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Abstract 

Excessive Cladophora growth in the Great Lakes has led to beach fouling 

and the temporary closure of nuclear power plants and has been associated with 

avian botulism and the persistence of human pathogens.  As the growth-limiting 

nutrient for Cladophora, phosphorus is the appropriate target for management 

efforts.  Dreissenids (zebra and quagga mussels) have the ability to capture 

particulate phase phosphorus (otherwise unavailable to Cladophora) and release 

it in a soluble, available form.  The significance of this potential nutrient source is, 

in part, influenced by the interplay between phosphorus flux from the mussel bed 

and turbulent mixing in establishing the phosphorus levels to which Cladophora 

is exposed.  It is hypothesized that under quiescent conditions phosphorus will 

accumulate near the sediment-water interface, setting up vertical phosphorus 

gradients and favorable conditions for resource delivery to Cladophora.  These 

gradients would be eliminated under conditions of wind mixing, reducing the 

significance of the dreissenid-mediated nutrient contribution. 

Soluble reactive phosphorus (SRP) levels were monitored over dreissenid 

beds (densities on the order of 350·m-2 and 3000∙m-2) at a site 8 m deep in Lake 

Michigan.  Monitoring was based on the deployment of Modified Hesslein 

Samplers which collected samples for SRP analysis over a distance of 34 cm 

above the bottom in 2.5 cm intervals.  Deployment intervals were established to 

capture a wind regime (calm, windy) that persisted for an interval consistent with 

the sampler equilibration time of 7 hours.  Results indicate that increased mussel 

density leads to an increased concentration boundary layer; increased wind 
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speed leads to entrainment of the concentration boundary layer; and increased 

duration of quiescent periods leads to an increased concentration boundary 

layer.  This concentration boundary layer is of ecological significance and forms 

in the region inhabited by Cladophora. 
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1.0 Introduction 

The Great Lakes Water Quality Agreement of 1972 (renewed in 1978) 

specifically referenced conditions of nuisance algal biomass in Lakes Erie, 

Michigan, and Ontario and set target phosphorus (P) loads to reduce or eliminate 

those conditions. While this goal appears to have been met for offshore waters 

(Dove 2009), it has been concluded that the Agreement has not adequately 

addressed nearshore eutrophication issues (Agreement Review Committee 

2006).  Contemporary concerns relating to nuisance conditions in the nearshore 

focus on harmful algal blooms (HABs, typically cyanobacteria; Anderson et al. 

2002) and the filamentous, green alga, Cladophora  (Higgins 2008; Auer et al. 

2010).  HABs, increasingly associated with nutrient enrichment, can lead to 

alteration of aquatic habitat, fish, mammal and seabird mortality and human 

illness (Anderson et al. 2002; Dyble et al. 2008).  Cladophora grows to nuisance 

proportions in the nearshore waters of the Great Lakes, leading to beach fouling 

and the temporary closure of nuclear power plants and has been associated with 

avian botulism (New York Sea Grant and Pennsylvania Sea Grant 2001) and the 

persistence of human pathogens (Byappanahalli et al. 2003). 

In the nearshore waters of the Great Lakes, Cladophora grows to depths 

mediated by light availability wherever solid substrate is present and the nutrients 

required to support growth are available (Hecky et al. 2004).  Cladophora has 

been known to be in the Great Lakes at least since the early 1800s, with 

nuisance growth reported in the early 1970s (Taft and Kishler 1973).  Monitoring, 

experimental studies and modeling of Cladophora in the 1980s (see Auer 1982 
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and papers therein) supported successful management efforts to control 

nuisance conditions (Painter and Kamaitis 1987).  Attention to Cladophora 

waned in subsequent years but has achieved a higher level of visibility recently 

(Auer et al. 2010). 

 As the limiting nutrient for Cladophora, phosphorus is the appropriate 

target for management efforts (Auer et al. 1982; Higgins et al. 2005).  

Phosphorus mediation of Cladophora growth can occur on a whole-lake, regional 

or local scale.  For example, Lakes Erie and Ontario have historically been 

considered to be whole-lake driven (DePinto et al.1978), the coastal zone of 

western Lake Michigan impacted by large river discharges (Greb et al. 2004) and 

nearshore Lake Huron by local nutrient sources (Canale and Auer 1982).  Thus, 

management efforts have focused on reducing soluble reactive phosphorus 

levels (Lee 1980; Arnott and Vanni 1995) at the appropriate geographical scale. 

The establishment of zebra and quagga mussels in the Great Lakes has 

resulted in a reconsideration of Cladophora management (Hecky et al. 2004).  

Mussels can impact Cladophora by providing hard substrate for attachment 

(Wilson et al. 2006), increasing light penetration (Holland 1993; Howell et al. 

1996; Auer et al. 2010) and altering pathways of phosphorus cycling.  With 

respect to phosphorus, mussels, acting in the role of ecosystem engineers 

(Coleman and Williams 2002) alter nutrient cycling pathways.  It is well 

understood that dreissenids ingest particulate phosphorus and excrete the 

soluble phosphorus required for algal uptake (Conroy et al. 2005).  Hecky et al. 

(2004) coined the phrase “nearshore phosphorus shunt” to describe the process 
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by which mussels capture particulate phosphorus (terrigenous solids and 

phytoplankton) otherwise unavailable to Cladophora, and release it in a soluble 

form (Figure 1.1).  Through this process, mussels retain, recycle and deliver 

watershed-derived P to nearshore waters inhabited by Cladophora (Hecky et al. 

