and nl deep space maneuvers in each leg of the m+1 mission’s

legs. Equation (3.1) shows the total cost of the mission.

∆vT = ‖∆Vd‖+
m

∑
1

‖∆Vps‖+
m+1

∑
1

nl

∑
1

‖∆VDSM‖+‖∆Va‖ (3.1)

where ∆Vd and ∆Va are the departure and arrival impulses, respectively, ∆Vps is the post-

swing-by impulse of the powered gravity assist only, and ∆VDSM is the applied deep space

maneuver impulse. The fitness F at a design point, which is maximized to determine the

fittest solution, is defined as:

F =
1

∆vT
(3.2)

GA is adopted for optimization to find the most fit solutions. Each individual in the

GA population represents a set of independent design variables. Those variables are di-

vided into two categories: discrete and continuous variables, as seen in Table 3.1. Each

individual is presented in a binary format as a binary string. This string contains the binary

representation of all the design variables values at the corresponding design point. The

number of bits for each variable determines its accuracy. For the CDVs, the number of bits

qA for a continuous variable A is selected according to the following inequality:

2qA ≤ Amax −Amin

∆A

+1 ; Amax 6= Amin (3.3)

where Amin and Amax are the lower and upper bounds of the variable A, and ∆A is the desired

accuracy of A. For the DDVs, each variable would be assigned a unique binary string. The

number of bits qB for a discrete variable B depends on the lower and upper bounds of the

variable, Bmin and Bmax, respectively. The variable qB is computed as:

qB = 1bit if Bmax = Bmin

or, 2qB ≤ Bmax −Bmin +1 if Bmax 6= Bmin (3.4)
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Table 3.1

The discrete and continuous independent design variables of the MGADSM problem

Discrete Design Variables (DDV) Continuous Design Variables (CDV)

No. of swing-by maneuvers, m Departure date, td
Swing-by planets, P1,..., Pi Arrival date, ta
The count of DSMs in each leg, n1,..., ni+1 Time of flight, T1,..., Ti

Flight direction, f Normalized pericenter altitudes, h1,..., hi

Rotation angles, η1,..., ηi

Epochs of DSMs, ε1,..., ε j

DSMs, ∆V1,..., ∆Vk

In Table 3.1, i is the maximum possible number of swing-by maneuvers and j is the

maximum possible number of total DSMs in the entire trajectory (both i and j are specified

by the user). The term DSM is used to define any thrust impulse applied during the mission

course except the launch, arrival, and powered swing-by impulses. The maximum number

of independent thrust impulses is k, which can be explained as follows: if nl is the max-

imum number of DSMs in a leg, then there are nl independent thrust impulses if this leg

is the first one; while for the consequent legs, the number of required independent thrust

impulses is nl − 1. Each thrust impulse ∆V consists of three continuous design variables.

The pericenter altitudes h are normalized with respect to the mean radius of the associated

swing-by planet, Rp. The normalized pericenter altitudes h are used as design variables to

limit the resulting pericenter altitudes to feasible values only, when dealing with different

swing-by planets with obvious varied radii. The epoch of a DSM, ε , specifies the time at

which the impulsive maneuver is applied, as a fraction of the associated leg transfer time.

For most applications, a DSM could be applied from 10% up to 90% of the total time of

flight in the associated leg. The flight direction f of the whole mission is either retrograde

or posigrade.

Given that the maximum possible number of swing-by maneuvers is i, then we create i

discrete design variables P1, P2, ..., Pi. Each variable Pl determines the planet about which

the lth swing-by occurs, as shown in Figure 3.1. The range of the discrete variable Pl is 1

through 8, which are the indices for the planets in the solar system, starting from Mercury

to Neptune. The order of the swing-bys is the same as the order of the variables Pl , as

shown in Figure 3.1. If the selected number of swing-bys is m < i, then the first m variables

(P1, P2, ..., Pm) will be selected.
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Figure 3.1: Coding of swing-by planets as descrite design variables in HGGA.

For a MGADSM problem, the total number of independent design variables depends on

the number of swing-by maneuvers, m, and the number of DSMs in every leg, n1, ...,ni+1.

Selecting different values for the discrete design variables m,n1, ...,ni+1, changes the mis-

sion scenario and the number of DSMs in each leg. So, for a given solution, the values of

these variables dictate the length of a certain portion in the chromosome of that solution.

For example, if m = 2, then we need to allocate two swing-by portions in the chromosome;

however, if m = 3, then three positions will be needed, for swing-bys, in the chromosome.

Thus, changing the mission scenario and/or the number of DSMs is accompanied by a

change in the length of the chromosome. Standard genetic algorithms cannot handle this

problem because of the variation of strings lengths among different solutions. Genetic oper-

ations, such as crossover, are defined only for fixed-length string populations. To overcome

this problem, the concept of hidden genes is introduced.

Let Lmax be the length of the longest possible chromosome (this chromosome corre-

sponds to a trajectory in which the spacecraft performs the maximum possible number of

swing-bys and applies the maximum number of DSMs). All chromosomes in the popu-

lation are allocated a fixed length equal to Lmax, which is computed, based on the design

variables stated in Table 3.1, as in Equation (3.5).

Lmax = 5+3i+ j+2(i− z)+3k (3.5)

where z is the number of swing-by maneuvers which are followed by a no-impulse leg.

From the upper bounds of the key design variables (m,n), the maximum chromosome

length could be calculated a priori. In a general solution (a point in the design space),

some of the variables in the chromosome will be ineffective in cost function evaluation; the

genes describing these variables are here referred to as hidden genes. The hidden genes,

however, will be used in the genetic operations in generating future generations. Figure

3.2 shows typical solution chromosomes where the variables at the top of the figure are the
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Figure 3.2: Typical chromosomes for the trajectory optimization problem in ITO-HGGA tool; each row

represents a chromosome.

independent design variables. Each row in Figure 3.2 represents a member (single indi-

vidual) in the GA population. The dark parts represent genes that are effective in fitness

function evaluations. The white parts represent the hidden genes.

Because all chromosomes have the same length, standard definitions of genetic algo-

rithms operations can still be applied to this problem. Hidden genes will take part in all ge-

netic operations like normal genes. To illustrate this concept, an example on the crossover

operation, between two parent solutions to generate two children (new) solutions, is here

presented. Figure 3.3 shows two parent chromosomes and the resulting chromosomes after

crossover, where a single point crossover is performed. Consider, for example, the genes

representing the number of swing-by maneuvers and the genes representing the number

of DSMs. The genes representing the number of swing-by maneuvers and the numbers of

DSMs are always effective genes. The chromosome length allows for up to 5 swing-bys and

up to 2 DSMs in each leg. In the first parent, the genes representing the first two swing-bys

are effective genes, while there are hidden genes representing the other three swing-bys.

Similarly, the genes representing the numbers of DSMs of legs 1 through 3 (n1 : n3) are ef-

fective genes, while there are hidden genes representing the rest of DSMs variables. In the

second parent, the genes representing the first three swing-bys are effective genes, while

the genes representing the other two swing-bys are hidden. The genes representing the first

4 DSM’s variables are effective genes (n1 : n4), while there are hidden genes representing

the rest of DSM variables. The crossover operation is carried out as defined in the standard

genetic algorithm. The resulting two children are shown in Figure 3.3. The first child has

effective genes representing a single swing-by and two DSM variables. The effective genes

in the second child correspond to a zero-swing-by maneuver with a single DSM maneuver.

The rest of the chromosomes of the children are hidden genes which represent the ineffec-
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Figure 3.3: Crossover operation in hidden genes genetic algorithm.

tive design variables. Therefore, the generated children could have different scenarios and

DSM sequences from those of the origin parents.

This algorithm is tested for several interplanetary missions ranging from simple to com-

plex missions. The optimization algorithm (ITO-HGGA tool) is designed to find the mis-

sion scenario (the number of swing-bys and the planets to swing by) as well as the rest of

the independent design variables: the times of swing-by, the number of DSMs, the times

of DSMs, the magnitudes/directions of DSMs, and the departure/arrival dates. The size of

the design space is controlled by the bounds of the independent design variables.

To reduce the computational cost for complex missions, the problem may be solved by

two-phase approach. A trajectory design optimization can be started by assuming no DSMs

in the trajectory (zero DSMs trajectory). This reduces the number of independent design

variables by eliminating the following design variables: periapsis altitudes, rotation angles,

epoch of DSMs, and thrust impulses. This reduction in the number of design variables

allows for exploring wider ranges for each of the remaining design variables. Specifically,

we can open the search space for any number of swing-bys with any planets in the solar

system; wider ranges of departure and arrival dates and times of flight can be used; and

both possible flight directions can be considered. This will result in a set of fit scenarios

(zero DSM solutions). For each one of these scenarios, we then allow DSMs to be added to

the trajectory and optimize our selection for these DSMs. So, we optimize on the number
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of DSMs in each leg and their locations/magnitudes/directions, while maintaining the sce-

nario fixed. The departure/arrival dates and times of flight are allowed to change as design

variables, with narrow ranges around the values obtained from the zero DSM solution. This

technique of solving the problem by the two-phase approach has the advantage of reducing

the computational time. This reduction in computational time comes at a price; most of the

design space will not be explored. In general, optimizing a given scenario through adding

DSMs, improves the fitness of this trajectory (If a zero DSM trajectory is optimal, then the

second step in the optimization process will add no DSMs to the scenario). On the other

hand, some solutions are fit only when there are DSMs in the trajectory and the fitness of

the corresponding zero DSM scenario is poor (e.g. the MESSENGER mission trajectory

is fit when we have a DSM in the first leg and becomes poor if we assume no DSM in the

first leg). This means that it is not possible to find the zero DSM solution among the fittest

solutions in the first step. For this kind of trajectories, it is not possible to find the optimal

solution by solving the problem using the two-phase approach.

As an example, consider the Cassini 2 mission trajectory: let the maximum possible

number of swing-by maneuvers be four, and let only one impulse, as a maximum, be ap-

plied in each leg. In optimizing all the design variables, the required number of independent

design variables is 33 (11 DDVs and 22 CDVs). This is a computationally expensive prob-

lem, especially with wide ranges for the design variables. On the other hand, by solving

a zero-DSM problem, the number of design variables is reduced to only 12 variables (6

DDVs and 6 CDVs). This step solves for the optimum mission’s scenario without deep

space maneuvers. Then, the second step is performed with 27 design variables (5 DDVs

and 22 CDVs). The ranges of the CDVs in the second step is reduced based on the infor-

mation from the initial mission’s scenario.

The ITO-HGGA tool optimizes also the number of revolutions in each leg. The time

of flight (TOF) of each leg and the time of applying each DSM are selected as design vari-

ables to allow for multi-revolution transfers. Lambert’s problem is solved once in each

leg. Based on the position vectors and the TOF, Lambert’s solution may have both single

and multi-revolution transfers. The selection criterion is as follows: the selected lambert’s

transfer should minimize the former maneuver cost. This maneuver could be a departure

impulse, a DSM, or a swing-by maneuver. In the final leg, the selected lambert’s transfer

will minimize the former maneuver cost plus the arrival impulse cost.
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A Matlab toolbox (GENETIC v2.1) is used (53). GENETIC v2.1 is structured such

that continuous, discrete, and mixed continuous/discrete problems can be addressed. The

main operations in the basic GA are coding, evaluation, selection, crossover and mutation.

GA tuning parameters depend on the specific problem. A uniform crossover operation is

conducted with a probability varied from 0.9 to 0.98. The mutation probability is selected

between 0.01 and 0.08. Roulette wheel is used in selection operation. Proportional rank-

ing is implemented in most cases. In general, linear ranking is implemented with higher

crossover probability values, in solving a zero-DSM problem, in order to increase the diver-

sity in the population. The linear ranking is implemented to avoid local minima traps. To

maintain a diverse population, niching principle is applied by degrading the fitness of the

similar individuals (54). A simple niching technique is implemented to solve the complex

case of Cassini 2 mission. The solution obtained by the genetic algorithm is not necessary

an optimal solution, nor at a local minimum. Therefore, a constrained nonlinear optimiza-

tion technique is used to improve the solution by finding the closest local minimum to that

solution. The local optimizer is only optimizing over the continuous design variables, not

the discrete variables. The genetic algorithm solution is used as an initial guess in the local

search algorithm.

3.2 Numerical Results

This section presents a number of case studies for interplanetary space missions trajectory

optimization. Comparisons to other solutions in the literature is presented to validate the

obtained results.

3.2.1 Earth-Mars Mission

A MGADSM trajectory is optimized for the Earth-Mars mission (EM). The lower and up-

per bounds, for all design variables, are listed in Table 3.2. The maximum possible number

of swing-by maneuvers is selected to be two. The maximum number of DSMs in each leg

is selected to be one impulses. As can be seen from Table 3.2, a gravity assist maneuver

could be performed with any planet in the solar system, from Mercury to Neptune. The

direction of flight can be posigrade or retrograde. The time of flight of each leg, except the

last one, is selected between 40 and 300 days.
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Table 3.2

Bounds of design variables for Earth-Mars mission

Design Variables Lower Bound Upper Bound

No. of swing-by maneuvers, m 0 2
Swing-by planets identification numbers, P1,..., Pi 1 (Mercury) 8 (Neptune)
No. of DSMs in each mission’s leg, n1,..., ni+1 0 1
Flight direction, f Posigrade Retrograde
Departure date, td 01-Jun-2004 01-Jul-2004
Arrival date, ta 01-Apr-2005 01-Jul-2005
Time of flight (days)/leg, T1,..., Ti 40 300

Swing-by normalized pericenter altitude, h1,..., hi 0.1 10
Swing-by plane rotation angle (rad), η1,..., ηi 0 2π
Epoch of DSM, ε1,..., ε j 0.1 0.9
DSM (km/s), ∆v1,..., ∆vk -5 5

The total number of design variables for this mission is 21 (7 DDVs and 14 CDVs).

Wide ranges for the design variables are adopted, as listed in Table 3.2. A population of

500 individuals is used, for 300 generations. A local optimizer uses the fittest GA solution

as an initial guess to find a local minimum. The resulting solution has a single swing-by

maneuver at Venus, with a total cost of 10.754 km/s. The fittest trajectory has a single DSM

in the first leg as shown in Table 3.3.