2004).  Dreisseinids act similarly in filtering phytoplankton from the water column, 

both recycling P for use by Cladophora (Hecky et al. 2004) and eliminating a 

source of nutrient competition with the attached alga (Fahnenstiel et al. 1995).   

 

 

Figure 1.1:  The Nearshore Phosphorus Shunt. 
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Mussel excretion of phosphorus has been regularly invoked as supporting 

nuisance growth of Cladophora (Dove 2009; Malkin et al. 2010; Depew et al. 

2011; Higgins et al. in review).  However, conclusions that mussels lie at the root 

of the Cladophora problem have been correlative in nature and have no 

mechanistic basis.  It is not denied that phosphorus excretion by dreissenids is of 

potential importance to Cladophora.  Ozersky et al. (2009) performed 

measurements and calculations demonstrating that mussel phosphorus fluxes 

are comparable to and may exceed the growth requirement of Cladophora.  

However, rates of phosphorus uptake by algae are dictated by water column P 

levels, and only indirectly related to fluxes from mussels and other sources. Thus 

quantification of the impacts of the nearshore phosphorus shunt requires that 

fluxes from mussels and uptake by Cladophora be linked through a mechanistic 

treatment of mass transport as it mediates water column P concentrations and 

thus the ecological significance of the nearshore phosphorus shunt. 

Relationships between mass transport and mussel activity have been 

observed in several studies conducted on the Great Lakes.  For example, 

Ackerman et al. (2001) observed depletion of chlorophyll and organic seston in 

waters overlying a zebra mussel bed in Lake Erie, attributing the phenomenon to 

semidiurnal stratification and attendant reductions in turbulent mixing.  Boegman 

et al. (2008) further demonstrated through modeling analysis that weak diurnal 

stratification, developing under calm conditions (wind <6 m·s-1), was sufficient to 

suppress vertical mixing and permit development of a concentration boundary 

layer (here with depleted seston levels) above the mussel bed.  This boundary 
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layer was then entrained and destroyed as wind speeds rose above 6 m·s-1, 

restoring the supply of particulate matter to the benthos.  The concept of near 

bottom particulate matter depletion through formation of a boundary layer may be 

extended as well to accumulation of soluble phosphorus under similarly 

quiescent conditions.  Here, phosphorus excreted from mussel beds would 

accumulate within a concentration boundary layer formed above the mussel bed.   

Under turbulent conditions vertical mixing would destroy the boundary layer and 

phosphorus would be uniformly distributed throughout the water column.  

Quantification of vertical mixing over substrates supporting Cladophora and 

mussels is needed to quantitatively and mechanistically describe the relationship 

between estimates of dreissenid P flux (Ozersky et al. 2009) and the ambient P 

levels driving Cladophora growth (Auer and Canale 1982). 
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2.0 Objectives and Approach 

The objective of this research is to document the presence/absence of a 

soluble reactive phosphorus concentration boundary layer over mussel beds and 

to quantify the effects of mass transport (i.e. turbulent vs. quiescent conditions) in 

mediating nutrient supply to Cladophora.  Soluble reactive phosphorus 

concentration profiles are measured above mussel beds over a range of mixing 

conditions using modified Hesslein samplers (peepers).  Weather data and 

vertical mixing profiles (ADCP instrumentation) were collected as well.  A vertical 

mass transport model was then applied to simulate phosphorus profiles and the 

model was calibrated and confirmed using the data obtained through peeper 

deployment. 
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3.0 Methods 

3.1 Study Site 

The study was conducted in the Lake Michigan nearshore, at Good 

Harbor Bay near Leland, Michigan (Figure 3.1; 44’58.367, 85’49.716).  The site 

offers high mussel densities and exposure to a broad range of mass transport 

conditions that make it representative of the Great Lakes ecosystem.  Good 

Harbor Bay lies in close proximity to the Sleeping Bear Dunes National 

Lakeshore, recently voted “America’s Most Beautiful Place” by NBC’s “Good 

Morning America.”  Degradation of the site’s beaches by nuisance growth of 

Cladophora has drawn the attention of scientists and agency officials.  In 

addition, activity at this site offered opportunities to collaborate with other 

organizations including the Michigan Tech Research Institute, Northwestern 

Michigan College, the National Park Service and the United States Geological 

Survey.  

The criterion for a specific monitoring location was that it have a depth 

capable of supporting Cladophora growth (light environment) as well as exposure 

to mass transport that would permit both formation (quiescent conditions) and 

destruction (turbulent conditions) of a concentration boundary layer.  A site was 

selected which was similar to that found optimal for studies of boundary layer 

effects by Boegman et al. (2008), i.e. 8 m deep and hosting populations of zebra 

and quagga mussels.  Low and high density mussel sites were selected within 

Good Harbor Bay (Figure 3.1; 44°59’25’’N, 85°47’12’’W and 44°58’91’’N, 
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Figure 3.1:  Low and high density mussel sites within Good Harbor Bay, Lake 
Michigan (modified from Google Earth).  Inset:  Good Harbor Bay in Lake 
Michigan (modified from Google Earth). 
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85°48’39’’W, respectively).  Mussels at the high density site were distributed in a 

continuous bed on hard, rocky substrate with abundances averaging ~3000 m-2.  

In contrast, mussels at the low density site were distributed in clumps over sand 

with isolated logs and rocks and had abundances of only ~350·m-2.  Although 

divers frequently deployed the water sampler, it was important that the study site 

have mussel beds of a size sufficient to accommodate deployment without the 

aid of divers, yet insure that the device was positioned over an active population 

of dreissenids.   

3.2 Water Sampling with Peepers 

Modified Hesslein Samplers (peepers, Figure 3.2) were constructed from 

a base unit available from Rickly Hydrological Company.  As configured here, the 

peeper had 14 sample cells distributed at 2.5 cm intervals over the 34 cm height 

of the device.  A polycarbonate membrane (0.4 micron, Sterlitech, Inc.) was 

placed on both sides of the peeper to separate the cells from the ambient 

environment while minimizing the barrier to mass transport (Figure 3.3).  A dye 

study was conducted to determine the time required for peeper cells to 

equilibrate to the external (ambient) environment.  Equilibrium was reached in 5-

6 hours (Figure 3.4) and thus a minimum deployment time of 7 hours was 

established.  Peeper cells were filled with milli-Q water, sealed with Teflon caps 

and deployed at the sites described above.  The devices were harvested 

following exposure to a stable wind regime (quiescent, <6 m·s-1 → turbulent, >6 

m·s-1; Boegman et al. 2008) persisting for the required equilibration period.   
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Figure 3.2: Modified Hesslein Sampler (peeper): Close-up of cells. 
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Figure 3.3:  Modified Hesslein Sampler (peeper): Deployed over Cladophora and 
mussel bed. (Photo courtesy of: Chris Doyal). 
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Figure 3.4:  Equilibration of a peeper containing fluorescein dye following 
immersion in distilled water.  The presence of the dye was measured as 
absorbance using a spectrophotometer.  Equilibration time estimated to be ~6 
hours, i.e. absorbance → 0. 
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At harvest, Teflon caps were removed from each cell and a glass syringe 

was used to transfer the sample to an acid-washed glass vial (Appendix A).  

Distilled water was used to rinse the syringe between samples.  Samples were 

also collected at the surface, mid and bottom levels of the water column for 

determination of ambient soluble and particulate phosphorus concentrations.  

Samples were filtered at low pressure (<100 mm Hg) using a vacuum pump and 

0.45 µm polycarbonate filters; the soluble fraction was maintained at 4°C until 

analysis, within 24 hours of collection, and the  particulate fraction was frozen. 

3.3 Chemical Analysis 

Analysis of soluble phase samples was performed at the project laboratory 

in Frankfort, MI according to the ascorbic acid method (Appendix B, Eaton 2005).  

Absorbance was measured at 880 nm on a Perkin Elmer UV/VIS Lambda 2 

spectrometer using 10 cm glass cells.  The detection limit for the method was 

0.46 µgP·L-1 with excellent precision over the range 0-5 µgP·L-1 (R2=0.9927; 

Figure 3.5).  Particulate P was determined by digestion and filtration of the 

sample followed by analysis using the aforementioned ascorbic acid method. 

 The method detection limit (MDL) and practical quantification limit 

(PQL) were determined by analyzing six replicate samples at each of four 

concentrations in the vicinity of the anticipated detection limit: 1 µgP·L-1, 2 

µgP·L-1, 3 µgP·L-1, and 4 µgP·L-1 (Figure 3.6).  The mean and standard 

deviation was then determined for each concentration and a one-sided t- 

distribution (α=0.05) established.  The t-distribution was multiplied by the
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Figure 3.5:  Standard curve for soluble reactive phosphorus. 
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Figure 3.6: Standard curve for detection limit calculation. 
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2 0.39 5 0.83 4.15 
3 0.19 6 0.38 1.88 
4 0.18 6 0.36 1.81 
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standard deviation to obtain the 95% MDL at each concentration, resulting 

in a mean MDL of 0.46 µgP·L-1.  The PQL (2.34 µgP·L-1) was calculated by 

multiplying the MDL by five (Table 1).    

3.4 Hemisphere Study 

 Phosphorus fluxes from mussels are a significant input to the mass 

balance for waters above their beds.  A hemisphere study was conducted 

through which mass transport effects were minimized and near maximum (i.e. 

algal uptake was not accounted for) rates of phosphorus accumulation could be 

observed.  Mussel phosphorus excretion was measured using an acrylic 

hemisphere (Figure 3.7; industrialplasticsonline.com) 18 inches in diameter with 

a 1/8 inch thick wall. The hemisphere was modified by adding a bulb pipette on 

the side which was used to mix the contents and a rubber stopper at the top 

through which a tube was inserted for sample collection.  The hemisphere was 

deployed over a representative bed of mussels and rocks were placed on the 

hemisphere flange to provide a tight seal and stabilize the deployment. Samples 

were collected at intervals over a 5-hour deployment using acid washed glass 

syringes. Hemisphere contents were gently mixed prior to collection using the 

bulb pipette.   