The same problem is solved again by dividing the optimization process into two steps to

reduce the required computational time. First, a zero-DSM solution is sought to determine

a mission scenario. The number of design variables in this first step is only 8 variables

(4 DDVs and 4 CDVs). ITO-HGGA, with 200 populations and 100 generations, is used.

The convergence of the optimization algorithm is shown in Figure 3.4. The resulting zero-

DSM scenario is a single swing-by maneuver at Venus with a cost of 10.788 km/s. A

local optimization tool is then used to improve the solution to the nearest local minimum

solution. The local optimizer reduces the cost to 10.783 km/s. A powered swing-by is

implemented in this case and the required impulse of the swing-by is 0.002 km/s. Figure

3.5 shows the zero-DSM Earth-Venus-Mars trajectory.

In the second step, the problem is solved using the full MGADSM formulation, assum-

ing that the mission scenario is EVM (the scenario obtained from the first step). The ranges

for the departure, swing-by, and arrival dates are varied within only 10 days around those

values obtained from the first step. The number of design variables in this step is 12 (2

DDVs and 10 CDVs). A population of 300 individuals has been used for 100 generations

of GA followed by a local minima optimizer. The result of the second optimization step is
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Table 3.3

MGADSM solution for the EVM mission (ITO-HGGA)

Mission Parameter MGADSM Scenario

Departure date,td 05-Jun-2004 00:28:38
Departure impulse (km/s) 4.53
DSM date 11-Sep-2004 18:35:44
DSM impulse (km/s) 0.1293 (td + 98.77 days)
Venus Swing-by date 19-Nov-2004 01:42:40

Post-swing-by impulse (km/s) 2.27×10−12

Pericenter altitude (km) 7937.913
Arrival date 15-May-2005 15:07:38
Arrival impulse (km/s) 6.095
Time of flight (days) 167.07 , 177.6
Mission duration (days) 344.67

Mission Cost (km/s) 10.754

Table 3.4

MGADSM solution trajectory for the EVM mission using the two-phase approach technique (ITO-HGGA

tool)

Mission Parameter Zero-DSM Model MGADSM Model
Initial Estimate Final Scenario

Departure date,td 05-Jun-2004 01:52:21 02-Jun-2004 11:43:25
Departure impulse (km/s) 4.616 4.457
DSM date - 22-Aug-2004 07:07:46
DSM impulse (km/s) - 0.1801 (td + 80.81 days)
Venus Swing-by date 20-Nov-2004 15:10:59 19-Nov-2004 07:02:55

Post-swing-by impulse (km/s) 0.002 1.68×10−13

Pericenter altitude (km) 7996.782 7869.048
Arrival date 14-May-2005 13:18:06 16-May-2005 03:29:08
Arrival impulse (km/s) 6.165 6.091
Time of flight (days) 168.56 , 174.92 169.81 , 177.85
Mission duration (days) 343.48 347.66

Mission Cost (km/s) 10.783 10.728

a single DSM of 180.1 m/s in the first leg at 80.81 days from mission start time, as shown

in Figure 3.5. The total transfer cost is slightly reduced to 10.728 km/s in the second opti-

mization step. Table 3.4 shows the zero-DSM trajectory as well as the final trajectory. As

shown in Table 3.4, the effect of the DSM is reducing the departure and arrival impulses, as

well as reducing the impulse of the powered swing-by to almost zero. The fittest trajectory

could be considered as a non-powered gravity assist trajectory with a single DSM.
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Figure 3.4: Convergence of the ITO-HGGA tool for the EVM mission: a) zero-DSM model, b) MGADSM

model.

−3 −2 −1 0 1 2

x 10
8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
8

x (km)

y
 (

k
m

)

 

 

(b)

−3 −2 −1 0 1 2

x 10
8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
8

x (km)

y
 (

k
m

)

(a)

Venus
swing−by

DSM

Figure 3.5: Optimal EVM mission using ITO-HGGA tool: a) zero-DSM model, b) MGADSM model.

3.2.2 Earth-Jupiter Mission

A mission to Jupiter is considered. It is desired to find the MGADSM trajectory with mini-

mum cost. Wide ranges of all design variables are allowed in optimization to explore more

of the design space. The design variables’ bounds are listed in Table 3.5. The total number

of design variables is 33 variables (7 DDVs and 26 CDVs). The zero-DSM model is used to

determine an initial scenario. The independent design variables in this step are 8 variables

(4 DDVs and 4 CDVs). A population of 300 individuals and 100 generations are used in

GA optimization.
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Table 3.5

Bounds of Earth-Jupiter mission’s design variables

Design Variables Lower Bound Upper Bound

No. of swing-by maneuvers, m 0 2
Swing-by planets identification numbers, P1,..., Pi 1 (Mercury) 8 (Neptune)
No. of DSMs in each mission’s leg, n1,..., ni+1 0 2
Flight direction, f Posigrade Retrograde
Departure date, td 01-Sep-2016 30-Sep-2016
Arrival date, ta 01-Sep-2021 31-Dec-2021
Time of flight (days)/leg, T1,..., Ti 80 800

Swing-by normalized pericenter altitude, h1,..., hi 0.1 10
Swing-by plane rotation angle (rad), η1,..., ηi 0 2π
Epoch of DSM, ε1,..., ε j 0.1 0.9
DSM (km/s), ∆v1,..., ∆vk -5 5

Table 3.6

Optimal MGADSM trajectory of EVEJ mission using ITO-HGGA

Mission Parameter Zero-DSM Model MGADSM Model
Initial Estimate Scenario (1) Scenario (2)

Departure date 09-Sep-2016 11:38:03 06-Sep-2016 13:36:17 07-Sep-2016 01:55:17
Departure impulse (km/s) 3.653 3.542 3.439
DSM date - - 21-Feb-2017 08:29:43
DSM impulse (km/s) - - 0.109
Venus swing-by date 05-Sep-2017 05:57:07 05-Sep-2017 14:57:28 07-Sep-2017 07:43:57
Post-swing-by impulse(km/s) 0.0004 - 2.38e-014
Pericenter altitude (km) 1402.2 1307.28 613.545
DSM date - 14-May-2018 09:31:08 -
DSM impulse (km/s) - 0.0002 -
Earth swing-by date 30-Mar-2019 02:25:00 30-Mar-2019 03:14:06 29-Mar-2019 02:19:05
Post-swing-by impulse(km/s) 0.443 0.441 0.444
Pericenter altitude (km) 637.8 637.8 637.8
Arrival date 18-Sep-2021 21:15:27 24-Sep-2021 23:59:59 17-Sep-2021 07:43:51
Arrival impulse (km/s) 6.202 6.195 6.19
Time of flight (days) 360.76, 570.85, 903.79 364.05, 570.51, 909.87 365.24, 567.77, 903.23
Mission duration (days) 1835.4 1844.43 1836.24

Mission Cost (km/s) 10.298 10.178 10.182

The resulting fittest scenario is a two swing-by trajectory with swing-bys around Venus

then Earth (EVEJ), as shown in Figure 3.6. The solution is a posigrade multi-revolution

trajectory. The total cost of this zero-DSM trajectory is 10.298 km/s, as shown in Table 3.6.

The scenario of this solution is then used in the second optimization step. The two swing-

bys are fixed (EVEJ). The departure/arrival dates and the time of flight design variables

obtained from the first step are allowed to vary within 10 days from their values obtained

from the first step.

A population of 500 individuals and 100 generations is used. Figure 3.7 shows the

convergence of the optimization algorithm. Table 3.6 shows the zero DSM solution, as
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Figure 3.7: Convergence of the ITO-HGGA tool for Jupiter mission: a) zero-DSM, b) MGADSM.
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well as two solutions with DSMs. One solution has a single DSM in the second leg (VE),

while the other solution has a single DSM in the first leg (EV), as shown in Figure 3.8. In

the first scenario, the DSM amplitude is 0.2 m/s which seems an insignificant value with

respect to the total trajectory cost. It is expected that this small DSM may be vanished with

more iterations.

3.2.3 Earth-Saturn Mission (Cassini 2)

One of the most complicated multi gravity assist trajectories is the Cassini 2 trajectory.

In 1997, The Cassini-Huygens mission was launched to study the planet Saturn and its

moons (55). The ITO-HGGA tool is used to search for a minimum-cost trajectory for an

Earth-Saturn trip. For the sake of making comparisons with the literature, a narrow range

of departure date is allowed, around the known published date for the Cassini 2 mission.

The ranges for the other design variables are wide enough to investigate all possible solu-

tions. Table 3.7 presents the upper and lower bounds for the design variables. A zero-DSM

model is initially used to find an initial mission scenario. There are 12 independent design

variables in this step (6 DDVs and 6 CDVs). A population of 500 individuals and 1500

generations is used. Initial attempts show that resulting solutions are always trapped in re-

gions that are worse than the known solutions for cassini 2 mission. This suggests allowing

more time (more generations) for ITO-HGGA to search for more solutions. To avoid high

computational cost, a simple niching technique is implemented (54). The GA convergence

is shown in Figure 3.9.

The obtained mission scenario is a four swing-by trajectory with the same planet se-

quence as of the actual Cassini 2 mission scenario (EVVEJS). The trajectory is a posigrade

transfer with 10.685 km/s total transfer cost, as shown in Table 3.8. Then, the initial zero-

DSM scenario is used in the MGADSM model to obtain the final trajectory. The planet

sequence is fixed at EVVEJS, with narrow ranges for the departure, arrival, and gravity

assist dates.

A population of 500 individuals and 1000 generations is used. Then, a local optimizer

is used. Twenty-seven design variables are used in this model (5 DDVs and 22 CDVs). The

GA convergence is shown in Figure 3.9. The final solution is presented in Table 3.8. The

trajectory has two deep space maneuvers, one in the first leg (EV) and the other is in the

second leg (VV). The total transfer cost is reduced to 8.385 km/s after applying the deep

36



Table 3.7

Bounds of Cassini 2 mission’s design variables

Design Variables Lower Bound Upper Bound

No. of swing-by maneuvers, m 1 4
Swing-by planets identification numbers, P1,..., Pi 2 (Venus) 5 (Jupiter)
No. of DSMs in each mission’s leg, n1,..., ni+1 0 1
Flight direction, f Posigrade Retrograde
Departure date, td 01-Nov-1997 31-Nov-1997
Arrival date, ta 01-Jan-2007 30-Jun-2007
Time of flight (days)/leg, T1,..., Ti 40 1000

Swing-by normalized pericenter altitude, h1,..., hi 0.1 10
Swing-by plane rotation angle (rad), η1,..., ηi 0 2π
Epoch of DSM, ε1,..., ε j 0.1 0.9
DSM (km/s), ∆v1,..., ∆vk -5 5
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Figure 3.9: Convergence of the ITO-HGGA tool for Cassini 2 mission: a) zero-DSM model, b) MGADSM

model.

space maneuvers. The zero-DSM initial trajectory and the MGADSM final trajectory are

shown in Figure 3.10.

3.3 Comparisons and Discussion

The cost being optimized in this work is a function of discrete and continuous design vari-

ables. The discrete variables determine the mission scenario (swing-by planets), the num-

ber of DSMs in each leg, and the direction of flight (posigrade, retrograde). The continuous

variables determine the dates and parameters of the events. The ITO-HGGA tool imple-
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Table 3.8

Optimal MGADSM trajectory of Cassini 2 mission using ITO-HGGA

Mission Parameter Zero-DSM Model MGADSM Model
Initial Estimate Final Scenario

Departure date 30-Nov-1997 00:00:00 13-Nov-1997 11:12:37
Departure impulse (km/s) 3.779 3.293
DSM date - 25-Mar-1998 22:27:03
DSM impulse (km/s) - 0.449
Venus Swing-by date 20-May-1998 12:58:21 30-Apr-1998 04:17:03
Post-swing-by impulse (km/s) 2.633 -
Pericenter altitude (km) 27470.963 2590.174
DSM date - 11-Dec-1998 14:55:31
DSM impulse (km/s) - 0.396
Venus Swing-by date 26-Jun-1999 14:04:56 27-Jun-1999 11:24:49

Post-swing-by impulse (km/s) 1.096×10−05 2.21×10−06

Pericenter altitude (km) 605.303 245.216
Earth Swing-by date 19-Aug-1999 09:05:31 19-Aug-1999 16:18:04

Post-swing-by impulse (km/s) 1.36×10−06 6.04×10−08

Pericenter altitude (km) 1810.704 1975.905
Jupiter Swing-by date 24-Mar-2001 00:21:22 31-Mar-2001 09:30:36

Post-swing-by impulse (km/s) 1.89×10−04 1.68×10−07

Pericenter altitude (km) 5167772.8 4918886.8
Arrival date 12-Jan-2007 12:50:27 23-Mar-2007 21:31:17
Arrival impulse (km/s) 4.273 4.247
Time of flight (days) 171.54, 402.05, 53.79, 168.67, 423.3, 53.2,

582.64, 2120.52 589.72, 2182.54
Mission duration (days) 3330.54 3417.43

Mission Cost (km/s) 10.685 8.385
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Figure 3.10: Optimal Cassini 2 mission using ITO-HGGA: a) zero-DSM model, b) MGADSM model (inner

planets only).
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mented in this dissertation finds the values for all the design variables in the best solution

trajectory. Then the mission scenario, the direction of flight, and the number of DSMs

are fixed, and the continuous variables are tuned by a local optimizer. The local optimizer

implements a constrained nonlinear optimization technique. The proposed hidden genes

concept is different from the VCL-GA concept presented in Reference (25). The VCL-GA

assumes the same size for all chromosomes in a given population. The chromosome length,

however, may vary from one generation to another. On other hand, the proposed hidden

genes concept handles problems where chromosomes of different lengths may exist in the

same population.

The Earth-Venus-Mars mission trajectory optimization has been addressed in the litera-

ture (15). The solution presented in Reference (15) was obtained using the extended primer

vector theory, and has a single swing-by maneuver and a single DSM. In implementing the

primer vector method, the departure and arrival dates were assumed fixed (the mission du-

ration is 340 days). The Venus swing-by time was also constrained to occur at 165 days

from departure. The resulting solution has a DSM of 68.7 m/s in the first leg at 96.08 days

from mission start date. The total cost of the mission is 10.786 km/s (15). The solution ob-

tained using the ITO-HGGA tool has also one swing by Venus and one DSM of 180.1 m/s

in the first leg at 80.81 days from launch date. The total cost of the mission is 10.728 km/s,

as shown in Table 3.4. The reduction in the total cost obtained using the ITO-HGGA tool,

as compared to that of Reference (15), is accompanied by changes in the mission’s launch,

swing-by, and arrival dates, without significantly changing the total mission duration. This

solution is obtained by allowing the maneuver’s launch, swing-by, and arrival dates to be

freely chosen during the zero-DSM optimization step.