3.5 Meteorology and Mass Transport Profiling 

Wind speed was monitored at buoy and shore station locations (Figure 

3.8) to support the development of correlations between turbulence and the 

nature of the concentration boundary layer (Figure 3.9).  In addition, current
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Figure 3.7:  Diver situating dome for mussel P excretion potential study.   
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Figure 3.8:  Met wind data buoys (NOAA; modified from Google earth). via NOAA 
Buoy GTLM4 at Grand Traverse Point and Station 45002 located on Lake 
Michigan between North Manitou Island and the Washington Islands. 
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Figure 3.9:  Wind speed and Current velocities from 9/12/11-9/19/11 with blue 
horizontal line illustrating the turbulent vs. quiescent wind regimes established by 
Boegman et al. 2008. 
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velocity profiles were measured over the mussel beds using an Acoustic Doppler 

Current Profiler (ADCP; Nortek USA).  The instrument was attached to a 3-meter 

tall stainless steel stand (Figure 3.10), configured to measure current velocities 

for a distance of 1.7 meters above the bed at 2 cm intervals and deployed in an 

8-meter water column at the study site in Good Harbor Bay.  Profiles were 

captured for a 5-minute duration at hourly intervals.  Current data were used to 

calculate the turbulent diffusion coefficient as a function of distance over the bed 

and relate that turbulence to wind speed.  ADCP measurements were not paired 

with peeper deployments.   
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Figure 3.10: ADCP. 
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4.0 Results and Discussion 

The nearshore phosphorus shunt describes the process by which mussels 

capture particulate phosphorus and excrete it as soluble reactive phosphorus, 

the form available for uptake by Cladophora (Hecky et al. 2004).  Ozersky et al. 

(2009) have demonstrated that the phosphorus flux from mussels can meet or 

exceed the stoichiometric requirement for Cladophora growth.  However, 

phosphorus uptake by Cladophora is dependent on water column P levels as 

influenced by mass transport and only indirectly dependent on mussel fluxes.  

Therefore, a mechanistic link describing the impact of mass transport on water 

column P is required. 

Before seeking to quantify this relationship, it is worthwhile to consider the 

range of SRP levels that are ecologically meaningful with respect to Cladophora 

growth.   Ambient SRP levels in environments not supporting Cladophora growth, 

e.g. Lake Superior, suggest a lower limit for Cladophora growth of ~0.5 µgP∙L-1 

(Tomlinson et al. 2010).  Tomlinson et al. (2010) have established that 

Cladophora becomes P-saturated at soluble reactive phosphorus concentrations 

greater than ~1.5 µgP∙L-1 (Figure 4.1).  Thus Cladophora growth may be 

considered to be most sensitive to SRP concentrations in the range, 0.5 µgP∙L-1 

(limitation threshold) to 1.5 µgP∙L-1 (saturation threshold).  

4.1 Mussel phosphorus excretion potential 

Phosphorus fluxes from mussels are an integral component in the mass 

balance describes governance of water column concentrations.  For the Lake
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Figure 4.1:  Production of Cladophora as a function of soluble reactive 
phosphorus concentration (modified from Tomlinson et al. 2010).  The dashed 
line represents the SRP concentrations at which Cladophora is not at nuisance 
conditions and the P-saturated region is the area greater than 1.5 µgP·L-1. 
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Michigan study site, the average ambient water column SRP concentration of 

0.47 µgP∙L-1 (+ 0.13 µgP∙L-1; Figure 4.2) represents the case boundary condition, 

i.e. lake water uninfluenced by mussel excretion.  This ambient SRP 

concentration is essentially identical to the lower end member of the range of 

ecologically meaningful SRP concentrations (Figure 4.1) and, thus, Cladophora 

growth at the study site is not driven by whole lake phosphorus levels. 

An ambient SRP maximum (the magnitude of which would vary with the 

PP concentration and mussel population characteristics) would be observed in 

the presence of mussels but in the absence of mass transport and uptake by 

Cladophora.  The maximum was characterized here by deploying a dome over a 

mussel/Cladophora bed at the high density site and measuring the concentration 

of SRP over time (Figure 4.3).  The results of this study are best examined in 

terms of a mass balance on P in the hemisphere.  Initially, PP and SRP were at 

levels reflecting the ambient near-bottom environment (high and low, 

respectively), concentrations favoring mussel excretion over Cladophora uptake 

and yielding a steep positive slope in observed SRP concentration (Figure 4.3, 

‘a’).  After ~30 minutes incubation, PP would have decreased resulting in less 

excretion, while SRP was observed to increase, leading to more rapid uptake 

(Auer et al., 1982).  Conditions continued to favor excretion, but the slope was 

less (Figure 4.3, ‘b’).  After 2 hours, PP was likely depleted and mussel excretion 

negligible; Cladophora uptake drove down SRP and the result was a descending 

slope (Figure 4.3, ‘c’).  As PP and SRP were both drawn down, a steady state 
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Figure 4.2: Water column (boundary condition) soluble reactive phosphorus 
concentrations at 1 m below the surface, mid-depth (4 m) and 1 m above the lake 
bottom.  Results are presented as mean ± S.D. for 9 measurements of the May-
Oct period of 2011. 
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Figure 4.3:  Soluble Reactive Phosphorus Concentrations over mussels 
surrounded by dome.   
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was achieved (zero slope; (Figure 4.3, ‘d’).  The initial positive slope (1.2 

µgSRP·L-1·hr-1) yields an SRP mussel excretion flux of 4.4 mgSRP∙m2∙d-1 

(Appendix C; mussel density of 4000 m-2.)  Corrected for Cladophora uptake, this 

excretion rate would be higher.  This excretion rate falls between that calculated 

from field measurements made by Ozersky et al. 2009 (3 mgSRP∙m2∙d-1) and 

rates calculated using an empirical algorithm (6.5 mgSRP∙m2∙d-1 Bootsma, 

unpublished).  While the mussel SRP flux can only be sustained if the supply of 

particulate P is maintained, fluxes of the magnitude determined here could 

elevate ambient near-bottom SRP concentrations to 2-5 µgP∙L-1 over periods of 

2-4 hours.  Thus, absent mass transport and uptake by Cladophora, mussels can 

generate ecologically significant SRP concentrations.  The impact of Cladophora 

uptake can be dismissed as the significance of this loss term will decline as 

stored P is accumulated, a phenomenon which proceeds at a time scale much 

shorter than that of excretion (Auer et al. 1982).   

Mass transport serves to mediate both the rate of PP supply to mussels 

and the rate of SRP removal from the boundary layer.  A low degree of diffusive 

mass transport tends to enhance accumulation, but limit supply through 

excretion.  Thus, this phenomenon is complex and this is why modeling is 

necessary.   

4.2 Observations 

 A broad range in the character of near-bottom SRP profiles was observed 

(Figure 4.4).  Profiles varied with respect to boundary layer thickness (e.g. 

compare Figure 4.4f with Figure 4.4l) as well as maximum boundary layer SRP 
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Figure 4.4:  Peeper profiles of SRP concentrations collected June-August, 2011. 
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 concentration (compare Figure 4.4a vs. 4.4h).  These differences in boundary 

layer thickness and concentration gradients are attributable to factors including 

the magnitudes of mass transport and mussel density.  During quiescent periods, 

an SRP concentration boundary layer builds up above the mussel bed while 

turbulent conditions serve to entrain the boundary layer resulting in more uniform 

SRP distributions.  Here, the impact of three driving forces will be considered: 

mussel density (4.2.1) and two features of mass transport (wind speed, Figure 

4.2.2, and the duration of quiescent conditions Figure 4.2.3).    

4.2.1 The impact of mussel density on boundary layer concentrations 

Mussel P fluxes vary with respect to PP supply, temperature, mussel size 

and density (Bootsma unpublished).  Holding the first three factors constant, 

increasing mussel density should result in greater fluxes.  For a given mixing 

condition, higher fluxes have the potential to yield greater phosphorus 

concentrations in the boundary layer above the mussel beds (Figure 4.5a).  

Observations support the conceptual model as evidenced by the fact that 

maximum near-bottom SRP concentrations for the high density bed (8 µgP·L-1) 

were greater than those observed over the lower density bed (4 µgP·L-1; Figure 

4.5b).  Wind speeds (used here as a surrogate for mass transport) were similar 

for the two, remaining below the 6 m·sec-1 threshold of Boegman et al. (2008) for 

> 24 hours prior to harvest.  These observations support the hypothesis that a 

phosphorus boundary layer, 5-15 cm in thickness, forms within and immediately 

above habitat colonized by dreissenids and Cladophora under appropriate mixing  
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Figure 4.5a: Conceptualization of phosphorus profiles reflecting the impact of 
mussel density on concentrations in the boundary layer.   

  
 

 
Figure 4.5b: Observed phosphorus profiles confirming the conceptual model for 
the impact of mussel density on phosphorus concentrations in the boundary 
layer. 
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conditions and that the magnitude of concentration within the boundary layer 

varies with mussel density. 

4.2.2 The impact of wind speed on boundary layer concentrations 

Wind is the predominant driving force for mass transport in the nearshore 

waters inhabited by Cladophora.  As wind speeds increase, higher rates of 

diffusion are observed, eventually leading to entrainment of the concentration 

boundary layer (Figure 4.6a).  Profiles associated with winds of increasing speed 

(2.1, 3.8, and 6.9 m·s-1) support the conceptual model, i.e. entrainment is 

observed to increase concomitantly maximum SRP concentrations decreasing 

from 3.8 µgP·L-1 to 0.8 µgP·L-1 (Figure 4.6b).  These measurements support the 

concept introduced above that increasing wind speeds lead to decreasing 

boundary layer thickness and decreasing maximum near bottom concentrations. 

4.2.3 Impact of quiescent periods on boundary layer concentrations 

As described above, wind speeds of < 6 m·s-1, result in minimal mixing 

(Boegman et al. 2006) of an 8-meter water column, permitting development of a 

of a concentration boundary layer.  Turbulent conditions, wind speeds of > 6 m·s-

1, lead to destruction of that layer.  The conceptual model suggests that the SRP 

gradient within the boundary layer increases with the duration of quiescent 

conditions (Figure 4.7a).  Observations supported the conceptual model, with 

increases in the duration of quiescent conditions resulting in larger concentration 

gradients (Figure 4.7b).  As quiescent period duration increased from 2 hours 

to48 hours the respective maximum SRP concentration increased from 0.6 
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Figure 4.6a: Model-predicted phosphorus profiles illustrating the impact of wind 
speed on phosphorus concentrations in the boundary layer.   
 
 

 

 

Figure 4.6b: Observed phosphorus profiles confirming the conceptual model for 
the impact of wind speed on phosphorus concentrations in the boundary layer.   
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Figure 4.7a:  Model-predicted phosphorus profiles illustrating the effect of 
quiescent periods on phosphorus concentrations in the boundary layer.  

   
Figure 4.7b: Observed phosphorus profiles confirming the conceptual model for 
the impact of quiescent period duration on phosphorus concentrations in the 
boundary layer.  (It should be noted that high wind speed at the last data point 
before harvest for 8-26-11 was taken ~10 minutes prior to harvest, thus not 
affecting profile given peeper’s equilibration time of 5-6 hours.) 
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µgP·L-1 to 8 µgP·L-1 (with ambient water column boundary conditions 

unchanged).  These observations support the hypothesis that the nature of the 

Phosphorus boundary layer that forms proximate to habitat colonized by 

dreissenids and Cladophora depends on the duration of quiescent conditions. 