Reference (15) presents a minimum-cost solution trajectory for the Earth-Jupiter mis-

sion, assuming the fixed planet sequence EVEJ. The departure, arrival, and swing-by dates

were also assumed fixed, with a launch in 2016 and a mission duration of 1862 days. The

primer vector theorem solution has four DSMs. Two DSMs are applied in the first two legs.

The total transfer cost for this solution is 10.267 km/s. The ITO-HGGA tool presented in

this chapter is able to find automatically the known swing-by sequence for the Jupiter mis-

sion in 2016. As listed in Table 3.6, the initial scenario (zero-DSM trajectory) is obtained,

starting from wide ranges for the design variables. Then, the MGADSM solutions are ob-

tained based on that initial scenario. Each of the two MGADSM solutions presented in

Table 3.6, have less total cost than the solution presented in Reference (15). There is only
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one DSM in each of the two solutions. The solution presented in Reference (15) requires

four DSMs.

The Cassini 2 mission trajectory design problem has been addressed in several stud-

ies (15–18), where it is always assumed that a fixed swing-by sequence (EVVEJS) is

known. In Reference (17), the IMAGO obtained a solution that has a single DSM, and

a total cost of 9.06 km/s. Reference (15) implements the space pruning technique and finds

the values and locations of the DSMs to minimize the total transfer cost. The departure,

arrival, and swing-by dates were fixed. The minimum cost obtained in (15) is 8.877 km/s.

Olympio and Izzo (16) recently developed an algorithm to find the optimal DSM structure

in a given trajectory scenario. For the Cassini 2 planets’ sequence described in the GTOP

database (55), Reference (16) found a trajectory with a total cost of 8.387 km/s. The solu-

tion obtained using the ITO-HGGA tool finds a solution with a total cost of 8.385 km/s (as

seen in Table 3.8), which is very close to the reported result in the GTOP database (8.383

km/s) (55), and is also very close to the solution presented in Reference (16). The ITO-

HGGA tool in this case, however, finds the planets sequence as well as the DSM structure.

Initially, the ITO-HGGA tool could not converge to the known planet sequence of the

Cassini 2 mission in the first optimization phase. But rather, it converged to a worse so-

lution. It has been observed that, in phase one, the solutions are trapped around a certain

planet sequence that is worse than the known optimal scenario. The known optimal sce-

nario (EVVEJS) could be obtained by forcing the last swing-by to be planet Jupiter. This

suggested running the ITO-HGGA tool for more generations so that the optimal scenario

is obtained. In order to avoid high computational cost and yet increase the diversity in

the population, a niching algorithm is implemented (54). A niching technique applies a

fitness degradation to the row fitness function such that fitness are depressed in the regions

where solutions have already been found (54). In ITO-HGGA, a simple niching algorithm

is added. Every five generations, the fitness are degraded for the current fittest solution, and

all other solutions that have a similar planet sequence to the fittest solution. By implement-

ing this niching technique, the ITO-HGGA tool is able to find the known optimal scenario

in the first phase of optimization.

Figures 3.4, 3.7, and 3.9 show the convergence of the developed ITO-HGGA tool for

the three case studies discussed in this chapter. As can be seen from the figures, the number

of generations needed for convergence to the solution varies from one case to another. In

the Earth-Venus-Mars mission, forty generations are needed in both the zero-DSM phase
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(8 design variables) and in the MGADSM phase (12 variables). In the Cassini 2 mission,

the number of design variables is 12 and 27 for the first and the second phases, respectively.

The zero-DSM phase converges in 900 generations, while the MGADSM phase converges

in 700 generations. Therefore, the much complex mission requires much higher number of

populations and generations to converge to the optimal solution.

3.4 Summary

A novel methodology is proposed to tackle the optimization problems with variable size

design space. A hidden gene genetic algorithm tool is developed to handle the optimization

of MGADSM problems. This new tool has the capability to optimize the multiple gravity

assist scenario, as well as the DSM structure. A zero-DSM model is initially solved to

calculate an initial estimate scenario. The swing-by planets sequence is then fixed and

narrow intervals of design variables are used to investigate the MGADSM model. The

developed algorithm is verified by solving simple and complex interplanetary trajectories.

The results show that the developed methodology is robust enough to tackle the complexity

of the MGADSM problem. Moreover, the developed tool has the advantage of effectively

determine accurate solutions in low computation cost.
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Chapter 4

Dynamic-Size Multiple Population

Genetic Algorithm for MGADSM

Trajectories Optimization∗

The problem of optimal design of a multi-gravity-assist space trajectory, with free number

of deep space maneuvers, in its general form, poses a multi-modal objective function which

design space size is variable (10). This chapter presents a genetic-based method developed

to handle global, variable size design space, optimization problems where the number of

design variables vary from one solution to another. Sub-populations of fixed size design

spaces are randomly initialized. Standard genetic operations are carried out for a stage of

generations. A new population is then created by reproduction from all members in all sub-

populations based on their relative fitness. The resulting sub-populations have, in general,

different sizes from their initial sizes. The process repeats, leading to increasing the size

of sub-populations of more fit solutions and decreasing the size of sub-populations of less

fit solutions. This method has the capability to determine the number of swing-bys, the

planets to swing by, launch and arrival dates, and the number of deep space maneuvers as

well as their locations, magnitudes, and directions, in an optimal sense. This new method

is applied to several interplanetary trajectory design problems. The results presented in this

chapter show that solutions obtained using this tool match known solutions for complex

case studies.

* The material contained in this chapter has been accepted for publication in the Journal of Guidance,

Control, and Dynamics (10).
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4.1 Dynamic-Size Multiple Population Genetic Algorithm

Optimization Technique

Genetic operations, such as crossover, are defined only for fixed-length string popula-

tions. Many engineering optimization problems, including the MGADSM problem, poses

variable-length strings. To overcome this problem, the concept of Dynamic-Size Multiple

Population (DSMP) is introduced. A software tool for interplanetary trajectory optimiza-

tion using the Dynamic-Size multiple population genetic algorithms (DSMPGA) is devel-

oped in this study. The concept of the DSMPGA is to create an initial population that

consists of sub-populations, as shown in Figure 4.1. All sub-populations are processed in

parallel. All the members in each sub-population will have the same chromosome length.

Different sub-populations will have different chromosome lengths. The standard genetic

operations will be applied to each sub-population, for a certain number of generations (a

stage of generations) as shown in Figure 4.1. The fitness of all members in the overall

population are evaluated at the end of each stage. The selection operation is then carried

out across the board (from all sub-population), based on members’ fitness, regardless of

the chromosome length. The more fit members from all sub-populations will be repro-

duced to subsequent stages, in their respective sub-populations. Hence, the size of each

sub-population will change from one stage to another. Sub-populations that have higher

(lower) fitness members will increase (decrease) in size. Sub-populations are then pro-

cessed for another stage of generations, a selection at the end of the new stage is then

carried out based on the members’ fitness, and so on.

This approach will enable the use of standard genetic operations in VSDS problems.

Figure 4.1 shows an illustration for this concept. Each symbol represents solutions of the

same chromosome length. Sub-populations, each include the same symbol, are stacked in

a one big population. Sub-populations will change their sizes from one stage to another

based on the members’s fitness, leading to the evolution of more fit members. There are

two options for the sizes of the initial sub-populations (number of individuals in each sub-

population.) The first option is to start with equal sizes for all sub-populations. The second

option, which is adapted in this chapter for the MGADSM problem, is to start with an

initial size for each sub-population that is proportional to the number of design variables

in that sub-population. This choice is selected based on the fact that a problem with higher

number of design variables need a bigger size population for better convergence. The
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Figure 4.1: Illustration of the dynamic-size multiple population genetic algorithm concept

proportionality constant is c. The size of each sub-population then varies in sub-sequent

generations. The overall population size, however, remain constant, and is equal to the

summation of all initial sub-populations’ sizes.

At the end of each stage, an evaluation process is performed to re-size all sub-populations

based on the relative fitness of all individuals in all sub-populations. A roulette selection

method is applied to choose parents for the next stage from the overall population of the

current stage. The roulette method simulates a roulette wheel with the area of each seg-

ment proportional to its fitness. A higher fitness individual has a bigger segment area. A

random number is then used to select one of the sections with a probability equal to its

area. The selected individuals are separated according to their associated sub-population.

To guarantee that the fittest individuals of each sub-population survive to the next stage, a

small portion of the fittest individuals, elite count, is specified. The elite count is selected to

be 10% in each sub-population. These elite individuals guarantee that each sub-population

will be presented in the whole population till the final stage with at least a small size sub-

population. This step also allows a sub-population with small size to recover back to a

bigger size if more fit members are generated in sub-sequent generations.
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4.2 MGADSM Trajectory Optimization

In this chapter, the objective is to design an interplanetary trajectory mission that consists of

m gravity assist maneuvers and nl deep space maneuvers in each leg of the m+1 mission’s

legs, without a priori knowledge about the swing-by planets or the DSMs. Equation (4.1)

shows the total cost of the mission trajectory, ∆vT , that needs to be minimized.

∆vT = ‖∆Vd‖+
m

∑
1

‖∆Vps‖+
m+1

∑
1

nl

∑
1

‖∆VDSM‖+‖∆Va‖ (4.1)

where ∆Vd and ∆Va are the departure and arrival impulses, respectively, ∆Vps is the post-

swing-by impulse of the powered gravity assist only, and ∆VDSM is the applied deep space

maneuver impulse. The fitness F at a design point, which is maximized to determine the

fittest solution, is defined as:

F =
1

∆vT

(4.2)

This MGADSM optimization problem is characterized by mixed (continuous and dis-

crete) design variables. The discrete variables determine the planets to swing by (mission

scenario) and the direction of flight (posigrade or retrograde). The continuous variables

determine the dates and parameters of the maneuvers (swing-bys and DSMs). The fact that

some of the design variables are discrete suggests the use of genetic algorithms (22, 23).

Each design point (member) in a GA population represents a set of independent design

variables. Table 4.1 shows all design variables. The Matlab genetic algorithm toolbox is

used to develop the DSMPGA tool. The GA Matlab toolbox handles only problems of con-

tinuous design variables. In this MGADSM problem, the discrete variables are modeled as

continuous variables and then rounded to the nearest integer, so that the Matlab GA toolbox

can still be used.

Table 4.1

The discrete and continuous independent design variables of the MGADSM problem

Discrete Design Variables (DDV) Continuous Design Variables (CDV)

No. of swing-by maneuvers, m Departure date, td
Swing-by planets, P1,..., Pi Arrival date, ta
The count of DSMs in each leg, n1,..., ni+1 Time of flight, T1,..., Ti

Flight direction, f Normalized pericenter altitudes, h1,..., hi

Rotation angles, η1,..., ηi

Epochs of DSMs, ε1,..., ε j

DSMs, ∆V1,..., ∆Vk
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In Table 4.1, i is the maximum possible number of swing-by maneuvers and j is the

maximum possible number of total DSMs in the entire trajectory. The term DSM is used

to define any thrust impulse applied during the mission course except the launch, arrival,

and powered swing-by impulses. The maximum number of independent thrust impulses is

k, which can be explained as follows: if nl is the maximum number of DSMs in a leg, then

there are nl independent thrust impulses if this leg is the first one; while for the consequent

legs, the number of required independent thrust impulses is nl − 1. Each thrust impulse

∆V consists of three continuous design variables. The epoch of a DSM, ε , specifies the

time at which the impulsive maneuver is applied, as a fraction of the associated leg transfer

time. For most applications, a DSM could be applied from 10% up to 90% of the total

time of flight in the associated leg. Each variable Pl determines the planet to swing by. The

range of the discrete variable Pl is 1 through 8, which are the indices for the planets in the

solar system, starting from Mercury to Neptune. The order of the variables Pl determines

the order of the swing-bys, i.e. the mission scenario. The dates of the mission maneuvers

are specified by selecting the departure and arrival dates and the time of flight of each leg

except the last one. The normalized pericenter altitudes h and the rotation angles η are used

to specify the swing-by maneuvers. The flight direction f of the whole mission is either

retrograde or posigrade.

For a MGADSM problem, the total number of independent design variables depends on

the number of swing-by maneuvers, m, and the number of DSMs in every leg, n1, ...,ni+1.

Selecting different values for these discrete design variables changes the mission scenario

and the DSM structure of the whole trajectory. Thus, changing the mission scenario and/or

the DSM structure is accompanied by a change in the length of the chromosome. This type

of problems can not be handled with the standard genetic algorithm because of the variation

of strings lengths within the same population. The DSMPGA method is implemented.

For the MGADSM problem, each sub-population represents a single DSM structure

with a fixed length mission scenario. This means that, for each sub-population, the number

of DSMs in each leg , as well as the number of swing-by maneuvers, are constants. The

chromosome length Ls of a specific sub-population is calculated as follow:

Ls = 5+3ms + js +2(ms − zs)+3ks (4.3)

where z is the number of swing-by maneuvers which are followed by a zero-DSM leg, and

the subscript s is an index for the sub-population. The number of sub-populations depends
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Figure 4.2: DSM structure for different scenarios in DSMPGA tool, and the corresponding number of inde-

pendent design variables

on the lower and upper bounds of the key design variables m and nl . For a given value

of m, all possible combinations of DSM structure are considered, as shown in Figure 4.2.

For instance, if m = 1, then the trajectory consists of two legs. Suppose the lower and

upper bounds of nl for each leg are zero and one, respectively. Therefore, there are four

possible combinations (sub-populations) of the DSM structure. The four sub-populations

in this case are: zero-DSM in both legs, a single DSM in the first leg with zero-DSM

in the second leg, a single DSM in the second leg with zero-DSM in the first leg, and a

single DSM in each leg. These four sub-populations have different chromosome lengths,

as shown in Figure 4.2.

The independent design variables m and nl are not presented in the chromosome. The

bounds of these two variables specify the number of sub-populations, and hence determine

the problem size. The DSMPGA method benefits from a formulation for the N-impulse

orbit transfer that integrates evolutionary algorithms and a Lambert’s problem formalism.

This integration of Lambert’s problem significantly reduces the size of the design space to

include only candidate solutions which satisfy Lambert’s problem solution (17, 19).

The DSMPGA is tested for several interplanetary missions ranging from simple to com-

plex missions. The DSMPGA finds the mission scenario (the number of swing-bys and the

planets to swing by) as well as the rest of the independent design variables: the times of

swing-by, the number of DSMs, the times of DSMs, the magnitudes/directions of DSMs,

and the departure/arrival dates. The size of the design space is determined by the bounds of
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the independent design variables. The number of revolutions in each leg is also optimized

by the DSMPGA tool. The time of flight (TOF) of each leg and the time of applying each

DSM are selected as design variables to allow for multi-revolution transfers. Lambert’s

problem is solved once in each leg. Based on the position vectors and the TOF, Lambert’s

solution may have both single and multi-revolution transfers. The criterion used to select

a single or a multi-revolution transfer is as follows: the selected lambert’s transfer should

minimize the former maneuver cost. This maneuver could be a departure impulse, a DSM,

or a swing-by maneuver. In the final leg, the selected lambert’s transfer will minimize the

former maneuver cost plus the arrival impulse cost.

The main operations in the standard GA are coding, evaluation, selection, crossover

and mutation. A scattered crossover operation is conducted with a probability varied from

0.8 to 0.9. An adaptive feasible mutation function is considered so that the design variables

bounds are satisfied. Rank scaling function is applied. Roulette wheel method is used in

the selection operation. Wider initial ranges are used in order to increase the diversity in the

population. The solution obtained by the DSMPGA is not necessary an optimal solution,

nor at a local minimum. Therefore, a constrained nonlinear optimization technique is used

to improve the solution by finding the closest local minimum to that solution. The local op-

timizer is only optimizing over the continuous design variables, not the discrete variables.

The DSMPGA fittest solution is used as an initial guess in the local search algorithm.

4.3 Numerical Results

This section presents a number of case studies of trajectory optimization for some known

interplanetary space missions. Comparisons to other solutions in the literature are presented

in Section 4.4.

4.3.1 Earth-Mars Mission

A MGADSM trajectory is optimized for the Earth-Mars mission (EM). The lower and

upper bounds, for all design variables, are listed in Table 4.2. The maximum possible

number of swing-by maneuvers is selected to be two. The number of DSMs in each leg

is selected to be either zero or one impulse. As can be seen from Table 4.2, a gravity
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Table 4.2

Bounds of design variables for Earth-Mars mission

Design Variables Lower Bound Upper Bound

No. of swing-by maneuvers, m 0 2
Swing-by planets identification numbers, P1,..., Pi 1 (Mercury) 8 (Neptune)
No. of DSMs in each mission’s leg, n1,..., ni+1 0 1
Flight direction, f Posigrade Retrograde
Departure date, td 01-Jun-2004 01-Jul-2004
Arrival date, ta 01-Apr-2005 01-Jul-2005
Time of flight (days)/leg, T1,..., Ti 40 300

Swing-by normalized pericenter altitude, h1,..., hi 0.1 10
Swing-by plane rotation angle (rad), η1,..., ηi 0 2π
Epoch of DSM, ε1,..., ε j 0.1 0.9
DSM (km/s), ∆v1,..., ∆vk -5 5

Table 4.3

MGADSM solution trajectory for the EVM mission using DSMPGA

Mission Parameter MGADSM Scenario

Departure date,td 01-Jun-2004 00:00:00
Departure impulse (km/s) 4.386
DSM date 02-Sep-2004 17:06:11
DSM impulse (km/s) 0.296
Venus Swing-by date 17-Nov-2004 13:51:17
Pericenter altitude (km) 7701.2
DSM date 30-Apr-2005 18:11:07
DSM impulse (km/s) 0.626
Arrival date 19-May-2005 01:47:07
Arrival impulse (km/s) 5.392
Time of flight (days) 169.58 , 182.49
Mission duration (days) 352.07

Mission Cost (km/s) 10.7

assist maneuver could be performed with any planet in the solar system, from Mercury to

Neptune. The direction of flight can be posigrade or retrograde. The time of flight of each

leg, except the last one, is selected between 40 and 300 days.

The population is divided into 14 sub-populations (2 for zero swing-by, 4 for one swing-

by, and 8 for two swing-by maneuvers). The maximum number of design variables is 17

which is the design space size in the last sub-population (two swing-by with a single DSM

in each leg). The other sub-populations have different sizes for the design space. The

proportionality constant for initial population size, c, is selected to be 10. The overall

population size is 1400. The number of generations in each stage is selected to be 30, and

the algorithms stops after 5 stages. The elite count is selected to be 10%, with a minimum
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Figure 4.3: Optimal EVM mission using DSMPGA optimization tool.

of 10 individuals in each sub-population. A local optimizer uses the fittest GA solution as

an initial guess to find a local minimum in its neighborhood. The resulting solution has a

single swing-by maneuver at Venus, with a total cost of 10.703 km/s. The fittest trajectory

has a single DSM in each leg as shown in Table 4.3. Figure 4.3 shows the obtained EVM

trajectory.

4.3.2 Earth-Jupiter Mission

The DSMPGA tool is used to investigate the Earth-Jupiter mission. The objective is to

design an optimal MGADSM trajectory with minimum propellent consumption. Wide

ranges of all design variables are allowed in the optimization to explore more of the design

space. The design variables’ bounds are listed in Table 4.4. The population is divided

into 14 sub-populations. The maximum number of design variables is 17 which is used

in the last sub-population (two swing-by with a single DSM in each leg). The other sub-

populations have different numbers and combinations of the independent design variables.

The proportionality constant for initial population size, c, is selected to be 20. The overall

population size is 2800. The number of generations in each stage is selected to be 40, and

the algorithms stops after 5 stages. The elite count is selected to be 10%, with a minimum

of 10 individuals in each sub-population. A local optimizer uses the fittest GA solution as

an initial guess to find a local minimum.
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The resulting fittest scenario is a two swing-by trajectory with swing-bys around Venus

then Earth (EVEJ). The solution is a posigrade multi-revolution trajectory. The trajectory

has a single DSM in the second leg (VE) with a total cost of 10.125 km/s, as shown in Table

4.5. The optimal EVEJ trajectory is shown in Figure 4.4. The DSM amplitude is 2.14 m/s

which seems an insignificant value with respect to the total trajectory cost. It is expected

that this small DSM may be vanished with more iterations. A powered swing-by maneuver

is obtained with the second swing-by planet. The post-swing-by impulse is 0.443 km/s

applied during the Earth swing-by.

Table 4.4

Bounds of Earth-Jupiter mission’s design variables

Design Variables Lower Bound Upper Bound

No. of swing-by maneuvers, m 0 2
Swing-by planets identification numbers, P1,..., Pi 1 (Mercury) 8 (Neptune)
No. of DSMs in each mission’s leg, n1,..., ni+1 0 1
Flight direction, f Posigrade Retrograde
Departure date, td 01-Sep-2016 30-Sep-2016
Arrival date, ta 01-Sep-2021 31-Dec-2021
Time of flight (days)/leg, T1,..., Ti 80 800

Swing-by normalized pericenter altitude, h1,..., hi 0.1 10
Swing-by plane rotation angle (rad), η1,..., ηi 0 2π
Epoch of DSM, ε1,..., ε j 0.1 0.9
DSM (km/s), ∆v1,..., ∆vk -5 5

Table 4.5

MGADSM solution trajectory for the EVEJ mission using DSMPGA

Mission Parameter MGADSM Scenario

Departure date,td 01-Sep-2016 01:54:21
Departure impulse (km/s) 3.487
Venus Swing-by date 05-Sep-2017 10:21:59
Pericenter altitude (km) 1339.21
DSM date 25-May-2018 09:03:27
DSM impulse (km/s) 0.00214
Earth Swing-by date 30-Mar-2019 06:01:26
Post-swing-by impulse (km/s) 0.443
Pericenter altitude (km) 637.8
Arrival date 29-Sep-2021 00:31:15
Arrival impulse (km/s) 6.193
Time of flight (days) 369.35 , 570.82 , 913.77
Mission duration (days) 1853.94

Mission Cost (km/s) 10.125
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Figure 4.4: Optimal EVEJ mission using DSMPGA optimization tool.

4.3.3 Messenger Mission (Easy Version)

Messenger is the first mission to explore the planet Mercury. Messenger trajectory follows

a path through the inner solar system to rendezvous Mercury. The easy version is consid-

ered to simplify the problem structure by excluding the resonant swing-bys around planet

Mercury (55). The DSMPGA tool is used to design an optimal MGADSM trajectory of the

rendezvous mission to Mercury. The design variables’ bounds are listed in Table 4.6. These

values are selected to be consistent with the problem database listed in Reference (55).

Table 4.6

Bounds of Messenger (easy version) mission’s design variables

Design Variables Lower Bound Upper Bound

No. of swing-by maneuvers, m 1 3
Swing-by planets identification numbers, P1,..., Pi 2 (Venus) 4 (Mars)
No. of DSMs in each mission’s leg, n1,..., ni+1 0 1
Flight direction, f Posigrade Retrograde
Departure date, td 01-Jan-2003 31-Mar-2003
Arrival date, ta 01-Jan-2006 30-Jun-2006
Time of flight (days)/leg, T1,..., Ti 30 400

Swing-by normalized pericenter altitude, h1,..., hi 0.1 5
Swing-by plane rotation angle (rad), η1,..., ηi 0 2π
Epoch of DSM, ε1,..., ε j 0.1 0.9
DSM (km/s), ∆v1,..., ∆vk -5 5
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Table 4.7

Optimal MGADSM trajectory of Messenger mission (easy version) using DSMPGA

Mission Parameter First Scenario Second Scenario

Departure date 17-Mar-2003 00:02:43 14-Feb-2003 08:13:21
Departure impulse (km/s) 1.421 1.002
DSM date 20-Jun-2003 08:04:26 05-Jul-2003 10:56:08
DSM impulse (km/s) 0.904 0.906
Earth Swing-by date 20-Apr-2004 00:02:43 22-Apr-2004 10:36:27
Post-swing-by impulse (km/s) 0.00011 -
Pericenter altitude (km) 4749.47 4155.028
DSM date - 27-May-2004 00:20:53
DSM impulse (km/s) - 0.00024
Venus Swing-by date 15-Oct-2004 22:58:49 18-Oct-2004 07:47:17
Pericenter altitude (km) 12251.66 11395.952
DSM date 20-Jun-2005 02:59:57 04-Mar-2005 05:01:11
DSM impulse (km/s) 0.258 0.192
Venus Swing-by date 11-Aug-2005 04:39:48 13-Aug-2005 15:36:22
Pericenter altitude (km) 605.2 605.2
DSM date 05-Oct-2005 22:29:27 07-Oct-2005 07:00:37
DSM impulse (km/s) 1.448 1.514
Arrival date 08-Feb-2006 03:20:21 08-Feb-2006 15:46:58
Arrival impulse (km/s) 4.6 4.589
Time of flight (days) 400, 178.96, 433.1, 178.88,

299.24, 180.94 299.33, 179.01
Mission duration (days) 1059.14 1090.32

Mission Cost (km/s) 8.6312 8.203

There are 28 sub-populations with different DSM structure. The maximum number

of DSMs is four while the minimum number of DSMs is zero. The maximum number of

design variables is 22 which is used in the last sub-population (three swing-by with a single

DSM in each leg). The other sub-populations have different numbers and combinations of

the independent design variables. The proportionality constant for initial population size,

c, is selected to be 15. The overall population size is 5670. The number of generations

in each stage is selected to be 40, and the algorithms stops after 5 stages. The elite count

is selected to be 10%, with a minimum of 10 individuals in each sub-population. A local

optimizer uses the fittest GA solution as an initial guess to find a local minimum.

The obtained optimal solution is a three swing-by trajectory with the same planet se-

quence as of the actual Messenger mission (easy version) scenario (EEVVY). The solution

is a posigrade trajectory with three DSMs, a single DSM in each leg except the second leg.

The obtained solution is listed as the first scenario in Table 4.7. The first scenario solution

has a total cost of 8.6312 km/s, and is shown in Figure 4.5. To improve the mission cost,

wider bounds are used for the time of flight design variables. The upper bound of the time
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of flight is changed to 500 days instead of 400 days. Only 8 sub-populations are considered

in the second iteration. These sub-populations represent only three swing-by scenarios with

a single DSM in the first leg. The other legs could have zero or one DSM. The proportion-

ality constant for initial population size, c, is selected to be 30. The overall population size

is 4200. The number of generations in each stage is selected to be 40, and the algorithms

stops after 5 stages. The obtained solution is listed in Table 4.7 as the second scenario. It

has the same planet sequence of the first scenario but with different DSM structure. The

optimal trajectory has four DSMs, a single DSM in each leg, with a total cost of 8.203

km/s. The second scenario trajectory is shown in Figure 4.6. In the second scenario, the

DSM amplitude in the second leg (VV) is 0.24 m/s which seems an insignificant value with

respect to the total trajectory cost. It is expected that this small DSM may be vanished with

more iterations.
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Figure 4.5: Optimal Messenger mission (easy version) using DSMPGA, first scenario (3 DSMs).

4.4 Comparisons and Discussion

The developed DSMPGA has the capability to compute the number of swing-bys and the

planets to swing by, in addition to the rest of the classical MGADSM design variables,

in the best solution trajectory. Then the mission scenario, the direction of flight, and the
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Figure 4.6: Optimal Messenger mission (easy version) using DSMPGA, second scenario (4 DSMs).

number of DSMs are fixed, and the continuous variables are tuned by a local optimizer.

The local optimizer implements a constrained nonlinear optimization technique.