Prolific recyclers, mussels have the capacity to excrete a significant amount of 

SRP into the water column.  During quiescent periods this flux can lead to an 

ecologically-meaningful increase in SRP concentrations in near-bottom waters.  

Turbulent conditions entrain the concentration boundary layer restoring the water 

column profile to that of the ambient open water environment unimpacted by 

mussels.  The thickness of the concentration boundary layer that forms under 

quiescent conditions and the P levels contained therein varied with: mussel 

density, wind speed, and duration of quiescent conditions.  The amount of 

phosphorus that was observed to accumulate in the concentration boundary 

layer is ecologically significant for Cladophora and occurs at a location in the 

water column inhabited by the algae (~0-10 cm above the mussel bed). 

 
4.3 Relating boundary layer profiles to meteorological conditions 
 
4.3.1 Model 

A model is developed to simulate the one-dimensional (vertical) 

distribution of soluble reactive phosphorus (P) in the water column overlying 

zebra mussel beds.  The physical framework includes 800, 1-cm thick model 

cells representing a distance of 8 m above bottom, i.e. the deployment depth for 



44 

peeper samplers.  The basic governing equation is the one-dimensional diffusion 

equation,  

 ( ) 
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where: P is the soluble reactive phosphorus concentration (mgP·m-3), t is time 

(d), z is the vertical coordinate (m; positive upwards), and D is the diffusion 

coefficient (length2/time). The upper boundary condition is a fixed P, which in 

general could be a function of time. The value is determined from direct 

measurement and user-input.  The bottom boundary condition is a specified flux, 

determined from model calibration.  Mathematically, this condition is expressed 

by 
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where J is the mussel P flux (gP·m-2·d-1).  The numerical solution is formulated 

using an explicit finite difference scheme with a simple forward difference in time 

and a central difference in z for the diffusion term.  It is solved with VBA in Excel. 

4.3.2 Fitting 

 There are three features which characterize the phosphorus profile: the 

ambient bulk liquid boundary condition, the maximum SRP value at the 

sediment-water interface and the shape of the curve connecting those two.  The 

boundary condition, averaging 0.47 + 0.13 µgP∙L-1 over the study (Figure 4.2), 

was measured and input in fitting each curve.  The maximum SRP varies with the 

P flux from the mussel bed which is a function of mussel density and particulate 
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P concentration.  Under low mixing conditions, particulate P is depleted near the 

sediment-water interface (Boegman et al. 2008) and the flux decreases markedly 

over time, i.e. duration of quiescence.  In calibrating the model, values of J and D 

were varied, seeking a best fit between measured and model-predicted P values 

over the profile.  This two-parameter calibration is expected to yield unique 

values for J and D as these coefficients mediate different portions of the profile 

(shape).  A suitable fit was achieved in all 12 cases, including low and high 

mussel densities and low and high turbulence conditions (Figures 4.8-4.10).   

4.3.3 Flux and Duration of Quiescent Conditions 

 Over the period of deployment the particulate phosphorus concentration 

decreases if mixing conditions are limited which leads to a reduction in SRP flux.  

The reduction becomes more significant as time of quiescence increases.  

Calibration supported this phenomenon as J had to be varied over time for both 

low and high mussel densities.  A plot of J calibration as a function of quiescent 

period duration yields a strong correlation (Figure 4.12) and validates the 

decision to vary J in calibration to accommodate this decreasing PP 

concentration. 

4.3.4 Relation to wind speed 

 The conceptual model guiding this research suggests that variations in 

wind speed would impact the magnitude of diffusion and thus the nature of the 

profile.  While it is J that determines the near bottom concentration, it is diffusion 

and, indirectly wind, that establish the thickness of the boundary layer and thus
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Figure 4.8:  Peeper profiles calibrated to data for quiescent conditions at low 
mussel density locations. 
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Figure 4.9:  Peeper profiles calibrated to data for quiescent conditions at high 
mussel density locations. 
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Figure 4.10:  Peeper profiles calibrated to data for turbulent conditions at low and 
high mussel density locations. 
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Figure 4.11:  SRP flux from mussels for high and low density beds based on the 
duration of the quiescent period. 
 

 

 

 

 

 

 

y = -0.002x + 0.1476
R² = 0.9488

y = -0.005x + 0.36
R² = 0.8929

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70

LMD

HMD

SR
P 

Fl
ux

 (m
g∙

m
-2

∙d
-1

)

Duration of Quiescent Period (hrs)



50 

the shape, e.g. compare Figure 4.9a to Figure 4.9d.  A relationship between wind 

speed and the magnitude of D as determined through calibration was thus 

sought. 

 Wind speed and direction were measured over the duration of the 

quiescent and turbulent periods and used to calculate a fetch-averaged velocity.  

The fraction of the period the winds came from each of the directions was 

calculated and plotted on wind roses (Figure 4.12).  Due to the study site being 

situated in a bay, weighted averages were put on wind directions based on fetch.  

Winds from the northwest (coming from off the shore) received the greatest 

weights while winds from the southeast (coming from the shore) were weighted 

the least.  These wind speeds were then plotted as a function of paired diffusion 

coefficients obtained through calibration of peeper profiles (Figure 4.13).  The 

strong correlation obtained here provides validation of the role of wind speed and 

direction in mediating the nature of the concentration boundary layer and thus 

phosphorus levels within the zebra mussel bed. 
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Figure 4.12. Wind roses illustrating wind direction and fetch weighted average 
speed throughout the duration of the quiescent or turbulent period.  . 
 