The Earth-Venus-Mars mission trajectory optimization has been presented in the liter-

ature (15). The extended primer vector theory is used to obtain the solution presented in

Reference (15). The trajectory has a single swing-by maneuver and a single DSM. In im-

plementing the primer vector method, fixed departure and arrival dates were assumed with

340 days mission duration. The Venus swing-by time was also constrained to occur at 165

days from departure. The resulting solution has a DSM of 68.7 m/s in the first leg at 96.08

days from mission start date. The total cost of the mission is 10.786 km/s (15). The same

problem has been solved using the ITO-HGGA tool (7), and the obtained cost is 10.728

km/s. In (7), the trajectory has a single Venus swing-by and a single DSM (180.1 m/s) in

the first leg. In this chapter, the solution obtained using the DSMPGA tool has one swing

by Venus and one DSM in each leg, 0.296 and 0.626 km/s, respectively. The total cost of

the mission is 10.7 km/s, as shown in Table 4.3. The difference in the total cost obtained

using the DSMPGA tool, as compared to that of References (15) and (7), is accompanied

by small changes in the mission’s departure, swing-by, and arrival dates, without signifi-

cantly changing the total mission duration.
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A minimum-cost solution trajectory for the Earth-Jupiter mission is addressed in Refer-

ence (15). A fixed planet sequence EVEJ is assumed. The departure, arrival, and swing-by

dates were also assumed fixed, with a launch in 2016 and a mission duration of 1862 days.

The primer vector theory solution has four DSMs. Two DSMs are applied in the first two

legs. The total transfer cost for this solution is 10.267 km/s. The DSMPGA tool developed

in this chapter is able to find automatically the known swing-by sequence, EVEJ, for the

Jupiter mission in 2016. As listed in Table 4.5, the optimal MGADSM solution has 10.125

km/s total cost with a single DSM in the whole trajectory. The ITO-HGGA tool was used

to solve the same mission in Reference (7). The obtained trajectory from the ITO-HGGA

tool has the same planet sequence and DSM structure but with higher total cost, 10.178

km/s (7).

The Messenger mission (easy version) trajectory design problem has been addressed

in several studies (16, 55), where it is always assumed that a fixed swing-by sequence

(EEVVY) is known. According to the GTOP database, the best solution is found by F.

Biscani, M. Rucinski and D.Izzo, using PaGMO, a new version of DiGMO, based on the

asynchronous island model (55). The total cost is 8.63 km/s with a single DSM in each

leg. Olympio and Izzo (16) recently developed an algorithm to find only the optimal DSM

structure in a given trajectory scenario. They used the same ephemeris tool of the GTOP

database (55) but with a free number of applied DSMs. For the Messenger planets’ se-

quence described in the GTOP database (55), Reference (16) found a trajectory with a total

cost of 8.494 km/s. The DSM structure is 2-0-1-1 in consequent legs respectively. The

DSMPGA is used twice, in this chapter, to investigate this mission. In the first iteration,

the same design variables’ bounds of the GTOP database are used. The obtained optimal

solution has a total cost of 8.6312 km/s (as seen in Table 4.7), which is very close to the

reported result in the GTOP database (55). However, the DSMPGA tool has the advantage

of finding the planets sequence as well as the DSM structure. In the second iteration, a

better solution is found with a total cost of 8.203 km/s. The significant improvement in

fuel consumption is a result of using wider windows for the time of flight variables.

Figure 4.7 shows the change in the size of each sub-population (number of individ-

uals) in subsequent stages. Eight sub-populations are shown which represent the second

solution obtained in Table 4.7) of the Messenger easy mission. The initial size of each sub-

population has different number of individuals depending on the number of independent

design variables in the sub-population. The size of each sub-population varies over stages
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Figure 4.7: Sub-populations size performance for Messenger mission (easy version), second iteration.

depending on the behavior of the fitness function. The higher fit sub-populations increase

in size, while the lower fit sub-populations decrease in size.

If a standard GA is implemented to solve the MGADSM problem presented in this

chapter, considering all the design space, then the implementation would be as follows. A

population will be constructed for each possible design space size, e.g. eight populations

in the Messenger easy mission in Figure 4.7. Standard GA is then implemented for each

population till a stopping criterion is satisfied. The sizes of all populations will not change,

and there will be no stages to stop at during the iterations process. So, this is equivalent

to solving eight optimization problems in the case of the Messenger easy mission. The

DSMPGA method presented in this chapter is computationally more efficient compared to

a standard GA. Only one population is processed, the size of which is much less than the

summation of the eight populations processed by a standard GA.

The hidden genes genetic algorithm (HGGA) (7) also solves the VSDS problems. This

method was implemented to solve the MGADSM problem in (7). The hidden genes con-

cept creates only one population with all solutions of variable length represented in the

population. The HGGA has a method of processing variable-length chromosomes; par-

ents of different lengths can be used to generate offsprings of different lengths from their

parents. Unlike the hidden genes concept, the DSMPGA concept has no genes exchange

between the chromosomes of different lengths. All chromosomes lengths are represented,

however, in the DSMPGA, and those that have more fit solutions increase in the number
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of members in subsequent generations. In a sense, we can state that the DSMPGA is more

suitable for VSDS problems where the number of different chromosomes lengths is small,

whereas the HGGA method is more suitable when the number of different chromosomes

lengths is higher.

4.5 Summary

A new technique to solve the optimization problem of MGADSM trajectory is introduced

in this chapter. A novel dynamic-size multiple population genetic algorithm is developed

to handle optimization problems with variable size design space. Sub-populations, each

has members of same size design space, are constructed. A standard GA is applied for a

number of stages; each stage is a number of consequent generations in which the size of

the sub-population remains fixed. At the end of each stage, the sizes of all sub-populations

are changed based on the fitness of the members in each individual sub-population. This

algorithm leads to the increase in the size of the sub-populations of more fit members. The

DSMPGA can determine, without a priori knowledge, the number of swing-by and DSM

maneuvers, the planets to swing by, and the times of swing-bys and DSMs, in addition to

the rest of the design variables. The solutions found using the developed tool match the

best known solutions for the problems presented in this chapter.
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Chapter 5

Solution of GTOC Using HGGA

Concept

The objective of this chapter is to introduce a preliminary approach to solve the low-thrust

propulsion missions. The optimization problem is considered for trajectories of a spacecraft

rendezvous mission to a group of asteroids with revisiting. The problem of low-thrust tra-

jectory optimization is usually formulated to minimize the propellent consumption. Hence,

the greatest number of asteroids could be visited within the pre-specified mission duration.

The spacecraft is launched from the Earth. The departure date is selected from the prelim-

inarily set period of time. The visited asteroids are chosen from a group of asteroids. The

spacecraft should visit each astroid twice, the first time is a rendezvous while the second

is a penetration (flyby). A two-body dynamics model is considered as a framework for the

developed algorithm. Therefore, Keplerian orbits are assumed to describe the movement

of the Earth and asteroids around the Sun. The only forces acting on the spacecraft are the

Sun’s gravity and the thrust produced by the engine.

The problem is solved in four stages, as illustrated in Figure 5.1. At the first stage, an

impulsive trajectory problem is solved to determine a preliminary mission scenario. The

scenario of the mission refers to the number and sequence of the visited asteroids. The

segment between any two consequent asteroids is called a leg. The time of flight (TOF) of

each leg is also determined in this stage. Two-impulse transfer problem is considered for

each leg. A Lambert’s problem is solved to find the impulsive preliminary transfer orbit.

The hidden genes genetic algorithm (HGGA) tool is used as an optimization technique (7).
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The second stage is used to provide an initial guess for the continuous thrust trajectories.

For each leg in the trajectory, the initial and final asteroids are determined from the first

stage as well as the TOF. Standard genetic algorithm is used to calculate a poor continuous

thrust trajectory for each leg. This trajectory is used as an initial guess for the next stage. An

optimum control module is then utilized in the third stage to calculate accurate continuous

thrust trajectories. General pseudospectral optimal control software (GPOPS) is used in

this stage. The obtained solution from the GPOPS module is a visible continuous thrust

trajectory but with a limited number of nodes. This solution is then used as an initial guess

in the final stage to compute the final detailed trajectory. In the forth stage, a constrained

nonlinear optimization technique is used to provide the optimal trajectory data at one-day

increments for each leg of the trajectory.

Figure 5.1: A flowchart shows the consequent stages used to solve the problem.
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5.1 Preliminary Impulsive Trajectory

The problem of the first stage is formulated as an impulsive transfer optimal trajectory.

Let m is the number of visited asteroids. So, the mission has m+ 1 different legs in the

trajectory. The dates of asteroids visiting are determined by specifying the time of flight for

each leg. Time window is specified for each leg TOF. The arrival date could be calculated

from the combined TOFs of the visited asteroids. Since the total mission duration and total

propellent mass are limited, the number of visited asteroids is also limited. The calculations

of the dependent variables are carried out starting from the departure planet (Earth), and

from one leg to the next and so on. In any trajectory leg, the spacecraft trajectory is solved

as a two-impulse trajectory problem. There are only two variables (20), the initial and final

dates of the related leg. For a candidate solution, the leg time of flight Tl could be computed.

The transfer orbit is then calculated by solving a Lambert’s problem. The spacecraft initial

and final impulses are then calculated.

The asteroid maneuver type could be rendezvous or penetration. A rendezvous ma-

neuver requires the spacecraft position and velocity to be the same as those of the target

asteroid. A penetration maneuver requires concurrence of position of spacecraft and a tar-

get asteroid. During a penetration maneuver, the spacecraft relative velocity (w.r.t the target

asteroid) should not less than a pre-specified minimum value ∆vpmin
. A revisiting mission

is studied in this chapter. First, the spacecraft should perform a rendezvous maneuver with

the asteroid to deliver a scientific equipment. In the second maneuver with the same as-

teroid, the spacecraft should flyby (penetrate) through the astroid to deliver a penetrator.

The penetration maneuver is not accepted before delivering the scientific equipment (ren-

dezvous). The astroid is not allowed to be visited for a third time. The spacecraft has a

fixed initial mass which is not affected by the launch exceed velocity.

For the first leg, the target astroid is a rendezvous. The required initial and final im-

pulses, ∆Vi and ∆V f , are calculated based on Lambert’s solution. The initial impulse of the

first leg is provided through the launcher. The on-board propellent provides the rendezvous

impulse of the first asteroid. For the consequent asteroids, the analysis of each leg is de-

termined based on the maneuver type of the target astroid. For a rendezvous target astroid,

the rendezvous impulse is calculated from Lambert’s problem. In case of a flyby target

astroid, the spacecraft velocity vector (magnitude and direction) does not change over the

penetration. An initial impulse is required for any leg to guarantee that the spacecraft final

63



position is exactly the same as the target astroid. Therefore, the cost of each leg depends

on the required applied impulse(s). The total cost of the impulsive trajectory is the summa-

tion of the cost of the involved legs. The multi-revolution transfers are considered in the

analysis through choosing the time of flight of each leg as as a design variable. Lambert’s

problem is solved once in each leg. Based on the TOF and the position vectors , Lambert’s

solution may have both single and multi-revolution transfers. The selection criterion is as

follows: the selected lambert’s transfer should minimize the impulsive maneuver cost of

the related leg.

The impulsive problem is formulated as follows: For a given range for departure dates

from the Earth, find the optimal selections for the number of asteroids, the asteroids to visit,

the visiting type (rendezvous or penetration), the dates of visiting, and the exact launch and

arrival dates. An optimization problem is formulated to minimize the total impulsive mis-

sion cost and maximize the number of visited asteroids. The problem is characterized

by solution-dependent design variables. This means that different solutions have different

number of design variables. The number of required design variables depends on the actual

visited asteroids in each solution. The number of visited asteroids is computed based on the

mission requirements (mission duration and propellent mass). Therefore, standard genetic

algorithm could not be implemented as an optimization technique. To overcome this prob-

lem, the concept of hidden genes genetic algorithm (HGGA) is used (7). This concept is

capable to handle all solutions in the design space as if they all have the same chromosome

length, and hence allows the implementation of standard genetic operations.

In a general solution, some of the variables in the chromosome will be ineffective in

cost function evaluation. In the HGGA tool, the genes describing these variables are called

hidden genes. The hidden genes, however, will be used in the genetic operations in gener-

ating future generations. The independent design variables to be optimized in the impulsive

problem are selected as follows: departure date (td), time of flight of each leg (T1, T2, ...,

Tn), and the asteroids to be visited (P1, P2, ..., Pn); where n is the maximum number of

targeted asteroids (specified by the user). Each member in the design space has a fixed

length L, where L = 1+2n. Some of the variables in the member are ineffective variables

(hidden genes). The number of effective variables is varied from one member to another.

Figure 5.2 shows typical solution chromosomes where the variables at the top of the figure

are the independent design variables. Each row in Figure 5.2 represents a member (single

individual) in the GA population.
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Figure 5.2: Typical chromosomes for the trajectory optimization problem used in GTOC problem; each row

represents a chromosome.

The HGGA tool has the capability to handle two categories of design variables (dis-

crete and continuous). The variables td , T1, ..., Tn are coded as CDVs. While the DDVs

are used to code the asteroids identification numbers P1, ..., Pn. Design variables coding is

performed as described in Section 3.1. Given that the maximum possible number of astroid

maneuvers is n, then n discrete design variables P1, P2, ..., Pn are created. Each variable Pl

determines the astroid about which the lth maneuver occurs, where the maneuver could be

a rendezvous or penetration. The range of the discrete variable Pl depends on the size of

the asteroids set. The order of the asteroids is the same as the order of the variables Pl in

the chromosome. The sequence of the visited asteroids determines the mission scenario.

For each member in the design space, the analysis of the consequent legs is performed to

compute the mission cost and the propellent consumption. The calculations are stopped for

two reasons. The first is the total mission duration is accomplished, while the second is

the propellent mass is over. Therefore, the actual visited asteroids m could be less than the

proposed visited asteroids n. In this case, there are 2m+1 genes are active in the chromo-

some which represent the effective design variables (td , T1, ..., Tm, P1, ..., Pm). Hence, the

ineffective (hidden) genes in the chromosome are 2(n−m) variables.

In this stage, the objective is to minimize the total impulsive cost ∆vT of the trajectory

and maximize the number of visited asteroids with revisiting priority. The astroid revisit

mission is defined as: first the spacecraft should rendezvous with an astroid, then a pene-

tration flyby is performed with the same astroid. The fitness function of the first stage F1

at a design point, which is minimized to determine the fittest impulsive solution, is defined

as,

F1 = (
f1

J
) f2 +(∆vT )

f3 (5.1)
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where f1, f2, and f3 are the fitness weight parameters. J is the performance index of the

astroid revisit mission. The performance index is calculated as follows,

J =
m

∑
i=1

(αi +βi) (5.2)

where m is the total number of visited asteroids in the mission, αi is the rendezvous maneu-

ver coefficient, and βi is the penetration maneuver coefficient. The coefficient αi should

be 0.2 if a rendezvous is fulfilled. The coefficient βi should be 0.8 in case of a successful

penetration maneuver. A penetration maneuver is not allowed before a rendezvous maneu-

ver with the same astroid. The spacecraft penetration relative velocity should not exceed

0.4 km/s. The performance index increases the importance of revisiting by giving higher

weight for the penetration than the rendezvous maneuver. The total impulsive cost ∆vT is

calculated as follows,

∆vT =
m−1

∑
1

‖∆Vi‖+
k

∑
1

‖∆V f ‖ (5.3)

where k is the number of rendezvous maneuvers in the trajectory. The fitness weight pa-

rameters are carefully selected to provide a maximum number of asteroid missions, and in

the same time, to minimize the propellent consumption. The values of the parameters f1,

f2, and f3 are selected to be 100, 2, and 1.5, respectively.

A Matlab toolbox (GENETIC v2.1) is used (53). A uniform crossover operation is used

with a probability varied from 0.92 to 0.98. The mutation probability is selected between

0.01 and 0.08. Roulette wheel is used in selection operation. Proportional ranking is im-

plemented in the analysis. To increase the diversity in the population, niching principle is

applied by degrading the fitness of the similar individuals (54). A simple niching technique

is implemented in the developed impulsive stage. Every ten generations, the fitness are

degraded for the current fittest solution, and all other solutions that have a similar astroid

scenario to the fittest solution. The solution obtained by the GA is not necessarily an opti-

mal solution, nor is it at a local minimum. Therefore, a constrained nonlinear optimization

technique is used to improve the solution by finding the closest local minimum to that so-

lution. The local optimizer is only optimizing over the continuous design variables, not the

discrete variables. The genetic algorithm solution is used as an initial guess in the local

search algorithm.
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5.2 Initial Continuous Thrust Trajectory

In the second stage, an initial guess for the continuous thrust trajectory is introduced. The

problem is separately solved for each leg of the optimal scenario obtained from the first

stage. The input parameters for the second stage are obtained from the fittest solution in

the first stage. These parameters are the initial and final asteroids, their maneuver type

(rendezvous or penetration), and the date of each maneuver. The initial and final spacecraft

position vectors could be calculated from that parameters as well as the TOF of leg. The

initial and final spacecraft velocity vectors are determined based on the maneuver type.

If the initial or final asteroid is associated with a rendezvous maneuver, the spacecraft

velocity vector should be the same as the velocity vector of the related asteroid. In a

penetration maneuver, there are two cases. First, if the initial asteroid has a penetration, the

continuity principle is applied and the spacecraft velocity vector should be the same as the

final spacecraft velocity of the former leg. This velocity is the actual spacecraft velocity

which is determined after solving the former leg by the developed optimum control module.

Second, the final astroid has a penetration maneuver. In this case, the spacecraft velocity

obtained from Lambert’s solution of the current leg is considered as an acceptable initial

guess. This vector is then accurately calculated in the next stage.

The spacecraft has a bounded thrust level magnitude Tc. The thrust direction is not

constrained. The applied continuous thrust vector Tc during thrusting periods is calculated

as follows,

Tc = Tc







cosδ cosα

sinδ cosα

sinδ






(5.4)

where δ and α are the rotation angles which define the thrust direction in the inertial frame.

The leg is divided into Ns segments. The number of segments depends on the TOF of the

leg. Higher TOF requires a higher number of segments. The required continuous thrust

vector is considered constant over each segment, as shown in Figure 5.3. The thrust level is

limited with a maximum value Tcmax
. The rotation angles δ and α are bounded as follows,

−π/2 ≤ δ ≤ π/2 and 0 ≤ α ≤ 2π , respectively.

The motion of the spacecraft around the Sun is governed by the following equations:

ẋ = vx, ẏ = vy, ż = vz, ṁ =
−Tc

IspgE
(5.5)
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Figure 5.3: Initial continuous thrust trajectory vs. impulsive trajectory.
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where x,y,z are the spacecraft position components, vx,vy,vz are the spacecraft velocity com-

ponents, gE is the standard acceleration due to gravity on the Earth surface (9.80665 m/s2),

Isp is the specific impulse of the onboard engine, Tcx
,Tcy

,Tcz
are the thrust components, m is

the spacecraft mass, µS is the Sun gravitational constant, and r is the distance from the Sun.

For a single point in the design space, the thrust components are calculated from Equation

5.4. The spacecraft initial state (position and velocity) is determined from the former stage

as well as the TOF of the current leg. Then, the spacecraft is propagated using the dynamic

model described in Equations 5.5 and 5.6. The final spacecraft position and velocity vec-

tors, r f and v f , are calculated. The errors in spacecraft final position and velocity, ∆r and

∆v, are determined as follows,

∆r = ‖r f − rreq‖, ∆v = ‖v f −vreq‖ (5.7)

where rreq and vreq are the required spacecraft final position and velocity vectors.

An optimization problem is formulated to calculate the approximated thrust vector over

the leg trajectory. The objective is to minimize the propellent mass consumption mp of the

current leg as well as the errors in the spacecraft final position and velocity. The fitness

function of the second stage F2 at a design point, which is minimized to determine the

fittest thrust vector, is defined as,

F2 = mp +(
∆r

1000
−1)2 +(

∆v

0.001
−1)2 (5.8)
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Standard genetic algorithm is used as an optimization technique to solve this stage.

The independent design variables are Tc, δ and α for each single segment in the trajectory

leg. Since there are Ns segments, the total number of independent design variables is 3Ns.

The genetic algorithm toolbox developed by Matlab optimization tool is used. Continuous

design variable coding is implemented. The lower and upper bounds of each variable are

considered. A scattered crossover operation is conducted with a probability varied from

0.8 to 0.9. An adaptive feasible mutation function is considered so that the design variables

bounds are satisfied. Rank scaling function is applied. Roulette wheel is used in selec-

tion operation. The population size and the number of generations are problem dependent

parameters. They are selected based on how complex is the trajectory. A constrained non-

linear optimization technique is then used to improve the solution. The genetic algorithm

fittest solution is used as an initial guess in the local search algorithm. The local optimizer

should find the closest local minimum to the fittest solution obtained by GA.

5.3 GPOPS

An optimum control module is then utilized in the third stage to calculate accurate contin-

uous thrust trajectories. General pseudospectral optimal control software (GPOPS) is used

in this stage. The obtained solution from the GPOPS module is a visible continuous thrust

trajectory but with a limited number of nodes. This solution is then used as an initial guess

in the final stage to compute the final detailed trajectory.

5.4 Thrust Profile Scheduling

In this stage, it is required to compute a detailed trajectory data at one-day increments for

each leg in the trajectory. The trajectory data includes the spacecraft position and velocity

vectors, thrust vector, spacecraft mass, and the time of applying the thrust. The obtained

thrust profile from the third stage has a limited number of nodes. The node is the point

where the continuous thrust vector is applied. The thrust vector is not provided in between

these nodes. The calculated thrust vector at each node could not be fixed over the trajectory

till the consequent node. Therefore, a scheduling technique should be applied to determine

the required thrust profile along the trajectory as well as the rest of the spacecraft trajectory
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data. The Lagrangian interpolation is used to calculate the magnitude and direction of

the thrust vector at one-day increments. The interpolated thrust profile usually violates

the thrust level constraint. Hence, a correction method should be applied to provide an

acceptable thrust profile. The final thrust profile should provide the trajectory constraints

as well as the thrust level limitation. For each leg, the errors in the spacecraft final position

and velocity should not exceed the constraints. These constraints are 1000 km for the

position and 1 m/s for the relative velocity in case of a rendezvous transfer.

A constrained nonlinear optimization technique is used to obtain the final trajectory

data. The local optimizer is separately applied for each leg taking into account the continu-

ity principle. The independent design variables are the thrust components at each one-day

increment. Therefore, the total number of design variables is proportional with the leg

TOF. The initial input is the interpolated thrust profile which is calculated from the GPOPS

solution. The same dynamic model described in the second stage is considered. The fitness

function F2, stated in Equation 5.9, is also used in the local optimizer. The objective is to

minimize the propellent mass and to provide the position and velocity constraints.

5.5 Numerical Results

The problem of the 5th global trajectory optimization competition (GTOC5) is solved (55).

The departure date must lie in the range from 2015 to 2025. The spacecraft has a fixed

initial mass, i.e. wet mass, mi = 4000 kg. The spacecraft dry mass is md ≥ 500 kg. The

spacecraft should deliver a 40 kg scientific equipment at each rendezvous maneuver and

a 1 kg penetrator at each flyby maneuver. The scientific mass ms consists of scientific

equipments mass and penetrators mass. The available propellent mass mp is calculated as

follows,

mp = mi −md −ms (5.9)

The departure exceed velocity is up to 5 km/s. The minimum penetration relative velocity

∆vpmin
is 0.4 km/s. The maximum available thrust level Tcmax

is 0.3 N (i.e. 0 ≤ Tc ≤ 0.3

N). The spacecraft has a constant specific impulse Isp = 3000 s. The total mission period,

measured from the Earth departure to the final asteroid maneuver, must not exceed 15 years.

The HGGA tool is used to obtain a preliminary impulsive trajectory. An initial set of

more than 5000 asteroids is considered as a domain for the asteroid selection. To limit
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the design space, the asteroids set is limited based on their orbital parameters. First, the

asteroids are arranged by their inclination. A smaller set of lower inclination asteroids are

chosen. Then, the selected asteroid are arranged by their semi-major axis. A final set of

the low energy asteroids are selected. The asteroids are coded as discrete design variables

where each one is represented as a single integer number. The lower and upper bounds of

the TOF of each leg are 100 and 1000 days, respectively. The accuracy of the TOF design

variable is 5 days. The departure date accuracy is 10 days.

A population of 1000 individuals is used, for 1000 generations. The obtained solution

is a trajectory completes 6 asteroids missions (i.e. 12 asteroid maneuvers are done). Each

asteroid is visited twice, the first is a rendezvous and the second is a penetration. The total

mission duration is 5390.1 days. The scientific mass is 246 kg (41 kg per asteroid). The

departure date is 61034.71 MJD. The launch exceed velocity is 0.732 km/s. The visited

asteroids are shown in Table 5.1. Figure 5.4 illustrate the impulsive solution obtained from

the HGGA tool. Spacecraft distance from the Sun is drawn versus time for the suggested

impulsive trajectory.

Table 5.1

Asteroids revisiting mission scenario obtained from HGGA tool

Asteroids Maneuver Date Maneuver Type

(MJD)

(2009 BD) 61744.61 Rendezvous

(2006 RH120) 62024.02 Rendezvous

(2000 SG344) 62318.49 Rendezvous

(2008 UA202) 62574.41 Rendezvous

(2009 BD) 63212.03 Penetration

(2006 RH120) 63874.21 Penetration

(2008 UA202) 64590.72 Penetration

(2000 SG344) 65390.72 Penetration

(2008 JL24) 65627.92 Rendezvous

(2008 CM74) 65826.30 Rendezvous

(2008 JL24) 66124.67 Penetration

(2008 CM74) 66424.81 Penetration
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Figure 5.4: 12 visited asteroids and their distance from the Sun vs. time.

5.6 Summary

This chapter introduces an application for the GTOC problem. The asteroids revisiting

mission is divided into four stages to obtain the optimal low thrust trajectory. The HGGA

tool is used to generate an initial impulsive trajectory. The developed algorithm has the

capability to find the number of visited asteroids, the maneuver type, and the date of ma-

neuver. The solutions found using the developed HGGA tool is then used as an initial guess

to obtain the low thrust trajectory of the GTOC problem.
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Chapter 6

Optimal Earth Orbit Design for

Regional Coverage Missions∗

The problem of Earth orbit design is developed to select orbital elements which provide

natural regional coverage for a set of ground sites, within a specified time frame (23). The

spacecraft FOV is considered at regional coverage analysis. The J2 effect is utilized to

design a Sun-synchronous repeated ground track orbit that passes over the given set of

ground sites. The selected design space consists of four independent variables: eccentricity

e, inclination in, spacecraft’s true anomaly above the first ground site ϑ1, and the ground

track repetition period in days, Mr. All given ground sites are checked whether is covered

during the Mr days or not.

6.1 Sun-Synchronous Repeated Ground Track Orbits

For a given set of values for the four design variables (member in the design space), the

orbit semi major axis, a, is constraint to be (51),

a =

[

− 3R2
EJ2

√
µ

2(1− e2)
2

Ω̇
cos in

]2/7

(6.1)

* The material contained in this chapter was previously published in the journal Acta Astronautica,

Elsevier (23).
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where Ω̇ = 1.991×10−7 rad/sec is the desired rate of change of the orbital right ascension

of the ascending node, in order to have a Sun-synchronous orbit. The constraint of having

a repeated ground track orbit can be formulated as follows (38),

Nr|∆φ |= 2πMr (6.2)

where Nr is the total number of successive orbit revolutions performed, Mr is the number

of Earth revolutions (in days) before the ground track repeats itself, and ∆φ is the total

changes in longitude after one nodal period. ∆φ is defined as (38),

∆φ = ∆φ1 +∆φ2 rad/orbit (6.3)

where ∆φ1 and ∆φ2 are the change in longitude due to the Earth’s rotation and the regression

of the line of node, respectively. They are computed according to a scheme described in

Reference (38).

The above two constraints are implemented as follows. First, all the design variables are

selected by the optimization tool. Then, the semi-major axis is computed using Equation

(6.1) to generate a sun-synchronous orbit. This solution, however, does not yet satisfy

the repeated ground track constraint, Equation (6.2). For any orbit, it is possible to slightly

tune its inclination to obtain a repeated ground track orbit which is very close to the untuned

orbit (30). Therefore, the inclination value is numerically tuned in order to generate a sun-

synchronous repeated ground track orbit satisfying the problem constraints. Tuning the

inclination value leads to a considerable change in the semi-major axis value according to

Equation (6.1).