 

 

 

 

 

 

onshore

offshore

6-21-11
avg=2.36m∙s-1

fetch avg=0.46m∙s-1

6-24-11
avg=3.01m∙s-1

fetch avg.=1.66 m∙s-1

6-27-11
avg=2.46m∙s-1

fetch avg.=1.26m∙s-1

7-5-11
avg=7.62m∙s-1

avg.=6.98m∙s-1

7-18-11
avg=6.20m∙s-1

fetch avg.=3.47m∙s-1

7-12-11
avg=5.34m∙s-1

fetch avg.=4.50m∙s-1

7-19-11
avg=1.67m∙s-1

fetch avg.=1.62 m∙s-1

8-5-11
avg=2.22m∙s-1

fetch avg.=1.96m∙s-1

8-26-11
avg=3.14m∙s-1

fetch avg.=2.96m∙s-1

8-11-11
avg=8.75m∙s-1

fetch avg.=6.58 m∙s-1

8-6-11
avg=1.83m∙s-1

fetch avg.=1.35m∙s-1

onshore

onshoreonshoreonshoreonshore

onshoreonshoreonshore

onshoreonshore

offshoreoffshoreoffshore

offshoreoffshoreoffshoreoffshore

offshoreoffshoreoffshore



52 

 

 

 

 

 

 

Figure 4.13:  Model calibrated to the diffusion coefficient. 
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5.0 Summary, Conclusion and Implications for Management 

Peepers were used to monitor SRP concentrations above mussel beds at 

a site 8 m deep in Lake Michigan.  The peepers collected water samples over a 

distance of 34 cm above the bottom in 2.5 cm intervals.  Deployment intervals 

were established to capture turbulent or quiescent wind conditions that persisted 

for a period of time consistent with the sampler equilibration time of 7 hours.  

Near bottom SRP levels (5-15 cm above the bed) under low wind conditions (~2-

5 m·s-1) were observed to be 4-8 times greater than those 20-34 cm above the 

bottom.  Under windy conditions (> 6 m·s-1), no gradient was apparent, i.e. near-

bottom SRP levels were not significantly different from those at a distance of 24-

34 cm from the bottom.  A vertical mass transport model was then applied to 

simulate the profiles forming the concentration boundary layer.  The model 

successfully reproduced the profiles, yielding estimates for mussel flux and the 

diffusion coefficient. 

Estimated mussel fluxes turned out to be significantly lower than those 

observed in the hemisphere.  Since the hemisphere neglects the effect of mass 

transport, particulate phosphorus concentration decreases over time resulting in 

the observed decrease in SRP concentration which is caused by a decreasing 

source (PP) and an increasing sink (Cladophora uptake).  Calibration supported 

the phenomenon that SRP flux decreased over time due to a decreasing 

particulate phosphorus concentration over the duration of the quiescent 

conditions.  SRP flux estimates of previous studies using a constant a constant 

flux are higher than is realistic.  Thus it is necessary to have a PP state variable.   
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This work demonstrated phenomenologically that the character of the 

boundary layer depends on wind speed.  As winds increased, the boundary layer 

became entrained leading to a relatively uniform distribution of phosphorus 

throughout the water column, restoring the water column profile to that of the 

ambient open water environment unimpacted by mussels.  The thickness of the 

concentration boundary layer that forms under quiescent conditions and the P 

levels contained therein varied with: mussel density, wind speed, and duration of 

quiescent conditions.   

The implication for management is that this concentration boundary layer 

that forms under quiescent condition, just above the mussel bed, is coincident 

with the portions of the water column inhabited by Cladophora (0-15 cm above 

the mussel bed).  The concentrations within this boundary layer are ecologically 

significant for Cladophora (> 0.5 µgP·L-1).  Results suggest the role of mussels in 

the Great Lakes has significant temporal dynamics associated with it terms of the 

duration of quiescent conditions and wind speeds.  The time scale of Cladophora 

uptake of SRP is considerably different and one day of quiescence could lead to 

ideal conditions for Cladophora growth resulting in them being well fed for a 

significant amount of time.  Thus a robust model would accommodate wind 

speed and related mixing and boundary layer dynamics and their effect on SRP 

uptake by Cladophora. 
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6.0 Future Work and Recommendations 

The 1D mass transport model as well as data collection improves the 

understanding of phosphorus mass transport in a one-dimensional direction.  

Future work, including collaboration with a hydrodynamicist, would allow 

extension of this model to a 2D advection and diffusion mass transport model 

which would link mussel excretion with Cladophora uptake through via the 1D 

mass vertical transport model.  Furthermore, establishing a 3D model would 

require minimal additional work once the 2D model is formed. 
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Figure 6.1:  Mass transport model linking the excretion of SRP from mussels with 
the uptake of SRP by Cladophora. 
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Appendix 

Appendix A: 

Collection of field samples 

Ambient Phosphorus Measurements 

1. 2.2 Liter Van Dorn Sampler was acid washed and rinsed three times with 

Milli-Q water. 

2. Ropes to sampler were set taught with hooks so the sampler was in the 

open position. 

3. Sampler was deployed over side of boat to ~1 meter below the surface. 

4. Messenger was sent down rope to shut the sides of the sampler. 

5. Sampler was brought back up to boat 

6. Hose was used to pour sample out of sampler into a previously acid 

washed jug. 

7. Steps 2-6 were repeated for mid (4 meters below surface) and bottom (7 

meters below surface) depths. 

Peeper Cells 

     Deployment: 

     Pre-deployment 

1. Body and cover sheet membranes of peeper were soaked in 10% acid 

bath. 
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2. Toothbrush was used to scrub body and membranes of peeper with acid 

wash. 