6.2 Intersection Locations Calculation

At this point, the unknown orbital elements are the argument of perigee ω and the right

ascension of the ascending node Ω. A method of deriving ω and Ω from the known orbital

elements , a, e, in, and ϑ1, is stated in a previous development (42). All possible values of

ω and Ω can be calculated numerically or analytically using the transformation theory from

the inertial frame to the perifocal frame. The analytical method is used in this development

to determine accurate values for the unknown orbital elements.
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Figure 6.1: Two intersection locations of a fixed two-body orbit plane with the latitude locus circle of a

ground site

The next step is to develop a method to check the regional coverage for each ground

site. The longitude φ and the latitude λ for each ground site are given. At any point in

time, a ground site is not, in general, in the spacecraft’s orbit plane; and hence, at this

time, it is not being visited. As Earth is spinning, each ground site moves on a circle

normal to the Earth axis of rotation, which is the constant declination circle of that site,

as shown in Figure 6.1. For each site, the latitude circle (same as the constant declination

circle) intersects with the spacecraft orbit plane twice, in one orbital revolution. Due to

Earth spinning and J2 effect, the intersection location coordinates, for a given site, change

over time, from one orbit revolution to the other. To check whether, or not, a ground site

is visited, in the given time frame, all of its intersection points, with the candidate orbit

plane, need to be accurately calculated, over the whole time frame. The site is considered

visited if at least one of the intersection points is in the instantaneous coverage region of

the spacecraft, at the intersection time.

To simplify the calculations of the intersection locations, we do it on two steps. First,

the intersection locations are approximately calculated assuming a two-body motion. Then

a numerical correction is applied to determine the correct intersection locations, for each
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site. In a two-body motion, the orbit plane is fixed over time. Therefore, all the orbital

elements, but the true anomaly, are constant over time. With this assumption, we can use

a closed form solution to find the intersection points (42). Two intersection locations are

calculated, see Figure 6.1. Due to J2 perturbation, the orbit plane changes over time. Hence,

a correction is needed for the intersection locations. A numerical scheme is developed to

achieve this correction. An iterative approach is implemented to calculate the time at which

the site intersects with the rotating orbit plane. Figure 6.2 explains the idea of this scheme.

First, the spacecraft is propagated from r1 to a new position vector, r2. The propagation

is for a guessed value for the time until intersection ∆t, or for the true anomaly change, ϑ12.

The J2 perturbation effect is taken into consideration in spacecraft propagation. The plane

defined by the vectors r1 and r2 is an initial approximation for the orbit plane. This plane

and the initial position vector of the site, rs0, are used to calculate the intersection position

vectors, rs1 and rs2. This completes the first iteration. A new update for the time interval

∆t between the initial site location rs0 and its intersection location rs j with the orbit plane

is calculated. ∆t can be calculates as follows:

∆t =
|∆φs j|

ωE

(6.4)

where ωE is the Earth spinning rate (ωE = 7.2921×10−5 rad/sec), and ∆φs j is the change

in site longitude due to Earth spinning, and is defined as:

∆φs j = φs j −φs0 (6.5)

where φs0 is the site’s initial right ascension, and φs j is the intersection location right as-

cension. The latter can be calculated as follows:

φs j = tan−1

(

rs j(2)

rs j(1)

)

(6.6)

Using the updated value of ∆t, the new orbit plane is calculated by propagating the

vectors r1 and r2 by ∆t. A more accurate approximation for the orbit plane is obtained.

The J2 effect is taken into consideration in propagation. The updated orbit plane and rs0

are used to calculate a new update for the intersection locations. The procedure is repeated

until no improvements can be obtained. New intersection locations are computed, for each

day in the given time frame Mr. So, there are 2Mr intersection points between the orbit
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Figure 6.2: Ground site’s intersection locations with spacecraft perturbed trajectory

plane and each site, within Mr days time frame. Recall that at each design point, we have

two possible orbit planes. At this step, we know the times at which the sites intersect

with the orbit plane. The next step is to check whether each sites will be covered by the

spacecraft or not, at the times of intersections. If all sites are covered, then the candidate

orbit is a solution orbit. The next section briefs how to calculate the coverage for a site.

6.3 Coverage with Sensor’s FOV

The field of view FOV of the spacecraft is defined as the angular distance viewed by the

instrument installed on the spacecraft. Figure 6.3 shows the definitions and angular rela-

tionships between the spacecraft, Earth’s center, and coverage zone. The angular radius of

the Earth ρ and the maximum Earth central angle λo can be calculated from the geometric

relation:

sinρ = cosλo =
RE

RE +H
(6.7)
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Figure 6.3: Definition of angular relationships between the spacecraft, Earth’s center, and coverage zone

The nadir angle η (also called half of the angular FOV) is measured at the spacecraft from

the nadir point to the end of coverage zone. The spacecraft elevation angle εo is the angle

measured at coverage ending zone between the spacecraft and the local horizontal. Given

η , εo can be computed as (56),

cosεo =
sinη

sinρ
(6.8)

The Earth central angle λE is measured at the center of the Earth from the nadir point to

the end of coverage zone. λE can be computed as:

λE =
π

2
−η − εo (6.9)

Let rs/c and rs j be the spacecraft and site position vector, respectively, at the time we check

the coverage. The angle θcov is the angle between these two vectors, and can be computed

as follows:

θcov =
rs/c · rs j

rs/crs j
(6.10)

If the angle θcov, for a certain site, is less than or equal to the Earth central angle λE , then

this site is covered by the spacecraft, at this time.

6.4 Optimization

This section describes how we optimize the selection of the independent design variables.

The purpose is to design a Sun-synchronous repeated ground track orbit that covers as
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many sites as possible, from a given set of ground sites, in minimum mission time. The

parameters to be optimized are: eccentricity e, inclination in, spacecraft’s true anomaly

above the first ground site ϑ1, and the ground track repetition period in days, Mr. The

fitness Fi (the cost function to be maximized) is calculated as follows:

Fi =
1.5Nc(e, in,ϑ1,Mr)

M0.1
r

(6.11)

GA is implemented to find a highly fit solution for the problem. Each member, design

point, in the population represents four design variables. Three of them are the orbital

elements that are coded as CDVs. These variables are e, in, and ϑ1. The mission time

frame, Mr, is coded as a DDV. The design variables coding is performed as described in

Section 3.1. The inclination should be more than 90◦ to provide the desired regression of

nodes of a Sun-synchronous orbit. Also, a limitation on the eccentricity, to be less than 0.6,

is applied to guarantee certain minimum altitude for the spacecraft. The values of the four

design variables are used to evaluate the unknown orbital elements and check the coverage

of each ground site. This process is carried out as described in the previous sections. Then,

the fitness function Fi, for each member i in the population, is calculated using Equation

(6.11). The fittest members in the population are selected as parents for the next generation.

Genetic algorithms operations are then used to generate a new generation. This process is

repeated for a predefined number of generations. Finally, the fittest members in the last

generation are selected. The most fit design point is the member which represents a Sun-

synchronous repeated ground track orbit that optimizes the objective function.

6.5 Numerical Results

As a challenging numerical example of designing J2 perturbed orbits, a set of 20 ground

sites is randomly selected. The field of view (FOV) is selected to be 10o. The maximum

possible value of Mr is selected to be 32 days. The population size is selected to be 100, and

the number of generations is 200. The probability of crossover is selected to be 0.9, while

the mutation probability is in the range of 0.01 and 0.08. The most fit 10% of the members

in each generation are copied automatically into the next generation without performing

any genetic operations. Equation (6.11) is used as the fitness function to be maximized.

The fittest orbit obtained by the GA is an orbit that covered the 20 sites in 25 days. This
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Table 6.1

The orbital elements of a sample of the solutions, for the 20 sites problem.

Orbit Parameters Fittest Orbit Alternative Orbits

Semimajor axis a (km) 10031.187 10025.712 9935.833 11081.923
Eccentricity e 0.1935 0.1935 0.1419 0.1935
Inclination in (deg) 116.55 116.50 116.62 129.31
Right ascension of
ascending node Ω(deg) 263.41 348.60 263.45 344.55

Perigee argument ω (deg) 306.77 79.254 306.84 61.611
True anomaly of the
first site ϑ1 (deg) 141.17 146.82 141.17 141.17

No. of covered sites 20/20 12/20 11/20 9/20
Ground track repetition,
period, Mr (days) 25 17 17 9

resulted in 12 hr of computing time. The orbital elements of the fittest solution are listed

in Table 6.1. The developed algorithm can be used to provide many other alternative orbits

which cover less number of ground sites in less repetition period. Table 6.1 shows the

orbital elements of a sample of these alternative orbits. To generate these results, several

trials have been attempted with different selections for the genetic operations parameters.

6.6 Summary

In this chapter, natural Earth orbits is designed for zonal coverage missions. The problem

is formulated to maximize the number of visited ground sites and to minimize the mission

time frame. J2 perturbation effect is implemented to design sun-synchronous repeated

ground track orbits. The field of view of the sensor on board the spacecraft is considered in

the coverage analysis. GA is utilized as an optimization technique to handle this problem.

The developed algorithm has the capability to solve a challenging case study with twenty

ground sites.
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Chapter 7

Repeated Shadow Track Orbits for

Space-SunSetter Missions∗

This chapter introduces a new set of orbits, the “Repeated Shadow Track Orbits” (30). In

these orbits, the shadow of a spacecraft on the Earth visits the same locations periodically

every desired number of days. The J2 perturbation is utilized to synchronize the spacecraft

shadow motion with both the Earth rotational motion and the Earth-Sun vector rotation.

The well known repeated ground track orbits have ground tracks that repeat every given

number of days. The orbital elements may be selected such that the total change in the

longitude of the nadir point, after an integer number of nodal periods, is an integer multiple

of one complete Earth rotation about its axis (38). The fact that we are using the nodal

period results in no change in the nadir point latitude after any integer number of complete

nodal periods. In the case of a repeated shadow track orbit, the Shadow-Nodal period is

introduced. Shadow-Nodal period is the time it takes the shadow of a spacecraft to come

back to the same latitude, after orbiting the Earth once. In repeated shadow track orbits

(RSTO), the orbital elements are selected such that the total change in the longitude of the

shadow point, after an integer number of Shadow-Nodal periods, is an integer multiple of

one complete Earth rotation about its axis. The orbit parameters selection of an RSTO is

affected by the Earth’s rotation rate around its axis as well as its rotation rate around the

Sun.

* The material contained in this chapter was previously published in the International Journal of

Aerospace Engineering (30).
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7.1 Shadow Location Calculations

The spacecraft should be located on the line from the Earth to the Sun to obtain a shadow

point on the Earth surface. The angle between the spacecraft position vector and the Sun

position vector is defined as the shadow angle θsh, measured in the Earth Centered Iner-

tial frame (ECI). Figure 7.1 illustrates the geometry for shadow location calculations. The

shadow position vector rsh can be calculated at any particular time by defining the space-

craft position vector rs, and the Sun position vector rsun. The magnitude of the shadow

position vector is the Earth radius RE .

‖rsh‖= RE (7.1)

From Figure 7.1, the shadow angle θsh can be calculated as follows:

cosθsh = r̂s · r̂sun (7.2)

where r̂s and r̂sun are the unit vectors in direction of spacecraft and the Sun, respectively.

For the oblique triangle formed by rs and rsh,

R2
E = z2 + r2

s −2zrs cosθsh (7.3)

Therefore,

z2 − (2rs cosθsh)z+(r2
s −R2

E) = 0 (7.4)

Figure 7.1: Shadow position vector, rsh, and Shadow angle θsh
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z = rs cosθsh ±
√

R2
E − r2

s sin2 θsh (7.5)

where RE is the Earth’s radius, and z is the distance between the spacecraft and its shadow

point on the Earth’s surface. The distance z has two values; the smaller positive real value

is chosen to calculate the shadow position vector:

rsh = rs − zr̂sun (7.6)

To get a shadow on the Earth’s surface, the shadow angle should not exceed θlim. The

angle θlim is calculated as follows:

θlim = sin−1

(

RE

h+RE

)

(7.7)

where h is the spacecraft altitude measured from the Earth surface, and θlim is in the first

quadrant.

7.2 Repeated-Shadow Sun-synchronous Orbits

The shadow of a spacecraft in a repeated shadow track orbit repeats its track every certain

period of time. If this period of time is an integer number of days, then the orbit may

be called a repeated-shadow Sun-synchronous orbit. Therefore, after an integer number

of successive shadow revolutions, and an integer number of days, the spacecraft shadow

repeats its shadow track. A repeated-shadow Sun-synchronous orbit is favored for those

missions where the shadow is required to revisit ground regions at the same daylight con-

ditions. To derive the necessary conditions for a repeated-shadow Sun-synchronous orbit,

we need to take into consideration the Earth rotation about its axis, the orbit parameters

perturbations due to J2 effect, and the Earth rotation around the Sun (38).

The Earth rotates through one revolution in its sidereal period of τE , where τE =

86164.1 sec. The effect of the Earth’s rotation around its axis is a change in shadow point

longitude ∆ϕ1 after one orbital revolution. Whereas there is no change in shadow point

latitude, i.e. ∆λ1 = 0. The second effect on RSTO is the orbit perturbations (38). After

one spacecraft orbital period T , and due to only J2 perturbation, the shadow track will be
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changed by ∆ϕ2 in longitude. The third effect on RSTO is the Earth’s rotation around the

Sun (51). The Earth completes one revolution around the Sun once every year. The Earth

rotates around the Sun in the ecliptic plane while Earth’s equatorial plane is inclined about

23.5◦ to the ecliptic. This phenomenon explains the change in both latitude ∆λ3 and lon-

gitude ∆ϕ3 of a spacecraft’s shadow point on earth surface after one nodal period. More

details regarding this configuration are explained in Reference (30).

The total changes in shadow point latitude ∆λnodal and longitude ∆ϕnodal after one

spacecraft nodal period τ are

∆ϕnodal = ∆ϕ1nodal +∆ϕ2nodal +∆ϕ3nodal rad/orbit (7.8)

∆λnodal = ∆λ3nodal rad/orbit (7.9)

To select a repeated shadow track orbit, the shadow track should revisit the same ground

locations, latitude and longitude, after an integer number of shadow revolutions within a

certain period of time (integer number of days for Sun-synchronous orbits). Thus, it is

required that some integral number of orbits later the accumulated value of the total change

in shadow longitude will equal 2π , and the total change in shadow latitude will equal

zero (38). Therefore, the total change in shadow longitude ∑
nsh

i=1 |∆ϕshadow| and the total

change in shadow latitude ∑
nsh

i=1 |∆λshadow| can be formulated as following,

nsh

∑
i=1

|∆ϕshadow|= 2πNm (7.10)

nsh

∑
i=1

|∆λshadow|= 0 (7.11)

where nsh is the total number of successive shadow revolutions performed and Nm is the

number of Earth revolutions (equivalent to days) before an identical shadow track occurs.