3. Peeper parts were rinsed three times with Milli-Q water. 

4. Stainless steel screws were used to attach cover sheet to 0.4 micron 

Sterlitech polycarbonate membranes and body of peeper. 

During-deployment 

1. Peeper cells were filled with Milli-Q water using a previously acid washed 

squirt bottle. 

2. Teflon caps were inserted after the addition of Milli-Q water to each cell. 

3. Peeper was deployed over the side of the boat at the study site frequently 

with the aid of divers. 

Post-deployment 

1. Peeper was retrieved from the boat (sometimes with help of divers). 

2. Once on deck, teflon cap was removed. 

3. Pre-acid washed glass syringe was used to extract sample from cell 

(Figure A.1). 

4. Sample was placed in a 50-mL glass vial which included the sample’s cell 

number. 

5. Syringe was rinsed with distilled water. 

a. Please note triplicate measurements of SRP was measured in all 

brands of distilled water several times.  SRP concentrations were 

negligible. 
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Figure A. 1:  Collection of water samples from peeper. 
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6. Steps 2-5 were repeated for the remaining cells. 

7. Samples were stored at 4°C until filtration. 

Filtration 

 -filtering was conducted within ~4 hours of harvesting the samples. 

1. Glass filter apparatus was acid washed and rinsed three times with Milli-Q 

water. 

2.  0.45 µm polycarbonate filters were placed using tweezers on filter 

apparatus candle and clamped down. 

3. Sample was poured into filter apparatus and filtering was done at <100 

mm Hg) using a vacuum pump. 

4. Filter apparatus was taken apart and a pre-acid washed 25 mL glass 

volumetric pipette was used to transfer the sample to a pre-rinsed glass 

vial.   

5. Sample was stored at 4°C until analysis. 

6. Distilled water was poured into glass filtering apparatus. 

7. Filtering Apparatus was turned on to rinse with distilled water. 

8. Steps 2-7 were repeated for each of the peeper samples and for the 

ambient phosphorus samples. 

Analysis 

1. Analysis was conducted within 24 hours to measure for soluble reactive 

phosphorus according to the Ascorbic Acid Method (Eaton 2005) 

described in Appendix B. 
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Appendix B 

Methods for measuring Soluble Reactive Phosphorus concentrations 

(adapted from Ascorbic Acid Method [Eaton 2005]) 

 

Preparation of Reagents  

1. Sulfuric acid, H2SO4, 5N: Dilute 70 mL conc H2SO4 to 500 mL with 

distilled water. 

2. Potassium antimonyl tartrate solution: Dissolve 1.3715 g 

K(SbO)C4H6O6·1/2H2O in 400 mL distilled water in a 500-mL volumetric 

flask and dilute to volume. 

3. Ammonium molybdate solution: Dissolve 20 g (NH4)6Mo7O244H2O in 500 

mL distilled water.  Store in glass-stoppered bottle. 

4. Ascorbic Acid, 0.1M: Dissolve 1.76 g ascorbic acid in 100 mL distilled 

water.  The solution is stable for about 1 week at 4°C. 

5. Combined reagent: Mix the above reagents in the following poroportions 

for 100 mL of the combined reagent: 50 mL 5N H2SO4, 5 mL potassium 

antimonyl tartrate solution, 15 mL ammonium molybdate solution, and 30 

mL ascorbic acid solution.  Mix after addition of each reagent.  Let all 

reagents reach room temperature before they are mixed and mix in the 

order given.  If turbidity forms in the combined reagent, shake and let 

stand for a few minutes until turbidity disappears before proceeding.  The 

reagent is stable for 4 h. 
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Procedure 

1. Add 25.0 mL sample into a clean, dry previously acid washed Erlenmeyer 

flask.   

2. Add 4.0 mL combined reagent and mix thoroughly.   

3. After at least 10 minutes, but no later than 30 minutes, measure 

absorbance of each sample at 880 nm, using reagent blank as the 

reference solution. 

 

Preparation of calibration curve 

1. Prepare individual calibration curves from a series of six standards within 

the range of 0-5 µgP∙L-1. 

2. Use a distilled water blank with the combined reagent to make photometric 

readings for the calibration curve. 

3. Plot absorbance vs. phosphate concentration to give a straight line 

passing through the origin.   

4. Test at least one phosphate standard with each set of samples.   
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Appendix C 

 
 
Figure 4.3:  Soluble Reactive Phosphorus Concentrations over mussels 
surrounded by dome (Taken from text above). 
 

1) Calculate volume of dome used in experiment 

a. Volume of dome=πrh2-(1/3)πh3 

b. V=(0.229m)*(0.229m)2-(1/3)*(0.229)3=0.025151m3 

2) Calculate mass (M) 

a. Given slope of 1.2x and C0=1 µgSRP·L-1·hr-1.  Concentration at 

minute 30 (C30)=1.6 µgSRP·L-1·hr-1.   

b. (1.6 µgSRP∙L-1)*(25.15L)-(1µgSRP∙L-1)*(25.15L) = 15.09 µgSRP/30 
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c. M / day 

i. 15.09 µgSRP/30 min. * 48 = 724.32 µgSRP/day. 

3) Given M (step 2), calculate flux (F) 

a. F = M / (A) 

b. F = 724.32 µgSRP/day / ((π*0.2292)) = 4396.525 µgSRP∙m-2∙d-1 = 

4.40 mgSRP∙m-2∙d-1. 
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