After completing one shadow revolution, the shadow track changes only by ∆ϕsh in

longitude, while the change in shadow latitude ∆λsh is equal to zero. The period needed to

complete one shadow revolution, by keeping ∆λsh = 0, is the shadow nodal period τsh. It

can be calculated from the following formula,

τsh =
2π

ωsh

(7.12)
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Figure 7.2: Latitude and longitude changes for shadow and spacecraft ground tracks after: (A) spacecraft

nodal period τ , (B) shadow nodal period τsh

where ωsh is the rate of change of ground shadow point position measured in the shadow

track on Earth surface. ωsh depends on two main parameters. The first is the rate of

change of the spacecraft position along the ground shadow track orbit. The second is the

rate of change of the Earth-Sun vector in the same orbit. Figure 7.2 shows latitude and

longitude changes for both shadow and spacecraft ground track after shadow nodal period

τsh and spacecraft nodal period τ . Shadow point changes in both latitude and longitude with

different rate from the sub-spacecraft point “nadir”. This phenomenon is a direct result of

variation of Earth-Sun vector with time.

A numerical approach is implemented to calculate the shadow nodal period τsh of a

spacecraft has a nodal period τ . As illustrated in Figure 7.2, the change in shadow latitude

of a spacecraft propagated for τsh is equal zero. Hence, propagating a spacecraft for any

other period results in a non-zero change in shadow point latitude. This fact is used to

calculate an accurate value for a spacecraft shadow nodal period at a certain day time. The

following formula is used to get an accurate value for τsh,

T = T

[

1− ∆λsh

2π

]

(7.13)

First, the change in shadow latitude ∆λsh is calculated after propagating the spacecraft

for a nodal period τ . Then, the spacecraft nodal period is substituted in the right hand side

of Equation (7.13) with its corresponding change in shadow latitude. The calculated value

of T in the left hand side can be considered as an initial value of shadow nodal period

τsh. This initial value is used to propagate the spacecraft and calculate its corresponding
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∆λsh. Once again, Equation (7.13) is used to generate a correlated value of the shadow

nodal period. Finally, an accurate value of τsh can be calculated after a limited number of

iterations. At this point, the total change in shadow location after τsh is in shadow longitude

∆ϕsh, while ∆λsh equals to zero.

From the previous discussion, we realize that the shadow nodal period τsh depends

on the orbital elements and on the Sun’s position, which is a function of time. It can

be concluded then that the shadow nodal period of a spacecraft orbiting the Earth is also

a function of time. Hence, the change in shadow point longitude after propagating the

spacecraft for τsh is also a function of time.

7.3 Optimization

For the purpose of designing an RSTO that has its shadow repeats over a certain ground site

with a maximum duration for the shadow per day over this site and a minimum number of

revolutions per day, an optimization problem is formulated. The parameters to be optimized

are the spacecraft orbital elements. These parameters are subjected to constraints to provide

the repeated shadow track conditions. The fitness Fi (the cost function to be maximized) at

a design point is defined as follows:

Fi = f1
Ttsh

Nm
− f2

nsh

Nm
(7.14)

where f1 & f2 are the fitness weight parameters, Ttsh is the target shadow period over a

specific site, nsh is the number of successive shadow revolutions, and Nm is the number of

days before an identical shadow track will occur. The previous expression is valid only

for the design points which provide the repeated shadow track conditions. Otherwise, the

fitness Fi for any non-RSTO design point is chosen to be a small negative value less than

the minimum value of the fitness function for any RSTO design point.

Ga is used to obtain the optimal solution of this problem. Each member in the GA

population represents six design variables. Five are orbital elements that are coded as

CDVs. These variables are eccentricity e, inclination in, right ascension of ascending node

Ω, argument of perigee ω , and true anomaly ϑ . The desired number of days before an

identical shadow track will occur, Nm, is coded as a DDV. The design variables coding is

applied as described in Section 3.1. The inclination should be more than 90◦ to provide the

86



desired regression of node of a Sun-synchronous orbit. Also, a limitation on the eccentricity

to be less than 0.6 is applied to guarantee certain minimum altitude for the spacecraft. The

design variables values are used to evaluate the fitness function Fi for each design point

separately according to the following steps. First, the semi-major axis is calculated to

provide the condition of a Sun synchronous orbit. The perigee altitude is determined to

check the feasibility of the orbit. The semi-major axis a can be calculated for each design

point from Equation 6.1.

Now, the spacecraft location for each design point is known from the 6 orbital elements.

Hence, shadow calculations, discussed in Section 7.1, is used to decide whether that de-

sign point has a shadow on the Earth’s surface or not. For any non-shadow members,

the fitness is chosen to be a small negative value. The ground shadow location is deter-

mined for those members satisfying ground shadow at a predefined initial time. Therefore,

the shadow nodal period τsh can be calculated according to the numerical technique de-

scribed in Section 7.2. Then, the shadow track is propagated by τsh over a limited number

of revolutions nsh until the total change in shadow longitude ∑
nsh

i=1 |∆ϕshadow| accumulates

2πNm or more. Using τsh in shadow propagation guarantees total change in shadow latitude

∑
nsh

i=1 |∆λshadow| equal to zero. The total number of shadow revolutions can be considered

as the integer number of orbits required for shadow repetition in Nm days. The summation

of shadow nodal period ∑
nsh

i=1 τsh is determined, which is equal to or greater than Nm days.

Not all design point in the population satisfy the repeated shadow track conditions.

Some members do not have a shadow track on Earth surface. The rest of the design points,

which provide ground shadow track, have ∑
nsh

i=1 |∆ϕshadow| > 2πNm, or ∑
nsh

i=1 τsh > Nm. In

this case, an equivalent design point is calculated to check whether this orbit could be modi-

fied to an RSTO or not. This is orbital elements tuning. It is conducted by changing (tuning)

only one orbital element to satisfy the repeated shadow track conditions. The inclination

is selected to be the tuning element. Changing the inclination value leads to a change in

the semi-major axis to keep the Sun synchronous orbit condition. The inclination is tuned

to guarantee the total change in shadow longitude accumulates 2πNm within an acceptable

error tolerance. The orbital parameters tuning is not enough to decide that the equivalent

design point represent an RSTO. The summation of shadow nodal period ∑
nsh

i=1 τsh for the

modified design point must equal to the integer number Nm. satisfying these conditions

guarantees that the design point in the population corresponds to a repeated shadow track

orbit.
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The target shadow period Ttsh is required to calculate the fitness of the RSTOs design

points. To calculate Ttsh, the spacecraft’s shadow is propagated for the whole Nm days

required for shadow repetition. Then, the target shadow period is measured as the total

time of shadow existence over a target site in Nm days. To get an accurate value of Ttsh,

the orbit propagation should be performed using a small time step, about 1 sec. Given

the problem in question, this can be quite time consuming. To minimize the run time,

a varying time step is used during shadow propagation. For the shadow points which are

close enough to the target site, a small time step is used in propagation. When the shadow is

not a concern, a larger time step is used. Finally, by calculating Ttsh, Nm, and nsh, the fitness

Fi can be determined for each design point. The fittest members in the initial population

are selected as parents for the next generation. Genetic algorithms operations are then used

to generate a new generation which contains better design points. This process is repeated

for a predefined number of generations. Finally, the fittest members in the last generation

are selected. The most fit design point is the member which represents a repeated shadow

track orbit passes over a particular target site with minimum number of revolutions and

maximum target shadow period at a given time.

7.4 Numerical Results

GA are used to select the best RSTO appropriate for a specific ground site at a certain

date. The most fit orbital elements should provide a shadow repetition with a minimum

number of shadow revolutions during an integer number of days and a maximum shadow

duration over the given ground site. A numerical example is performed to generate the best

orbital elements of an RSTO starting at the first day of July 2008. The ground site has

longitude and latitude of 51.3484◦ and 25.1528◦ respectively. The site shadow duration

Ttsh is calculated based on the assumption that the site size is 10 km radius from the site

center. The shadow duration is the time during which the shadow is within this radius.

The population size is selected to be 100, and the number of generation is 200. The

probability of crossover is considered 0.9, while the mutation probability is taken between

0.01 and 0.08. 10% of the most fit members in each generation are copied automatically

into the next generation without performing any genetic operations. The values of the

weight parameters f1 and f2 are selected to be 2 and 1, respectively. The fittest orbital

obtained by genetic algorithms represents an RSTO that passes over the given site. This
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Figure 7.3: The ground shadow track for the repeated shadow track orbit obtained by genetic algorithm.

orbit completes 8 successive shadow revolutions in one day to provide shadow repetition

over the desired site. The orbital elements of the obtained solution are: eccentricity 0.2505,

semi-major axis 10560.2095 km, inclination 120.4955◦, argument of perigee 0.0879◦, as-

cending node 113.2609◦, and true anomaly 22.8544◦. The total shadow duration over the

Earth surface is 14560 seconds per day. While the site shadow duration is six seconds

per day. Figure 7.3 shows the ground shadow track for the RSTO obtained by genetic

algorithm.

7.5 Summary

In this chapter, a new Earth orbit category is presented to investigate the Space-SunSetter

mission. The repeated shadow track orbit is formulated and proved. Orbital elements

constraints are derived to obtain a repeated shadow track orbit. J2 perturbation is utilized

to guarantee the repetition of the shadow track on Earth surface. The term of shadow

nodal period is introduced to investigate the new orbit characteristics. GA is used as an

optimization technique to maximum time duration over a specified ground site.
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Chapter 8

Conclusions

The problem of optimizing space trajectories is presented in this dissertation. Genetic al-

gorithm is used as an optimization technique to obtain the optimal space trajectories. Two

categories of space trajectories are addressed, the interplanetary space trajectories and the

Earth orbiting trajectories. GA is utilized to investigate complex space trajectories opti-

mization problems with variable-size design space. The problem of optimal design of a

multi-gravity-assist space trajectory, with free number of deep space maneuvers is inves-

tigated. The motivation of this study is to develop an optimization algorithm that can,

without a priori knowledge, compute the number of swing-bys and the planets to swing by,

in addition to the rest of the classical MGADSM design variables. This is a complex prob-

lem characterized by the following: first, some of the design variables are discrete, second,

the number of design variables is solution-dependent, and finally the number of design

variables becomes rather high in complex missions. Solution-dependent design variables

mean that different solutions have different number of design variables. To handle global

optimization problems where the number of design variables varies from one solution to

another, two novel genetic-based techniques are developed: hidden genes genetic algo-

rithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). Both

techniques have the capability to handle mixed (discrete and continuous) design variable

optimization problems, with variable size design space.

The interplanetary trajectory optimization problem is addressed in Chapter 3 using a

novel hidden genes optimization technique. The concept of hidden genes genetic optimiza-

tion proved to be capable of finding, without a priori knowledge, the number of swing-bys,
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the planets to swing by (optimal planet sequence), and the number of deep space maneu-

vers (DSMs) in each leg, as well as their components and directions, in addition to the

rest of the design variables in the interplanetary trajectory optimization problem. A fixed

chromosome length is assumed for all chromosomes in the population. Part of the chromo-

some is effective in fitness function evaluations, while the other part (hidden genes part) is

ineffective. Yet, the hidden genes take part in the genetic operations. In some problems, a

niching technique is needed to increase the diversity in the population, and hence increases

the speed of convergence. In the three case studies presented in Chapter 3, the ITO-HGGA

found the known optimal solutions with improvements in some cases. To avoid long com-

putational time, in some complex problems, a two-phase algorithm was implemented. The

first phase finds only the mission scenario (planet sequence), while the second algorithm

determines the DSMs structure in the trajectory.

The interplanetary trajectory optimization problem is addressed in Chapter 4 using a

new dynamic-size multiple population genetic algorithm. A genetic algorithm is applied

to a calculated number of sub-populations in parallel. Each sub-population represents a

certain size of the design space (certain number of design variables). The initial size of each

sub-population is proportional to the number of design variables in the sub-population. The

size of a sub-population then increases or decreases in subsequent stages depending on the

fitness of the members of the sub-population. The DSMPGA method proved to be capable

of finding, without a priori knowledge, the number of swing-bys, the planets to swing by

(optimal planet sequence), and the number of deep space maneuvers (DSMs) in each leg,

as well as their components and directions, in addition to the rest of the design variables

in the interplanetary trajectory optimization problem. In the three case studies presented in

Chapter 4, the DSMPGA found the known optimal solutions with improvements in some

cases.

Chapter 5 introduces an application for the hidden genes concept. The developed hid-

den genes genetic algorithm tool is used to solve the GTOC problem. The asteroids re-

visiting mission is investigated to obtain the optimal trajectory with maximum number of

visited asteroids. The GTOC problem is a good application for the concept of hidden genes.

The developed tool is used to compute an impulsive trajectory, which could be used as an

initial guess to obtain the continuous low thrust trajectory. The HGGA tool has the capa-

bility to find the number of visited asteroids, the maneuver type, and the date of maneuver.
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In Chapter 6, the problem of initial orbit design for regional coverage, using natural (no

thrust) orbits, is investigated. A novel problem formulation is developed to design an orbit

that covers as many ground sites as possible, from given set, and also minimizes the mission

time frame. The J2 perturbation effect is implemented as a constraint to guarantee Sun-

synchronous repeated ground track orbit solutions. The spacecraft’s Field of View is an

input parameter to the developed algorithm. The developed method demonstrated success

in finding fit solutions for challenging case studies. One useful feature about implementing

the genetic algorithms in optimization is that it provides several solutions to the problem,

presenting different interesting features.

The concept of repeated shadow track orbit is introduced in Chapter 7. Constraints on

the orbital elements are derived to obtain a repeated shadow track orbit. For a two-body

motion perturbed only by the J2, the orbital elements need to be updated continuously to

maintain the repetition of the shadow track on ground. An optimization tool has been devel-

oped using a genetic algorithm approach to obtain the orbit with maximum time duration

over a given ground site. Results show that for a natural orbit, i.e. without a control, the

maximum duration time for a shadow over a point on ground will be in the order of few

seconds in one orbit revolution.
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